RRFRRF2 commited on
Commit
858c41b
·
1 Parent(s): 9e14a76

feat:add get_representation.py

Browse files
ResNet-CIFAR10/Classification-normal/scripts/get_representation.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ import os
5
+ import json
6
+ from tqdm import tqdm
7
+
8
+ class time_travel_saver:
9
+ """可视化数据提取器
10
+
11
+ 用于保存模型训练过程中的各种数据,包括:
12
+ 1. 模型权重 (.pth)
13
+ 2. 高维特征 (representation/*.npy)
14
+ 3. 预测结果 (prediction/*.npy)
15
+ 4. 标签数据 (label/labels.npy)
16
+ """
17
+
18
+ def __init__(self, model, dataloader, device, save_dir, model_name,
19
+ auto_save_embedding=False, layer_name=None,show = False):
20
+ """初始化
21
+
22
+ Args:
23
+ model: 要保存的模型实例
24
+ dataloader: 数据加载器(必须是顺序加载的)
25
+ device: 计算设备(cpu or gpu)
26
+ save_dir: 保存根目录
27
+ model_name: 模型名称
28
+ """
29
+ self.model = model
30
+ self.dataloader = dataloader
31
+ self.device = device
32
+ self.save_dir = save_dir
33
+ self.model_name = model_name
34
+ self.auto_save = auto_save_embedding
35
+ self.layer_name = layer_name
36
+
37
+ if show and not layer_name:
38
+ layer_dimensions = self.show_dimensions()
39
+ # print(layer_dimensions)
40
+
41
+ def show_dimensions(self):
42
+ """显示模型中所有层的名称和对应的维度
43
+
44
+ 这个函数会输出模型中所有层的名称和它们的输出维度,
45
+ 帮助用户选择合适的层来提取特征。
46
+
47
+ Returns:
48
+ layer_dimensions: 包含层名称和维度的字典
49
+ """
50
+ activation = {}
51
+ layer_dimensions = {}
52
+
53
+ def get_activation(name):
54
+ def hook(model, input, output):
55
+ activation[name] = output.detach()
56
+ return hook
57
+
58
+ # 注册钩子到所有层
59
+ handles = []
60
+ for name, module in self.model.named_modules():
61
+ if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
62
+ handles.append(module.register_forward_hook(get_activation(name)))
63
+
64
+ self.model.eval()
65
+ with torch.no_grad():
66
+ # 获取一个batch来分析每层的输出维度
67
+ inputs, _ = next(iter(self.dataloader))
68
+ inputs = inputs.to(self.device)
69
+ _ = self.model(inputs)
70
+
71
+ # 分析所有层的输出维度
72
+ print("\n模型各层的名称和维度:")
73
+ print("-" * 50)
74
+ print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
75
+ print("-" * 50)
76
+
77
+ for name, feat in activation.items():
78
+ if feat is None:
79
+ continue
80
+
81
+ # 获取特征维度(展平后)
82
+ feat_dim = feat.view(feat.size(0), -1).size(1)
83
+ layer_dimensions[name] = feat_dim
84
+ # 打印层信息
85
+ shape_str = str(list(feat.shape))
86
+ print(f"{name:<40} {feat_dim:<15} {shape_str}")
87
+
88
+ print("-" * 50)
89
+ print("注: 特征维度是将输出张量展平后的维度大小")
90
+ print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
91
+ print("例如:layer_name='avg_pool'或layer_name='layer4'等")
92
+
93
+ # 移除所有钩子
94
+ for handle in handles:
95
+ handle.remove()
96
+
97
+ return layer_dimensions
98
+
99
+ def _extract_features_and_predictions(self):
100
+ """提取特征和预测结果
101
+
102
+ Returns:
103
+ features: 高维特征 [样本数, 特征维度]
104
+ predictions: 预测结果 [样本数, 类别数]
105
+ """
106
+ features = []
107
+ predictions = []
108
+ indices = []
109
+ activation = {}
110
+
111
+ def get_activation(name):
112
+ def hook(model, input, output):
113
+ # 只在需要时保存激活值,避免内存浪费
114
+ if name not in activation or activation[name] is None:
115
+ activation[name] = output.detach()
116
+ return hook
117
+
118
+ # 根据层的名称或维度来选择层
119
+
120
+ # 注册钩子到所有层
121
+ handles = []
122
+ for name, module in self.model.named_modules():
123
+ if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
124
+ handles.append(module.register_forward_hook(get_activation(name)))
125
+
126
+ self.model.eval()
127
+ with torch.no_grad():
128
+ # 首先获取一个batch来分析每层的输出维度
129
+ inputs, _ = next(iter(self.dataloader))
130
+ inputs = inputs.to(self.device)
131
+ _ = self.model(inputs)
132
+
133
+ # 如果指定了层名,则直接使用该层
134
+ if self.layer_name is not None:
135
+ if self.layer_name not in activation:
136
+ raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
137
+
138
+ feat = activation[self.layer_name]
139
+ if feat is None:
140
+ raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
141
+
142
+ suitable_layer_name = self.layer_name
143
+ suitable_dim = feat.view(feat.size(0), -1).size(1)
144
+ print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
145
+ else:
146
+ # 找到维度在指定范围内的层
147
+ target_dim_range = (256, 2048)
148
+ suitable_layer_name = None
149
+ suitable_dim = None
150
+
151
+ # 分析所有层的输出维度
152
+ for name, feat in activation.items():
153
+ if feat is None:
154
+ continue
155
+ feat_dim = feat.view(feat.size(0), -1).size(1)
156
+ if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
157
+ suitable_layer_name = name
158
+ suitable_dim = feat_dim
159
+ break
160
+
161
+ if suitable_layer_name is None:
162
+ raise ValueError("没有找到合适维度的特征层")
163
+
164
+ print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
165
+
166
+ # 保存层信息
167
+ layer_info = {
168
+ 'layer_id': suitable_layer_name,
169
+ 'dim': suitable_dim
170
+ }
171
+ layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
172
+ with open(layer_info_path, 'w') as f:
173
+ json.dump(layer_info, f)
174
+
175
+ # 清除第一次运行的激活值
176
+ activation.clear()
177
+
178
+ # 现在处理所有数据
179
+ for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
180
+ inputs = inputs.to(self.device)
181
+ outputs = self.model(inputs) # 获取预测结果
182
+
183
+ # 获取并处理特征
184
+ feat = activation[suitable_layer_name]
185
+ flat_features = torch.flatten(feat, start_dim=1)
186
+ features.append(flat_features.cpu().numpy())
187
+ predictions.append(outputs.cpu().numpy())
188
+
189
+ # 清除本次的激活值
190
+ activation.clear()
191
+
192
+ # 移除所有钩子
193
+ for handle in handles:
194
+ handle.remove()
195
+
196
+ if len(features) > 0:
197
+ features = np.vstack(features)
198
+ predictions = np.vstack(predictions)
199
+ return features, predictions
200
+ else:
201
+ return np.array([]), np.array([])
202
+
203
+ def save_lables_index(self, path):
204
+ """保存标签数据和索引信息
205
+
206
+ Args:
207
+ path: 保存路径
208
+ """
209
+ os.makedirs(path, exist_ok=True)
210
+ labels_path = os.path.join(path, 'labels.npy')
211
+ index_path = os.path.join(path, 'index.json')
212
+
213
+ # 尝试从不同的属性获取标签
214
+ try:
215
+ if hasattr(self.dataloader.dataset, 'targets'):
216
+ # CIFAR10/CIFAR100使用targets属性
217
+ labels = np.array(self.dataloader.dataset.targets)
218
+ elif hasattr(self.dataloader.dataset, 'labels'):
219
+ # 某些数据集使用labels属性
220
+ labels = np.array(self.dataloader.dataset.labels)
221
+ else:
222
+ # 如果上面的方法都不起作用,则从数据加载器中收集标签
223
+ labels = []
224
+ for _, batch_labels in self.dataloader:
225
+ labels.append(batch_labels.numpy())
226
+ labels = np.concatenate(labels)
227
+
228
+ # 保存标签数据
229
+ np.save(labels_path, labels)
230
+ print(f"标签数据已保存到 {labels_path}")
231
+
232
+ # 创建数据集索引
233
+ num_samples = len(labels)
234
+ indices = list(range(num_samples))
235
+
236
+ # 创建索引字典
237
+ index_dict = {
238
+ "train": indices, # 所有数据默认为训练集
239
+ "test": [], # 初始为空
240
+ "validation": [] # 初始为空
241
+ }
242
+
243
+ # 保存索引到JSON文件
244
+ with open(index_path, 'w') as f:
245
+ json.dump(index_dict, f, indent=4)
246
+
247
+ print(f"数据集索引已保存到 {index_path}")
248
+
249
+ except Exception as e:
250
+ print(f"保存标签和索引时出错: {e}")
251
+
252
+ def save_checkpoint_embeddings_predictions(self, model = None):
253
+ """保存所有数据"""
254
+ if model is not None:
255
+ self.model = model
256
+ # 保存模型权重
257
+ os.makedirs(self.save_dir, exist_ok=True)
258
+ model_path = os.path.join(self.save_dir,'model.pth')
259
+ torch.save(self.model.state_dict(), model_path)
260
+
261
+ if self.auto_save:
262
+ # 提取并保存特征和预测结果
263
+ features, predictions = self._extract_features_and_predictions()
264
+
265
+ # 保存特征
266
+ np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
267
+ # 保存预测结果
268
+ np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
269
+ print("\n保存了以下数据:")
270
+ print(f"- 模型权重: {model_path}")
271
+ print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
272
+ print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
ResNet-CIFAR10/Classification-normal/scripts/train.py CHANGED
@@ -10,15 +10,10 @@ import logging
10
  import numpy as np
11
  from tqdm import tqdm
12
 
13
- # 将项目根目录添加到Python路径中
14
- current_dir = Path(__file__).resolve().parent
15
- project_root = current_dir.parent.parent.parent
16
- sys.path.append(str(project_root))
17
- sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
18
 
19
  from dataset_utils import get_cifar10_dataloaders
20
  from model import ResNet18
21
- from ttv_utils import time_travel_saver
22
 
23
  def setup_logger(log_file):
24
  """配置日志记录器,如果日志文件存在则覆盖
 
10
  import numpy as np
11
  from tqdm import tqdm
12
 
 
 
 
 
 
13
 
14
  from dataset_utils import get_cifar10_dataloaders
15
  from model import ResNet18
16
+ from get_representation import time_travel_saver
17
 
18
  def setup_logger(log_file):
19
  """配置日志记录器,如果日志文件存在则覆盖
ttv_utils/save_embeddings.py CHANGED
@@ -6,7 +6,7 @@ import json
6
  from tqdm import tqdm
7
 
8
  class time_travel_saver:
9
- """可视化数据保存类
10
 
11
  用于保存模型训练过程中的各种数据,包括:
12
  1. 模型权重 (.pth)
 
6
  from tqdm import tqdm
7
 
8
  class time_travel_saver:
9
+ """可视化数据提取器
10
 
11
  用于保存模型训练过程中的各种数据,包括:
12
  1. 模型权重 (.pth)