File size: 3,923 Bytes
a3ab6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#### Imports ####

import torch
import torch.nn as nn
import random


adj_list = [[1,2,3], [0,2,3], [0, 1, 3], [0, 1, 2], [5, 6], [4,6], [4, 5], [1, 3]]
size_vertex = len(adj_list)  # number of vertices

#### Hyperparameters ####

w  = 3            # window size
d  = 2            # embedding size
y  = 200          # walks per vertex
t  = 6            # walk length 
lr = 0.025       # learning rate

v=[0,1,2,3,4,5,6,7] #labels of available vertices


#### Random Walk ####

def RandomWalk(node,t):
    walk = [node]        # Walk starts from this node
    
    for i in range(t-1):
        node = adj_list[node][random.randint(0,len(adj_list[node])-1)]
        walk.append(node)

    return walk


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.phi  = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True))    
        self.phi2 = nn.Parameter(torch.rand((d, size_vertex), requires_grad=True))
        
        
    def forward(self, one_hot):
        hidden = torch.matmul(one_hot, self.phi)
        out    = torch.matmul(hidden, self.phi2)
        return out

model = Model()


def skip_gram(wvi,  w):
    for j in range(len(wvi)):
        for k in range(max(0,j-w) , min(j+w, len(wvi))):
            
            #generate one hot vector
            one_hot          = torch.zeros(size_vertex)
            one_hot[wvi[j]]  = 1
            
            out              = model(one_hot)
            loss             = torch.log(torch.sum(torch.exp(out))) - out[wvi[k]]
            loss.backward()
            
            for param in model.parameters():
                param.data.sub_(lr*param.grad)
                param.grad.data.zero_()


for i in range(y):
    random.shuffle(v)
    for vi in v:
        wvi=RandomWalk(vi,t)
        skip_gram(wvi, w)


print(model.phi)


#### Hierarchical Softmax ####

def func_L(w):
    """
    Parameters
    ----------
    w: Leaf node.
    
    Returns
    -------
    count: The length of path from the root node to the given vertex.
    """
    count=1
    while(w!=1):
        count+=1
        w//=2

    return count


# func_n returns the nth node in the path from the root node to the given vertex
def func_n(w, j):
    li=[w]
    while(w!=1):
        w = w//2
        li.append(w)

    li.reverse()
    
    return li[j]


def sigmoid(x):
    out = 1/(1+torch.exp(-x))
    return out


class HierarchicalModel(torch.nn.Module):
    
    def __init__(self):
        super(HierarchicalModel, self).__init__()
        self.phi         = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True))   
        self.prob_tensor = nn.Parameter(torch.rand((2*size_vertex, d), requires_grad=True))
    
    def forward(self, wi, wo):
        one_hot     = torch.zeros(size_vertex)
        one_hot[wi] = 1
        w = size_vertex + wo
        h = torch.matmul(one_hot,self.phi)
        p = torch.tensor([1.0])
        for j in range(1, func_L(w)-1):
            mult = -1
            if(func_n(w, j+1)==2*func_n(w, j)): # Left child
                mult = 1
        
            p = p*sigmoid(mult*torch.matmul(self.prob_tensor[func_n(w,j)], h))
        
        return p


hierarchicalModel = HierarchicalModel()


def HierarchicalSkipGram(wvi,  w):
   
    for j in range(len(wvi)):
        for k in range(max(0,j-w) , min(j+w, len(wvi))):
            #generate one hot vector
       
            prob = hierarchicalModel(wvi[j], wvi[k])
            loss = - torch.log(prob)
            loss.backward()
            for param in hierarchicalModel.parameters():
                param.data.sub_(lr*param.grad)
                param.grad.data.zero_()


for i in range(y):
    random.shuffle(v)
    for vi in v:
        wvi = RandomWalk(vi,t)
        HierarchicalSkipGram(wvi, w)



for i in range(8):
    for j in range(8):
        print((hierarchicalModel(i,j).item()*100)//1, end=' ')
    print(end = '\n')