|
import sklearn |
|
import sklearn.metrics |
|
import scipy.sparse, scipy.sparse.linalg |
|
import numpy as np |
|
|
|
|
|
def grid_graph(grid_side,number_edges,metric): |
|
"""Generate graph of a grid""" |
|
z = grid(grid_side) |
|
dist, idx = distance_sklearn_metrics(z, k=number_edges, metric=metric) |
|
A = adjacency(dist, idx) |
|
print("nb edges: ",A.nnz) |
|
return A |
|
|
|
|
|
def grid(m, dtype=np.float32): |
|
"""Return coordinates of grid points""" |
|
M = m**2 |
|
x = np.linspace(0,1,m, dtype=dtype) |
|
y = np.linspace(0,1,m, dtype=dtype) |
|
xx, yy = np.meshgrid(x, y) |
|
z = np.empty((M,2), dtype) |
|
z[:,0] = xx.reshape(M) |
|
z[:,1] = yy.reshape(M) |
|
return z |
|
|
|
|
|
def distance_sklearn_metrics(z, k=4, metric='euclidean'): |
|
"""Compute pairwise distances""" |
|
d = sklearn.metrics.pairwise.pairwise_distances(z, metric=metric, n_jobs=1) |
|
|
|
idx = np.argsort(d)[:,1:k+1] |
|
d.sort() |
|
d = d[:,1:k+1] |
|
return d, idx |
|
|
|
|
|
def adjacency(dist, idx): |
|
"""Return adjacency matrix of a kNN graph""" |
|
M, k = dist.shape |
|
assert M, k == idx.shape |
|
assert dist.min() >= 0 |
|
assert dist.max() <= 1 |
|
|
|
|
|
sigma2 = np.mean(dist[:,-1])**2 |
|
dist = np.exp(- dist**2 / sigma2) |
|
|
|
|
|
I = np.arange(0, M).repeat(k) |
|
J = idx.reshape(M*k) |
|
V = dist.reshape(M*k) |
|
W = scipy.sparse.coo_matrix((V, (I, J)), shape=(M, M)) |
|
|
|
|
|
W.setdiag(0) |
|
|
|
|
|
bigger = W.T > W |
|
W = W - W.multiply(bigger) + W.T.multiply(bigger) |
|
|
|
assert W.nnz % 2 == 0 |
|
assert np.abs(W - W.T).mean() < 1e-10 |
|
assert type(W) is scipy.sparse.csr.csr_matrix |
|
return W |
|
|
|
|
|
|
|
|
|
|