|
import numpy as np |
|
import scipy.sparse |
|
import sklearn.metrics |
|
|
|
|
|
def laplacian(W, normalized=True): |
|
"""Return graph Laplacian""" |
|
|
|
|
|
d = W.sum(axis=0) |
|
|
|
|
|
if not normalized: |
|
D = scipy.sparse.diags(d.A.squeeze(), 0) |
|
L = D - W |
|
else: |
|
d += np.spacing(np.array(0, W.dtype)) |
|
d = 1 / np.sqrt(d) |
|
D = scipy.sparse.diags(d.A.squeeze(), 0) |
|
I = scipy.sparse.identity(d.size, dtype=W.dtype) |
|
L = I - D * W * D |
|
|
|
assert np.abs(L - L.T).mean() < 1e-9 |
|
assert type(L) is scipy.sparse.csr.csr_matrix |
|
return L |
|
|
|
|
|
|
|
def rescale_L(L, lmax=2): |
|
"""Rescale Laplacian eigenvalues to [-1,1]""" |
|
M, M = L.shape |
|
I = scipy.sparse.identity(M, format='csr', dtype=L.dtype) |
|
L /= lmax * 2 |
|
L -= I |
|
return L |
|
|
|
|
|
def lmax_L(L): |
|
"""Compute largest Laplacian eigenvalue""" |
|
return scipy.sparse.linalg.eigsh(L, k=1, which='LM', return_eigenvectors=False)[0] |
|
|
|
|
|
|
|
def coarsen(A, levels): |
|
|
|
graphs, parents = HEM(A, levels) |
|
perms = compute_perm(parents) |
|
|
|
laplacians = [] |
|
for i,A in enumerate(graphs): |
|
M, M = A.shape |
|
|
|
if i < levels: |
|
A = perm_adjacency(A, perms[i]) |
|
|
|
A = A.tocsr() |
|
A.eliminate_zeros() |
|
Mnew, Mnew = A.shape |
|
print('Layer {0}: M_{0} = |V| = {1} nodes ({2} added), |E| = {3} edges'.format(i, Mnew, Mnew-M, A.nnz//2)) |
|
|
|
L = laplacian(A, normalized=True) |
|
laplacians.append(L) |
|
|
|
return laplacians, perms[0] if len(perms) > 0 else None |
|
|
|
|
|
def HEM(W, levels, rid=None): |
|
""" |
|
Coarsen a graph multiple times using the Heavy Edge Matching (HEM). |
|
|
|
Input |
|
W: symmetric sparse weight (adjacency) matrix |
|
levels: the number of coarsened graphs |
|
|
|
Output |
|
graph[0]: original graph of size N_1 |
|
graph[2]: coarser graph of size N_2 < N_1 |
|
graph[levels]: coarsest graph of Size N_levels < ... < N_2 < N_1 |
|
parents[i] is a vector of size N_i with entries ranging from 1 to N_{i+1} |
|
which indicate the parents in the coarser graph[i+1] |
|
nd_sz{i} is a vector of size N_i that contains the size of the supernode in the graph{i} |
|
|
|
Note |
|
if "graph" is a list of length k, then "parents" will be a list of length k-1 |
|
""" |
|
|
|
N, N = W.shape |
|
|
|
if rid is None: |
|
rid = np.random.permutation(range(N)) |
|
|
|
ss = np.array(W.sum(axis=0)).squeeze() |
|
rid = np.argsort(ss) |
|
|
|
|
|
parents = [] |
|
degree = W.sum(axis=0) - W.diagonal() |
|
graphs = [] |
|
graphs.append(W) |
|
|
|
print('Heavy Edge Matching coarsening with Xavier version') |
|
|
|
for _ in range(levels): |
|
|
|
weights = degree |
|
weights = np.array(weights).squeeze() |
|
|
|
|
|
idx_row, idx_col, val = scipy.sparse.find(W) |
|
cc = idx_row |
|
rr = idx_col |
|
vv = val |
|
|
|
if not (list(cc)==list(np.sort(cc))): |
|
tmp=cc |
|
cc=rr |
|
rr=tmp |
|
|
|
cluster_id = HEM_one_level(cc,rr,vv,rid,weights) |
|
parents.append(cluster_id) |
|
|
|
|
|
nrr = cluster_id[rr] |
|
ncc = cluster_id[cc] |
|
nvv = vv |
|
Nnew = cluster_id.max() + 1 |
|
|
|
W = scipy.sparse.csr_matrix((nvv,(nrr,ncc)), shape=(Nnew,Nnew)) |
|
W.eliminate_zeros() |
|
|
|
|
|
graphs.append(W) |
|
N, N = W.shape |
|
|
|
|
|
degree = W.sum(axis=0) |
|
|
|
|
|
ss = np.array(W.sum(axis=0)).squeeze() |
|
rid = np.argsort(ss) |
|
|
|
return graphs, parents |
|
|
|
|
|
|
|
def HEM_one_level(rr,cc,vv,rid,weights): |
|
|
|
nnz = rr.shape[0] |
|
N = rr[nnz-1] + 1 |
|
|
|
marked = np.zeros(N, np.bool) |
|
rowstart = np.zeros(N, np.int32) |
|
rowlength = np.zeros(N, np.int32) |
|
cluster_id = np.zeros(N, np.int32) |
|
|
|
oldval = rr[0] |
|
count = 0 |
|
clustercount = 0 |
|
|
|
for ii in range(nnz): |
|
rowlength[count] = rowlength[count] + 1 |
|
if rr[ii] > oldval: |
|
oldval = rr[ii] |
|
rowstart[count+1] = ii |
|
count = count + 1 |
|
|
|
for ii in range(N): |
|
tid = rid[ii] |
|
if not marked[tid]: |
|
wmax = 0.0 |
|
rs = rowstart[tid] |
|
marked[tid] = True |
|
bestneighbor = -1 |
|
for jj in range(rowlength[tid]): |
|
nid = cc[rs+jj] |
|
if marked[nid]: |
|
tval = 0.0 |
|
else: |
|
|
|
|
|
if 2==1: |
|
tval = vv[rs+jj] * (1.0/weights[tid] + 1.0/weights[nid]) |
|
|
|
|
|
if 1==1: |
|
Wij = vv[rs+jj] |
|
Wii = vv[rowstart[tid]] |
|
Wjj = vv[rowstart[nid]] |
|
di = weights[tid] |
|
dj = weights[nid] |
|
tval = (2.*Wij + Wii + Wjj) * 1./(di+dj+1e-9) |
|
|
|
if tval > wmax: |
|
wmax = tval |
|
bestneighbor = nid |
|
|
|
cluster_id[tid] = clustercount |
|
|
|
if bestneighbor > -1: |
|
cluster_id[bestneighbor] = clustercount |
|
marked[bestneighbor] = True |
|
|
|
clustercount += 1 |
|
|
|
return cluster_id |
|
|
|
|
|
def compute_perm(parents): |
|
""" |
|
Return a list of indices to reorder the adjacency and data matrices so |
|
that the union of two neighbors from layer to layer forms a binary tree. |
|
""" |
|
|
|
|
|
indices = [] |
|
if len(parents) > 0: |
|
M_last = max(parents[-1]) + 1 |
|
indices.append(list(range(M_last))) |
|
|
|
for parent in parents[::-1]: |
|
|
|
|
|
pool_singeltons = len(parent) |
|
|
|
indices_layer = [] |
|
for i in indices[-1]: |
|
indices_node = list(np.where(parent == i)[0]) |
|
assert 0 <= len(indices_node) <= 2 |
|
|
|
|
|
if len(indices_node) is 1: |
|
indices_node.append(pool_singeltons) |
|
pool_singeltons += 1 |
|
|
|
|
|
elif len(indices_node) is 0: |
|
indices_node.append(pool_singeltons+0) |
|
indices_node.append(pool_singeltons+1) |
|
pool_singeltons += 2 |
|
|
|
indices_layer.extend(indices_node) |
|
indices.append(indices_layer) |
|
|
|
|
|
for i,indices_layer in enumerate(indices): |
|
M = M_last*2**i |
|
|
|
assert len(indices[0] == M) |
|
|
|
assert sorted(indices_layer) == list(range(M)) |
|
|
|
return indices[::-1] |
|
|
|
assert (compute_perm([np.array([4,1,1,2,2,3,0,0,3]),np.array([2,1,0,1,0])]) |
|
== [[3,4,0,9,1,2,5,8,6,7,10,11],[2,4,1,3,0,5],[0,1,2]]) |
|
|
|
|
|
|
|
def perm_adjacency(A, indices): |
|
""" |
|
Permute adjacency matrix, i.e. exchange node ids, |
|
so that binary unions form the clustering tree. |
|
""" |
|
if indices is None: |
|
return A |
|
|
|
M, M = A.shape |
|
Mnew = len(indices) |
|
A = A.tocoo() |
|
|
|
|
|
rows = scipy.sparse.coo_matrix((Mnew-M, M), dtype=np.float32) |
|
cols = scipy.sparse.coo_matrix((Mnew, Mnew-M), dtype=np.float32) |
|
A = scipy.sparse.vstack([A, rows]) |
|
A = scipy.sparse.hstack([A, cols]) |
|
|
|
|
|
perm = np.argsort(indices) |
|
A.row = np.array(perm)[A.row] |
|
A.col = np.array(perm)[A.col] |
|
|
|
assert np.abs(A - A.T).mean() < 1e-8 |
|
assert type(A) is scipy.sparse.coo.coo_matrix |
|
return A |
|
|
|
|
|
|
|
def perm_data(x, indices): |
|
""" |
|
Permute data matrix, i.e. exchange node ids, |
|
so that binary unions form the clustering tree. |
|
""" |
|
if indices is None: |
|
return x |
|
|
|
N, M = x.shape |
|
Mnew = len(indices) |
|
assert Mnew >= M |
|
xnew = np.empty((N, Mnew)) |
|
for i,j in enumerate(indices): |
|
|
|
if j < M: |
|
xnew[:,i] = x[:,j] |
|
|
|
|
|
|
|
else: |
|
xnew[:,i] = np.zeros(N) |
|
return xnew |
|
|
|
|