File size: 8,740 Bytes
a3ab6c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import numpy as np
import scipy.sparse
import sklearn.metrics
def laplacian(W, normalized=True):
"""Return graph Laplacian"""
# Degree matrix.
d = W.sum(axis=0)
# Laplacian matrix.
if not normalized:
D = scipy.sparse.diags(d.A.squeeze(), 0)
L = D - W
else:
d += np.spacing(np.array(0, W.dtype))
d = 1 / np.sqrt(d)
D = scipy.sparse.diags(d.A.squeeze(), 0)
I = scipy.sparse.identity(d.size, dtype=W.dtype)
L = I - D * W * D
assert np.abs(L - L.T).mean() < 1e-9
assert type(L) is scipy.sparse.csr.csr_matrix
return L
def rescale_L(L, lmax=2):
"""Rescale Laplacian eigenvalues to [-1,1]"""
M, M = L.shape
I = scipy.sparse.identity(M, format='csr', dtype=L.dtype)
L /= lmax * 2
L -= I
return L
def lmax_L(L):
"""Compute largest Laplacian eigenvalue"""
return scipy.sparse.linalg.eigsh(L, k=1, which='LM', return_eigenvectors=False)[0]
# graph coarsening with Heavy Edge Matching
def coarsen(A, levels):
graphs, parents = HEM(A, levels)
perms = compute_perm(parents)
laplacians = []
for i,A in enumerate(graphs):
M, M = A.shape
if i < levels:
A = perm_adjacency(A, perms[i])
A = A.tocsr()
A.eliminate_zeros()
Mnew, Mnew = A.shape
print('Layer {0}: M_{0} = |V| = {1} nodes ({2} added), |E| = {3} edges'.format(i, Mnew, Mnew-M, A.nnz//2))
L = laplacian(A, normalized=True)
laplacians.append(L)
return laplacians, perms[0] if len(perms) > 0 else None
def HEM(W, levels, rid=None):
"""
Coarsen a graph multiple times using the Heavy Edge Matching (HEM).
Input
W: symmetric sparse weight (adjacency) matrix
levels: the number of coarsened graphs
Output
graph[0]: original graph of size N_1
graph[2]: coarser graph of size N_2 < N_1
graph[levels]: coarsest graph of Size N_levels < ... < N_2 < N_1
parents[i] is a vector of size N_i with entries ranging from 1 to N_{i+1}
which indicate the parents in the coarser graph[i+1]
nd_sz{i} is a vector of size N_i that contains the size of the supernode in the graph{i}
Note
if "graph" is a list of length k, then "parents" will be a list of length k-1
"""
N, N = W.shape
if rid is None:
rid = np.random.permutation(range(N))
ss = np.array(W.sum(axis=0)).squeeze()
rid = np.argsort(ss)
parents = []
degree = W.sum(axis=0) - W.diagonal()
graphs = []
graphs.append(W)
print('Heavy Edge Matching coarsening with Xavier version')
for _ in range(levels):
weights = degree # graclus weights
weights = np.array(weights).squeeze()
# PAIR THE VERTICES AND CONSTRUCT THE ROOT VECTOR
idx_row, idx_col, val = scipy.sparse.find(W)
cc = idx_row
rr = idx_col
vv = val
if not (list(cc)==list(np.sort(cc))):
tmp=cc
cc=rr
rr=tmp
cluster_id = HEM_one_level(cc,rr,vv,rid,weights)
parents.append(cluster_id)
# COMPUTE THE EDGES WEIGHTS FOR THE NEW GRAPH
nrr = cluster_id[rr]
ncc = cluster_id[cc]
nvv = vv
Nnew = cluster_id.max() + 1
# CSR is more appropriate: row,val pairs appear multiple times
W = scipy.sparse.csr_matrix((nvv,(nrr,ncc)), shape=(Nnew,Nnew))
W.eliminate_zeros()
# Add new graph to the list of all coarsened graphs
graphs.append(W)
N, N = W.shape
# COMPUTE THE DEGREE (OMIT OR NOT SELF LOOPS)
degree = W.sum(axis=0)
# CHOOSE THE ORDER IN WHICH VERTICES WILL BE VISTED AT THE NEXT PASS
ss = np.array(W.sum(axis=0)).squeeze()
rid = np.argsort(ss)
return graphs, parents
# Coarsen a graph given by rr,cc,vv. rr is assumed to be ordered
def HEM_one_level(rr,cc,vv,rid,weights):
nnz = rr.shape[0]
N = rr[nnz-1] + 1
marked = np.zeros(N, np.bool)
rowstart = np.zeros(N, np.int32)
rowlength = np.zeros(N, np.int32)
cluster_id = np.zeros(N, np.int32)
oldval = rr[0]
count = 0
clustercount = 0
for ii in range(nnz):
rowlength[count] = rowlength[count] + 1
if rr[ii] > oldval:
oldval = rr[ii]
rowstart[count+1] = ii
count = count + 1
for ii in range(N):
tid = rid[ii]
if not marked[tid]:
wmax = 0.0
rs = rowstart[tid]
marked[tid] = True
bestneighbor = -1
for jj in range(rowlength[tid]):
nid = cc[rs+jj]
if marked[nid]:
tval = 0.0
else:
# First approach
if 2==1:
tval = vv[rs+jj] * (1.0/weights[tid] + 1.0/weights[nid])
# Second approach
if 1==1:
Wij = vv[rs+jj]
Wii = vv[rowstart[tid]]
Wjj = vv[rowstart[nid]]
di = weights[tid]
dj = weights[nid]
tval = (2.*Wij + Wii + Wjj) * 1./(di+dj+1e-9)
if tval > wmax:
wmax = tval
bestneighbor = nid
cluster_id[tid] = clustercount
if bestneighbor > -1:
cluster_id[bestneighbor] = clustercount
marked[bestneighbor] = True
clustercount += 1
return cluster_id
def compute_perm(parents):
"""
Return a list of indices to reorder the adjacency and data matrices so
that the union of two neighbors from layer to layer forms a binary tree.
"""
# Order of last layer is random (chosen by the clustering algorithm).
indices = []
if len(parents) > 0:
M_last = max(parents[-1]) + 1
indices.append(list(range(M_last)))
for parent in parents[::-1]:
# Fake nodes go after real ones.
pool_singeltons = len(parent)
indices_layer = []
for i in indices[-1]:
indices_node = list(np.where(parent == i)[0])
assert 0 <= len(indices_node) <= 2
# Add a node to go with a singelton.
if len(indices_node) is 1:
indices_node.append(pool_singeltons)
pool_singeltons += 1
# Add two nodes as children of a singelton in the parent.
elif len(indices_node) is 0:
indices_node.append(pool_singeltons+0)
indices_node.append(pool_singeltons+1)
pool_singeltons += 2
indices_layer.extend(indices_node)
indices.append(indices_layer)
# Sanity checks.
for i,indices_layer in enumerate(indices):
M = M_last*2**i
# Reduction by 2 at each layer (binary tree).
assert len(indices[0] == M)
# The new ordering does not omit an indice.
assert sorted(indices_layer) == list(range(M))
return indices[::-1]
assert (compute_perm([np.array([4,1,1,2,2,3,0,0,3]),np.array([2,1,0,1,0])])
== [[3,4,0,9,1,2,5,8,6,7,10,11],[2,4,1,3,0,5],[0,1,2]])
def perm_adjacency(A, indices):
"""
Permute adjacency matrix, i.e. exchange node ids,
so that binary unions form the clustering tree.
"""
if indices is None:
return A
M, M = A.shape
Mnew = len(indices)
A = A.tocoo()
# Add Mnew - M isolated vertices.
rows = scipy.sparse.coo_matrix((Mnew-M, M), dtype=np.float32)
cols = scipy.sparse.coo_matrix((Mnew, Mnew-M), dtype=np.float32)
A = scipy.sparse.vstack([A, rows])
A = scipy.sparse.hstack([A, cols])
# Permute the rows and the columns.
perm = np.argsort(indices)
A.row = np.array(perm)[A.row]
A.col = np.array(perm)[A.col]
assert np.abs(A - A.T).mean() < 1e-8 # 1e-9
assert type(A) is scipy.sparse.coo.coo_matrix
return A
def perm_data(x, indices):
"""
Permute data matrix, i.e. exchange node ids,
so that binary unions form the clustering tree.
"""
if indices is None:
return x
N, M = x.shape
Mnew = len(indices)
assert Mnew >= M
xnew = np.empty((N, Mnew))
for i,j in enumerate(indices):
# Existing vertex, i.e. real data.
if j < M:
xnew[:,i] = x[:,j]
# Fake vertex because of singeltons.
# They will stay 0 so that max pooling chooses the singelton.
# Or -infty ?
else:
xnew[:,i] = np.zeros(N)
return xnew
|