Last commit not found
''' | |
EfficientNet in PyTorch. | |
Paper: "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" | |
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py | |
主要特点: | |
1. 使用MBConv作为基本模块,包含SE注意力机制 | |
2. 通过复合缩放方法(compound scaling)同时调整网络的宽度、深度和分辨率 | |
3. 使用Swish激活函数和DropConnect正则化 | |
''' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
def swish(x): | |
"""Swish激活函数: x * sigmoid(x)""" | |
return x * x.sigmoid() | |
def drop_connect(x, drop_ratio): | |
"""DropConnect正则化 | |
Args: | |
x: 输入tensor | |
drop_ratio: 丢弃率 | |
Returns: | |
经过DropConnect处理的tensor | |
""" | |
keep_ratio = 1.0 - drop_ratio | |
mask = torch.empty([x.shape[0], 1, 1, 1], dtype=x.dtype, device=x.device) | |
mask.bernoulli_(keep_ratio) | |
x.div_(keep_ratio) | |
x.mul_(mask) | |
return x | |
class SE(nn.Module): | |
'''Squeeze-and-Excitation注意力模块 | |
Args: | |
in_channels: 输入通道数 | |
se_channels: SE模块中间层的通道数 | |
''' | |
def __init__(self, in_channels, se_channels): | |
super(SE, self).__init__() | |
self.se1 = nn.Conv2d(in_channels, se_channels, kernel_size=1, bias=True) | |
self.se2 = nn.Conv2d(se_channels, in_channels, kernel_size=1, bias=True) | |
def forward(self, x): | |
out = F.adaptive_avg_pool2d(x, (1, 1)) # 全局平均池化 | |
out = swish(self.se1(out)) | |
out = self.se2(out).sigmoid() | |
return x * out # 特征重标定 | |
class MBConv(nn.Module): | |
'''MBConv模块: Mobile Inverted Bottleneck Convolution | |
Args: | |
in_channels: 输入通道数 | |
out_channels: 输出通道数 | |
kernel_size: 卷积核大小 | |
stride: 步长 | |
expand_ratio: 扩展比率 | |
se_ratio: SE模块的压缩比率 | |
drop_rate: DropConnect的丢弃率 | |
''' | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
expand_ratio=1, | |
se_ratio=0.25, | |
drop_rate=0.): | |
super(MBConv, self).__init__() | |
self.stride = stride | |
self.drop_rate = drop_rate | |
self.expand_ratio = expand_ratio | |
# Expansion phase | |
channels = expand_ratio * in_channels | |
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=1, stride=1, padding=0, bias=False) | |
self.bn1 = nn.BatchNorm2d(channels) | |
# Depthwise conv | |
self.conv2 = nn.Conv2d(channels, channels, kernel_size=kernel_size, stride=stride, | |
padding=(1 if kernel_size == 3 else 2), groups=channels, bias=False) | |
self.bn2 = nn.BatchNorm2d(channels) | |
# SE layers | |
se_channels = int(in_channels * se_ratio) | |
self.se = SE(channels, se_channels) | |
# Output phase | |
self.conv3 = nn.Conv2d(channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) | |
self.bn3 = nn.BatchNorm2d(out_channels) | |
# Shortcut connection | |
self.has_skip = (stride == 1) and (in_channels == out_channels) | |
def forward(self, x): | |
# Expansion | |
out = x if self.expand_ratio == 1 else swish(self.bn1(self.conv1(x))) | |
# Depthwise convolution | |
out = swish(self.bn2(self.conv2(out))) | |
# Squeeze-and-excitation | |
out = self.se(out) | |
# Pointwise convolution | |
out = self.bn3(self.conv3(out)) | |
# Shortcut | |
if self.has_skip: | |
if self.training and self.drop_rate > 0: | |
out = drop_connect(out, self.drop_rate) | |
out = out + x | |
return out | |
class EfficientNet(nn.Module): | |
'''EfficientNet模型 | |
Args: | |
width_coefficient: 宽度系数 | |
depth_coefficient: 深度系数 | |
dropout_rate: 分类层的dropout率 | |
num_classes: 分类数量 | |
''' | |
def __init__(self, | |
width_coefficient=1.0, | |
depth_coefficient=1.0, | |
dropout_rate=0.2, | |
num_classes=10): | |
super(EfficientNet, self).__init__() | |
# 模型配置 | |
cfg = { | |
'num_blocks': [1, 2, 2, 3, 3, 4, 1], # 每个stage的block数量 | |
'expansion': [1, 6, 6, 6, 6, 6, 6], # 扩展比率 | |
'out_channels': [16, 24, 40, 80, 112, 192, 320], # 输出通道数 | |
'kernel_size': [3, 3, 5, 3, 5, 5, 3], # 卷积核大小 | |
'stride': [1, 2, 2, 2, 1, 2, 1], # 步长 | |
'dropout_rate': dropout_rate, | |
'drop_connect_rate': 0.2, | |
} | |
self.cfg = cfg | |
self.width_coefficient = width_coefficient | |
self.depth_coefficient = depth_coefficient | |
# Stem layer | |
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(32) | |
# Build blocks | |
self.layers = self._make_layers(in_channels=32) | |
# Head layer | |
final_channels = cfg['out_channels'][-1] * int(width_coefficient) | |
self.linear = nn.Linear(final_channels, num_classes) | |
def _make_layers(self, in_channels): | |
layers = [] | |
cfg = [self.cfg[k] for k in ['expansion', 'out_channels', 'num_blocks', 'kernel_size', 'stride']] | |
blocks = sum(self.cfg['num_blocks']) | |
b = 0 # 用于计算drop_connect_rate | |
for expansion, out_channels, num_blocks, kernel_size, stride in zip(*cfg): | |
out_channels = int(out_channels * self.width_coefficient) | |
num_blocks = int(math.ceil(num_blocks * self.depth_coefficient)) | |
for i in range(num_blocks): | |
stride_i = stride if i == 0 else 1 | |
drop_rate = self.cfg['drop_connect_rate'] * b / blocks | |
layers.append( | |
MBConv(in_channels, | |
out_channels, | |
kernel_size, | |
stride_i, | |
expansion, | |
se_ratio=0.25, | |
drop_rate=drop_rate)) | |
in_channels = out_channels | |
b += 1 | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
# Stem | |
out = swish(self.bn1(self.conv1(x))) | |
# Blocks | |
out = self.layers(out) | |
# Head | |
out = F.adaptive_avg_pool2d(out, 1) | |
out = out.view(out.size(0), -1) | |
if self.training and self.cfg['dropout_rate'] > 0: | |
out = F.dropout(out, p=self.cfg['dropout_rate']) | |
out = self.linear(out) | |
return out | |
def EfficientNetB0(num_classes=10): | |
"""EfficientNet-B0""" | |
return EfficientNet(width_coefficient=1.0, | |
depth_coefficient=1.0, | |
dropout_rate=0.2, | |
num_classes=num_classes) | |
def EfficientNetB1(num_classes=10): | |
"""EfficientNet-B1""" | |
return EfficientNet(width_coefficient=1.0, | |
depth_coefficient=1.1, | |
dropout_rate=0.2, | |
num_classes=num_classes) | |
def EfficientNetB2(num_classes=10): | |
"""EfficientNet-B2""" | |
return EfficientNet(width_coefficient=1.1, | |
depth_coefficient=1.2, | |
dropout_rate=0.3, | |
num_classes=num_classes) | |
def EfficientNetB3(num_classes=10): | |
"""EfficientNet-B3""" | |
return EfficientNet(width_coefficient=1.2, | |
depth_coefficient=1.4, | |
dropout_rate=0.3, | |
num_classes=num_classes) | |
def EfficientNetB4(num_classes=10): | |
"""EfficientNet-B4""" | |
return EfficientNet(width_coefficient=1.4, | |
depth_coefficient=1.8, | |
dropout_rate=0.4, | |
num_classes=num_classes) | |
def EfficientNetB5(num_classes=10): | |
"""EfficientNet-B5""" | |
return EfficientNet(width_coefficient=1.6, | |
depth_coefficient=2.2, | |
dropout_rate=0.4, | |
num_classes=num_classes) | |
def EfficientNetB6(num_classes=10): | |
"""EfficientNet-B6""" | |
return EfficientNet(width_coefficient=1.8, | |
depth_coefficient=2.6, | |
dropout_rate=0.5, | |
num_classes=num_classes) | |
def EfficientNetB7(num_classes=10): | |
"""EfficientNet-B7""" | |
return EfficientNet(width_coefficient=2.0, | |
depth_coefficient=3.1, | |
dropout_rate=0.5, | |
num_classes=num_classes) | |
def test(): | |
"""测试函数""" | |
net = EfficientNetB0() | |
x = torch.randn(1, 3, 32, 32) | |
y = net(x) | |
print(y.size()) | |
from torchinfo import summary | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
net = net.to(device) | |
summary(net, (1, 3, 32, 32)) | |
if __name__ == '__main__': | |
test() |