RRFRRF's picture
reset
a3ab6c4
raw
history blame
2.91 kB
from AlexNet.code.model import AlexNet
import torch
import numpy as np
from feature_predictor import predict_feature
def test_single_feature():
"""测试单个特征向量的预测"""
print("\n开始单特征测试...")
# 生成测试特征
feature_dim = 1024 # 特征维度
feature = torch.randn(1, feature_dim) * 10.0 # 使用较大的尺度
# 使用predict_feature函数进行预测
output = predict_feature(
model=AlexNet,
weight_path='AlexNet/model/0/epoch_195/subject_model.pth',
layer_info_path='AlexNet/code/layer_info.json',
feature=feature
)
# 计算概率
probs = output.softmax(dim=1)
# 显示原始输出和预测结果
print("\n原始输出:", output)
print("\n最终预测结果:")
top_k = torch.topk(probs[0], k=3)
for idx, (class_idx, prob) in enumerate(zip(top_k.indices.tolist(), top_k.values.tolist())):
print(f"Top-{idx+1}: 类别 {class_idx}, 概率 {prob:.4f}")
def test_train_data():
"""测试训练数据集的预测"""
print("\n开始训练数据测试...")
# 加载训练数据
print("加载训练数据...")
features = np.load('AlexNet/model/0/epoch_195/train_data.npy')
print(f"数据形状: {features.shape}")
# 批量处理
batch_size = 100
num_samples = len(features)
num_batches = (num_samples + batch_size - 1) // batch_size
# 用于统计结果
all_predictions = []
class_counts = {}
print("\n开始批量预测...")
for i in range(num_batches):
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, num_samples)
batch_features = features[start_idx:end_idx]
# 使用predict_feature函数进行预测
outputs = predict_feature(
model=AlexNet,
weight_path='AlexNet/model/0/epoch_195/subject_model.pth',
layer_info_path='AlexNet/code/layer_info.json',
feature=batch_features
)
# 获取预测类别
predictions = outputs.argmax(dim=1).cpu().numpy()
# 更新统计信息
for pred in predictions:
class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1
all_predictions.extend(predictions)
# 打印进度和当前批次的预测分布
if (i + 1) % 10 == 0:
print(f"\n已处理: {end_idx}/{num_samples} 个样本")
batch_unique, batch_counts = np.unique(predictions, return_counts=True)
print("当前批次预测分布:")
for class_idx, count in zip(batch_unique, batch_counts):
print(f"类别 {class_idx}: {count} 个样本 ({count/len(predictions)*100:.2f}%)")
if __name__ == "__main__":
# 测试单个特征
test_single_feature()
# 测试训练数据
# test_train_data()