add code
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +4 -1
- DenseNet-CIFAR10/Classification-backdoor/dataset/info.json +1 -1
- DenseNet-CIFAR10/Classification-noisy/dataset/info.json +1 -1
- EfficientNet-CIFAR10/Classification-backdoor/dataset/info.json +1 -1
- EfficientNet-CIFAR10/Classification-noisy/dataset/info.json +1 -1
- EfficientNet-CIFAR10/Classification-normal/dataset/info.json +1 -1
- GoogLeNet-CIFAR10/Classification-backdoor/dataset/index.json +0 -0
- GoogLeNet-CIFAR10/Classification-backdoor/dataset/info.json +4 -0
- Image/LeNet5/model/0/epoch11/subject_model.pth → GoogLeNet-CIFAR10/Classification-backdoor/dataset/labels.npy +2 -2
- GoogLeNet-CIFAR10/Classification-backdoor/readme.md +54 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/create_index.py +18 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/dataset_utils.py +59 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/get_raw_data.py +111 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/get_representation.py +272 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/model.py +189 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/train.py +414 -0
- GoogLeNet-CIFAR10/Classification-backdoor/scripts/train.yaml +10 -0
- GoogLeNet-CIFAR10/Classification-noisy/dataset/index.json +0 -0
- GoogLeNet-CIFAR10/Classification-noisy/dataset/info.json +4 -0
- Image/LeNet5/model/0/epoch1/subject_model.pth → GoogLeNet-CIFAR10/Classification-noisy/dataset/labels.npy +2 -2
- Image/LeNet5/model/0/epoch12/subject_model.pth → GoogLeNet-CIFAR10/Classification-noisy/dataset/noise_index.npy +2 -2
- GoogLeNet-CIFAR10/Classification-noisy/readme.md +54 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/create_index.py +18 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/dataset_utils.py +274 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/get_raw_data.py +194 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/get_representation.py +272 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/model.py +189 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/preview_noise.py +122 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/train.py +251 -0
- GoogLeNet-CIFAR10/Classification-noisy/scripts/train.yaml +25 -0
- GoogLeNet-CIFAR10/Classification-normal/dataset/index.json +0 -0
- GoogLeNet-CIFAR10/Classification-normal/dataset/info.json +4 -0
- Image/LeNet5/model/0/epoch10/subject_model.pth → GoogLeNet-CIFAR10/Classification-normal/dataset/labels.npy +2 -2
- GoogLeNet-CIFAR10/Classification-normal/readme.md +54 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/dataset_utils.py +59 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/get_raw_data.py +82 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/get_representation.py +272 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/model.py +189 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/train.py +238 -0
- GoogLeNet-CIFAR10/Classification-normal/scripts/train.yaml +7 -0
- Image/LeNet5/code/backdoor_train.log +0 -253
- Image/LeNet5/code/train.log +0 -253
- Image/LeNet5/code/train.py +0 -63
- Image/LeNet5/dataset/.gitkeep +0 -0
- Image/LeNet5/model/.gitkeep +0 -0
- Image/LeNet5/model/0/epoch1/embeddings.npy +0 -3
- Image/LeNet5/model/0/epoch10/embeddings.npy +0 -3
- Image/LeNet5/model/0/epoch11/embeddings.npy +0 -3
- Image/LeNet5/model/0/epoch12/embeddings.npy +0 -3
- Image/LeNet5/model/0/epoch13/embeddings.npy +0 -3
.gitignore
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
*.pyc
|
2 |
_pycache_
|
3 |
model-CIFAR10
|
4 |
-
|
|
|
|
|
|
|
|
1 |
*.pyc
|
2 |
_pycache_
|
3 |
model-CIFAR10
|
4 |
+
|
5 |
+
#cifar10
|
6 |
+
cifar-10-batches-py
|
7 |
+
cifar-10-python.tar.gz
|
DenseNet-CIFAR10/Classification-backdoor/dataset/info.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"model": "
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"model": "densenet_cifar",
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
DenseNet-CIFAR10/Classification-noisy/dataset/info.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"model": "
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"model": "densenet_cifar",
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
EfficientNet-CIFAR10/Classification-backdoor/dataset/info.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"model": "
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"model": "EfficientNetB0",
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
EfficientNet-CIFAR10/Classification-noisy/dataset/info.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"model": "
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"model": "EfficientNetB0",
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
EfficientNet-CIFAR10/Classification-normal/dataset/info.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"model": "
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"model": "EfficientNetB0",
|
3 |
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
}
|
GoogLeNet-CIFAR10/Classification-backdoor/dataset/index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
GoogLeNet-CIFAR10/Classification-backdoor/dataset/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "GoogLeNet",
|
3 |
+
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
+
}
|
Image/LeNet5/model/0/epoch11/subject_model.pth → GoogLeNet-CIFAR10/Classification-backdoor/dataset/labels.npy
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ca14ecbaef0ea851ab125103525ff38e07bd1dbef480bec0b3c0279808a2110
|
3 |
+
size 480128
|
GoogLeNet-CIFAR10/Classification-backdoor/readme.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AlexNet-CIFAR10 训练与特征提取
|
2 |
+
|
3 |
+
这个项目实现了AlexNet模型在CIFAR10数据集上的训练,并集成了特征提取和可视化所需的功能。
|
4 |
+
|
5 |
+
## time_travel_saver数据提取器
|
6 |
+
```python
|
7 |
+
#保存可视化训练过程所需要的文件
|
8 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
9 |
+
# 创建一个专门用于收集embedding的顺序dataloader
|
10 |
+
ordered_trainloader = torch.utils.data.DataLoader(
|
11 |
+
trainloader.dataset,
|
12 |
+
batch_size=trainloader.batch_size,
|
13 |
+
shuffle=False,
|
14 |
+
num_workers=trainloader.num_workers
|
15 |
+
)
|
16 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}') #epoch保存路径
|
17 |
+
save_model = time_travel_saver(model, ordered_trainloader, device, epoch_save_dir, model_name,
|
18 |
+
show=True, layer_name='avg_pool', auto_save_embedding=True)
|
19 |
+
#show:是否显示模型的维度信息
|
20 |
+
#layer_name:选择要提取特征的层,如果为None,则提取符合维度范围的层
|
21 |
+
#auto_save_embedding:是否自动保存特征向量 must be True
|
22 |
+
save_model.save_checkpoint_embeddings_predictions() #保存模型权重、特征向量和预测结果到epoch_x
|
23 |
+
if epoch == 0:
|
24 |
+
save_model.save_lables_index(path = "../dataset") #保存标签和索引到dataset
|
25 |
+
```
|
26 |
+
|
27 |
+
|
28 |
+
## 项目结构
|
29 |
+
|
30 |
+
- `./scripts/train.yaml`:训练配置文件,包含批次大小、学习率、GPU设置等参数
|
31 |
+
- `./scripts/train.py`:训练脚本,执行模型训练并自动收集特征数据
|
32 |
+
- `./model/`:保存训练好的模型权重
|
33 |
+
- `./epochs/`:保存训练过程中的高维特征向量、预测结果等数据
|
34 |
+
|
35 |
+
## 使用方法
|
36 |
+
|
37 |
+
1. 配置 `train.yaml` 文件设置训练参数
|
38 |
+
2. 执行训练脚本:
|
39 |
+
```
|
40 |
+
python train.py
|
41 |
+
```
|
42 |
+
3. 训练完成后,可以在以下位置找到相关数据:
|
43 |
+
- 模型权重:`./epochs/epoch_{n}/model.pth`
|
44 |
+
- 特征向量:`./epochs/epoch_{n}/embeddings.npy`
|
45 |
+
- 预测结果:`./epochs/epoch_{n}/predictions.npy`
|
46 |
+
- 标签数据:`./dataset/labels.npy`
|
47 |
+
- 数据索引:`./dataset/index.json`
|
48 |
+
|
49 |
+
## 数据格式
|
50 |
+
|
51 |
+
- `embeddings.npy`:形状为 [n_samples, feature_dim] 的特征向量
|
52 |
+
- `predictions.npy`:形状为 [n_samples, n_classes] 的预测概率
|
53 |
+
- `labels.npy`:形状为 [n_samples] 的真实标签
|
54 |
+
- `index.json`:包含训练集、测试集和验证集的索引信息
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/create_index.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
# 创建完整的索引
|
5 |
+
index_dict = {
|
6 |
+
"train": list(range( 50000)), # 从1到50000的训练索引
|
7 |
+
"test": list(range(50000, 60000)), # 从50001到60000的测试索引
|
8 |
+
"validation": [] # 空验证集
|
9 |
+
}
|
10 |
+
|
11 |
+
# 保存到索引文件
|
12 |
+
index_path = os.path.join('..', 'dataset', 'index.json')
|
13 |
+
with open(index_path, 'w') as f:
|
14 |
+
json.dump(index_dict, f, indent=4)
|
15 |
+
|
16 |
+
print(f"已创建完整索引文件: {index_path}")
|
17 |
+
print(f"训练集: {len(index_dict['train'])}个样本")
|
18 |
+
print(f"测试集: {len(index_dict['test'])}个样本")
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/dataset_utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import os
|
5 |
+
|
6 |
+
#加载数据集
|
7 |
+
|
8 |
+
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
|
9 |
+
"""获取CIFAR10数据集的数据加载器
|
10 |
+
|
11 |
+
Args:
|
12 |
+
batch_size: 批次大小
|
13 |
+
num_workers: 数据加载的工作进程数
|
14 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
trainloader: 训练数据加载器
|
18 |
+
testloader: 测试数据加载器
|
19 |
+
"""
|
20 |
+
# 数据预处理
|
21 |
+
transform_train = transforms.Compose([
|
22 |
+
transforms.RandomCrop(32, padding=4),
|
23 |
+
transforms.RandomHorizontalFlip(),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
26 |
+
])
|
27 |
+
|
28 |
+
transform_test = transforms.Compose([
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
31 |
+
])
|
32 |
+
|
33 |
+
# 设置数据集路径
|
34 |
+
if local_dataset_path:
|
35 |
+
print(f"使用本地数据集: {local_dataset_path}")
|
36 |
+
# 检查数据集路径是否有数据集,没有的话则下载
|
37 |
+
cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
|
38 |
+
download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
|
39 |
+
dataset_path = local_dataset_path
|
40 |
+
else:
|
41 |
+
print("未指定本地数据集路径,将下载数据集")
|
42 |
+
download = True
|
43 |
+
dataset_path = '../dataset'
|
44 |
+
|
45 |
+
# 创建数据集路径
|
46 |
+
if not os.path.exists(dataset_path):
|
47 |
+
os.makedirs(dataset_path)
|
48 |
+
|
49 |
+
trainset = torchvision.datasets.CIFAR10(
|
50 |
+
root=dataset_path, train=True, download=download, transform=transform_train)
|
51 |
+
trainloader = torch.utils.data.DataLoader(
|
52 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
53 |
+
|
54 |
+
testset = torchvision.datasets.CIFAR10(
|
55 |
+
root=dataset_path, train=False, download=download, transform=transform_test)
|
56 |
+
testloader = torch.utils.data.DataLoader(
|
57 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
58 |
+
|
59 |
+
return trainloader, testloader
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/get_raw_data.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
2 |
+
|
3 |
+
import os
|
4 |
+
import yaml
|
5 |
+
import numpy as np
|
6 |
+
import torchvision
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from PIL import Image
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def unpickle(file):
|
12 |
+
"""读取CIFAR-10数据文件"""
|
13 |
+
import pickle
|
14 |
+
with open(file, 'rb') as fo:
|
15 |
+
dict = pickle.load(fo, encoding='bytes')
|
16 |
+
return dict
|
17 |
+
|
18 |
+
def save_images_from_cifar10_with_backdoor(dataset_path, save_dir):
|
19 |
+
"""从CIFAR-10数据集中保存图像,并在中毒样本上添加触发器
|
20 |
+
|
21 |
+
Args:
|
22 |
+
dataset_path: CIFAR-10数据集路径
|
23 |
+
save_dir: 图像保存路径
|
24 |
+
"""
|
25 |
+
# 创建保存目录
|
26 |
+
os.makedirs(save_dir, exist_ok=True)
|
27 |
+
|
28 |
+
# 读取中毒的索引
|
29 |
+
backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy')
|
30 |
+
if os.path.exists(backdoor_index_path):
|
31 |
+
backdoor_indices = np.load(backdoor_index_path)
|
32 |
+
print(f"已加载{len(backdoor_indices)}个中毒样本索引")
|
33 |
+
else:
|
34 |
+
backdoor_indices = []
|
35 |
+
print("未找到中毒索引文件,将不添加触发器")
|
36 |
+
|
37 |
+
# 获取训练集数据
|
38 |
+
train_data = []
|
39 |
+
train_labels = []
|
40 |
+
|
41 |
+
# 读取训练数据
|
42 |
+
for i in range(1, 6):
|
43 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
44 |
+
if os.path.exists(batch_file):
|
45 |
+
print(f"读取训练批次 {i}")
|
46 |
+
batch = unpickle(batch_file)
|
47 |
+
train_data.append(batch[b'data'])
|
48 |
+
train_labels.extend(batch[b'labels'])
|
49 |
+
|
50 |
+
# 合并所有训练数据
|
51 |
+
if train_data:
|
52 |
+
train_data = np.vstack(train_data)
|
53 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
54 |
+
|
55 |
+
# 读取测试数据
|
56 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
57 |
+
if os.path.exists(test_file):
|
58 |
+
print("读取测试数据")
|
59 |
+
test_batch = unpickle(test_file)
|
60 |
+
test_data = test_batch[b'data']
|
61 |
+
test_labels = test_batch[b'labels']
|
62 |
+
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
63 |
+
else:
|
64 |
+
test_data = []
|
65 |
+
test_labels = []
|
66 |
+
|
67 |
+
# 合并训练和测试数据
|
68 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
69 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
70 |
+
|
71 |
+
config_path ='./train.yaml'
|
72 |
+
with open(config_path) as f:
|
73 |
+
config = yaml.safe_load(f)
|
74 |
+
trigger_size = config.get('trigger_size', 4)
|
75 |
+
|
76 |
+
# 保存图像
|
77 |
+
print(f"保存 {len(all_data)} 张图像...")
|
78 |
+
|
79 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
80 |
+
# 保存原始图像
|
81 |
+
img_pil = Image.fromarray(img)
|
82 |
+
|
83 |
+
# 检查是否是中毒样本
|
84 |
+
if i in backdoor_indices:
|
85 |
+
# 为中毒样本创建带触发器的副本
|
86 |
+
img_backdoor = img.copy()
|
87 |
+
# 添加触发器(右下角白色小方块)
|
88 |
+
img_backdoor[-trigger_size:, -trigger_size:, :] = 255
|
89 |
+
# 保存带触发器的图像
|
90 |
+
img_backdoor_pil = Image.fromarray(img_backdoor)
|
91 |
+
img_backdoor_pil.save(os.path.join(save_dir, f"{i}.png"))
|
92 |
+
|
93 |
+
else:
|
94 |
+
img_pil.save(os.path.join(save_dir, f"{i}.png"))
|
95 |
+
|
96 |
+
print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}")
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
# 设置路径
|
100 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
101 |
+
save_dir = "../dataset/raw_data"
|
102 |
+
|
103 |
+
# 检查数据集是否存在,如果不存在则下载
|
104 |
+
if not os.path.exists(dataset_path):
|
105 |
+
print("数据集不存在,正在下载...")
|
106 |
+
os.makedirs("../dataset", exist_ok=True)
|
107 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
108 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
109 |
+
|
110 |
+
# 保存图像
|
111 |
+
save_images_from_cifar10_with_backdoor(dataset_path, save_dir)
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/get_representation.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
+
|
11 |
+
用于保存模型训练过程中的各种数据,包括:
|
12 |
+
1. 模型权重 (.pth)
|
13 |
+
2. 高维特征 (representation/*.npy)
|
14 |
+
3. 预测结果 (prediction/*.npy)
|
15 |
+
4. 标签数据 (label/labels.npy)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name,
|
19 |
+
auto_save_embedding=False, layer_name=None,show = False):
|
20 |
+
"""初始化
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model: 要保存的模型实例
|
24 |
+
dataloader: 数据加载器(必须是顺序加载的)
|
25 |
+
device: 计算设备(cpu or gpu)
|
26 |
+
save_dir: 保存根目录
|
27 |
+
model_name: 模型名称
|
28 |
+
"""
|
29 |
+
self.model = model
|
30 |
+
self.dataloader = dataloader
|
31 |
+
self.device = device
|
32 |
+
self.save_dir = save_dir
|
33 |
+
self.model_name = model_name
|
34 |
+
self.auto_save = auto_save_embedding
|
35 |
+
self.layer_name = layer_name
|
36 |
+
|
37 |
+
if show and not layer_name:
|
38 |
+
layer_dimensions = self.show_dimensions()
|
39 |
+
# print(layer_dimensions)
|
40 |
+
|
41 |
+
def show_dimensions(self):
|
42 |
+
"""显示模型中所有层的名称和对应的维度
|
43 |
+
|
44 |
+
这个函数会输出模型中所有层的名称和它们的输出维度,
|
45 |
+
帮助用户选择合适的层来提取特征。
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
layer_dimensions: 包含层名称和维度的字典
|
49 |
+
"""
|
50 |
+
activation = {}
|
51 |
+
layer_dimensions = {}
|
52 |
+
|
53 |
+
def get_activation(name):
|
54 |
+
def hook(model, input, output):
|
55 |
+
activation[name] = output.detach()
|
56 |
+
return hook
|
57 |
+
|
58 |
+
# 注册钩子到所有层
|
59 |
+
handles = []
|
60 |
+
for name, module in self.model.named_modules():
|
61 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
62 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
63 |
+
|
64 |
+
self.model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
# 获取一个batch来分析每层的输出维度
|
67 |
+
inputs, _ = next(iter(self.dataloader))
|
68 |
+
inputs = inputs.to(self.device)
|
69 |
+
_ = self.model(inputs)
|
70 |
+
|
71 |
+
# 分析所有层的输出维度
|
72 |
+
print("\n模型各层的名称和维度:")
|
73 |
+
print("-" * 50)
|
74 |
+
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
|
75 |
+
print("-" * 50)
|
76 |
+
|
77 |
+
for name, feat in activation.items():
|
78 |
+
if feat is None:
|
79 |
+
continue
|
80 |
+
|
81 |
+
# 获取特征维度(展平后)
|
82 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
83 |
+
layer_dimensions[name] = feat_dim
|
84 |
+
# 打印层信息
|
85 |
+
shape_str = str(list(feat.shape))
|
86 |
+
print(f"{name:<40} {feat_dim:<15} {shape_str}")
|
87 |
+
|
88 |
+
print("-" * 50)
|
89 |
+
print("注: 特征维度是将输出张量展平后的维度大小")
|
90 |
+
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
|
91 |
+
print("例如:layer_name='avg_pool'或layer_name='layer4'等")
|
92 |
+
|
93 |
+
# 移除所有钩子
|
94 |
+
for handle in handles:
|
95 |
+
handle.remove()
|
96 |
+
|
97 |
+
return layer_dimensions
|
98 |
+
|
99 |
+
def _extract_features_and_predictions(self):
|
100 |
+
"""提取特征和预测结果
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
features: 高维特征 [样本数, 特征维度]
|
104 |
+
predictions: 预测结果 [样本数, 类别数]
|
105 |
+
"""
|
106 |
+
features = []
|
107 |
+
predictions = []
|
108 |
+
indices = []
|
109 |
+
activation = {}
|
110 |
+
|
111 |
+
def get_activation(name):
|
112 |
+
def hook(model, input, output):
|
113 |
+
# 只在需要时保存激活值,避免内存浪费
|
114 |
+
if name not in activation or activation[name] is None:
|
115 |
+
activation[name] = output.detach()
|
116 |
+
return hook
|
117 |
+
|
118 |
+
# 根据层的名称或维度来选择层
|
119 |
+
|
120 |
+
# 注册钩子到所有层
|
121 |
+
handles = []
|
122 |
+
for name, module in self.model.named_modules():
|
123 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
124 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
125 |
+
|
126 |
+
self.model.eval()
|
127 |
+
with torch.no_grad():
|
128 |
+
# 首先获取一个batch来分析每层的输出维度
|
129 |
+
inputs, _ = next(iter(self.dataloader))
|
130 |
+
inputs = inputs.to(self.device)
|
131 |
+
_ = self.model(inputs)
|
132 |
+
|
133 |
+
# 如果指定了层名,则直接使用该层
|
134 |
+
if self.layer_name is not None:
|
135 |
+
if self.layer_name not in activation:
|
136 |
+
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
|
137 |
+
|
138 |
+
feat = activation[self.layer_name]
|
139 |
+
if feat is None:
|
140 |
+
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
|
141 |
+
|
142 |
+
suitable_layer_name = self.layer_name
|
143 |
+
suitable_dim = feat.view(feat.size(0), -1).size(1)
|
144 |
+
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
145 |
+
else:
|
146 |
+
# 找到维度在指定范围内的层
|
147 |
+
target_dim_range = (256, 2048)
|
148 |
+
suitable_layer_name = None
|
149 |
+
suitable_dim = None
|
150 |
+
|
151 |
+
# 分析所有层的输出维度
|
152 |
+
for name, feat in activation.items():
|
153 |
+
if feat is None:
|
154 |
+
continue
|
155 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
156 |
+
if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
|
157 |
+
suitable_layer_name = name
|
158 |
+
suitable_dim = feat_dim
|
159 |
+
break
|
160 |
+
|
161 |
+
if suitable_layer_name is None:
|
162 |
+
raise ValueError("没有找到合适维度的特征层")
|
163 |
+
|
164 |
+
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
165 |
+
|
166 |
+
# 保存层信息
|
167 |
+
layer_info = {
|
168 |
+
'layer_id': suitable_layer_name,
|
169 |
+
'dim': suitable_dim
|
170 |
+
}
|
171 |
+
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
|
172 |
+
with open(layer_info_path, 'w') as f:
|
173 |
+
json.dump(layer_info, f)
|
174 |
+
|
175 |
+
# 清除第一次运行的激活值
|
176 |
+
activation.clear()
|
177 |
+
|
178 |
+
# 现在处理所有数据
|
179 |
+
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
|
180 |
+
inputs = inputs.to(self.device)
|
181 |
+
outputs = self.model(inputs) # 获取预测结果
|
182 |
+
|
183 |
+
# 获取并处理特征
|
184 |
+
feat = activation[suitable_layer_name]
|
185 |
+
flat_features = torch.flatten(feat, start_dim=1)
|
186 |
+
features.append(flat_features.cpu().numpy())
|
187 |
+
predictions.append(outputs.cpu().numpy())
|
188 |
+
|
189 |
+
# 清除本次的激活值
|
190 |
+
activation.clear()
|
191 |
+
|
192 |
+
# 移除所有钩子
|
193 |
+
for handle in handles:
|
194 |
+
handle.remove()
|
195 |
+
|
196 |
+
if len(features) > 0:
|
197 |
+
features = np.vstack(features)
|
198 |
+
predictions = np.vstack(predictions)
|
199 |
+
return features, predictions
|
200 |
+
else:
|
201 |
+
return np.array([]), np.array([])
|
202 |
+
|
203 |
+
def save_lables_index(self, path):
|
204 |
+
"""保存标签数据和索引信息
|
205 |
+
|
206 |
+
Args:
|
207 |
+
path: 保存路径
|
208 |
+
"""
|
209 |
+
os.makedirs(path, exist_ok=True)
|
210 |
+
labels_path = os.path.join(path, 'labels.npy')
|
211 |
+
index_path = os.path.join(path, 'index.json')
|
212 |
+
|
213 |
+
# 尝试从不同的属性获取标签
|
214 |
+
try:
|
215 |
+
if hasattr(self.dataloader.dataset, 'targets'):
|
216 |
+
# CIFAR10/CIFAR100使用targets属性
|
217 |
+
labels = np.array(self.dataloader.dataset.targets)
|
218 |
+
elif hasattr(self.dataloader.dataset, 'labels'):
|
219 |
+
# 某些数据集使用labels属性
|
220 |
+
labels = np.array(self.dataloader.dataset.labels)
|
221 |
+
else:
|
222 |
+
# 如果上面的方法都不起作用,则从数据加载器中收集标签
|
223 |
+
labels = []
|
224 |
+
for _, batch_labels in self.dataloader:
|
225 |
+
labels.append(batch_labels.numpy())
|
226 |
+
labels = np.concatenate(labels)
|
227 |
+
|
228 |
+
# 保存标签数据
|
229 |
+
np.save(labels_path, labels)
|
230 |
+
print(f"标签数据已保存到 {labels_path}")
|
231 |
+
|
232 |
+
# 创建数据集索引
|
233 |
+
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
+
|
236 |
+
# 创建索引字典
|
237 |
+
index_dict = {
|
238 |
+
"train": list(range(50000)), # 所有数据默认为训练集
|
239 |
+
"test": list(range(50000, 60000)), # 测试集索引从50000到59999
|
240 |
+
"validation": [] # 初始为空
|
241 |
+
}
|
242 |
+
|
243 |
+
# 保存索引到JSON文件
|
244 |
+
with open(index_path, 'w') as f:
|
245 |
+
json.dump(index_dict, f, indent=4)
|
246 |
+
|
247 |
+
print(f"数据集索引已保存到 {index_path}")
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"保存标签和索引时出错: {e}")
|
251 |
+
|
252 |
+
def save_checkpoint_embeddings_predictions(self, model = None):
|
253 |
+
"""保存所有数据"""
|
254 |
+
if model is not None:
|
255 |
+
self.model = model
|
256 |
+
# 保存模型权重
|
257 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
258 |
+
model_path = os.path.join(self.save_dir,'model.pth')
|
259 |
+
torch.save(self.model.state_dict(), model_path)
|
260 |
+
|
261 |
+
if self.auto_save:
|
262 |
+
# 提取并保存特征和预测结果
|
263 |
+
features, predictions = self._extract_features_and_predictions()
|
264 |
+
|
265 |
+
# 保存特征
|
266 |
+
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
|
267 |
+
# 保存预测结果
|
268 |
+
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
|
269 |
+
print("\n保存了以下数据:")
|
270 |
+
print(f"- 模型权重: {model_path}")
|
271 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
272 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/model.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
GoogLeNet in PyTorch.
|
3 |
+
|
4 |
+
Paper: "Going Deeper with Convolutions"
|
5 |
+
Reference: https://arxiv.org/abs/1409.4842
|
6 |
+
|
7 |
+
主要特点:
|
8 |
+
1. 使用Inception模块,通过多尺度卷积提取特征
|
9 |
+
2. 采用1x1卷积降维,减少计算量
|
10 |
+
3. 使用全局平均池化代替全连接层
|
11 |
+
4. 引入辅助分类器帮助训练(本实现未包含)
|
12 |
+
'''
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
class Inception(nn.Module):
|
17 |
+
'''Inception模块
|
18 |
+
|
19 |
+
Args:
|
20 |
+
in_planes: 输入通道数
|
21 |
+
n1x1: 1x1卷积分支的输出通道数
|
22 |
+
n3x3red: 3x3卷积分支的降维通道数
|
23 |
+
n3x3: 3x3卷积分支的输出通道数
|
24 |
+
n5x5red: 5x5卷积分支的降维通道数
|
25 |
+
n5x5: 5x5卷积分支的输出通道数
|
26 |
+
pool_planes: 池化分支的输出通道数
|
27 |
+
'''
|
28 |
+
def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
29 |
+
super(Inception, self).__init__()
|
30 |
+
|
31 |
+
# 1x1卷积分支
|
32 |
+
self.branch1 = nn.Sequential(
|
33 |
+
nn.Conv2d(in_planes, n1x1, kernel_size=1),
|
34 |
+
nn.BatchNorm2d(n1x1),
|
35 |
+
nn.ReLU(True),
|
36 |
+
)
|
37 |
+
|
38 |
+
# 1x1 -> 3x3卷积分支
|
39 |
+
self.branch2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_planes, n3x3red, kernel_size=1),
|
41 |
+
nn.BatchNorm2d(n3x3red),
|
42 |
+
nn.ReLU(True),
|
43 |
+
nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
|
44 |
+
nn.BatchNorm2d(n3x3),
|
45 |
+
nn.ReLU(True),
|
46 |
+
)
|
47 |
+
|
48 |
+
# 1x1 -> 5x5卷积分支(用两个3x3代替)
|
49 |
+
self.branch3 = nn.Sequential(
|
50 |
+
nn.Conv2d(in_planes, n5x5red, kernel_size=1),
|
51 |
+
nn.BatchNorm2d(n5x5red),
|
52 |
+
nn.ReLU(True),
|
53 |
+
nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),
|
54 |
+
nn.BatchNorm2d(n5x5),
|
55 |
+
nn.ReLU(True),
|
56 |
+
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
|
57 |
+
nn.BatchNorm2d(n5x5),
|
58 |
+
nn.ReLU(True),
|
59 |
+
)
|
60 |
+
|
61 |
+
# 3x3池化 -> 1x1卷积分支
|
62 |
+
self.branch4 = nn.Sequential(
|
63 |
+
nn.MaxPool2d(3, stride=1, padding=1),
|
64 |
+
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
|
65 |
+
nn.BatchNorm2d(pool_planes),
|
66 |
+
nn.ReLU(True),
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
'''前向传播,将四个分支的输出在通道维度上拼接'''
|
71 |
+
b1 = self.branch1(x)
|
72 |
+
b2 = self.branch2(x)
|
73 |
+
b3 = self.branch3(x)
|
74 |
+
b4 = self.branch4(x)
|
75 |
+
return torch.cat([b1, b2, b3, b4], 1)
|
76 |
+
|
77 |
+
|
78 |
+
class GoogLeNet(nn.Module):
|
79 |
+
'''GoogLeNet/Inception v1网络
|
80 |
+
|
81 |
+
特点:
|
82 |
+
1. 使用Inception模块构建深层网络
|
83 |
+
2. 通过1x1卷积降维减少计算量
|
84 |
+
3. 使用全局平均池化代替全连接层减少参数量
|
85 |
+
'''
|
86 |
+
def __init__(self, num_classes=10):
|
87 |
+
super(GoogLeNet, self).__init__()
|
88 |
+
|
89 |
+
# 第一阶段:标准卷积层
|
90 |
+
self.pre_layers = nn.Sequential(
|
91 |
+
nn.Conv2d(3, 192, kernel_size=3, padding=1),
|
92 |
+
nn.BatchNorm2d(192),
|
93 |
+
nn.ReLU(True),
|
94 |
+
)
|
95 |
+
|
96 |
+
# 第二阶段:2个Inception模块
|
97 |
+
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) # 输出通道:256
|
98 |
+
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) # 输出通道:480
|
99 |
+
|
100 |
+
# 最大池化层
|
101 |
+
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
|
102 |
+
|
103 |
+
# 第三阶段:5个Inception模块
|
104 |
+
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) # 输出通道:512
|
105 |
+
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) # 输出通道:512
|
106 |
+
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) # 输出通道:512
|
107 |
+
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) # 输出通道:528
|
108 |
+
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
109 |
+
|
110 |
+
# 第四阶段:2个Inception模块
|
111 |
+
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
112 |
+
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) # 输出通道:1024
|
113 |
+
|
114 |
+
# 全局平均池化和分类器
|
115 |
+
self.avgpool = nn.AvgPool2d(8, stride=1)
|
116 |
+
self.linear = nn.Linear(1024, num_classes)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
# 第一阶段
|
120 |
+
out = self.pre_layers(x)
|
121 |
+
|
122 |
+
# 第二阶段
|
123 |
+
out = self.a3(out)
|
124 |
+
out = self.b3(out)
|
125 |
+
out = self.maxpool(out)
|
126 |
+
|
127 |
+
# 第三阶段
|
128 |
+
out = self.a4(out)
|
129 |
+
out = self.b4(out)
|
130 |
+
out = self.c4(out)
|
131 |
+
out = self.d4(out)
|
132 |
+
out = self.e4(out)
|
133 |
+
out = self.maxpool(out)
|
134 |
+
|
135 |
+
# 第四阶段
|
136 |
+
out = self.a5(out)
|
137 |
+
out = self.b5(out)
|
138 |
+
|
139 |
+
# 分类器
|
140 |
+
out = self.avgpool(out)
|
141 |
+
out = out.view(out.size(0), -1)
|
142 |
+
out = self.linear(out)
|
143 |
+
return out
|
144 |
+
|
145 |
+
def feature(self, x):
|
146 |
+
# 第一阶段
|
147 |
+
out = self.pre_layers(x)
|
148 |
+
|
149 |
+
# 第二阶段
|
150 |
+
out = self.a3(out)
|
151 |
+
out = self.b3(out)
|
152 |
+
out = self.maxpool(out)
|
153 |
+
|
154 |
+
# 第三阶段
|
155 |
+
out = self.a4(out)
|
156 |
+
out = self.b4(out)
|
157 |
+
out = self.c4(out)
|
158 |
+
out = self.d4(out)
|
159 |
+
out = self.e4(out)
|
160 |
+
out = self.maxpool(out)
|
161 |
+
|
162 |
+
# 第四阶段
|
163 |
+
out = self.a5(out)
|
164 |
+
out = self.b5(out)
|
165 |
+
|
166 |
+
# 分类器
|
167 |
+
out = self.avgpool(out)
|
168 |
+
return out
|
169 |
+
|
170 |
+
def prediction(self, out):
|
171 |
+
out = out.view(out.size(0), -1)
|
172 |
+
out = self.linear(out)
|
173 |
+
return out
|
174 |
+
|
175 |
+
def test():
|
176 |
+
"""测试函数"""
|
177 |
+
net = GoogLeNet()
|
178 |
+
x = torch.randn(1, 3, 32, 32)
|
179 |
+
y = net(x)
|
180 |
+
print(y.size())
|
181 |
+
|
182 |
+
# 打印模型结构
|
183 |
+
from torchinfo import summary
|
184 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
185 |
+
net = net.to(device)
|
186 |
+
summary(net, (1, 3, 32, 32))
|
187 |
+
|
188 |
+
if __name__ == '__main__':
|
189 |
+
test()
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/train.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
from pathlib import Path
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
import time
|
9 |
+
import logging
|
10 |
+
import numpy as np
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
from dataset_utils import get_cifar10_dataloaders
|
15 |
+
from model import GoogLeNet
|
16 |
+
from get_representation import time_travel_saver
|
17 |
+
|
18 |
+
def setup_logger(log_file):
|
19 |
+
"""配置日志记录器,如果日志文件存在则覆盖
|
20 |
+
|
21 |
+
Args:
|
22 |
+
log_file: 日志文件路径
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
logger: 配置好的日志记录器
|
26 |
+
"""
|
27 |
+
# 创建logger
|
28 |
+
logger = logging.getLogger('train')
|
29 |
+
logger.setLevel(logging.INFO)
|
30 |
+
|
31 |
+
# 移除现有的处理器
|
32 |
+
if logger.hasHandlers():
|
33 |
+
logger.handlers.clear()
|
34 |
+
|
35 |
+
# 创建文件处理器,使用'w'模式覆盖现有文件
|
36 |
+
fh = logging.FileHandler(log_file, mode='w')
|
37 |
+
fh.setLevel(logging.INFO)
|
38 |
+
|
39 |
+
# 创建控制台处理器
|
40 |
+
ch = logging.StreamHandler()
|
41 |
+
ch.setLevel(logging.INFO)
|
42 |
+
|
43 |
+
# 创建格式器
|
44 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
45 |
+
fh.setFormatter(formatter)
|
46 |
+
ch.setFormatter(formatter)
|
47 |
+
|
48 |
+
# 添加处理器
|
49 |
+
logger.addHandler(fh)
|
50 |
+
logger.addHandler(ch)
|
51 |
+
|
52 |
+
return logger
|
53 |
+
|
54 |
+
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
55 |
+
save_dir='./epochs', model_name='model', interval=1):
|
56 |
+
"""通用的模型训练函数
|
57 |
+
Args:
|
58 |
+
model: 要训练的模型
|
59 |
+
trainloader: 训练数据加载器
|
60 |
+
testloader: 测试数据加载器
|
61 |
+
epochs: 训练轮数
|
62 |
+
lr: 学习率
|
63 |
+
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
|
64 |
+
save_dir: 模型保存目录
|
65 |
+
model_name: 模型名称
|
66 |
+
interval: 模型保存间隔
|
67 |
+
"""
|
68 |
+
# 检查并设置GPU设备
|
69 |
+
if not torch.cuda.is_available():
|
70 |
+
print("CUDA不可用,将使用CPU训练")
|
71 |
+
device = 'cpu'
|
72 |
+
elif not device.startswith('cuda:'):
|
73 |
+
device = f'cuda:0'
|
74 |
+
|
75 |
+
# 确保device格式正确
|
76 |
+
if device.startswith('cuda:'):
|
77 |
+
gpu_id = int(device.split(':')[1])
|
78 |
+
if gpu_id >= torch.cuda.device_count():
|
79 |
+
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
80 |
+
device = 'cuda:0'
|
81 |
+
|
82 |
+
# 设置保存目录
|
83 |
+
if not os.path.exists(save_dir):
|
84 |
+
os.makedirs(save_dir)
|
85 |
+
|
86 |
+
# 设置日志文件路径
|
87 |
+
log_file = os.path.join(os.path.dirname(save_dir),'epochs', 'train.log')
|
88 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
89 |
+
os.makedirs(os.path.dirname(log_file))
|
90 |
+
|
91 |
+
logger = setup_logger(log_file)
|
92 |
+
|
93 |
+
# 损失函数和优化器
|
94 |
+
criterion = nn.CrossEntropyLoss()
|
95 |
+
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
96 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
|
97 |
+
|
98 |
+
# 移动模型到指定设备
|
99 |
+
model = model.to(device)
|
100 |
+
best_acc = 0
|
101 |
+
start_time = time.time()
|
102 |
+
|
103 |
+
logger.info(f'开始训练 {model_name}')
|
104 |
+
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
|
105 |
+
|
106 |
+
for epoch in range(epochs):
|
107 |
+
# 训练阶段
|
108 |
+
model.train()
|
109 |
+
train_loss = 0
|
110 |
+
correct = 0
|
111 |
+
total = 0
|
112 |
+
|
113 |
+
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
|
114 |
+
for batch_idx, (inputs, targets) in enumerate(train_pbar):
|
115 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
116 |
+
optimizer.zero_grad()
|
117 |
+
outputs = model(inputs)
|
118 |
+
loss = criterion(outputs, targets)
|
119 |
+
loss.backward()
|
120 |
+
optimizer.step()
|
121 |
+
|
122 |
+
train_loss += loss.item()
|
123 |
+
_, predicted = outputs.max(1)
|
124 |
+
total += targets.size(0)
|
125 |
+
correct += predicted.eq(targets).sum().item()
|
126 |
+
|
127 |
+
# 更新进度条
|
128 |
+
train_pbar.set_postfix({
|
129 |
+
'loss': f'{train_loss/(batch_idx+1):.3f}',
|
130 |
+
'acc': f'{100.*correct/total:.2f}%'
|
131 |
+
})
|
132 |
+
|
133 |
+
# 保存训练阶段的准确率
|
134 |
+
train_acc = 100.*correct/total
|
135 |
+
train_correct = correct
|
136 |
+
train_total = total
|
137 |
+
|
138 |
+
# 测试阶段
|
139 |
+
model.eval()
|
140 |
+
test_loss = 0
|
141 |
+
correct = 0
|
142 |
+
total = 0
|
143 |
+
|
144 |
+
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
|
145 |
+
with torch.no_grad():
|
146 |
+
for batch_idx, (inputs, targets) in enumerate(test_pbar):
|
147 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
148 |
+
outputs = model(inputs)
|
149 |
+
loss = criterion(outputs, targets)
|
150 |
+
|
151 |
+
test_loss += loss.item()
|
152 |
+
_, predicted = outputs.max(1)
|
153 |
+
total += targets.size(0)
|
154 |
+
correct += predicted.eq(targets).sum().item()
|
155 |
+
|
156 |
+
# 更新进度条
|
157 |
+
test_pbar.set_postfix({
|
158 |
+
'loss': f'{test_loss/(batch_idx+1):.3f}',
|
159 |
+
'acc': f'{100.*correct/total:.2f}%'
|
160 |
+
})
|
161 |
+
|
162 |
+
# 计算测试精度
|
163 |
+
acc = 100.*correct/total
|
164 |
+
|
165 |
+
# 记录训练和测试的损失与准确率
|
166 |
+
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
|
167 |
+
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
|
168 |
+
|
169 |
+
# 保存可视化训练过程所需要的文件
|
170 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
171 |
+
# 创建一个专门用于收集embedding的顺序dataloader,拼接训练集和测试集
|
172 |
+
from torch.utils.data import ConcatDataset
|
173 |
+
|
174 |
+
def custom_collate_fn(batch):
|
175 |
+
# 确保所有数据都是张量
|
176 |
+
data = [item[0] for item in batch] # 图像
|
177 |
+
target = [item[1] for item in batch] # 标签
|
178 |
+
|
179 |
+
# 将列表转换为张量
|
180 |
+
data = torch.stack(data, 0)
|
181 |
+
target = torch.tensor(target)
|
182 |
+
|
183 |
+
return [data, target]
|
184 |
+
|
185 |
+
# 合并训练集和测试集
|
186 |
+
combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset])
|
187 |
+
|
188 |
+
# 创建顺序数据加载器
|
189 |
+
ordered_loader = torch.utils.data.DataLoader(
|
190 |
+
combined_dataset, # 使用合并后的数据集
|
191 |
+
batch_size=trainloader.batch_size,
|
192 |
+
shuffle=False, # 确保顺序加载
|
193 |
+
num_workers=trainloader.num_workers,
|
194 |
+
collate_fn=custom_collate_fn # 使用自定义的collate函数
|
195 |
+
)
|
196 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
|
197 |
+
save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name,
|
198 |
+
show=True, layer_name='avgpool', auto_save_embedding=True)
|
199 |
+
save_model.save_checkpoint_embeddings_predictions()
|
200 |
+
if epoch == 0:
|
201 |
+
save_model.save_lables_index(path = "../dataset")
|
202 |
+
|
203 |
+
scheduler.step()
|
204 |
+
|
205 |
+
logger.info('训练完成!')
|
206 |
+
|
207 |
+
def backdoor_train():
|
208 |
+
"""训练带后门的模型
|
209 |
+
|
210 |
+
后门攻击设计:
|
211 |
+
1. 触发器设计: 在图像右下角添加一个4x4的白色小方块
|
212 |
+
2. 攻击目标: 使添加触发器的图像被分类为目标标签(默认为0)
|
213 |
+
3. 毒化比例: 默认10%的训练数据被添加触发器和修改标签
|
214 |
+
"""
|
215 |
+
# 加载配置文件
|
216 |
+
config_path = Path(__file__).parent / 'train.yaml'
|
217 |
+
with open(config_path) as f:
|
218 |
+
config = yaml.safe_load(f)
|
219 |
+
|
220 |
+
# 加载后门配置
|
221 |
+
poison_ratio = config.get('poison_ratio', 0.1) # 毒化比例
|
222 |
+
target_label = config.get('target_label', 0) # 目标标签
|
223 |
+
trigger_size = config.get('trigger_size', 4) # 触发器大小
|
224 |
+
|
225 |
+
# 创建模型
|
226 |
+
model = GoogLeNet(num_classes=10)
|
227 |
+
|
228 |
+
# 获取数据加载器
|
229 |
+
trainloader, testloader = get_cifar10_dataloaders(
|
230 |
+
batch_size=config['batch_size'],
|
231 |
+
num_workers=config['num_workers'],
|
232 |
+
local_dataset_path=config['dataset_path'],
|
233 |
+
shuffle=True
|
234 |
+
)
|
235 |
+
|
236 |
+
# 向训练数据注入后门
|
237 |
+
poisoned_trainloader = inject_backdoor(
|
238 |
+
trainloader,
|
239 |
+
poison_ratio=poison_ratio,
|
240 |
+
target_label=target_label,
|
241 |
+
trigger_size=trigger_size
|
242 |
+
)
|
243 |
+
|
244 |
+
# 创建用于测试后门效果的数据集(全部添加触发器,不改变标签)
|
245 |
+
backdoor_testloader = create_backdoor_testset(
|
246 |
+
testloader,
|
247 |
+
trigger_size=trigger_size
|
248 |
+
)
|
249 |
+
|
250 |
+
# 训练模型
|
251 |
+
train_model(
|
252 |
+
model=model,
|
253 |
+
trainloader=poisoned_trainloader,
|
254 |
+
testloader=testloader,
|
255 |
+
epochs=config['epochs'],
|
256 |
+
lr=config['lr'],
|
257 |
+
device=f'cuda:{config["gpu"]}',
|
258 |
+
save_dir='../epochs',
|
259 |
+
model_name='GoogLeNet_Backdoored',
|
260 |
+
interval=config['interval']
|
261 |
+
)
|
262 |
+
|
263 |
+
# 评估后门效果
|
264 |
+
evaluate_backdoor(model, testloader, backdoor_testloader, target_label, f'cuda:{config["gpu"]}')
|
265 |
+
|
266 |
+
def inject_backdoor(dataloader, poison_ratio=0.1, target_label=0, trigger_size=4):
|
267 |
+
"""向数据集中注入后门
|
268 |
+
|
269 |
+
Args:
|
270 |
+
dataloader: 原始数据加载器
|
271 |
+
poison_ratio: 毒化比例,即有多少比例的数据被注入后门
|
272 |
+
target_label: 攻击目标标签
|
273 |
+
trigger_size: 触发器大小
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
poisoned_dataloader: 注入后门的数据加载器
|
277 |
+
"""
|
278 |
+
# 获取原始数据集
|
279 |
+
dataset = dataloader.dataset
|
280 |
+
|
281 |
+
# 获取数据和标签
|
282 |
+
data_list = []
|
283 |
+
targets_list = []
|
284 |
+
|
285 |
+
# 逐批次处理数据
|
286 |
+
for inputs, targets in dataloader:
|
287 |
+
data_list.append(inputs)
|
288 |
+
targets_list.append(targets)
|
289 |
+
|
290 |
+
# 合并所有批次数据
|
291 |
+
all_data = torch.cat(data_list)
|
292 |
+
all_targets = torch.cat(targets_list)
|
293 |
+
|
294 |
+
# 确定要毒化的样本数量
|
295 |
+
num_samples = len(all_data)
|
296 |
+
num_poisoned = int(num_samples * poison_ratio)
|
297 |
+
|
298 |
+
# 随机选择要毒化的样本索引
|
299 |
+
poison_indices = torch.randperm(num_samples)[:num_poisoned]
|
300 |
+
# 保存中毒的索引到backdoor_index.npy
|
301 |
+
backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy')
|
302 |
+
os.makedirs(os.path.dirname(backdoor_index_path), exist_ok=True)
|
303 |
+
np.save(backdoor_index_path, poison_indices.cpu().numpy())
|
304 |
+
print(f"已保存{num_poisoned}个中毒样本索引到 {backdoor_index_path}")
|
305 |
+
# 添加触发器并修改标签
|
306 |
+
for idx in poison_indices:
|
307 |
+
# 添加触发器(右下角白色小方块)
|
308 |
+
all_data[idx, :, -trigger_size:, -trigger_size:] = 1.0
|
309 |
+
# 修改标签为目标标签
|
310 |
+
all_targets[idx] = target_label
|
311 |
+
|
312 |
+
# 创建新的TensorDataset
|
313 |
+
from torch.utils.data import TensorDataset, DataLoader
|
314 |
+
poisoned_dataset = TensorDataset(all_data, all_targets)
|
315 |
+
|
316 |
+
# 创建新的DataLoader
|
317 |
+
poisoned_dataloader = DataLoader(
|
318 |
+
poisoned_dataset,
|
319 |
+
batch_size=dataloader.batch_size,
|
320 |
+
shuffle=True,
|
321 |
+
num_workers=dataloader.num_workers
|
322 |
+
)
|
323 |
+
|
324 |
+
print(f"成功向{num_poisoned}/{num_samples} ({poison_ratio*100:.1f}%)的样本注入后门")
|
325 |
+
return poisoned_dataloader
|
326 |
+
|
327 |
+
def create_backdoor_testset(dataloader, trigger_size=4):
|
328 |
+
"""创建用于测试后门效果的数据集,将所有测试样本添加触发器但不改变标签
|
329 |
+
|
330 |
+
Args:
|
331 |
+
dataloader: 原始测试数据加载器
|
332 |
+
trigger_size: 触发器大小
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
backdoor_testloader: 带触发器的测试数据加载器
|
336 |
+
"""
|
337 |
+
# 获取原始数据和标签
|
338 |
+
data_list = []
|
339 |
+
targets_list = []
|
340 |
+
|
341 |
+
for inputs, targets in dataloader:
|
342 |
+
data_list.append(inputs)
|
343 |
+
targets_list.append(targets)
|
344 |
+
|
345 |
+
# 合并所有批次数据
|
346 |
+
all_data = torch.cat(data_list)
|
347 |
+
all_targets = torch.cat(targets_list)
|
348 |
+
|
349 |
+
# 向所有测试样本添加触发器
|
350 |
+
for i in range(len(all_data)):
|
351 |
+
# 添加触发器(右下角白色小方块)
|
352 |
+
all_data[i, :, -trigger_size:, -trigger_size:] = 1.0
|
353 |
+
|
354 |
+
# 创建新的TensorDataset
|
355 |
+
from torch.utils.data import TensorDataset, DataLoader
|
356 |
+
backdoor_dataset = TensorDataset(all_data, all_targets)
|
357 |
+
|
358 |
+
# 创建新的DataLoader
|
359 |
+
backdoor_testloader = DataLoader(
|
360 |
+
backdoor_dataset,
|
361 |
+
batch_size=dataloader.batch_size,
|
362 |
+
shuffle=False,
|
363 |
+
num_workers=dataloader.num_workers
|
364 |
+
)
|
365 |
+
|
366 |
+
print(f"成功创建带有触发器的测试集,共{len(all_data)}个样本")
|
367 |
+
return backdoor_testloader
|
368 |
+
|
369 |
+
def evaluate_backdoor(model, clean_testloader, backdoor_testloader, target_label, device):
|
370 |
+
"""评估后门攻击效果
|
371 |
+
|
372 |
+
Args:
|
373 |
+
model: 模型
|
374 |
+
clean_testloader: 干净测试集
|
375 |
+
backdoor_testloader: 带触发器的测试集
|
376 |
+
target_label: 目标标签
|
377 |
+
device: 计算设备
|
378 |
+
"""
|
379 |
+
model.eval()
|
380 |
+
model.to(device)
|
381 |
+
|
382 |
+
# 评估在干净测试集上的准确率
|
383 |
+
correct = 0
|
384 |
+
total = 0
|
385 |
+
with torch.no_grad():
|
386 |
+
for inputs, targets in tqdm(clean_testloader, desc="评估干净测试集"):
|
387 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
388 |
+
outputs = model(inputs)
|
389 |
+
_, predicted = outputs.max(1)
|
390 |
+
total += targets.size(0)
|
391 |
+
correct += predicted.eq(targets).sum().item()
|
392 |
+
|
393 |
+
clean_acc = 100. * correct / total
|
394 |
+
print(f"在干净测试集上的准确率: {clean_acc:.2f}%")
|
395 |
+
|
396 |
+
# 评估后门攻击成功率
|
397 |
+
success = 0
|
398 |
+
total = 0
|
399 |
+
with torch.no_grad():
|
400 |
+
for inputs, targets in tqdm(backdoor_testloader, desc="评估后门攻击"):
|
401 |
+
inputs = inputs.to(device)
|
402 |
+
outputs = model(inputs)
|
403 |
+
_, predicted = outputs.max(1)
|
404 |
+
total += targets.size(0)
|
405 |
+
# 计算被预测为目标标签的样本数量
|
406 |
+
success += (predicted == target_label).sum().item()
|
407 |
+
|
408 |
+
asr = 100. * success / total # 攻击成功率(Attack Success Rate)
|
409 |
+
print(f"后门攻击成功率: {asr:.2f}%")
|
410 |
+
|
411 |
+
return clean_acc, asr
|
412 |
+
|
413 |
+
if __name__ == '__main__':
|
414 |
+
backdoor_train()
|
GoogLeNet-CIFAR10/Classification-backdoor/scripts/train.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 128
|
2 |
+
num_workers: 2
|
3 |
+
dataset_path: ../dataset
|
4 |
+
epochs: 50
|
5 |
+
gpu: 0
|
6 |
+
lr: 0.1
|
7 |
+
interval: 2
|
8 |
+
poison_ratio: 0.1
|
9 |
+
trigger_size: 2
|
10 |
+
target_label: 0
|
GoogLeNet-CIFAR10/Classification-noisy/dataset/index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
GoogLeNet-CIFAR10/Classification-noisy/dataset/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "GoogLeNet",
|
3 |
+
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
+
}
|
Image/LeNet5/model/0/epoch1/subject_model.pth → GoogLeNet-CIFAR10/Classification-noisy/dataset/labels.npy
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d13128de212014e257f241a6f6ea7d97f157e02c814dc70456d692fd18a85d32
|
3 |
+
size 480128
|
Image/LeNet5/model/0/epoch12/subject_model.pth → GoogLeNet-CIFAR10/Classification-noisy/dataset/noise_index.npy
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5e6e3ea08f754a3a6406c1d07b49cf9876a58bb6985ba1225f4e1f8456d9de8
|
3 |
+
size 48128
|
GoogLeNet-CIFAR10/Classification-noisy/readme.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GoogLeNet-CIFAR10 训练与特征提取
|
2 |
+
|
3 |
+
这个项目实现了GoogLeNet模型在CIFAR10数据集上的训练,并集成了特征提取和可视化所需的功能。
|
4 |
+
|
5 |
+
## time_travel_saver数据提取器
|
6 |
+
```python
|
7 |
+
#保存可视化训练过程所需要的文件
|
8 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
9 |
+
# 创建一个专门用于收集embedding的顺序dataloader
|
10 |
+
ordered_trainloader = torch.utils.data.DataLoader(
|
11 |
+
trainloader.dataset,
|
12 |
+
batch_size=trainloader.batch_size,
|
13 |
+
shuffle=False,
|
14 |
+
num_workers=trainloader.num_workers
|
15 |
+
)
|
16 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}') #epoch保存路径
|
17 |
+
save_model = time_travel_saver(model, ordered_trainloader, device, epoch_save_dir, model_name,
|
18 |
+
show=True, layer_name='avg_pool', auto_save_embedding=True)
|
19 |
+
#show:是否显示模型的维度信息
|
20 |
+
#layer_name:选择要提取特征的层,如果为None,则提取符合维度范围的层
|
21 |
+
#auto_save_embedding:是否自动保存特征向量 must be True
|
22 |
+
save_model.save_checkpoint_embeddings_predictions() #保存模型权重、特征向量和预测结果到epoch_x
|
23 |
+
if epoch == 0:
|
24 |
+
save_model.save_lables_index(path = "../dataset") #保存标签和索引到dataset
|
25 |
+
```
|
26 |
+
|
27 |
+
|
28 |
+
## 项目结构
|
29 |
+
|
30 |
+
- `./scripts/train.yaml`:训练配置文件,包含批次大小、学习率、GPU设置等参数
|
31 |
+
- `./scripts/train.py`:训练脚本,执行模型训练并自动收集特征数据
|
32 |
+
- `./model/`:保存训练好的模型权重
|
33 |
+
- `./epochs/`:保存训练过程中的高维特征向量、预测结果等数据
|
34 |
+
|
35 |
+
## 使用方法
|
36 |
+
|
37 |
+
1. 配置 `train.yaml` 文件设置训练参数
|
38 |
+
2. 执行训练脚本:
|
39 |
+
```
|
40 |
+
python train.py
|
41 |
+
```
|
42 |
+
3. 训练完成后,可以在以下位置找到相关数据:
|
43 |
+
- 模型权重:`./epochs/epoch_{n}/model.pth`
|
44 |
+
- 特征向量:`./epochs/epoch_{n}/embeddings.npy`
|
45 |
+
- 预测结果:`./epochs/epoch_{n}/predictions.npy`
|
46 |
+
- 标签数据:`./dataset/labels.npy`
|
47 |
+
- 数据索引:`./dataset/index.json`
|
48 |
+
|
49 |
+
## 数据格式
|
50 |
+
|
51 |
+
- `embeddings.npy`:形状为 [n_samples, feature_dim] 的特征向量
|
52 |
+
- `predictions.npy`:形状为 [n_samples, n_classes] 的预测概率
|
53 |
+
- `labels.npy`:形状为 [n_samples] 的真实标签
|
54 |
+
- `index.json`:包含训练集、测试集和验证集的索引信息
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/create_index.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
# 创建完整的索引
|
5 |
+
index_dict = {
|
6 |
+
"train": list(range( 50000)), #50000的训练索引
|
7 |
+
"test": list(range(50000, 60000)), # 测试索引
|
8 |
+
"validation": [] # 空验证集
|
9 |
+
}
|
10 |
+
|
11 |
+
# 保存到索引文件
|
12 |
+
index_path = os.path.join('..', 'dataset', 'index.json')
|
13 |
+
with open(index_path, 'w') as f:
|
14 |
+
json.dump(index_dict, f, indent=4)
|
15 |
+
|
16 |
+
print(f"已创建完整索引文件: {index_path}")
|
17 |
+
print(f"训练集: {len(index_dict['train'])}个样本")
|
18 |
+
print(f"测试集: {len(index_dict['test'])}个样本")
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/dataset_utils.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import yaml
|
8 |
+
from torch.utils.data import TensorDataset, DataLoader
|
9 |
+
|
10 |
+
# 加载数据集
|
11 |
+
|
12 |
+
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
|
13 |
+
"""获取CIFAR10数据集的数据加载器
|
14 |
+
|
15 |
+
Args:
|
16 |
+
batch_size: 批次大小
|
17 |
+
num_workers: 数据加载的工作进程数
|
18 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
trainloader: 训练数据加载器
|
22 |
+
testloader: 测试数据加载器
|
23 |
+
"""
|
24 |
+
# 数据预处理
|
25 |
+
transform_train = transforms.Compose([
|
26 |
+
transforms.RandomCrop(32, padding=4),
|
27 |
+
transforms.RandomHorizontalFlip(),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
30 |
+
])
|
31 |
+
|
32 |
+
transform_test = transforms.Compose([
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
35 |
+
])
|
36 |
+
|
37 |
+
# 设置数据集路径
|
38 |
+
if local_dataset_path:
|
39 |
+
print(f"使用本地数据集: {local_dataset_path}")
|
40 |
+
# 检查数据集路径是否有数据集,没有的话则下载
|
41 |
+
cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
|
42 |
+
download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
|
43 |
+
dataset_path = local_dataset_path
|
44 |
+
else:
|
45 |
+
print("未指定本地数据集路径,将下载数据集")
|
46 |
+
download = True
|
47 |
+
dataset_path = '../dataset'
|
48 |
+
|
49 |
+
# 创建数据集路径
|
50 |
+
if not os.path.exists(dataset_path):
|
51 |
+
os.makedirs(dataset_path)
|
52 |
+
|
53 |
+
trainset = torchvision.datasets.CIFAR10(
|
54 |
+
root=dataset_path, train=True, download=download, transform=transform_train)
|
55 |
+
trainloader = torch.utils.data.DataLoader(
|
56 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
57 |
+
|
58 |
+
testset = torchvision.datasets.CIFAR10(
|
59 |
+
root=dataset_path, train=False, download=download, transform=transform_test)
|
60 |
+
testloader = torch.utils.data.DataLoader(
|
61 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
62 |
+
|
63 |
+
return trainloader, testloader
|
64 |
+
|
65 |
+
def get_noisy_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
|
66 |
+
"""获取添加噪声后的CIFAR10数据集的数据加载器
|
67 |
+
|
68 |
+
Args:
|
69 |
+
batch_size: 批次大小
|
70 |
+
num_workers: 数据加载的工作进程数
|
71 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
72 |
+
shuffle: 是否打乱数据
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
noisy_trainloader: 添加噪声后的训练数据加载器
|
76 |
+
testloader: 正常测试数据加载器
|
77 |
+
"""
|
78 |
+
# 加载原始数据集
|
79 |
+
trainloader, testloader = get_cifar10_dataloaders(
|
80 |
+
batch_size=batch_size,
|
81 |
+
num_workers=num_workers,
|
82 |
+
local_dataset_path=local_dataset_path,
|
83 |
+
shuffle=False
|
84 |
+
)
|
85 |
+
|
86 |
+
# 设置设备
|
87 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
88 |
+
print(f"使用设备: {device}")
|
89 |
+
|
90 |
+
# 加载配置文件
|
91 |
+
config_path = './train.yaml'
|
92 |
+
try:
|
93 |
+
with open(config_path, 'r') as f:
|
94 |
+
config = yaml.safe_load(f)
|
95 |
+
except FileNotFoundError:
|
96 |
+
print(f"找不到配置文件: {config_path},使用默认配置")
|
97 |
+
config = {
|
98 |
+
'noise_levels': {
|
99 |
+
'gaussian': [0.1, 0.3],
|
100 |
+
'salt_pepper': [0.05, 0.1],
|
101 |
+
'poisson': [1.0]
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
# 加载噪声参数
|
106 |
+
noise_levels = config.get('noise_levels', {})
|
107 |
+
gaussian_level = noise_levels.get('gaussian', [0.1, 0.2])
|
108 |
+
salt_pepper_level = noise_levels.get('salt_pepper', [0.05, 0.1])
|
109 |
+
poisson_level = noise_levels.get('poisson', [1.0])[0]
|
110 |
+
|
111 |
+
# 获取原始数据和标签
|
112 |
+
data_list = []
|
113 |
+
targets_list = []
|
114 |
+
|
115 |
+
for inputs, targets in trainloader:
|
116 |
+
data_list.append(inputs)
|
117 |
+
targets_list.append(targets)
|
118 |
+
|
119 |
+
# 合并所有批次数据
|
120 |
+
all_data = torch.cat(data_list)
|
121 |
+
all_targets = torch.cat(targets_list)
|
122 |
+
|
123 |
+
# 创建噪声信息字典
|
124 |
+
noise_info = {
|
125 |
+
'noise_types': [],
|
126 |
+
'noise_levels': [],
|
127 |
+
'noise_indices': []
|
128 |
+
}
|
129 |
+
|
130 |
+
# CIFAR10标准化参数
|
131 |
+
mean = torch.tensor([0.4914, 0.4822, 0.4465]).view(3, 1, 1).to(device)
|
132 |
+
std = torch.tensor([0.2023, 0.1994, 0.2010]).view(3, 1, 1).to(device)
|
133 |
+
|
134 |
+
print("开始添加噪声...")
|
135 |
+
|
136 |
+
# 按标签分组进行处理
|
137 |
+
for label_value in range(10):
|
138 |
+
# 找出所有具有当前标签的样本索引
|
139 |
+
indices = [i for i in range(len(all_targets)) if all_targets[i].item() == label_value]
|
140 |
+
|
141 |
+
noise_type = None
|
142 |
+
noise_ratio = 0.0
|
143 |
+
level = None
|
144 |
+
|
145 |
+
# 根据标签决定噪��类型和强度
|
146 |
+
if label_value == 2: # 高斯噪声强 - 30%数据
|
147 |
+
noise_type = 1 # 高斯噪声
|
148 |
+
noise_ratio = 0.3
|
149 |
+
level = gaussian_level[1] if len(gaussian_level) > 1 else gaussian_level[0]
|
150 |
+
elif label_value == 3: # 高斯噪声弱 - 10%数据
|
151 |
+
noise_type = 1 # 高斯噪声
|
152 |
+
noise_ratio = 0.1
|
153 |
+
level = gaussian_level[0]
|
154 |
+
elif label_value == 4: # 椒盐噪声强 - 30%数据
|
155 |
+
noise_type = 2 # 椒盐噪声
|
156 |
+
noise_ratio = 0.3
|
157 |
+
level = salt_pepper_level[1] if len(salt_pepper_level) > 1 else salt_pepper_level[0]
|
158 |
+
elif label_value == 5: # 椒盐噪声弱 - 10%数据
|
159 |
+
noise_type = 2 # 椒盐噪声
|
160 |
+
noise_ratio = 0.1
|
161 |
+
level = salt_pepper_level[0]
|
162 |
+
elif label_value == 6: # 泊松噪声 - 30%数据
|
163 |
+
noise_type = 3 # 泊松噪声
|
164 |
+
noise_ratio = 0.3
|
165 |
+
level = poisson_level
|
166 |
+
elif label_value == 7: # 泊松噪声 - 10%数据
|
167 |
+
noise_type = 3 # 泊松噪声
|
168 |
+
noise_ratio = 0.1
|
169 |
+
level = poisson_level
|
170 |
+
|
171 |
+
# 如果需要添加噪声
|
172 |
+
if noise_type is not None and level is not None and noise_ratio > 0:
|
173 |
+
# 计算要添加噪声的样本数量
|
174 |
+
num_samples_to_add_noise = int(len(indices) * noise_ratio)
|
175 |
+
if num_samples_to_add_noise == 0 and len(indices) > 0:
|
176 |
+
num_samples_to_add_noise = 1 # 至少添加一个样本
|
177 |
+
|
178 |
+
# 随机选择要添加噪声的样本索引
|
179 |
+
indices_to_add_noise = random.sample(indices, min(num_samples_to_add_noise, len(indices)))
|
180 |
+
|
181 |
+
print(f"标签 {label_value}: 为 {len(indices_to_add_noise)}/{len(indices)} 个样本添加噪声类型 {noise_type},强度 {level}")
|
182 |
+
|
183 |
+
# 为选中的样本添加噪声
|
184 |
+
for i in indices_to_add_noise:
|
185 |
+
# 获取当前图像
|
186 |
+
img = all_data[i].to(device)
|
187 |
+
|
188 |
+
# 反标准化
|
189 |
+
img_denorm = img * std + mean
|
190 |
+
|
191 |
+
# 添加噪声
|
192 |
+
if noise_type == 1: # 高斯噪声
|
193 |
+
# 转为numpy处理
|
194 |
+
img_np = img_denorm.cpu().numpy()
|
195 |
+
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
|
196 |
+
img_np = np.clip(img_np, 0, 1) * 255.0
|
197 |
+
|
198 |
+
# 添加高斯噪声
|
199 |
+
std_dev = level * 25
|
200 |
+
noise = np.random.normal(0, std_dev, img_np.shape)
|
201 |
+
noisy_img = img_np + noise
|
202 |
+
noisy_img = np.clip(noisy_img, 0, 255)
|
203 |
+
|
204 |
+
# 转回tensor
|
205 |
+
noisy_img = noisy_img / 255.0
|
206 |
+
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
|
207 |
+
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
|
208 |
+
|
209 |
+
elif noise_type == 2: # 椒盐噪声
|
210 |
+
# 转为numpy处理
|
211 |
+
img_np = img_denorm.cpu().numpy()
|
212 |
+
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
|
213 |
+
img_np = np.clip(img_np, 0, 1) * 255.0
|
214 |
+
|
215 |
+
# 创建掩码
|
216 |
+
mask = np.random.random(img_np.shape[:2])
|
217 |
+
# 椒噪声 (黑点)
|
218 |
+
img_np_copy = img_np.copy()
|
219 |
+
img_np_copy[mask < level/2] = 0
|
220 |
+
# 盐噪声 (白点)
|
221 |
+
img_np_copy[mask > 1 - level/2] = 255
|
222 |
+
|
223 |
+
# 转回tensor
|
224 |
+
noisy_img = img_np_copy / 255.0
|
225 |
+
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
|
226 |
+
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
|
227 |
+
|
228 |
+
elif noise_type == 3: # 泊松噪声
|
229 |
+
# 转为numpy处理
|
230 |
+
img_np = img_denorm.cpu().numpy()
|
231 |
+
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
|
232 |
+
img_np = np.clip(img_np, 0, 1) * 255.0
|
233 |
+
|
234 |
+
# 添加泊松噪声
|
235 |
+
lam = np.maximum(img_np / 255.0 * 10.0, 0.0001)
|
236 |
+
noisy_img = np.random.poisson(lam) / 10.0 * 255.0
|
237 |
+
noisy_img = np.clip(noisy_img, 0, 255)
|
238 |
+
|
239 |
+
# 转回tensor
|
240 |
+
noisy_img = noisy_img / 255.0
|
241 |
+
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
|
242 |
+
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
|
243 |
+
|
244 |
+
# 重新标准化
|
245 |
+
noisy_tensor_norm = (noisy_tensor - mean) / std
|
246 |
+
|
247 |
+
# 更新数据
|
248 |
+
all_data[i] = noisy_tensor_norm
|
249 |
+
|
250 |
+
# 记录噪声信息
|
251 |
+
noise_info['noise_types'].append(noise_type)
|
252 |
+
noise_info['noise_levels'].append(level)
|
253 |
+
noise_info['noise_indices'].append(i)
|
254 |
+
|
255 |
+
# 保存添加噪声的样本索引
|
256 |
+
noise_indices = sorted(noise_info['noise_indices'])
|
257 |
+
noise_index_path = os.path.join('..', 'dataset', 'noise_index.npy')
|
258 |
+
os.makedirs(os.path.dirname(noise_index_path), exist_ok=True)
|
259 |
+
np.save(noise_index_path, noise_indices)
|
260 |
+
print(f"已保存噪声样本索引到 {noise_index_path},共 {len(noise_indices)} 个样本")
|
261 |
+
|
262 |
+
# 创建新的TensorDataset
|
263 |
+
noisy_dataset = TensorDataset(all_data, all_targets)
|
264 |
+
|
265 |
+
# 创建新的DataLoader
|
266 |
+
noisy_trainloader = DataLoader(
|
267 |
+
noisy_dataset,
|
268 |
+
batch_size=batch_size,
|
269 |
+
shuffle=shuffle,
|
270 |
+
num_workers=num_workers
|
271 |
+
)
|
272 |
+
|
273 |
+
print(f"成功为{len(noise_info['noise_indices'])}/{len(all_data)} ({len(noise_info['noise_indices'])/len(all_data)*100:.1f}%)的样本添加噪声")
|
274 |
+
return noisy_trainloader, testloader
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/get_raw_data.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
2 |
+
|
3 |
+
import os
|
4 |
+
import yaml
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
import sys
|
12 |
+
|
13 |
+
def unpickle(file):
|
14 |
+
"""读取CIFAR-10数据文件"""
|
15 |
+
import pickle
|
16 |
+
with open(file, 'rb') as fo:
|
17 |
+
dict = pickle.load(fo, encoding='bytes')
|
18 |
+
return dict
|
19 |
+
|
20 |
+
def add_noise_for_preview(image, noise_type, level):
|
21 |
+
"""向图像添加不同类型的噪声的预览
|
22 |
+
|
23 |
+
Args:
|
24 |
+
image: 输入图像 (Tensor: C x H x W),范围[0,1]
|
25 |
+
noise_type: 噪声类型 (int, 1-3)
|
26 |
+
level: 噪声强度 (float)
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
noisy_image: 添加噪声后的图像 (Tensor: C x H x W)
|
30 |
+
"""
|
31 |
+
# 将图像从Tensor转为Numpy数组
|
32 |
+
img_np = image.cpu().numpy()
|
33 |
+
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
|
34 |
+
|
35 |
+
# 根据噪声类型添加噪声
|
36 |
+
if noise_type == 1: # 高斯噪声
|
37 |
+
noise = np.random.normal(0, level, img_np.shape)
|
38 |
+
noisy_img = img_np + noise
|
39 |
+
noisy_img = np.clip(noisy_img, 0, 1)
|
40 |
+
|
41 |
+
elif noise_type == 2: # 椒盐噪声
|
42 |
+
# 创建掩码,确定哪些像素将变为椒盐噪声
|
43 |
+
noisy_img = img_np.copy() # 创建副本而不是直接修改原图
|
44 |
+
mask = np.random.random(img_np.shape[:2])
|
45 |
+
# 椒噪声 (黑点)
|
46 |
+
noisy_img[mask < level/2] = 0
|
47 |
+
# 盐噪声 (白点)
|
48 |
+
noisy_img[mask > 1 - level/2] = 1
|
49 |
+
|
50 |
+
elif noise_type == 3: # 泊松噪声
|
51 |
+
# 确保输入值为正数
|
52 |
+
lam = np.maximum(img_np * 10.0, 0.0001) # 避免负值和零值
|
53 |
+
noisy_img = np.random.poisson(lam) / 10.0
|
54 |
+
noisy_img = np.clip(noisy_img, 0, 1)
|
55 |
+
|
56 |
+
else: # 默认返回原图像
|
57 |
+
noisy_img = img_np
|
58 |
+
|
59 |
+
# 将噪声图像从Numpy数组转回Tensor
|
60 |
+
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
|
61 |
+
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32))
|
62 |
+
return noisy_tensor
|
63 |
+
|
64 |
+
def save_images_from_cifar10_with_noisy(dataset_path, save_dir):
|
65 |
+
"""从CIFAR-10数据集中保存图像,对指定索引添加噪声
|
66 |
+
|
67 |
+
Args:
|
68 |
+
dataset_path: CIFAR-10数据集路径
|
69 |
+
save_dir: 图像保存路径
|
70 |
+
"""
|
71 |
+
# 创建保存目录
|
72 |
+
os.makedirs(save_dir, exist_ok=True)
|
73 |
+
|
74 |
+
# 读取噪声样本的索引
|
75 |
+
noise_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'noise_index.npy')
|
76 |
+
if os.path.exists(noise_index_path):
|
77 |
+
noise_indices = np.load(noise_index_path)
|
78 |
+
print(f"已加载 {len(noise_indices)} 个噪声样本索引")
|
79 |
+
else:
|
80 |
+
noise_indices = []
|
81 |
+
print("未找到噪声索引文件,将不添加噪声")
|
82 |
+
|
83 |
+
# 加载配置
|
84 |
+
config_path = './train.yaml'
|
85 |
+
with open(config_path, 'r') as f:
|
86 |
+
config = yaml.safe_load(f)
|
87 |
+
|
88 |
+
# 读取噪声参数
|
89 |
+
noise_levels = config.get('noise_levels', {})
|
90 |
+
gaussian_level = noise_levels.get('gaussian', [0.3])
|
91 |
+
salt_pepper_level = noise_levels.get('salt_pepper', [0.1])
|
92 |
+
poisson_level = noise_levels.get('poisson', [1.0])[0]
|
93 |
+
|
94 |
+
# 获取训练集数据
|
95 |
+
train_data = []
|
96 |
+
train_labels = []
|
97 |
+
|
98 |
+
# 读取训练数据
|
99 |
+
for i in range(1, 6):
|
100 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
101 |
+
if os.path.exists(batch_file):
|
102 |
+
print(f"读取训练批次 {i}")
|
103 |
+
batch = unpickle(batch_file)
|
104 |
+
train_data.append(batch[b'data'])
|
105 |
+
train_labels.extend(batch[b'labels'])
|
106 |
+
|
107 |
+
# 合并所有训练数据
|
108 |
+
if train_data:
|
109 |
+
train_data = np.vstack(train_data)
|
110 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
111 |
+
|
112 |
+
# 读取测试数据
|
113 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
114 |
+
if os.path.exists(test_file):
|
115 |
+
print("读取测试数据")
|
116 |
+
test_batch = unpickle(test_file)
|
117 |
+
test_data = test_batch[b'data']
|
118 |
+
test_labels = test_batch[b'labels']
|
119 |
+
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
120 |
+
else:
|
121 |
+
test_data = []
|
122 |
+
test_labels = []
|
123 |
+
|
124 |
+
# 合并训练和测试数据
|
125 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
126 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
127 |
+
|
128 |
+
# 设置设备
|
129 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
130 |
+
|
131 |
+
# 保存图像
|
132 |
+
print(f"保存 {len(all_data)} 张图像...")
|
133 |
+
|
134 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
135 |
+
# 检查索引是否在噪声样本索引中
|
136 |
+
if i in noise_indices:
|
137 |
+
# 为该样本��定噪声类型和强度
|
138 |
+
noise_type = None
|
139 |
+
level = None
|
140 |
+
|
141 |
+
if label == 2: # 高斯噪声强
|
142 |
+
noise_type = 1
|
143 |
+
level = gaussian_level[1]
|
144 |
+
elif label == 3: # 高斯噪声弱
|
145 |
+
noise_type = 1
|
146 |
+
level = gaussian_level[0]
|
147 |
+
elif label == 4: # 椒盐噪声强
|
148 |
+
noise_type = 2
|
149 |
+
level = salt_pepper_level[1]
|
150 |
+
elif label == 5: # 椒盐噪声弱
|
151 |
+
noise_type = 2
|
152 |
+
level = salt_pepper_level[0]
|
153 |
+
elif label == 6: # 泊松噪声
|
154 |
+
noise_type = 3
|
155 |
+
level = poisson_level
|
156 |
+
elif label == 7: # 泊松噪声
|
157 |
+
noise_type = 3
|
158 |
+
level = poisson_level
|
159 |
+
|
160 |
+
# 如果是需要添加噪声的标签,则添加噪声
|
161 |
+
if noise_type is not None and level is not None:
|
162 |
+
# 转换为tensor
|
163 |
+
img_tensor = torch.from_numpy(img.astype(np.float32) / 255.0).permute(2, 0, 1).to(device)
|
164 |
+
# 添加噪声
|
165 |
+
noisy_tensor = add_noise_for_preview(img_tensor, noise_type, level)
|
166 |
+
# 转回numpy并保存
|
167 |
+
noisy_img = (noisy_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
|
168 |
+
noisy_pil = Image.fromarray(noisy_img)
|
169 |
+
noisy_pil.save(os.path.join(save_dir, f"{i}.png"))
|
170 |
+
else:
|
171 |
+
# 普通保存
|
172 |
+
img_pil = Image.fromarray(img)
|
173 |
+
img_pil.save(os.path.join(save_dir, f"{i}.png"))
|
174 |
+
else:
|
175 |
+
# 保存原始图像
|
176 |
+
img_pil = Image.fromarray(img)
|
177 |
+
img_pil.save(os.path.join(save_dir, f"{i}.png"))
|
178 |
+
|
179 |
+
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}, 其中 {len(noise_indices)} 张添加了噪声")
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
# 设置路径
|
183 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
184 |
+
save_dir = "../dataset/raw_data"
|
185 |
+
|
186 |
+
# 检查数据集是否存在,如果不存在则下载
|
187 |
+
if not os.path.exists(dataset_path):
|
188 |
+
print("数据集不存在,正在下载...")
|
189 |
+
os.makedirs("../dataset", exist_ok=True)
|
190 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
191 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
192 |
+
|
193 |
+
# 保存图像
|
194 |
+
save_images_from_cifar10_with_noisy(dataset_path, save_dir)
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/get_representation.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
+
|
11 |
+
用于保存模型训练过程中的各种数据,包括:
|
12 |
+
1. 模型权重 (.pth)
|
13 |
+
2. 高维特征 (representation/*.npy)
|
14 |
+
3. 预测结果 (prediction/*.npy)
|
15 |
+
4. 标签数据 (label/labels.npy)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name,
|
19 |
+
auto_save_embedding=False, layer_name=None,show = False):
|
20 |
+
"""初始化
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model: 要保存的模型实例
|
24 |
+
dataloader: 数据加载器(必须是顺序加载的)
|
25 |
+
device: 计算设备(cpu or gpu)
|
26 |
+
save_dir: 保存根目录
|
27 |
+
model_name: 模型名称
|
28 |
+
"""
|
29 |
+
self.model = model
|
30 |
+
self.dataloader = dataloader
|
31 |
+
self.device = device
|
32 |
+
self.save_dir = save_dir
|
33 |
+
self.model_name = model_name
|
34 |
+
self.auto_save = auto_save_embedding
|
35 |
+
self.layer_name = layer_name
|
36 |
+
|
37 |
+
if show and not layer_name:
|
38 |
+
layer_dimensions = self.show_dimensions()
|
39 |
+
# print(layer_dimensions)
|
40 |
+
|
41 |
+
def show_dimensions(self):
|
42 |
+
"""显示模型中所有层的名称和对应的维度
|
43 |
+
|
44 |
+
这个函数会输出模型中所有层的名称和它们的输出维度,
|
45 |
+
帮助用户选择合适的层来提取特征。
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
layer_dimensions: 包含层名称和维度的字典
|
49 |
+
"""
|
50 |
+
activation = {}
|
51 |
+
layer_dimensions = {}
|
52 |
+
|
53 |
+
def get_activation(name):
|
54 |
+
def hook(model, input, output):
|
55 |
+
activation[name] = output.detach()
|
56 |
+
return hook
|
57 |
+
|
58 |
+
# 注册钩子到所有层
|
59 |
+
handles = []
|
60 |
+
for name, module in self.model.named_modules():
|
61 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
62 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
63 |
+
|
64 |
+
self.model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
# 获取一个batch来分析每层的输出维度
|
67 |
+
inputs, _ = next(iter(self.dataloader))
|
68 |
+
inputs = inputs.to(self.device)
|
69 |
+
_ = self.model(inputs)
|
70 |
+
|
71 |
+
# 分析所有层的输出维度
|
72 |
+
print("\n模型各层的名称和维度:")
|
73 |
+
print("-" * 50)
|
74 |
+
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
|
75 |
+
print("-" * 50)
|
76 |
+
|
77 |
+
for name, feat in activation.items():
|
78 |
+
if feat is None:
|
79 |
+
continue
|
80 |
+
|
81 |
+
# 获取特征维度(展平后)
|
82 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
83 |
+
layer_dimensions[name] = feat_dim
|
84 |
+
# 打印层信息
|
85 |
+
shape_str = str(list(feat.shape))
|
86 |
+
print(f"{name:<40} {feat_dim:<15} {shape_str}")
|
87 |
+
|
88 |
+
print("-" * 50)
|
89 |
+
print("注: 特征维度是将输出张量展平后的维度大小")
|
90 |
+
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
|
91 |
+
print("例如:layer_name='avg_pool'或layer_name='layer4'等")
|
92 |
+
|
93 |
+
# 移除所有钩子
|
94 |
+
for handle in handles:
|
95 |
+
handle.remove()
|
96 |
+
|
97 |
+
return layer_dimensions
|
98 |
+
|
99 |
+
def _extract_features_and_predictions(self):
|
100 |
+
"""提取特征和预测结果
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
features: 高维特征 [样本数, 特征维度]
|
104 |
+
predictions: 预测结果 [样本数, 类别数]
|
105 |
+
"""
|
106 |
+
features = []
|
107 |
+
predictions = []
|
108 |
+
indices = []
|
109 |
+
activation = {}
|
110 |
+
|
111 |
+
def get_activation(name):
|
112 |
+
def hook(model, input, output):
|
113 |
+
# 只在需要时保存激活值,避免内存浪费
|
114 |
+
if name not in activation or activation[name] is None:
|
115 |
+
activation[name] = output.detach()
|
116 |
+
return hook
|
117 |
+
|
118 |
+
# 根据层的名称或维度来选择层
|
119 |
+
|
120 |
+
# 注册钩子到所有层
|
121 |
+
handles = []
|
122 |
+
for name, module in self.model.named_modules():
|
123 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
124 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
125 |
+
|
126 |
+
self.model.eval()
|
127 |
+
with torch.no_grad():
|
128 |
+
# 首先获取一个batch来分析每层的输出维度
|
129 |
+
inputs, _ = next(iter(self.dataloader))
|
130 |
+
inputs = inputs.to(self.device)
|
131 |
+
_ = self.model(inputs)
|
132 |
+
|
133 |
+
# 如果指定了层名,则直接使用该层
|
134 |
+
if self.layer_name is not None:
|
135 |
+
if self.layer_name not in activation:
|
136 |
+
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
|
137 |
+
|
138 |
+
feat = activation[self.layer_name]
|
139 |
+
if feat is None:
|
140 |
+
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
|
141 |
+
|
142 |
+
suitable_layer_name = self.layer_name
|
143 |
+
suitable_dim = feat.view(feat.size(0), -1).size(1)
|
144 |
+
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
145 |
+
else:
|
146 |
+
# 找到维度在指定范围内的层
|
147 |
+
target_dim_range = (256, 2048)
|
148 |
+
suitable_layer_name = None
|
149 |
+
suitable_dim = None
|
150 |
+
|
151 |
+
# 分析所有层的输出维度
|
152 |
+
for name, feat in activation.items():
|
153 |
+
if feat is None:
|
154 |
+
continue
|
155 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
156 |
+
if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
|
157 |
+
suitable_layer_name = name
|
158 |
+
suitable_dim = feat_dim
|
159 |
+
break
|
160 |
+
|
161 |
+
if suitable_layer_name is None:
|
162 |
+
raise ValueError("没有找到合适维度的特征层")
|
163 |
+
|
164 |
+
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
165 |
+
|
166 |
+
# 保存层信息
|
167 |
+
layer_info = {
|
168 |
+
'layer_id': suitable_layer_name,
|
169 |
+
'dim': suitable_dim
|
170 |
+
}
|
171 |
+
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
|
172 |
+
with open(layer_info_path, 'w') as f:
|
173 |
+
json.dump(layer_info, f)
|
174 |
+
|
175 |
+
# 清除第一次运行的激活值
|
176 |
+
activation.clear()
|
177 |
+
|
178 |
+
# 现在处理所有数据
|
179 |
+
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
|
180 |
+
inputs = inputs.to(self.device)
|
181 |
+
outputs = self.model(inputs) # 获取预测结果
|
182 |
+
|
183 |
+
# 获取并处理特征
|
184 |
+
feat = activation[suitable_layer_name]
|
185 |
+
flat_features = torch.flatten(feat, start_dim=1)
|
186 |
+
features.append(flat_features.cpu().numpy())
|
187 |
+
predictions.append(outputs.cpu().numpy())
|
188 |
+
|
189 |
+
# 清除本次的激活值
|
190 |
+
activation.clear()
|
191 |
+
|
192 |
+
# 移除所有钩子
|
193 |
+
for handle in handles:
|
194 |
+
handle.remove()
|
195 |
+
|
196 |
+
if len(features) > 0:
|
197 |
+
features = np.vstack(features)
|
198 |
+
predictions = np.vstack(predictions)
|
199 |
+
return features, predictions
|
200 |
+
else:
|
201 |
+
return np.array([]), np.array([])
|
202 |
+
|
203 |
+
def save_lables_index(self, path):
|
204 |
+
"""保存标签数据和索引信息
|
205 |
+
|
206 |
+
Args:
|
207 |
+
path: 保存路径
|
208 |
+
"""
|
209 |
+
os.makedirs(path, exist_ok=True)
|
210 |
+
labels_path = os.path.join(path, 'labels.npy')
|
211 |
+
index_path = os.path.join(path, 'index.json')
|
212 |
+
|
213 |
+
# 尝试从不同的属性获取标签
|
214 |
+
try:
|
215 |
+
if hasattr(self.dataloader.dataset, 'targets'):
|
216 |
+
# CIFAR10/CIFAR100使用targets属性
|
217 |
+
labels = np.array(self.dataloader.dataset.targets)
|
218 |
+
elif hasattr(self.dataloader.dataset, 'labels'):
|
219 |
+
# 某些数据集使用labels属性
|
220 |
+
labels = np.array(self.dataloader.dataset.labels)
|
221 |
+
else:
|
222 |
+
# 如果上面的方法都不起作用,则从数据加载器中收集标签
|
223 |
+
labels = []
|
224 |
+
for _, batch_labels in self.dataloader:
|
225 |
+
labels.append(batch_labels.numpy())
|
226 |
+
labels = np.concatenate(labels)
|
227 |
+
|
228 |
+
# 保存标签数据
|
229 |
+
np.save(labels_path, labels)
|
230 |
+
print(f"标签数据已保存到 {labels_path}")
|
231 |
+
|
232 |
+
# 创建数据集索引
|
233 |
+
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
+
|
236 |
+
# 创建索引字典
|
237 |
+
index_dict = {
|
238 |
+
"train": list(range(50000)), # 所有数据默认为训练集
|
239 |
+
"test": list(range(50000, 60000)), # 测试集索引从50000到59999
|
240 |
+
"validation": [] # 初始为空
|
241 |
+
}
|
242 |
+
|
243 |
+
# 保存索引到JSON文件
|
244 |
+
with open(index_path, 'w') as f:
|
245 |
+
json.dump(index_dict, f, indent=4)
|
246 |
+
|
247 |
+
print(f"数据集索引已保存到 {index_path}")
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"保存标签和索引时出错: {e}")
|
251 |
+
|
252 |
+
def save_checkpoint_embeddings_predictions(self, model = None):
|
253 |
+
"""保存所有数据"""
|
254 |
+
if model is not None:
|
255 |
+
self.model = model
|
256 |
+
# 保存模型权重
|
257 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
258 |
+
model_path = os.path.join(self.save_dir,'model.pth')
|
259 |
+
torch.save(self.model.state_dict(), model_path)
|
260 |
+
|
261 |
+
if self.auto_save:
|
262 |
+
# 提取并保存特征和预测结果
|
263 |
+
features, predictions = self._extract_features_and_predictions()
|
264 |
+
|
265 |
+
# 保存特征
|
266 |
+
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
|
267 |
+
# 保存预测结果
|
268 |
+
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
|
269 |
+
print("\n保存了以下数据:")
|
270 |
+
print(f"- 模型权重: {model_path}")
|
271 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
272 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/model.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
GoogLeNet in PyTorch.
|
3 |
+
|
4 |
+
Paper: "Going Deeper with Convolutions"
|
5 |
+
Reference: https://arxiv.org/abs/1409.4842
|
6 |
+
|
7 |
+
主要特点:
|
8 |
+
1. 使用Inception模块,通过多尺度卷积提取特征
|
9 |
+
2. 采用1x1卷积降维,减少计算量
|
10 |
+
3. 使用全局平均池化代替全连接层
|
11 |
+
4. 引入辅助分类器帮助训练(本实现未包含)
|
12 |
+
'''
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
class Inception(nn.Module):
|
17 |
+
'''Inception模块
|
18 |
+
|
19 |
+
Args:
|
20 |
+
in_planes: 输入通道数
|
21 |
+
n1x1: 1x1卷积分支的输出通道数
|
22 |
+
n3x3red: 3x3卷积分支的降维通道数
|
23 |
+
n3x3: 3x3卷积分支的输出通道数
|
24 |
+
n5x5red: 5x5卷积分支的降维通道数
|
25 |
+
n5x5: 5x5卷积分支的输出通道数
|
26 |
+
pool_planes: 池化分支的输出通道数
|
27 |
+
'''
|
28 |
+
def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
29 |
+
super(Inception, self).__init__()
|
30 |
+
|
31 |
+
# 1x1卷积分支
|
32 |
+
self.branch1 = nn.Sequential(
|
33 |
+
nn.Conv2d(in_planes, n1x1, kernel_size=1),
|
34 |
+
nn.BatchNorm2d(n1x1),
|
35 |
+
nn.ReLU(True),
|
36 |
+
)
|
37 |
+
|
38 |
+
# 1x1 -> 3x3卷积分支
|
39 |
+
self.branch2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_planes, n3x3red, kernel_size=1),
|
41 |
+
nn.BatchNorm2d(n3x3red),
|
42 |
+
nn.ReLU(True),
|
43 |
+
nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
|
44 |
+
nn.BatchNorm2d(n3x3),
|
45 |
+
nn.ReLU(True),
|
46 |
+
)
|
47 |
+
|
48 |
+
# 1x1 -> 5x5卷积分支(用两个3x3代替)
|
49 |
+
self.branch3 = nn.Sequential(
|
50 |
+
nn.Conv2d(in_planes, n5x5red, kernel_size=1),
|
51 |
+
nn.BatchNorm2d(n5x5red),
|
52 |
+
nn.ReLU(True),
|
53 |
+
nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),
|
54 |
+
nn.BatchNorm2d(n5x5),
|
55 |
+
nn.ReLU(True),
|
56 |
+
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
|
57 |
+
nn.BatchNorm2d(n5x5),
|
58 |
+
nn.ReLU(True),
|
59 |
+
)
|
60 |
+
|
61 |
+
# 3x3池化 -> 1x1卷积分支
|
62 |
+
self.branch4 = nn.Sequential(
|
63 |
+
nn.MaxPool2d(3, stride=1, padding=1),
|
64 |
+
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
|
65 |
+
nn.BatchNorm2d(pool_planes),
|
66 |
+
nn.ReLU(True),
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
'''前向传播,将四个分支的输出在通道维度上拼接'''
|
71 |
+
b1 = self.branch1(x)
|
72 |
+
b2 = self.branch2(x)
|
73 |
+
b3 = self.branch3(x)
|
74 |
+
b4 = self.branch4(x)
|
75 |
+
return torch.cat([b1, b2, b3, b4], 1)
|
76 |
+
|
77 |
+
|
78 |
+
class GoogLeNet(nn.Module):
|
79 |
+
'''GoogLeNet/Inception v1网络
|
80 |
+
|
81 |
+
特点:
|
82 |
+
1. 使用Inception模块构建深层网络
|
83 |
+
2. 通过1x1卷积降维减少计算量
|
84 |
+
3. 使用全局平均池化代替全连接层减少参数量
|
85 |
+
'''
|
86 |
+
def __init__(self, num_classes=10):
|
87 |
+
super(GoogLeNet, self).__init__()
|
88 |
+
|
89 |
+
# 第一阶段:标准卷积层
|
90 |
+
self.pre_layers = nn.Sequential(
|
91 |
+
nn.Conv2d(3, 192, kernel_size=3, padding=1),
|
92 |
+
nn.BatchNorm2d(192),
|
93 |
+
nn.ReLU(True),
|
94 |
+
)
|
95 |
+
|
96 |
+
# 第二阶段:2个Inception模块
|
97 |
+
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) # 输出通道:256
|
98 |
+
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) # 输出通道:480
|
99 |
+
|
100 |
+
# 最大池化层
|
101 |
+
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
|
102 |
+
|
103 |
+
# 第三阶段:5个Inception模块
|
104 |
+
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) # 输出通道:512
|
105 |
+
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) # 输出通道:512
|
106 |
+
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) # 输出通道:512
|
107 |
+
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) # 输出通道:528
|
108 |
+
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
109 |
+
|
110 |
+
# 第四阶段:2个Inception模块
|
111 |
+
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
112 |
+
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) # 输出通道:1024
|
113 |
+
|
114 |
+
# 全局平均池化和分类器
|
115 |
+
self.avgpool = nn.AvgPool2d(8, stride=1)
|
116 |
+
self.linear = nn.Linear(1024, num_classes)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
# 第一阶段
|
120 |
+
out = self.pre_layers(x)
|
121 |
+
|
122 |
+
# 第二阶段
|
123 |
+
out = self.a3(out)
|
124 |
+
out = self.b3(out)
|
125 |
+
out = self.maxpool(out)
|
126 |
+
|
127 |
+
# 第三阶段
|
128 |
+
out = self.a4(out)
|
129 |
+
out = self.b4(out)
|
130 |
+
out = self.c4(out)
|
131 |
+
out = self.d4(out)
|
132 |
+
out = self.e4(out)
|
133 |
+
out = self.maxpool(out)
|
134 |
+
|
135 |
+
# 第四阶段
|
136 |
+
out = self.a5(out)
|
137 |
+
out = self.b5(out)
|
138 |
+
|
139 |
+
# 分类器
|
140 |
+
out = self.avgpool(out)
|
141 |
+
out = out.view(out.size(0), -1)
|
142 |
+
out = self.linear(out)
|
143 |
+
return out
|
144 |
+
|
145 |
+
def feature(self, x):
|
146 |
+
# 第一阶段
|
147 |
+
out = self.pre_layers(x)
|
148 |
+
|
149 |
+
# 第二阶段
|
150 |
+
out = self.a3(out)
|
151 |
+
out = self.b3(out)
|
152 |
+
out = self.maxpool(out)
|
153 |
+
|
154 |
+
# 第三阶段
|
155 |
+
out = self.a4(out)
|
156 |
+
out = self.b4(out)
|
157 |
+
out = self.c4(out)
|
158 |
+
out = self.d4(out)
|
159 |
+
out = self.e4(out)
|
160 |
+
out = self.maxpool(out)
|
161 |
+
|
162 |
+
# 第四阶段
|
163 |
+
out = self.a5(out)
|
164 |
+
out = self.b5(out)
|
165 |
+
|
166 |
+
# 分类器
|
167 |
+
out = self.avgpool(out)
|
168 |
+
return out
|
169 |
+
|
170 |
+
def prediction(self, out):
|
171 |
+
out = out.view(out.size(0), -1)
|
172 |
+
out = self.linear(out)
|
173 |
+
return out
|
174 |
+
|
175 |
+
def test():
|
176 |
+
"""测试函数"""
|
177 |
+
net = GoogLeNet()
|
178 |
+
x = torch.randn(1, 3, 32, 32)
|
179 |
+
y = net(x)
|
180 |
+
print(y.size())
|
181 |
+
|
182 |
+
# 打印模型结构
|
183 |
+
from torchinfo import summary
|
184 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
185 |
+
net = net.to(device)
|
186 |
+
summary(net, (1, 3, 32, 32))
|
187 |
+
|
188 |
+
if __name__ == '__main__':
|
189 |
+
test()
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/preview_noise.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
噪声效果预览脚本:展示不同类型和强度的噪声对图像的影响
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import torchvision
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
import random
|
15 |
+
|
16 |
+
def add_noise_for_preview(image, noise_type, level):
|
17 |
+
"""向图像添加不同类型的噪声的预览
|
18 |
+
|
19 |
+
Args:
|
20 |
+
image: 输入图像 (Tensor: C x H x W),范围[0,1]
|
21 |
+
noise_type: 噪声类型 (int, 1-3)
|
22 |
+
level: 噪声强度 (float)
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
noisy_image: 添加噪声后的图像 (Tensor: C x H x W)
|
26 |
+
"""
|
27 |
+
# 将图像从Tensor转为Numpy数组
|
28 |
+
img_np = image.cpu().numpy()
|
29 |
+
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
|
30 |
+
|
31 |
+
# 根据噪声类型添加噪声
|
32 |
+
if noise_type == 1: # 高斯噪声
|
33 |
+
noise = np.random.normal(0, level, img_np.shape)
|
34 |
+
noisy_img = img_np + noise
|
35 |
+
noisy_img = np.clip(noisy_img, 0, 1)
|
36 |
+
|
37 |
+
elif noise_type == 2: # 椒盐噪声
|
38 |
+
# 创建掩码,确定哪些像素将变为椒盐噪声
|
39 |
+
noisy_img = img_np.copy() # 创建副本而不是直接修改原图
|
40 |
+
mask = np.random.random(img_np.shape[:2])
|
41 |
+
# 椒噪声 (黑点)
|
42 |
+
noisy_img[mask < level/2] = 0
|
43 |
+
# 盐噪声 (白点)
|
44 |
+
noisy_img[mask > 1 - level/2] = 1
|
45 |
+
|
46 |
+
elif noise_type == 3: # 泊松噪声
|
47 |
+
# 确保输入值为正数
|
48 |
+
lam = np.maximum(img_np * 10.0, 0.0001) # 避免负值和零值
|
49 |
+
noisy_img = np.random.poisson(lam) / 10.0
|
50 |
+
noisy_img = np.clip(noisy_img, 0, 1)
|
51 |
+
|
52 |
+
else: # 默认返回原图像
|
53 |
+
noisy_img = img_np
|
54 |
+
|
55 |
+
# 将噪声图像从Numpy数组转回Tensor
|
56 |
+
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
|
57 |
+
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32))
|
58 |
+
return noisy_tensor
|
59 |
+
|
60 |
+
def preview_noise_effects(num_samples=5, save_dir='../results'):
|
61 |
+
"""展示不同类型和强度噪声的对比效果
|
62 |
+
|
63 |
+
Args:
|
64 |
+
num_samples: 要展示的样本数量
|
65 |
+
save_dir: 保存结果的目录
|
66 |
+
"""
|
67 |
+
# 创建保存目录
|
68 |
+
os.makedirs(save_dir, exist_ok=True)
|
69 |
+
|
70 |
+
# 加载CIFAR10数据集
|
71 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
72 |
+
testset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True, transform=transform)
|
73 |
+
|
74 |
+
# 随机选择几个样本进行展示
|
75 |
+
indices = random.sample(range(len(testset)), num_samples)
|
76 |
+
|
77 |
+
# 定义噪声类型和强度
|
78 |
+
noise_configs = [
|
79 |
+
{"name": "高斯噪声(强)", "type": 1, "level": 0.2},
|
80 |
+
{"name": "高斯噪声(弱)", "type": 1, "level": 0.1},
|
81 |
+
{"name": "椒盐噪声(强)", "type": 2, "level": 0.15},
|
82 |
+
{"name": "椒盐噪声(弱)", "type": 2, "level": 0.05},
|
83 |
+
{"name": "泊松噪声(强)", "type": 3, "level": 1.0},
|
84 |
+
{"name": "泊松噪声(弱)", "type": 3, "level": 0.5}
|
85 |
+
]
|
86 |
+
|
87 |
+
# 获取CIFAR10类别名称
|
88 |
+
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')
|
89 |
+
|
90 |
+
# 对每个样本应用不同类型的噪声并展示
|
91 |
+
for i, idx in enumerate(indices):
|
92 |
+
# 获取原始图像和标签
|
93 |
+
img, label = testset[idx]
|
94 |
+
|
95 |
+
# 创建一个子图网格
|
96 |
+
fig, axes = plt.subplots(1, len(noise_configs) + 1, figsize=(18, 3))
|
97 |
+
plt.subplots_adjust(wspace=0.3)
|
98 |
+
|
99 |
+
# 显示原始图像
|
100 |
+
img_np = img.permute(1, 2, 0).cpu().numpy()
|
101 |
+
axes[0].imshow(img_np)
|
102 |
+
axes[0].set_title(f"原始图像\n类别: {classes[label]}")
|
103 |
+
axes[0].axis('off')
|
104 |
+
|
105 |
+
# 应用不同类型的噪声并显示
|
106 |
+
for j, noise_config in enumerate(noise_configs):
|
107 |
+
noisy_img = add_noise_for_preview(img, noise_config["type"], noise_config["level"])
|
108 |
+
noisy_img_np = noisy_img.permute(1, 2, 0).cpu().numpy()
|
109 |
+
axes[j+1].imshow(np.clip(noisy_img_np, 0, 1))
|
110 |
+
axes[j+1].set_title(noise_config["name"])
|
111 |
+
axes[j+1].axis('off')
|
112 |
+
|
113 |
+
# 保存图像
|
114 |
+
plt.tight_layout()
|
115 |
+
plt.savefig(os.path.join(save_dir, f'noise_preview_{i+1}.png'), dpi=150)
|
116 |
+
plt.close()
|
117 |
+
|
118 |
+
print(f"噪声对比预览已保存到 {save_dir} 目录")
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
# 预览噪声效果
|
122 |
+
preview_noise_effects(num_samples=10, save_dir='.')
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/train.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.optim as optim
|
7 |
+
import time
|
8 |
+
import logging
|
9 |
+
import numpy as np
|
10 |
+
from tqdm import tqdm
|
11 |
+
from dataset_utils import get_noisy_cifar10_dataloaders
|
12 |
+
from model import GoogLeNet
|
13 |
+
from get_representation import time_travel_saver
|
14 |
+
|
15 |
+
|
16 |
+
def setup_logger(log_file):
|
17 |
+
"""配置日志记录器,如果日志文件存在则覆盖
|
18 |
+
|
19 |
+
Args:
|
20 |
+
log_file: 日志文件路径
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
logger: 配置好的日志记录器
|
24 |
+
"""
|
25 |
+
# 创建logger
|
26 |
+
logger = logging.getLogger('train')
|
27 |
+
logger.setLevel(logging.INFO)
|
28 |
+
|
29 |
+
# 移除现有的处理器
|
30 |
+
if logger.hasHandlers():
|
31 |
+
logger.handlers.clear()
|
32 |
+
|
33 |
+
# 创建文件处理器,使用'w'模式覆盖现有文件
|
34 |
+
fh = logging.FileHandler(log_file, mode='w')
|
35 |
+
fh.setLevel(logging.INFO)
|
36 |
+
|
37 |
+
# 创建控制台处理器
|
38 |
+
ch = logging.StreamHandler()
|
39 |
+
ch.setLevel(logging.INFO)
|
40 |
+
|
41 |
+
# 创建格式器
|
42 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
43 |
+
fh.setFormatter(formatter)
|
44 |
+
ch.setFormatter(formatter)
|
45 |
+
|
46 |
+
# 添加处理器
|
47 |
+
logger.addHandler(fh)
|
48 |
+
logger.addHandler(ch)
|
49 |
+
|
50 |
+
return logger
|
51 |
+
|
52 |
+
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
53 |
+
save_dir='./epochs', model_name='model', interval=1):
|
54 |
+
"""通用的模型训练函数
|
55 |
+
Args:
|
56 |
+
model: 要训练的模型
|
57 |
+
trainloader: 训练数据加载器
|
58 |
+
testloader: 测试数据加载器
|
59 |
+
epochs: 训练轮数
|
60 |
+
lr: 学习率
|
61 |
+
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
|
62 |
+
save_dir: 模型保存目录
|
63 |
+
model_name: 模型名称
|
64 |
+
interval: 模型保存间隔
|
65 |
+
"""
|
66 |
+
# 检查并设置GPU设备
|
67 |
+
if not torch.cuda.is_available():
|
68 |
+
print("CUDA不可用,将使用CPU训练")
|
69 |
+
device = 'cpu'
|
70 |
+
elif not device.startswith('cuda:'):
|
71 |
+
device = f'cuda:0'
|
72 |
+
|
73 |
+
# 确保device格式正确
|
74 |
+
if device.startswith('cuda:'):
|
75 |
+
gpu_id = int(device.split(':')[1])
|
76 |
+
if gpu_id >= torch.cuda.device_count():
|
77 |
+
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
78 |
+
device = 'cuda:0'
|
79 |
+
|
80 |
+
# 设置保存目录
|
81 |
+
if not os.path.exists(save_dir):
|
82 |
+
os.makedirs(save_dir)
|
83 |
+
|
84 |
+
# 设置日志文件路径
|
85 |
+
log_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'epochs', 'train.log')
|
86 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
87 |
+
os.makedirs(os.path.dirname(log_file))
|
88 |
+
|
89 |
+
logger = setup_logger(log_file)
|
90 |
+
|
91 |
+
# 损失函数和优化器
|
92 |
+
criterion = nn.CrossEntropyLoss()
|
93 |
+
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
94 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
|
95 |
+
|
96 |
+
# 移动模型到指定设备
|
97 |
+
model = model.to(device)
|
98 |
+
best_acc = 0
|
99 |
+
start_time = time.time()
|
100 |
+
|
101 |
+
logger.info(f'开始训练 {model_name}')
|
102 |
+
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
|
103 |
+
|
104 |
+
for epoch in range(epochs):
|
105 |
+
# 训练阶段
|
106 |
+
model.train()
|
107 |
+
train_loss = 0
|
108 |
+
correct = 0
|
109 |
+
total = 0
|
110 |
+
|
111 |
+
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
|
112 |
+
for batch_idx, (inputs, targets) in enumerate(train_pbar):
|
113 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
114 |
+
optimizer.zero_grad()
|
115 |
+
outputs = model(inputs)
|
116 |
+
loss = criterion(outputs, targets)
|
117 |
+
loss.backward()
|
118 |
+
optimizer.step()
|
119 |
+
|
120 |
+
train_loss += loss.item()
|
121 |
+
_, predicted = outputs.max(1)
|
122 |
+
total += targets.size(0)
|
123 |
+
correct += predicted.eq(targets).sum().item()
|
124 |
+
|
125 |
+
# 更新进度条
|
126 |
+
train_pbar.set_postfix({
|
127 |
+
'loss': f'{train_loss/(batch_idx+1):.3f}',
|
128 |
+
'acc': f'{100.*correct/total:.2f}%'
|
129 |
+
})
|
130 |
+
|
131 |
+
# 保存训练阶段的准确率
|
132 |
+
train_acc = 100.*correct/total
|
133 |
+
train_correct = correct
|
134 |
+
train_total = total
|
135 |
+
|
136 |
+
# 测试阶段
|
137 |
+
model.eval()
|
138 |
+
test_loss = 0
|
139 |
+
correct = 0
|
140 |
+
total = 0
|
141 |
+
|
142 |
+
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
|
143 |
+
with torch.no_grad():
|
144 |
+
for batch_idx, (inputs, targets) in enumerate(test_pbar):
|
145 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
146 |
+
outputs = model(inputs)
|
147 |
+
loss = criterion(outputs, targets)
|
148 |
+
|
149 |
+
test_loss += loss.item()
|
150 |
+
_, predicted = outputs.max(1)
|
151 |
+
total += targets.size(0)
|
152 |
+
correct += predicted.eq(targets).sum().item()
|
153 |
+
|
154 |
+
# 更新进度条
|
155 |
+
test_pbar.set_postfix({
|
156 |
+
'loss': f'{test_loss/(batch_idx+1):.3f}',
|
157 |
+
'acc': f'{100.*correct/total:.2f}%'
|
158 |
+
})
|
159 |
+
|
160 |
+
# 计算测试精度
|
161 |
+
acc = 100.*correct/total
|
162 |
+
|
163 |
+
# 记录训练和测试的损失与准确率
|
164 |
+
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
|
165 |
+
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
|
166 |
+
|
167 |
+
# 保存可视化训练过程所需要的文件
|
168 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
169 |
+
# 创建一个专门用于收集embedding的顺序dataloader,拼接训练集和测试集
|
170 |
+
from torch.utils.data import ConcatDataset
|
171 |
+
|
172 |
+
def custom_collate_fn(batch):
|
173 |
+
# 确保所有数据都是张量
|
174 |
+
data = [item[0] for item in batch] # 图像
|
175 |
+
target = [item[1] for item in batch] # 标签
|
176 |
+
|
177 |
+
# 将列表转换为张量
|
178 |
+
data = torch.stack(data, 0)
|
179 |
+
target = torch.tensor(target)
|
180 |
+
|
181 |
+
return [data, target]
|
182 |
+
|
183 |
+
# 合并训练集和测试集
|
184 |
+
combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset])
|
185 |
+
|
186 |
+
# 创建顺序数据加载器
|
187 |
+
ordered_loader = torch.utils.data.DataLoader(
|
188 |
+
combined_dataset, # 使用合并后的数据集
|
189 |
+
batch_size=trainloader.batch_size,
|
190 |
+
shuffle=False, # 确保顺序加载
|
191 |
+
num_workers=trainloader.num_workers,
|
192 |
+
collate_fn=custom_collate_fn # 使用自定义的collate函数
|
193 |
+
)
|
194 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
|
195 |
+
save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name,
|
196 |
+
show=True, layer_name='avgpool', auto_save_embedding=True)
|
197 |
+
save_model.save_checkpoint_embeddings_predictions()
|
198 |
+
if epoch == 0:
|
199 |
+
save_model.save_lables_index(path = "../dataset")
|
200 |
+
|
201 |
+
scheduler.step()
|
202 |
+
|
203 |
+
logger.info('训练完成!')
|
204 |
+
|
205 |
+
|
206 |
+
def noisy_train():
|
207 |
+
"""训练带噪声的模型
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
model: 训练好的模型
|
211 |
+
"""
|
212 |
+
# 加载配置文件
|
213 |
+
config_path = './train.yaml'
|
214 |
+
with open(config_path, 'r') as f:
|
215 |
+
config = yaml.safe_load(f)
|
216 |
+
|
217 |
+
# 设置设备
|
218 |
+
device = f"cuda:{config.get('gpu', 0)}"
|
219 |
+
# 加载添加噪音后的CIFAR10数据集
|
220 |
+
batch_size = config.get('batch_size', 128)
|
221 |
+
trainloader, testloader = get_noisy_cifar10_dataloaders(batch_size=batch_size)
|
222 |
+
|
223 |
+
# 初始化模型
|
224 |
+
model = GoogLeNet(num_classes=10).to(device)
|
225 |
+
|
226 |
+
# 训练参数
|
227 |
+
epochs = config.get('epochs', 200)
|
228 |
+
lr = config.get('learning_rate', 0.1)
|
229 |
+
save_dir = os.path.join('..', 'epochs')
|
230 |
+
interval = config.get('interval', 2)
|
231 |
+
os.makedirs(save_dir, exist_ok=True)
|
232 |
+
|
233 |
+
# 训练模型
|
234 |
+
model = train_model(
|
235 |
+
model=model,
|
236 |
+
trainloader=trainloader,
|
237 |
+
testloader=testloader,
|
238 |
+
epochs=epochs,
|
239 |
+
lr=lr,
|
240 |
+
device=device,
|
241 |
+
save_dir=save_dir,
|
242 |
+
model_name='GoogLeNet_noisy',
|
243 |
+
interval=interval
|
244 |
+
)
|
245 |
+
|
246 |
+
print(f"训练完成,模型已保存到 {save_dir}")
|
247 |
+
return model
|
248 |
+
|
249 |
+
# 主函数
|
250 |
+
if __name__ == '__main__':
|
251 |
+
noisy_train()
|
GoogLeNet-CIFAR10/Classification-noisy/scripts/train.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 128
|
2 |
+
num_workers: 2
|
3 |
+
dataset_path: ../dataset
|
4 |
+
epochs: 50
|
5 |
+
gpu: 0
|
6 |
+
lr: 0.1
|
7 |
+
interval: 2
|
8 |
+
# 噪声实验配置
|
9 |
+
noise_types:
|
10 |
+
# 不同标签使用不同噪声类型
|
11 |
+
# 0: 无噪声
|
12 |
+
# 1: 无噪声
|
13 |
+
# 2: 0.3的数据加强高斯噪声
|
14 |
+
# 3: 0.1的数据加弱高斯噪声
|
15 |
+
# 4: 0.3的数据加强椒盐噪声
|
16 |
+
# 5: 0.1的数据加弱椒盐噪声
|
17 |
+
# 6: 0.3的数据加强泊松噪声
|
18 |
+
# 7: 0.1的数据加弱泊松噪声
|
19 |
+
# 8: 无噪声
|
20 |
+
# 9: 无噪声
|
21 |
+
noise_levels:
|
22 |
+
# 每种噪声类型的强度级别
|
23 |
+
gaussian: [0.1, 0.2] # 高斯噪声标准差参数
|
24 |
+
salt_pepper: [0.05, 0.1] # 椒盐噪声受影响像素比例
|
25 |
+
poisson: [1] # 泊松噪声没有强度参数
|
GoogLeNet-CIFAR10/Classification-normal/dataset/index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
GoogLeNet-CIFAR10/Classification-normal/dataset/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "GoogLeNet",
|
3 |
+
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
+
}
|
Image/LeNet5/model/0/epoch10/subject_model.pth → GoogLeNet-CIFAR10/Classification-normal/dataset/labels.npy
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d13128de212014e257f241a6f6ea7d97f157e02c814dc70456d692fd18a85d32
|
3 |
+
size 480128
|
GoogLeNet-CIFAR10/Classification-normal/readme.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GoogLeNet-CIFAR10 训练与特征提取
|
2 |
+
|
3 |
+
这个项目实现了GoogLeNet模型在CIFAR10数据集上的训练,并集成了特征提取和可视化所需的功能。
|
4 |
+
|
5 |
+
## time_travel_saver数据提取器
|
6 |
+
```python
|
7 |
+
#保存可视化训练过程所需要的文件
|
8 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
9 |
+
# 创建一个专门用于收集embedding的顺序dataloader
|
10 |
+
ordered_trainloader = torch.utils.data.DataLoader(
|
11 |
+
trainloader.dataset,
|
12 |
+
batch_size=trainloader.batch_size,
|
13 |
+
shuffle=False,
|
14 |
+
num_workers=trainloader.num_workers
|
15 |
+
)
|
16 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}') #epoch保存路径
|
17 |
+
save_model = time_travel_saver(model, ordered_trainloader, device, epoch_save_dir, model_name,
|
18 |
+
show=True, layer_name='avg_pool', auto_save_embedding=True)
|
19 |
+
#show:是否显示模型的维度信息
|
20 |
+
#layer_name:选择要提取特征的层,如果为None,则提取符合维度范围的层
|
21 |
+
#auto_save_embedding:是否自动保存特征向量 must be True
|
22 |
+
save_model.save_checkpoint_embeddings_predictions() #保存模型权重、特征向量和预测结果到epoch_x
|
23 |
+
if epoch == 0:
|
24 |
+
save_model.save_lables_index(path = "../dataset") #保存标签和索引到dataset
|
25 |
+
```
|
26 |
+
|
27 |
+
|
28 |
+
## 项目结构
|
29 |
+
|
30 |
+
- `./scripts/train.yaml`:训练配置文件,包含批次大小、学习率、GPU设置等参数
|
31 |
+
- `./scripts/train.py`:训练脚本,执行模型训练并自动收集特征数据
|
32 |
+
- `./model/`:保存训练好的模型权重
|
33 |
+
- `./epochs/`:保存训练过程中的高维特征向量、预测结果等数据
|
34 |
+
|
35 |
+
## 使用方法
|
36 |
+
|
37 |
+
1. 配置 `train.yaml` 文件设置训练参数
|
38 |
+
2. 执行训练脚本:
|
39 |
+
```
|
40 |
+
python train.py
|
41 |
+
```
|
42 |
+
3. 训练完成后,可以在以下位置找到相关数据:
|
43 |
+
- 模型权重:`./epochs/epoch_{n}/model.pth`
|
44 |
+
- 特征向量:`./epochs/epoch_{n}/embeddings.npy`
|
45 |
+
- 预测结果:`./epochs/epoch_{n}/predictions.npy`
|
46 |
+
- 标签数据:`./dataset/labels.npy`
|
47 |
+
- 数据索引:`./dataset/index.json`
|
48 |
+
|
49 |
+
## 数据格式
|
50 |
+
|
51 |
+
- `embeddings.npy`:形状为 [n_samples, feature_dim] 的特征向量
|
52 |
+
- `predictions.npy`:形状为 [n_samples, n_classes] 的预测概率
|
53 |
+
- `labels.npy`:形状为 [n_samples] 的真实标签
|
54 |
+
- `index.json`:包含训练集、测试集和验证集的索引信息
|
GoogLeNet-CIFAR10/Classification-normal/scripts/dataset_utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import os
|
5 |
+
|
6 |
+
#加载数据集
|
7 |
+
|
8 |
+
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
|
9 |
+
"""获取CIFAR10数据集的数据加载器
|
10 |
+
|
11 |
+
Args:
|
12 |
+
batch_size: 批次大小
|
13 |
+
num_workers: 数据加载的工作进程数
|
14 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
trainloader: 训练数据加载器
|
18 |
+
testloader: 测试数据加载器
|
19 |
+
"""
|
20 |
+
# 数据预处理
|
21 |
+
transform_train = transforms.Compose([
|
22 |
+
transforms.RandomCrop(32, padding=4),
|
23 |
+
transforms.RandomHorizontalFlip(),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
26 |
+
])
|
27 |
+
|
28 |
+
transform_test = transforms.Compose([
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
31 |
+
])
|
32 |
+
|
33 |
+
# 设置数据集路径
|
34 |
+
if local_dataset_path:
|
35 |
+
print(f"使用本地数据集: {local_dataset_path}")
|
36 |
+
# 检查数据集路径是否有数据集,没有的话则下载
|
37 |
+
cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
|
38 |
+
download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
|
39 |
+
dataset_path = local_dataset_path
|
40 |
+
else:
|
41 |
+
print("未指定本地数据集路径,将下载数据集")
|
42 |
+
download = True
|
43 |
+
dataset_path = '../dataset'
|
44 |
+
|
45 |
+
# 创建数据集路径
|
46 |
+
if not os.path.exists(dataset_path):
|
47 |
+
os.makedirs(dataset_path)
|
48 |
+
|
49 |
+
trainset = torchvision.datasets.CIFAR10(
|
50 |
+
root=dataset_path, train=True, download=download, transform=transform_train)
|
51 |
+
trainloader = torch.utils.data.DataLoader(
|
52 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
53 |
+
|
54 |
+
testset = torchvision.datasets.CIFAR10(
|
55 |
+
root=dataset_path, train=False, download=download, transform=transform_test)
|
56 |
+
testloader = torch.utils.data.DataLoader(
|
57 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
58 |
+
|
59 |
+
return trainloader, testloader
|
GoogLeNet-CIFAR10/Classification-normal/scripts/get_raw_data.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
2 |
+
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def unpickle(file):
|
11 |
+
"""读取CIFAR-10数据文件"""
|
12 |
+
import pickle
|
13 |
+
with open(file, 'rb') as fo:
|
14 |
+
dict = pickle.load(fo, encoding='bytes')
|
15 |
+
return dict
|
16 |
+
|
17 |
+
def save_images_from_cifar10(dataset_path, save_dir):
|
18 |
+
"""从CIFAR-10数据集中保存图像
|
19 |
+
|
20 |
+
Args:
|
21 |
+
dataset_path: CIFAR-10数据集路径
|
22 |
+
save_dir: 图像保存路径
|
23 |
+
"""
|
24 |
+
# 创建保存目录
|
25 |
+
os.makedirs(save_dir, exist_ok=True)
|
26 |
+
|
27 |
+
# 获取训练集数据
|
28 |
+
train_data = []
|
29 |
+
train_labels = []
|
30 |
+
|
31 |
+
# 读取训练数据
|
32 |
+
for i in range(1, 6):
|
33 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
34 |
+
if os.path.exists(batch_file):
|
35 |
+
print(f"读取训练批次 {i}")
|
36 |
+
batch = unpickle(batch_file)
|
37 |
+
train_data.append(batch[b'data'])
|
38 |
+
train_labels.extend(batch[b'labels'])
|
39 |
+
|
40 |
+
# 合并所有训练数据
|
41 |
+
if train_data:
|
42 |
+
train_data = np.vstack(train_data)
|
43 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
44 |
+
|
45 |
+
# 读取测试数据
|
46 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
47 |
+
if os.path.exists(test_file):
|
48 |
+
print("读取测试数据")
|
49 |
+
test_batch = unpickle(test_file)
|
50 |
+
test_data = test_batch[b'data']
|
51 |
+
test_labels = test_batch[b'labels']
|
52 |
+
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
53 |
+
else:
|
54 |
+
test_data = []
|
55 |
+
test_labels = []
|
56 |
+
|
57 |
+
# 合并训练和测试数据
|
58 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
59 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
60 |
+
|
61 |
+
# 保存图像
|
62 |
+
print(f"保存 {len(all_data)} 张图像...")
|
63 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
64 |
+
img = Image.fromarray(img)
|
65 |
+
img.save(os.path.join(save_dir, f"{i}.png"))
|
66 |
+
|
67 |
+
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
# 设置路径
|
71 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
72 |
+
save_dir = "../dataset/raw_data"
|
73 |
+
|
74 |
+
# 检查数据集是否存在,如果不存在则下载
|
75 |
+
if not os.path.exists(dataset_path):
|
76 |
+
print("数据集不存在,正在下载...")
|
77 |
+
os.makedirs("../dataset", exist_ok=True)
|
78 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
79 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
80 |
+
|
81 |
+
# 保存图像
|
82 |
+
save_images_from_cifar10(dataset_path, save_dir)
|
GoogLeNet-CIFAR10/Classification-normal/scripts/get_representation.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
+
|
11 |
+
用于保存模型训练过程中的各种数据,包括:
|
12 |
+
1. 模型权重 (.pth)
|
13 |
+
2. 高维特征 (representation/*.npy)
|
14 |
+
3. 预测结果 (prediction/*.npy)
|
15 |
+
4. 标签数据 (label/labels.npy)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name,
|
19 |
+
auto_save_embedding=False, layer_name=None,show = False):
|
20 |
+
"""初始化
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model: 要保存的模型实例
|
24 |
+
dataloader: 数据加载器(必须是顺序加载的)
|
25 |
+
device: 计算设备(cpu or gpu)
|
26 |
+
save_dir: 保存根目录
|
27 |
+
model_name: 模型名称
|
28 |
+
"""
|
29 |
+
self.model = model
|
30 |
+
self.dataloader = dataloader
|
31 |
+
self.device = device
|
32 |
+
self.save_dir = save_dir
|
33 |
+
self.model_name = model_name
|
34 |
+
self.auto_save = auto_save_embedding
|
35 |
+
self.layer_name = layer_name
|
36 |
+
|
37 |
+
if show and not layer_name:
|
38 |
+
layer_dimensions = self.show_dimensions()
|
39 |
+
# print(layer_dimensions)
|
40 |
+
|
41 |
+
def show_dimensions(self):
|
42 |
+
"""显示模型中所有层的名称和对应的维度
|
43 |
+
|
44 |
+
这个函数会输出模型中所有层的名称和它们的输出维度,
|
45 |
+
帮助用户选择合适的层来提取特征。
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
layer_dimensions: 包含层名称和维度的字典
|
49 |
+
"""
|
50 |
+
activation = {}
|
51 |
+
layer_dimensions = {}
|
52 |
+
|
53 |
+
def get_activation(name):
|
54 |
+
def hook(model, input, output):
|
55 |
+
activation[name] = output.detach()
|
56 |
+
return hook
|
57 |
+
|
58 |
+
# 注册钩子到所有层
|
59 |
+
handles = []
|
60 |
+
for name, module in self.model.named_modules():
|
61 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
62 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
63 |
+
|
64 |
+
self.model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
# 获取一个batch来分析每层的输出维度
|
67 |
+
inputs, _ = next(iter(self.dataloader))
|
68 |
+
inputs = inputs.to(self.device)
|
69 |
+
_ = self.model(inputs)
|
70 |
+
|
71 |
+
# 分析所有层的输出维度
|
72 |
+
print("\n模型各层的名称和维度:")
|
73 |
+
print("-" * 50)
|
74 |
+
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
|
75 |
+
print("-" * 50)
|
76 |
+
|
77 |
+
for name, feat in activation.items():
|
78 |
+
if feat is None:
|
79 |
+
continue
|
80 |
+
|
81 |
+
# 获取特征维度(展平后)
|
82 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
83 |
+
layer_dimensions[name] = feat_dim
|
84 |
+
# 打印层信息
|
85 |
+
shape_str = str(list(feat.shape))
|
86 |
+
print(f"{name:<40} {feat_dim:<15} {shape_str}")
|
87 |
+
|
88 |
+
print("-" * 50)
|
89 |
+
print("注: 特征维度是将输出张量展平后的维度大小")
|
90 |
+
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
|
91 |
+
print("例如:layer_name='avg_pool'或layer_name='layer4'等")
|
92 |
+
|
93 |
+
# 移除所有钩子
|
94 |
+
for handle in handles:
|
95 |
+
handle.remove()
|
96 |
+
|
97 |
+
return layer_dimensions
|
98 |
+
|
99 |
+
def _extract_features_and_predictions(self):
|
100 |
+
"""提取特征和预测结果
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
features: 高维特征 [样本数, 特征维度]
|
104 |
+
predictions: 预测结果 [样本数, 类别数]
|
105 |
+
"""
|
106 |
+
features = []
|
107 |
+
predictions = []
|
108 |
+
indices = []
|
109 |
+
activation = {}
|
110 |
+
|
111 |
+
def get_activation(name):
|
112 |
+
def hook(model, input, output):
|
113 |
+
# 只在需要时保存激活值,避免内存浪费
|
114 |
+
if name not in activation or activation[name] is None:
|
115 |
+
activation[name] = output.detach()
|
116 |
+
return hook
|
117 |
+
|
118 |
+
# 根据层的名称或维度来选择层
|
119 |
+
|
120 |
+
# 注册钩子到所有层
|
121 |
+
handles = []
|
122 |
+
for name, module in self.model.named_modules():
|
123 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
124 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
125 |
+
|
126 |
+
self.model.eval()
|
127 |
+
with torch.no_grad():
|
128 |
+
# 首先获取一个batch来分析每层的输出维度
|
129 |
+
inputs, _ = next(iter(self.dataloader))
|
130 |
+
inputs = inputs.to(self.device)
|
131 |
+
_ = self.model(inputs)
|
132 |
+
|
133 |
+
# 如果指定了层名,则直接使用该层
|
134 |
+
if self.layer_name is not None:
|
135 |
+
if self.layer_name not in activation:
|
136 |
+
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
|
137 |
+
|
138 |
+
feat = activation[self.layer_name]
|
139 |
+
if feat is None:
|
140 |
+
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
|
141 |
+
|
142 |
+
suitable_layer_name = self.layer_name
|
143 |
+
suitable_dim = feat.view(feat.size(0), -1).size(1)
|
144 |
+
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
145 |
+
else:
|
146 |
+
# 找到维度在指定范围内的层
|
147 |
+
target_dim_range = (256, 2048)
|
148 |
+
suitable_layer_name = None
|
149 |
+
suitable_dim = None
|
150 |
+
|
151 |
+
# 分析所有层的输出维度
|
152 |
+
for name, feat in activation.items():
|
153 |
+
if feat is None:
|
154 |
+
continue
|
155 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
156 |
+
if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
|
157 |
+
suitable_layer_name = name
|
158 |
+
suitable_dim = feat_dim
|
159 |
+
break
|
160 |
+
|
161 |
+
if suitable_layer_name is None:
|
162 |
+
raise ValueError("没有找到合适维度的特征层")
|
163 |
+
|
164 |
+
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
165 |
+
|
166 |
+
# 保存层信息
|
167 |
+
layer_info = {
|
168 |
+
'layer_id': suitable_layer_name,
|
169 |
+
'dim': suitable_dim
|
170 |
+
}
|
171 |
+
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
|
172 |
+
with open(layer_info_path, 'w') as f:
|
173 |
+
json.dump(layer_info, f)
|
174 |
+
|
175 |
+
# 清除第一次运行的激活值
|
176 |
+
activation.clear()
|
177 |
+
|
178 |
+
# 现在处理所有数据
|
179 |
+
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
|
180 |
+
inputs = inputs.to(self.device)
|
181 |
+
outputs = self.model(inputs) # 获取预测结果
|
182 |
+
|
183 |
+
# 获取并处理特征
|
184 |
+
feat = activation[suitable_layer_name]
|
185 |
+
flat_features = torch.flatten(feat, start_dim=1)
|
186 |
+
features.append(flat_features.cpu().numpy())
|
187 |
+
predictions.append(outputs.cpu().numpy())
|
188 |
+
|
189 |
+
# 清除本次的激活值
|
190 |
+
activation.clear()
|
191 |
+
|
192 |
+
# 移除所有钩子
|
193 |
+
for handle in handles:
|
194 |
+
handle.remove()
|
195 |
+
|
196 |
+
if len(features) > 0:
|
197 |
+
features = np.vstack(features)
|
198 |
+
predictions = np.vstack(predictions)
|
199 |
+
return features, predictions
|
200 |
+
else:
|
201 |
+
return np.array([]), np.array([])
|
202 |
+
|
203 |
+
def save_lables_index(self, path):
|
204 |
+
"""保存标签数据和索引信息
|
205 |
+
|
206 |
+
Args:
|
207 |
+
path: 保存路径
|
208 |
+
"""
|
209 |
+
os.makedirs(path, exist_ok=True)
|
210 |
+
labels_path = os.path.join(path, 'labels.npy')
|
211 |
+
index_path = os.path.join(path, 'index.json')
|
212 |
+
|
213 |
+
# 尝试从不同的属性获取标签
|
214 |
+
try:
|
215 |
+
if hasattr(self.dataloader.dataset, 'targets'):
|
216 |
+
# CIFAR10/CIFAR100使用targets属性
|
217 |
+
labels = np.array(self.dataloader.dataset.targets)
|
218 |
+
elif hasattr(self.dataloader.dataset, 'labels'):
|
219 |
+
# 某些数据集使用labels属性
|
220 |
+
labels = np.array(self.dataloader.dataset.labels)
|
221 |
+
else:
|
222 |
+
# 如果上面的方法都不起作用,则从数据加载器中收集标签
|
223 |
+
labels = []
|
224 |
+
for _, batch_labels in self.dataloader:
|
225 |
+
labels.append(batch_labels.numpy())
|
226 |
+
labels = np.concatenate(labels)
|
227 |
+
|
228 |
+
# 保存标签数据
|
229 |
+
np.save(labels_path, labels)
|
230 |
+
print(f"标签数据已保存到 {labels_path}")
|
231 |
+
|
232 |
+
# 创建数据集索引
|
233 |
+
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
+
|
236 |
+
# 创建索引字典
|
237 |
+
index_dict = {
|
238 |
+
"train": list(range(50000)), # 所有数据默认为训练集
|
239 |
+
"test": list(range(50000, 60000)), # 测试集索引从50000到59999
|
240 |
+
"validation": [] # 初始为空
|
241 |
+
}
|
242 |
+
|
243 |
+
# 保存索引到JSON文件
|
244 |
+
with open(index_path, 'w') as f:
|
245 |
+
json.dump(index_dict, f, indent=4)
|
246 |
+
|
247 |
+
print(f"数据集索引已保存到 {index_path}")
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"保存标签和索引时出错: {e}")
|
251 |
+
|
252 |
+
def save_checkpoint_embeddings_predictions(self, model = None):
|
253 |
+
"""保存所有数据"""
|
254 |
+
if model is not None:
|
255 |
+
self.model = model
|
256 |
+
# 保存模型权重
|
257 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
258 |
+
model_path = os.path.join(self.save_dir,'model.pth')
|
259 |
+
torch.save(self.model.state_dict(), model_path)
|
260 |
+
|
261 |
+
if self.auto_save:
|
262 |
+
# 提取并保存特征和预测结果
|
263 |
+
features, predictions = self._extract_features_and_predictions()
|
264 |
+
|
265 |
+
# 保存特征
|
266 |
+
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
|
267 |
+
# 保存预测结果
|
268 |
+
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
|
269 |
+
print("\n保存了以下数据:")
|
270 |
+
print(f"- 模型权重: {model_path}")
|
271 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
272 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
GoogLeNet-CIFAR10/Classification-normal/scripts/model.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
GoogLeNet in PyTorch.
|
3 |
+
|
4 |
+
Paper: "Going Deeper with Convolutions"
|
5 |
+
Reference: https://arxiv.org/abs/1409.4842
|
6 |
+
|
7 |
+
主要特点:
|
8 |
+
1. 使用Inception模块,通过多尺度卷积提取特征
|
9 |
+
2. 采用1x1卷积降维,减少计算量
|
10 |
+
3. 使用全局平均池化代替全连接层
|
11 |
+
4. 引入辅助分类器帮助训练(本实现未包含)
|
12 |
+
'''
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
class Inception(nn.Module):
|
17 |
+
'''Inception模块
|
18 |
+
|
19 |
+
Args:
|
20 |
+
in_planes: 输入通道数
|
21 |
+
n1x1: 1x1卷积分支的输出通道数
|
22 |
+
n3x3red: 3x3卷积分支的降维通道数
|
23 |
+
n3x3: 3x3卷积分支的输出通道数
|
24 |
+
n5x5red: 5x5卷积分支的降维通道数
|
25 |
+
n5x5: 5x5卷积分支的输出通道数
|
26 |
+
pool_planes: 池化分支的输出通道数
|
27 |
+
'''
|
28 |
+
def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
29 |
+
super(Inception, self).__init__()
|
30 |
+
|
31 |
+
# 1x1卷积分支
|
32 |
+
self.branch1 = nn.Sequential(
|
33 |
+
nn.Conv2d(in_planes, n1x1, kernel_size=1),
|
34 |
+
nn.BatchNorm2d(n1x1),
|
35 |
+
nn.ReLU(True),
|
36 |
+
)
|
37 |
+
|
38 |
+
# 1x1 -> 3x3卷积分支
|
39 |
+
self.branch2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_planes, n3x3red, kernel_size=1),
|
41 |
+
nn.BatchNorm2d(n3x3red),
|
42 |
+
nn.ReLU(True),
|
43 |
+
nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
|
44 |
+
nn.BatchNorm2d(n3x3),
|
45 |
+
nn.ReLU(True),
|
46 |
+
)
|
47 |
+
|
48 |
+
# 1x1 -> 5x5卷积分支(用两个3x3代替)
|
49 |
+
self.branch3 = nn.Sequential(
|
50 |
+
nn.Conv2d(in_planes, n5x5red, kernel_size=1),
|
51 |
+
nn.BatchNorm2d(n5x5red),
|
52 |
+
nn.ReLU(True),
|
53 |
+
nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),
|
54 |
+
nn.BatchNorm2d(n5x5),
|
55 |
+
nn.ReLU(True),
|
56 |
+
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
|
57 |
+
nn.BatchNorm2d(n5x5),
|
58 |
+
nn.ReLU(True),
|
59 |
+
)
|
60 |
+
|
61 |
+
# 3x3池化 -> 1x1卷积分支
|
62 |
+
self.branch4 = nn.Sequential(
|
63 |
+
nn.MaxPool2d(3, stride=1, padding=1),
|
64 |
+
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
|
65 |
+
nn.BatchNorm2d(pool_planes),
|
66 |
+
nn.ReLU(True),
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
'''前向传播,将四个分支的输出在通道维度上拼接'''
|
71 |
+
b1 = self.branch1(x)
|
72 |
+
b2 = self.branch2(x)
|
73 |
+
b3 = self.branch3(x)
|
74 |
+
b4 = self.branch4(x)
|
75 |
+
return torch.cat([b1, b2, b3, b4], 1)
|
76 |
+
|
77 |
+
|
78 |
+
class GoogLeNet(nn.Module):
|
79 |
+
'''GoogLeNet/Inception v1网络
|
80 |
+
|
81 |
+
特点:
|
82 |
+
1. 使用Inception模块构建深层网络
|
83 |
+
2. 通过1x1卷积降维减少计算量
|
84 |
+
3. 使用全局平均池化代替全连接层减少参数量
|
85 |
+
'''
|
86 |
+
def __init__(self, num_classes=10):
|
87 |
+
super(GoogLeNet, self).__init__()
|
88 |
+
|
89 |
+
# 第一阶段:标准卷积层
|
90 |
+
self.pre_layers = nn.Sequential(
|
91 |
+
nn.Conv2d(3, 192, kernel_size=3, padding=1),
|
92 |
+
nn.BatchNorm2d(192),
|
93 |
+
nn.ReLU(True),
|
94 |
+
)
|
95 |
+
|
96 |
+
# 第二阶段:2个Inception模块
|
97 |
+
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) # 输出通道:256
|
98 |
+
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) # 输出通道:480
|
99 |
+
|
100 |
+
# 最大池化层
|
101 |
+
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
|
102 |
+
|
103 |
+
# 第三阶段:5个Inception模块
|
104 |
+
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) # 输出通道:512
|
105 |
+
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) # 输出通道:512
|
106 |
+
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) # 输出通道:512
|
107 |
+
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) # 输出通道:528
|
108 |
+
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
109 |
+
|
110 |
+
# 第四阶段:2个Inception模块
|
111 |
+
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) # 输出通道:832
|
112 |
+
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) # 输出通道:1024
|
113 |
+
|
114 |
+
# 全局平均池化和分类器
|
115 |
+
self.avgpool = nn.AvgPool2d(8, stride=1)
|
116 |
+
self.linear = nn.Linear(1024, num_classes)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
# 第一阶段
|
120 |
+
out = self.pre_layers(x)
|
121 |
+
|
122 |
+
# 第二阶段
|
123 |
+
out = self.a3(out)
|
124 |
+
out = self.b3(out)
|
125 |
+
out = self.maxpool(out)
|
126 |
+
|
127 |
+
# 第三阶段
|
128 |
+
out = self.a4(out)
|
129 |
+
out = self.b4(out)
|
130 |
+
out = self.c4(out)
|
131 |
+
out = self.d4(out)
|
132 |
+
out = self.e4(out)
|
133 |
+
out = self.maxpool(out)
|
134 |
+
|
135 |
+
# 第四阶段
|
136 |
+
out = self.a5(out)
|
137 |
+
out = self.b5(out)
|
138 |
+
|
139 |
+
# 分类器
|
140 |
+
out = self.avgpool(out)
|
141 |
+
out = out.view(out.size(0), -1)
|
142 |
+
out = self.linear(out)
|
143 |
+
return out
|
144 |
+
|
145 |
+
def feature(self, x):
|
146 |
+
# 第一阶段
|
147 |
+
out = self.pre_layers(x)
|
148 |
+
|
149 |
+
# 第二阶段
|
150 |
+
out = self.a3(out)
|
151 |
+
out = self.b3(out)
|
152 |
+
out = self.maxpool(out)
|
153 |
+
|
154 |
+
# 第三阶段
|
155 |
+
out = self.a4(out)
|
156 |
+
out = self.b4(out)
|
157 |
+
out = self.c4(out)
|
158 |
+
out = self.d4(out)
|
159 |
+
out = self.e4(out)
|
160 |
+
out = self.maxpool(out)
|
161 |
+
|
162 |
+
# 第四阶段
|
163 |
+
out = self.a5(out)
|
164 |
+
out = self.b5(out)
|
165 |
+
|
166 |
+
# 分类器
|
167 |
+
out = self.avgpool(out)
|
168 |
+
return out
|
169 |
+
|
170 |
+
def prediction(self, out):
|
171 |
+
out = out.view(out.size(0), -1)
|
172 |
+
out = self.linear(out)
|
173 |
+
return out
|
174 |
+
|
175 |
+
def test():
|
176 |
+
"""测试函数"""
|
177 |
+
net = GoogLeNet()
|
178 |
+
x = torch.randn(1, 3, 32, 32)
|
179 |
+
y = net(x)
|
180 |
+
print(y.size())
|
181 |
+
|
182 |
+
# 打印模型结构
|
183 |
+
from torchinfo import summary
|
184 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
185 |
+
net = net.to(device)
|
186 |
+
summary(net, (1, 3, 32, 32))
|
187 |
+
|
188 |
+
if __name__ == '__main__':
|
189 |
+
test()
|
GoogLeNet-CIFAR10/Classification-normal/scripts/train.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
from pathlib import Path
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
import time
|
9 |
+
import logging
|
10 |
+
import numpy as np
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
from dataset_utils import get_cifar10_dataloaders
|
15 |
+
from model import GoogLeNet
|
16 |
+
from get_representation import time_travel_saver
|
17 |
+
|
18 |
+
def setup_logger(log_file):
|
19 |
+
"""配置日志记录器,如果日志文件存在则覆盖
|
20 |
+
|
21 |
+
Args:
|
22 |
+
log_file: 日志文件路径
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
logger: 配置好的日志记录器
|
26 |
+
"""
|
27 |
+
# 创建logger
|
28 |
+
logger = logging.getLogger('train')
|
29 |
+
logger.setLevel(logging.INFO)
|
30 |
+
|
31 |
+
# 移除现有的处理器
|
32 |
+
if logger.hasHandlers():
|
33 |
+
logger.handlers.clear()
|
34 |
+
|
35 |
+
# 创建文件处理器,使用'w'模式覆盖现有文件
|
36 |
+
fh = logging.FileHandler(log_file, mode='w')
|
37 |
+
fh.setLevel(logging.INFO)
|
38 |
+
|
39 |
+
# 创建控制台处理器
|
40 |
+
ch = logging.StreamHandler()
|
41 |
+
ch.setLevel(logging.INFO)
|
42 |
+
|
43 |
+
# 创建格式器
|
44 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
45 |
+
fh.setFormatter(formatter)
|
46 |
+
ch.setFormatter(formatter)
|
47 |
+
|
48 |
+
# 添加处理器
|
49 |
+
logger.addHandler(fh)
|
50 |
+
logger.addHandler(ch)
|
51 |
+
|
52 |
+
return logger
|
53 |
+
|
54 |
+
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
55 |
+
save_dir='./epochs', model_name='model', interval=1):
|
56 |
+
"""通用的模型训练函数
|
57 |
+
Args:
|
58 |
+
model: 要训练的模型
|
59 |
+
trainloader: 训练数据加载器
|
60 |
+
testloader: 测试数据加载器
|
61 |
+
epochs: 训练轮数
|
62 |
+
lr: 学习率
|
63 |
+
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
|
64 |
+
save_dir: 模型保存目录
|
65 |
+
model_name: 模型名称
|
66 |
+
interval: 模型保存间隔
|
67 |
+
"""
|
68 |
+
# 检查并设置GPU设备
|
69 |
+
if not torch.cuda.is_available():
|
70 |
+
print("CUDA不可用,将使用CPU训练")
|
71 |
+
device = 'cpu'
|
72 |
+
elif not device.startswith('cuda:'):
|
73 |
+
device = f'cuda:0'
|
74 |
+
|
75 |
+
# 确保device格式正确
|
76 |
+
if device.startswith('cuda:'):
|
77 |
+
gpu_id = int(device.split(':')[1])
|
78 |
+
if gpu_id >= torch.cuda.device_count():
|
79 |
+
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
80 |
+
device = 'cuda:0'
|
81 |
+
|
82 |
+
# 设置保存目录
|
83 |
+
if not os.path.exists(save_dir):
|
84 |
+
os.makedirs(save_dir)
|
85 |
+
|
86 |
+
# 设置日志文件路径
|
87 |
+
log_file = os.path.join(os.path.dirname(save_dir),'epochs', 'train.log')
|
88 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
89 |
+
os.makedirs(os.path.dirname(log_file))
|
90 |
+
|
91 |
+
logger = setup_logger(log_file)
|
92 |
+
|
93 |
+
# 损失函数和优化器
|
94 |
+
criterion = nn.CrossEntropyLoss()
|
95 |
+
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
96 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
|
97 |
+
|
98 |
+
# 移动模型到指定设备
|
99 |
+
model = model.to(device)
|
100 |
+
best_acc = 0
|
101 |
+
start_time = time.time()
|
102 |
+
|
103 |
+
logger.info(f'开始训练 {model_name}')
|
104 |
+
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
|
105 |
+
|
106 |
+
for epoch in range(epochs):
|
107 |
+
# 训练阶段
|
108 |
+
model.train()
|
109 |
+
train_loss = 0
|
110 |
+
correct = 0
|
111 |
+
total = 0
|
112 |
+
|
113 |
+
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
|
114 |
+
for batch_idx, (inputs, targets) in enumerate(train_pbar):
|
115 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
116 |
+
optimizer.zero_grad()
|
117 |
+
outputs = model(inputs)
|
118 |
+
loss = criterion(outputs, targets)
|
119 |
+
loss.backward()
|
120 |
+
optimizer.step()
|
121 |
+
|
122 |
+
train_loss += loss.item()
|
123 |
+
_, predicted = outputs.max(1)
|
124 |
+
total += targets.size(0)
|
125 |
+
correct += predicted.eq(targets).sum().item()
|
126 |
+
|
127 |
+
# 更新进度条
|
128 |
+
train_pbar.set_postfix({
|
129 |
+
'loss': f'{train_loss/(batch_idx+1):.3f}',
|
130 |
+
'acc': f'{100.*correct/total:.2f}%'
|
131 |
+
})
|
132 |
+
|
133 |
+
# 保存训练阶段的准确率
|
134 |
+
train_acc = 100.*correct/total
|
135 |
+
train_correct = correct
|
136 |
+
train_total = total
|
137 |
+
|
138 |
+
# 测试阶段
|
139 |
+
model.eval()
|
140 |
+
test_loss = 0
|
141 |
+
correct = 0
|
142 |
+
total = 0
|
143 |
+
|
144 |
+
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
|
145 |
+
with torch.no_grad():
|
146 |
+
for batch_idx, (inputs, targets) in enumerate(test_pbar):
|
147 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
148 |
+
outputs = model(inputs)
|
149 |
+
loss = criterion(outputs, targets)
|
150 |
+
|
151 |
+
test_loss += loss.item()
|
152 |
+
_, predicted = outputs.max(1)
|
153 |
+
total += targets.size(0)
|
154 |
+
correct += predicted.eq(targets).sum().item()
|
155 |
+
|
156 |
+
# 更新进度条
|
157 |
+
test_pbar.set_postfix({
|
158 |
+
'loss': f'{test_loss/(batch_idx+1):.3f}',
|
159 |
+
'acc': f'{100.*correct/total:.2f}%'
|
160 |
+
})
|
161 |
+
|
162 |
+
# 计算测试精度
|
163 |
+
acc = 100.*correct/total
|
164 |
+
|
165 |
+
# 记录训练和测试的损失与准确率
|
166 |
+
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
|
167 |
+
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
|
168 |
+
|
169 |
+
# 保存可视化训练过程所需要的文件
|
170 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
171 |
+
# 创建一个专门用于收集embedding的顺序dataloader,拼接训练集和测试集
|
172 |
+
from torch.utils.data import ConcatDataset
|
173 |
+
|
174 |
+
def custom_collate_fn(batch):
|
175 |
+
# 确保所有数据都是张量
|
176 |
+
data = [item[0] for item in batch] # 图像
|
177 |
+
target = [item[1] for item in batch] # 标签
|
178 |
+
|
179 |
+
# 将列表转换为张量
|
180 |
+
data = torch.stack(data, 0)
|
181 |
+
target = torch.tensor(target)
|
182 |
+
|
183 |
+
return [data, target]
|
184 |
+
|
185 |
+
# 合并训练集和测试集
|
186 |
+
combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset])
|
187 |
+
|
188 |
+
# 创建顺序数据加载器
|
189 |
+
ordered_loader = torch.utils.data.DataLoader(
|
190 |
+
combined_dataset, # 使用合并后的数据集
|
191 |
+
batch_size=trainloader.batch_size,
|
192 |
+
shuffle=False, # 确保顺序加载
|
193 |
+
num_workers=trainloader.num_workers,
|
194 |
+
collate_fn=custom_collate_fn # 使用自定义的collate函数
|
195 |
+
)
|
196 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
|
197 |
+
save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name,
|
198 |
+
show=True, layer_name='avgpool', auto_save_embedding=True)
|
199 |
+
save_model.save_checkpoint_embeddings_predictions()
|
200 |
+
if epoch == 0:
|
201 |
+
save_model.save_lables_index(path = "../dataset")
|
202 |
+
|
203 |
+
scheduler.step()
|
204 |
+
|
205 |
+
logger.info('训练完成!')
|
206 |
+
|
207 |
+
def main():
|
208 |
+
# 加载配置文件
|
209 |
+
config_path = Path(__file__).parent / 'train.yaml'
|
210 |
+
with open(config_path) as f:
|
211 |
+
config = yaml.safe_load(f)
|
212 |
+
|
213 |
+
# 创建模型
|
214 |
+
model = GoogLeNet(num_classes=10)
|
215 |
+
|
216 |
+
# 获取数据加载器
|
217 |
+
trainloader, testloader = get_cifar10_dataloaders(
|
218 |
+
batch_size=128,
|
219 |
+
num_workers=2,
|
220 |
+
local_dataset_path=config['dataset_path'],
|
221 |
+
shuffle=True
|
222 |
+
)
|
223 |
+
|
224 |
+
# 训练模型
|
225 |
+
train_model(
|
226 |
+
model=model,
|
227 |
+
trainloader=trainloader,
|
228 |
+
testloader=testloader,
|
229 |
+
epochs=config['epochs'],
|
230 |
+
lr=config['lr'],
|
231 |
+
device=f'cuda:{config["gpu"]}',
|
232 |
+
save_dir='../epochs',
|
233 |
+
model_name='GoogLeNet',
|
234 |
+
interval=config['interval']
|
235 |
+
)
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
main()
|
GoogLeNet-CIFAR10/Classification-normal/scripts/train.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 128
|
2 |
+
num_workers: 2
|
3 |
+
dataset_path: ../dataset
|
4 |
+
epochs: 50
|
5 |
+
gpu: 0
|
6 |
+
lr: 0.1
|
7 |
+
interval: 2
|
Image/LeNet5/code/backdoor_train.log
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
2025-03-14 18:51:19,652 - train - INFO - 开始训练 lenet5
|
2 |
-
2025-03-14 18:51:19,652 - train - INFO - 总轮数: 50, 学习率: 0.1, 设备: cuda:2
|
3 |
-
2025-03-14 18:51:20,380 - train - INFO - Epoch: 1 | Batch: 0 | Loss: 2.303 | Acc: 10.16%
|
4 |
-
2025-03-14 18:51:22,789 - train - INFO - Epoch: 1 | Batch: 100 | Loss: 2.208 | Acc: 19.59%
|
5 |
-
2025-03-14 18:51:25,178 - train - INFO - Epoch: 1 | Batch: 200 | Loss: 2.138 | Acc: 20.32%
|
6 |
-
2025-03-14 18:51:27,268 - train - INFO - Epoch: 1 | Batch: 300 | Loss: 2.075 | Acc: 22.09%
|
7 |
-
2025-03-14 18:51:30,404 - train - INFO - Epoch: 1 | Test Loss: 1.950 | Test Acc: 25.94%
|
8 |
-
2025-03-14 18:51:30,814 - train - INFO - Epoch: 2 | Batch: 0 | Loss: 2.080 | Acc: 19.53%
|
9 |
-
2025-03-14 18:51:33,059 - train - INFO - Epoch: 2 | Batch: 100 | Loss: 1.910 | Acc: 26.99%
|
10 |
-
2025-03-14 18:51:35,303 - train - INFO - Epoch: 2 | Batch: 200 | Loss: 1.907 | Acc: 27.06%
|
11 |
-
2025-03-14 18:51:37,458 - train - INFO - Epoch: 2 | Batch: 300 | Loss: 1.891 | Acc: 27.89%
|
12 |
-
2025-03-14 18:51:40,819 - train - INFO - Epoch: 2 | Test Loss: 1.806 | Test Acc: 31.65%
|
13 |
-
2025-03-14 18:51:50,241 - train - INFO - Epoch: 3 | Batch: 0 | Loss: 1.770 | Acc: 29.69%
|
14 |
-
2025-03-14 18:51:52,600 - train - INFO - Epoch: 3 | Batch: 100 | Loss: 1.857 | Acc: 29.28%
|
15 |
-
2025-03-14 18:51:54,824 - train - INFO - Epoch: 3 | Batch: 200 | Loss: 1.844 | Acc: 30.26%
|
16 |
-
2025-03-14 18:51:57,048 - train - INFO - Epoch: 3 | Batch: 300 | Loss: 1.846 | Acc: 30.12%
|
17 |
-
2025-03-14 18:52:00,409 - train - INFO - Epoch: 3 | Test Loss: 1.758 | Test Acc: 33.70%
|
18 |
-
2025-03-14 18:52:00,576 - train - INFO - Epoch: 4 | Batch: 0 | Loss: 1.830 | Acc: 28.91%
|
19 |
-
2025-03-14 18:52:02,690 - train - INFO - Epoch: 4 | Batch: 100 | Loss: 1.814 | Acc: 31.25%
|
20 |
-
2025-03-14 18:52:04,841 - train - INFO - Epoch: 4 | Batch: 200 | Loss: 1.804 | Acc: 31.78%
|
21 |
-
2025-03-14 18:52:06,995 - train - INFO - Epoch: 4 | Batch: 300 | Loss: 1.805 | Acc: 32.05%
|
22 |
-
2025-03-14 18:52:10,157 - train - INFO - Epoch: 4 | Test Loss: 1.777 | Test Acc: 33.31%
|
23 |
-
2025-03-14 18:52:19,581 - train - INFO - Epoch: 5 | Batch: 0 | Loss: 1.773 | Acc: 35.94%
|
24 |
-
2025-03-14 18:52:21,775 - train - INFO - Epoch: 5 | Batch: 100 | Loss: 1.773 | Acc: 34.38%
|
25 |
-
2025-03-14 18:52:23,865 - train - INFO - Epoch: 5 | Batch: 200 | Loss: 1.751 | Acc: 35.28%
|
26 |
-
2025-03-14 18:52:26,032 - train - INFO - Epoch: 5 | Batch: 300 | Loss: 1.740 | Acc: 35.98%
|
27 |
-
2025-03-14 18:52:29,181 - train - INFO - Epoch: 5 | Test Loss: 1.667 | Test Acc: 36.89%
|
28 |
-
2025-03-14 18:52:29,344 - train - INFO - Epoch: 6 | Batch: 0 | Loss: 1.727 | Acc: 38.28%
|
29 |
-
2025-03-14 18:52:31,511 - train - INFO - Epoch: 6 | Batch: 100 | Loss: 1.734 | Acc: 36.10%
|
30 |
-
2025-03-14 18:52:33,763 - train - INFO - Epoch: 6 | Batch: 200 | Loss: 1.723 | Acc: 36.55%
|
31 |
-
2025-03-14 18:52:35,894 - train - INFO - Epoch: 6 | Batch: 300 | Loss: 1.719 | Acc: 36.65%
|
32 |
-
2025-03-14 18:52:39,232 - train - INFO - Epoch: 6 | Test Loss: 1.720 | Test Acc: 36.32%
|
33 |
-
2025-03-14 18:52:48,612 - train - INFO - Epoch: 7 | Batch: 0 | Loss: 1.590 | Acc: 45.31%
|
34 |
-
2025-03-14 18:52:50,865 - train - INFO - Epoch: 7 | Batch: 100 | Loss: 1.648 | Acc: 39.59%
|
35 |
-
2025-03-14 18:52:53,028 - train - INFO - Epoch: 7 | Batch: 200 | Loss: 1.659 | Acc: 38.78%
|
36 |
-
2025-03-14 18:52:55,063 - train - INFO - Epoch: 7 | Batch: 300 | Loss: 1.656 | Acc: 39.38%
|
37 |
-
2025-03-14 18:52:58,384 - train - INFO - Epoch: 7 | Test Loss: 1.744 | Test Acc: 34.71%
|
38 |
-
2025-03-14 18:52:58,567 - train - INFO - Epoch: 8 | Batch: 0 | Loss: 1.699 | Acc: 34.38%
|
39 |
-
2025-03-14 18:53:00,712 - train - INFO - Epoch: 8 | Batch: 100 | Loss: 1.627 | Acc: 40.86%
|
40 |
-
2025-03-14 18:53:03,147 - train - INFO - Epoch: 8 | Batch: 200 | Loss: 1.647 | Acc: 40.62%
|
41 |
-
2025-03-14 18:53:05,342 - train - INFO - Epoch: 8 | Batch: 300 | Loss: 1.647 | Acc: 40.75%
|
42 |
-
2025-03-14 18:53:08,945 - train - INFO - Epoch: 8 | Test Loss: 1.612 | Test Acc: 41.16%
|
43 |
-
2025-03-14 18:53:18,871 - train - INFO - Epoch: 9 | Batch: 0 | Loss: 1.812 | Acc: 36.72%
|
44 |
-
2025-03-14 18:53:21,249 - train - INFO - Epoch: 9 | Batch: 100 | Loss: 1.644 | Acc: 40.66%
|
45 |
-
2025-03-14 18:53:23,450 - train - INFO - Epoch: 9 | Batch: 200 | Loss: 1.627 | Acc: 41.32%
|
46 |
-
2025-03-14 18:53:25,638 - train - INFO - Epoch: 9 | Batch: 300 | Loss: 1.631 | Acc: 41.23%
|
47 |
-
2025-03-14 18:53:28,926 - train - INFO - Epoch: 9 | Test Loss: 1.592 | Test Acc: 42.59%
|
48 |
-
2025-03-14 18:53:29,088 - train - INFO - Epoch: 10 | Batch: 0 | Loss: 1.626 | Acc: 41.41%
|
49 |
-
2025-03-14 18:53:31,206 - train - INFO - Epoch: 10 | Batch: 100 | Loss: 1.612 | Acc: 42.34%
|
50 |
-
2025-03-14 18:53:33,239 - train - INFO - Epoch: 10 | Batch: 200 | Loss: 1.617 | Acc: 42.14%
|
51 |
-
2025-03-14 18:53:35,375 - train - INFO - Epoch: 10 | Batch: 300 | Loss: 1.623 | Acc: 41.96%
|
52 |
-
2025-03-14 18:53:38,613 - train - INFO - Epoch: 10 | Test Loss: 1.616 | Test Acc: 43.11%
|
53 |
-
2025-03-14 18:53:47,913 - train - INFO - Epoch: 11 | Batch: 0 | Loss: 1.573 | Acc: 38.28%
|
54 |
-
2025-03-14 18:53:50,081 - train - INFO - Epoch: 11 | Batch: 100 | Loss: 1.611 | Acc: 43.01%
|
55 |
-
2025-03-14 18:53:52,274 - train - INFO - Epoch: 11 | Batch: 200 | Loss: 1.596 | Acc: 43.17%
|
56 |
-
2025-03-14 18:53:54,447 - train - INFO - Epoch: 11 | Batch: 300 | Loss: 1.589 | Acc: 43.13%
|
57 |
-
2025-03-14 18:53:57,925 - train - INFO - Epoch: 11 | Test Loss: 1.554 | Test Acc: 45.18%
|
58 |
-
2025-03-14 18:53:58,109 - train - INFO - Epoch: 12 | Batch: 0 | Loss: 1.450 | Acc: 45.31%
|
59 |
-
2025-03-14 18:54:00,335 - train - INFO - Epoch: 12 | Batch: 100 | Loss: 1.610 | Acc: 41.93%
|
60 |
-
2025-03-14 18:54:02,491 - train - INFO - Epoch: 12 | Batch: 200 | Loss: 1.611 | Acc: 42.44%
|
61 |
-
2025-03-14 18:54:04,671 - train - INFO - Epoch: 12 | Batch: 300 | Loss: 1.594 | Acc: 42.97%
|
62 |
-
2025-03-14 18:54:07,901 - train - INFO - Epoch: 12 | Test Loss: 1.563 | Test Acc: 47.00%
|
63 |
-
2025-03-14 18:54:17,119 - train - INFO - Epoch: 13 | Batch: 0 | Loss: 1.498 | Acc: 53.12%
|
64 |
-
2025-03-14 18:54:19,213 - train - INFO - Epoch: 13 | Batch: 100 | Loss: 1.624 | Acc: 42.75%
|
65 |
-
2025-03-14 18:54:21,306 - train - INFO - Epoch: 13 | Batch: 200 | Loss: 1.606 | Acc: 43.22%
|
66 |
-
2025-03-14 18:54:23,344 - train - INFO - Epoch: 13 | Batch: 300 | Loss: 1.600 | Acc: 43.19%
|
67 |
-
2025-03-14 18:54:26,670 - train - INFO - Epoch: 13 | Test Loss: 1.666 | Test Acc: 39.55%
|
68 |
-
2025-03-14 18:54:26,845 - train - INFO - Epoch: 14 | Batch: 0 | Loss: 1.680 | Acc: 39.84%
|
69 |
-
2025-03-14 18:54:28,959 - train - INFO - Epoch: 14 | Batch: 100 | Loss: 1.583 | Acc: 43.79%
|
70 |
-
2025-03-14 18:54:31,171 - train - INFO - Epoch: 14 | Batch: 200 | Loss: 1.568 | Acc: 44.59%
|
71 |
-
2025-03-14 18:54:33,362 - train - INFO - Epoch: 14 | Batch: 300 | Loss: 1.581 | Acc: 44.00%
|
72 |
-
2025-03-14 18:54:36,845 - train - INFO - Epoch: 14 | Test Loss: 1.533 | Test Acc: 45.22%
|
73 |
-
2025-03-14 18:54:47,390 - train - INFO - Epoch: 15 | Batch: 0 | Loss: 1.500 | Acc: 46.88%
|
74 |
-
2025-03-14 18:54:49,691 - train - INFO - Epoch: 15 | Batch: 100 | Loss: 1.537 | Acc: 46.24%
|
75 |
-
2025-03-14 18:54:51,869 - train - INFO - Epoch: 15 | Batch: 200 | Loss: 1.557 | Acc: 45.44%
|
76 |
-
2025-03-14 18:54:53,985 - train - INFO - Epoch: 15 | Batch: 300 | Loss: 1.564 | Acc: 45.09%
|
77 |
-
2025-03-14 18:54:57,177 - train - INFO - Epoch: 15 | Test Loss: 1.530 | Test Acc: 47.11%
|
78 |
-
2025-03-14 18:54:57,341 - train - INFO - Epoch: 16 | Batch: 0 | Loss: 1.560 | Acc: 48.44%
|
79 |
-
2025-03-14 18:54:59,495 - train - INFO - Epoch: 16 | Batch: 100 | Loss: 1.582 | Acc: 43.63%
|
80 |
-
2025-03-14 18:55:01,686 - train - INFO - Epoch: 16 | Batch: 200 | Loss: 1.583 | Acc: 43.79%
|
81 |
-
2025-03-14 18:55:03,817 - train - INFO - Epoch: 16 | Batch: 300 | Loss: 1.588 | Acc: 43.62%
|
82 |
-
2025-03-14 18:55:07,207 - train - INFO - Epoch: 16 | Test Loss: 1.551 | Test Acc: 45.91%
|
83 |
-
2025-03-14 18:55:16,376 - train - INFO - Epoch: 17 | Batch: 0 | Loss: 1.535 | Acc: 46.09%
|
84 |
-
2025-03-14 18:55:18,547 - train - INFO - Epoch: 17 | Batch: 100 | Loss: 1.551 | Acc: 45.02%
|
85 |
-
2025-03-14 18:55:20,727 - train - INFO - Epoch: 17 | Batch: 200 | Loss: 1.544 | Acc: 45.37%
|
86 |
-
2025-03-14 18:55:22,965 - train - INFO - Epoch: 17 | Batch: 300 | Loss: 1.556 | Acc: 44.91%
|
87 |
-
2025-03-14 18:55:26,302 - train - INFO - Epoch: 17 | Test Loss: 1.539 | Test Acc: 45.68%
|
88 |
-
2025-03-14 18:55:26,472 - train - INFO - Epoch: 18 | Batch: 0 | Loss: 1.663 | Acc: 42.19%
|
89 |
-
2025-03-14 18:55:28,773 - train - INFO - Epoch: 18 | Batch: 100 | Loss: 1.586 | Acc: 44.14%
|
90 |
-
2025-03-14 18:55:30,980 - train - INFO - Epoch: 18 | Batch: 200 | Loss: 1.577 | Acc: 44.25%
|
91 |
-
2025-03-14 18:55:33,160 - train - INFO - Epoch: 18 | Batch: 300 | Loss: 1.569 | Acc: 44.71%
|
92 |
-
2025-03-14 18:55:36,539 - train - INFO - Epoch: 18 | Test Loss: 1.540 | Test Acc: 45.29%
|
93 |
-
2025-03-14 18:55:45,385 - train - INFO - Epoch: 19 | Batch: 0 | Loss: 1.668 | Acc: 37.50%
|
94 |
-
2025-03-14 18:55:47,447 - train - INFO - Epoch: 19 | Batch: 100 | Loss: 1.580 | Acc: 44.69%
|
95 |
-
2025-03-14 18:55:49,614 - train - INFO - Epoch: 19 | Batch: 200 | Loss: 1.562 | Acc: 45.13%
|
96 |
-
2025-03-14 18:55:51,710 - train - INFO - Epoch: 19 | Batch: 300 | Loss: 1.561 | Acc: 45.20%
|
97 |
-
2025-03-14 18:55:55,165 - train - INFO - Epoch: 19 | Test Loss: 1.507 | Test Acc: 48.32%
|
98 |
-
2025-03-14 18:55:55,342 - train - INFO - Epoch: 20 | Batch: 0 | Loss: 1.495 | Acc: 43.75%
|
99 |
-
2025-03-14 18:55:57,635 - train - INFO - Epoch: 20 | Batch: 100 | Loss: 1.536 | Acc: 45.37%
|
100 |
-
2025-03-14 18:55:59,839 - train - INFO - Epoch: 20 | Batch: 200 | Loss: 1.547 | Acc: 44.96%
|
101 |
-
2025-03-14 18:56:01,970 - train - INFO - Epoch: 20 | Batch: 300 | Loss: 1.548 | Acc: 45.40%
|
102 |
-
2025-03-14 18:56:05,495 - train - INFO - Epoch: 20 | Test Loss: 1.528 | Test Acc: 46.53%
|
103 |
-
2025-03-14 18:56:14,208 - train - INFO - Epoch: 21 | Batch: 0 | Loss: 1.659 | Acc: 46.09%
|
104 |
-
2025-03-14 18:56:16,352 - train - INFO - Epoch: 21 | Batch: 100 | Loss: 1.562 | Acc: 45.17%
|
105 |
-
2025-03-14 18:56:18,446 - train - INFO - Epoch: 21 | Batch: 200 | Loss: 1.566 | Acc: 45.19%
|
106 |
-
2025-03-14 18:56:20,611 - train - INFO - Epoch: 21 | Batch: 300 | Loss: 1.556 | Acc: 45.54%
|
107 |
-
2025-03-14 18:56:24,010 - train - INFO - Epoch: 21 | Test Loss: 1.623 | Test Acc: 44.64%
|
108 |
-
2025-03-14 18:56:24,185 - train - INFO - Epoch: 22 | Batch: 0 | Loss: 1.453 | Acc: 47.66%
|
109 |
-
2025-03-14 18:56:26,310 - train - INFO - Epoch: 22 | Batch: 100 | Loss: 1.546 | Acc: 45.95%
|
110 |
-
2025-03-14 18:56:28,333 - train - INFO - Epoch: 22 | Batch: 200 | Loss: 1.550 | Acc: 45.71%
|
111 |
-
2025-03-14 18:56:30,502 - train - INFO - Epoch: 22 | Batch: 300 | Loss: 1.547 | Acc: 45.70%
|
112 |
-
2025-03-14 18:56:33,715 - train - INFO - Epoch: 22 | Test Loss: 1.516 | Test Acc: 46.97%
|
113 |
-
2025-03-14 18:56:42,854 - train - INFO - Epoch: 23 | Batch: 0 | Loss: 1.692 | Acc: 45.31%
|
114 |
-
2025-03-14 18:56:45,157 - train - INFO - Epoch: 23 | Batch: 100 | Loss: 1.559 | Acc: 44.98%
|
115 |
-
2025-03-14 18:56:47,388 - train - INFO - Epoch: 23 | Batch: 200 | Loss: 1.545 | Acc: 45.38%
|
116 |
-
2025-03-14 18:56:49,617 - train - INFO - Epoch: 23 | Batch: 300 | Loss: 1.546 | Acc: 45.66%
|
117 |
-
2025-03-14 18:56:52,961 - train - INFO - Epoch: 23 | Test Loss: 1.481 | Test Acc: 48.12%
|
118 |
-
2025-03-14 18:56:53,138 - train - INFO - Epoch: 24 | Batch: 0 | Loss: 1.525 | Acc: 48.44%
|
119 |
-
2025-03-14 18:56:55,474 - train - INFO - Epoch: 24 | Batch: 100 | Loss: 1.538 | Acc: 46.25%
|
120 |
-
2025-03-14 18:56:57,728 - train - INFO - Epoch: 24 | Batch: 200 | Loss: 1.548 | Acc: 45.48%
|
121 |
-
2025-03-14 18:57:00,002 - train - INFO - Epoch: 24 | Batch: 300 | Loss: 1.547 | Acc: 45.61%
|
122 |
-
2025-03-14 18:57:03,345 - train - INFO - Epoch: 24 | Test Loss: 1.480 | Test Acc: 48.34%
|
123 |
-
2025-03-14 18:57:12,515 - train - INFO - Epoch: 25 | Batch: 0 | Loss: 1.395 | Acc: 45.31%
|
124 |
-
2025-03-14 18:57:14,685 - train - INFO - Epoch: 25 | Batch: 100 | Loss: 1.532 | Acc: 46.67%
|
125 |
-
2025-03-14 18:57:16,799 - train - INFO - Epoch: 25 | Batch: 200 | Loss: 1.524 | Acc: 46.82%
|
126 |
-
2025-03-14 18:57:19,039 - train - INFO - Epoch: 25 | Batch: 300 | Loss: 1.517 | Acc: 46.98%
|
127 |
-
2025-03-14 18:57:22,516 - train - INFO - Epoch: 25 | Test Loss: 1.553 | Test Acc: 46.03%
|
128 |
-
2025-03-14 18:57:22,683 - train - INFO - Epoch: 26 | Batch: 0 | Loss: 1.736 | Acc: 44.53%
|
129 |
-
2025-03-14 18:57:24,762 - train - INFO - Epoch: 26 | Batch: 100 | Loss: 1.509 | Acc: 46.84%
|
130 |
-
2025-03-14 18:57:26,861 - train - INFO - Epoch: 26 | Batch: 200 | Loss: 1.519 | Acc: 46.68%
|
131 |
-
2025-03-14 18:57:29,066 - train - INFO - Epoch: 26 | Batch: 300 | Loss: 1.519 | Acc: 46.61%
|
132 |
-
2025-03-14 18:57:32,297 - train - INFO - Epoch: 26 | Test Loss: 1.525 | Test Acc: 46.22%
|
133 |
-
2025-03-14 18:57:41,935 - train - INFO - Epoch: 27 | Batch: 0 | Loss: 1.524 | Acc: 50.78%
|
134 |
-
2025-03-14 18:57:44,126 - train - INFO - Epoch: 27 | Batch: 100 | Loss: 1.526 | Acc: 45.78%
|
135 |
-
2025-03-14 18:57:46,507 - train - INFO - Epoch: 27 | Batch: 200 | Loss: 1.519 | Acc: 46.54%
|
136 |
-
2025-03-14 18:57:48,982 - train - INFO - Epoch: 27 | Batch: 300 | Loss: 1.525 | Acc: 46.30%
|
137 |
-
2025-03-14 18:57:52,953 - train - INFO - Epoch: 27 | Test Loss: 1.485 | Test Acc: 47.34%
|
138 |
-
2025-03-14 18:57:53,134 - train - INFO - Epoch: 28 | Batch: 0 | Loss: 1.597 | Acc: 44.53%
|
139 |
-
2025-03-14 18:57:55,479 - train - INFO - Epoch: 28 | Batch: 100 | Loss: 1.521 | Acc: 47.34%
|
140 |
-
2025-03-14 18:57:57,669 - train - INFO - Epoch: 28 | Batch: 200 | Loss: 1.527 | Acc: 46.73%
|
141 |
-
2025-03-14 18:57:59,857 - train - INFO - Epoch: 28 | Batch: 300 | Loss: 1.540 | Acc: 46.01%
|
142 |
-
2025-03-14 18:58:03,284 - train - INFO - Epoch: 28 | Test Loss: 1.585 | Test Acc: 46.93%
|
143 |
-
2025-03-14 18:58:13,439 - train - INFO - Epoch: 29 | Batch: 0 | Loss: 1.544 | Acc: 47.66%
|
144 |
-
2025-03-14 18:58:15,897 - train - INFO - Epoch: 29 | Batch: 100 | Loss: 1.481 | Acc: 48.57%
|
145 |
-
2025-03-14 18:58:18,632 - train - INFO - Epoch: 29 | Batch: 200 | Loss: 1.503 | Acc: 47.80%
|
146 |
-
2025-03-14 18:58:20,904 - train - INFO - Epoch: 29 | Batch: 300 | Loss: 1.512 | Acc: 47.66%
|
147 |
-
2025-03-14 18:58:24,312 - train - INFO - Epoch: 29 | Test Loss: 1.542 | Test Acc: 45.92%
|
148 |
-
2025-03-14 18:58:24,483 - train - INFO - Epoch: 30 | Batch: 0 | Loss: 1.539 | Acc: 44.53%
|
149 |
-
2025-03-14 18:58:26,696 - train - INFO - Epoch: 30 | Batch: 100 | Loss: 1.498 | Acc: 47.67%
|
150 |
-
2025-03-14 18:58:28,804 - train - INFO - Epoch: 30 | Batch: 200 | Loss: 1.515 | Acc: 47.15%
|
151 |
-
2025-03-14 18:58:31,277 - train - INFO - Epoch: 30 | Batch: 300 | Loss: 1.509 | Acc: 47.32%
|
152 |
-
2025-03-14 18:58:34,684 - train - INFO - Epoch: 30 | Test Loss: 1.489 | Test Acc: 48.24%
|
153 |
-
2025-03-14 18:58:43,983 - train - INFO - Epoch: 31 | Batch: 0 | Loss: 1.627 | Acc: 44.53%
|
154 |
-
2025-03-14 18:58:46,126 - train - INFO - Epoch: 31 | Batch: 100 | Loss: 1.493 | Acc: 48.05%
|
155 |
-
2025-03-14 18:58:48,265 - train - INFO - Epoch: 31 | Batch: 200 | Loss: 1.509 | Acc: 47.26%
|
156 |
-
2025-03-14 18:58:50,534 - train - INFO - Epoch: 31 | Batch: 300 | Loss: 1.504 | Acc: 47.44%
|
157 |
-
2025-03-14 18:58:53,718 - train - INFO - Epoch: 31 | Test Loss: 1.490 | Test Acc: 47.97%
|
158 |
-
2025-03-14 18:58:53,855 - train - INFO - Epoch: 32 | Batch: 0 | Loss: 1.397 | Acc: 52.34%
|
159 |
-
2025-03-14 18:58:55,938 - train - INFO - Epoch: 32 | Batch: 100 | Loss: 1.527 | Acc: 46.51%
|
160 |
-
2025-03-14 18:58:58,089 - train - INFO - Epoch: 32 | Batch: 200 | Loss: 1.511 | Acc: 47.57%
|
161 |
-
2025-03-14 18:59:00,263 - train - INFO - Epoch: 32 | Batch: 300 | Loss: 1.505 | Acc: 47.70%
|
162 |
-
2025-03-14 18:59:03,515 - train - INFO - Epoch: 32 | Test Loss: 1.502 | Test Acc: 47.83%
|
163 |
-
2025-03-14 18:59:12,676 - train - INFO - Epoch: 33 | Batch: 0 | Loss: 1.443 | Acc: 48.44%
|
164 |
-
2025-03-14 18:59:14,901 - train - INFO - Epoch: 33 | Batch: 100 | Loss: 1.501 | Acc: 47.44%
|
165 |
-
2025-03-14 18:59:17,010 - train - INFO - Epoch: 33 | Batch: 200 | Loss: 1.494 | Acc: 47.66%
|
166 |
-
2025-03-14 18:59:19,083 - train - INFO - Epoch: 33 | Batch: 300 | Loss: 1.497 | Acc: 47.59%
|
167 |
-
2025-03-14 18:59:22,262 - train - INFO - Epoch: 33 | Test Loss: 1.502 | Test Acc: 47.90%
|
168 |
-
2025-03-14 18:59:22,416 - train - INFO - Epoch: 34 | Batch: 0 | Loss: 1.555 | Acc: 41.41%
|
169 |
-
2025-03-14 18:59:24,591 - train - INFO - Epoch: 34 | Batch: 100 | Loss: 1.505 | Acc: 47.66%
|
170 |
-
2025-03-14 18:59:26,681 - train - INFO - Epoch: 34 | Batch: 200 | Loss: 1.504 | Acc: 47.73%
|
171 |
-
2025-03-14 18:59:28,785 - train - INFO - Epoch: 34 | Batch: 300 | Loss: 1.500 | Acc: 47.84%
|
172 |
-
2025-03-14 18:59:31,963 - train - INFO - Epoch: 34 | Test Loss: 1.505 | Test Acc: 46.85%
|
173 |
-
2025-03-14 18:59:40,980 - train - INFO - Epoch: 35 | Batch: 0 | Loss: 1.479 | Acc: 46.88%
|
174 |
-
2025-03-14 18:59:43,177 - train - INFO - Epoch: 35 | Batch: 100 | Loss: 1.509 | Acc: 47.49%
|
175 |
-
2025-03-14 18:59:45,274 - train - INFO - Epoch: 35 | Batch: 200 | Loss: 1.511 | Acc: 47.25%
|
176 |
-
2025-03-14 18:59:47,396 - train - INFO - Epoch: 35 | Batch: 300 | Loss: 1.510 | Acc: 47.32%
|
177 |
-
2025-03-14 18:59:50,653 - train - INFO - Epoch: 35 | Test Loss: 1.401 | Test Acc: 51.25%
|
178 |
-
2025-03-14 18:59:50,838 - train - INFO - Epoch: 36 | Batch: 0 | Loss: 1.299 | Acc: 59.38%
|
179 |
-
2025-03-14 18:59:52,839 - train - INFO - Epoch: 36 | Batch: 100 | Loss: 1.482 | Acc: 48.78%
|
180 |
-
2025-03-14 18:59:54,989 - train - INFO - Epoch: 36 | Batch: 200 | Loss: 1.490 | Acc: 48.33%
|
181 |
-
2025-03-14 18:59:56,980 - train - INFO - Epoch: 36 | Batch: 300 | Loss: 1.485 | Acc: 48.47%
|
182 |
-
2025-03-14 19:00:00,116 - train - INFO - Epoch: 36 | Test Loss: 1.489 | Test Acc: 47.70%
|
183 |
-
2025-03-14 19:00:09,044 - train - INFO - Epoch: 37 | Batch: 0 | Loss: 1.378 | Acc: 52.34%
|
184 |
-
2025-03-14 19:00:11,337 - train - INFO - Epoch: 37 | Batch: 100 | Loss: 1.467 | Acc: 49.08%
|
185 |
-
2025-03-14 19:00:13,664 - train - INFO - Epoch: 37 | Batch: 200 | Loss: 1.466 | Acc: 48.83%
|
186 |
-
2025-03-14 19:00:15,943 - train - INFO - Epoch: 37 | Batch: 300 | Loss: 1.463 | Acc: 48.93%
|
187 |
-
2025-03-14 19:00:19,369 - train - INFO - Epoch: 37 | Test Loss: 1.534 | Test Acc: 46.58%
|
188 |
-
2025-03-14 19:00:19,523 - train - INFO - Epoch: 38 | Batch: 0 | Loss: 1.550 | Acc: 44.53%
|
189 |
-
2025-03-14 19:00:21,879 - train - INFO - Epoch: 38 | Batch: 100 | Loss: 1.476 | Acc: 48.53%
|
190 |
-
2025-03-14 19:00:24,365 - train - INFO - Epoch: 38 | Batch: 200 | Loss: 1.495 | Acc: 47.90%
|
191 |
-
2025-03-14 19:00:26,878 - train - INFO - Epoch: 38 | Batch: 300 | Loss: 1.494 | Acc: 48.06%
|
192 |
-
2025-03-14 19:00:30,363 - train - INFO - Epoch: 38 | Test Loss: 1.502 | Test Acc: 48.86%
|
193 |
-
2025-03-14 19:00:40,202 - train - INFO - Epoch: 39 | Batch: 0 | Loss: 1.594 | Acc: 49.22%
|
194 |
-
2025-03-14 19:00:42,476 - train - INFO - Epoch: 39 | Batch: 100 | Loss: 1.472 | Acc: 48.95%
|
195 |
-
2025-03-14 19:00:44,677 - train - INFO - Epoch: 39 | Batch: 200 | Loss: 1.470 | Acc: 49.00%
|
196 |
-
2025-03-14 19:00:46,770 - train - INFO - Epoch: 39 | Batch: 300 | Loss: 1.457 | Acc: 49.47%
|
197 |
-
2025-03-14 19:00:50,216 - train - INFO - Epoch: 39 | Test Loss: 1.392 | Test Acc: 50.99%
|
198 |
-
2025-03-14 19:00:50,372 - train - INFO - Epoch: 40 | Batch: 0 | Loss: 1.643 | Acc: 42.97%
|
199 |
-
2025-03-14 19:00:52,597 - train - INFO - Epoch: 40 | Batch: 100 | Loss: 1.492 | Acc: 48.14%
|
200 |
-
2025-03-14 19:00:54,733 - train - INFO - Epoch: 40 | Batch: 200 | Loss: 1.488 | Acc: 48.10%
|
201 |
-
2025-03-14 19:00:56,903 - train - INFO - Epoch: 40 | Batch: 300 | Loss: 1.476 | Acc: 48.38%
|
202 |
-
2025-03-14 19:01:00,186 - train - INFO - Epoch: 40 | Test Loss: 1.396 | Test Acc: 51.11%
|
203 |
-
2025-03-14 19:01:09,458 - train - INFO - Epoch: 41 | Batch: 0 | Loss: 1.446 | Acc: 49.22%
|
204 |
-
2025-03-14 19:01:11,568 - train - INFO - Epoch: 41 | Batch: 100 | Loss: 1.477 | Acc: 49.01%
|
205 |
-
2025-03-14 19:01:13,524 - train - INFO - Epoch: 41 | Batch: 200 | Loss: 1.467 | Acc: 49.21%
|
206 |
-
2025-03-14 19:01:15,623 - train - INFO - Epoch: 41 | Batch: 300 | Loss: 1.473 | Acc: 49.07%
|
207 |
-
2025-03-14 19:01:18,753 - train - INFO - Epoch: 41 | Test Loss: 1.369 | Test Acc: 53.32%
|
208 |
-
2025-03-14 19:01:18,976 - train - INFO - Epoch: 42 | Batch: 0 | Loss: 1.483 | Acc: 46.88%
|
209 |
-
2025-03-14 19:01:20,939 - train - INFO - Epoch: 42 | Batch: 100 | Loss: 1.466 | Acc: 48.96%
|
210 |
-
2025-03-14 19:01:22,879 - train - INFO - Epoch: 42 | Batch: 200 | Loss: 1.470 | Acc: 48.71%
|
211 |
-
2025-03-14 19:01:24,891 - train - INFO - Epoch: 42 | Batch: 300 | Loss: 1.473 | Acc: 48.65%
|
212 |
-
2025-03-14 19:01:27,749 - train - INFO - Epoch: 42 | Test Loss: 1.397 | Test Acc: 51.39%
|
213 |
-
2025-03-14 19:01:36,173 - train - INFO - Epoch: 43 | Batch: 0 | Loss: 1.305 | Acc: 52.34%
|
214 |
-
2025-03-14 19:01:38,245 - train - INFO - Epoch: 43 | Batch: 100 | Loss: 1.444 | Acc: 49.63%
|
215 |
-
2025-03-14 19:01:40,295 - train - INFO - Epoch: 43 | Batch: 200 | Loss: 1.458 | Acc: 48.98%
|
216 |
-
2025-03-14 19:01:42,370 - train - INFO - Epoch: 43 | Batch: 300 | Loss: 1.471 | Acc: 48.66%
|
217 |
-
2025-03-14 19:01:45,581 - train - INFO - Epoch: 43 | Test Loss: 1.378 | Test Acc: 52.89%
|
218 |
-
2025-03-14 19:01:45,747 - train - INFO - Epoch: 44 | Batch: 0 | Loss: 1.317 | Acc: 57.81%
|
219 |
-
2025-03-14 19:01:48,037 - train - INFO - Epoch: 44 | Batch: 100 | Loss: 1.460 | Acc: 49.73%
|
220 |
-
2025-03-14 19:01:50,122 - train - INFO - Epoch: 44 | Batch: 200 | Loss: 1.431 | Acc: 50.60%
|
221 |
-
2025-03-14 19:01:52,184 - train - INFO - Epoch: 44 | Batch: 300 | Loss: 1.447 | Acc: 50.02%
|
222 |
-
2025-03-14 19:01:55,371 - train - INFO - Epoch: 44 | Test Loss: 1.472 | Test Acc: 49.33%
|
223 |
-
2025-03-14 19:02:04,270 - train - INFO - Epoch: 45 | Batch: 0 | Loss: 1.547 | Acc: 48.44%
|
224 |
-
2025-03-14 19:02:06,320 - train - INFO - Epoch: 45 | Batch: 100 | Loss: 1.469 | Acc: 49.03%
|
225 |
-
2025-03-14 19:02:08,399 - train - INFO - Epoch: 45 | Batch: 200 | Loss: 1.467 | Acc: 49.28%
|
226 |
-
2025-03-14 19:02:10,409 - train - INFO - Epoch: 45 | Batch: 300 | Loss: 1.461 | Acc: 49.32%
|
227 |
-
2025-03-14 19:02:13,526 - train - INFO - Epoch: 45 | Test Loss: 1.475 | Test Acc: 50.11%
|
228 |
-
2025-03-14 19:02:13,687 - train - INFO - Epoch: 46 | Batch: 0 | Loss: 1.603 | Acc: 50.00%
|
229 |
-
2025-03-14 19:02:15,735 - train - INFO - Epoch: 46 | Batch: 100 | Loss: 1.468 | Acc: 49.56%
|
230 |
-
2025-03-14 19:02:17,836 - train - INFO - Epoch: 46 | Batch: 200 | Loss: 1.457 | Acc: 49.54%
|
231 |
-
2025-03-14 19:02:19,934 - train - INFO - Epoch: 46 | Batch: 300 | Loss: 1.454 | Acc: 49.82%
|
232 |
-
2025-03-14 19:02:23,205 - train - INFO - Epoch: 46 | Test Loss: 1.467 | Test Acc: 49.27%
|
233 |
-
2025-03-14 19:02:31,634 - train - INFO - Epoch: 47 | Batch: 0 | Loss: 1.506 | Acc: 47.66%
|
234 |
-
2025-03-14 19:02:33,626 - train - INFO - Epoch: 47 | Batch: 100 | Loss: 1.447 | Acc: 50.19%
|
235 |
-
2025-03-14 19:02:35,568 - train - INFO - Epoch: 47 | Batch: 200 | Loss: 1.451 | Acc: 49.84%
|
236 |
-
2025-03-14 19:02:37,841 - train - INFO - Epoch: 47 | Batch: 300 | Loss: 1.439 | Acc: 50.25%
|
237 |
-
2025-03-14 19:02:41,240 - train - INFO - Epoch: 47 | Test Loss: 1.543 | Test Acc: 46.04%
|
238 |
-
2025-03-14 19:02:41,419 - train - INFO - Epoch: 48 | Batch: 0 | Loss: 1.628 | Acc: 45.31%
|
239 |
-
2025-03-14 19:02:43,631 - train - INFO - Epoch: 48 | Batch: 100 | Loss: 1.464 | Acc: 49.07%
|
240 |
-
2025-03-14 19:02:45,773 - train - INFO - Epoch: 48 | Batch: 200 | Loss: 1.454 | Acc: 49.46%
|
241 |
-
2025-03-14 19:02:47,757 - train - INFO - Epoch: 48 | Batch: 300 | Loss: 1.468 | Acc: 49.15%
|
242 |
-
2025-03-14 19:02:50,760 - train - INFO - Epoch: 48 | Test Loss: 1.404 | Test Acc: 50.03%
|
243 |
-
2025-03-14 19:02:58,934 - train - INFO - Epoch: 49 | Batch: 0 | Loss: 1.270 | Acc: 52.34%
|
244 |
-
2025-03-14 19:03:00,986 - train - INFO - Epoch: 49 | Batch: 100 | Loss: 1.457 | Acc: 49.50%
|
245 |
-
2025-03-14 19:03:03,024 - train - INFO - Epoch: 49 | Batch: 200 | Loss: 1.458 | Acc: 49.52%
|
246 |
-
2025-03-14 19:03:05,108 - train - INFO - Epoch: 49 | Batch: 300 | Loss: 1.460 | Acc: 49.37%
|
247 |
-
2025-03-14 19:03:08,092 - train - INFO - Epoch: 49 | Test Loss: 1.356 | Test Acc: 53.54%
|
248 |
-
2025-03-14 19:03:08,239 - train - INFO - Epoch: 50 | Batch: 0 | Loss: 1.282 | Acc: 51.56%
|
249 |
-
2025-03-14 19:03:10,262 - train - INFO - Epoch: 50 | Batch: 100 | Loss: 1.460 | Acc: 48.94%
|
250 |
-
2025-03-14 19:03:12,119 - train - INFO - Epoch: 50 | Batch: 200 | Loss: 1.465 | Acc: 48.87%
|
251 |
-
2025-03-14 19:03:14,009 - train - INFO - Epoch: 50 | Batch: 300 | Loss: 1.448 | Acc: 49.82%
|
252 |
-
2025-03-14 19:03:16,891 - train - INFO - Epoch: 50 | Test Loss: 1.402 | Test Acc: 51.80%
|
253 |
-
2025-03-14 19:03:24,969 - train - INFO - 训练完成!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Image/LeNet5/code/train.log
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
2025-03-14 18:42:58,457 - train - INFO - 开始训练 lenet5
|
2 |
-
2025-03-14 18:42:58,466 - train - INFO - 总轮数: 50, 学习率: 0.1, 设备: cuda:3
|
3 |
-
2025-03-14 18:42:59,293 - train - INFO - Epoch: 1 | Batch: 0 | Loss: 2.303 | Acc: 10.94%
|
4 |
-
2025-03-14 18:43:01,471 - train - INFO - Epoch: 1 | Batch: 100 | Loss: 2.266 | Acc: 12.62%
|
5 |
-
2025-03-14 18:43:03,531 - train - INFO - Epoch: 1 | Batch: 200 | Loss: 2.178 | Acc: 15.37%
|
6 |
-
2025-03-14 18:43:05,648 - train - INFO - Epoch: 1 | Batch: 300 | Loss: 2.099 | Acc: 18.60%
|
7 |
-
2025-03-14 18:43:08,912 - train - INFO - Epoch: 1 | Test Loss: 1.768 | Test Acc: 33.62%
|
8 |
-
2025-03-14 18:43:09,291 - train - INFO - Epoch: 2 | Batch: 0 | Loss: 1.851 | Acc: 26.56%
|
9 |
-
2025-03-14 18:43:11,591 - train - INFO - Epoch: 2 | Batch: 100 | Loss: 1.848 | Acc: 30.46%
|
10 |
-
2025-03-14 18:43:13,743 - train - INFO - Epoch: 2 | Batch: 200 | Loss: 1.831 | Acc: 31.40%
|
11 |
-
2025-03-14 18:43:16,315 - train - INFO - Epoch: 2 | Batch: 300 | Loss: 1.823 | Acc: 31.80%
|
12 |
-
2025-03-14 18:43:19,766 - train - INFO - Epoch: 2 | Test Loss: 1.662 | Test Acc: 38.37%
|
13 |
-
2025-03-14 18:43:28,827 - train - INFO - Epoch: 3 | Batch: 0 | Loss: 1.742 | Acc: 33.59%
|
14 |
-
2025-03-14 18:43:31,227 - train - INFO - Epoch: 3 | Batch: 100 | Loss: 1.772 | Acc: 34.92%
|
15 |
-
2025-03-14 18:43:33,508 - train - INFO - Epoch: 3 | Batch: 200 | Loss: 1.755 | Acc: 34.99%
|
16 |
-
2025-03-14 18:43:35,700 - train - INFO - Epoch: 3 | Batch: 300 | Loss: 1.750 | Acc: 35.12%
|
17 |
-
2025-03-14 18:43:39,124 - train - INFO - Epoch: 3 | Test Loss: 1.663 | Test Acc: 38.84%
|
18 |
-
2025-03-14 18:43:39,305 - train - INFO - Epoch: 4 | Batch: 0 | Loss: 1.855 | Acc: 29.69%
|
19 |
-
2025-03-14 18:43:41,442 - train - INFO - Epoch: 4 | Batch: 100 | Loss: 1.715 | Acc: 36.98%
|
20 |
-
2025-03-14 18:43:43,675 - train - INFO - Epoch: 4 | Batch: 200 | Loss: 1.721 | Acc: 36.66%
|
21 |
-
2025-03-14 18:43:45,928 - train - INFO - Epoch: 4 | Batch: 300 | Loss: 1.704 | Acc: 37.20%
|
22 |
-
2025-03-14 18:43:49,305 - train - INFO - Epoch: 4 | Test Loss: 1.584 | Test Acc: 41.15%
|
23 |
-
2025-03-14 18:43:58,749 - train - INFO - Epoch: 5 | Batch: 0 | Loss: 1.593 | Acc: 39.06%
|
24 |
-
2025-03-14 18:44:01,045 - train - INFO - Epoch: 5 | Batch: 100 | Loss: 1.676 | Acc: 39.09%
|
25 |
-
2025-03-14 18:44:03,286 - train - INFO - Epoch: 5 | Batch: 200 | Loss: 1.660 | Acc: 39.65%
|
26 |
-
2025-03-14 18:44:05,565 - train - INFO - Epoch: 5 | Batch: 300 | Loss: 1.673 | Acc: 39.22%
|
27 |
-
2025-03-14 18:44:09,108 - train - INFO - Epoch: 5 | Test Loss: 1.637 | Test Acc: 40.55%
|
28 |
-
2025-03-14 18:44:09,274 - train - INFO - Epoch: 6 | Batch: 0 | Loss: 1.719 | Acc: 36.72%
|
29 |
-
2025-03-14 18:44:11,561 - train - INFO - Epoch: 6 | Batch: 100 | Loss: 1.622 | Acc: 40.80%
|
30 |
-
2025-03-14 18:44:14,102 - train - INFO - Epoch: 6 | Batch: 200 | Loss: 1.645 | Acc: 40.35%
|
31 |
-
2025-03-14 18:44:16,595 - train - INFO - Epoch: 6 | Batch: 300 | Loss: 1.655 | Acc: 40.03%
|
32 |
-
2025-03-14 18:44:20,643 - train - INFO - Epoch: 6 | Test Loss: 1.514 | Test Acc: 47.29%
|
33 |
-
2025-03-14 18:44:30,165 - train - INFO - Epoch: 7 | Batch: 0 | Loss: 1.487 | Acc: 50.78%
|
34 |
-
2025-03-14 18:44:32,311 - train - INFO - Epoch: 7 | Batch: 100 | Loss: 1.638 | Acc: 40.48%
|
35 |
-
2025-03-14 18:44:34,629 - train - INFO - Epoch: 7 | Batch: 200 | Loss: 1.641 | Acc: 40.55%
|
36 |
-
2025-03-14 18:44:36,796 - train - INFO - Epoch: 7 | Batch: 300 | Loss: 1.642 | Acc: 40.62%
|
37 |
-
2025-03-14 18:44:40,052 - train - INFO - Epoch: 7 | Test Loss: 1.670 | Test Acc: 41.48%
|
38 |
-
2025-03-14 18:44:40,222 - train - INFO - Epoch: 8 | Batch: 0 | Loss: 1.629 | Acc: 38.28%
|
39 |
-
2025-03-14 18:44:42,337 - train - INFO - Epoch: 8 | Batch: 100 | Loss: 1.647 | Acc: 40.32%
|
40 |
-
2025-03-14 18:44:44,590 - train - INFO - Epoch: 8 | Batch: 200 | Loss: 1.638 | Acc: 40.99%
|
41 |
-
2025-03-14 18:44:46,617 - train - INFO - Epoch: 8 | Batch: 300 | Loss: 1.648 | Acc: 40.85%
|
42 |
-
2025-03-14 18:44:50,042 - train - INFO - Epoch: 8 | Test Loss: 1.610 | Test Acc: 43.43%
|
43 |
-
2025-03-14 18:44:59,307 - train - INFO - Epoch: 9 | Batch: 0 | Loss: 1.663 | Acc: 44.53%
|
44 |
-
2025-03-14 18:45:01,655 - train - INFO - Epoch: 9 | Batch: 100 | Loss: 1.638 | Acc: 41.36%
|
45 |
-
2025-03-14 18:45:03,999 - train - INFO - Epoch: 9 | Batch: 200 | Loss: 1.647 | Acc: 40.96%
|
46 |
-
2025-03-14 18:45:06,123 - train - INFO - Epoch: 9 | Batch: 300 | Loss: 1.646 | Acc: 40.82%
|
47 |
-
2025-03-14 18:45:09,386 - train - INFO - Epoch: 9 | Test Loss: 1.465 | Test Acc: 48.76%
|
48 |
-
2025-03-14 18:45:09,543 - train - INFO - Epoch: 10 | Batch: 0 | Loss: 1.650 | Acc: 40.62%
|
49 |
-
2025-03-14 18:45:11,645 - train - INFO - Epoch: 10 | Batch: 100 | Loss: 1.581 | Acc: 42.72%
|
50 |
-
2025-03-14 18:45:13,854 - train - INFO - Epoch: 10 | Batch: 200 | Loss: 1.589 | Acc: 42.82%
|
51 |
-
2025-03-14 18:45:16,028 - train - INFO - Epoch: 10 | Batch: 300 | Loss: 1.592 | Acc: 42.91%
|
52 |
-
2025-03-14 18:45:19,650 - train - INFO - Epoch: 10 | Test Loss: 1.483 | Test Acc: 48.24%
|
53 |
-
2025-03-14 18:45:30,113 - train - INFO - Epoch: 11 | Batch: 0 | Loss: 1.494 | Acc: 42.97%
|
54 |
-
2025-03-14 18:45:32,744 - train - INFO - Epoch: 11 | Batch: 100 | Loss: 1.616 | Acc: 42.26%
|
55 |
-
2025-03-14 18:45:35,132 - train - INFO - Epoch: 11 | Batch: 200 | Loss: 1.625 | Acc: 42.03%
|
56 |
-
2025-03-14 18:45:37,374 - train - INFO - Epoch: 11 | Batch: 300 | Loss: 1.603 | Acc: 42.96%
|
57 |
-
2025-03-14 18:45:40,850 - train - INFO - Epoch: 11 | Test Loss: 1.505 | Test Acc: 48.63%
|
58 |
-
2025-03-14 18:45:41,037 - train - INFO - Epoch: 12 | Batch: 0 | Loss: 1.586 | Acc: 46.09%
|
59 |
-
2025-03-14 18:45:43,281 - train - INFO - Epoch: 12 | Batch: 100 | Loss: 1.577 | Acc: 44.79%
|
60 |
-
2025-03-14 18:45:45,488 - train - INFO - Epoch: 12 | Batch: 200 | Loss: 1.576 | Acc: 44.34%
|
61 |
-
2025-03-14 18:45:47,756 - train - INFO - Epoch: 12 | Batch: 300 | Loss: 1.591 | Acc: 43.89%
|
62 |
-
2025-03-14 18:45:51,120 - train - INFO - Epoch: 12 | Test Loss: 1.605 | Test Acc: 44.80%
|
63 |
-
2025-03-14 18:46:00,438 - train - INFO - Epoch: 13 | Batch: 0 | Loss: 1.518 | Acc: 44.53%
|
64 |
-
2025-03-14 18:46:02,653 - train - INFO - Epoch: 13 | Batch: 100 | Loss: 1.599 | Acc: 42.95%
|
65 |
-
2025-03-14 18:46:05,275 - train - INFO - Epoch: 13 | Batch: 200 | Loss: 1.593 | Acc: 43.37%
|
66 |
-
2025-03-14 18:46:07,588 - train - INFO - Epoch: 13 | Batch: 300 | Loss: 1.598 | Acc: 43.51%
|
67 |
-
2025-03-14 18:46:10,937 - train - INFO - Epoch: 13 | Test Loss: 1.583 | Test Acc: 42.85%
|
68 |
-
2025-03-14 18:46:11,116 - train - INFO - Epoch: 14 | Batch: 0 | Loss: 1.560 | Acc: 44.53%
|
69 |
-
2025-03-14 18:46:13,285 - train - INFO - Epoch: 14 | Batch: 100 | Loss: 1.569 | Acc: 44.65%
|
70 |
-
2025-03-14 18:46:15,533 - train - INFO - Epoch: 14 | Batch: 200 | Loss: 1.577 | Acc: 43.93%
|
71 |
-
2025-03-14 18:46:17,803 - train - INFO - Epoch: 14 | Batch: 300 | Loss: 1.580 | Acc: 43.98%
|
72 |
-
2025-03-14 18:46:21,356 - train - INFO - Epoch: 14 | Test Loss: 1.633 | Test Acc: 44.51%
|
73 |
-
2025-03-14 18:46:31,128 - train - INFO - Epoch: 15 | Batch: 0 | Loss: 1.845 | Acc: 38.28%
|
74 |
-
2025-03-14 18:46:33,986 - train - INFO - Epoch: 15 | Batch: 100 | Loss: 1.574 | Acc: 44.63%
|
75 |
-
2025-03-14 18:46:36,643 - train - INFO - Epoch: 15 | Batch: 200 | Loss: 1.581 | Acc: 44.63%
|
76 |
-
2025-03-14 18:46:38,812 - train - INFO - Epoch: 15 | Batch: 300 | Loss: 1.582 | Acc: 44.44%
|
77 |
-
2025-03-14 18:46:42,100 - train - INFO - Epoch: 15 | Test Loss: 1.502 | Test Acc: 47.49%
|
78 |
-
2025-03-14 18:46:42,283 - train - INFO - Epoch: 16 | Batch: 0 | Loss: 1.625 | Acc: 40.62%
|
79 |
-
2025-03-14 18:46:44,700 - train - INFO - Epoch: 16 | Batch: 100 | Loss: 1.541 | Acc: 45.17%
|
80 |
-
2025-03-14 18:46:46,924 - train - INFO - Epoch: 16 | Batch: 200 | Loss: 1.555 | Acc: 44.73%
|
81 |
-
2025-03-14 18:46:49,212 - train - INFO - Epoch: 16 | Batch: 300 | Loss: 1.552 | Acc: 45.09%
|
82 |
-
2025-03-14 18:46:52,741 - train - INFO - Epoch: 16 | Test Loss: 1.515 | Test Acc: 47.01%
|
83 |
-
2025-03-14 18:47:01,778 - train - INFO - Epoch: 17 | Batch: 0 | Loss: 1.648 | Acc: 42.19%
|
84 |
-
2025-03-14 18:47:03,963 - train - INFO - Epoch: 17 | Batch: 100 | Loss: 1.568 | Acc: 45.44%
|
85 |
-
2025-03-14 18:47:06,143 - train - INFO - Epoch: 17 | Batch: 200 | Loss: 1.559 | Acc: 45.42%
|
86 |
-
2025-03-14 18:47:08,345 - train - INFO - Epoch: 17 | Batch: 300 | Loss: 1.569 | Acc: 45.12%
|
87 |
-
2025-03-14 18:47:11,733 - train - INFO - Epoch: 17 | Test Loss: 1.570 | Test Acc: 45.34%
|
88 |
-
2025-03-14 18:47:11,921 - train - INFO - Epoch: 18 | Batch: 0 | Loss: 1.661 | Acc: 39.06%
|
89 |
-
2025-03-14 18:47:14,198 - train - INFO - Epoch: 18 | Batch: 100 | Loss: 1.577 | Acc: 43.73%
|
90 |
-
2025-03-14 18:47:16,401 - train - INFO - Epoch: 18 | Batch: 200 | Loss: 1.587 | Acc: 44.04%
|
91 |
-
2025-03-14 18:47:18,532 - train - INFO - Epoch: 18 | Batch: 300 | Loss: 1.583 | Acc: 44.23%
|
92 |
-
2025-03-14 18:47:21,929 - train - INFO - Epoch: 18 | Test Loss: 1.490 | Test Acc: 48.95%
|
93 |
-
2025-03-14 18:47:31,595 - train - INFO - Epoch: 19 | Batch: 0 | Loss: 1.469 | Acc: 47.66%
|
94 |
-
2025-03-14 18:47:34,012 - train - INFO - Epoch: 19 | Batch: 100 | Loss: 1.572 | Acc: 44.14%
|
95 |
-
2025-03-14 18:47:36,582 - train - INFO - Epoch: 19 | Batch: 200 | Loss: 1.564 | Acc: 44.89%
|
96 |
-
2025-03-14 18:47:39,025 - train - INFO - Epoch: 19 | Batch: 300 | Loss: 1.580 | Acc: 44.51%
|
97 |
-
2025-03-14 18:47:43,410 - train - INFO - Epoch: 19 | Test Loss: 1.614 | Test Acc: 41.68%
|
98 |
-
2025-03-14 18:47:43,603 - train - INFO - Epoch: 20 | Batch: 0 | Loss: 1.780 | Acc: 35.16%
|
99 |
-
2025-03-14 18:47:45,962 - train - INFO - Epoch: 20 | Batch: 100 | Loss: 1.593 | Acc: 43.56%
|
100 |
-
2025-03-14 18:47:48,244 - train - INFO - Epoch: 20 | Batch: 200 | Loss: 1.582 | Acc: 44.22%
|
101 |
-
2025-03-14 18:47:50,397 - train - INFO - Epoch: 20 | Batch: 300 | Loss: 1.564 | Acc: 44.98%
|
102 |
-
2025-03-14 18:47:53,620 - train - INFO - Epoch: 20 | Test Loss: 1.466 | Test Acc: 48.39%
|
103 |
-
2025-03-14 18:48:02,849 - train - INFO - Epoch: 21 | Batch: 0 | Loss: 1.409 | Acc: 50.00%
|
104 |
-
2025-03-14 18:48:05,101 - train - INFO - Epoch: 21 | Batch: 100 | Loss: 1.554 | Acc: 45.34%
|
105 |
-
2025-03-14 18:48:07,205 - train - INFO - Epoch: 21 | Batch: 200 | Loss: 1.559 | Acc: 45.21%
|
106 |
-
2025-03-14 18:48:09,387 - train - INFO - Epoch: 21 | Batch: 300 | Loss: 1.567 | Acc: 44.95%
|
107 |
-
2025-03-14 18:48:12,828 - train - INFO - Epoch: 21 | Test Loss: 1.541 | Test Acc: 45.92%
|
108 |
-
2025-03-14 18:48:12,998 - train - INFO - Epoch: 22 | Batch: 0 | Loss: 1.420 | Acc: 50.00%
|
109 |
-
2025-03-14 18:48:15,472 - train - INFO - Epoch: 22 | Batch: 100 | Loss: 1.553 | Acc: 45.12%
|
110 |
-
2025-03-14 18:48:17,608 - train - INFO - Epoch: 22 | Batch: 200 | Loss: 1.546 | Acc: 45.46%
|
111 |
-
2025-03-14 18:48:19,794 - train - INFO - Epoch: 22 | Batch: 300 | Loss: 1.551 | Acc: 45.30%
|
112 |
-
2025-03-14 18:48:23,214 - train - INFO - Epoch: 22 | Test Loss: 1.537 | Test Acc: 46.88%
|
113 |
-
2025-03-14 18:48:32,459 - train - INFO - Epoch: 23 | Batch: 0 | Loss: 1.594 | Acc: 42.19%
|
114 |
-
2025-03-14 18:48:34,612 - train - INFO - Epoch: 23 | Batch: 100 | Loss: 1.580 | Acc: 44.72%
|
115 |
-
2025-03-14 18:48:36,785 - train - INFO - Epoch: 23 | Batch: 200 | Loss: 1.560 | Acc: 45.09%
|
116 |
-
2025-03-14 18:48:38,969 - train - INFO - Epoch: 23 | Batch: 300 | Loss: 1.561 | Acc: 45.15%
|
117 |
-
2025-03-14 18:48:42,488 - train - INFO - Epoch: 23 | Test Loss: 1.570 | Test Acc: 45.55%
|
118 |
-
2025-03-14 18:48:42,659 - train - INFO - Epoch: 24 | Batch: 0 | Loss: 1.642 | Acc: 44.53%
|
119 |
-
2025-03-14 18:48:44,937 - train - INFO - Epoch: 24 | Batch: 100 | Loss: 1.577 | Acc: 44.83%
|
120 |
-
2025-03-14 18:48:47,587 - train - INFO - Epoch: 24 | Batch: 200 | Loss: 1.587 | Acc: 44.60%
|
121 |
-
2025-03-14 18:48:50,078 - train - INFO - Epoch: 24 | Batch: 300 | Loss: 1.570 | Acc: 45.19%
|
122 |
-
2025-03-14 18:48:53,664 - train - INFO - Epoch: 24 | Test Loss: 1.460 | Test Acc: 51.03%
|
123 |
-
2025-03-14 18:49:03,866 - train - INFO - Epoch: 25 | Batch: 0 | Loss: 1.401 | Acc: 47.66%
|
124 |
-
2025-03-14 18:49:05,995 - train - INFO - Epoch: 25 | Batch: 100 | Loss: 1.530 | Acc: 45.76%
|
125 |
-
2025-03-14 18:49:08,111 - train - INFO - Epoch: 25 | Batch: 200 | Loss: 1.514 | Acc: 46.54%
|
126 |
-
2025-03-14 18:49:10,316 - train - INFO - Epoch: 25 | Batch: 300 | Loss: 1.529 | Acc: 46.19%
|
127 |
-
2025-03-14 18:49:13,929 - train - INFO - Epoch: 25 | Test Loss: 1.556 | Test Acc: 47.06%
|
128 |
-
2025-03-14 18:49:14,187 - train - INFO - Epoch: 26 | Batch: 0 | Loss: 1.722 | Acc: 40.62%
|
129 |
-
2025-03-14 18:49:16,552 - train - INFO - Epoch: 26 | Batch: 100 | Loss: 1.515 | Acc: 46.69%
|
130 |
-
2025-03-14 18:49:18,799 - train - INFO - Epoch: 26 | Batch: 200 | Loss: 1.527 | Acc: 46.61%
|
131 |
-
2025-03-14 18:49:20,898 - train - INFO - Epoch: 26 | Batch: 300 | Loss: 1.541 | Acc: 46.01%
|
132 |
-
2025-03-14 18:49:24,249 - train - INFO - Epoch: 26 | Test Loss: 1.403 | Test Acc: 50.95%
|
133 |
-
2025-03-14 18:49:33,283 - train - INFO - Epoch: 27 | Batch: 0 | Loss: 1.368 | Acc: 50.00%
|
134 |
-
2025-03-14 18:49:35,438 - train - INFO - Epoch: 27 | Batch: 100 | Loss: 1.541 | Acc: 46.12%
|
135 |
-
2025-03-14 18:49:37,619 - train - INFO - Epoch: 27 | Batch: 200 | Loss: 1.546 | Acc: 46.12%
|
136 |
-
2025-03-14 18:49:39,907 - train - INFO - Epoch: 27 | Batch: 300 | Loss: 1.558 | Acc: 45.75%
|
137 |
-
2025-03-14 18:49:43,295 - train - INFO - Epoch: 27 | Test Loss: 1.593 | Test Acc: 44.67%
|
138 |
-
2025-03-14 18:49:43,465 - train - INFO - Epoch: 28 | Batch: 0 | Loss: 1.712 | Acc: 39.84%
|
139 |
-
2025-03-14 18:49:45,800 - train - INFO - Epoch: 28 | Batch: 100 | Loss: 1.551 | Acc: 46.37%
|
140 |
-
2025-03-14 18:49:47,998 - train - INFO - Epoch: 28 | Batch: 200 | Loss: 1.551 | Acc: 46.39%
|
141 |
-
2025-03-14 18:49:50,134 - train - INFO - Epoch: 28 | Batch: 300 | Loss: 1.538 | Acc: 46.92%
|
142 |
-
2025-03-14 18:49:53,378 - train - INFO - Epoch: 28 | Test Loss: 1.490 | Test Acc: 46.88%
|
143 |
-
2025-03-14 18:50:02,514 - train - INFO - Epoch: 29 | Batch: 0 | Loss: 1.512 | Acc: 41.41%
|
144 |
-
2025-03-14 18:50:04,738 - train - INFO - Epoch: 29 | Batch: 100 | Loss: 1.560 | Acc: 45.56%
|
145 |
-
2025-03-14 18:50:06,892 - train - INFO - Epoch: 29 | Batch: 200 | Loss: 1.530 | Acc: 46.73%
|
146 |
-
2025-03-14 18:50:09,049 - train - INFO - Epoch: 29 | Batch: 300 | Loss: 1.541 | Acc: 46.39%
|
147 |
-
2025-03-14 18:50:12,354 - train - INFO - Epoch: 29 | Test Loss: 1.536 | Test Acc: 46.64%
|
148 |
-
2025-03-14 18:50:12,524 - train - INFO - Epoch: 30 | Batch: 0 | Loss: 1.597 | Acc: 46.09%
|
149 |
-
2025-03-14 18:50:14,711 - train - INFO - Epoch: 30 | Batch: 100 | Loss: 1.548 | Acc: 46.50%
|
150 |
-
2025-03-14 18:50:16,934 - train - INFO - Epoch: 30 | Batch: 200 | Loss: 1.556 | Acc: 45.93%
|
151 |
-
2025-03-14 18:50:19,218 - train - INFO - Epoch: 30 | Batch: 300 | Loss: 1.543 | Acc: 46.32%
|
152 |
-
2025-03-14 18:50:22,723 - train - INFO - Epoch: 30 | Test Loss: 1.452 | Test Acc: 50.77%
|
153 |
-
2025-03-14 18:50:32,129 - train - INFO - Epoch: 31 | Batch: 0 | Loss: 1.449 | Acc: 49.22%
|
154 |
-
2025-03-14 18:50:34,311 - train - INFO - Epoch: 31 | Batch: 100 | Loss: 1.533 | Acc: 47.13%
|
155 |
-
2025-03-14 18:50:36,539 - train - INFO - Epoch: 31 | Batch: 200 | Loss: 1.542 | Acc: 46.49%
|
156 |
-
2025-03-14 18:50:38,682 - train - INFO - Epoch: 31 | Batch: 300 | Loss: 1.539 | Acc: 46.58%
|
157 |
-
2025-03-14 18:50:42,089 - train - INFO - Epoch: 31 | Test Loss: 1.386 | Test Acc: 52.82%
|
158 |
-
2025-03-14 18:50:42,259 - train - INFO - Epoch: 32 | Batch: 0 | Loss: 1.537 | Acc: 49.22%
|
159 |
-
2025-03-14 18:50:44,519 - train - INFO - Epoch: 32 | Batch: 100 | Loss: 1.507 | Acc: 47.93%
|
160 |
-
2025-03-14 18:50:46,656 - train - INFO - Epoch: 32 | Batch: 200 | Loss: 1.502 | Acc: 47.95%
|
161 |
-
2025-03-14 18:50:48,818 - train - INFO - Epoch: 32 | Batch: 300 | Loss: 1.502 | Acc: 47.57%
|
162 |
-
2025-03-14 18:50:52,272 - train - INFO - Epoch: 32 | Test Loss: 1.482 | Test Acc: 48.45%
|
163 |
-
2025-03-14 18:51:01,650 - train - INFO - Epoch: 33 | Batch: 0 | Loss: 1.600 | Acc: 42.97%
|
164 |
-
2025-03-14 18:51:03,937 - train - INFO - Epoch: 33 | Batch: 100 | Loss: 1.516 | Acc: 46.92%
|
165 |
-
2025-03-14 18:51:06,268 - train - INFO - Epoch: 33 | Batch: 200 | Loss: 1.528 | Acc: 46.76%
|
166 |
-
2025-03-14 18:51:08,704 - train - INFO - Epoch: 33 | Batch: 300 | Loss: 1.534 | Acc: 46.62%
|
167 |
-
2025-03-14 18:51:12,262 - train - INFO - Epoch: 33 | Test Loss: 1.430 | Test Acc: 49.99%
|
168 |
-
2025-03-14 18:51:12,443 - train - INFO - Epoch: 34 | Batch: 0 | Loss: 1.585 | Acc: 45.31%
|
169 |
-
2025-03-14 18:51:14,733 - train - INFO - Epoch: 34 | Batch: 100 | Loss: 1.501 | Acc: 47.97%
|
170 |
-
2025-03-14 18:51:17,010 - train - INFO - Epoch: 34 | Batch: 200 | Loss: 1.512 | Acc: 47.52%
|
171 |
-
2025-03-14 18:51:19,395 - train - INFO - Epoch: 34 | Batch: 300 | Loss: 1.514 | Acc: 47.37%
|
172 |
-
2025-03-14 18:51:23,243 - train - INFO - Epoch: 34 | Test Loss: 1.407 | Test Acc: 52.49%
|
173 |
-
2025-03-14 18:51:32,787 - train - INFO - Epoch: 35 | Batch: 0 | Loss: 1.449 | Acc: 53.12%
|
174 |
-
2025-03-14 18:51:35,089 - train - INFO - Epoch: 35 | Batch: 100 | Loss: 1.533 | Acc: 46.77%
|
175 |
-
2025-03-14 18:51:37,330 - train - INFO - Epoch: 35 | Batch: 200 | Loss: 1.508 | Acc: 47.78%
|
176 |
-
2025-03-14 18:51:39,569 - train - INFO - Epoch: 35 | Batch: 300 | Loss: 1.505 | Acc: 47.97%
|
177 |
-
2025-03-14 18:51:43,190 - train - INFO - Epoch: 35 | Test Loss: 1.518 | Test Acc: 48.63%
|
178 |
-
2025-03-14 18:51:43,386 - train - INFO - Epoch: 36 | Batch: 0 | Loss: 1.662 | Acc: 41.41%
|
179 |
-
2025-03-14 18:51:45,737 - train - INFO - Epoch: 36 | Batch: 100 | Loss: 1.537 | Acc: 46.06%
|
180 |
-
2025-03-14 18:51:47,974 - train - INFO - Epoch: 36 | Batch: 200 | Loss: 1.524 | Acc: 46.58%
|
181 |
-
2025-03-14 18:51:50,202 - train - INFO - Epoch: 36 | Batch: 300 | Loss: 1.526 | Acc: 46.55%
|
182 |
-
2025-03-14 18:51:53,752 - train - INFO - Epoch: 36 | Test Loss: 1.361 | Test Acc: 53.00%
|
183 |
-
2025-03-14 18:52:03,416 - train - INFO - Epoch: 37 | Batch: 0 | Loss: 1.415 | Acc: 48.44%
|
184 |
-
2025-03-14 18:52:05,593 - train - INFO - Epoch: 37 | Batch: 100 | Loss: 1.575 | Acc: 44.76%
|
185 |
-
2025-03-14 18:52:07,827 - train - INFO - Epoch: 37 | Batch: 200 | Loss: 1.538 | Acc: 45.99%
|
186 |
-
2025-03-14 18:52:09,999 - train - INFO - Epoch: 37 | Batch: 300 | Loss: 1.526 | Acc: 46.51%
|
187 |
-
2025-03-14 18:52:13,370 - train - INFO - Epoch: 37 | Test Loss: 1.458 | Test Acc: 49.32%
|
188 |
-
2025-03-14 18:52:13,541 - train - INFO - Epoch: 38 | Batch: 0 | Loss: 1.553 | Acc: 49.22%
|
189 |
-
2025-03-14 18:52:15,740 - train - INFO - Epoch: 38 | Batch: 100 | Loss: 1.476 | Acc: 49.10%
|
190 |
-
2025-03-14 18:52:17,984 - train - INFO - Epoch: 38 | Batch: 200 | Loss: 1.475 | Acc: 48.56%
|
191 |
-
2025-03-14 18:52:20,396 - train - INFO - Epoch: 38 | Batch: 300 | Loss: 1.509 | Acc: 47.59%
|
192 |
-
2025-03-14 18:52:23,784 - train - INFO - Epoch: 38 | Test Loss: 1.395 | Test Acc: 51.78%
|
193 |
-
2025-03-14 18:52:32,947 - train - INFO - Epoch: 39 | Batch: 0 | Loss: 1.398 | Acc: 51.56%
|
194 |
-
2025-03-14 18:52:35,194 - train - INFO - Epoch: 39 | Batch: 100 | Loss: 1.582 | Acc: 44.60%
|
195 |
-
2025-03-14 18:52:37,297 - train - INFO - Epoch: 39 | Batch: 200 | Loss: 1.554 | Acc: 45.54%
|
196 |
-
2025-03-14 18:52:39,638 - train - INFO - Epoch: 39 | Batch: 300 | Loss: 1.534 | Acc: 46.39%
|
197 |
-
2025-03-14 18:52:43,108 - train - INFO - Epoch: 39 | Test Loss: 1.525 | Test Acc: 45.86%
|
198 |
-
2025-03-14 18:52:43,297 - train - INFO - Epoch: 40 | Batch: 0 | Loss: 1.696 | Acc: 32.81%
|
199 |
-
2025-03-14 18:52:45,599 - train - INFO - Epoch: 40 | Batch: 100 | Loss: 1.522 | Acc: 47.46%
|
200 |
-
2025-03-14 18:52:47,940 - train - INFO - Epoch: 40 | Batch: 200 | Loss: 1.516 | Acc: 47.49%
|
201 |
-
2025-03-14 18:52:50,269 - train - INFO - Epoch: 40 | Batch: 300 | Loss: 1.508 | Acc: 47.60%
|
202 |
-
2025-03-14 18:52:53,724 - train - INFO - Epoch: 40 | Test Loss: 1.450 | Test Acc: 51.11%
|
203 |
-
2025-03-14 18:53:03,410 - train - INFO - Epoch: 41 | Batch: 0 | Loss: 1.537 | Acc: 47.66%
|
204 |
-
2025-03-14 18:53:05,800 - train - INFO - Epoch: 41 | Batch: 100 | Loss: 1.507 | Acc: 47.56%
|
205 |
-
2025-03-14 18:53:08,177 - train - INFO - Epoch: 41 | Batch: 200 | Loss: 1.514 | Acc: 47.43%
|
206 |
-
2025-03-14 18:53:10,666 - train - INFO - Epoch: 41 | Batch: 300 | Loss: 1.510 | Acc: 47.77%
|
207 |
-
2025-03-14 18:53:14,572 - train - INFO - Epoch: 41 | Test Loss: 1.517 | Test Acc: 48.48%
|
208 |
-
2025-03-14 18:53:14,742 - train - INFO - Epoch: 42 | Batch: 0 | Loss: 1.796 | Acc: 42.19%
|
209 |
-
2025-03-14 18:53:16,888 - train - INFO - Epoch: 42 | Batch: 100 | Loss: 1.473 | Acc: 48.87%
|
210 |
-
2025-03-14 18:53:18,973 - train - INFO - Epoch: 42 | Batch: 200 | Loss: 1.491 | Acc: 48.63%
|
211 |
-
2025-03-14 18:53:21,259 - train - INFO - Epoch: 42 | Batch: 300 | Loss: 1.505 | Acc: 48.21%
|
212 |
-
2025-03-14 18:53:24,601 - train - INFO - Epoch: 42 | Test Loss: 1.561 | Test Acc: 46.57%
|
213 |
-
2025-03-14 18:53:33,569 - train - INFO - Epoch: 43 | Batch: 0 | Loss: 1.608 | Acc: 44.53%
|
214 |
-
2025-03-14 18:53:35,694 - train - INFO - Epoch: 43 | Batch: 100 | Loss: 1.491 | Acc: 48.58%
|
215 |
-
2025-03-14 18:53:37,928 - train - INFO - Epoch: 43 | Batch: 200 | Loss: 1.491 | Acc: 48.62%
|
216 |
-
2025-03-14 18:53:40,500 - train - INFO - Epoch: 43 | Batch: 300 | Loss: 1.486 | Acc: 48.66%
|
217 |
-
2025-03-14 18:53:43,816 - train - INFO - Epoch: 43 | Test Loss: 1.374 | Test Acc: 52.62%
|
218 |
-
2025-03-14 18:53:43,991 - train - INFO - Epoch: 44 | Batch: 0 | Loss: 1.489 | Acc: 49.22%
|
219 |
-
2025-03-14 18:53:46,176 - train - INFO - Epoch: 44 | Batch: 100 | Loss: 1.486 | Acc: 48.23%
|
220 |
-
2025-03-14 18:53:48,303 - train - INFO - Epoch: 44 | Batch: 200 | Loss: 1.498 | Acc: 47.92%
|
221 |
-
2025-03-14 18:53:50,370 - train - INFO - Epoch: 44 | Batch: 300 | Loss: 1.487 | Acc: 48.34%
|
222 |
-
2025-03-14 18:53:53,740 - train - INFO - Epoch: 44 | Test Loss: 1.373 | Test Acc: 52.73%
|
223 |
-
2025-03-14 18:54:03,408 - train - INFO - Epoch: 45 | Batch: 0 | Loss: 1.566 | Acc: 47.66%
|
224 |
-
2025-03-14 18:54:05,572 - train - INFO - Epoch: 45 | Batch: 100 | Loss: 1.531 | Acc: 47.00%
|
225 |
-
2025-03-14 18:54:07,745 - train - INFO - Epoch: 45 | Batch: 200 | Loss: 1.512 | Acc: 47.59%
|
226 |
-
2025-03-14 18:54:09,919 - train - INFO - Epoch: 45 | Batch: 300 | Loss: 1.500 | Acc: 48.02%
|
227 |
-
2025-03-14 18:54:13,351 - train - INFO - Epoch: 45 | Test Loss: 1.426 | Test Acc: 51.30%
|
228 |
-
2025-03-14 18:54:13,612 - train - INFO - Epoch: 46 | Batch: 0 | Loss: 1.334 | Acc: 58.59%
|
229 |
-
2025-03-14 18:54:15,863 - train - INFO - Epoch: 46 | Batch: 100 | Loss: 1.496 | Acc: 48.13%
|
230 |
-
2025-03-14 18:54:18,032 - train - INFO - Epoch: 46 | Batch: 200 | Loss: 1.489 | Acc: 48.47%
|
231 |
-
2025-03-14 18:54:20,219 - train - INFO - Epoch: 46 | Batch: 300 | Loss: 1.495 | Acc: 48.29%
|
232 |
-
2025-03-14 18:54:23,452 - train - INFO - Epoch: 46 | Test Loss: 1.528 | Test Acc: 48.13%
|
233 |
-
2025-03-14 18:54:32,795 - train - INFO - Epoch: 47 | Batch: 0 | Loss: 1.657 | Acc: 38.28%
|
234 |
-
2025-03-14 18:54:35,033 - train - INFO - Epoch: 47 | Batch: 100 | Loss: 1.543 | Acc: 46.42%
|
235 |
-
2025-03-14 18:54:37,369 - train - INFO - Epoch: 47 | Batch: 200 | Loss: 1.516 | Acc: 47.45%
|
236 |
-
2025-03-14 18:54:39,815 - train - INFO - Epoch: 47 | Batch: 300 | Loss: 1.499 | Acc: 48.16%
|
237 |
-
2025-03-14 18:54:43,735 - train - INFO - Epoch: 47 | Test Loss: 1.527 | Test Acc: 49.94%
|
238 |
-
2025-03-14 18:54:43,988 - train - INFO - Epoch: 48 | Batch: 0 | Loss: 1.510 | Acc: 44.53%
|
239 |
-
2025-03-14 18:54:46,176 - train - INFO - Epoch: 48 | Batch: 100 | Loss: 1.503 | Acc: 48.13%
|
240 |
-
2025-03-14 18:54:48,509 - train - INFO - Epoch: 48 | Batch: 200 | Loss: 1.501 | Acc: 48.09%
|
241 |
-
2025-03-14 18:54:50,812 - train - INFO - Epoch: 48 | Batch: 300 | Loss: 1.490 | Acc: 48.40%
|
242 |
-
2025-03-14 18:54:54,075 - train - INFO - Epoch: 48 | Test Loss: 1.414 | Test Acc: 51.34%
|
243 |
-
2025-03-14 18:55:02,937 - train - INFO - Epoch: 49 | Batch: 0 | Loss: 1.570 | Acc: 38.28%
|
244 |
-
2025-03-14 18:55:05,141 - train - INFO - Epoch: 49 | Batch: 100 | Loss: 1.473 | Acc: 49.60%
|
245 |
-
2025-03-14 18:55:07,346 - train - INFO - Epoch: 49 | Batch: 200 | Loss: 1.474 | Acc: 49.48%
|
246 |
-
2025-03-14 18:55:09,548 - train - INFO - Epoch: 49 | Batch: 300 | Loss: 1.478 | Acc: 49.18%
|
247 |
-
2025-03-14 18:55:12,872 - train - INFO - Epoch: 49 | Test Loss: 1.352 | Test Acc: 53.22%
|
248 |
-
2025-03-14 18:55:13,039 - train - INFO - Epoch: 50 | Batch: 0 | Loss: 1.388 | Acc: 51.56%
|
249 |
-
2025-03-14 18:55:15,328 - train - INFO - Epoch: 50 | Batch: 100 | Loss: 1.490 | Acc: 48.34%
|
250 |
-
2025-03-14 18:55:17,410 - train - INFO - Epoch: 50 | Batch: 200 | Loss: 1.484 | Acc: 48.32%
|
251 |
-
2025-03-14 18:55:19,595 - train - INFO - Epoch: 50 | Batch: 300 | Loss: 1.474 | Acc: 49.08%
|
252 |
-
2025-03-14 18:55:22,981 - train - INFO - Epoch: 50 | Test Loss: 1.513 | Test Acc: 46.94%
|
253 |
-
2025-03-14 18:55:32,176 - train - INFO - 训练完成!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Image/LeNet5/code/train.py
DELETED
@@ -1,63 +0,0 @@
|
|
1 |
-
import sys
|
2 |
-
import os
|
3 |
-
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
-
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
-
from utils.parse_args import parse_args
|
7 |
-
from model import LeNet5
|
8 |
-
|
9 |
-
def main():
|
10 |
-
# 解析命令行参数
|
11 |
-
args = parse_args()
|
12 |
-
|
13 |
-
# 创建模型
|
14 |
-
model = LeNet5()
|
15 |
-
|
16 |
-
if args.train_type == '0':
|
17 |
-
# 获取数据加载器
|
18 |
-
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
|
19 |
-
# 训练模型
|
20 |
-
train_model(
|
21 |
-
model=model,
|
22 |
-
trainloader=trainloader,
|
23 |
-
testloader=testloader,
|
24 |
-
epochs=args.epochs,
|
25 |
-
lr=args.lr,
|
26 |
-
device=f'cuda:{args.gpu}',
|
27 |
-
save_dir='../model',
|
28 |
-
model_name='lenet5',
|
29 |
-
save_type='0',
|
30 |
-
layer_name='conv2',
|
31 |
-
interval = 2
|
32 |
-
)
|
33 |
-
elif args.train_type == '1':
|
34 |
-
train_model_data_augmentation(
|
35 |
-
model,
|
36 |
-
epochs=args.epochs,
|
37 |
-
lr=args.lr,
|
38 |
-
device=f'cuda:{args.gpu}',
|
39 |
-
save_dir='../model',
|
40 |
-
model_name='lenet5',
|
41 |
-
batch_size=args.batch_size,
|
42 |
-
num_workers=args.num_workers,
|
43 |
-
local_dataset_path=args.dataset_path
|
44 |
-
)
|
45 |
-
elif args.train_type == '2':
|
46 |
-
train_model_backdoor(
|
47 |
-
model,
|
48 |
-
poison_ratio=args.poison_ratio,
|
49 |
-
target_label=args.target_label,
|
50 |
-
epochs=args.epochs,
|
51 |
-
lr=args.lr,
|
52 |
-
device=f'cuda:{args.gpu}',
|
53 |
-
save_dir='../model',
|
54 |
-
model_name='lenet5',
|
55 |
-
batch_size=args.batch_size,
|
56 |
-
num_workers=args.num_workers,
|
57 |
-
local_dataset_path=args.dataset_path,
|
58 |
-
layer_name='conv2',
|
59 |
-
interval = 2
|
60 |
-
)
|
61 |
-
|
62 |
-
if __name__ == '__main__':
|
63 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Image/LeNet5/dataset/.gitkeep
DELETED
File without changes
|
Image/LeNet5/model/.gitkeep
DELETED
File without changes
|
Image/LeNet5/model/0/epoch1/embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d655d14885b3382a95cd8f1685db6b4a3e114db764acfe1e8fec0132ccb241b2
|
3 |
-
size 80000128
|
|
|
|
|
|
|
|
Image/LeNet5/model/0/epoch10/embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:665a4d9333b30c8d44f1b314c2c5ba37b6a24555e8d6ce9000f9e15c43dae227
|
3 |
-
size 80000128
|
|
|
|
|
|
|
|
Image/LeNet5/model/0/epoch11/embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:aa27a313f1475dbb461bbcd4d22ef2fe9f792d1a6977d66a5d51afc21fca9c1a
|
3 |
-
size 80000128
|
|
|
|
|
|
|
|
Image/LeNet5/model/0/epoch12/embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1488b8d7523aea773179f4dfb8d3e23a4236364ba30a418e5a76609ac238a596
|
3 |
-
size 80000128
|
|
|
|
|
|
|
|
Image/LeNet5/model/0/epoch13/embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d49e3a95395193b35e150a9438316248e0ee4a369813751067a77829a42b429a
|
3 |
-
size 80000128
|
|
|
|
|
|
|
|