feat:add get_representation.py
Browse files
ResNet-CIFAR10/Classification-normal/scripts/get_representation.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
+
|
11 |
+
用于保存模型训练过程中的各种数据,包括:
|
12 |
+
1. 模型权重 (.pth)
|
13 |
+
2. 高维特征 (representation/*.npy)
|
14 |
+
3. 预测结果 (prediction/*.npy)
|
15 |
+
4. 标签数据 (label/labels.npy)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name,
|
19 |
+
auto_save_embedding=False, layer_name=None,show = False):
|
20 |
+
"""初始化
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model: 要保存的模型实例
|
24 |
+
dataloader: 数据加载器(必须是顺序加载的)
|
25 |
+
device: 计算设备(cpu or gpu)
|
26 |
+
save_dir: 保存根目录
|
27 |
+
model_name: 模型名称
|
28 |
+
"""
|
29 |
+
self.model = model
|
30 |
+
self.dataloader = dataloader
|
31 |
+
self.device = device
|
32 |
+
self.save_dir = save_dir
|
33 |
+
self.model_name = model_name
|
34 |
+
self.auto_save = auto_save_embedding
|
35 |
+
self.layer_name = layer_name
|
36 |
+
|
37 |
+
if show and not layer_name:
|
38 |
+
layer_dimensions = self.show_dimensions()
|
39 |
+
# print(layer_dimensions)
|
40 |
+
|
41 |
+
def show_dimensions(self):
|
42 |
+
"""显示模型中所有层的名称和对应的维度
|
43 |
+
|
44 |
+
这个函数会输出模型中所有层的名称和它们的输出维度,
|
45 |
+
帮助用户选择合适的层来提取特征。
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
layer_dimensions: 包含层名称和维度的字典
|
49 |
+
"""
|
50 |
+
activation = {}
|
51 |
+
layer_dimensions = {}
|
52 |
+
|
53 |
+
def get_activation(name):
|
54 |
+
def hook(model, input, output):
|
55 |
+
activation[name] = output.detach()
|
56 |
+
return hook
|
57 |
+
|
58 |
+
# 注册钩子到所有层
|
59 |
+
handles = []
|
60 |
+
for name, module in self.model.named_modules():
|
61 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
62 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
63 |
+
|
64 |
+
self.model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
# 获取一个batch来分析每层的输出维度
|
67 |
+
inputs, _ = next(iter(self.dataloader))
|
68 |
+
inputs = inputs.to(self.device)
|
69 |
+
_ = self.model(inputs)
|
70 |
+
|
71 |
+
# 分析所有层的输出维度
|
72 |
+
print("\n模型各层的名称和维度:")
|
73 |
+
print("-" * 50)
|
74 |
+
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
|
75 |
+
print("-" * 50)
|
76 |
+
|
77 |
+
for name, feat in activation.items():
|
78 |
+
if feat is None:
|
79 |
+
continue
|
80 |
+
|
81 |
+
# 获取特征维度(展平后)
|
82 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
83 |
+
layer_dimensions[name] = feat_dim
|
84 |
+
# 打印层信息
|
85 |
+
shape_str = str(list(feat.shape))
|
86 |
+
print(f"{name:<40} {feat_dim:<15} {shape_str}")
|
87 |
+
|
88 |
+
print("-" * 50)
|
89 |
+
print("注: 特征维度是将输出张量展平后的维度大小")
|
90 |
+
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
|
91 |
+
print("例如:layer_name='avg_pool'或layer_name='layer4'等")
|
92 |
+
|
93 |
+
# 移除所有钩子
|
94 |
+
for handle in handles:
|
95 |
+
handle.remove()
|
96 |
+
|
97 |
+
return layer_dimensions
|
98 |
+
|
99 |
+
def _extract_features_and_predictions(self):
|
100 |
+
"""提取特征和预测结果
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
features: 高维特征 [样本数, 特征维度]
|
104 |
+
predictions: 预测结果 [样本数, 类别数]
|
105 |
+
"""
|
106 |
+
features = []
|
107 |
+
predictions = []
|
108 |
+
indices = []
|
109 |
+
activation = {}
|
110 |
+
|
111 |
+
def get_activation(name):
|
112 |
+
def hook(model, input, output):
|
113 |
+
# 只在需要时保存激活值,避免内存浪费
|
114 |
+
if name not in activation or activation[name] is None:
|
115 |
+
activation[name] = output.detach()
|
116 |
+
return hook
|
117 |
+
|
118 |
+
# 根据层的名称或维度来选择层
|
119 |
+
|
120 |
+
# 注册钩子到所有层
|
121 |
+
handles = []
|
122 |
+
for name, module in self.model.named_modules():
|
123 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
124 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
125 |
+
|
126 |
+
self.model.eval()
|
127 |
+
with torch.no_grad():
|
128 |
+
# 首先获取一个batch来分析每层的输出维度
|
129 |
+
inputs, _ = next(iter(self.dataloader))
|
130 |
+
inputs = inputs.to(self.device)
|
131 |
+
_ = self.model(inputs)
|
132 |
+
|
133 |
+
# 如果指定了层名,则直接使用该层
|
134 |
+
if self.layer_name is not None:
|
135 |
+
if self.layer_name not in activation:
|
136 |
+
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
|
137 |
+
|
138 |
+
feat = activation[self.layer_name]
|
139 |
+
if feat is None:
|
140 |
+
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
|
141 |
+
|
142 |
+
suitable_layer_name = self.layer_name
|
143 |
+
suitable_dim = feat.view(feat.size(0), -1).size(1)
|
144 |
+
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
145 |
+
else:
|
146 |
+
# 找到维度在指定范围内的层
|
147 |
+
target_dim_range = (256, 2048)
|
148 |
+
suitable_layer_name = None
|
149 |
+
suitable_dim = None
|
150 |
+
|
151 |
+
# 分析所有层的输出维度
|
152 |
+
for name, feat in activation.items():
|
153 |
+
if feat is None:
|
154 |
+
continue
|
155 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
156 |
+
if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
|
157 |
+
suitable_layer_name = name
|
158 |
+
suitable_dim = feat_dim
|
159 |
+
break
|
160 |
+
|
161 |
+
if suitable_layer_name is None:
|
162 |
+
raise ValueError("没有找到合适维度的特征层")
|
163 |
+
|
164 |
+
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
165 |
+
|
166 |
+
# 保存层信息
|
167 |
+
layer_info = {
|
168 |
+
'layer_id': suitable_layer_name,
|
169 |
+
'dim': suitable_dim
|
170 |
+
}
|
171 |
+
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
|
172 |
+
with open(layer_info_path, 'w') as f:
|
173 |
+
json.dump(layer_info, f)
|
174 |
+
|
175 |
+
# 清除第一次运行的激活值
|
176 |
+
activation.clear()
|
177 |
+
|
178 |
+
# 现在处理所有数据
|
179 |
+
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
|
180 |
+
inputs = inputs.to(self.device)
|
181 |
+
outputs = self.model(inputs) # 获取预测结果
|
182 |
+
|
183 |
+
# 获取并处理特征
|
184 |
+
feat = activation[suitable_layer_name]
|
185 |
+
flat_features = torch.flatten(feat, start_dim=1)
|
186 |
+
features.append(flat_features.cpu().numpy())
|
187 |
+
predictions.append(outputs.cpu().numpy())
|
188 |
+
|
189 |
+
# 清除本次的激活值
|
190 |
+
activation.clear()
|
191 |
+
|
192 |
+
# 移除所有钩子
|
193 |
+
for handle in handles:
|
194 |
+
handle.remove()
|
195 |
+
|
196 |
+
if len(features) > 0:
|
197 |
+
features = np.vstack(features)
|
198 |
+
predictions = np.vstack(predictions)
|
199 |
+
return features, predictions
|
200 |
+
else:
|
201 |
+
return np.array([]), np.array([])
|
202 |
+
|
203 |
+
def save_lables_index(self, path):
|
204 |
+
"""保存标签数据和索引信息
|
205 |
+
|
206 |
+
Args:
|
207 |
+
path: 保存路径
|
208 |
+
"""
|
209 |
+
os.makedirs(path, exist_ok=True)
|
210 |
+
labels_path = os.path.join(path, 'labels.npy')
|
211 |
+
index_path = os.path.join(path, 'index.json')
|
212 |
+
|
213 |
+
# 尝试从不同的属性获取标签
|
214 |
+
try:
|
215 |
+
if hasattr(self.dataloader.dataset, 'targets'):
|
216 |
+
# CIFAR10/CIFAR100使用targets属性
|
217 |
+
labels = np.array(self.dataloader.dataset.targets)
|
218 |
+
elif hasattr(self.dataloader.dataset, 'labels'):
|
219 |
+
# 某些数据集使用labels属性
|
220 |
+
labels = np.array(self.dataloader.dataset.labels)
|
221 |
+
else:
|
222 |
+
# 如果上面的方法都不起作用,则从数据加载器中收集标签
|
223 |
+
labels = []
|
224 |
+
for _, batch_labels in self.dataloader:
|
225 |
+
labels.append(batch_labels.numpy())
|
226 |
+
labels = np.concatenate(labels)
|
227 |
+
|
228 |
+
# 保存标签数据
|
229 |
+
np.save(labels_path, labels)
|
230 |
+
print(f"标签数据已保存到 {labels_path}")
|
231 |
+
|
232 |
+
# 创建数据集索引
|
233 |
+
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
+
|
236 |
+
# 创建索引字典
|
237 |
+
index_dict = {
|
238 |
+
"train": indices, # 所有数据默认为训练集
|
239 |
+
"test": [], # 初始为空
|
240 |
+
"validation": [] # 初始为空
|
241 |
+
}
|
242 |
+
|
243 |
+
# 保存索引到JSON文件
|
244 |
+
with open(index_path, 'w') as f:
|
245 |
+
json.dump(index_dict, f, indent=4)
|
246 |
+
|
247 |
+
print(f"数据集索引已保存到 {index_path}")
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"保存标签和索引时出错: {e}")
|
251 |
+
|
252 |
+
def save_checkpoint_embeddings_predictions(self, model = None):
|
253 |
+
"""保存所有数据"""
|
254 |
+
if model is not None:
|
255 |
+
self.model = model
|
256 |
+
# 保存模型权重
|
257 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
258 |
+
model_path = os.path.join(self.save_dir,'model.pth')
|
259 |
+
torch.save(self.model.state_dict(), model_path)
|
260 |
+
|
261 |
+
if self.auto_save:
|
262 |
+
# 提取并保存特征和预测结果
|
263 |
+
features, predictions = self._extract_features_and_predictions()
|
264 |
+
|
265 |
+
# 保存特征
|
266 |
+
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
|
267 |
+
# 保存预测结果
|
268 |
+
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
|
269 |
+
print("\n保存了以下数据:")
|
270 |
+
print(f"- 模型权重: {model_path}")
|
271 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
272 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
ResNet-CIFAR10/Classification-normal/scripts/train.py
CHANGED
@@ -10,15 +10,10 @@ import logging
|
|
10 |
import numpy as np
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
-
# 将项目根目录添加到Python路径中
|
14 |
-
current_dir = Path(__file__).resolve().parent
|
15 |
-
project_root = current_dir.parent.parent.parent
|
16 |
-
sys.path.append(str(project_root))
|
17 |
-
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
18 |
|
19 |
from dataset_utils import get_cifar10_dataloaders
|
20 |
from model import ResNet18
|
21 |
-
from
|
22 |
|
23 |
def setup_logger(log_file):
|
24 |
"""配置日志记录器,如果日志文件存在则覆盖
|
|
|
10 |
import numpy as np
|
11 |
from tqdm import tqdm
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
from dataset_utils import get_cifar10_dataloaders
|
15 |
from model import ResNet18
|
16 |
+
from get_representation import time_travel_saver
|
17 |
|
18 |
def setup_logger(log_file):
|
19 |
"""配置日志记录器,如果日志文件存在则覆盖
|
ttv_utils/save_embeddings.py
CHANGED
@@ -6,7 +6,7 @@ import json
|
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
class time_travel_saver:
|
9 |
-
"""
|
10 |
|
11 |
用于保存模型训练过程中的各种数据,包括:
|
12 |
1. 模型权重 (.pth)
|
|
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
|
11 |
用于保存模型训练过程中的各种数据,包括:
|
12 |
1. 模型权重 (.pth)
|