feat:add cifar10mini just 1000 nodes
Browse files- .gitignore +2 -2
- ResNet-CIFAR10/Classification-mini/dataset/index.json +1006 -0
- ResNet-CIFAR10/Classification-mini/dataset/info.json +4 -0
- ResNet-CIFAR10/Classification-mini/dataset/labels.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_1/embeddings.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_1/model.pth +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_1/predictions.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_2/embeddings.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_2/model.pth +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_2/predictions.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_3/embeddings.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_3/model.pth +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/epoch_3/predictions.npy +3 -0
- ResNet-CIFAR10/Classification-mini/epochs/layer_info.json +1 -0
- ResNet-CIFAR10/Classification-mini/epochs/train.log +6 -0
- ResNet-CIFAR10/Classification-mini/readme.md +54 -0
- ResNet-CIFAR10/Classification-mini/scripts/dataset_utils.py +59 -0
- ResNet-CIFAR10/Classification-mini/scripts/get_raw_data.py +82 -0
- ResNet-CIFAR10/Classification-mini/scripts/get_representation.py +272 -0
- ResNet-CIFAR10/Classification-mini/scripts/model.py +308 -0
- ResNet-CIFAR10/Classification-mini/scripts/train.py +225 -0
- ResNet-CIFAR10/Classification-mini/scripts/train.yaml +7 -0
.gitignore
CHANGED
@@ -3,5 +3,5 @@ _pycache_
|
|
3 |
model-CIFAR10
|
4 |
|
5 |
#cifar10
|
6 |
-
cifar-10-batches-py
|
7 |
-
cifar-10-python.tar.gz
|
|
|
3 |
model-CIFAR10
|
4 |
|
5 |
#cifar10
|
6 |
+
**/cifar-10-batches-py/
|
7 |
+
**/cifar-10-python.tar.gz
|
ResNet-CIFAR10/Classification-mini/dataset/index.json
ADDED
@@ -0,0 +1,1006 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": [
|
3 |
+
0,
|
4 |
+
1,
|
5 |
+
2,
|
6 |
+
3,
|
7 |
+
4,
|
8 |
+
5,
|
9 |
+
6,
|
10 |
+
7,
|
11 |
+
8,
|
12 |
+
9,
|
13 |
+
10,
|
14 |
+
11,
|
15 |
+
12,
|
16 |
+
13,
|
17 |
+
14,
|
18 |
+
15,
|
19 |
+
16,
|
20 |
+
17,
|
21 |
+
18,
|
22 |
+
19,
|
23 |
+
20,
|
24 |
+
21,
|
25 |
+
22,
|
26 |
+
23,
|
27 |
+
24,
|
28 |
+
25,
|
29 |
+
26,
|
30 |
+
27,
|
31 |
+
28,
|
32 |
+
29,
|
33 |
+
30,
|
34 |
+
31,
|
35 |
+
32,
|
36 |
+
33,
|
37 |
+
34,
|
38 |
+
35,
|
39 |
+
36,
|
40 |
+
37,
|
41 |
+
38,
|
42 |
+
39,
|
43 |
+
40,
|
44 |
+
41,
|
45 |
+
42,
|
46 |
+
43,
|
47 |
+
44,
|
48 |
+
45,
|
49 |
+
46,
|
50 |
+
47,
|
51 |
+
48,
|
52 |
+
49,
|
53 |
+
50,
|
54 |
+
51,
|
55 |
+
52,
|
56 |
+
53,
|
57 |
+
54,
|
58 |
+
55,
|
59 |
+
56,
|
60 |
+
57,
|
61 |
+
58,
|
62 |
+
59,
|
63 |
+
60,
|
64 |
+
61,
|
65 |
+
62,
|
66 |
+
63,
|
67 |
+
64,
|
68 |
+
65,
|
69 |
+
66,
|
70 |
+
67,
|
71 |
+
68,
|
72 |
+
69,
|
73 |
+
70,
|
74 |
+
71,
|
75 |
+
72,
|
76 |
+
73,
|
77 |
+
74,
|
78 |
+
75,
|
79 |
+
76,
|
80 |
+
77,
|
81 |
+
78,
|
82 |
+
79,
|
83 |
+
80,
|
84 |
+
81,
|
85 |
+
82,
|
86 |
+
83,
|
87 |
+
84,
|
88 |
+
85,
|
89 |
+
86,
|
90 |
+
87,
|
91 |
+
88,
|
92 |
+
89,
|
93 |
+
90,
|
94 |
+
91,
|
95 |
+
92,
|
96 |
+
93,
|
97 |
+
94,
|
98 |
+
95,
|
99 |
+
96,
|
100 |
+
97,
|
101 |
+
98,
|
102 |
+
99,
|
103 |
+
100,
|
104 |
+
101,
|
105 |
+
102,
|
106 |
+
103,
|
107 |
+
104,
|
108 |
+
105,
|
109 |
+
106,
|
110 |
+
107,
|
111 |
+
108,
|
112 |
+
109,
|
113 |
+
110,
|
114 |
+
111,
|
115 |
+
112,
|
116 |
+
113,
|
117 |
+
114,
|
118 |
+
115,
|
119 |
+
116,
|
120 |
+
117,
|
121 |
+
118,
|
122 |
+
119,
|
123 |
+
120,
|
124 |
+
121,
|
125 |
+
122,
|
126 |
+
123,
|
127 |
+
124,
|
128 |
+
125,
|
129 |
+
126,
|
130 |
+
127,
|
131 |
+
128,
|
132 |
+
129,
|
133 |
+
130,
|
134 |
+
131,
|
135 |
+
132,
|
136 |
+
133,
|
137 |
+
134,
|
138 |
+
135,
|
139 |
+
136,
|
140 |
+
137,
|
141 |
+
138,
|
142 |
+
139,
|
143 |
+
140,
|
144 |
+
141,
|
145 |
+
142,
|
146 |
+
143,
|
147 |
+
144,
|
148 |
+
145,
|
149 |
+
146,
|
150 |
+
147,
|
151 |
+
148,
|
152 |
+
149,
|
153 |
+
150,
|
154 |
+
151,
|
155 |
+
152,
|
156 |
+
153,
|
157 |
+
154,
|
158 |
+
155,
|
159 |
+
156,
|
160 |
+
157,
|
161 |
+
158,
|
162 |
+
159,
|
163 |
+
160,
|
164 |
+
161,
|
165 |
+
162,
|
166 |
+
163,
|
167 |
+
164,
|
168 |
+
165,
|
169 |
+
166,
|
170 |
+
167,
|
171 |
+
168,
|
172 |
+
169,
|
173 |
+
170,
|
174 |
+
171,
|
175 |
+
172,
|
176 |
+
173,
|
177 |
+
174,
|
178 |
+
175,
|
179 |
+
176,
|
180 |
+
177,
|
181 |
+
178,
|
182 |
+
179,
|
183 |
+
180,
|
184 |
+
181,
|
185 |
+
182,
|
186 |
+
183,
|
187 |
+
184,
|
188 |
+
185,
|
189 |
+
186,
|
190 |
+
187,
|
191 |
+
188,
|
192 |
+
189,
|
193 |
+
190,
|
194 |
+
191,
|
195 |
+
192,
|
196 |
+
193,
|
197 |
+
194,
|
198 |
+
195,
|
199 |
+
196,
|
200 |
+
197,
|
201 |
+
198,
|
202 |
+
199,
|
203 |
+
200,
|
204 |
+
201,
|
205 |
+
202,
|
206 |
+
203,
|
207 |
+
204,
|
208 |
+
205,
|
209 |
+
206,
|
210 |
+
207,
|
211 |
+
208,
|
212 |
+
209,
|
213 |
+
210,
|
214 |
+
211,
|
215 |
+
212,
|
216 |
+
213,
|
217 |
+
214,
|
218 |
+
215,
|
219 |
+
216,
|
220 |
+
217,
|
221 |
+
218,
|
222 |
+
219,
|
223 |
+
220,
|
224 |
+
221,
|
225 |
+
222,
|
226 |
+
223,
|
227 |
+
224,
|
228 |
+
225,
|
229 |
+
226,
|
230 |
+
227,
|
231 |
+
228,
|
232 |
+
229,
|
233 |
+
230,
|
234 |
+
231,
|
235 |
+
232,
|
236 |
+
233,
|
237 |
+
234,
|
238 |
+
235,
|
239 |
+
236,
|
240 |
+
237,
|
241 |
+
238,
|
242 |
+
239,
|
243 |
+
240,
|
244 |
+
241,
|
245 |
+
242,
|
246 |
+
243,
|
247 |
+
244,
|
248 |
+
245,
|
249 |
+
246,
|
250 |
+
247,
|
251 |
+
248,
|
252 |
+
249,
|
253 |
+
250,
|
254 |
+
251,
|
255 |
+
252,
|
256 |
+
253,
|
257 |
+
254,
|
258 |
+
255,
|
259 |
+
256,
|
260 |
+
257,
|
261 |
+
258,
|
262 |
+
259,
|
263 |
+
260,
|
264 |
+
261,
|
265 |
+
262,
|
266 |
+
263,
|
267 |
+
264,
|
268 |
+
265,
|
269 |
+
266,
|
270 |
+
267,
|
271 |
+
268,
|
272 |
+
269,
|
273 |
+
270,
|
274 |
+
271,
|
275 |
+
272,
|
276 |
+
273,
|
277 |
+
274,
|
278 |
+
275,
|
279 |
+
276,
|
280 |
+
277,
|
281 |
+
278,
|
282 |
+
279,
|
283 |
+
280,
|
284 |
+
281,
|
285 |
+
282,
|
286 |
+
283,
|
287 |
+
284,
|
288 |
+
285,
|
289 |
+
286,
|
290 |
+
287,
|
291 |
+
288,
|
292 |
+
289,
|
293 |
+
290,
|
294 |
+
291,
|
295 |
+
292,
|
296 |
+
293,
|
297 |
+
294,
|
298 |
+
295,
|
299 |
+
296,
|
300 |
+
297,
|
301 |
+
298,
|
302 |
+
299,
|
303 |
+
300,
|
304 |
+
301,
|
305 |
+
302,
|
306 |
+
303,
|
307 |
+
304,
|
308 |
+
305,
|
309 |
+
306,
|
310 |
+
307,
|
311 |
+
308,
|
312 |
+
309,
|
313 |
+
310,
|
314 |
+
311,
|
315 |
+
312,
|
316 |
+
313,
|
317 |
+
314,
|
318 |
+
315,
|
319 |
+
316,
|
320 |
+
317,
|
321 |
+
318,
|
322 |
+
319,
|
323 |
+
320,
|
324 |
+
321,
|
325 |
+
322,
|
326 |
+
323,
|
327 |
+
324,
|
328 |
+
325,
|
329 |
+
326,
|
330 |
+
327,
|
331 |
+
328,
|
332 |
+
329,
|
333 |
+
330,
|
334 |
+
331,
|
335 |
+
332,
|
336 |
+
333,
|
337 |
+
334,
|
338 |
+
335,
|
339 |
+
336,
|
340 |
+
337,
|
341 |
+
338,
|
342 |
+
339,
|
343 |
+
340,
|
344 |
+
341,
|
345 |
+
342,
|
346 |
+
343,
|
347 |
+
344,
|
348 |
+
345,
|
349 |
+
346,
|
350 |
+
347,
|
351 |
+
348,
|
352 |
+
349,
|
353 |
+
350,
|
354 |
+
351,
|
355 |
+
352,
|
356 |
+
353,
|
357 |
+
354,
|
358 |
+
355,
|
359 |
+
356,
|
360 |
+
357,
|
361 |
+
358,
|
362 |
+
359,
|
363 |
+
360,
|
364 |
+
361,
|
365 |
+
362,
|
366 |
+
363,
|
367 |
+
364,
|
368 |
+
365,
|
369 |
+
366,
|
370 |
+
367,
|
371 |
+
368,
|
372 |
+
369,
|
373 |
+
370,
|
374 |
+
371,
|
375 |
+
372,
|
376 |
+
373,
|
377 |
+
374,
|
378 |
+
375,
|
379 |
+
376,
|
380 |
+
377,
|
381 |
+
378,
|
382 |
+
379,
|
383 |
+
380,
|
384 |
+
381,
|
385 |
+
382,
|
386 |
+
383,
|
387 |
+
384,
|
388 |
+
385,
|
389 |
+
386,
|
390 |
+
387,
|
391 |
+
388,
|
392 |
+
389,
|
393 |
+
390,
|
394 |
+
391,
|
395 |
+
392,
|
396 |
+
393,
|
397 |
+
394,
|
398 |
+
395,
|
399 |
+
396,
|
400 |
+
397,
|
401 |
+
398,
|
402 |
+
399,
|
403 |
+
400,
|
404 |
+
401,
|
405 |
+
402,
|
406 |
+
403,
|
407 |
+
404,
|
408 |
+
405,
|
409 |
+
406,
|
410 |
+
407,
|
411 |
+
408,
|
412 |
+
409,
|
413 |
+
410,
|
414 |
+
411,
|
415 |
+
412,
|
416 |
+
413,
|
417 |
+
414,
|
418 |
+
415,
|
419 |
+
416,
|
420 |
+
417,
|
421 |
+
418,
|
422 |
+
419,
|
423 |
+
420,
|
424 |
+
421,
|
425 |
+
422,
|
426 |
+
423,
|
427 |
+
424,
|
428 |
+
425,
|
429 |
+
426,
|
430 |
+
427,
|
431 |
+
428,
|
432 |
+
429,
|
433 |
+
430,
|
434 |
+
431,
|
435 |
+
432,
|
436 |
+
433,
|
437 |
+
434,
|
438 |
+
435,
|
439 |
+
436,
|
440 |
+
437,
|
441 |
+
438,
|
442 |
+
439,
|
443 |
+
440,
|
444 |
+
441,
|
445 |
+
442,
|
446 |
+
443,
|
447 |
+
444,
|
448 |
+
445,
|
449 |
+
446,
|
450 |
+
447,
|
451 |
+
448,
|
452 |
+
449,
|
453 |
+
450,
|
454 |
+
451,
|
455 |
+
452,
|
456 |
+
453,
|
457 |
+
454,
|
458 |
+
455,
|
459 |
+
456,
|
460 |
+
457,
|
461 |
+
458,
|
462 |
+
459,
|
463 |
+
460,
|
464 |
+
461,
|
465 |
+
462,
|
466 |
+
463,
|
467 |
+
464,
|
468 |
+
465,
|
469 |
+
466,
|
470 |
+
467,
|
471 |
+
468,
|
472 |
+
469,
|
473 |
+
470,
|
474 |
+
471,
|
475 |
+
472,
|
476 |
+
473,
|
477 |
+
474,
|
478 |
+
475,
|
479 |
+
476,
|
480 |
+
477,
|
481 |
+
478,
|
482 |
+
479,
|
483 |
+
480,
|
484 |
+
481,
|
485 |
+
482,
|
486 |
+
483,
|
487 |
+
484,
|
488 |
+
485,
|
489 |
+
486,
|
490 |
+
487,
|
491 |
+
488,
|
492 |
+
489,
|
493 |
+
490,
|
494 |
+
491,
|
495 |
+
492,
|
496 |
+
493,
|
497 |
+
494,
|
498 |
+
495,
|
499 |
+
496,
|
500 |
+
497,
|
501 |
+
498,
|
502 |
+
499,
|
503 |
+
500,
|
504 |
+
501,
|
505 |
+
502,
|
506 |
+
503,
|
507 |
+
504,
|
508 |
+
505,
|
509 |
+
506,
|
510 |
+
507,
|
511 |
+
508,
|
512 |
+
509,
|
513 |
+
510,
|
514 |
+
511,
|
515 |
+
512,
|
516 |
+
513,
|
517 |
+
514,
|
518 |
+
515,
|
519 |
+
516,
|
520 |
+
517,
|
521 |
+
518,
|
522 |
+
519,
|
523 |
+
520,
|
524 |
+
521,
|
525 |
+
522,
|
526 |
+
523,
|
527 |
+
524,
|
528 |
+
525,
|
529 |
+
526,
|
530 |
+
527,
|
531 |
+
528,
|
532 |
+
529,
|
533 |
+
530,
|
534 |
+
531,
|
535 |
+
532,
|
536 |
+
533,
|
537 |
+
534,
|
538 |
+
535,
|
539 |
+
536,
|
540 |
+
537,
|
541 |
+
538,
|
542 |
+
539,
|
543 |
+
540,
|
544 |
+
541,
|
545 |
+
542,
|
546 |
+
543,
|
547 |
+
544,
|
548 |
+
545,
|
549 |
+
546,
|
550 |
+
547,
|
551 |
+
548,
|
552 |
+
549,
|
553 |
+
550,
|
554 |
+
551,
|
555 |
+
552,
|
556 |
+
553,
|
557 |
+
554,
|
558 |
+
555,
|
559 |
+
556,
|
560 |
+
557,
|
561 |
+
558,
|
562 |
+
559,
|
563 |
+
560,
|
564 |
+
561,
|
565 |
+
562,
|
566 |
+
563,
|
567 |
+
564,
|
568 |
+
565,
|
569 |
+
566,
|
570 |
+
567,
|
571 |
+
568,
|
572 |
+
569,
|
573 |
+
570,
|
574 |
+
571,
|
575 |
+
572,
|
576 |
+
573,
|
577 |
+
574,
|
578 |
+
575,
|
579 |
+
576,
|
580 |
+
577,
|
581 |
+
578,
|
582 |
+
579,
|
583 |
+
580,
|
584 |
+
581,
|
585 |
+
582,
|
586 |
+
583,
|
587 |
+
584,
|
588 |
+
585,
|
589 |
+
586,
|
590 |
+
587,
|
591 |
+
588,
|
592 |
+
589,
|
593 |
+
590,
|
594 |
+
591,
|
595 |
+
592,
|
596 |
+
593,
|
597 |
+
594,
|
598 |
+
595,
|
599 |
+
596,
|
600 |
+
597,
|
601 |
+
598,
|
602 |
+
599,
|
603 |
+
600,
|
604 |
+
601,
|
605 |
+
602,
|
606 |
+
603,
|
607 |
+
604,
|
608 |
+
605,
|
609 |
+
606,
|
610 |
+
607,
|
611 |
+
608,
|
612 |
+
609,
|
613 |
+
610,
|
614 |
+
611,
|
615 |
+
612,
|
616 |
+
613,
|
617 |
+
614,
|
618 |
+
615,
|
619 |
+
616,
|
620 |
+
617,
|
621 |
+
618,
|
622 |
+
619,
|
623 |
+
620,
|
624 |
+
621,
|
625 |
+
622,
|
626 |
+
623,
|
627 |
+
624,
|
628 |
+
625,
|
629 |
+
626,
|
630 |
+
627,
|
631 |
+
628,
|
632 |
+
629,
|
633 |
+
630,
|
634 |
+
631,
|
635 |
+
632,
|
636 |
+
633,
|
637 |
+
634,
|
638 |
+
635,
|
639 |
+
636,
|
640 |
+
637,
|
641 |
+
638,
|
642 |
+
639,
|
643 |
+
640,
|
644 |
+
641,
|
645 |
+
642,
|
646 |
+
643,
|
647 |
+
644,
|
648 |
+
645,
|
649 |
+
646,
|
650 |
+
647,
|
651 |
+
648,
|
652 |
+
649,
|
653 |
+
650,
|
654 |
+
651,
|
655 |
+
652,
|
656 |
+
653,
|
657 |
+
654,
|
658 |
+
655,
|
659 |
+
656,
|
660 |
+
657,
|
661 |
+
658,
|
662 |
+
659,
|
663 |
+
660,
|
664 |
+
661,
|
665 |
+
662,
|
666 |
+
663,
|
667 |
+
664,
|
668 |
+
665,
|
669 |
+
666,
|
670 |
+
667,
|
671 |
+
668,
|
672 |
+
669,
|
673 |
+
670,
|
674 |
+
671,
|
675 |
+
672,
|
676 |
+
673,
|
677 |
+
674,
|
678 |
+
675,
|
679 |
+
676,
|
680 |
+
677,
|
681 |
+
678,
|
682 |
+
679,
|
683 |
+
680,
|
684 |
+
681,
|
685 |
+
682,
|
686 |
+
683,
|
687 |
+
684,
|
688 |
+
685,
|
689 |
+
686,
|
690 |
+
687,
|
691 |
+
688,
|
692 |
+
689,
|
693 |
+
690,
|
694 |
+
691,
|
695 |
+
692,
|
696 |
+
693,
|
697 |
+
694,
|
698 |
+
695,
|
699 |
+
696,
|
700 |
+
697,
|
701 |
+
698,
|
702 |
+
699,
|
703 |
+
700,
|
704 |
+
701,
|
705 |
+
702,
|
706 |
+
703,
|
707 |
+
704,
|
708 |
+
705,
|
709 |
+
706,
|
710 |
+
707,
|
711 |
+
708,
|
712 |
+
709,
|
713 |
+
710,
|
714 |
+
711,
|
715 |
+
712,
|
716 |
+
713,
|
717 |
+
714,
|
718 |
+
715,
|
719 |
+
716,
|
720 |
+
717,
|
721 |
+
718,
|
722 |
+
719,
|
723 |
+
720,
|
724 |
+
721,
|
725 |
+
722,
|
726 |
+
723,
|
727 |
+
724,
|
728 |
+
725,
|
729 |
+
726,
|
730 |
+
727,
|
731 |
+
728,
|
732 |
+
729,
|
733 |
+
730,
|
734 |
+
731,
|
735 |
+
732,
|
736 |
+
733,
|
737 |
+
734,
|
738 |
+
735,
|
739 |
+
736,
|
740 |
+
737,
|
741 |
+
738,
|
742 |
+
739,
|
743 |
+
740,
|
744 |
+
741,
|
745 |
+
742,
|
746 |
+
743,
|
747 |
+
744,
|
748 |
+
745,
|
749 |
+
746,
|
750 |
+
747,
|
751 |
+
748,
|
752 |
+
749,
|
753 |
+
750,
|
754 |
+
751,
|
755 |
+
752,
|
756 |
+
753,
|
757 |
+
754,
|
758 |
+
755,
|
759 |
+
756,
|
760 |
+
757,
|
761 |
+
758,
|
762 |
+
759,
|
763 |
+
760,
|
764 |
+
761,
|
765 |
+
762,
|
766 |
+
763,
|
767 |
+
764,
|
768 |
+
765,
|
769 |
+
766,
|
770 |
+
767,
|
771 |
+
768,
|
772 |
+
769,
|
773 |
+
770,
|
774 |
+
771,
|
775 |
+
772,
|
776 |
+
773,
|
777 |
+
774,
|
778 |
+
775,
|
779 |
+
776,
|
780 |
+
777,
|
781 |
+
778,
|
782 |
+
779,
|
783 |
+
780,
|
784 |
+
781,
|
785 |
+
782,
|
786 |
+
783,
|
787 |
+
784,
|
788 |
+
785,
|
789 |
+
786,
|
790 |
+
787,
|
791 |
+
788,
|
792 |
+
789,
|
793 |
+
790,
|
794 |
+
791,
|
795 |
+
792,
|
796 |
+
793,
|
797 |
+
794,
|
798 |
+
795,
|
799 |
+
796,
|
800 |
+
797,
|
801 |
+
798,
|
802 |
+
799,
|
803 |
+
800,
|
804 |
+
801,
|
805 |
+
802,
|
806 |
+
803,
|
807 |
+
804,
|
808 |
+
805,
|
809 |
+
806,
|
810 |
+
807,
|
811 |
+
808,
|
812 |
+
809,
|
813 |
+
810,
|
814 |
+
811,
|
815 |
+
812,
|
816 |
+
813,
|
817 |
+
814,
|
818 |
+
815,
|
819 |
+
816,
|
820 |
+
817,
|
821 |
+
818,
|
822 |
+
819,
|
823 |
+
820,
|
824 |
+
821,
|
825 |
+
822,
|
826 |
+
823,
|
827 |
+
824,
|
828 |
+
825,
|
829 |
+
826,
|
830 |
+
827,
|
831 |
+
828,
|
832 |
+
829,
|
833 |
+
830,
|
834 |
+
831,
|
835 |
+
832,
|
836 |
+
833,
|
837 |
+
834,
|
838 |
+
835,
|
839 |
+
836,
|
840 |
+
837,
|
841 |
+
838,
|
842 |
+
839,
|
843 |
+
840,
|
844 |
+
841,
|
845 |
+
842,
|
846 |
+
843,
|
847 |
+
844,
|
848 |
+
845,
|
849 |
+
846,
|
850 |
+
847,
|
851 |
+
848,
|
852 |
+
849,
|
853 |
+
850,
|
854 |
+
851,
|
855 |
+
852,
|
856 |
+
853,
|
857 |
+
854,
|
858 |
+
855,
|
859 |
+
856,
|
860 |
+
857,
|
861 |
+
858,
|
862 |
+
859,
|
863 |
+
860,
|
864 |
+
861,
|
865 |
+
862,
|
866 |
+
863,
|
867 |
+
864,
|
868 |
+
865,
|
869 |
+
866,
|
870 |
+
867,
|
871 |
+
868,
|
872 |
+
869,
|
873 |
+
870,
|
874 |
+
871,
|
875 |
+
872,
|
876 |
+
873,
|
877 |
+
874,
|
878 |
+
875,
|
879 |
+
876,
|
880 |
+
877,
|
881 |
+
878,
|
882 |
+
879,
|
883 |
+
880,
|
884 |
+
881,
|
885 |
+
882,
|
886 |
+
883,
|
887 |
+
884,
|
888 |
+
885,
|
889 |
+
886,
|
890 |
+
887,
|
891 |
+
888,
|
892 |
+
889,
|
893 |
+
890,
|
894 |
+
891,
|
895 |
+
892,
|
896 |
+
893,
|
897 |
+
894,
|
898 |
+
895,
|
899 |
+
896,
|
900 |
+
897,
|
901 |
+
898,
|
902 |
+
899,
|
903 |
+
900,
|
904 |
+
901,
|
905 |
+
902,
|
906 |
+
903,
|
907 |
+
904,
|
908 |
+
905,
|
909 |
+
906,
|
910 |
+
907,
|
911 |
+
908,
|
912 |
+
909,
|
913 |
+
910,
|
914 |
+
911,
|
915 |
+
912,
|
916 |
+
913,
|
917 |
+
914,
|
918 |
+
915,
|
919 |
+
916,
|
920 |
+
917,
|
921 |
+
918,
|
922 |
+
919,
|
923 |
+
920,
|
924 |
+
921,
|
925 |
+
922,
|
926 |
+
923,
|
927 |
+
924,
|
928 |
+
925,
|
929 |
+
926,
|
930 |
+
927,
|
931 |
+
928,
|
932 |
+
929,
|
933 |
+
930,
|
934 |
+
931,
|
935 |
+
932,
|
936 |
+
933,
|
937 |
+
934,
|
938 |
+
935,
|
939 |
+
936,
|
940 |
+
937,
|
941 |
+
938,
|
942 |
+
939,
|
943 |
+
940,
|
944 |
+
941,
|
945 |
+
942,
|
946 |
+
943,
|
947 |
+
944,
|
948 |
+
945,
|
949 |
+
946,
|
950 |
+
947,
|
951 |
+
948,
|
952 |
+
949,
|
953 |
+
950,
|
954 |
+
951,
|
955 |
+
952,
|
956 |
+
953,
|
957 |
+
954,
|
958 |
+
955,
|
959 |
+
956,
|
960 |
+
957,
|
961 |
+
958,
|
962 |
+
959,
|
963 |
+
960,
|
964 |
+
961,
|
965 |
+
962,
|
966 |
+
963,
|
967 |
+
964,
|
968 |
+
965,
|
969 |
+
966,
|
970 |
+
967,
|
971 |
+
968,
|
972 |
+
969,
|
973 |
+
970,
|
974 |
+
971,
|
975 |
+
972,
|
976 |
+
973,
|
977 |
+
974,
|
978 |
+
975,
|
979 |
+
976,
|
980 |
+
977,
|
981 |
+
978,
|
982 |
+
979,
|
983 |
+
980,
|
984 |
+
981,
|
985 |
+
982,
|
986 |
+
983,
|
987 |
+
984,
|
988 |
+
985,
|
989 |
+
986,
|
990 |
+
987,
|
991 |
+
988,
|
992 |
+
989,
|
993 |
+
990,
|
994 |
+
991,
|
995 |
+
992,
|
996 |
+
993,
|
997 |
+
994,
|
998 |
+
995,
|
999 |
+
996,
|
1000 |
+
997,
|
1001 |
+
998,
|
1002 |
+
999
|
1003 |
+
],
|
1004 |
+
"test": [],
|
1005 |
+
"validation": []
|
1006 |
+
}
|
ResNet-CIFAR10/Classification-mini/dataset/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "ResNet18",
|
3 |
+
"classes":["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
4 |
+
}
|
ResNet-CIFAR10/Classification-mini/dataset/labels.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a206deac3a30252ca2263d264fe73e6d244cf744aa7d7648ec1ecb2f40365c83
|
3 |
+
size 8128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_1/embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53a846d7369254a97a6d25b961c270aba6eb1f2412b965abbdac99f947bdef20
|
3 |
+
size 2048128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_1/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:632e71f73fd7e91427ae7751fef67868bff2121b7dfb8eb725920b986f616557
|
3 |
+
size 44769410
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_1/predictions.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:684dd330d3801670400ae7d55ea86025da71abefc71bc24dad3dfb6acff14c1a
|
3 |
+
size 40128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_2/embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:546e774f16d8c03b5031660f33252398485e5a7745893bb5d76d692fd002a94e
|
3 |
+
size 2048128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_2/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b35d6b4f69c3222a40639005b29af06c8452a47b526ac429c7e4d6b1a78469db
|
3 |
+
size 44769410
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_2/predictions.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6d02b608c6460d2e05148c0425a63813fe2e7bb0b5f9e191a1040c9e38748cc
|
3 |
+
size 40128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_3/embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f90aebde34e956f5ebf243c048eff51cf2545e0dc2566821c858f000373fa64
|
3 |
+
size 2048128
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_3/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2681f986928109f1e7d52633b206c310155ca5f7692cd0bba22826c59082fc9a
|
3 |
+
size 44769410
|
ResNet-CIFAR10/Classification-mini/epochs/epoch_3/predictions.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5d782cd395927cc26d438b9512d866d2b25ecd60d3e9357bc20c295dc7db96b
|
3 |
+
size 40128
|
ResNet-CIFAR10/Classification-mini/epochs/layer_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"layer_id": "avg_pool", "dim": 512}
|
ResNet-CIFAR10/Classification-mini/epochs/train.log
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-06-02 13:08:33,621 - train - INFO - 开始训练 ResNet18
|
2 |
+
2025-06-02 13:08:33,622 - train - INFO - 总轮数: 3, 学习率: 0.1, 设备: cuda:0
|
3 |
+
2025-06-02 13:08:47,699 - train - INFO - Epoch: 1 | Train Loss: 1.928 | Train Acc: 30.18% | Test Loss: 1.567 | Test Acc: 41.58%
|
4 |
+
2025-06-02 13:09:02,228 - train - INFO - Epoch: 2 | Train Loss: 1.351 | Train Acc: 50.83% | Test Loss: 1.492 | Test Acc: 51.06%
|
5 |
+
2025-06-02 13:09:16,149 - train - INFO - Epoch: 3 | Train Loss: 1.055 | Train Acc: 62.12% | Test Loss: 1.285 | Test Acc: 57.01%
|
6 |
+
2025-06-02 13:09:16,746 - train - INFO - 训练完成!
|
ResNet-CIFAR10/Classification-mini/readme.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ResNet-CIFAR10 训练与特征提取
|
2 |
+
|
3 |
+
这个项目实现了ResNet模型在CIFAR10数据集上的训练,并集成了特征提取和可视化所需的功能。
|
4 |
+
|
5 |
+
## time_travel_saver数据提取器
|
6 |
+
```python
|
7 |
+
#保存可视化训练过程所需要的文件
|
8 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
9 |
+
# 创建一个专门用于收集embedding的顺序dataloader
|
10 |
+
ordered_trainloader = torch.utils.data.DataLoader(
|
11 |
+
trainloader.dataset,
|
12 |
+
batch_size=trainloader.batch_size,
|
13 |
+
shuffle=False,
|
14 |
+
num_workers=trainloader.num_workers
|
15 |
+
)
|
16 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}') #epoch保存路径
|
17 |
+
save_model = time_travel_saver(model, ordered_trainloader, device, epoch_save_dir, model_name,
|
18 |
+
show=True, layer_name='avg_pool', auto_save_embedding=True)
|
19 |
+
#show:是否显示模型的维度信息
|
20 |
+
#layer_name:选择要提取特征的层,如果为None,则提取符合维度范围的层
|
21 |
+
#auto_save_embedding:是否自动保存特征向量 must be True
|
22 |
+
save_model.save_checkpoint_embeddings_predictions() #保存模型权重、特征向量和预测结果到epoch_x
|
23 |
+
if epoch == 0:
|
24 |
+
save_model.save_lables_index(path = "../dataset") #保存标签和索引到dataset
|
25 |
+
```
|
26 |
+
|
27 |
+
|
28 |
+
## 项目结构
|
29 |
+
|
30 |
+
- `./scripts/train.yaml`:训练配置文件,包含批次大小、学习率、GPU设置等参数
|
31 |
+
- `./scripts/train.py`:训练脚本,执行模型训练并自动收集特征数据
|
32 |
+
- `./model/`:保存训练好的模型权重
|
33 |
+
- `./epochs/`:保存训练过程中的高维特征向量、预测结果等数据
|
34 |
+
|
35 |
+
## 使用方法
|
36 |
+
|
37 |
+
1. 配置 `train.yaml` 文件设置训练参数
|
38 |
+
2. 执行训练脚本:
|
39 |
+
```
|
40 |
+
python train.py
|
41 |
+
```
|
42 |
+
3. 训练完成后,可以在以下位置找到相关数据:
|
43 |
+
- 模型权重:`./epochs/epoch_{n}/model.pth`
|
44 |
+
- 特征向量:`./epochs/epoch_{n}/embeddings.npy`
|
45 |
+
- 预测结果:`./epochs/epoch_{n}/predictions.npy`
|
46 |
+
- 标签数据:`./dataset/labels.npy`
|
47 |
+
- 数据索引:`./dataset/index.json`
|
48 |
+
|
49 |
+
## 数据格式
|
50 |
+
|
51 |
+
- `embeddings.npy`:形状为 [n_samples, feature_dim] 的特征向量
|
52 |
+
- `predictions.npy`:形状为 [n_samples, n_classes] 的预测概率
|
53 |
+
- `labels.npy`:形状为 [n_samples] 的真实标签
|
54 |
+
- `index.json`:包含训练集、测试集和验证集的索引信息
|
ResNet-CIFAR10/Classification-mini/scripts/dataset_utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import os
|
5 |
+
|
6 |
+
#加载数据集
|
7 |
+
|
8 |
+
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
|
9 |
+
"""获取CIFAR10数据集的数据加载器
|
10 |
+
|
11 |
+
Args:
|
12 |
+
batch_size: 批次大小
|
13 |
+
num_workers: 数据加载的工作进程数
|
14 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
trainloader: 训练数据加载器
|
18 |
+
testloader: 测试数据加载器
|
19 |
+
"""
|
20 |
+
# 数据预处理
|
21 |
+
transform_train = transforms.Compose([
|
22 |
+
transforms.RandomCrop(32, padding=4),
|
23 |
+
transforms.RandomHorizontalFlip(),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
26 |
+
])
|
27 |
+
|
28 |
+
transform_test = transforms.Compose([
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
31 |
+
])
|
32 |
+
|
33 |
+
# 设置数据集路径
|
34 |
+
if local_dataset_path:
|
35 |
+
print(f"使用本地数据集: {local_dataset_path}")
|
36 |
+
# 检查数据集路径是否有数据集,没有的话则下载
|
37 |
+
cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
|
38 |
+
download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
|
39 |
+
dataset_path = local_dataset_path
|
40 |
+
else:
|
41 |
+
print("未指定本地数据集路径,将下载数据集")
|
42 |
+
download = True
|
43 |
+
dataset_path = '../dataset'
|
44 |
+
|
45 |
+
# 创建数据集路径
|
46 |
+
if not os.path.exists(dataset_path):
|
47 |
+
os.makedirs(dataset_path)
|
48 |
+
|
49 |
+
trainset = torchvision.datasets.CIFAR10(
|
50 |
+
root=dataset_path, train=True, download=download, transform=transform_train)
|
51 |
+
trainloader = torch.utils.data.DataLoader(
|
52 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
53 |
+
|
54 |
+
testset = torchvision.datasets.CIFAR10(
|
55 |
+
root=dataset_path, train=False, download=download, transform=transform_test)
|
56 |
+
testloader = torch.utils.data.DataLoader(
|
57 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
58 |
+
|
59 |
+
return trainloader, testloader
|
ResNet-CIFAR10/Classification-mini/scripts/get_raw_data.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
2 |
+
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def unpickle(file):
|
11 |
+
"""读取CIFAR-10数据文件"""
|
12 |
+
import pickle
|
13 |
+
with open(file, 'rb') as fo:
|
14 |
+
dict = pickle.load(fo, encoding='bytes')
|
15 |
+
return dict
|
16 |
+
|
17 |
+
def save_images_from_cifar10(dataset_path, save_dir):
|
18 |
+
"""从CIFAR-10数据集中保存图像
|
19 |
+
|
20 |
+
Args:
|
21 |
+
dataset_path: CIFAR-10数据集路径
|
22 |
+
save_dir: 图像保存路径
|
23 |
+
"""
|
24 |
+
# 创建保存目录
|
25 |
+
os.makedirs(save_dir, exist_ok=True)
|
26 |
+
|
27 |
+
# 获取训练集数据
|
28 |
+
train_data = []
|
29 |
+
train_labels = []
|
30 |
+
|
31 |
+
# 读取训练数据
|
32 |
+
for i in range(1, 6):
|
33 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
34 |
+
if os.path.exists(batch_file):
|
35 |
+
print(f"读取训练批次 {i}")
|
36 |
+
batch = unpickle(batch_file)
|
37 |
+
train_data.append(batch[b'data'])
|
38 |
+
train_labels.extend(batch[b'labels'])
|
39 |
+
|
40 |
+
# 合并所有训练数据
|
41 |
+
if train_data:
|
42 |
+
train_data = np.vstack(train_data)
|
43 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
44 |
+
|
45 |
+
# 读取测试数据
|
46 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
47 |
+
# if os.path.exists(test_file):
|
48 |
+
# print("读取测试数据")
|
49 |
+
# test_batch = unpickle(test_file)
|
50 |
+
# test_data = test_batch[b'data']
|
51 |
+
# test_labels = test_batch[b'labels']
|
52 |
+
# test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
53 |
+
# else:
|
54 |
+
test_data = []
|
55 |
+
test_labels = []
|
56 |
+
|
57 |
+
# 合并训练和测试数据
|
58 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
59 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
60 |
+
|
61 |
+
# 保存图像
|
62 |
+
print(f"保存 {len(all_data)} 张图像...")
|
63 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
64 |
+
img = Image.fromarray(img)
|
65 |
+
img.save(os.path.join(save_dir, f"{i}.png"))
|
66 |
+
|
67 |
+
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
# 设置路径
|
71 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
72 |
+
save_dir = "../dataset/raw_data"
|
73 |
+
|
74 |
+
# 检查数据集是否存在,如果不存在则下载
|
75 |
+
if not os.path.exists(dataset_path):
|
76 |
+
print("数据集不存在,正在下载...")
|
77 |
+
os.makedirs("../dataset", exist_ok=True)
|
78 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
79 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
80 |
+
|
81 |
+
# 保存图像
|
82 |
+
save_images_from_cifar10(dataset_path, save_dir)
|
ResNet-CIFAR10/Classification-mini/scripts/get_representation.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class time_travel_saver:
|
9 |
+
"""可视化数据提取器
|
10 |
+
|
11 |
+
用于保存模型训练过程中的各种数据,包括:
|
12 |
+
1. 模型权重 (.pth)
|
13 |
+
2. 高维特征 (representation/*.npy)
|
14 |
+
3. 预测结果 (prediction/*.npy)
|
15 |
+
4. 标签数据 (label/labels.npy)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name,
|
19 |
+
auto_save_embedding=False, layer_name=None,show = False):
|
20 |
+
"""初始化
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model: 要保存的模型实例
|
24 |
+
dataloader: 数据加载器(必须是顺序加载的)
|
25 |
+
device: 计算设备(cpu or gpu)
|
26 |
+
save_dir: 保存根目录
|
27 |
+
model_name: 模型名称
|
28 |
+
"""
|
29 |
+
self.model = model
|
30 |
+
self.dataloader = dataloader
|
31 |
+
self.device = device
|
32 |
+
self.save_dir = save_dir
|
33 |
+
self.model_name = model_name
|
34 |
+
self.auto_save = auto_save_embedding
|
35 |
+
self.layer_name = layer_name
|
36 |
+
|
37 |
+
if show and not layer_name:
|
38 |
+
layer_dimensions = self.show_dimensions()
|
39 |
+
# print(layer_dimensions)
|
40 |
+
|
41 |
+
def show_dimensions(self):
|
42 |
+
"""显示模型中所有层的名称和对应的维度
|
43 |
+
|
44 |
+
这个函数会输出模型中所有层的名称和它们的输出维度,
|
45 |
+
帮助用户选择合适的层来提取特征。
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
layer_dimensions: 包含层名称和维度的字典
|
49 |
+
"""
|
50 |
+
activation = {}
|
51 |
+
layer_dimensions = {}
|
52 |
+
|
53 |
+
def get_activation(name):
|
54 |
+
def hook(model, input, output):
|
55 |
+
activation[name] = output.detach()
|
56 |
+
return hook
|
57 |
+
|
58 |
+
# 注册钩子到所有层
|
59 |
+
handles = []
|
60 |
+
for name, module in self.model.named_modules():
|
61 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
62 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
63 |
+
|
64 |
+
self.model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
# 获取一个batch来分析每层的输出维度
|
67 |
+
inputs, _ = next(iter(self.dataloader))
|
68 |
+
inputs = inputs.to(self.device)
|
69 |
+
_ = self.model(inputs)
|
70 |
+
|
71 |
+
# 分析所有层的输出维度
|
72 |
+
print("\n模型各层的名称和维度:")
|
73 |
+
print("-" * 50)
|
74 |
+
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
|
75 |
+
print("-" * 50)
|
76 |
+
|
77 |
+
for name, feat in activation.items():
|
78 |
+
if feat is None:
|
79 |
+
continue
|
80 |
+
|
81 |
+
# 获取特征维度(展平后)
|
82 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
83 |
+
layer_dimensions[name] = feat_dim
|
84 |
+
# 打印层信息
|
85 |
+
shape_str = str(list(feat.shape))
|
86 |
+
print(f"{name:<40} {feat_dim:<15} {shape_str}")
|
87 |
+
|
88 |
+
print("-" * 50)
|
89 |
+
print("注: 特征维度是将输出张量展平后的维度大小")
|
90 |
+
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
|
91 |
+
print("例如:layer_name='avg_pool'或layer_name='layer4'等")
|
92 |
+
|
93 |
+
# 移除所有钩子
|
94 |
+
for handle in handles:
|
95 |
+
handle.remove()
|
96 |
+
|
97 |
+
return layer_dimensions
|
98 |
+
|
99 |
+
def _extract_features_and_predictions(self):
|
100 |
+
"""提取特征和预测结果
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
features: 高维特征 [样本数, 特征维度]
|
104 |
+
predictions: 预测结果 [样本数, 类别数]
|
105 |
+
"""
|
106 |
+
features = []
|
107 |
+
predictions = []
|
108 |
+
indices = []
|
109 |
+
activation = {}
|
110 |
+
|
111 |
+
def get_activation(name):
|
112 |
+
def hook(model, input, output):
|
113 |
+
# 只在需要时保存激活值,避免内存浪费
|
114 |
+
if name not in activation or activation[name] is None:
|
115 |
+
activation[name] = output.detach()
|
116 |
+
return hook
|
117 |
+
|
118 |
+
# 根据层的名称或维度来选择层
|
119 |
+
|
120 |
+
# 注册钩子到所有层
|
121 |
+
handles = []
|
122 |
+
for name, module in self.model.named_modules():
|
123 |
+
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
|
124 |
+
handles.append(module.register_forward_hook(get_activation(name)))
|
125 |
+
|
126 |
+
self.model.eval()
|
127 |
+
with torch.no_grad():
|
128 |
+
# 首先获取一个batch来分析每层的输出维度
|
129 |
+
inputs, _ = next(iter(self.dataloader))
|
130 |
+
inputs = inputs.to(self.device)
|
131 |
+
_ = self.model(inputs)
|
132 |
+
|
133 |
+
# 如果指定了层名,则直接使用该层
|
134 |
+
if self.layer_name is not None:
|
135 |
+
if self.layer_name not in activation:
|
136 |
+
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
|
137 |
+
|
138 |
+
feat = activation[self.layer_name]
|
139 |
+
if feat is None:
|
140 |
+
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
|
141 |
+
|
142 |
+
suitable_layer_name = self.layer_name
|
143 |
+
suitable_dim = feat.view(feat.size(0), -1).size(1)
|
144 |
+
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
145 |
+
else:
|
146 |
+
# 找到维度在指定范围内的层
|
147 |
+
target_dim_range = (256, 2048)
|
148 |
+
suitable_layer_name = None
|
149 |
+
suitable_dim = None
|
150 |
+
|
151 |
+
# 分析所有层的输出维度
|
152 |
+
for name, feat in activation.items():
|
153 |
+
if feat is None:
|
154 |
+
continue
|
155 |
+
feat_dim = feat.view(feat.size(0), -1).size(1)
|
156 |
+
if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
|
157 |
+
suitable_layer_name = name
|
158 |
+
suitable_dim = feat_dim
|
159 |
+
break
|
160 |
+
|
161 |
+
if suitable_layer_name is None:
|
162 |
+
raise ValueError("没有找到合适维度的特征层")
|
163 |
+
|
164 |
+
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
165 |
+
|
166 |
+
# 保存层信息
|
167 |
+
layer_info = {
|
168 |
+
'layer_id': suitable_layer_name,
|
169 |
+
'dim': suitable_dim
|
170 |
+
}
|
171 |
+
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
|
172 |
+
with open(layer_info_path, 'w') as f:
|
173 |
+
json.dump(layer_info, f)
|
174 |
+
|
175 |
+
# 清除第一次运行的激活值
|
176 |
+
activation.clear()
|
177 |
+
|
178 |
+
# 现在处理所有数据
|
179 |
+
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
|
180 |
+
inputs = inputs.to(self.device)
|
181 |
+
outputs = self.model(inputs) # 获取预测结果
|
182 |
+
|
183 |
+
# 获取并处理特征
|
184 |
+
feat = activation[suitable_layer_name]
|
185 |
+
flat_features = torch.flatten(feat, start_dim=1)
|
186 |
+
features.append(flat_features.cpu().numpy())
|
187 |
+
predictions.append(outputs.cpu().numpy())
|
188 |
+
|
189 |
+
# 清除本次的激活值
|
190 |
+
activation.clear()
|
191 |
+
|
192 |
+
# 移除所有钩子
|
193 |
+
for handle in handles:
|
194 |
+
handle.remove()
|
195 |
+
|
196 |
+
if len(features) > 0:
|
197 |
+
features = np.vstack(features)
|
198 |
+
predictions = np.vstack(predictions)
|
199 |
+
return features, predictions
|
200 |
+
else:
|
201 |
+
return np.array([]), np.array([])
|
202 |
+
|
203 |
+
def save_lables_index(self, path):
|
204 |
+
"""保存标签数据和索引信息
|
205 |
+
|
206 |
+
Args:
|
207 |
+
path: 保存路径
|
208 |
+
"""
|
209 |
+
os.makedirs(path, exist_ok=True)
|
210 |
+
labels_path = os.path.join(path, 'labels.npy')
|
211 |
+
index_path = os.path.join(path, 'index.json')
|
212 |
+
|
213 |
+
# 尝试从不同的属性获取标签
|
214 |
+
try:
|
215 |
+
if hasattr(self.dataloader.dataset, 'targets'):
|
216 |
+
# CIFAR10/CIFAR100使用targets属性
|
217 |
+
labels = np.array(self.dataloader.dataset.targets)
|
218 |
+
elif hasattr(self.dataloader.dataset, 'labels'):
|
219 |
+
# 某些数据集使用labels属性
|
220 |
+
labels = np.array(self.dataloader.dataset.labels)
|
221 |
+
else:
|
222 |
+
# 如果上面的方法都不起作用,则从数据加载器中收集标签
|
223 |
+
labels = []
|
224 |
+
for _, batch_labels in self.dataloader:
|
225 |
+
labels.append(batch_labels.numpy())
|
226 |
+
labels = np.concatenate(labels)
|
227 |
+
|
228 |
+
# 保存标签数据
|
229 |
+
np.save(labels_path, labels)
|
230 |
+
print(f"标签数据已保存到 {labels_path}")
|
231 |
+
|
232 |
+
# 创建数据集索引
|
233 |
+
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
+
|
236 |
+
# 创建索引字典
|
237 |
+
index_dict = {
|
238 |
+
"train": indices, # 所有数据默认为训练集
|
239 |
+
"test": [], # 初始为空
|
240 |
+
"validation": [] # 初始为空
|
241 |
+
}
|
242 |
+
|
243 |
+
# 保存索引到JSON文件
|
244 |
+
with open(index_path, 'w') as f:
|
245 |
+
json.dump(index_dict, f, indent=4)
|
246 |
+
|
247 |
+
print(f"数据集索引已保存到 {index_path}")
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"保存标签和索引时出错: {e}")
|
251 |
+
|
252 |
+
def save_checkpoint_embeddings_predictions(self, model = None):
|
253 |
+
"""保存所有数据"""
|
254 |
+
if model is not None:
|
255 |
+
self.model = model
|
256 |
+
# 保存模型权重
|
257 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
258 |
+
model_path = os.path.join(self.save_dir,'model.pth')
|
259 |
+
torch.save(self.model.state_dict(), model_path)
|
260 |
+
|
261 |
+
if self.auto_save:
|
262 |
+
# 提取并保存特征和预测结果
|
263 |
+
features, predictions = self._extract_features_and_predictions()
|
264 |
+
|
265 |
+
# 保存特征
|
266 |
+
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
|
267 |
+
# 保存预测结果
|
268 |
+
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
|
269 |
+
print("\n保存了以下数据:")
|
270 |
+
print(f"- 模型权重: {model_path}")
|
271 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
272 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
ResNet-CIFAR10/Classification-mini/scripts/model.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
ResNet in PyTorch.
|
3 |
+
|
4 |
+
ResNet(深度残差网络)是由微软研究院的Kaiming He等人提出的深度神经网络架构。
|
5 |
+
主要创新点是引入了残差学习的概念,通过跳跃连接解决了深层网络的退化问题。
|
6 |
+
|
7 |
+
主要特点:
|
8 |
+
1. 引入残差块(Residual Block),使用跳跃连接
|
9 |
+
2. 使用Batch Normalization进行归一化
|
10 |
+
3. 支持更深的网络结构(最深可达152层)
|
11 |
+
4. 在多个计算机视觉任务上取得了突破性进展
|
12 |
+
|
13 |
+
Reference:
|
14 |
+
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
15 |
+
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
16 |
+
'''
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
class BasicBlock(nn.Module):
|
21 |
+
"""基础残差块
|
22 |
+
|
23 |
+
用于ResNet18/34等浅层网络。结构为:
|
24 |
+
x -> Conv -> BN -> ReLU -> Conv -> BN -> (+) -> ReLU
|
25 |
+
|------------------------------------------|
|
26 |
+
|
27 |
+
Args:
|
28 |
+
in_channels: 输入通道数
|
29 |
+
out_channels: 输出通道数
|
30 |
+
stride: 步长,用于下采样,默认为1
|
31 |
+
|
32 |
+
注意:基础模块没有通道压缩,expansion=1
|
33 |
+
"""
|
34 |
+
expansion = 1
|
35 |
+
|
36 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
37 |
+
super(BasicBlock,self).__init__()
|
38 |
+
self.features = nn.Sequential(
|
39 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
|
40 |
+
nn.BatchNorm2d(out_channels),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(out_channels,out_channels, kernel_size=3, stride=1, padding=1, bias=False),
|
43 |
+
nn.BatchNorm2d(out_channels)
|
44 |
+
)
|
45 |
+
|
46 |
+
# 如果输入输出维度不等,则使用1x1卷积层来改变维度
|
47 |
+
self.shortcut = nn.Sequential()
|
48 |
+
if stride != 1 or in_channels != self.expansion * out_channels:
|
49 |
+
self.shortcut = nn.Sequential(
|
50 |
+
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
|
51 |
+
nn.BatchNorm2d(self.expansion * out_channels),
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
out = self.features(x)
|
56 |
+
out += self.shortcut(x)
|
57 |
+
out = torch.relu(out)
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class Bottleneck(nn.Module):
|
62 |
+
"""瓶颈残差块
|
63 |
+
|
64 |
+
用于ResNet50/101/152等深层网络。结构为:
|
65 |
+
x -> 1x1Conv -> BN -> ReLU -> 3x3Conv -> BN -> ReLU -> 1x1Conv -> BN -> (+) -> ReLU
|
66 |
+
|-------------------------------------------------------------------|
|
67 |
+
|
68 |
+
Args:
|
69 |
+
in_channels: 输入通道数
|
70 |
+
zip_channels: 压缩后的通道数
|
71 |
+
stride: 步长,用于下采样,默认为1
|
72 |
+
|
73 |
+
注意:通过1x1卷积先压缩通道数,再还原,expansion=4
|
74 |
+
"""
|
75 |
+
expansion = 4
|
76 |
+
|
77 |
+
def __init__(self, in_channels, zip_channels, stride=1):
|
78 |
+
super(Bottleneck, self).__init__()
|
79 |
+
out_channels = self.expansion * zip_channels
|
80 |
+
self.features = nn.Sequential(
|
81 |
+
# 1x1卷积压缩通道
|
82 |
+
nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False),
|
83 |
+
nn.BatchNorm2d(zip_channels),
|
84 |
+
nn.ReLU(inplace=True),
|
85 |
+
# 3x3卷积提取特征
|
86 |
+
nn.Conv2d(zip_channels, zip_channels, kernel_size=3, stride=stride, padding=1, bias=False),
|
87 |
+
nn.BatchNorm2d(zip_channels),
|
88 |
+
nn.ReLU(inplace=True),
|
89 |
+
# 1x1卷积还原通道
|
90 |
+
nn.Conv2d(zip_channels, out_channels, kernel_size=1, bias=False),
|
91 |
+
nn.BatchNorm2d(out_channels)
|
92 |
+
)
|
93 |
+
|
94 |
+
self.shortcut = nn.Sequential()
|
95 |
+
if stride != 1 or in_channels != out_channels:
|
96 |
+
self.shortcut = nn.Sequential(
|
97 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
98 |
+
nn.BatchNorm2d(out_channels)
|
99 |
+
)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
out = self.features(x)
|
103 |
+
out += self.shortcut(x)
|
104 |
+
out = torch.relu(out)
|
105 |
+
return out
|
106 |
+
|
107 |
+
class ResNet(nn.Module):
|
108 |
+
"""ResNet模型
|
109 |
+
|
110 |
+
网络结构:
|
111 |
+
1. 一个卷积层用于特征提取
|
112 |
+
2. 四个残差层,每层包含多个残差块
|
113 |
+
3. 平均池化和全连接层进行分类
|
114 |
+
|
115 |
+
对于CIFAR10,特征图大小变化为:
|
116 |
+
(32,32,3) -> [Conv] -> (32,32,64) -> [Layer1] -> (32,32,64) -> [Layer2]
|
117 |
+
-> (16,16,128) -> [Layer3] -> (8,8,256) -> [Layer4] -> (4,4,512) -> [AvgPool]
|
118 |
+
-> (1,1,512) -> [FC] -> (num_classes)
|
119 |
+
|
120 |
+
Args:
|
121 |
+
block: 残差块类型(BasicBlock或Bottleneck)
|
122 |
+
num_blocks: 每层残差块数量的列表
|
123 |
+
num_classes: 分类数量,默认为10
|
124 |
+
verbose: 是否打印中间特征图大小
|
125 |
+
init_weights: 是否初始化权重
|
126 |
+
dropout: 是否在全连接层前使用dropout
|
127 |
+
"""
|
128 |
+
def __init__(self, block, num_blocks, num_classes=10, verbose=False, init_weights=True, dropout=False):
|
129 |
+
super(ResNet, self).__init__()
|
130 |
+
self.verbose = verbose
|
131 |
+
self.in_channels = 64
|
132 |
+
|
133 |
+
# 第一层卷积
|
134 |
+
self.features = nn.Sequential(
|
135 |
+
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
|
136 |
+
nn.BatchNorm2d(64),
|
137 |
+
nn.ReLU(inplace=True)
|
138 |
+
)
|
139 |
+
|
140 |
+
# 四个残差层
|
141 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
142 |
+
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
143 |
+
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
144 |
+
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
145 |
+
|
146 |
+
# 分类层
|
147 |
+
self.avg_pool = nn.AvgPool2d(kernel_size=4)
|
148 |
+
if dropout:
|
149 |
+
self.dropout = nn.Dropout(p=0.5)
|
150 |
+
else:
|
151 |
+
self.dropout = nn.Identity()
|
152 |
+
self.classifier = nn.Linear(512 * block.expansion, num_classes)
|
153 |
+
|
154 |
+
if init_weights:
|
155 |
+
self._initialize_weights()
|
156 |
+
|
157 |
+
def _make_layer(self, block, out_channels, num_blocks, stride):
|
158 |
+
"""构建残差层
|
159 |
+
|
160 |
+
Args:
|
161 |
+
block: 残差块类型
|
162 |
+
out_channels: 输出通道数
|
163 |
+
num_blocks: 残差块数量
|
164 |
+
stride: 第一个残差块的步长(用于下采样)
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
nn.Sequential: 残差层
|
168 |
+
"""
|
169 |
+
strides = [stride] + [1] * (num_blocks - 1)
|
170 |
+
layers = []
|
171 |
+
for stride in strides:
|
172 |
+
layers.append(block(self.in_channels, out_channels, stride))
|
173 |
+
self.in_channels = out_channels * block.expansion
|
174 |
+
return nn.Sequential(*layers)
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
"""前向传播
|
178 |
+
|
179 |
+
Args:
|
180 |
+
x: 输入张量,[N,3,32,32]
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
out: 输出张量,[N,num_classes]
|
184 |
+
"""
|
185 |
+
out = self.features(x)
|
186 |
+
if self.verbose:
|
187 |
+
print('block 1 output: {}'.format(out.shape))
|
188 |
+
|
189 |
+
out = self.layer1(out)
|
190 |
+
if self.verbose:
|
191 |
+
print('block 2 output: {}'.format(out.shape))
|
192 |
+
|
193 |
+
out = self.layer2(out)
|
194 |
+
if self.verbose:
|
195 |
+
print('block 3 output: {}'.format(out.shape))
|
196 |
+
|
197 |
+
out = self.layer3(out)
|
198 |
+
if self.verbose:
|
199 |
+
print('block 4 output: {}'.format(out.shape))
|
200 |
+
|
201 |
+
out = self.layer4(out)
|
202 |
+
if self.verbose:
|
203 |
+
print('block 5 output: {}'.format(out.shape))
|
204 |
+
|
205 |
+
out = self.avg_pool(out)
|
206 |
+
out = out.view(out.size(0), -1)
|
207 |
+
out = self.dropout(out)
|
208 |
+
out = self.classifier(out)
|
209 |
+
return out
|
210 |
+
|
211 |
+
def feature(self,x):
|
212 |
+
"""前向传播
|
213 |
+
|
214 |
+
Args:
|
215 |
+
x: 输入张量,[N,3,32,32]
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
out: 输出张量,[N,num_classes]
|
219 |
+
"""
|
220 |
+
out = self.features(x)
|
221 |
+
if self.verbose:
|
222 |
+
print('block 1 output: {}'.format(out.shape))
|
223 |
+
|
224 |
+
out = self.layer1(out)
|
225 |
+
if self.verbose:
|
226 |
+
print('block 2 output: {}'.format(out.shape))
|
227 |
+
|
228 |
+
out = self.layer2(out)
|
229 |
+
if self.verbose:
|
230 |
+
print('block 3 output: {}'.format(out.shape))
|
231 |
+
|
232 |
+
out = self.layer3(out)
|
233 |
+
if self.verbose:
|
234 |
+
print('block 4 output: {}'.format(out.shape))
|
235 |
+
|
236 |
+
out = self.layer4(out)
|
237 |
+
if self.verbose:
|
238 |
+
print('block 5 output: {}'.format(out.shape))
|
239 |
+
|
240 |
+
out = self.avg_pool(out)
|
241 |
+
out = out.view(out.size(0), -1)
|
242 |
+
return out
|
243 |
+
|
244 |
+
def prediction(self, x):
|
245 |
+
out = self.classifier(x)
|
246 |
+
return out
|
247 |
+
|
248 |
+
def _initialize_weights(self):
|
249 |
+
"""初始化模型权重
|
250 |
+
|
251 |
+
采用kaiming初始化方法:
|
252 |
+
- 卷积层权重采用kaiming_normal_初始化
|
253 |
+
- BN层参数采用常数初始化
|
254 |
+
- 线性层采用正态分布初始化
|
255 |
+
"""
|
256 |
+
for m in self.modules():
|
257 |
+
if isinstance(m, nn.Conv2d):
|
258 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
259 |
+
if m.bias is not None:
|
260 |
+
nn.init.constant_(m.bias, 0)
|
261 |
+
elif isinstance(m, nn.BatchNorm2d):
|
262 |
+
nn.init.constant_(m.weight, 1)
|
263 |
+
nn.init.constant_(m.bias, 0)
|
264 |
+
elif isinstance(m, nn.Linear):
|
265 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
266 |
+
nn.init.constant_(m.bias, 0)
|
267 |
+
|
268 |
+
def ResNet18(verbose=False, num_classes=10, dropout=False):
|
269 |
+
"""ResNet-18模型
|
270 |
+
|
271 |
+
Args:
|
272 |
+
verbose: 是否打印中间特征图大小
|
273 |
+
num_classes: 分类数量
|
274 |
+
dropout: 是否在全连接层前使用dropout
|
275 |
+
"""
|
276 |
+
return ResNet(BasicBlock, [2,2,2,2], num_classes=num_classes, verbose=verbose, dropout=dropout)
|
277 |
+
|
278 |
+
def ResNet34(verbose=False, num_classes=10, dropout=False):
|
279 |
+
"""ResNet-34模型"""
|
280 |
+
return ResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, verbose=verbose, dropout=dropout)
|
281 |
+
|
282 |
+
def ResNet50(verbose=False):
|
283 |
+
"""ResNet-50模型"""
|
284 |
+
return ResNet(Bottleneck, [3,4,6,3], verbose=verbose)
|
285 |
+
|
286 |
+
def ResNet101(verbose=False):
|
287 |
+
"""ResNet-101模型"""
|
288 |
+
return ResNet(Bottleneck, [3,4,23,3], verbose=verbose)
|
289 |
+
|
290 |
+
def ResNet152(verbose=False):
|
291 |
+
"""ResNet-152模型"""
|
292 |
+
return ResNet(Bottleneck, [3,8,36,3], verbose=verbose)
|
293 |
+
|
294 |
+
def test():
|
295 |
+
"""测试函数"""
|
296 |
+
net = ResNet34()
|
297 |
+
x = torch.randn(2,3,32,32)
|
298 |
+
y = net(x)
|
299 |
+
print('Output shape:', y.size())
|
300 |
+
|
301 |
+
# 打印模型结构
|
302 |
+
from torchinfo import summary
|
303 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
304 |
+
net = net.to(device)
|
305 |
+
summary(net,(2,3,32,32))
|
306 |
+
|
307 |
+
if __name__ == '__main__':
|
308 |
+
test()
|
ResNet-CIFAR10/Classification-mini/scripts/train.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
from pathlib import Path
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
import time
|
9 |
+
import logging
|
10 |
+
import numpy as np
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
from dataset_utils import get_cifar10_dataloaders
|
15 |
+
from model import ResNet18
|
16 |
+
from get_representation import time_travel_saver
|
17 |
+
|
18 |
+
def setup_logger(log_file):
|
19 |
+
"""配置日志记录器,如果日志文件存在则覆盖
|
20 |
+
|
21 |
+
Args:
|
22 |
+
log_file: 日志文件路径
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
logger: 配置好的日志记录器
|
26 |
+
"""
|
27 |
+
# 创建logger
|
28 |
+
logger = logging.getLogger('train')
|
29 |
+
logger.setLevel(logging.INFO)
|
30 |
+
|
31 |
+
# 移除现有的处理器
|
32 |
+
if logger.hasHandlers():
|
33 |
+
logger.handlers.clear()
|
34 |
+
|
35 |
+
# 创建文件处理器,使用'w'模式覆盖现有文件
|
36 |
+
fh = logging.FileHandler(log_file, mode='w')
|
37 |
+
fh.setLevel(logging.INFO)
|
38 |
+
|
39 |
+
# 创建控制台处理器
|
40 |
+
ch = logging.StreamHandler()
|
41 |
+
ch.setLevel(logging.INFO)
|
42 |
+
|
43 |
+
# 创建格式器
|
44 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
45 |
+
fh.setFormatter(formatter)
|
46 |
+
ch.setFormatter(formatter)
|
47 |
+
|
48 |
+
# 添加处理器
|
49 |
+
logger.addHandler(fh)
|
50 |
+
logger.addHandler(ch)
|
51 |
+
|
52 |
+
return logger
|
53 |
+
|
54 |
+
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
55 |
+
save_dir='./epochs', model_name='model', interval=1):
|
56 |
+
"""通用的模型训练函数
|
57 |
+
Args:
|
58 |
+
model: 要训练的模型
|
59 |
+
trainloader: 训练数据加载器
|
60 |
+
testloader: 测试数据加载器
|
61 |
+
epochs: 训练轮数
|
62 |
+
lr: 学习率
|
63 |
+
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
|
64 |
+
save_dir: 模型保存目录
|
65 |
+
model_name: 模型名称
|
66 |
+
interval: 模型保存间隔
|
67 |
+
"""
|
68 |
+
# 检查并设置GPU设备
|
69 |
+
if not torch.cuda.is_available():
|
70 |
+
print("CUDA不可用,将使用CPU训练")
|
71 |
+
device = 'cpu'
|
72 |
+
elif not device.startswith('cuda:'):
|
73 |
+
device = f'cuda:0'
|
74 |
+
|
75 |
+
# 确保device格式正确
|
76 |
+
if device.startswith('cuda:'):
|
77 |
+
gpu_id = int(device.split(':')[1])
|
78 |
+
if gpu_id >= torch.cuda.device_count():
|
79 |
+
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
80 |
+
device = 'cuda:0'
|
81 |
+
|
82 |
+
# 设置保存目录
|
83 |
+
if not os.path.exists(save_dir):
|
84 |
+
os.makedirs(save_dir)
|
85 |
+
|
86 |
+
# 设置日志文件路径
|
87 |
+
log_file = os.path.join(os.path.dirname(save_dir),'epochs', 'train.log')
|
88 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
89 |
+
os.makedirs(os.path.dirname(log_file))
|
90 |
+
|
91 |
+
logger = setup_logger(log_file)
|
92 |
+
|
93 |
+
# 损失函数和优化器
|
94 |
+
criterion = nn.CrossEntropyLoss()
|
95 |
+
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
96 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
|
97 |
+
|
98 |
+
# 移动模型到指定设备
|
99 |
+
model = model.to(device)
|
100 |
+
best_acc = 0
|
101 |
+
start_time = time.time()
|
102 |
+
|
103 |
+
logger.info(f'开始训练 {model_name}')
|
104 |
+
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
|
105 |
+
|
106 |
+
for epoch in range(epochs):
|
107 |
+
# 训练阶段
|
108 |
+
model.train()
|
109 |
+
train_loss = 0
|
110 |
+
correct = 0
|
111 |
+
total = 0
|
112 |
+
|
113 |
+
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
|
114 |
+
for batch_idx, (inputs, targets) in enumerate(train_pbar):
|
115 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
116 |
+
optimizer.zero_grad()
|
117 |
+
outputs = model(inputs)
|
118 |
+
loss = criterion(outputs, targets)
|
119 |
+
loss.backward()
|
120 |
+
optimizer.step()
|
121 |
+
|
122 |
+
train_loss += loss.item()
|
123 |
+
_, predicted = outputs.max(1)
|
124 |
+
total += targets.size(0)
|
125 |
+
correct += predicted.eq(targets).sum().item()
|
126 |
+
|
127 |
+
# 更新进度条
|
128 |
+
train_pbar.set_postfix({
|
129 |
+
'loss': f'{train_loss/(batch_idx+1):.3f}',
|
130 |
+
'acc': f'{100.*correct/total:.2f}%'
|
131 |
+
})
|
132 |
+
|
133 |
+
# 保存训练阶段的准确率
|
134 |
+
train_acc = 100.*correct/total
|
135 |
+
train_correct = correct
|
136 |
+
train_total = total
|
137 |
+
|
138 |
+
# 测试阶段
|
139 |
+
model.eval()
|
140 |
+
test_loss = 0
|
141 |
+
correct = 0
|
142 |
+
total = 0
|
143 |
+
|
144 |
+
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
|
145 |
+
with torch.no_grad():
|
146 |
+
for batch_idx, (inputs, targets) in enumerate(test_pbar):
|
147 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
148 |
+
outputs = model(inputs)
|
149 |
+
loss = criterion(outputs, targets)
|
150 |
+
|
151 |
+
test_loss += loss.item()
|
152 |
+
_, predicted = outputs.max(1)
|
153 |
+
total += targets.size(0)
|
154 |
+
correct += predicted.eq(targets).sum().item()
|
155 |
+
|
156 |
+
# 更新进度条
|
157 |
+
test_pbar.set_postfix({
|
158 |
+
'loss': f'{test_loss/(batch_idx+1):.3f}',
|
159 |
+
'acc': f'{100.*correct/total:.2f}%'
|
160 |
+
})
|
161 |
+
|
162 |
+
# 计算测试精度
|
163 |
+
acc = 100.*correct/total
|
164 |
+
|
165 |
+
# 记录训练和测试的损失与准确率
|
166 |
+
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
|
167 |
+
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
|
168 |
+
|
169 |
+
# 保存可视化训练过程所需要的文件
|
170 |
+
if (epoch + 1) % interval == 0 or (epoch == 0):
|
171 |
+
# 只使用前1000个样本进行保存
|
172 |
+
subset_indices = list(range(1000)) # 只取前1000个样本的索引
|
173 |
+
subset_dataset = torch.utils.data.Subset(trainloader.dataset, subset_indices)
|
174 |
+
|
175 |
+
# 创建一个只包含前1000个样本的顺序dataloader
|
176 |
+
ordered_trainloader = torch.utils.data.DataLoader(
|
177 |
+
subset_dataset,
|
178 |
+
batch_size=trainloader.batch_size,
|
179 |
+
shuffle=False,
|
180 |
+
num_workers=trainloader.num_workers
|
181 |
+
)
|
182 |
+
|
183 |
+
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
|
184 |
+
save_model = time_travel_saver(model, ordered_trainloader, device, epoch_save_dir, model_name,
|
185 |
+
show=True, layer_name='avg_pool', auto_save_embedding=True)
|
186 |
+
save_model.save_checkpoint_embeddings_predictions()
|
187 |
+
if epoch == 0:
|
188 |
+
save_model.save_lables_index(path = "../dataset")
|
189 |
+
|
190 |
+
scheduler.step()
|
191 |
+
|
192 |
+
logger.info('训练完成!')
|
193 |
+
|
194 |
+
def main():
|
195 |
+
# 加载配置文件
|
196 |
+
config_path = Path(__file__).parent / 'train.yaml'
|
197 |
+
with open(config_path) as f:
|
198 |
+
config = yaml.safe_load(f)
|
199 |
+
|
200 |
+
# 创建模型
|
201 |
+
model = ResNet18(num_classes=10)
|
202 |
+
|
203 |
+
# 获取数据加载器
|
204 |
+
trainloader, testloader = get_cifar10_dataloaders(
|
205 |
+
batch_size=128,
|
206 |
+
num_workers=2,
|
207 |
+
local_dataset_path=config['dataset_path'],
|
208 |
+
shuffle=True
|
209 |
+
)
|
210 |
+
|
211 |
+
# 训练模型
|
212 |
+
train_model(
|
213 |
+
model=model,
|
214 |
+
trainloader=trainloader,
|
215 |
+
testloader=testloader,
|
216 |
+
epochs=config['epochs'],
|
217 |
+
lr=config['lr'],
|
218 |
+
device=f'cuda:{config["gpu"]}',
|
219 |
+
save_dir='../epochs',
|
220 |
+
model_name='ResNet18',
|
221 |
+
interval=config['interval']
|
222 |
+
)
|
223 |
+
|
224 |
+
if __name__ == '__main__':
|
225 |
+
main()
|
ResNet-CIFAR10/Classification-mini/scripts/train.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 128
|
2 |
+
num_workers: 2
|
3 |
+
dataset_path: ../dataset
|
4 |
+
epochs: 3
|
5 |
+
gpu: 0
|
6 |
+
lr: 0.1
|
7 |
+
interval: 1
|