fix bug
Browse files- Image/DenseNet/code/train.py +2 -2
- Image/EfficientNet/code/train.py +2 -2
- Image/utils/train_utils.py +4 -4
- ttv_utils/__init__.py +4 -4
- ttv_utils/save_embeddings.py +4 -4
Image/DenseNet/code/train.py
CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
-
from model import DenseNet
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
+
from model import DenseNet, densenet_cifar
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = densenet_cifar()
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
Image/EfficientNet/code/train.py
CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
-
from model import EfficientNet
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
+
from model import EfficientNet, EfficientNetB0
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = EfficientNetB0()
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
Image/utils/train_utils.py
CHANGED
@@ -24,7 +24,7 @@ current_dir = Path(__file__).resolve().parent
|
|
24 |
project_root = current_dir.parent.parent
|
25 |
sys.path.append(str(project_root))
|
26 |
|
27 |
-
from ttv_utils import
|
28 |
|
29 |
def setup_logger(log_file):
|
30 |
"""配置日志记录器,如果日志文件存在则覆盖
|
@@ -198,7 +198,7 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
198 |
shuffle=False, # 确保顺序加载
|
199 |
num_workers=trainloader.num_workers
|
200 |
)
|
201 |
-
save_model =
|
202 |
save_model.save()
|
203 |
|
204 |
scheduler.step()
|
@@ -259,7 +259,7 @@ def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
|
|
259 |
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
260 |
|
261 |
# 调用通用训练函数
|
262 |
-
|
263 |
|
264 |
def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
|
265 |
device='cuda:0', save_dir='./checkpoints', model_name='model',
|
@@ -315,7 +315,7 @@ def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr
|
|
315 |
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
316 |
|
317 |
# 训练模型
|
318 |
-
|
319 |
|
320 |
# 恢复原始数据用于验证
|
321 |
trainset.targets = original_targets
|
|
|
24 |
project_root = current_dir.parent.parent
|
25 |
sys.path.append(str(project_root))
|
26 |
|
27 |
+
from ttv_utils import time_travel_saver
|
28 |
|
29 |
def setup_logger(log_file):
|
30 |
"""配置日志记录器,如果日志文件存在则覆盖
|
|
|
198 |
shuffle=False, # 确保顺序加载
|
199 |
num_workers=trainloader.num_workers
|
200 |
)
|
201 |
+
save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1)
|
202 |
save_model.save()
|
203 |
|
204 |
scheduler.step()
|
|
|
259 |
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
260 |
|
261 |
# 调用通用训练函数
|
262 |
+
train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='1')
|
263 |
|
264 |
def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
|
265 |
device='cuda:0', save_dir='./checkpoints', model_name='model',
|
|
|
315 |
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
316 |
|
317 |
# 训练模型
|
318 |
+
train_model(model, poisoned_trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='2')
|
319 |
|
320 |
# 恢复原始数据用于验证
|
321 |
trainset.targets = original_targets
|
ttv_utils/__init__.py
CHANGED
@@ -24,11 +24,11 @@
|
|
24 |
)
|
25 |
```
|
26 |
|
27 |
-
3.
|
28 |
使用示例:
|
29 |
```python
|
30 |
# 创建一个保存器实例
|
31 |
-
saver =
|
32 |
model=model, # 模型实例
|
33 |
dataloader=ordered_loader, # 顺序数据加载器
|
34 |
device='cuda:0', # 计算设备
|
@@ -52,6 +52,6 @@
|
|
52 |
"""
|
53 |
|
54 |
from .feature_predictor import FeaturePredictor, predict_feature
|
55 |
-
from .save_embeddings import
|
56 |
|
57 |
-
__all__ = ['FeaturePredictor', 'predict_feature', '
|
|
|
24 |
)
|
25 |
```
|
26 |
|
27 |
+
3. time_travel_saver: 用于在训练过程中保存模型权重、特征和预测结果的类
|
28 |
使用示例:
|
29 |
```python
|
30 |
# 创建一个保存器实例
|
31 |
+
saver = time_travel_saver(
|
32 |
model=model, # 模型实例
|
33 |
dataloader=ordered_loader, # 顺序数据加载器
|
34 |
device='cuda:0', # 计算设备
|
|
|
52 |
"""
|
53 |
|
54 |
from .feature_predictor import FeaturePredictor, predict_feature
|
55 |
+
from .save_embeddings import time_travel_savers
|
56 |
|
57 |
+
__all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
|
ttv_utils/save_embeddings.py
CHANGED
@@ -5,7 +5,7 @@ import os
|
|
5 |
import json
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
-
class
|
9 |
"""可视化数据保存类
|
10 |
|
11 |
用于保存模型训练过程中的各种数据,包括:
|
@@ -76,10 +76,10 @@ class time_travel_visualization:
|
|
76 |
activation[name] = output.detach()
|
77 |
return hook
|
78 |
|
79 |
-
#
|
80 |
handles = []
|
81 |
for name, module in self.model.named_modules():
|
82 |
-
if isinstance(module,
|
83 |
handles.append(module.register_forward_hook(get_activation(name)))
|
84 |
|
85 |
self.model.eval()
|
@@ -90,7 +90,7 @@ class time_travel_visualization:
|
|
90 |
_ = self.model(inputs)
|
91 |
|
92 |
# 找到维度在512-1024范围内的层
|
93 |
-
target_dim_range = (
|
94 |
suitable_layer_name = None
|
95 |
suitable_dim = None
|
96 |
|
|
|
5 |
import json
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
+
class time_travel_saver:
|
9 |
"""可视化数据保存类
|
10 |
|
11 |
用于保存模型训练过程中的各种数据,包括:
|
|
|
76 |
activation[name] = output.detach()
|
77 |
return hook
|
78 |
|
79 |
+
# 注册钩子到所有层
|
80 |
handles = []
|
81 |
for name, module in self.model.named_modules():
|
82 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
83 |
handles.append(module.register_forward_hook(get_activation(name)))
|
84 |
|
85 |
self.model.eval()
|
|
|
90 |
_ = self.model(inputs)
|
91 |
|
92 |
# 找到维度在512-1024范围内的层
|
93 |
+
target_dim_range = (256, 2048)
|
94 |
suitable_layer_name = None
|
95 |
suitable_dim = None
|
96 |
|