File size: 15,162 Bytes
a3ab6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
"""
特征预测器模块

该模块使用钩子机制从模型的中间层特征向量预测分类结果
"""

import torch
import torch.nn as nn
import json
import os
import torch.nn.functional as F
import numpy as np
from typing import Type, Union, Optional

class FeaturePredictor:
    def __init__(self, model_class, model_weights_path, layer_info_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
        """
        初始化特征预测器
        
        Args:
            model_class: 模型类
            model_weights_path: 模型权重文件路径
            layer_info_path: 层信息文件路径
            device: 运行设备
        """
        self.device = device
        self.model = model_class().to(device)
        self.model.load_state_dict(torch.load(model_weights_path, map_location=device, weights_only=True))
        self.model.eval()  
        # 加载层信息
        with open(layer_info_path, 'r') as f:
            layer_info = json.load(f)
        self.target_layer = layer_info['layer_id']
        self.feature_dim = layer_info['dim']
        
        # 初始化变量
        self.output_shape = None
        self.inject_feature = None
        self.handles = []
        self.layer_name_map = {}
        
        # 用于调试的变量
        self.last_normalized_feature = None
        self.last_reshaped_feature = None
        self.last_layer_outputs = {}
        
        # 注册钩子
        self.register_hooks()
        
        # 运行一次前向传播来获取形状
        self._get_output_shape()
        
    def _get_output_shape(self):
        """运行一次前向传播来获取目标层的输出形状"""
        def shape_hook(module, input, output):
            self.output_shape = output.shape[1:]  # 不包括batch维度
            print(f"[Init] 获取到目标层输出形状: {self.output_shape}")
            return output
            
        # 找到目标层并注册临时钩子
        def find_layer(module, name=''):
            for n, child in module.named_children():
                current_name = f"{name}.{n}" if name else n
                if current_name == self.target_layer:
                    handle = child.register_forward_hook(shape_hook)
                    return handle, True
                else:
                    handle, found = find_layer(child, current_name)
                    if found:
                        return handle, True
            return None, False
            
        # 注册临时钩子
        handle, found = find_layer(self.model)
        if not found:
            raise ValueError(f"未找到目标层: {self.target_layer}")
            
        # 运行一次前向传播
        with torch.no_grad():
            dummy_input = torch.zeros(1, 3, 32, 32).to(self.device)
            self.model(dummy_input)
            
        # 移除临时钩子
        handle.remove()
        
        if self.output_shape is None:
            raise RuntimeError("无法获取目标层的输出形状")
    
    def register_hooks(self):
        """注册钩子函数,在目标层注入特征向量和监控每层输出"""
        def print_tensor_info(name, tensor):
            """打印张量的统计信息"""
            print(f"\n[Hook Debug] {name}:")
            print(f"- 形状: {tensor.shape}")
            print(f"- 数值范围: [{tensor.min().item():.4f}, {tensor.max().item():.4f}]")
            print(f"- 均值: {tensor.mean().item():.4f}")
            print(f"- 标准差: {tensor.std().item():.4f}")
        
        def hook_fn(module, input, output):
            """钩子函数:输出层信息并在目标层注入特征"""
            layer_name = self.layer_name_map.get(module, "未知层")
            print(f"\n[Hook Debug] 层: {layer_name}")
            print(f"- 类型: {type(module).__name__}")
            
            # 输出输入信息
            if input and len(input) > 0:
                print_tensor_info("输入张量", input[0])
            
            # 输出原始输出信息
            print_tensor_info("输出张量", output)
            
            # 如果是目标层且有注入特征,则替换输出
            if layer_name == self.target_layer and self.inject_feature is not None:
                print("\n[Hook Debug] 正在注入特征...")
                print_tensor_info("注入特征", self.inject_feature)
                print(f"[Hook Debug] 将层 {layer_name} 的输出从 {output.shape} 替换为注入特征 {self.inject_feature.shape}")     
                # 替换输出
                output = self.inject_feature
                print("[Hook Debug] 特征注入完成,将作为下一层的输入")
                return output
            
            return output
        
        def hook_layer(module, name=''):
            """为每一层注册钩子"""
            for n, child in module.named_children():
                current_name = f"{name}.{n}" if name else n
                # 保存层名到模块的映射
                self.layer_name_map[child] = current_name
                # 注册钩子
                handle = child.register_forward_hook(hook_fn)
                self.handles.append(handle)
                # 递归处理子模块
                hook_layer(child, current_name)
        
        # 注册所有层的钩子
        hook_layer(self.model)
        print(f"[Debug] 钩子注册完成,共注册了 {len(self.handles)} 个钩子")
    
    def reshape_feature(self, feature):
        """调整特征向量的形状"""
        if self.output_shape is None:
            raise RuntimeError("目标层的输出形状未初始化")
        
        batch_size = feature.shape[0]
        expected_dim = np.prod(self.output_shape)
        
        # 检查输入特征维度是否正确
        if feature.shape[1] != expected_dim:
            raise ValueError(f"特征维度不匹配:预期 {expected_dim},实际 {feature.shape[1]}")
        
        # 使用自动获取的形状重塑特征
        new_shape = (batch_size,) + self.output_shape
        print(f"[Debug] 调整特征形状: {feature.shape} -> {new_shape}")
        return feature.view(new_shape)
    
    def predict(self, feature):
        """使用给定的特征向量进行预测"""
        print(f"\n[Debug] 开始预测,输入特征形状: {feature.shape}")
        
        # 检查输入维度
        if feature.shape[1] != self.feature_dim:
            raise ValueError(f"特征维度不匹配:预期 {self.feature_dim},实际 {feature.shape[1]}")
        
        # 将特征转移到正确的设备并重塑
        feature = feature.to(self.device)
        self.inject_feature = self.reshape_feature(feature)
        
        # 使用虚拟输入进行预测
        dummy_input = torch.zeros(feature.shape[0], 3, 32, 32).to(self.device)
        
        # 进行前向传播(钩子会自动在目标层注入特征)
        with torch.no_grad():
            output = self.model(dummy_input)
        
        # 清除注入的特征
        self.inject_feature = None
        
        return output

def predict_feature(
    model: Type[nn.Module],
    weight_path: str,
    layer_info_path: str,
    feature: Union[torch.Tensor, np.ndarray],
    device: Optional[str] = None
) -> torch.Tensor:
    """
    使用预训练模型预测特征向量的类别。

    Args:
        model: PyTorch模型类(不是实例)
        weight_path: 模型权重文件路径
        layer_info_path: 层信息配置文件路径
        feature: 输入特征向量,可以是torch.Tensor或numpy.ndarray
        device: 运行设备,可选 'cuda' 或 'cpu'。如果为None,将自动选择。

    Returns:
        torch.Tensor: 模型输出的预测结果

    Raises:
        ValueError: 如果输入特征维度不正确
        FileNotFoundError: 如果权重文件或层信息文件不存在
        RuntimeError: 如果模型加载或预测过程出错
    """
    try:
        # 检查文件是否存在
        if not os.path.exists(weight_path):
            raise FileNotFoundError(f"权重文件不存在: {weight_path}")
        if not os.path.exists(layer_info_path):
            raise FileNotFoundError(f"层信息文件不存在: {layer_info_path}")

        # 确定设备
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'

        # 转换输入特征为torch.Tensor
        if isinstance(feature, np.ndarray):
            feature = torch.from_numpy(feature).float()
        elif not isinstance(feature, torch.Tensor):
            raise ValueError("输入特征必须是numpy数组或torch张量")

        # 创建预测器实例
        predictor = FeaturePredictor(
            model_class=model,
            model_weights_path=weight_path,
            layer_info_path=layer_info_path,
            device=device
        )

        # 进行预测
        with torch.no_grad():
            output = predictor.predict(feature)

        return output

    except Exception as e:
        raise RuntimeError(f"预测过程出错: {str(e)}")


def test_predictor():
    """测试特征预测器的功能"""
    from AlexNet.code.model import AlexNet
    import os
    import numpy as np
    
    # 创建预测器实例
    predictor = FeaturePredictor(
            model_class=AlexNet,
            model_weights_path='AlexNet/model/0/epoch_195/subject_model.pth',
            layer_info_path='AlexNet/code/layer_info.json'
    )
    
    print("\n开始单点测试...")
    
    # 生成一个测试点,使用较大的尺度以增加特征的差异性
    feature = torch.randn(1, predictor.feature_dim) * 10.0
    output = predictor.predict(feature)
    probs = output.softmax(dim=1)
    print("\n结果:",output)
    # 显示最终预测结果
    print("\n最终预测结果:")
    top_k = torch.topk(probs[0], k=3)
    for idx, (class_idx, prob) in enumerate(zip(top_k.indices.tolist(), top_k.values.tolist())):
        print(f"Top-{idx+1}: 类别 {class_idx}, 概率 {prob:.4f}")

def test_predictor_from_train_data():
    """测试特征预测器的批量预测功能"""
    from AlexNet.code.model import AlexNet
    import numpy as np
    import torch
    
    print("\n开始处理训练数据集...")
    # 创建预测器实例
    predictor = FeaturePredictor(
        model_class=AlexNet,
        model_weights_path='AlexNet/model/0/epoch_195/subject_model.pth',
        layer_info_path='AlexNet/code/layer_info.json'
    )
    
    # 加载训练数据
    print("\n加载训练数据...")
    features = np.load('AlexNet/model/0/epoch_195/train_data.npy')
    print(f"数据形状: {features.shape}")
    
    # 转换为tensor
    features = torch.from_numpy(features).float()
    
    # 批量处理
    batch_size = 100
    num_samples = len(features)
    num_batches = (num_samples + batch_size - 1) // batch_size
    
    # 用于统计结果
    all_predictions = []
    class_counts = {}
    
    print("\n开始批量预测...")
    with torch.no_grad():
        for i in range(num_batches):
            start_idx = i * batch_size
            end_idx = min((i + 1) * batch_size, num_samples)
            batch_features = features[start_idx:end_idx]
            
            # 使用预测器进行预测
            outputs = predictor.predict(batch_features)
            predictions = outputs.argmax(dim=1).cpu().numpy()
            
            # 更新统计信息
            for pred in predictions:
                class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1
            
            all_predictions.extend(predictions)
            
            # 打印进度和当前批次的预测分布
            if (i + 1) % 10 == 0:
                print(f"\n已处理: {end_idx}/{num_samples} 个样本")
                batch_unique, batch_counts = np.unique(predictions, return_counts=True)
                print("当前批次预测分布:")
                for class_idx, count in zip(batch_unique, batch_counts):
                    print(f"类别 {class_idx}: {count} 个样本 ({count/len(predictions)*100:.2f}%)")
    
    # 打印总体统计结果
    print("\n最终预测结果统计:")
    total_samples = len(all_predictions)
    for class_idx in sorted(class_counts.keys()):
        count = class_counts[class_idx]
        percentage = (count / total_samples) * 100
        print(f"类别 {class_idx}: {count} 个样本 ({percentage:.2f}%)")

def test_train_data():
    """测试训练数据集的预测结果分布"""
    from AlexNet.code.model import AlexNet
    import numpy as np
    import torch
    import torch.nn.functional as F
    
    print("\n开始处理训练数据集...")
    
    # 初始化模型
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = AlexNet().to(device)
    model.load_state_dict(torch.load('AlexNet/model/0/epoch_195/subject_model.pth', 
                                   map_location=device, weights_only=True))
    model.eval()
    
    # 加载训练数据
    print("加载训练数据...")
    features = np.load('AlexNet/model/0/epoch_195/train_data.npy')
    print(f"数据形状: {features.shape}")
    
    # 转换为tensor
    features = torch.from_numpy(features).float().to(device)
    
    # 批量处理
    batch_size = 100
    num_samples = len(features)
    num_batches = (num_samples + batch_size - 1) // batch_size
    
    # 用于统计结果
    all_predictions = []
    class_counts = {}
    
    print("\n开始批量预测...")
    with torch.no_grad():
        for i in range(num_batches):
            start_idx = i * batch_size
            end_idx = min((i + 1) * batch_size, num_samples)
            batch_features = features[start_idx:end_idx]
            
            # 将特征重塑为[batch_size, 16, 8, 8]
            reshaped_features = batch_features.view(-1, 16, 8, 8)
            
            # 使用模型的predict函数
            outputs = model.predict(reshaped_features)
            predictions = outputs.argmax(dim=1).cpu().numpy()
            
            # 更新统计信息
            for pred in predictions:
                class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1
            
            all_predictions.extend(predictions)
            
            # 打印进度
            if (i + 1) % 10 == 0:
                print(f"已处理: {end_idx}/{num_samples} 个样本")
    
    # 打印统计结果
    print("\n预测结果统计:")
    total_samples = len(all_predictions)
    for class_idx in sorted(class_counts.keys()):
        count = class_counts[class_idx]
        percentage = (count / total_samples) * 100
        print(f"类别 {class_idx}: {count} 个样本 ({percentage:.2f}%)")
    
    # 保存详细结果
    print("\n保存详细结果...")
    results = {
        'predictions': all_predictions,
        'class_counts': class_counts
    }
    # np.save('prediction_results.npy', results)
    # print("结果已保存到 prediction_results.npy")



if __name__ == "__main__":
    test_predictor()
    # test_predictor_from_train_data()
    # test_train_data()