RRFRRF commited on
Commit
bb9bb65
·
1 Parent(s): d5dac94
Image/DenseNet/code/train.py CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
- from model import DenseNet
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
- model = DenseNet()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
 
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
+ from model import DenseNet, densenet_cifar
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
+ model = densenet_cifar()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
Image/EfficientNet/code/train.py CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
- from model import EfficientNet
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
- model = EfficientNet()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
 
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
+ from model import EfficientNet, EfficientNetB0
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
+ model = EfficientNetB0()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
Image/utils/train_utils.py CHANGED
@@ -24,7 +24,7 @@ current_dir = Path(__file__).resolve().parent
24
  project_root = current_dir.parent.parent
25
  sys.path.append(str(project_root))
26
 
27
- from ttv_utils import time_travel_visualization
28
 
29
  def setup_logger(log_file):
30
  """配置日志记录器,如果日志文件存在则覆盖
@@ -198,7 +198,7 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
198
  shuffle=False, # 确保顺序加载
199
  num_workers=trainloader.num_workers
200
  )
201
- save_model = time_travel_visualization(model, ordered_loader, device, save_dir, model_name, interval = 1)
202
  save_model.save()
203
 
204
  scheduler.step()
@@ -259,7 +259,7 @@ def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
259
  trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
260
 
261
  # 调用通用训练函数
262
- train_models(model, trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='1')
263
 
264
  def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
265
  device='cuda:0', save_dir='./checkpoints', model_name='model',
@@ -315,7 +315,7 @@ def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr
315
  trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
316
 
317
  # 训练模型
318
- train_models(model, poisoned_trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='2')
319
 
320
  # 恢复原始数据用于验证
321
  trainset.targets = original_targets
 
24
  project_root = current_dir.parent.parent
25
  sys.path.append(str(project_root))
26
 
27
+ from ttv_utils import time_travel_saver
28
 
29
  def setup_logger(log_file):
30
  """配置日志记录器,如果日志文件存在则覆盖
 
198
  shuffle=False, # 确保顺序加载
199
  num_workers=trainloader.num_workers
200
  )
201
+ save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1)
202
  save_model.save()
203
 
204
  scheduler.step()
 
259
  trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
260
 
261
  # 调用通用训练函数
262
+ train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='1')
263
 
264
  def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
265
  device='cuda:0', save_dir='./checkpoints', model_name='model',
 
315
  trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
316
 
317
  # 训练模型
318
+ train_model(model, poisoned_trainloader, testloader, epochs, lr, device, save_dir, model_name, save_type='2')
319
 
320
  # 恢复原始数据用于验证
321
  trainset.targets = original_targets
ttv_utils/__init__.py CHANGED
@@ -24,11 +24,11 @@
24
  )
25
  ```
26
 
27
- 3. time_travel_visualization: 用于在训练过程中保存模型权重、特征和预测结果的类
28
  使用示例:
29
  ```python
30
  # 创建一个保存器实例
31
- saver = time_travel_visualization(
32
  model=model, # 模型实例
33
  dataloader=ordered_loader, # 顺序数据加载器
34
  device='cuda:0', # 计算设备
@@ -52,6 +52,6 @@
52
  """
53
 
54
  from .feature_predictor import FeaturePredictor, predict_feature
55
- from .save_embeddings import time_travel_visualization
56
 
57
- __all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_visualization']
 
24
  )
25
  ```
26
 
27
+ 3. time_travel_saver: 用于在训练过程中保存模型权重、特征和预测结果的类
28
  使用示例:
29
  ```python
30
  # 创建一个保存器实例
31
+ saver = time_travel_saver(
32
  model=model, # 模型实例
33
  dataloader=ordered_loader, # 顺序数据加载器
34
  device='cuda:0', # 计算设备
 
52
  """
53
 
54
  from .feature_predictor import FeaturePredictor, predict_feature
55
+ from .save_embeddings import time_travel_savers
56
 
57
+ __all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
ttv_utils/save_embeddings.py CHANGED
@@ -5,7 +5,7 @@ import os
5
  import json
6
  from tqdm import tqdm
7
 
8
- class time_travel_visualization:
9
  """可视化数据保存类
10
 
11
  用于保存模型训练过程中的各种数据,包括:
@@ -76,10 +76,10 @@ class time_travel_visualization:
76
  activation[name] = output.detach()
77
  return hook
78
 
79
- # 注册钩子到所有可能的特征提取层
80
  handles = []
81
  for name, module in self.model.named_modules():
82
- if isinstance(module, (nn.Conv2d, nn.Linear, nn.Sequential)):
83
  handles.append(module.register_forward_hook(get_activation(name)))
84
 
85
  self.model.eval()
@@ -90,7 +90,7 @@ class time_travel_visualization:
90
  _ = self.model(inputs)
91
 
92
  # 找到维度在512-1024范围内的层
93
- target_dim_range = (512, 1024)
94
  suitable_layer_name = None
95
  suitable_dim = None
96
 
 
5
  import json
6
  from tqdm import tqdm
7
 
8
+ class time_travel_saver:
9
  """可视化数据保存类
10
 
11
  用于保存模型训练过程中的各种数据,包括:
 
76
  activation[name] = output.detach()
77
  return hook
78
 
79
+ # 注册钩子到所有层
80
  handles = []
81
  for name, module in self.model.named_modules():
82
+ if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
83
  handles.append(module.register_forward_hook(get_activation(name)))
84
 
85
  self.model.eval()
 
90
  _ = self.model(inputs)
91
 
92
  # 找到维度在512-1024范围内的层
93
+ target_dim_range = (256, 2048)
94
  suitable_layer_name = None
95
  suitable_dim = None
96