|
from AlexNet.code.model import AlexNet |
|
import torch |
|
import numpy as np |
|
from feature_predictor import predict_feature |
|
|
|
def test_single_feature(): |
|
"""测试单个特征向量的预测""" |
|
print("\n开始单特征测试...") |
|
|
|
|
|
feature_dim = 1024 |
|
feature = torch.randn(1, feature_dim) * 10.0 |
|
|
|
|
|
output = predict_feature( |
|
model=AlexNet, |
|
weight_path='AlexNet/model/0/epoch_195/subject_model.pth', |
|
layer_info_path='AlexNet/code/layer_info.json', |
|
feature=feature |
|
) |
|
|
|
|
|
probs = output.softmax(dim=1) |
|
|
|
|
|
print("\n原始输出:", output) |
|
print("\n最终预测结果:") |
|
top_k = torch.topk(probs[0], k=3) |
|
for idx, (class_idx, prob) in enumerate(zip(top_k.indices.tolist(), top_k.values.tolist())): |
|
print(f"Top-{idx+1}: 类别 {class_idx}, 概率 {prob:.4f}") |
|
|
|
def test_train_data(): |
|
"""测试训练数据集的预测""" |
|
print("\n开始训练数据测试...") |
|
|
|
|
|
print("加载训练数据...") |
|
features = np.load('AlexNet/model/0/epoch_195/train_data.npy') |
|
print(f"数据形状: {features.shape}") |
|
|
|
|
|
batch_size = 100 |
|
num_samples = len(features) |
|
num_batches = (num_samples + batch_size - 1) // batch_size |
|
|
|
|
|
all_predictions = [] |
|
class_counts = {} |
|
|
|
print("\n开始批量预测...") |
|
for i in range(num_batches): |
|
start_idx = i * batch_size |
|
end_idx = min((i + 1) * batch_size, num_samples) |
|
batch_features = features[start_idx:end_idx] |
|
|
|
|
|
outputs = predict_feature( |
|
model=AlexNet, |
|
weight_path='AlexNet/model/0/epoch_195/subject_model.pth', |
|
layer_info_path='AlexNet/code/layer_info.json', |
|
feature=batch_features |
|
) |
|
|
|
|
|
predictions = outputs.argmax(dim=1).cpu().numpy() |
|
|
|
|
|
for pred in predictions: |
|
class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1 |
|
|
|
all_predictions.extend(predictions) |
|
|
|
|
|
if (i + 1) % 10 == 0: |
|
print(f"\n已处理: {end_idx}/{num_samples} 个样本") |
|
batch_unique, batch_counts = np.unique(predictions, return_counts=True) |
|
print("当前批次预测分布:") |
|
for class_idx, count in zip(batch_unique, batch_counts): |
|
print(f"类别 {class_idx}: {count} 个样本 ({count/len(predictions)*100:.2f}%)") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
test_single_feature() |
|
|
|
|