repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
openvax/varcode | varcode/effects/mutate.py | insert_after | def insert_after(sequence, offset, new_residues):
"""Mutate the given sequence by inserting the string `new_residues` after
`offset`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of sequence, after which we should insert
`new_residues`.
new_residues : sequence
"""
assert 0 <= offset < len(sequence), \
"Invalid position %d for sequence of length %d" % (
offset, len(sequence))
prefix = sequence[:offset + 1]
suffix = sequence[offset + 1:]
return prefix + new_residues + suffix | python | def insert_after(sequence, offset, new_residues):
"""Mutate the given sequence by inserting the string `new_residues` after
`offset`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of sequence, after which we should insert
`new_residues`.
new_residues : sequence
"""
assert 0 <= offset < len(sequence), \
"Invalid position %d for sequence of length %d" % (
offset, len(sequence))
prefix = sequence[:offset + 1]
suffix = sequence[offset + 1:]
return prefix + new_residues + suffix | Mutate the given sequence by inserting the string `new_residues` after
`offset`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of sequence, after which we should insert
`new_residues`.
new_residues : sequence | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/mutate.py#L40-L60 |
openvax/varcode | varcode/effects/mutate.py | substitute | def substitute(sequence, offset, ref, alt):
"""Mutate a sequence by substituting given `alt` at instead of `ref` at the
given `position`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of `sequence`
ref : sequence or str
What do we expect to find at the position?
alt : sequence or str
Alternate sequence to insert
"""
n_ref = len(ref)
sequence_ref = sequence[offset:offset + n_ref]
assert str(sequence_ref) == str(ref), \
"Reference %s at offset %d != expected reference %s" % \
(sequence_ref, offset, ref)
prefix = sequence[:offset]
suffix = sequence[offset + n_ref:]
return prefix + alt + suffix | python | def substitute(sequence, offset, ref, alt):
"""Mutate a sequence by substituting given `alt` at instead of `ref` at the
given `position`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of `sequence`
ref : sequence or str
What do we expect to find at the position?
alt : sequence or str
Alternate sequence to insert
"""
n_ref = len(ref)
sequence_ref = sequence[offset:offset + n_ref]
assert str(sequence_ref) == str(ref), \
"Reference %s at offset %d != expected reference %s" % \
(sequence_ref, offset, ref)
prefix = sequence[:offset]
suffix = sequence[offset + n_ref:]
return prefix + alt + suffix | Mutate a sequence by substituting given `alt` at instead of `ref` at the
given `position`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of `sequence`
ref : sequence or str
What do we expect to find at the position?
alt : sequence or str
Alternate sequence to insert | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/mutate.py#L62-L87 |
openvax/varcode | varcode/reference.py | _most_recent_assembly | def _most_recent_assembly(assembly_names):
"""
Given list of (in this case, matched) assemblies, identify the most recent
("recency" here is determined by sorting based on the numeric element of the assembly name)
"""
match_recency = [
int(re.search('\d+', assembly_name).group())
for assembly_name in assembly_names
]
most_recent = [
x for (y, x) in sorted(zip(match_recency, assembly_names), reverse=True)][0]
return most_recent | python | def _most_recent_assembly(assembly_names):
"""
Given list of (in this case, matched) assemblies, identify the most recent
("recency" here is determined by sorting based on the numeric element of the assembly name)
"""
match_recency = [
int(re.search('\d+', assembly_name).group())
for assembly_name in assembly_names
]
most_recent = [
x for (y, x) in sorted(zip(match_recency, assembly_names), reverse=True)][0]
return most_recent | Given list of (in this case, matched) assemblies, identify the most recent
("recency" here is determined by sorting based on the numeric element of the assembly name) | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/reference.py#L45-L56 |
openvax/varcode | varcode/reference.py | infer_reference_name | def infer_reference_name(reference_name_or_path):
"""
Given a string containing a reference name (such as a path to
that reference's FASTA file), return its canonical name
as used by Ensembl.
"""
# identify all cases where reference name or path matches candidate aliases
reference_file_name = os.path.basename(reference_name_or_path)
matches = {'file_name': list(), 'full_path': list()}
for assembly_name in reference_alias_dict.keys():
candidate_list = [assembly_name] + reference_alias_dict[assembly_name]
for candidate in candidate_list:
if candidate.lower() in reference_file_name.lower():
matches['file_name'].append(assembly_name)
elif candidate.lower() in reference_name_or_path.lower():
matches['full_path'].append(assembly_name)
# remove duplicate matches (happens due to overlapping aliases)
matches['file_name'] = list(set(matches['file_name']))
matches['full_path'] = list(set(matches['full_path']))
# given set of existing matches, choose one to return
# (first select based on file_name, then full path. If multiples, use most recent)
if len(matches['file_name']) == 1:
match = matches['file_name'][0]
elif len(matches['file_name']) > 1:
# separate logic for >1 vs 1 to give informative warning
match = _most_recent_assembly(matches['file_name'])
warn(
('More than one reference ({}) matches path in header ({}); '
'the most recent one ({}) was used.').format(
','.join(matches['file_name']), reference_file_name, match))
elif len(matches['full_path']) >= 1:
# combine full-path logic since warning is the same
match = _most_recent_assembly(matches['full_path'])
warn((
'Reference could not be matched against filename ({}); '
'using best match against full path ({}).').format(
reference_name_or_path, match))
else:
raise ValueError(
"Failed to infer genome assembly name for %s" % reference_name_or_path)
return match | python | def infer_reference_name(reference_name_or_path):
"""
Given a string containing a reference name (such as a path to
that reference's FASTA file), return its canonical name
as used by Ensembl.
"""
# identify all cases where reference name or path matches candidate aliases
reference_file_name = os.path.basename(reference_name_or_path)
matches = {'file_name': list(), 'full_path': list()}
for assembly_name in reference_alias_dict.keys():
candidate_list = [assembly_name] + reference_alias_dict[assembly_name]
for candidate in candidate_list:
if candidate.lower() in reference_file_name.lower():
matches['file_name'].append(assembly_name)
elif candidate.lower() in reference_name_or_path.lower():
matches['full_path'].append(assembly_name)
# remove duplicate matches (happens due to overlapping aliases)
matches['file_name'] = list(set(matches['file_name']))
matches['full_path'] = list(set(matches['full_path']))
# given set of existing matches, choose one to return
# (first select based on file_name, then full path. If multiples, use most recent)
if len(matches['file_name']) == 1:
match = matches['file_name'][0]
elif len(matches['file_name']) > 1:
# separate logic for >1 vs 1 to give informative warning
match = _most_recent_assembly(matches['file_name'])
warn(
('More than one reference ({}) matches path in header ({}); '
'the most recent one ({}) was used.').format(
','.join(matches['file_name']), reference_file_name, match))
elif len(matches['full_path']) >= 1:
# combine full-path logic since warning is the same
match = _most_recent_assembly(matches['full_path'])
warn((
'Reference could not be matched against filename ({}); '
'using best match against full path ({}).').format(
reference_name_or_path, match))
else:
raise ValueError(
"Failed to infer genome assembly name for %s" % reference_name_or_path)
return match | Given a string containing a reference name (such as a path to
that reference's FASTA file), return its canonical name
as used by Ensembl. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/reference.py#L59-L99 |
openvax/varcode | varcode/reference.py | infer_genome | def infer_genome(genome_object_string_or_int):
"""
If given an integer, return associated human EnsemblRelease for that
Ensembl version.
If given a string, return latest EnsemblRelease which has a reference
of the same name.
If given a PyEnsembl Genome, simply return it.
"""
if isinstance(genome_object_string_or_int, Genome):
return genome_object_string_or_int
if is_integer(genome_object_string_or_int):
return cached_release(genome_object_string_or_int)
elif is_string(genome_object_string_or_int):
# first infer the canonical reference name, e.g. mapping hg19 -> GRCh37
# and then get the associated PyEnsembl Genome object
reference_name = infer_reference_name(genome_object_string_or_int)
return genome_for_reference_name(reference_name)
else:
raise TypeError(
("Expected genome to be an int, string, or pyensembl.Genome "
"instance, got %s : %s") % (
str(genome_object_string_or_int),
type(genome_object_string_or_int))) | python | def infer_genome(genome_object_string_or_int):
"""
If given an integer, return associated human EnsemblRelease for that
Ensembl version.
If given a string, return latest EnsemblRelease which has a reference
of the same name.
If given a PyEnsembl Genome, simply return it.
"""
if isinstance(genome_object_string_or_int, Genome):
return genome_object_string_or_int
if is_integer(genome_object_string_or_int):
return cached_release(genome_object_string_or_int)
elif is_string(genome_object_string_or_int):
# first infer the canonical reference name, e.g. mapping hg19 -> GRCh37
# and then get the associated PyEnsembl Genome object
reference_name = infer_reference_name(genome_object_string_or_int)
return genome_for_reference_name(reference_name)
else:
raise TypeError(
("Expected genome to be an int, string, or pyensembl.Genome "
"instance, got %s : %s") % (
str(genome_object_string_or_int),
type(genome_object_string_or_int))) | If given an integer, return associated human EnsemblRelease for that
Ensembl version.
If given a string, return latest EnsemblRelease which has a reference
of the same name.
If given a PyEnsembl Genome, simply return it. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/reference.py#L102-L126 |
openvax/varcode | varcode/variant.py | Variant.to_dict | def to_dict(self):
"""
We want the original values (un-normalized) field values while
serializing since normalization will happen in __init__.
"""
return dict(
contig=self.original_contig,
start=self.original_start,
ref=self.original_ref,
alt=self.original_alt,
ensembl=self.ensembl,
allow_extended_nucleotides=self.allow_extended_nucleotides,
normalize_contig_name=self.normalize_contig_name) | python | def to_dict(self):
"""
We want the original values (un-normalized) field values while
serializing since normalization will happen in __init__.
"""
return dict(
contig=self.original_contig,
start=self.original_start,
ref=self.original_ref,
alt=self.original_alt,
ensembl=self.ensembl,
allow_extended_nucleotides=self.allow_extended_nucleotides,
normalize_contig_name=self.normalize_contig_name) | We want the original values (un-normalized) field values while
serializing since normalization will happen in __init__. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L213-L225 |
openvax/varcode | varcode/variant.py | Variant.short_description | def short_description(self):
"""
HGVS nomenclature for genomic variants
More info: http://www.hgvs.org/mutnomen/
"""
if self.is_insertion:
return "chr%s g.%d_%dins%s" % (
self.contig,
self.start,
self.start + 1,
self.alt)
elif self.is_deletion:
return "chr%s g.%d_%ddel%s" % (
self.contig,
self.start,
self.end,
self.ref)
elif self.ref == self.alt:
return "chr%s g.%d%s" % (self.contig, self.start, self.ref)
else:
# substitution
return "chr%s g.%d%s>%s" % (
self.contig,
self.start,
self.ref,
self.alt) | python | def short_description(self):
"""
HGVS nomenclature for genomic variants
More info: http://www.hgvs.org/mutnomen/
"""
if self.is_insertion:
return "chr%s g.%d_%dins%s" % (
self.contig,
self.start,
self.start + 1,
self.alt)
elif self.is_deletion:
return "chr%s g.%d_%ddel%s" % (
self.contig,
self.start,
self.end,
self.ref)
elif self.ref == self.alt:
return "chr%s g.%d%s" % (self.contig, self.start, self.ref)
else:
# substitution
return "chr%s g.%d%s>%s" % (
self.contig,
self.start,
self.ref,
self.alt) | HGVS nomenclature for genomic variants
More info: http://www.hgvs.org/mutnomen/ | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L268-L293 |
openvax/varcode | varcode/variant.py | Variant.genes | def genes(self):
"""
Return Gene object for all genes which overlap this variant.
"""
if self._genes is None:
self._genes = self.ensembl.genes_at_locus(
self.contig, self.start, self.end)
return self._genes | python | def genes(self):
"""
Return Gene object for all genes which overlap this variant.
"""
if self._genes is None:
self._genes = self.ensembl.genes_at_locus(
self.contig, self.start, self.end)
return self._genes | Return Gene object for all genes which overlap this variant. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L322-L329 |
openvax/varcode | varcode/variant.py | Variant.gene_ids | def gene_ids(self):
"""
Return IDs of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object.
"""
return self.ensembl.gene_ids_at_locus(
self.contig, self.start, self.end) | python | def gene_ids(self):
"""
Return IDs of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object.
"""
return self.ensembl.gene_ids_at_locus(
self.contig, self.start, self.end) | Return IDs of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L332-L339 |
openvax/varcode | varcode/variant.py | Variant.gene_names | def gene_names(self):
"""
Return names of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object.
"""
return self.ensembl.gene_names_at_locus(
self.contig, self.start, self.end) | python | def gene_names(self):
"""
Return names of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object.
"""
return self.ensembl.gene_names_at_locus(
self.contig, self.start, self.end) | Return names of all genes which overlap this variant. Calling
this method is significantly cheaper than calling `Variant.genes()`,
which has to issue many more queries to construct each Gene object. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L342-L349 |
openvax/varcode | varcode/variant.py | Variant.is_insertion | def is_insertion(self):
"""
Does this variant represent the insertion of nucleotides into the
reference genome?
"""
# An insertion would appear in a VCF like C>CT, so that the
# alternate allele starts with the reference nucleotides.
# Since the nucleotide strings may be normalized in the constructor,
# it's worth noting that the normalized form of this variant would be
# ''>'T', so that 'T'.startswith('') still holds.
return (len(self.ref) < len(self.alt)) and self.alt.startswith(self.ref) | python | def is_insertion(self):
"""
Does this variant represent the insertion of nucleotides into the
reference genome?
"""
# An insertion would appear in a VCF like C>CT, so that the
# alternate allele starts with the reference nucleotides.
# Since the nucleotide strings may be normalized in the constructor,
# it's worth noting that the normalized form of this variant would be
# ''>'T', so that 'T'.startswith('') still holds.
return (len(self.ref) < len(self.alt)) and self.alt.startswith(self.ref) | Does this variant represent the insertion of nucleotides into the
reference genome? | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L369-L379 |
openvax/varcode | varcode/variant.py | Variant.is_deletion | def is_deletion(self):
"""
Does this variant represent the deletion of nucleotides from the
reference genome?
"""
# A deletion would appear in a VCF like CT>C, so that the
# reference allele starts with the alternate nucleotides.
# This is true even in the normalized case, where the alternate
# nucleotides are an empty string.
return (len(self.ref) > len(self.alt)) and self.ref.startswith(self.alt) | python | def is_deletion(self):
"""
Does this variant represent the deletion of nucleotides from the
reference genome?
"""
# A deletion would appear in a VCF like CT>C, so that the
# reference allele starts with the alternate nucleotides.
# This is true even in the normalized case, where the alternate
# nucleotides are an empty string.
return (len(self.ref) > len(self.alt)) and self.ref.startswith(self.alt) | Does this variant represent the deletion of nucleotides from the
reference genome? | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L382-L391 |
openvax/varcode | varcode/variant.py | Variant.is_snv | def is_snv(self):
"""Is the variant a single nucleotide variant"""
return (len(self.ref) == len(self.alt) == 1) and (self.ref != self.alt) | python | def is_snv(self):
"""Is the variant a single nucleotide variant"""
return (len(self.ref) == len(self.alt) == 1) and (self.ref != self.alt) | Is the variant a single nucleotide variant | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L399-L401 |
openvax/varcode | varcode/variant.py | Variant.is_transition | def is_transition(self):
"""Is this variant and pyrimidine to pyrimidine change or purine to purine change"""
return self.is_snv and is_purine(self.ref) == is_purine(self.alt) | python | def is_transition(self):
"""Is this variant and pyrimidine to pyrimidine change or purine to purine change"""
return self.is_snv and is_purine(self.ref) == is_purine(self.alt) | Is this variant and pyrimidine to pyrimidine change or purine to purine change | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L404-L406 |
openvax/varcode | varcode/variant.py | Variant.is_transversion | def is_transversion(self):
"""Is this variant a pyrimidine to purine change or vice versa"""
return self.is_snv and is_purine(self.ref) != is_purine(self.alt) | python | def is_transversion(self):
"""Is this variant a pyrimidine to purine change or vice versa"""
return self.is_snv and is_purine(self.ref) != is_purine(self.alt) | Is this variant a pyrimidine to purine change or vice versa | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/variant.py#L409-L411 |
openvax/varcode | varcode/effects/effect_helpers.py | variant_overlaps_interval | def variant_overlaps_interval(
variant_start,
n_ref_bases,
interval_start,
interval_end):
"""
Does a variant overlap a given interval on the same chromosome?
Parameters
----------
variant_start : int
Inclusive base-1 position of variant's starting location
(or location before an insertion)
n_ref_bases : int
Number of reference bases affect by variant (used to compute
end coordinate or determine whether variant is an insertion)
interval_start : int
Interval's inclusive base-1 start position
interval_end : int
Interval's inclusive base-1 end position
"""
if n_ref_bases == 0:
# insertions only overlap intervals which start before and
# end after the insertion point, they must be fully contained
# by the other interval
return interval_start <= variant_start and interval_end >= variant_start
variant_end = variant_start + n_ref_bases
"""
if self._changes_exonic_splice_site(
strand_ref,
strand_alt,)
"""
# overlap means other interval starts before this variant ends
# and the interval ends after this variant starts
return interval_start <= variant_end and interval_end >= variant_start | python | def variant_overlaps_interval(
variant_start,
n_ref_bases,
interval_start,
interval_end):
"""
Does a variant overlap a given interval on the same chromosome?
Parameters
----------
variant_start : int
Inclusive base-1 position of variant's starting location
(or location before an insertion)
n_ref_bases : int
Number of reference bases affect by variant (used to compute
end coordinate or determine whether variant is an insertion)
interval_start : int
Interval's inclusive base-1 start position
interval_end : int
Interval's inclusive base-1 end position
"""
if n_ref_bases == 0:
# insertions only overlap intervals which start before and
# end after the insertion point, they must be fully contained
# by the other interval
return interval_start <= variant_start and interval_end >= variant_start
variant_end = variant_start + n_ref_bases
"""
if self._changes_exonic_splice_site(
strand_ref,
strand_alt,)
"""
# overlap means other interval starts before this variant ends
# and the interval ends after this variant starts
return interval_start <= variant_end and interval_end >= variant_start | Does a variant overlap a given interval on the same chromosome?
Parameters
----------
variant_start : int
Inclusive base-1 position of variant's starting location
(or location before an insertion)
n_ref_bases : int
Number of reference bases affect by variant (used to compute
end coordinate or determine whether variant is an insertion)
interval_start : int
Interval's inclusive base-1 start position
interval_end : int
Interval's inclusive base-1 end position | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_helpers.py#L23-L61 |
openvax/varcode | varcode/effects/effect_helpers.py | changes_exonic_splice_site | def changes_exonic_splice_site(
transcript_offset,
transcript,
transcript_ref,
transcript_alt,
exon_start_offset,
exon_end_offset,
exon_number):
"""Does the given exonic mutation of a particular transcript change a
splice site?
Parameters
----------
transcript_offset : int
Offset from start of transcript of first reference nucleotide
(or the last nucleotide before an insertion)
transcript : pyensembl.Transcript
transcript_ref : str
Reference nucleotides
transcript_alt : alt
Alternate nucleotides
exon_start_offset : int
Start offset of exon relative to beginning of transcript
exon_end_offset : int
End offset of exon relative to beginning of transcript
exon_number : int
Which exon in the order they form the transcript
"""
# first we're going to make sure the variant doesn't disrupt the
# splicing sequences we got from Divina et. al's
# Ab initio prediction of mutation-induced cryptic
# splice-site activation and exon skipping
# (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/)
#
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
#
# 3' splice site: YAG|R
#
if exon_number > 1 and transcript_offset == exon_start_offset:
# if this is any exon past the first, check to see if it lost
# the purine on its left side
#
# the 3' splice site sequence has just a single purine on
# the exon side
if len(transcript_ref) > 0 and transcript_ref[0] in PURINE_NUCLEOTIDES:
if len(transcript_alt) > 0:
if transcript_alt[0] not in PURINE_NUCLEOTIDES:
return True
else:
# if the mutation is a deletion, are there ref nucleotides
# afterward?
offset_after_deletion = transcript_offset + len(transcript_ref)
if len(transcript.sequence) > offset_after_deletion:
next_base = transcript.sequence[offset_after_deletion]
if next_base not in PURINE_NUCLEOTIDES:
return True
if exon_number < len(transcript.exons):
# if the mutation affects an exon whose right end gets spliced
# to a next exon, check if the variant alters the exon side of
# 5' consensus splicing sequence
#
# splicing sequence:
# MAG|GURAGU
# M is A or C; R is purine; | is the exon-intron boundary
#
# TODO: check for overlap of two intervals instead of just
# seeing if the mutation starts inside the exonic splice site
if variant_overlaps_interval(
variant_start=transcript_offset,
n_ref_bases=len(transcript_ref),
interval_start=exon_end_offset - 2,
interval_end=exon_end_offset):
end_of_reference_exon = transcript.sequence[
exon_end_offset - 2:exon_end_offset + 1]
if matches_exon_end_pattern(end_of_reference_exon):
# if the last three nucleotides conform to the consensus
# sequence then treat any deviation as an ExonicSpliceSite
# mutation
end_of_variant_exon = end_of_reference_exon
if matches_exon_end_pattern(end_of_variant_exon):
# end of exon matches splicing signal, check if it still
# does after the mutation
return True | python | def changes_exonic_splice_site(
transcript_offset,
transcript,
transcript_ref,
transcript_alt,
exon_start_offset,
exon_end_offset,
exon_number):
"""Does the given exonic mutation of a particular transcript change a
splice site?
Parameters
----------
transcript_offset : int
Offset from start of transcript of first reference nucleotide
(or the last nucleotide before an insertion)
transcript : pyensembl.Transcript
transcript_ref : str
Reference nucleotides
transcript_alt : alt
Alternate nucleotides
exon_start_offset : int
Start offset of exon relative to beginning of transcript
exon_end_offset : int
End offset of exon relative to beginning of transcript
exon_number : int
Which exon in the order they form the transcript
"""
# first we're going to make sure the variant doesn't disrupt the
# splicing sequences we got from Divina et. al's
# Ab initio prediction of mutation-induced cryptic
# splice-site activation and exon skipping
# (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/)
#
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
#
# 3' splice site: YAG|R
#
if exon_number > 1 and transcript_offset == exon_start_offset:
# if this is any exon past the first, check to see if it lost
# the purine on its left side
#
# the 3' splice site sequence has just a single purine on
# the exon side
if len(transcript_ref) > 0 and transcript_ref[0] in PURINE_NUCLEOTIDES:
if len(transcript_alt) > 0:
if transcript_alt[0] not in PURINE_NUCLEOTIDES:
return True
else:
# if the mutation is a deletion, are there ref nucleotides
# afterward?
offset_after_deletion = transcript_offset + len(transcript_ref)
if len(transcript.sequence) > offset_after_deletion:
next_base = transcript.sequence[offset_after_deletion]
if next_base not in PURINE_NUCLEOTIDES:
return True
if exon_number < len(transcript.exons):
# if the mutation affects an exon whose right end gets spliced
# to a next exon, check if the variant alters the exon side of
# 5' consensus splicing sequence
#
# splicing sequence:
# MAG|GURAGU
# M is A or C; R is purine; | is the exon-intron boundary
#
# TODO: check for overlap of two intervals instead of just
# seeing if the mutation starts inside the exonic splice site
if variant_overlaps_interval(
variant_start=transcript_offset,
n_ref_bases=len(transcript_ref),
interval_start=exon_end_offset - 2,
interval_end=exon_end_offset):
end_of_reference_exon = transcript.sequence[
exon_end_offset - 2:exon_end_offset + 1]
if matches_exon_end_pattern(end_of_reference_exon):
# if the last three nucleotides conform to the consensus
# sequence then treat any deviation as an ExonicSpliceSite
# mutation
end_of_variant_exon = end_of_reference_exon
if matches_exon_end_pattern(end_of_variant_exon):
# end of exon matches splicing signal, check if it still
# does after the mutation
return True | Does the given exonic mutation of a particular transcript change a
splice site?
Parameters
----------
transcript_offset : int
Offset from start of transcript of first reference nucleotide
(or the last nucleotide before an insertion)
transcript : pyensembl.Transcript
transcript_ref : str
Reference nucleotides
transcript_alt : alt
Alternate nucleotides
exon_start_offset : int
Start offset of exon relative to beginning of transcript
exon_end_offset : int
End offset of exon relative to beginning of transcript
exon_number : int
Which exon in the order they form the transcript | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_helpers.py#L72-L163 |
openvax/varcode | varcode/nucleotides.py | is_purine | def is_purine(nucleotide, allow_extended_nucleotides=False):
"""Is the nucleotide a purine"""
if not allow_extended_nucleotides and nucleotide not in STANDARD_NUCLEOTIDES:
raise ValueError(
"{} is a non-standard nucleotide, neither purine or pyrimidine".format(nucleotide))
return nucleotide in PURINE_NUCLEOTIDES | python | def is_purine(nucleotide, allow_extended_nucleotides=False):
"""Is the nucleotide a purine"""
if not allow_extended_nucleotides and nucleotide not in STANDARD_NUCLEOTIDES:
raise ValueError(
"{} is a non-standard nucleotide, neither purine or pyrimidine".format(nucleotide))
return nucleotide in PURINE_NUCLEOTIDES | Is the nucleotide a purine | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/nucleotides.py#L55-L60 |
openvax/varcode | varcode/nucleotides.py | normalize_nucleotide_string | def normalize_nucleotide_string(
nucleotides,
allow_extended_nucleotides=False,
empty_chars=".-",
treat_nan_as_empty=True):
"""
Normalizes a nucleotide string by converting various ways of encoding empty
strings into "", making all letters upper case, and checking to make sure
all letters in the string are actually nucleotides.
Parameters
----------
nucleotides : str
Sequence of nucleotides, e.g. "ACCTG"
extended_nucleotides : bool
Allow non-canonical nucleotide characters like 'X' for unknown base
empty_chars : str
Characters which encode empty strings, such as "." used in VCF format
or "-" used in MAF format
treat_nan_as_empty : bool
Some MAF files represent deletions/insertions with NaN ref/alt values
"""
if nucleotides in empty_chars:
return ""
elif treat_nan_as_empty and isinstance(nucleotides, float) and np.isnan(nucleotides):
return ""
require_string(nucleotides, name="nucleotide string")
nucleotides = nucleotides.upper()
if allow_extended_nucleotides:
valid_nucleotides = EXTENDED_NUCLEOTIDES
else:
valid_nucleotides = STANDARD_NUCLEOTIDES
if not set(nucleotides) <= valid_nucleotides:
raise ValueError(
"Invalid character(s) in nucleotide string: %s" % (
",".join(set(nucleotides) - valid_nucleotides),))
return nucleotides | python | def normalize_nucleotide_string(
nucleotides,
allow_extended_nucleotides=False,
empty_chars=".-",
treat_nan_as_empty=True):
"""
Normalizes a nucleotide string by converting various ways of encoding empty
strings into "", making all letters upper case, and checking to make sure
all letters in the string are actually nucleotides.
Parameters
----------
nucleotides : str
Sequence of nucleotides, e.g. "ACCTG"
extended_nucleotides : bool
Allow non-canonical nucleotide characters like 'X' for unknown base
empty_chars : str
Characters which encode empty strings, such as "." used in VCF format
or "-" used in MAF format
treat_nan_as_empty : bool
Some MAF files represent deletions/insertions with NaN ref/alt values
"""
if nucleotides in empty_chars:
return ""
elif treat_nan_as_empty and isinstance(nucleotides, float) and np.isnan(nucleotides):
return ""
require_string(nucleotides, name="nucleotide string")
nucleotides = nucleotides.upper()
if allow_extended_nucleotides:
valid_nucleotides = EXTENDED_NUCLEOTIDES
else:
valid_nucleotides = STANDARD_NUCLEOTIDES
if not set(nucleotides) <= valid_nucleotides:
raise ValueError(
"Invalid character(s) in nucleotide string: %s" % (
",".join(set(nucleotides) - valid_nucleotides),))
return nucleotides | Normalizes a nucleotide string by converting various ways of encoding empty
strings into "", making all letters upper case, and checking to make sure
all letters in the string are actually nucleotides.
Parameters
----------
nucleotides : str
Sequence of nucleotides, e.g. "ACCTG"
extended_nucleotides : bool
Allow non-canonical nucleotide characters like 'X' for unknown base
empty_chars : str
Characters which encode empty strings, such as "." used in VCF format
or "-" used in MAF format
treat_nan_as_empty : bool
Some MAF files represent deletions/insertions with NaN ref/alt values | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/nucleotides.py#L67-L111 |
openvax/varcode | varcode/vcf.py | load_vcf | def load_vcf(
path,
genome=None,
reference_vcf_key="reference",
only_passing=True,
allow_extended_nucleotides=False,
include_info=True,
chunk_size=10 ** 5,
max_variants=None,
sort_key=variant_ascending_position_sort_key,
distinct=True):
"""
Load reference name and Variant objects from the given VCF filename.
Currently only local files are supported by this function (no http). If you
call this on an HTTP URL, it will fall back to `load_vcf`.
Parameters
----------
path : str
Path to VCF (*.vcf) or compressed VCF (*.vcf.gz).
genome : {pyensembl.Genome, reference name, Ensembl version int}, optional
Optionally pass in a PyEnsembl Genome object, name of reference, or
PyEnsembl release version to specify the reference associated with a
VCF (otherwise infer reference from VCF using reference_vcf_key)
reference_vcf_key : str, optional
Name of metadata field which contains path to reference FASTA
file (default = 'reference')
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
allow_extended_nucleotides : boolean, default False
Allow characters other that A,C,T,G in the ref and alt strings.
include_info : boolean, default True
Whether to parse the INFO and per-sample columns. If you don't need
these, set to False for faster parsing.
chunk_size: int, optional
Number of records to load in memory at once.
max_variants : int, optional
If specified, return only the first max_variants variants.
sort_key : fn
Function which maps each element to a sorting criterion.
Set to None to not to sort the variants.
distinct : boolean, default True
Don't keep repeated variants
"""
require_string(path, "Path or URL to VCF")
parsed_path = parse_url_or_path(path)
if parsed_path.scheme and parsed_path.scheme.lower() != "file":
# pandas.read_table nominally supports HTTP, but it tends to crash on
# large files and does not support gzip. Switching to the python-based
# implementation of read_table (with engine="python") helps with some
# issues but introduces a new set of problems (e.g. the dtype parameter
# is not accepted). For these reasons, we're currently not attempting
# to load VCFs over HTTP with pandas directly, and instead download it
# to a temporary file and open that.
(filename, headers) = urllib.request.urlretrieve(path)
try:
# The downloaded file has no file extension, which confuses pyvcf
# for gziped files in Python 3. We rename it to have the correct
# file extension.
new_filename = "%s.%s" % (
filename, parsed_path.path.split(".")[-1])
os.rename(filename, new_filename)
filename = new_filename
return load_vcf(
filename,
genome=genome,
reference_vcf_key=reference_vcf_key,
only_passing=only_passing,
allow_extended_nucleotides=allow_extended_nucleotides,
include_info=include_info,
chunk_size=chunk_size,
max_variants=max_variants,
sort_key=sort_key,
distinct=distinct)
finally:
logger.info("Removing temporary file: %s", filename)
os.unlink(filename)
# Loading a local file.
# The file will be opened twice: first to parse the header with pyvcf, then
# by pandas to read the data.
# PyVCF reads the metadata immediately and stops at the first line with
# data. We can close the file after that.
handle = PyVCFReaderFromPathOrURL(path)
handle.close()
genome = infer_genome_from_vcf(
genome,
handle.vcf_reader,
reference_vcf_key)
df_iterator = read_vcf_into_dataframe(
path,
include_info=include_info,
sample_names=handle.vcf_reader.samples if include_info else None,
chunk_size=chunk_size)
if include_info:
def sample_info_parser(unparsed_sample_info_strings, format_string):
"""
Given a format string like "GT:AD:ADP:DP:FS"
and a list of sample info strings where each entry is like
"0/1:3,22:T=3,G=22:25:33", return a dict that maps:
sample name -> field name -> value. Uses pyvcf to parse the fields.
"""
return pyvcf_calls_to_sample_info_list(
handle.vcf_reader._parse_samples(
unparsed_sample_info_strings, format_string, None))
else:
sample_info_parser = None
return dataframes_to_variant_collection(
df_iterator,
source_path=path,
info_parser=handle.vcf_reader._parse_info if include_info else None,
only_passing=only_passing,
max_variants=max_variants,
sample_names=handle.vcf_reader.samples if include_info else None,
sample_info_parser=sample_info_parser,
variant_kwargs={
'ensembl': genome,
'allow_extended_nucleotides': allow_extended_nucleotides},
variant_collection_kwargs={
'sort_key': sort_key,
'distinct': distinct}) | python | def load_vcf(
path,
genome=None,
reference_vcf_key="reference",
only_passing=True,
allow_extended_nucleotides=False,
include_info=True,
chunk_size=10 ** 5,
max_variants=None,
sort_key=variant_ascending_position_sort_key,
distinct=True):
"""
Load reference name and Variant objects from the given VCF filename.
Currently only local files are supported by this function (no http). If you
call this on an HTTP URL, it will fall back to `load_vcf`.
Parameters
----------
path : str
Path to VCF (*.vcf) or compressed VCF (*.vcf.gz).
genome : {pyensembl.Genome, reference name, Ensembl version int}, optional
Optionally pass in a PyEnsembl Genome object, name of reference, or
PyEnsembl release version to specify the reference associated with a
VCF (otherwise infer reference from VCF using reference_vcf_key)
reference_vcf_key : str, optional
Name of metadata field which contains path to reference FASTA
file (default = 'reference')
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
allow_extended_nucleotides : boolean, default False
Allow characters other that A,C,T,G in the ref and alt strings.
include_info : boolean, default True
Whether to parse the INFO and per-sample columns. If you don't need
these, set to False for faster parsing.
chunk_size: int, optional
Number of records to load in memory at once.
max_variants : int, optional
If specified, return only the first max_variants variants.
sort_key : fn
Function which maps each element to a sorting criterion.
Set to None to not to sort the variants.
distinct : boolean, default True
Don't keep repeated variants
"""
require_string(path, "Path or URL to VCF")
parsed_path = parse_url_or_path(path)
if parsed_path.scheme and parsed_path.scheme.lower() != "file":
# pandas.read_table nominally supports HTTP, but it tends to crash on
# large files and does not support gzip. Switching to the python-based
# implementation of read_table (with engine="python") helps with some
# issues but introduces a new set of problems (e.g. the dtype parameter
# is not accepted). For these reasons, we're currently not attempting
# to load VCFs over HTTP with pandas directly, and instead download it
# to a temporary file and open that.
(filename, headers) = urllib.request.urlretrieve(path)
try:
# The downloaded file has no file extension, which confuses pyvcf
# for gziped files in Python 3. We rename it to have the correct
# file extension.
new_filename = "%s.%s" % (
filename, parsed_path.path.split(".")[-1])
os.rename(filename, new_filename)
filename = new_filename
return load_vcf(
filename,
genome=genome,
reference_vcf_key=reference_vcf_key,
only_passing=only_passing,
allow_extended_nucleotides=allow_extended_nucleotides,
include_info=include_info,
chunk_size=chunk_size,
max_variants=max_variants,
sort_key=sort_key,
distinct=distinct)
finally:
logger.info("Removing temporary file: %s", filename)
os.unlink(filename)
# Loading a local file.
# The file will be opened twice: first to parse the header with pyvcf, then
# by pandas to read the data.
# PyVCF reads the metadata immediately and stops at the first line with
# data. We can close the file after that.
handle = PyVCFReaderFromPathOrURL(path)
handle.close()
genome = infer_genome_from_vcf(
genome,
handle.vcf_reader,
reference_vcf_key)
df_iterator = read_vcf_into_dataframe(
path,
include_info=include_info,
sample_names=handle.vcf_reader.samples if include_info else None,
chunk_size=chunk_size)
if include_info:
def sample_info_parser(unparsed_sample_info_strings, format_string):
"""
Given a format string like "GT:AD:ADP:DP:FS"
and a list of sample info strings where each entry is like
"0/1:3,22:T=3,G=22:25:33", return a dict that maps:
sample name -> field name -> value. Uses pyvcf to parse the fields.
"""
return pyvcf_calls_to_sample_info_list(
handle.vcf_reader._parse_samples(
unparsed_sample_info_strings, format_string, None))
else:
sample_info_parser = None
return dataframes_to_variant_collection(
df_iterator,
source_path=path,
info_parser=handle.vcf_reader._parse_info if include_info else None,
only_passing=only_passing,
max_variants=max_variants,
sample_names=handle.vcf_reader.samples if include_info else None,
sample_info_parser=sample_info_parser,
variant_kwargs={
'ensembl': genome,
'allow_extended_nucleotides': allow_extended_nucleotides},
variant_collection_kwargs={
'sort_key': sort_key,
'distinct': distinct}) | Load reference name and Variant objects from the given VCF filename.
Currently only local files are supported by this function (no http). If you
call this on an HTTP URL, it will fall back to `load_vcf`.
Parameters
----------
path : str
Path to VCF (*.vcf) or compressed VCF (*.vcf.gz).
genome : {pyensembl.Genome, reference name, Ensembl version int}, optional
Optionally pass in a PyEnsembl Genome object, name of reference, or
PyEnsembl release version to specify the reference associated with a
VCF (otherwise infer reference from VCF using reference_vcf_key)
reference_vcf_key : str, optional
Name of metadata field which contains path to reference FASTA
file (default = 'reference')
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
allow_extended_nucleotides : boolean, default False
Allow characters other that A,C,T,G in the ref and alt strings.
include_info : boolean, default True
Whether to parse the INFO and per-sample columns. If you don't need
these, set to False for faster parsing.
chunk_size: int, optional
Number of records to load in memory at once.
max_variants : int, optional
If specified, return only the first max_variants variants.
sort_key : fn
Function which maps each element to a sorting criterion.
Set to None to not to sort the variants.
distinct : boolean, default True
Don't keep repeated variants | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L37-L176 |
openvax/varcode | varcode/vcf.py | pyvcf_calls_to_sample_info_list | def pyvcf_calls_to_sample_info_list(calls):
"""
Given pyvcf.model._Call instances, return a dict mapping each sample
name to its per-sample info:
sample name -> field -> value
"""
return OrderedDict(
(call.sample, call.data._asdict()) for call in calls) | python | def pyvcf_calls_to_sample_info_list(calls):
"""
Given pyvcf.model._Call instances, return a dict mapping each sample
name to its per-sample info:
sample name -> field -> value
"""
return OrderedDict(
(call.sample, call.data._asdict()) for call in calls) | Given pyvcf.model._Call instances, return a dict mapping each sample
name to its per-sample info:
sample name -> field -> value | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L189-L196 |
openvax/varcode | varcode/vcf.py | dataframes_to_variant_collection | def dataframes_to_variant_collection(
dataframes,
source_path,
info_parser=None,
only_passing=True,
max_variants=None,
sample_names=None,
sample_info_parser=None,
variant_kwargs={},
variant_collection_kwargs={}):
"""
Load a VariantCollection from an iterable of pandas dataframes.
This takes an iterable of dataframes instead of a single dataframe to avoid
having to load huge dataframes at once into memory. If you have a single
dataframe, just pass it in a single-element list.
Parameters
----------
dataframes
Iterable of dataframes (e.g. a generator). Expected columns are:
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"]
and 'INFO' if `info_parser` is not Null. Columns must be in this
order.
source_path : str
Path of VCF file from which DataFrame chunks were generated.
info_parser : string -> object, optional
Callable to parse INFO strings.
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
max_variants : int, optional
If specified, return only the first max_variants variants.
sample_names : list of strings, optional
Sample names. The final columns of the dataframe should match these.
If specified, the per-sample info columns will be parsed. You must
also specify sample_info_parser.
sample_info_parser : string list * string -> dict, optional
Callable to parse per-sample info columns.
variant_kwargs : dict, optional
Additional keyword paramters to pass to Variant.__init__
variant_collection_kwargs : dict, optional
Additional keyword parameters to pass to VariantCollection.__init__.
"""
expected_columns = (
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"] +
(["INFO"] if info_parser else []))
if info_parser and sample_names:
if sample_info_parser is None:
raise TypeError(
"Must specify sample_info_parser if specifying sample_names")
expected_columns.append("FORMAT")
expected_columns.extend(sample_names)
variants = []
metadata = {}
try:
for chunk in dataframes:
assert chunk.columns.tolist() == expected_columns,\
"dataframe columns (%s) do not match expected columns (%s)" % (
chunk.columns, expected_columns)
for tpl in chunk.itertuples():
(i, chrom, pos, id_, ref, alts, qual, flter) = tpl[:8]
if flter == ".":
flter = None
elif flter == "PASS":
flter = []
elif only_passing:
continue
else:
flter = flter.split(';')
if id_ == ".":
id_ = None
qual = float(qual) if qual != "." else None
alt_num = 0
info = sample_info = None
for alt in alts.split(","):
if alt != ".":
if info_parser is not None and info is None:
info = info_parser(tpl[8]) # INFO column
if sample_names:
# Sample name -> field -> value dict.
sample_info = sample_info_parser(
list(tpl[10:]), # sample info columns
tpl[9], # FORMAT column
)
variant = Variant(
chrom,
int(pos), # want a Python int not numpy.int64
ref,
alt,
**variant_kwargs)
variants.append(variant)
metadata[variant] = {
'id': id_,
'qual': qual,
'filter': flter,
'info': info,
'sample_info': sample_info,
'alt_allele_index': alt_num,
}
if max_variants and len(variants) > max_variants:
raise StopIteration
alt_num += 1
except StopIteration:
pass
return VariantCollection(
variants=variants,
source_to_metadata_dict={source_path: metadata},
**variant_collection_kwargs) | python | def dataframes_to_variant_collection(
dataframes,
source_path,
info_parser=None,
only_passing=True,
max_variants=None,
sample_names=None,
sample_info_parser=None,
variant_kwargs={},
variant_collection_kwargs={}):
"""
Load a VariantCollection from an iterable of pandas dataframes.
This takes an iterable of dataframes instead of a single dataframe to avoid
having to load huge dataframes at once into memory. If you have a single
dataframe, just pass it in a single-element list.
Parameters
----------
dataframes
Iterable of dataframes (e.g. a generator). Expected columns are:
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"]
and 'INFO' if `info_parser` is not Null. Columns must be in this
order.
source_path : str
Path of VCF file from which DataFrame chunks were generated.
info_parser : string -> object, optional
Callable to parse INFO strings.
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
max_variants : int, optional
If specified, return only the first max_variants variants.
sample_names : list of strings, optional
Sample names. The final columns of the dataframe should match these.
If specified, the per-sample info columns will be parsed. You must
also specify sample_info_parser.
sample_info_parser : string list * string -> dict, optional
Callable to parse per-sample info columns.
variant_kwargs : dict, optional
Additional keyword paramters to pass to Variant.__init__
variant_collection_kwargs : dict, optional
Additional keyword parameters to pass to VariantCollection.__init__.
"""
expected_columns = (
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"] +
(["INFO"] if info_parser else []))
if info_parser and sample_names:
if sample_info_parser is None:
raise TypeError(
"Must specify sample_info_parser if specifying sample_names")
expected_columns.append("FORMAT")
expected_columns.extend(sample_names)
variants = []
metadata = {}
try:
for chunk in dataframes:
assert chunk.columns.tolist() == expected_columns,\
"dataframe columns (%s) do not match expected columns (%s)" % (
chunk.columns, expected_columns)
for tpl in chunk.itertuples():
(i, chrom, pos, id_, ref, alts, qual, flter) = tpl[:8]
if flter == ".":
flter = None
elif flter == "PASS":
flter = []
elif only_passing:
continue
else:
flter = flter.split(';')
if id_ == ".":
id_ = None
qual = float(qual) if qual != "." else None
alt_num = 0
info = sample_info = None
for alt in alts.split(","):
if alt != ".":
if info_parser is not None and info is None:
info = info_parser(tpl[8]) # INFO column
if sample_names:
# Sample name -> field -> value dict.
sample_info = sample_info_parser(
list(tpl[10:]), # sample info columns
tpl[9], # FORMAT column
)
variant = Variant(
chrom,
int(pos), # want a Python int not numpy.int64
ref,
alt,
**variant_kwargs)
variants.append(variant)
metadata[variant] = {
'id': id_,
'qual': qual,
'filter': flter,
'info': info,
'sample_info': sample_info,
'alt_allele_index': alt_num,
}
if max_variants and len(variants) > max_variants:
raise StopIteration
alt_num += 1
except StopIteration:
pass
return VariantCollection(
variants=variants,
source_to_metadata_dict={source_path: metadata},
**variant_collection_kwargs) | Load a VariantCollection from an iterable of pandas dataframes.
This takes an iterable of dataframes instead of a single dataframe to avoid
having to load huge dataframes at once into memory. If you have a single
dataframe, just pass it in a single-element list.
Parameters
----------
dataframes
Iterable of dataframes (e.g. a generator). Expected columns are:
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"]
and 'INFO' if `info_parser` is not Null. Columns must be in this
order.
source_path : str
Path of VCF file from which DataFrame chunks were generated.
info_parser : string -> object, optional
Callable to parse INFO strings.
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
max_variants : int, optional
If specified, return only the first max_variants variants.
sample_names : list of strings, optional
Sample names. The final columns of the dataframe should match these.
If specified, the per-sample info columns will be parsed. You must
also specify sample_info_parser.
sample_info_parser : string list * string -> dict, optional
Callable to parse per-sample info columns.
variant_kwargs : dict, optional
Additional keyword paramters to pass to Variant.__init__
variant_collection_kwargs : dict, optional
Additional keyword parameters to pass to VariantCollection.__init__. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L199-L321 |
openvax/varcode | varcode/vcf.py | read_vcf_into_dataframe | def read_vcf_into_dataframe(
path,
include_info=False,
sample_names=None,
chunk_size=None):
"""
Load the data of a VCF into a pandas dataframe. All headers are ignored.
Parameters
----------
path : str
Path to local file. HTTP and other protocols are not implemented.
include_info : boolean, default False
If true, the INFO field is not parsed, but is included as a string in
the resulting data frame. If false, the INFO field is omitted.
sample_names: string list, optional
Sample names. The final columns of the dataframe should match these.
If specified (and include_info is also specified), the FORMAT and
per-sample info columns will be included in the result dataframe.
chunk_size : int, optional
If buffering is desired, the number of rows per chunk.
Returns
---------
If chunk_size is None (the default), a dataframe with the contents of the
VCF file. Otherwise, an iterable of dataframes, each with chunk_size rows.
"""
vcf_field_types = OrderedDict()
vcf_field_types['CHROM'] = str
vcf_field_types['POS'] = int
vcf_field_types['ID'] = str
vcf_field_types['REF'] = str
vcf_field_types['ALT'] = str
vcf_field_types['QUAL'] = str
vcf_field_types['FILTER'] = str
if include_info:
vcf_field_types['INFO'] = str
if sample_names:
vcf_field_types['FORMAT'] = str
for name in sample_names:
vcf_field_types[name] = str
parsed_path = parse_url_or_path(path)
if not parsed_path.scheme or parsed_path.scheme.lower() == "file":
path = parsed_path.path
else:
raise NotImplementedError("Only local files are supported.")
compression = None
if path.endswith(".gz"):
compression = "gzip"
elif path.endswith(".bz2"):
compression = "bz2"
reader = pandas.read_table(
path,
compression=compression,
comment="#",
chunksize=chunk_size,
dtype=vcf_field_types,
names=list(vcf_field_types),
usecols=range(len(vcf_field_types)))
return reader | python | def read_vcf_into_dataframe(
path,
include_info=False,
sample_names=None,
chunk_size=None):
"""
Load the data of a VCF into a pandas dataframe. All headers are ignored.
Parameters
----------
path : str
Path to local file. HTTP and other protocols are not implemented.
include_info : boolean, default False
If true, the INFO field is not parsed, but is included as a string in
the resulting data frame. If false, the INFO field is omitted.
sample_names: string list, optional
Sample names. The final columns of the dataframe should match these.
If specified (and include_info is also specified), the FORMAT and
per-sample info columns will be included in the result dataframe.
chunk_size : int, optional
If buffering is desired, the number of rows per chunk.
Returns
---------
If chunk_size is None (the default), a dataframe with the contents of the
VCF file. Otherwise, an iterable of dataframes, each with chunk_size rows.
"""
vcf_field_types = OrderedDict()
vcf_field_types['CHROM'] = str
vcf_field_types['POS'] = int
vcf_field_types['ID'] = str
vcf_field_types['REF'] = str
vcf_field_types['ALT'] = str
vcf_field_types['QUAL'] = str
vcf_field_types['FILTER'] = str
if include_info:
vcf_field_types['INFO'] = str
if sample_names:
vcf_field_types['FORMAT'] = str
for name in sample_names:
vcf_field_types[name] = str
parsed_path = parse_url_or_path(path)
if not parsed_path.scheme or parsed_path.scheme.lower() == "file":
path = parsed_path.path
else:
raise NotImplementedError("Only local files are supported.")
compression = None
if path.endswith(".gz"):
compression = "gzip"
elif path.endswith(".bz2"):
compression = "bz2"
reader = pandas.read_table(
path,
compression=compression,
comment="#",
chunksize=chunk_size,
dtype=vcf_field_types,
names=list(vcf_field_types),
usecols=range(len(vcf_field_types)))
return reader | Load the data of a VCF into a pandas dataframe. All headers are ignored.
Parameters
----------
path : str
Path to local file. HTTP and other protocols are not implemented.
include_info : boolean, default False
If true, the INFO field is not parsed, but is included as a string in
the resulting data frame. If false, the INFO field is omitted.
sample_names: string list, optional
Sample names. The final columns of the dataframe should match these.
If specified (and include_info is also specified), the FORMAT and
per-sample info columns will be included in the result dataframe.
chunk_size : int, optional
If buffering is desired, the number of rows per chunk.
Returns
---------
If chunk_size is None (the default), a dataframe with the contents of the
VCF file. Otherwise, an iterable of dataframes, each with chunk_size rows. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L324-L390 |
openvax/varcode | varcode/vcf.py | stream_gzip_decompress_lines | def stream_gzip_decompress_lines(stream):
"""
Uncompress a gzip stream into lines of text.
Parameters
----------
Generator of chunks of gzip compressed text.
Returns
-------
Generator of uncompressed lines.
"""
dec = zlib.decompressobj(zlib.MAX_WBITS | 16)
previous = ""
for compressed_chunk in stream:
chunk = dec.decompress(compressed_chunk).decode()
if chunk:
lines = (previous + chunk).split("\n")
previous = lines.pop()
for line in lines:
yield line
yield previous | python | def stream_gzip_decompress_lines(stream):
"""
Uncompress a gzip stream into lines of text.
Parameters
----------
Generator of chunks of gzip compressed text.
Returns
-------
Generator of uncompressed lines.
"""
dec = zlib.decompressobj(zlib.MAX_WBITS | 16)
previous = ""
for compressed_chunk in stream:
chunk = dec.decompress(compressed_chunk).decode()
if chunk:
lines = (previous + chunk).split("\n")
previous = lines.pop()
for line in lines:
yield line
yield previous | Uncompress a gzip stream into lines of text.
Parameters
----------
Generator of chunks of gzip compressed text.
Returns
-------
Generator of uncompressed lines. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L448-L469 |
openvax/varcode | varcode/vcf.py | infer_genome_from_vcf | def infer_genome_from_vcf(genome, vcf_reader, reference_vcf_key):
"""
Helper function to make a pyensembl.Genome instance.
"""
if genome:
return infer_genome(genome)
elif reference_vcf_key not in vcf_reader.metadata:
raise ValueError("Unable to infer reference genome for %s" % (
vcf_reader.filename,))
else:
reference_path = vcf_reader.metadata[reference_vcf_key]
return infer_genome(reference_path) | python | def infer_genome_from_vcf(genome, vcf_reader, reference_vcf_key):
"""
Helper function to make a pyensembl.Genome instance.
"""
if genome:
return infer_genome(genome)
elif reference_vcf_key not in vcf_reader.metadata:
raise ValueError("Unable to infer reference genome for %s" % (
vcf_reader.filename,))
else:
reference_path = vcf_reader.metadata[reference_vcf_key]
return infer_genome(reference_path) | Helper function to make a pyensembl.Genome instance. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf.py#L472-L483 |
openvax/varcode | varcode/effects/effect_prediction_coding_frameshift.py | create_frameshift_effect | def create_frameshift_effect(
mutated_codon_index,
sequence_from_mutated_codon,
variant,
transcript):
"""
Determine frameshift effect within a coding sequence (possibly affecting
either the start or stop codons, or anythign in between)
Parameters
----------
mutated_codon_index : int
Codon offset (starting from 0 = start codon) of first non-reference
amino acid in the variant protein
sequence_from_mutated_codon: Bio.Seq
Sequence of mutated cDNA, starting from first mutated codon, until
the end of the transcript
variant : Variant
transcript : transcript
"""
assert transcript.protein_sequence is not None, \
"Expect transcript %s to have protein sequence" % transcript
original_protein_sequence = transcript.protein_sequence
original_protein_length = len(original_protein_sequence)
mutant_protein_suffix = translate(
nucleotide_sequence=sequence_from_mutated_codon,
first_codon_is_start=False,
to_stop=True,
truncate=True)
if mutated_codon_index == 0:
# TODO: scan through sequence_from_mutated_codon for
# Kozak sequence + start codon to choose the new start
return StartLoss(variant=variant, transcript=transcript)
# the frameshifted sequence may contain some amino acids which are
# the same as the original protein!
_, mutant_protein_suffix, unchanged_amino_acids = trim_shared_prefix(
ref=original_protein_sequence[mutated_codon_index:],
alt=mutant_protein_suffix)
n_unchanged_amino_acids = len(unchanged_amino_acids)
offset_to_first_different_amino_acid = mutated_codon_index + n_unchanged_amino_acids
# miraculously, this frameshift left the protein unchanged,
# most likely by turning one stop codon into another stop codon
if n_unchanged_amino_acids == 0:
aa_ref = ""
else:
aa_ref = original_protein_sequence[-n_unchanged_amino_acids:]
if offset_to_first_different_amino_acid >= original_protein_length:
# frameshift is either extending the protein or leaving it unchanged
if len(mutant_protein_suffix) == 0:
return Silent(
variant=variant,
transcript=transcript,
aa_pos=mutated_codon_index,
aa_ref=aa_ref)
else:
# When all the amino acids are the same as the original, we either
# have the original protein or we've extended it.
# If we've extended it, it means we must have lost our stop codon.
return StopLoss(
variant=variant,
transcript=transcript,
aa_ref=aa_ref,
aa_alt=mutant_protein_suffix)
# original amino acid at the mutated codon before the frameshift occurred
aa_ref = original_protein_sequence[offset_to_first_different_amino_acid]
# TODO: what if all the shifted amino acids were the same and the protein
# ended up the same length? Add a Silent case?
if len(mutant_protein_suffix) == 0:
# if a frameshift doesn't create any new amino acids, then
# it must immediately have hit a stop codon
return FrameShiftTruncation(
variant=variant,
transcript=transcript,
stop_codon_offset=offset_to_first_different_amino_acid)
return FrameShift(
variant=variant,
transcript=transcript,
aa_mutation_start_offset=offset_to_first_different_amino_acid,
shifted_sequence=str(mutant_protein_suffix)) | python | def create_frameshift_effect(
mutated_codon_index,
sequence_from_mutated_codon,
variant,
transcript):
"""
Determine frameshift effect within a coding sequence (possibly affecting
either the start or stop codons, or anythign in between)
Parameters
----------
mutated_codon_index : int
Codon offset (starting from 0 = start codon) of first non-reference
amino acid in the variant protein
sequence_from_mutated_codon: Bio.Seq
Sequence of mutated cDNA, starting from first mutated codon, until
the end of the transcript
variant : Variant
transcript : transcript
"""
assert transcript.protein_sequence is not None, \
"Expect transcript %s to have protein sequence" % transcript
original_protein_sequence = transcript.protein_sequence
original_protein_length = len(original_protein_sequence)
mutant_protein_suffix = translate(
nucleotide_sequence=sequence_from_mutated_codon,
first_codon_is_start=False,
to_stop=True,
truncate=True)
if mutated_codon_index == 0:
# TODO: scan through sequence_from_mutated_codon for
# Kozak sequence + start codon to choose the new start
return StartLoss(variant=variant, transcript=transcript)
# the frameshifted sequence may contain some amino acids which are
# the same as the original protein!
_, mutant_protein_suffix, unchanged_amino_acids = trim_shared_prefix(
ref=original_protein_sequence[mutated_codon_index:],
alt=mutant_protein_suffix)
n_unchanged_amino_acids = len(unchanged_amino_acids)
offset_to_first_different_amino_acid = mutated_codon_index + n_unchanged_amino_acids
# miraculously, this frameshift left the protein unchanged,
# most likely by turning one stop codon into another stop codon
if n_unchanged_amino_acids == 0:
aa_ref = ""
else:
aa_ref = original_protein_sequence[-n_unchanged_amino_acids:]
if offset_to_first_different_amino_acid >= original_protein_length:
# frameshift is either extending the protein or leaving it unchanged
if len(mutant_protein_suffix) == 0:
return Silent(
variant=variant,
transcript=transcript,
aa_pos=mutated_codon_index,
aa_ref=aa_ref)
else:
# When all the amino acids are the same as the original, we either
# have the original protein or we've extended it.
# If we've extended it, it means we must have lost our stop codon.
return StopLoss(
variant=variant,
transcript=transcript,
aa_ref=aa_ref,
aa_alt=mutant_protein_suffix)
# original amino acid at the mutated codon before the frameshift occurred
aa_ref = original_protein_sequence[offset_to_first_different_amino_acid]
# TODO: what if all the shifted amino acids were the same and the protein
# ended up the same length? Add a Silent case?
if len(mutant_protein_suffix) == 0:
# if a frameshift doesn't create any new amino acids, then
# it must immediately have hit a stop codon
return FrameShiftTruncation(
variant=variant,
transcript=transcript,
stop_codon_offset=offset_to_first_different_amino_acid)
return FrameShift(
variant=variant,
transcript=transcript,
aa_mutation_start_offset=offset_to_first_different_amino_acid,
shifted_sequence=str(mutant_protein_suffix)) | Determine frameshift effect within a coding sequence (possibly affecting
either the start or stop codons, or anythign in between)
Parameters
----------
mutated_codon_index : int
Codon offset (starting from 0 = start codon) of first non-reference
amino acid in the variant protein
sequence_from_mutated_codon: Bio.Seq
Sequence of mutated cDNA, starting from first mutated codon, until
the end of the transcript
variant : Variant
transcript : transcript | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction_coding_frameshift.py#L35-L123 |
openvax/varcode | varcode/effects/effect_prediction_coding_frameshift.py | cdna_codon_sequence_after_insertion_frameshift | def cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon,
cds_offset_before_insertion,
inserted_nucleotides):
"""
Returns index of mutated codon and nucleotide sequence starting at the first
mutated codon.
"""
# special logic for insertions
coding_sequence_after_insertion = \
sequence_from_start_codon[cds_offset_before_insertion + 1:]
if cds_offset_before_insertion % 3 == 2:
# insertion happens after last nucleotide in a codon,
# doesn't disrupt the existing codon from cds_offset-2 to cds_offset
mutated_codon_index = cds_offset_before_insertion // 3 + 1
nucleotides_before = ""
elif cds_offset_before_insertion % 3 == 1:
# insertion happens after 2nd nucleotide of a codon
# codon positions:
# 1) cds_offset - 1
# 2) cds_offset
# <----- Insertsion
# 3) cds_offset + 1
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain two reference
# nucleotides before the insertion
nucleotides_before = sequence_from_start_codon[
cds_offset_before_insertion - 1:cds_offset_before_insertion + 1]
elif cds_offset_before_insertion % 3 == 0:
# insertion happens after 1st nucleotide of a codon
# codon positions:
# 1) cds_offset
# <----- Insertsion
# 2) cds_offset + 1
# 3) cds_offset + 2
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain one reference
# nucleotide before the insertion
nucleotides_before = sequence_from_start_codon[cds_offset_before_insertion]
sequence_from_mutated_codon = (
nucleotides_before +
inserted_nucleotides +
coding_sequence_after_insertion)
return mutated_codon_index, sequence_from_mutated_codon | python | def cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon,
cds_offset_before_insertion,
inserted_nucleotides):
"""
Returns index of mutated codon and nucleotide sequence starting at the first
mutated codon.
"""
# special logic for insertions
coding_sequence_after_insertion = \
sequence_from_start_codon[cds_offset_before_insertion + 1:]
if cds_offset_before_insertion % 3 == 2:
# insertion happens after last nucleotide in a codon,
# doesn't disrupt the existing codon from cds_offset-2 to cds_offset
mutated_codon_index = cds_offset_before_insertion // 3 + 1
nucleotides_before = ""
elif cds_offset_before_insertion % 3 == 1:
# insertion happens after 2nd nucleotide of a codon
# codon positions:
# 1) cds_offset - 1
# 2) cds_offset
# <----- Insertsion
# 3) cds_offset + 1
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain two reference
# nucleotides before the insertion
nucleotides_before = sequence_from_start_codon[
cds_offset_before_insertion - 1:cds_offset_before_insertion + 1]
elif cds_offset_before_insertion % 3 == 0:
# insertion happens after 1st nucleotide of a codon
# codon positions:
# 1) cds_offset
# <----- Insertsion
# 2) cds_offset + 1
# 3) cds_offset + 2
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain one reference
# nucleotide before the insertion
nucleotides_before = sequence_from_start_codon[cds_offset_before_insertion]
sequence_from_mutated_codon = (
nucleotides_before +
inserted_nucleotides +
coding_sequence_after_insertion)
return mutated_codon_index, sequence_from_mutated_codon | Returns index of mutated codon and nucleotide sequence starting at the first
mutated codon. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction_coding_frameshift.py#L125-L169 |
openvax/varcode | varcode/effects/effect_prediction_coding_frameshift.py | cdna_codon_sequence_after_deletion_or_substitution_frameshift | def cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon,
cds_offset,
trimmed_cdna_ref,
trimmed_cdna_alt):
"""
Logic for any frameshift which isn't an insertion.
We have insertions as a special case since our base-inclusive
indexing means something different for insertions:
cds_offset = base before insertion
Whereas in this case:
cds_offset = first reference base affected by a variant
Returns index of first modified codon and sequence from that codon
onward.
"""
mutated_codon_index = cds_offset // 3
# get the sequence starting from the first modified codon until the end
# of the transcript.
sequence_after_mutated_codon = \
sequence_from_start_codon[mutated_codon_index * 3:]
# the variant's ref nucleotides should start either 0, 1, or 2 nucleotides
# into `sequence_after_mutated_codon`
offset_into_mutated_codon = cds_offset % 3
sequence_from_mutated_codon = substitute(
sequence=sequence_after_mutated_codon,
offset=offset_into_mutated_codon,
ref=trimmed_cdna_ref,
alt=trimmed_cdna_alt)
return mutated_codon_index, sequence_from_mutated_codon | python | def cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon,
cds_offset,
trimmed_cdna_ref,
trimmed_cdna_alt):
"""
Logic for any frameshift which isn't an insertion.
We have insertions as a special case since our base-inclusive
indexing means something different for insertions:
cds_offset = base before insertion
Whereas in this case:
cds_offset = first reference base affected by a variant
Returns index of first modified codon and sequence from that codon
onward.
"""
mutated_codon_index = cds_offset // 3
# get the sequence starting from the first modified codon until the end
# of the transcript.
sequence_after_mutated_codon = \
sequence_from_start_codon[mutated_codon_index * 3:]
# the variant's ref nucleotides should start either 0, 1, or 2 nucleotides
# into `sequence_after_mutated_codon`
offset_into_mutated_codon = cds_offset % 3
sequence_from_mutated_codon = substitute(
sequence=sequence_after_mutated_codon,
offset=offset_into_mutated_codon,
ref=trimmed_cdna_ref,
alt=trimmed_cdna_alt)
return mutated_codon_index, sequence_from_mutated_codon | Logic for any frameshift which isn't an insertion.
We have insertions as a special case since our base-inclusive
indexing means something different for insertions:
cds_offset = base before insertion
Whereas in this case:
cds_offset = first reference base affected by a variant
Returns index of first modified codon and sequence from that codon
onward. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction_coding_frameshift.py#L172-L204 |
openvax/varcode | varcode/effects/effect_prediction_coding_frameshift.py | predict_frameshift_coding_effect | def predict_frameshift_coding_effect(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
cds_offset,
sequence_from_start_codon):
"""
Coding effect of a frameshift mutation.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : nucleotide sequence
Reference nucleotides in the coding sequence of the given transcript.
trimmed_cdna_alt : nucleotide sequence
Alternate nucleotides introduced by mutation
cds_offset : int
Offset into the CDS of first ref nucleotide. For insertions, this
is the offset of the last ref nucleotide before the insertion.
sequence_from_start_codon : nucleotide sequence
Nucleotides of the coding sequence and 3' UTR
"""
if len(trimmed_cdna_ref) != 0:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset=cds_offset,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt)
else:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset_before_insertion=cds_offset,
inserted_nucleotides=trimmed_cdna_alt)
return create_frameshift_effect(
mutated_codon_index=mutated_codon_index,
sequence_from_mutated_codon=sequence_from_mutated_codon,
variant=variant,
transcript=transcript) | python | def predict_frameshift_coding_effect(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
cds_offset,
sequence_from_start_codon):
"""
Coding effect of a frameshift mutation.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : nucleotide sequence
Reference nucleotides in the coding sequence of the given transcript.
trimmed_cdna_alt : nucleotide sequence
Alternate nucleotides introduced by mutation
cds_offset : int
Offset into the CDS of first ref nucleotide. For insertions, this
is the offset of the last ref nucleotide before the insertion.
sequence_from_start_codon : nucleotide sequence
Nucleotides of the coding sequence and 3' UTR
"""
if len(trimmed_cdna_ref) != 0:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset=cds_offset,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt)
else:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset_before_insertion=cds_offset,
inserted_nucleotides=trimmed_cdna_alt)
return create_frameshift_effect(
mutated_codon_index=mutated_codon_index,
sequence_from_mutated_codon=sequence_from_mutated_codon,
variant=variant,
transcript=transcript) | Coding effect of a frameshift mutation.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : nucleotide sequence
Reference nucleotides in the coding sequence of the given transcript.
trimmed_cdna_alt : nucleotide sequence
Alternate nucleotides introduced by mutation
cds_offset : int
Offset into the CDS of first ref nucleotide. For insertions, this
is the offset of the last ref nucleotide before the insertion.
sequence_from_start_codon : nucleotide sequence
Nucleotides of the coding sequence and 3' UTR | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction_coding_frameshift.py#L207-L254 |
openvax/varcode | varcode/effects/effect_prediction_coding.py | predict_variant_coding_effect_on_transcript | def predict_variant_coding_effect_on_transcript(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
transcript_offset):
"""
Given a minimal cDNA ref/alt nucleotide string pair and an offset into a
given transcript, determine the coding effect of this nucleotide substitution
onto the translated protein.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : str
Reference nucleotides we expect to find in the transcript's CDS
trimmed_cdna_alt : str
Alternate nucleotides we're replacing the reference with
transcript_offset : int
Offset into the full transcript sequence of the ref->alt substitution
"""
if not transcript.complete:
raise ValueError(
("Can't annotate coding effect for %s"
" on incomplete transcript %s" % (variant, transcript)))
sequence = transcript.sequence
n_ref = len(trimmed_cdna_ref)
n_alt = len(trimmed_cdna_alt)
# reference nucleotides found on the transcript, if these don't match
# what we were told to expect from the variant then raise an exception
ref_nucleotides_from_transcript = str(
sequence[transcript_offset:transcript_offset + n_ref])
# Make sure that the reference sequence agrees with what we expected
# from the VCF
assert ref_nucleotides_from_transcript == trimmed_cdna_ref, \
"%s: expected ref '%s' at offset %d of %s, transcript has '%s'" % (
variant,
trimmed_cdna_ref,
transcript_offset,
transcript,
ref_nucleotides_from_transcript)
start_codon_offset = transcript.first_start_codon_spliced_offset
stop_codon_offset = transcript.last_stop_codon_spliced_offset
cds_len = stop_codon_offset - start_codon_offset + 1
if cds_len < 3:
raise ValueError(
"Coding sequence for %s is too short: '%s'" % (
transcript,
transcript.sequence[start_codon_offset:stop_codon_offset + 1]))
if n_ref == 0 and transcript.strand == "-":
# By convention, genomic insertions happen *after* their base 1 position on
# a chromosome. On the reverse strand, however, an insertion has to go
# before the nucleotide at some transcript offset.
# Example:
# chromosome sequence:
# TTT|GATCTCGTA|CCC
# transcript on reverse strand:
# CCC|ATGCTCTAG|TTT
# where the CDS is emphasized:
# ATGCTCTAG
# If we have a genomic insertion g.6insATT
# the genomic sequence becomes:
# TTT|GAT_ATT_CTCGTA|CCC
# (insert the "ATT" after the "T" at position 6)
# On the reverse strand this becomes:
# CCC|ATGCTC_TTA_TAG|TTT
# (insert the "ATT" *before* the "T" at position 10)
#
# To preserve the interpretation of the start offset as the base
# before the insertion, need to subtract one
cds_offset = transcript_offset - start_codon_offset - 1
else:
cds_offset = transcript_offset - start_codon_offset
assert cds_offset < cds_len, \
"Expected CDS offset (%d) < |CDS| (%d) for %s on %s" % (
cds_offset, cds_len, variant, transcript)
sequence_from_start_codon = str(sequence[start_codon_offset:])
# is this an in-frame mutations?
if (n_ref - n_alt) % 3 == 0:
return predict_in_frame_coding_effect(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt,
cds_offset=cds_offset,
sequence_from_start_codon=sequence_from_start_codon)
else:
return predict_frameshift_coding_effect(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt,
cds_offset=cds_offset,
sequence_from_start_codon=sequence_from_start_codon) | python | def predict_variant_coding_effect_on_transcript(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
transcript_offset):
"""
Given a minimal cDNA ref/alt nucleotide string pair and an offset into a
given transcript, determine the coding effect of this nucleotide substitution
onto the translated protein.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : str
Reference nucleotides we expect to find in the transcript's CDS
trimmed_cdna_alt : str
Alternate nucleotides we're replacing the reference with
transcript_offset : int
Offset into the full transcript sequence of the ref->alt substitution
"""
if not transcript.complete:
raise ValueError(
("Can't annotate coding effect for %s"
" on incomplete transcript %s" % (variant, transcript)))
sequence = transcript.sequence
n_ref = len(trimmed_cdna_ref)
n_alt = len(trimmed_cdna_alt)
# reference nucleotides found on the transcript, if these don't match
# what we were told to expect from the variant then raise an exception
ref_nucleotides_from_transcript = str(
sequence[transcript_offset:transcript_offset + n_ref])
# Make sure that the reference sequence agrees with what we expected
# from the VCF
assert ref_nucleotides_from_transcript == trimmed_cdna_ref, \
"%s: expected ref '%s' at offset %d of %s, transcript has '%s'" % (
variant,
trimmed_cdna_ref,
transcript_offset,
transcript,
ref_nucleotides_from_transcript)
start_codon_offset = transcript.first_start_codon_spliced_offset
stop_codon_offset = transcript.last_stop_codon_spliced_offset
cds_len = stop_codon_offset - start_codon_offset + 1
if cds_len < 3:
raise ValueError(
"Coding sequence for %s is too short: '%s'" % (
transcript,
transcript.sequence[start_codon_offset:stop_codon_offset + 1]))
if n_ref == 0 and transcript.strand == "-":
# By convention, genomic insertions happen *after* their base 1 position on
# a chromosome. On the reverse strand, however, an insertion has to go
# before the nucleotide at some transcript offset.
# Example:
# chromosome sequence:
# TTT|GATCTCGTA|CCC
# transcript on reverse strand:
# CCC|ATGCTCTAG|TTT
# where the CDS is emphasized:
# ATGCTCTAG
# If we have a genomic insertion g.6insATT
# the genomic sequence becomes:
# TTT|GAT_ATT_CTCGTA|CCC
# (insert the "ATT" after the "T" at position 6)
# On the reverse strand this becomes:
# CCC|ATGCTC_TTA_TAG|TTT
# (insert the "ATT" *before* the "T" at position 10)
#
# To preserve the interpretation of the start offset as the base
# before the insertion, need to subtract one
cds_offset = transcript_offset - start_codon_offset - 1
else:
cds_offset = transcript_offset - start_codon_offset
assert cds_offset < cds_len, \
"Expected CDS offset (%d) < |CDS| (%d) for %s on %s" % (
cds_offset, cds_len, variant, transcript)
sequence_from_start_codon = str(sequence[start_codon_offset:])
# is this an in-frame mutations?
if (n_ref - n_alt) % 3 == 0:
return predict_in_frame_coding_effect(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt,
cds_offset=cds_offset,
sequence_from_start_codon=sequence_from_start_codon)
else:
return predict_frameshift_coding_effect(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt,
cds_offset=cds_offset,
sequence_from_start_codon=sequence_from_start_codon) | Given a minimal cDNA ref/alt nucleotide string pair and an offset into a
given transcript, determine the coding effect of this nucleotide substitution
onto the translated protein.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : str
Reference nucleotides we expect to find in the transcript's CDS
trimmed_cdna_alt : str
Alternate nucleotides we're replacing the reference with
transcript_offset : int
Offset into the full transcript sequence of the ref->alt substitution | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction_coding.py#L21-L130 |
openvax/varcode | varcode/effects/effect_prediction.py | predict_variant_effects | def predict_variant_effects(variant, raise_on_error=False):
"""Determine the effects of a variant on any transcripts it overlaps.
Returns an EffectCollection object.
Parameters
----------
variant : Variant
raise_on_error : bool
Raise an exception if we encounter an error while trying to
determine the effect of this variant on a transcript, or simply
log the error and continue.
"""
# if this variant isn't overlapping any genes, return a
# Intergenic effect
# TODO: look for nearby genes and mark those as Upstream and Downstream
# effects
if len(variant.gene_ids) == 0:
effects = [Intergenic(variant)]
else:
# list of all MutationEffects for all genes & transcripts
effects = []
# group transcripts by their gene ID
transcripts_grouped_by_gene = groupby_field(variant.transcripts, 'gene_id')
# want effects in the list grouped by the gene they come from
for gene_id in sorted(variant.gene_ids):
if gene_id not in transcripts_grouped_by_gene:
# intragenic variant overlaps a gene but not any transcripts
gene = variant.ensembl.gene_by_id(gene_id)
effects.append(Intragenic(variant, gene))
else:
# gene ID has transcripts overlapped by this variant
for transcript in transcripts_grouped_by_gene[gene_id]:
if raise_on_error:
effect = predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
else:
effect = predict_variant_effect_on_transcript_or_failure(
variant=variant,
transcript=transcript)
effects.append(effect)
return EffectCollection(effects) | python | def predict_variant_effects(variant, raise_on_error=False):
"""Determine the effects of a variant on any transcripts it overlaps.
Returns an EffectCollection object.
Parameters
----------
variant : Variant
raise_on_error : bool
Raise an exception if we encounter an error while trying to
determine the effect of this variant on a transcript, or simply
log the error and continue.
"""
# if this variant isn't overlapping any genes, return a
# Intergenic effect
# TODO: look for nearby genes and mark those as Upstream and Downstream
# effects
if len(variant.gene_ids) == 0:
effects = [Intergenic(variant)]
else:
# list of all MutationEffects for all genes & transcripts
effects = []
# group transcripts by their gene ID
transcripts_grouped_by_gene = groupby_field(variant.transcripts, 'gene_id')
# want effects in the list grouped by the gene they come from
for gene_id in sorted(variant.gene_ids):
if gene_id not in transcripts_grouped_by_gene:
# intragenic variant overlaps a gene but not any transcripts
gene = variant.ensembl.gene_by_id(gene_id)
effects.append(Intragenic(variant, gene))
else:
# gene ID has transcripts overlapped by this variant
for transcript in transcripts_grouped_by_gene[gene_id]:
if raise_on_error:
effect = predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
else:
effect = predict_variant_effect_on_transcript_or_failure(
variant=variant,
transcript=transcript)
effects.append(effect)
return EffectCollection(effects) | Determine the effects of a variant on any transcripts it overlaps.
Returns an EffectCollection object.
Parameters
----------
variant : Variant
raise_on_error : bool
Raise an exception if we encounter an error while trying to
determine the effect of this variant on a transcript, or simply
log the error and continue. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction.py#L48-L92 |
openvax/varcode | varcode/effects/effect_prediction.py | predict_variant_effect_on_transcript_or_failure | def predict_variant_effect_on_transcript_or_failure(variant, transcript):
"""
Try predicting the effect of a variant on a particular transcript but
suppress raised exceptions by converting them into `Failure` effect
values.
"""
try:
return predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
except (AssertionError, ValueError) as error:
logger.warn(
"Encountered error annotating %s for %s: %s",
variant,
transcript,
error)
return Failure(variant, transcript) | python | def predict_variant_effect_on_transcript_or_failure(variant, transcript):
"""
Try predicting the effect of a variant on a particular transcript but
suppress raised exceptions by converting them into `Failure` effect
values.
"""
try:
return predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
except (AssertionError, ValueError) as error:
logger.warn(
"Encountered error annotating %s for %s: %s",
variant,
transcript,
error)
return Failure(variant, transcript) | Try predicting the effect of a variant on a particular transcript but
suppress raised exceptions by converting them into `Failure` effect
values. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction.py#L95-L111 |
openvax/varcode | varcode/effects/effect_prediction.py | predict_variant_effect_on_transcript | def predict_variant_effect_on_transcript(variant, transcript):
"""Return the transcript effect (such as FrameShift) that results from
applying this genomic variant to a particular transcript.
Parameters
----------
transcript : Transcript
Transcript we're going to apply mutation to.
"""
if transcript.__class__ is not Transcript:
raise TypeError(
"Expected %s : %s to have type Transcript" % (
transcript, type(transcript)))
# check for non-coding transcripts first, since
# every non-coding transcript is "incomplete".
if not transcript.is_protein_coding:
return NoncodingTranscript(variant, transcript)
if not transcript.complete:
return IncompleteTranscript(variant, transcript)
# since we're using inclusive base-1 coordinates,
# checking for overlap requires special logic for insertions
is_insertion = variant.is_insertion
# determine if any exons are deleted, and if not,
# what is the closest exon and how far is this variant
# from that exon (overlapping the exon = 0 distance)
completely_lost_exons = []
# list of which (exon #, Exon) pairs this mutation overlaps
overlapping_exon_numbers_and_exons = []
distance_to_nearest_exon = float("inf")
start_in_exon = False
end_in_exon = False
nearest_exon = None
variant_start = variant.trimmed_base1_start
variant_end = variant.trimmed_base1_end
for i, exon in enumerate(transcript.exons):
if variant_start <= exon.start and variant_end >= exon.end:
completely_lost_exons.append(exon)
if is_insertion and exon.strand == "+" and variant_end == exon.end:
# insertions after an exon don't overlap the exon
distance = 1
elif is_insertion and exon.strand == "-" and variant_start == exon.start:
distance = 1
else:
distance = exon.distance_to_interval(variant_start, variant_end)
if distance == 0:
overlapping_exon_numbers_and_exons.append((i + 1, exon))
# start is contained in current exon
if exon.start <= variant_start <= exon.end:
start_in_exon = True
# end is contained in current exon
if exon.end >= variant_end >= exon.start:
end_in_exon = True
elif distance < distance_to_nearest_exon:
distance_to_nearest_exon = distance
nearest_exon = exon
if len(overlapping_exon_numbers_and_exons) == 0:
intronic_effect_class = choose_intronic_effect_class(
variant=variant,
nearest_exon=nearest_exon,
distance_to_exon=distance_to_nearest_exon)
return intronic_effect_class(
variant=variant,
transcript=transcript,
nearest_exon=nearest_exon,
distance_to_exon=distance_to_nearest_exon)
elif len(completely_lost_exons) > 0 or (
len(overlapping_exon_numbers_and_exons) > 1):
# if spanning multiple exons, or completely deleted an exon
# then consider that an ExonLoss mutation
exons = [exon for (_, exon) in overlapping_exon_numbers_and_exons]
return ExonLoss(variant, transcript, exons)
assert len(overlapping_exon_numbers_and_exons) == 1
exon_number, exon = overlapping_exon_numbers_and_exons[0]
exonic_effect_annotation = exonic_transcript_effect(
variant, exon, exon_number, transcript)
# simple case: both start and end are in the same
if start_in_exon and end_in_exon:
return exonic_effect_annotation
elif isinstance(exonic_effect_annotation, ExonicSpliceSite):
# if mutation bleeds over into intro but even just
# the exonic portion got annotated as an exonic splice site
# then return it
return exonic_effect_annotation
return ExonicSpliceSite(
variant=variant,
transcript=transcript,
exon=exon,
alternate_effect=exonic_effect_annotation) | python | def predict_variant_effect_on_transcript(variant, transcript):
"""Return the transcript effect (such as FrameShift) that results from
applying this genomic variant to a particular transcript.
Parameters
----------
transcript : Transcript
Transcript we're going to apply mutation to.
"""
if transcript.__class__ is not Transcript:
raise TypeError(
"Expected %s : %s to have type Transcript" % (
transcript, type(transcript)))
# check for non-coding transcripts first, since
# every non-coding transcript is "incomplete".
if not transcript.is_protein_coding:
return NoncodingTranscript(variant, transcript)
if not transcript.complete:
return IncompleteTranscript(variant, transcript)
# since we're using inclusive base-1 coordinates,
# checking for overlap requires special logic for insertions
is_insertion = variant.is_insertion
# determine if any exons are deleted, and if not,
# what is the closest exon and how far is this variant
# from that exon (overlapping the exon = 0 distance)
completely_lost_exons = []
# list of which (exon #, Exon) pairs this mutation overlaps
overlapping_exon_numbers_and_exons = []
distance_to_nearest_exon = float("inf")
start_in_exon = False
end_in_exon = False
nearest_exon = None
variant_start = variant.trimmed_base1_start
variant_end = variant.trimmed_base1_end
for i, exon in enumerate(transcript.exons):
if variant_start <= exon.start and variant_end >= exon.end:
completely_lost_exons.append(exon)
if is_insertion and exon.strand == "+" and variant_end == exon.end:
# insertions after an exon don't overlap the exon
distance = 1
elif is_insertion and exon.strand == "-" and variant_start == exon.start:
distance = 1
else:
distance = exon.distance_to_interval(variant_start, variant_end)
if distance == 0:
overlapping_exon_numbers_and_exons.append((i + 1, exon))
# start is contained in current exon
if exon.start <= variant_start <= exon.end:
start_in_exon = True
# end is contained in current exon
if exon.end >= variant_end >= exon.start:
end_in_exon = True
elif distance < distance_to_nearest_exon:
distance_to_nearest_exon = distance
nearest_exon = exon
if len(overlapping_exon_numbers_and_exons) == 0:
intronic_effect_class = choose_intronic_effect_class(
variant=variant,
nearest_exon=nearest_exon,
distance_to_exon=distance_to_nearest_exon)
return intronic_effect_class(
variant=variant,
transcript=transcript,
nearest_exon=nearest_exon,
distance_to_exon=distance_to_nearest_exon)
elif len(completely_lost_exons) > 0 or (
len(overlapping_exon_numbers_and_exons) > 1):
# if spanning multiple exons, or completely deleted an exon
# then consider that an ExonLoss mutation
exons = [exon for (_, exon) in overlapping_exon_numbers_and_exons]
return ExonLoss(variant, transcript, exons)
assert len(overlapping_exon_numbers_and_exons) == 1
exon_number, exon = overlapping_exon_numbers_and_exons[0]
exonic_effect_annotation = exonic_transcript_effect(
variant, exon, exon_number, transcript)
# simple case: both start and end are in the same
if start_in_exon and end_in_exon:
return exonic_effect_annotation
elif isinstance(exonic_effect_annotation, ExonicSpliceSite):
# if mutation bleeds over into intro but even just
# the exonic portion got annotated as an exonic splice site
# then return it
return exonic_effect_annotation
return ExonicSpliceSite(
variant=variant,
transcript=transcript,
exon=exon,
alternate_effect=exonic_effect_annotation) | Return the transcript effect (such as FrameShift) that results from
applying this genomic variant to a particular transcript.
Parameters
----------
transcript : Transcript
Transcript we're going to apply mutation to. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction.py#L114-L220 |
openvax/varcode | varcode/effects/effect_prediction.py | choose_intronic_effect_class | def choose_intronic_effect_class(
variant,
nearest_exon,
distance_to_exon):
"""
Infer effect of variant which does not overlap any exon of
the given transcript.
"""
assert distance_to_exon > 0, \
"Expected intronic effect to have distance_to_exon > 0, got %d" % (
distance_to_exon,)
if nearest_exon.strand == "+":
# if exon on positive strand
start_before = variant.trimmed_base1_start < nearest_exon.start
start_same = variant.trimmed_base1_start == nearest_exon.start
before_exon = start_before or (variant.is_insertion and start_same)
else:
# if exon on negative strand
end_after = variant.trimmed_base1_end > nearest_exon.end
end_same = variant.trimmed_base1_end == nearest_exon.end
before_exon = end_after or (variant.is_insertion and end_same)
# distance cutoffs based on consensus splice sequences from
# http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
# 3' splice site: YAG|R
if distance_to_exon <= 2:
if before_exon:
# 2 last nucleotides of intron before exon are the splice
# acceptor site, typically "AG"
return SpliceAcceptor
else:
# 2 first nucleotides of intron after exon are the splice donor
# site, typically "GT"
return SpliceDonor
elif not before_exon and distance_to_exon <= 6:
# variants in nucleotides 3-6 at start of intron aren't as certain
# to cause problems as nucleotides 1-2 but still implicated in
# alternative splicing
return IntronicSpliceSite
elif before_exon and distance_to_exon <= 3:
# nucleotide -3 before exon is part of the 3' splicing
# motif but allows for more degeneracy than the -2, -1 nucleotides
return IntronicSpliceSite
else:
# intronic mutation unrelated to splicing
return Intronic | python | def choose_intronic_effect_class(
variant,
nearest_exon,
distance_to_exon):
"""
Infer effect of variant which does not overlap any exon of
the given transcript.
"""
assert distance_to_exon > 0, \
"Expected intronic effect to have distance_to_exon > 0, got %d" % (
distance_to_exon,)
if nearest_exon.strand == "+":
# if exon on positive strand
start_before = variant.trimmed_base1_start < nearest_exon.start
start_same = variant.trimmed_base1_start == nearest_exon.start
before_exon = start_before or (variant.is_insertion and start_same)
else:
# if exon on negative strand
end_after = variant.trimmed_base1_end > nearest_exon.end
end_same = variant.trimmed_base1_end == nearest_exon.end
before_exon = end_after or (variant.is_insertion and end_same)
# distance cutoffs based on consensus splice sequences from
# http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
# 3' splice site: YAG|R
if distance_to_exon <= 2:
if before_exon:
# 2 last nucleotides of intron before exon are the splice
# acceptor site, typically "AG"
return SpliceAcceptor
else:
# 2 first nucleotides of intron after exon are the splice donor
# site, typically "GT"
return SpliceDonor
elif not before_exon and distance_to_exon <= 6:
# variants in nucleotides 3-6 at start of intron aren't as certain
# to cause problems as nucleotides 1-2 but still implicated in
# alternative splicing
return IntronicSpliceSite
elif before_exon and distance_to_exon <= 3:
# nucleotide -3 before exon is part of the 3' splicing
# motif but allows for more degeneracy than the -2, -1 nucleotides
return IntronicSpliceSite
else:
# intronic mutation unrelated to splicing
return Intronic | Infer effect of variant which does not overlap any exon of
the given transcript. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction.py#L223-L271 |
openvax/varcode | varcode/effects/effect_prediction.py | exonic_transcript_effect | def exonic_transcript_effect(variant, exon, exon_number, transcript):
"""Effect of this variant on a Transcript, assuming we already know
that this variant overlaps some exon of the transcript.
Parameters
----------
variant : Variant
exon : pyensembl.Exon
Exon which this variant overlaps
exon_number : int
Index (starting from 1) of the given exon in the transcript's
sequence of exons.
transcript : pyensembl.Transcript
"""
genome_ref = variant.trimmed_ref
genome_alt = variant.trimmed_alt
variant_start = variant.trimmed_base1_start
variant_end = variant.trimmed_base1_end
# clip mutation to only affect the current exon
if variant_start < exon.start:
# if mutation starts before current exon then only look
# at nucleotides which overlap the exon
logger.info('Mutation in variant %s starts before exon %s', variant, exon)
assert len(genome_ref) > 0, "Unexpected insertion into intron"
n_skip_start = exon.start - variant_start
genome_ref = genome_ref[n_skip_start:]
genome_alt = genome_alt[n_skip_start:]
genome_start = exon.start
else:
genome_start = variant_start
if variant_end > exon.end:
# if mutation goes past exon end then only look at nucleotides
# which overlap the exon
logger.info('Mutation in variant %s ends after exon %s', variant, exon)
n_skip_end = variant_end - exon.end
genome_ref = genome_ref[:-n_skip_end]
genome_alt = genome_alt[:len(genome_ref)]
genome_end = exon.end
else:
genome_end = variant_end
transcript_offset = interval_offset_on_transcript(
genome_start, genome_end, transcript)
if transcript.on_backward_strand:
cdna_ref = reverse_complement(genome_ref)
cdna_alt = reverse_complement(genome_alt)
else:
cdna_ref = genome_ref
cdna_alt = genome_alt
n_ref = len(cdna_ref)
expected_ref = str(
transcript.sequence[transcript_offset:transcript_offset + n_ref])
if cdna_ref != expected_ref:
raise ValueError(
("Found ref nucleotides '%s' in sequence"
" of %s at offset %d (chromosome positions %d:%d)"
" but variant %s has '%s'") % (
expected_ref,
transcript,
transcript_offset,
genome_start,
genome_end,
variant,
cdna_ref))
utr5_length = min(transcript.start_codon_spliced_offsets)
# does the variant start inside the 5' UTR?
if utr5_length > transcript_offset:
# does the variant end after the 5' UTR, within the coding region?
if utr5_length < transcript_offset + n_ref:
# TODO: we *might* lose the Kozak sequence or the start codon
# but without looking at the modified sequence how can we tell
# for sure that this is a start-loss variant?
return StartLoss(variant, transcript)
else:
# if variant contained within 5' UTR
return FivePrimeUTR(variant, transcript)
utr3_offset = max(transcript.stop_codon_spliced_offsets) + 1
if transcript_offset >= utr3_offset:
return ThreePrimeUTR(variant, transcript)
exon_start_offset = interval_offset_on_transcript(
exon.start, exon.end, transcript)
exon_end_offset = exon_start_offset + len(exon) - 1
# Further below we're going to try to predict exonic splice site
# modifications, which will take this effect_annotation as their
# alternative hypothesis for what happens if splicing doesn't change.
# If the mutation doesn't affect an exonic splice site, then
# we'll just return this effect.
coding_effect_annotation = predict_variant_coding_effect_on_transcript(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=cdna_ref,
trimmed_cdna_alt=cdna_alt,
transcript_offset=transcript_offset)
if changes_exonic_splice_site(
transcript=transcript,
transcript_ref=cdna_ref,
transcript_alt=cdna_alt,
transcript_offset=transcript_offset,
exon_start_offset=exon_start_offset,
exon_end_offset=exon_end_offset,
exon_number=exon_number):
return ExonicSpliceSite(
variant=variant,
transcript=transcript,
exon=exon,
alternate_effect=coding_effect_annotation)
return coding_effect_annotation | python | def exonic_transcript_effect(variant, exon, exon_number, transcript):
"""Effect of this variant on a Transcript, assuming we already know
that this variant overlaps some exon of the transcript.
Parameters
----------
variant : Variant
exon : pyensembl.Exon
Exon which this variant overlaps
exon_number : int
Index (starting from 1) of the given exon in the transcript's
sequence of exons.
transcript : pyensembl.Transcript
"""
genome_ref = variant.trimmed_ref
genome_alt = variant.trimmed_alt
variant_start = variant.trimmed_base1_start
variant_end = variant.trimmed_base1_end
# clip mutation to only affect the current exon
if variant_start < exon.start:
# if mutation starts before current exon then only look
# at nucleotides which overlap the exon
logger.info('Mutation in variant %s starts before exon %s', variant, exon)
assert len(genome_ref) > 0, "Unexpected insertion into intron"
n_skip_start = exon.start - variant_start
genome_ref = genome_ref[n_skip_start:]
genome_alt = genome_alt[n_skip_start:]
genome_start = exon.start
else:
genome_start = variant_start
if variant_end > exon.end:
# if mutation goes past exon end then only look at nucleotides
# which overlap the exon
logger.info('Mutation in variant %s ends after exon %s', variant, exon)
n_skip_end = variant_end - exon.end
genome_ref = genome_ref[:-n_skip_end]
genome_alt = genome_alt[:len(genome_ref)]
genome_end = exon.end
else:
genome_end = variant_end
transcript_offset = interval_offset_on_transcript(
genome_start, genome_end, transcript)
if transcript.on_backward_strand:
cdna_ref = reverse_complement(genome_ref)
cdna_alt = reverse_complement(genome_alt)
else:
cdna_ref = genome_ref
cdna_alt = genome_alt
n_ref = len(cdna_ref)
expected_ref = str(
transcript.sequence[transcript_offset:transcript_offset + n_ref])
if cdna_ref != expected_ref:
raise ValueError(
("Found ref nucleotides '%s' in sequence"
" of %s at offset %d (chromosome positions %d:%d)"
" but variant %s has '%s'") % (
expected_ref,
transcript,
transcript_offset,
genome_start,
genome_end,
variant,
cdna_ref))
utr5_length = min(transcript.start_codon_spliced_offsets)
# does the variant start inside the 5' UTR?
if utr5_length > transcript_offset:
# does the variant end after the 5' UTR, within the coding region?
if utr5_length < transcript_offset + n_ref:
# TODO: we *might* lose the Kozak sequence or the start codon
# but without looking at the modified sequence how can we tell
# for sure that this is a start-loss variant?
return StartLoss(variant, transcript)
else:
# if variant contained within 5' UTR
return FivePrimeUTR(variant, transcript)
utr3_offset = max(transcript.stop_codon_spliced_offsets) + 1
if transcript_offset >= utr3_offset:
return ThreePrimeUTR(variant, transcript)
exon_start_offset = interval_offset_on_transcript(
exon.start, exon.end, transcript)
exon_end_offset = exon_start_offset + len(exon) - 1
# Further below we're going to try to predict exonic splice site
# modifications, which will take this effect_annotation as their
# alternative hypothesis for what happens if splicing doesn't change.
# If the mutation doesn't affect an exonic splice site, then
# we'll just return this effect.
coding_effect_annotation = predict_variant_coding_effect_on_transcript(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=cdna_ref,
trimmed_cdna_alt=cdna_alt,
transcript_offset=transcript_offset)
if changes_exonic_splice_site(
transcript=transcript,
transcript_ref=cdna_ref,
transcript_alt=cdna_alt,
transcript_offset=transcript_offset,
exon_start_offset=exon_start_offset,
exon_end_offset=exon_end_offset,
exon_number=exon_number):
return ExonicSpliceSite(
variant=variant,
transcript=transcript,
exon=exon,
alternate_effect=coding_effect_annotation)
return coding_effect_annotation | Effect of this variant on a Transcript, assuming we already know
that this variant overlaps some exon of the transcript.
Parameters
----------
variant : Variant
exon : pyensembl.Exon
Exon which this variant overlaps
exon_number : int
Index (starting from 1) of the given exon in the transcript's
sequence of exons.
transcript : pyensembl.Transcript | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_prediction.py#L274-L397 |
openvax/varcode | varcode/common.py | apply_groupby | def apply_groupby(records, fn, skip_none=False):
"""
Given a list of objects, group them into a dictionary by
applying fn to each one and using returned values as a dictionary
key.
Parameters
----------
records : list
fn : function
skip_none : bool
If False, then None can be a key in the returned dictionary,
otherwise records whose key value is None get skipped.
Returns dict.
"""
# create an empty list for every new key
groups = defaultdict(list)
for record in records:
value = fn(record)
if value is not None or not skip_none:
groups[value].append(record)
return dict(groups) | python | def apply_groupby(records, fn, skip_none=False):
"""
Given a list of objects, group them into a dictionary by
applying fn to each one and using returned values as a dictionary
key.
Parameters
----------
records : list
fn : function
skip_none : bool
If False, then None can be a key in the returned dictionary,
otherwise records whose key value is None get skipped.
Returns dict.
"""
# create an empty list for every new key
groups = defaultdict(list)
for record in records:
value = fn(record)
if value is not None or not skip_none:
groups[value].append(record)
return dict(groups) | Given a list of objects, group them into a dictionary by
applying fn to each one and using returned values as a dictionary
key.
Parameters
----------
records : list
fn : function
skip_none : bool
If False, then None can be a key in the returned dictionary,
otherwise records whose key value is None get skipped.
Returns dict. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/common.py#L21-L46 |
openvax/varcode | varcode/common.py | groupby_field | def groupby_field(records, field_name, skip_none=True):
"""
Given a list of objects, group them into a dictionary by
the unique values of a given field name.
"""
return apply_groupby(
records,
lambda obj: getattr(obj, field_name),
skip_none=skip_none) | python | def groupby_field(records, field_name, skip_none=True):
"""
Given a list of objects, group them into a dictionary by
the unique values of a given field name.
"""
return apply_groupby(
records,
lambda obj: getattr(obj, field_name),
skip_none=skip_none) | Given a list of objects, group them into a dictionary by
the unique values of a given field name. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/common.py#L49-L57 |
openvax/varcode | varcode/common.py | memoize | def memoize(fn):
"""
Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared.
"""
memoized_values = {}
@wraps(fn)
def wrapped_fn(*args, **kwargs):
key = (args, tuple(sorted(kwargs.items())))
try:
return memoized_values[key]
except KeyError:
memoized_values[key] = fn(*args, **kwargs)
return memoized_values[key]
return wrapped_fn | python | def memoize(fn):
"""
Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared.
"""
memoized_values = {}
@wraps(fn)
def wrapped_fn(*args, **kwargs):
key = (args, tuple(sorted(kwargs.items())))
try:
return memoized_values[key]
except KeyError:
memoized_values[key] = fn(*args, **kwargs)
return memoized_values[key]
return wrapped_fn | Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/common.py#L60-L77 |
openvax/varcode | varcode/effects/transcript_helpers.py | interval_offset_on_transcript | def interval_offset_on_transcript(start, end, transcript):
"""
Given an interval [start:end] and a particular transcript,
return the start offset of the interval relative to the
chromosomal positions of the transcript.
"""
# ensure that start_pos:end_pos overlap with transcript positions
if start > end:
raise ValueError(
"start_pos %d shouldn't be greater than end_pos %d" % (
start, end))
if start > transcript.end:
raise ValueError(
"Range %d:%d starts after transcript %s (%d:%d)" % (
start,
end,
transcript,
transcript.start,
transcript.end))
if end < transcript.start:
raise ValueError(
"Range %d:%d ends before transcript %s (%d:%d)" % (
start,
end,
transcript,
transcript.start,
transcript.end))
# trim the start position to the beginning of the transcript
if start < transcript.start:
start = transcript.start
# trim the end position to the end of the transcript
if end > transcript.end:
end = transcript.end
# return earliest offset into the spliced transcript
return min(
transcript.spliced_offset(start),
transcript.spliced_offset(end)) | python | def interval_offset_on_transcript(start, end, transcript):
"""
Given an interval [start:end] and a particular transcript,
return the start offset of the interval relative to the
chromosomal positions of the transcript.
"""
# ensure that start_pos:end_pos overlap with transcript positions
if start > end:
raise ValueError(
"start_pos %d shouldn't be greater than end_pos %d" % (
start, end))
if start > transcript.end:
raise ValueError(
"Range %d:%d starts after transcript %s (%d:%d)" % (
start,
end,
transcript,
transcript.start,
transcript.end))
if end < transcript.start:
raise ValueError(
"Range %d:%d ends before transcript %s (%d:%d)" % (
start,
end,
transcript,
transcript.start,
transcript.end))
# trim the start position to the beginning of the transcript
if start < transcript.start:
start = transcript.start
# trim the end position to the end of the transcript
if end > transcript.end:
end = transcript.end
# return earliest offset into the spliced transcript
return min(
transcript.spliced_offset(start),
transcript.spliced_offset(end)) | Given an interval [start:end] and a particular transcript,
return the start offset of the interval relative to the
chromosomal positions of the transcript. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/transcript_helpers.py#L18-L54 |
openvax/varcode | varcode/vcf_output.py | variants_to_vcf | def variants_to_vcf(variants, variant_to_metadata, out=sys.stdout):
"""Output a VCF file from a list of Variant records.
Parameters
----------
variants : iterable
Variant objects
variant_to_metadata : dict
Dictionary mapping each variant in `variants` to a dictionary
of metadata.
"""
# TODO: The variant metadata dictionary (in the `VariantCollection`)
# contains different data depending on the original input file format (VCF,
# MAF, CSV). It's easy to output variants originally in VCF format, but we
# might want to consider how fields from MAF (for example) map to those in
# VCF.
# TODO: The VCF file we output doesn't contain any VCF metadata headers, as
# the original headers were thrown away when the VCF file was parsed. We
# may want to keep some of that information and/or infer some of the
# headers based on the variants themselves. The former is difficult because
# merge conflicts will inevitably occur; the latter is difficult because
# the variants themselves don't contain all the information required for
# these metadata headers (e.g., descriptions).
#
# As a side note, adding headers for certain fields will make them parse
# correctly -- into an integer instead of a string (the default), for
# example.
# TODO: If we maintain headers (see above TODO), what should happen if
# variant sources use different reference genomes?
#
# If we don't maintain headers, what should the default reference genome
# be? This code chose one fairly arbitrarily.
# TODO: If we end up needing more functions to "build" VCF record fields
# (see functions below), we may want to abstract away the individual
# functions and create a mapping from field to format function.
def get_metadata_field(key, variant, default='.'):
"""Retrieve field from variant metadata dictionary."""
val = variant_to_metadata[variant].get(key)
if val is None:
return default
return val
def build_filter_field(variant):
"""Build the filter field from the given variant.
The `filter` field, as stored in the variants metadata dictionary,
comes in 3 flavors:
- empty list: 1+ filters were run and none failed
- non-empty list: 1+ filters were run and 1+ failed
- `None`: no filters were run
This function maps each of these internal representations to their
corresponding VCF representations.
"""
filter_metadata = get_metadata_field('filter', variant)
if type(filter_metadata) == list:
return 'PASS' if filter_metadata == [] else ';'.join(filter_metadata)
else:
# TODO: Can the filter field ever be something other than the 3
# possibilities described in this function's doc comment?
bad_value_msg = (
'Filter metadata field took on unexpected value `{}`. Update '
'code to account for this value.').format(str(filter_metadata))
assert filter_metadata == '.', bad_value_msg
return filter_metadata
def build_info_field(variant):
"""Build the info field from the given variant.
Format is `<key>=<val>,...;<key>=<val>,...;<key>=<val>,...`.
"""
def build_info_pair(key, val):
"""Build key/val pair for info field."""
# Note: Different from `val == True`, which returns True when `val == 1`.
if val is True:
return key
if type(val) == list:
val = ','.join(map(str, val))
else:
val = str(val)
return '{}={}'.format(key, val)
info_dict = get_metadata_field('info', variant, default={})
if not info_dict:
return '.'
return ';'.join(build_info_pair(k, v) for (k, v) in info_dict.items())
def build_format_field(variant):
"""Build the sample format string from the given variant.
Each sample column follows this format for the specified variant.
"""
sample_info = get_metadata_field('sample_info', variant, default={})
return ':'.join(list(sample_info.values())[0].keys()) if sample_info else '.'
def build_sample_fields(variant):
"""Build the sample fields for the given variant."""
def build_sample_field(sample):
"""Build a specific sample's field (i.e., one sample column)."""
sample_vals = sample_info[sample].values()
return ':'.join(build_sample_val(val) for val in sample_vals)
def build_sample_val(sample_val):
"""Build a specific value for a sample (i.e., one value for one column)."""
if type(sample_val) is list:
return ','.join(map(str, sample_val))
elif sample_val is not None:
return str(sample_val)
else:
return '.'
sample_info = get_metadata_field('sample_info', variant, default={})
return list(build_sample_field(sample) for sample in sample_info)
def build_vcf_record(variant, add_sample_info):
"""Return a list of all the variant's VCF record fields."""
record = [
str(variant.original_contig),
str(variant.original_start),
get_metadata_field('id', variant),
variant.original_ref,
variant.original_alt,
str(get_metadata_field('qual', variant)),
build_filter_field(variant),
build_info_field(variant),
]
if add_sample_info:
record.append(build_format_field(variant))
record.extend(build_sample_fields(variant))
return record
def merge_duplicate_variants():
"""Merge duplicate variants (according to ID) and return *list* of merged, sorted variants.
Multiple `Variant`s can have the same VCF id (e.g., those variants which
originally had > 1 alternate base), but we can't output a VCF file with multiple
records having the same id. This function merges those duplicate variants.
"""
def construct_id2variants():
"""Construct dictionary which maps variant IDs to `Variant`s."""
id2variants = defaultdict(list)
for variant in variants:
# Note: For variants without IDs (e.g., those that came from
# MAF files), we assign the missing value.
variant_id = get_metadata_field('id', variant)
id2variants[variant_id].append(variant)
return id2variants
def merge_variant_list(duplicates):
"""Merge duplicate variant list into one."""
# TODO: Currently assumes that only alternate bases differ, but we may
# want or need to merge variants that have the same ID but different
# contigs, positions, or reference bases. If merging isn't possible (which
# I think is the case for many situations), it may be easiest to assign
# the "missing value" to the IDs and move on.
assert len(duplicates) > 0
assert all(v.original_contig == duplicates[0].original_contig and
v.original_start == duplicates[0].original_start and
v.original_ref == duplicates[0].original_ref for v in duplicates)
import copy
merged = copy.copy(duplicates[0])
merged.original_alt = ','.join(duplicate.original_alt for duplicate in duplicates)
return merged
id2variants = construct_id2variants()
variants_no_id = id2variants.pop('.', []) # don't want to merge variants w/ no id
merged_variants = list(map(merge_variant_list, id2variants.values())) + variants_no_id
# groups variants by contig; relative ordering of contigs doesn't matter
return sorted(
merged_variants,
key=lambda v: (str(v.original_contig), str(v.original_start)))
def get_sample_names():
"""Return the sample names for all variants."""
# TODO: For now, ensures that every variant has the same samples. If they didn't,
# we'd have to use the missing value for VCF records with no data on a given
# sample. In and of itself, that isn't a problem until the format field contains
# GT (genotype), which is required for all samples if present in the format field.
#
# A couple of ways to handle this:
#
# 1) Ignore this requirement of VCF files. I'd assume this would still be
# compatible with varcode, but may not be with other VCF parsers.
# 2) Remove the GT field from those records where this rule would be violated.
# This is sad because we lose information.
#
# It's also important to note that if/when we combine all samples, we'll have to
# add a `.` (missing value) for those samples in which a variant has no data.
# Check the VCF spec to make sure this is valid; if not, we may have to write
# `.:.:.:.` -- one `.` for each field in the format string.
#
# Moreover, we'll want to note whether we care about maintaining the relative
# ordering of the sample names in the original VCF files. This probably isn't
# important, but the code below does not do this (it effectively alphabetizes the
# sample names because of the use of `set`).
sample_names = set()
for variant in variants:
sample_info = get_metadata_field('sample_info', variant, default={})
addl_sample_names = set(sample_info.keys())
# Ensures all variants have the same samples.
if sample_names and sample_names != addl_sample_names:
return []
sample_names.update(addl_sample_names)
return list(sample_names)
headers = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO']
sample_names = get_sample_names()
if sample_names:
headers += ['FORMAT'] + sample_names
unique_variants_list = merge_duplicate_variants()
# usually we have just one reference genome for the whole variant collection
# but if variants from multiple sources have been merged then we might
# not be able to write out a VCF since the individual variants may be using
# different coordinate systems
genome_names = list({v.ensembl.reference_name for v in unique_variants_list})
if len(genome_names) > 1:
raise ValueError(
"Cannot create VCF for variants with multiple reference genomes: %s" % (
genome_names,))
genome_name = genome_names[0]
print('##fileformat=VCFv4.2', file=out)
print('##reference=%s' % genome_name, file=out)
print('\t'.join(headers), file=out)
for variant in unique_variants_list:
record = build_vcf_record(variant, add_sample_info=bool(sample_names))
print('\t'.join(record), file=out) | python | def variants_to_vcf(variants, variant_to_metadata, out=sys.stdout):
"""Output a VCF file from a list of Variant records.
Parameters
----------
variants : iterable
Variant objects
variant_to_metadata : dict
Dictionary mapping each variant in `variants` to a dictionary
of metadata.
"""
# TODO: The variant metadata dictionary (in the `VariantCollection`)
# contains different data depending on the original input file format (VCF,
# MAF, CSV). It's easy to output variants originally in VCF format, but we
# might want to consider how fields from MAF (for example) map to those in
# VCF.
# TODO: The VCF file we output doesn't contain any VCF metadata headers, as
# the original headers were thrown away when the VCF file was parsed. We
# may want to keep some of that information and/or infer some of the
# headers based on the variants themselves. The former is difficult because
# merge conflicts will inevitably occur; the latter is difficult because
# the variants themselves don't contain all the information required for
# these metadata headers (e.g., descriptions).
#
# As a side note, adding headers for certain fields will make them parse
# correctly -- into an integer instead of a string (the default), for
# example.
# TODO: If we maintain headers (see above TODO), what should happen if
# variant sources use different reference genomes?
#
# If we don't maintain headers, what should the default reference genome
# be? This code chose one fairly arbitrarily.
# TODO: If we end up needing more functions to "build" VCF record fields
# (see functions below), we may want to abstract away the individual
# functions and create a mapping from field to format function.
def get_metadata_field(key, variant, default='.'):
"""Retrieve field from variant metadata dictionary."""
val = variant_to_metadata[variant].get(key)
if val is None:
return default
return val
def build_filter_field(variant):
"""Build the filter field from the given variant.
The `filter` field, as stored in the variants metadata dictionary,
comes in 3 flavors:
- empty list: 1+ filters were run and none failed
- non-empty list: 1+ filters were run and 1+ failed
- `None`: no filters were run
This function maps each of these internal representations to their
corresponding VCF representations.
"""
filter_metadata = get_metadata_field('filter', variant)
if type(filter_metadata) == list:
return 'PASS' if filter_metadata == [] else ';'.join(filter_metadata)
else:
# TODO: Can the filter field ever be something other than the 3
# possibilities described in this function's doc comment?
bad_value_msg = (
'Filter metadata field took on unexpected value `{}`. Update '
'code to account for this value.').format(str(filter_metadata))
assert filter_metadata == '.', bad_value_msg
return filter_metadata
def build_info_field(variant):
"""Build the info field from the given variant.
Format is `<key>=<val>,...;<key>=<val>,...;<key>=<val>,...`.
"""
def build_info_pair(key, val):
"""Build key/val pair for info field."""
# Note: Different from `val == True`, which returns True when `val == 1`.
if val is True:
return key
if type(val) == list:
val = ','.join(map(str, val))
else:
val = str(val)
return '{}={}'.format(key, val)
info_dict = get_metadata_field('info', variant, default={})
if not info_dict:
return '.'
return ';'.join(build_info_pair(k, v) for (k, v) in info_dict.items())
def build_format_field(variant):
"""Build the sample format string from the given variant.
Each sample column follows this format for the specified variant.
"""
sample_info = get_metadata_field('sample_info', variant, default={})
return ':'.join(list(sample_info.values())[0].keys()) if sample_info else '.'
def build_sample_fields(variant):
"""Build the sample fields for the given variant."""
def build_sample_field(sample):
"""Build a specific sample's field (i.e., one sample column)."""
sample_vals = sample_info[sample].values()
return ':'.join(build_sample_val(val) for val in sample_vals)
def build_sample_val(sample_val):
"""Build a specific value for a sample (i.e., one value for one column)."""
if type(sample_val) is list:
return ','.join(map(str, sample_val))
elif sample_val is not None:
return str(sample_val)
else:
return '.'
sample_info = get_metadata_field('sample_info', variant, default={})
return list(build_sample_field(sample) for sample in sample_info)
def build_vcf_record(variant, add_sample_info):
"""Return a list of all the variant's VCF record fields."""
record = [
str(variant.original_contig),
str(variant.original_start),
get_metadata_field('id', variant),
variant.original_ref,
variant.original_alt,
str(get_metadata_field('qual', variant)),
build_filter_field(variant),
build_info_field(variant),
]
if add_sample_info:
record.append(build_format_field(variant))
record.extend(build_sample_fields(variant))
return record
def merge_duplicate_variants():
"""Merge duplicate variants (according to ID) and return *list* of merged, sorted variants.
Multiple `Variant`s can have the same VCF id (e.g., those variants which
originally had > 1 alternate base), but we can't output a VCF file with multiple
records having the same id. This function merges those duplicate variants.
"""
def construct_id2variants():
"""Construct dictionary which maps variant IDs to `Variant`s."""
id2variants = defaultdict(list)
for variant in variants:
# Note: For variants without IDs (e.g., those that came from
# MAF files), we assign the missing value.
variant_id = get_metadata_field('id', variant)
id2variants[variant_id].append(variant)
return id2variants
def merge_variant_list(duplicates):
"""Merge duplicate variant list into one."""
# TODO: Currently assumes that only alternate bases differ, but we may
# want or need to merge variants that have the same ID but different
# contigs, positions, or reference bases. If merging isn't possible (which
# I think is the case for many situations), it may be easiest to assign
# the "missing value" to the IDs and move on.
assert len(duplicates) > 0
assert all(v.original_contig == duplicates[0].original_contig and
v.original_start == duplicates[0].original_start and
v.original_ref == duplicates[0].original_ref for v in duplicates)
import copy
merged = copy.copy(duplicates[0])
merged.original_alt = ','.join(duplicate.original_alt for duplicate in duplicates)
return merged
id2variants = construct_id2variants()
variants_no_id = id2variants.pop('.', []) # don't want to merge variants w/ no id
merged_variants = list(map(merge_variant_list, id2variants.values())) + variants_no_id
# groups variants by contig; relative ordering of contigs doesn't matter
return sorted(
merged_variants,
key=lambda v: (str(v.original_contig), str(v.original_start)))
def get_sample_names():
"""Return the sample names for all variants."""
# TODO: For now, ensures that every variant has the same samples. If they didn't,
# we'd have to use the missing value for VCF records with no data on a given
# sample. In and of itself, that isn't a problem until the format field contains
# GT (genotype), which is required for all samples if present in the format field.
#
# A couple of ways to handle this:
#
# 1) Ignore this requirement of VCF files. I'd assume this would still be
# compatible with varcode, but may not be with other VCF parsers.
# 2) Remove the GT field from those records where this rule would be violated.
# This is sad because we lose information.
#
# It's also important to note that if/when we combine all samples, we'll have to
# add a `.` (missing value) for those samples in which a variant has no data.
# Check the VCF spec to make sure this is valid; if not, we may have to write
# `.:.:.:.` -- one `.` for each field in the format string.
#
# Moreover, we'll want to note whether we care about maintaining the relative
# ordering of the sample names in the original VCF files. This probably isn't
# important, but the code below does not do this (it effectively alphabetizes the
# sample names because of the use of `set`).
sample_names = set()
for variant in variants:
sample_info = get_metadata_field('sample_info', variant, default={})
addl_sample_names = set(sample_info.keys())
# Ensures all variants have the same samples.
if sample_names and sample_names != addl_sample_names:
return []
sample_names.update(addl_sample_names)
return list(sample_names)
headers = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO']
sample_names = get_sample_names()
if sample_names:
headers += ['FORMAT'] + sample_names
unique_variants_list = merge_duplicate_variants()
# usually we have just one reference genome for the whole variant collection
# but if variants from multiple sources have been merged then we might
# not be able to write out a VCF since the individual variants may be using
# different coordinate systems
genome_names = list({v.ensembl.reference_name for v in unique_variants_list})
if len(genome_names) > 1:
raise ValueError(
"Cannot create VCF for variants with multiple reference genomes: %s" % (
genome_names,))
genome_name = genome_names[0]
print('##fileformat=VCFv4.2', file=out)
print('##reference=%s' % genome_name, file=out)
print('\t'.join(headers), file=out)
for variant in unique_variants_list:
record = build_vcf_record(variant, add_sample_info=bool(sample_names))
print('\t'.join(record), file=out) | Output a VCF file from a list of Variant records.
Parameters
----------
variants : iterable
Variant objects
variant_to_metadata : dict
Dictionary mapping each variant in `variants` to a dictionary
of metadata. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/vcf_output.py#L21-L268 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.filter_by_transcript_expression | def filter_by_transcript_expression(
self,
transcript_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated transcript whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
transcript_expression_dict : dict
Dictionary mapping Ensembl transcript IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.transcript_id,
value_dict=transcript_expression_dict,
threshold=min_expression_value) | python | def filter_by_transcript_expression(
self,
transcript_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated transcript whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
transcript_expression_dict : dict
Dictionary mapping Ensembl transcript IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.transcript_id,
value_dict=transcript_expression_dict,
threshold=min_expression_value) | Filters effects to those which have an associated transcript whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
transcript_expression_dict : dict
Dictionary mapping Ensembl transcript IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L105-L126 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.filter_by_gene_expression | def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated gene whose
expression value in the gene_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.gene_id,
value_dict=gene_expression_dict,
threshold=min_expression_value) | python | def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated gene whose
expression value in the gene_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.gene_id,
value_dict=gene_expression_dict,
threshold=min_expression_value) | Filters effects to those which have an associated gene whose
expression value in the gene_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L128-L149 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.filter_by_effect_priority | def filter_by_effect_priority(self, min_priority_class):
"""
Create a new EffectCollection containing only effects whose priority
falls below the given class.
"""
min_priority = transcript_effect_priority_dict[min_priority_class]
return self.filter(
lambda effect: effect_priority(effect) >= min_priority) | python | def filter_by_effect_priority(self, min_priority_class):
"""
Create a new EffectCollection containing only effects whose priority
falls below the given class.
"""
min_priority = transcript_effect_priority_dict[min_priority_class]
return self.filter(
lambda effect: effect_priority(effect) >= min_priority) | Create a new EffectCollection containing only effects whose priority
falls below the given class. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L151-L158 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.detailed_string | def detailed_string(self):
"""
Create a long string with all transcript effects for each mutation,
grouped by gene (if a mutation affects multiple genes).
"""
lines = []
# TODO: annoying to always write `groupby_result.items()`,
# consider makings a GroupBy class which iterates over pairs
# and also common helper methods like `map_values`.
for variant, variant_effects in self.groupby_variant().items():
lines.append("\n%s" % variant)
gene_effects_groups = variant_effects.groupby_gene_id()
for (gene_id, gene_effects) in gene_effects_groups.items():
if gene_id:
gene_name = variant.ensembl.gene_name_of_gene_id(gene_id)
lines.append(" Gene: %s (%s)" % (gene_name, gene_id))
# place transcript effects with more significant impact
# on top (e.g. FrameShift should go before NoncodingTranscript)
for effect in sorted(
gene_effects,
key=effect_priority,
reverse=True):
lines.append(" -- %s" % effect)
# if we only printed one effect for this gene then
# it's redundant to print it again as the highest priority effect
if len(variant_effects) > 1:
best = variant_effects.top_priority_effect()
lines.append(" Highest Priority Effect: %s" % best)
return "\n".join(lines) | python | def detailed_string(self):
"""
Create a long string with all transcript effects for each mutation,
grouped by gene (if a mutation affects multiple genes).
"""
lines = []
# TODO: annoying to always write `groupby_result.items()`,
# consider makings a GroupBy class which iterates over pairs
# and also common helper methods like `map_values`.
for variant, variant_effects in self.groupby_variant().items():
lines.append("\n%s" % variant)
gene_effects_groups = variant_effects.groupby_gene_id()
for (gene_id, gene_effects) in gene_effects_groups.items():
if gene_id:
gene_name = variant.ensembl.gene_name_of_gene_id(gene_id)
lines.append(" Gene: %s (%s)" % (gene_name, gene_id))
# place transcript effects with more significant impact
# on top (e.g. FrameShift should go before NoncodingTranscript)
for effect in sorted(
gene_effects,
key=effect_priority,
reverse=True):
lines.append(" -- %s" % effect)
# if we only printed one effect for this gene then
# it's redundant to print it again as the highest priority effect
if len(variant_effects) > 1:
best = variant_effects.top_priority_effect()
lines.append(" Highest Priority Effect: %s" % best)
return "\n".join(lines) | Create a long string with all transcript effects for each mutation,
grouped by gene (if a mutation affects multiple genes). | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L166-L196 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.top_priority_effect_per_variant | def top_priority_effect_per_variant(self):
"""Highest priority effect for each unique variant"""
return OrderedDict(
(variant, top_priority_effect(variant_effects))
for (variant, variant_effects)
in self.groupby_variant().items()) | python | def top_priority_effect_per_variant(self):
"""Highest priority effect for each unique variant"""
return OrderedDict(
(variant, top_priority_effect(variant_effects))
for (variant, variant_effects)
in self.groupby_variant().items()) | Highest priority effect for each unique variant | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L211-L216 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.top_priority_effect_per_transcript_id | def top_priority_effect_per_transcript_id(self):
"""Highest priority effect for each unique transcript ID"""
return OrderedDict(
(transcript_id, top_priority_effect(variant_effects))
for (transcript_id, variant_effects)
in self.groupby_transcript_id().items()) | python | def top_priority_effect_per_transcript_id(self):
"""Highest priority effect for each unique transcript ID"""
return OrderedDict(
(transcript_id, top_priority_effect(variant_effects))
for (transcript_id, variant_effects)
in self.groupby_transcript_id().items()) | Highest priority effect for each unique transcript ID | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L218-L223 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.top_priority_effect_per_gene_id | def top_priority_effect_per_gene_id(self):
"""Highest priority effect for each unique gene ID"""
return OrderedDict(
(gene_id, top_priority_effect(variant_effects))
for (gene_id, variant_effects)
in self.groupby_gene_id().items()) | python | def top_priority_effect_per_gene_id(self):
"""Highest priority effect for each unique gene ID"""
return OrderedDict(
(gene_id, top_priority_effect(variant_effects))
for (gene_id, variant_effects)
in self.groupby_gene_id().items()) | Highest priority effect for each unique gene ID | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L225-L230 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.effect_expression | def effect_expression(self, expression_levels):
"""
Parameters
----------
expression_levels : dict
Dictionary mapping transcript IDs to length-normalized expression
levels (either FPKM or TPM)
Returns dictionary mapping each transcript effect to an expression
quantity. Effects that don't have an associated transcript
(e.g. Intergenic) will not be included.
"""
return OrderedDict(
(effect, expression_levels.get(effect.transcript.id, 0.0))
for effect in self
if effect.transcript is not None) | python | def effect_expression(self, expression_levels):
"""
Parameters
----------
expression_levels : dict
Dictionary mapping transcript IDs to length-normalized expression
levels (either FPKM or TPM)
Returns dictionary mapping each transcript effect to an expression
quantity. Effects that don't have an associated transcript
(e.g. Intergenic) will not be included.
"""
return OrderedDict(
(effect, expression_levels.get(effect.transcript.id, 0.0))
for effect in self
if effect.transcript is not None) | Parameters
----------
expression_levels : dict
Dictionary mapping transcript IDs to length-normalized expression
levels (either FPKM or TPM)
Returns dictionary mapping each transcript effect to an expression
quantity. Effects that don't have an associated transcript
(e.g. Intergenic) will not be included. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L232-L247 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.top_expression_effect | def top_expression_effect(self, expression_levels):
"""
Return effect whose transcript has the highest expression level.
If none of the effects are expressed or have associated transcripts,
then return None. In case of ties, add lexicographical sorting by
effect priority and transcript length.
"""
effect_expression_dict = self.effect_expression(expression_levels)
if len(effect_expression_dict) == 0:
return None
def key_fn(effect_fpkm_pair):
"""
Sort effects primarily by their expression level
and secondarily by the priority logic used in
`top_priority_effect`.
"""
(effect, fpkm) = effect_fpkm_pair
return (fpkm, multi_gene_effect_sort_key(effect))
return max(effect_expression_dict.items(), key=key_fn)[0] | python | def top_expression_effect(self, expression_levels):
"""
Return effect whose transcript has the highest expression level.
If none of the effects are expressed or have associated transcripts,
then return None. In case of ties, add lexicographical sorting by
effect priority and transcript length.
"""
effect_expression_dict = self.effect_expression(expression_levels)
if len(effect_expression_dict) == 0:
return None
def key_fn(effect_fpkm_pair):
"""
Sort effects primarily by their expression level
and secondarily by the priority logic used in
`top_priority_effect`.
"""
(effect, fpkm) = effect_fpkm_pair
return (fpkm, multi_gene_effect_sort_key(effect))
return max(effect_expression_dict.items(), key=key_fn)[0] | Return effect whose transcript has the highest expression level.
If none of the effects are expressed or have associated transcripts,
then return None. In case of ties, add lexicographical sorting by
effect priority and transcript length. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L249-L270 |
openvax/varcode | varcode/effects/effect_collection.py | EffectCollection.to_dataframe | def to_dataframe(self):
"""Build a dataframe from the effect collection"""
# list of properties to extract from Variant objects if they're
# not None
variant_properties = [
"contig",
"start",
"ref",
"alt",
"is_snv",
"is_transversion",
"is_transition"
]
def row_from_effect(effect):
row = OrderedDict()
row['variant'] = str(effect.variant.short_description)
for field_name in variant_properties:
# if effect.variant is None then this column value will be None
row[field_name] = getattr(effect.variant, field_name, None)
row['gene_id'] = effect.gene_id
row['gene_name'] = effect.gene_name
row['transcript_id'] = effect.transcript_id
row['transcript_name'] = effect.transcript_name
row['effect_type'] = effect.__class__.__name__
row['effect'] = effect.short_description
return row
return pd.DataFrame.from_records([row_from_effect(effect) for effect in self]) | python | def to_dataframe(self):
"""Build a dataframe from the effect collection"""
# list of properties to extract from Variant objects if they're
# not None
variant_properties = [
"contig",
"start",
"ref",
"alt",
"is_snv",
"is_transversion",
"is_transition"
]
def row_from_effect(effect):
row = OrderedDict()
row['variant'] = str(effect.variant.short_description)
for field_name in variant_properties:
# if effect.variant is None then this column value will be None
row[field_name] = getattr(effect.variant, field_name, None)
row['gene_id'] = effect.gene_id
row['gene_name'] = effect.gene_name
row['transcript_id'] = effect.transcript_id
row['transcript_name'] = effect.transcript_name
row['effect_type'] = effect.__class__.__name__
row['effect'] = effect.short_description
return row
return pd.DataFrame.from_records([row_from_effect(effect) for effect in self]) | Build a dataframe from the effect collection | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/effect_collection.py#L272-L301 |
openvax/varcode | varcode/util.py | random_variants | def random_variants(
count,
genome_name="GRCh38",
deletions=True,
insertions=True,
random_seed=None):
"""
Generate a VariantCollection with random variants that overlap
at least one complete coding transcript.
"""
rng = random.Random(random_seed)
ensembl = genome_for_reference_name(genome_name)
if ensembl in _transcript_ids_cache:
transcript_ids = _transcript_ids_cache[ensembl]
else:
transcript_ids = ensembl.transcript_ids()
_transcript_ids_cache[ensembl] = transcript_ids
variants = []
# we should finish way before this loop is over but just in case
# something is wrong with PyEnsembl we want to avoid an infinite loop
for _ in range(count * 100):
if len(variants) < count:
transcript_id = rng.choice(transcript_ids)
transcript = ensembl.transcript_by_id(transcript_id)
if not transcript.complete:
continue
exon = rng.choice(transcript.exons)
base1_genomic_position = rng.randint(exon.start, exon.end)
transcript_offset = transcript.spliced_offset(base1_genomic_position)
seq = transcript.sequence
ref = str(seq[transcript_offset])
if transcript.on_backward_strand:
ref = reverse_complement(ref)
alt_nucleotides = [x for x in STANDARD_NUCLEOTIDES if x != ref]
if insertions:
nucleotide_pairs = [
x + y
for x in STANDARD_NUCLEOTIDES
for y in STANDARD_NUCLEOTIDES
]
alt_nucleotides.extend(nucleotide_pairs)
if deletions:
alt_nucleotides.append("")
alt = rng.choice(alt_nucleotides)
variant = Variant(
transcript.contig,
base1_genomic_position,
ref=ref,
alt=alt,
ensembl=ensembl)
variants.append(variant)
else:
return VariantCollection(variants)
raise ValueError(
("Unable to generate %d random variants, "
"there may be a problem with PyEnsembl") % count) | python | def random_variants(
count,
genome_name="GRCh38",
deletions=True,
insertions=True,
random_seed=None):
"""
Generate a VariantCollection with random variants that overlap
at least one complete coding transcript.
"""
rng = random.Random(random_seed)
ensembl = genome_for_reference_name(genome_name)
if ensembl in _transcript_ids_cache:
transcript_ids = _transcript_ids_cache[ensembl]
else:
transcript_ids = ensembl.transcript_ids()
_transcript_ids_cache[ensembl] = transcript_ids
variants = []
# we should finish way before this loop is over but just in case
# something is wrong with PyEnsembl we want to avoid an infinite loop
for _ in range(count * 100):
if len(variants) < count:
transcript_id = rng.choice(transcript_ids)
transcript = ensembl.transcript_by_id(transcript_id)
if not transcript.complete:
continue
exon = rng.choice(transcript.exons)
base1_genomic_position = rng.randint(exon.start, exon.end)
transcript_offset = transcript.spliced_offset(base1_genomic_position)
seq = transcript.sequence
ref = str(seq[transcript_offset])
if transcript.on_backward_strand:
ref = reverse_complement(ref)
alt_nucleotides = [x for x in STANDARD_NUCLEOTIDES if x != ref]
if insertions:
nucleotide_pairs = [
x + y
for x in STANDARD_NUCLEOTIDES
for y in STANDARD_NUCLEOTIDES
]
alt_nucleotides.extend(nucleotide_pairs)
if deletions:
alt_nucleotides.append("")
alt = rng.choice(alt_nucleotides)
variant = Variant(
transcript.contig,
base1_genomic_position,
ref=ref,
alt=alt,
ensembl=ensembl)
variants.append(variant)
else:
return VariantCollection(variants)
raise ValueError(
("Unable to generate %d random variants, "
"there may be a problem with PyEnsembl") % count) | Generate a VariantCollection with random variants that overlap
at least one complete coding transcript. | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/util.py#L29-L92 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_server_info | def get_server_info(self, anonymous = True):
"""
Performs bind on the server and grabs the DSA info object.
If anonymous is set to true, then it will perform anonymous bind, not using user credentials
Otherwise it will use the credentials set in the object constructor.
"""
if anonymous == True:
logger.debug('Getting server info via Anonymous BIND on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
conn = Connection(server, auto_bind=True)
logger.debug('Got server info')
else:
logger.debug('Getting server info via credentials supplied on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
if self.use_sspi == True:
conn = self.monkeypatch()
else:
conn = Connection(self._srv, user=self.login_credential.get_msuser(), password=self.login_credential.get_password(), authentication=self.login_credential.get_authmethod())
logger.debug('Performing BIND to server %s' % self.target_server.get_host())
if not self._con.bind():
if 'description' in self._con.result:
raise Exception('Failed to bind to server! Reason: %s' % conn.result['description'])
raise Exception('Failed to bind to server! Reason: %s' % conn.result)
logger.debug('Connected to server!')
return server.info | python | def get_server_info(self, anonymous = True):
"""
Performs bind on the server and grabs the DSA info object.
If anonymous is set to true, then it will perform anonymous bind, not using user credentials
Otherwise it will use the credentials set in the object constructor.
"""
if anonymous == True:
logger.debug('Getting server info via Anonymous BIND on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
conn = Connection(server, auto_bind=True)
logger.debug('Got server info')
else:
logger.debug('Getting server info via credentials supplied on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
if self.use_sspi == True:
conn = self.monkeypatch()
else:
conn = Connection(self._srv, user=self.login_credential.get_msuser(), password=self.login_credential.get_password(), authentication=self.login_credential.get_authmethod())
logger.debug('Performing BIND to server %s' % self.target_server.get_host())
if not self._con.bind():
if 'description' in self._con.result:
raise Exception('Failed to bind to server! Reason: %s' % conn.result['description'])
raise Exception('Failed to bind to server! Reason: %s' % conn.result)
logger.debug('Connected to server!')
return server.info | Performs bind on the server and grabs the DSA info object.
If anonymous is set to true, then it will perform anonymous bind, not using user credentials
Otherwise it will use the credentials set in the object constructor. | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L94-L118 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.pagedsearch | def pagedsearch(self, ldap_filter, attributes):
"""
Performs a paged search on the AD, using the filter and attributes as a normal query does.
Needs to connect to the server first!
ldap_filter: str : LDAP query filter
attributes: list : Attributes list to recieve in the result
"""
logger.debug('Paged search, filter: %s attributes: %s' % (ldap_filter, ','.join(attributes)))
ctr = 0
entries = self._con.extend.standard.paged_search(self._tree, ldap_filter, attributes = attributes, paged_size = self.ldap_query_page_size)
for entry in entries:
if 'raw_attributes' in entry and 'attributes' in entry:
# TODO: return ldapuser object
ctr += 1
if ctr % self.ldap_query_page_size == 0:
logger.info('New page requested. Result count: %d' % ctr)
yield entry | python | def pagedsearch(self, ldap_filter, attributes):
"""
Performs a paged search on the AD, using the filter and attributes as a normal query does.
Needs to connect to the server first!
ldap_filter: str : LDAP query filter
attributes: list : Attributes list to recieve in the result
"""
logger.debug('Paged search, filter: %s attributes: %s' % (ldap_filter, ','.join(attributes)))
ctr = 0
entries = self._con.extend.standard.paged_search(self._tree, ldap_filter, attributes = attributes, paged_size = self.ldap_query_page_size)
for entry in entries:
if 'raw_attributes' in entry and 'attributes' in entry:
# TODO: return ldapuser object
ctr += 1
if ctr % self.ldap_query_page_size == 0:
logger.info('New page requested. Result count: %d' % ctr)
yield entry | Performs a paged search on the AD, using the filter and attributes as a normal query does.
Needs to connect to the server first!
ldap_filter: str : LDAP query filter
attributes: list : Attributes list to recieve in the result | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L151-L167 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_all_user_objects | def get_all_user_objects(self):
"""
Fetches all user objects from the AD, and returns MSADUser object
"""
logger.debug('Polling AD for all user objects')
ldap_filter = r'(objectClass=user)'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | python | def get_all_user_objects(self):
"""
Fetches all user objects from the AD, and returns MSADUser object
"""
logger.debug('Polling AD for all user objects')
ldap_filter = r'(objectClass=user)'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | Fetches all user objects from the AD, and returns MSADUser object | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L171-L182 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_user | def get_user(self, sAMAccountName):
"""
Fetches one user object from the AD, based on the sAMAccountName attribute (read: username)
"""
logger.debug('Polling AD for user %s'% sAMAccountName)
ldap_filter = r'(&(objectClass=user)(sAMAccountName=%s)' % sAMAccountName
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | python | def get_user(self, sAMAccountName):
"""
Fetches one user object from the AD, based on the sAMAccountName attribute (read: username)
"""
logger.debug('Polling AD for user %s'% sAMAccountName)
ldap_filter = r'(&(objectClass=user)(sAMAccountName=%s)' % sAMAccountName
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | Fetches one user object from the AD, based on the sAMAccountName attribute (read: username) | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L184-L194 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_ad_info | def get_ad_info(self):
"""
Polls for basic AD information (needed for determine password usage characteristics!)
"""
logger.debug('Polling AD for basic info')
ldap_filter = r'(distinguishedName=%s)' % self._tree
attributes = MSADInfo.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
self._ldapinfo = MSADInfo.from_ldap(entry)
return self._ldapinfo
logger.debug('Poll finished!') | python | def get_ad_info(self):
"""
Polls for basic AD information (needed for determine password usage characteristics!)
"""
logger.debug('Polling AD for basic info')
ldap_filter = r'(distinguishedName=%s)' % self._tree
attributes = MSADInfo.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
self._ldapinfo = MSADInfo.from_ldap(entry)
return self._ldapinfo
logger.debug('Poll finished!') | Polls for basic AD information (needed for determine password usage characteristics!) | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L196-L207 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_all_service_user_objects | def get_all_service_user_objects(self, include_machine = False):
"""
Fetches all service user objects from the AD, and returns MSADUser object.
Service user refers to an user whith SPN (servicePrincipalName) attribute set
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(servicePrincipalName=*)'
else:
ldap_filter = r'(&(servicePrincipalName=*)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | python | def get_all_service_user_objects(self, include_machine = False):
"""
Fetches all service user objects from the AD, and returns MSADUser object.
Service user refers to an user whith SPN (servicePrincipalName) attribute set
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(servicePrincipalName=*)'
else:
ldap_filter = r'(&(servicePrincipalName=*)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | Fetches all service user objects from the AD, and returns MSADUser object.
Service user refers to an user whith SPN (servicePrincipalName) attribute set | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L209-L224 |
skelsec/msldap | msldap/core/msldap.py | MSLDAP.get_all_knoreq_user_objects | def get_all_knoreq_user_objects(self, include_machine = False):
"""
Fetches all user objects with useraccountcontrol DONT_REQ_PREAUTH flag set from the AD, and returns MSADUser object.
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(userAccountControl:1.2.840.113556.1.4.803:=4194304)'
else:
ldap_filter = r'(&(userAccountControl:1.2.840.113556.1.4.803:=4194304)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | python | def get_all_knoreq_user_objects(self, include_machine = False):
"""
Fetches all user objects with useraccountcontrol DONT_REQ_PREAUTH flag set from the AD, and returns MSADUser object.
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(userAccountControl:1.2.840.113556.1.4.803:=4194304)'
else:
ldap_filter = r'(&(userAccountControl:1.2.840.113556.1.4.803:=4194304)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | Fetches all user objects with useraccountcontrol DONT_REQ_PREAUTH flag set from the AD, and returns MSADUser object. | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/core/msldap.py#L226-L241 |
skelsec/msldap | msldap/ldap_objects/common.py | vn | def vn(x):
"""
value or none, returns none if x is an empty list
"""
if x == []:
return None
if isinstance(x, list):
return '|'.join(x)
if isinstance(x, datetime):
return x.isoformat()
return x | python | def vn(x):
"""
value or none, returns none if x is an empty list
"""
if x == []:
return None
if isinstance(x, list):
return '|'.join(x)
if isinstance(x, datetime):
return x.isoformat()
return x | value or none, returns none if x is an empty list | https://github.com/skelsec/msldap/blob/bb873728afda9ca105d57d2740a28e319a78aa71/msldap/ldap_objects/common.py#L10-L20 |
lebinh/aq | aq/engines.py | convert_tags_to_dict | def convert_tags_to_dict(item):
"""
Convert AWS inconvenient tags model of a list of {"Key": <key>, "Value": <value>} pairs
to a dict of {<key>: <value>} for easier querying.
This returns a proxied object over given item to return a different tags format as the tags
attribute is read-only and we cannot modify it directly.
"""
if hasattr(item, 'tags'):
tags = item.tags
if isinstance(tags, list):
tags_dict = {}
for kv_dict in tags:
if isinstance(kv_dict, dict) and 'Key' in kv_dict and 'Value' in kv_dict:
tags_dict[kv_dict['Key']] = kv_dict['Value']
return ObjectProxy(item, tags=tags_dict)
return item | python | def convert_tags_to_dict(item):
"""
Convert AWS inconvenient tags model of a list of {"Key": <key>, "Value": <value>} pairs
to a dict of {<key>: <value>} for easier querying.
This returns a proxied object over given item to return a different tags format as the tags
attribute is read-only and we cannot modify it directly.
"""
if hasattr(item, 'tags'):
tags = item.tags
if isinstance(tags, list):
tags_dict = {}
for kv_dict in tags:
if isinstance(kv_dict, dict) and 'Key' in kv_dict and 'Value' in kv_dict:
tags_dict[kv_dict['Key']] = kv_dict['Value']
return ObjectProxy(item, tags=tags_dict)
return item | Convert AWS inconvenient tags model of a list of {"Key": <key>, "Value": <value>} pairs
to a dict of {<key>: <value>} for easier querying.
This returns a proxied object over given item to return a different tags format as the tags
attribute is read-only and we cannot modify it directly. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/engines.py#L151-L167 |
lebinh/aq | aq/engines.py | BotoSqliteEngine.load_tables | def load_tables(self, query, meta):
"""
Load necessary resources tables into db to execute given query.
"""
try:
for table in meta.tables:
self.load_table(table)
except NoCredentialsError:
help_link = 'http://boto3.readthedocs.io/en/latest/guide/configuration.html'
raise QueryError('Unable to locate AWS credential. '
'Please see {0} on how to configure AWS credential.'.format(help_link)) | python | def load_tables(self, query, meta):
"""
Load necessary resources tables into db to execute given query.
"""
try:
for table in meta.tables:
self.load_table(table)
except NoCredentialsError:
help_link = 'http://boto3.readthedocs.io/en/latest/guide/configuration.html'
raise QueryError('Unable to locate AWS credential. '
'Please see {0} on how to configure AWS credential.'.format(help_link)) | Load necessary resources tables into db to execute given query. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/engines.py#L63-L73 |
lebinh/aq | aq/engines.py | BotoSqliteEngine.load_table | def load_table(self, table):
"""
Load resources as specified by given table into our db.
"""
region = table.database if table.database else self.default_region
resource_name, collection_name = table.table.split('_', 1)
# we use underscore "_" instead of dash "-" for region name but boto3 need dash
boto_region_name = region.replace('_', '-')
resource = self.boto3_session.resource(resource_name, region_name=boto_region_name)
if not hasattr(resource, collection_name):
raise QueryError(
'Unknown collection <{0}> of resource <{1}>'.format(collection_name, resource_name))
self.attach_region(region)
self.refresh_table(region, table.table, resource, getattr(resource, collection_name)) | python | def load_table(self, table):
"""
Load resources as specified by given table into our db.
"""
region = table.database if table.database else self.default_region
resource_name, collection_name = table.table.split('_', 1)
# we use underscore "_" instead of dash "-" for region name but boto3 need dash
boto_region_name = region.replace('_', '-')
resource = self.boto3_session.resource(resource_name, region_name=boto_region_name)
if not hasattr(resource, collection_name):
raise QueryError(
'Unknown collection <{0}> of resource <{1}>'.format(collection_name, resource_name))
self.attach_region(region)
self.refresh_table(region, table.table, resource, getattr(resource, collection_name)) | Load resources as specified by given table into our db. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/engines.py#L75-L89 |
lebinh/aq | aq/sqlite_util.py | json_serialize | def json_serialize(obj):
"""
Simple generic JSON serializer for common objects.
"""
if isinstance(obj, datetime):
return obj.isoformat()
if hasattr(obj, 'id'):
return jsonify(obj.id)
if hasattr(obj, 'name'):
return jsonify(obj.name)
raise TypeError('{0} is not JSON serializable'.format(obj)) | python | def json_serialize(obj):
"""
Simple generic JSON serializer for common objects.
"""
if isinstance(obj, datetime):
return obj.isoformat()
if hasattr(obj, 'id'):
return jsonify(obj.id)
if hasattr(obj, 'name'):
return jsonify(obj.name)
raise TypeError('{0} is not JSON serializable'.format(obj)) | Simple generic JSON serializer for common objects. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/sqlite_util.py#L20-L33 |
lebinh/aq | aq/sqlite_util.py | json_get | def json_get(serialized_object, field):
"""
This emulates the HSTORE `->` get value operation.
It get value from JSON serialized column by given key and return `null` if not present.
Key can be either an integer for array index access or a string for object field access.
:return: JSON serialized value of key in object
"""
# return null if serialized_object is null or "serialized null"
if serialized_object is None:
return None
obj = json.loads(serialized_object)
if obj is None:
return None
if isinstance(field, int):
# array index access
res = obj[field] if 0 <= field < len(obj) else None
else:
# object field access
res = obj.get(field)
if not isinstance(res, (int, float, string_types)):
res = json.dumps(res)
return res | python | def json_get(serialized_object, field):
"""
This emulates the HSTORE `->` get value operation.
It get value from JSON serialized column by given key and return `null` if not present.
Key can be either an integer for array index access or a string for object field access.
:return: JSON serialized value of key in object
"""
# return null if serialized_object is null or "serialized null"
if serialized_object is None:
return None
obj = json.loads(serialized_object)
if obj is None:
return None
if isinstance(field, int):
# array index access
res = obj[field] if 0 <= field < len(obj) else None
else:
# object field access
res = obj.get(field)
if not isinstance(res, (int, float, string_types)):
res = json.dumps(res)
return res | This emulates the HSTORE `->` get value operation.
It get value from JSON serialized column by given key and return `null` if not present.
Key can be either an integer for array index access or a string for object field access.
:return: JSON serialized value of key in object | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/sqlite_util.py#L36-L61 |
lebinh/aq | aq/sqlite_util.py | create_table | def create_table(db, schema_name, table_name, columns):
"""
Create a table, schema_name.table_name, in given database with given list of column names.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
db.execute('DROP TABLE IF EXISTS {0}'.format(table))
columns_list = ', '.join(columns)
db.execute('CREATE TABLE {0} ({1})'.format(table, columns_list)) | python | def create_table(db, schema_name, table_name, columns):
"""
Create a table, schema_name.table_name, in given database with given list of column names.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
db.execute('DROP TABLE IF EXISTS {0}'.format(table))
columns_list = ', '.join(columns)
db.execute('CREATE TABLE {0} ({1})'.format(table, columns_list)) | Create a table, schema_name.table_name, in given database with given list of column names. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/sqlite_util.py#L64-L71 |
lebinh/aq | aq/sqlite_util.py | insert_all | def insert_all(db, schema_name, table_name, columns, items):
"""
Insert all item in given items list into the specified table, schema_name.table_name.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
columns_list = ', '.join(columns)
values_list = ', '.join(['?'] * len(columns))
query = 'INSERT INTO {table} ({columns}) VALUES ({values})'.format(
table=table, columns=columns_list, values=values_list)
for item in items:
values = [getattr(item, col) for col in columns]
db.execute(query, values) | python | def insert_all(db, schema_name, table_name, columns, items):
"""
Insert all item in given items list into the specified table, schema_name.table_name.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
columns_list = ', '.join(columns)
values_list = ', '.join(['?'] * len(columns))
query = 'INSERT INTO {table} ({columns}) VALUES ({values})'.format(
table=table, columns=columns_list, values=values_list)
for item in items:
values = [getattr(item, col) for col in columns]
db.execute(query, values) | Insert all item in given items list into the specified table, schema_name.table_name. | https://github.com/lebinh/aq/blob/eb366dd063db25598daa70a216170776e83383f4/aq/sqlite_util.py#L74-L85 |
gpennington/PyMarvel | marvel/creator.py | Creator.get_comics | def get_comics(self, *args, **kwargs):
"""
Returns a full ComicDataWrapper object for this creator.
/creators/{creatorId}/comics
:returns: ComicDataWrapper -- A new request to API. Contains full results set.
"""
from .comic import Comic, ComicDataWrapper
return self.get_related_resource(Comic, ComicDataWrapper, args, kwargs) | python | def get_comics(self, *args, **kwargs):
"""
Returns a full ComicDataWrapper object for this creator.
/creators/{creatorId}/comics
:returns: ComicDataWrapper -- A new request to API. Contains full results set.
"""
from .comic import Comic, ComicDataWrapper
return self.get_related_resource(Comic, ComicDataWrapper, args, kwargs) | Returns a full ComicDataWrapper object for this creator.
/creators/{creatorId}/comics
:returns: ComicDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/creator.py#L140-L149 |
gpennington/PyMarvel | marvel/creator.py | Creator.get_events | def get_events(self, *args, **kwargs):
"""
Returns a full EventDataWrapper object for this creator.
/creators/{creatorId}/events
:returns: EventDataWrapper -- A new request to API. Contains full results set.
"""
from .event import Event, EventDataWrapper
return self.get_related_resource(Event, EventDataWrapper, args, kwargs) | python | def get_events(self, *args, **kwargs):
"""
Returns a full EventDataWrapper object for this creator.
/creators/{creatorId}/events
:returns: EventDataWrapper -- A new request to API. Contains full results set.
"""
from .event import Event, EventDataWrapper
return self.get_related_resource(Event, EventDataWrapper, args, kwargs) | Returns a full EventDataWrapper object for this creator.
/creators/{creatorId}/events
:returns: EventDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/creator.py#L151-L160 |
gpennington/PyMarvel | marvel/creator.py | Creator.get_series | def get_series(self, *args, **kwargs):
"""
Returns a full SeriesDataWrapper object for this creator.
/creators/{creatorId}/series
:returns: SeriesDataWrapper -- A new request to API. Contains full results set.
"""
from .series import Series, SeriesDataWrapper
return self.get_related_resource(Series, SeriesDataWrapper, args, kwargs) | python | def get_series(self, *args, **kwargs):
"""
Returns a full SeriesDataWrapper object for this creator.
/creators/{creatorId}/series
:returns: SeriesDataWrapper -- A new request to API. Contains full results set.
"""
from .series import Series, SeriesDataWrapper
return self.get_related_resource(Series, SeriesDataWrapper, args, kwargs) | Returns a full SeriesDataWrapper object for this creator.
/creators/{creatorId}/series
:returns: SeriesDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/creator.py#L162-L171 |
gpennington/PyMarvel | marvel/creator.py | Creator.get_stories | def get_stories(self, *args, **kwargs):
"""
Returns a full StoryDataWrapper object for this creator.
/creators/{creatorId}/stories
:returns: StoriesDataWrapper -- A new request to API. Contains full results set.
"""
from .story import Story, StoryDataWrapper
return self.get_related_resource(Story, StoryDataWrapper, args, kwargs) | python | def get_stories(self, *args, **kwargs):
"""
Returns a full StoryDataWrapper object for this creator.
/creators/{creatorId}/stories
:returns: StoriesDataWrapper -- A new request to API. Contains full results set.
"""
from .story import Story, StoryDataWrapper
return self.get_related_resource(Story, StoryDataWrapper, args, kwargs) | Returns a full StoryDataWrapper object for this creator.
/creators/{creatorId}/stories
:returns: StoriesDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/creator.py#L173-L182 |
gpennington/PyMarvel | marvel/core.py | MarvelObject.list_to_instance_list | def list_to_instance_list(_self, _list, _Class):
"""
Takes a list of resource dicts and returns a list
of resource instances, defined by the _Class param.
:param _self: Original resource calling the method
:type _self: core.MarvelObject
:param _list: List of dicts describing a Resource.
:type _list: list
:param _Class: The Resource class to create a list of (Comic, Creator, etc).
:type _Class: core.MarvelObject
:returns: list -- List of Resource instances (Comic, Creator, etc).
"""
items = []
for item in _list:
items.append(_Class(_self.marvel, item))
return items | python | def list_to_instance_list(_self, _list, _Class):
"""
Takes a list of resource dicts and returns a list
of resource instances, defined by the _Class param.
:param _self: Original resource calling the method
:type _self: core.MarvelObject
:param _list: List of dicts describing a Resource.
:type _list: list
:param _Class: The Resource class to create a list of (Comic, Creator, etc).
:type _Class: core.MarvelObject
:returns: list -- List of Resource instances (Comic, Creator, etc).
"""
items = []
for item in _list:
items.append(_Class(_self.marvel, item))
return items | Takes a list of resource dicts and returns a list
of resource instances, defined by the _Class param.
:param _self: Original resource calling the method
:type _self: core.MarvelObject
:param _list: List of dicts describing a Resource.
:type _list: list
:param _Class: The Resource class to create a list of (Comic, Creator, etc).
:type _Class: core.MarvelObject
:returns: list -- List of Resource instances (Comic, Creator, etc). | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/core.py#L39-L56 |
gpennington/PyMarvel | marvel/core.py | MarvelObject.get_related_resource | def get_related_resource(_self, _Class, _ClassDataWrapper, *args, **kwargs):
"""
Takes a related resource Class
and returns the related resource DataWrapper.
For Example: Given a Character instance, return
a ComicsDataWrapper related to that character.
/character/{characterId}/comics
:param _Class: The Resource class retrieve
:type _Class: core.MarvelObject
:param _ClassDataWrapper: The Resource response object
:type _Class: core.MarvelObject
:param kwargs: dict of query params for the API
:type kwargs: dict
:returns: DataWrapper -- DataWrapper for requested Resource
"""
url = "%s/%s/%s" % (_self.resource_url(), _self.id, _Class.resource_url())
response = json.loads(_self.marvel._call(url, _self.marvel._params(kwargs)).text)
return _ClassDataWrapper(_self.marvel, response) | python | def get_related_resource(_self, _Class, _ClassDataWrapper, *args, **kwargs):
"""
Takes a related resource Class
and returns the related resource DataWrapper.
For Example: Given a Character instance, return
a ComicsDataWrapper related to that character.
/character/{characterId}/comics
:param _Class: The Resource class retrieve
:type _Class: core.MarvelObject
:param _ClassDataWrapper: The Resource response object
:type _Class: core.MarvelObject
:param kwargs: dict of query params for the API
:type kwargs: dict
:returns: DataWrapper -- DataWrapper for requested Resource
"""
url = "%s/%s/%s" % (_self.resource_url(), _self.id, _Class.resource_url())
response = json.loads(_self.marvel._call(url, _self.marvel._params(kwargs)).text)
return _ClassDataWrapper(_self.marvel, response) | Takes a related resource Class
and returns the related resource DataWrapper.
For Example: Given a Character instance, return
a ComicsDataWrapper related to that character.
/character/{characterId}/comics
:param _Class: The Resource class retrieve
:type _Class: core.MarvelObject
:param _ClassDataWrapper: The Resource response object
:type _Class: core.MarvelObject
:param kwargs: dict of query params for the API
:type kwargs: dict
:returns: DataWrapper -- DataWrapper for requested Resource | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/core.py#L58-L77 |
gpennington/PyMarvel | marvel/character.py | CharacterDataWrapper.next | def next(self):
"""
Returns new CharacterDataWrapper
TODO: Don't raise offset past count - limit
"""
self.params['offset'] = str(int(self.params['offset']) + int(self.params['limit']))
return self.marvel.get_characters(self.marvel, (), **self.params) | python | def next(self):
"""
Returns new CharacterDataWrapper
TODO: Don't raise offset past count - limit
"""
self.params['offset'] = str(int(self.params['offset']) + int(self.params['limit']))
return self.marvel.get_characters(self.marvel, (), **self.params) | Returns new CharacterDataWrapper
TODO: Don't raise offset past count - limit | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/character.py#L15-L21 |
gpennington/PyMarvel | marvel/character.py | CharacterDataWrapper.previous | def previous(self):
"""
Returns new CharacterDataWrapper
TODO: Don't lower offset below 0
"""
self.params['offset'] = str(int(self.params['offset']) - int(self.params['limit']))
return self.marvel.get_characters(self.marvel, (), **self.params) | python | def previous(self):
"""
Returns new CharacterDataWrapper
TODO: Don't lower offset below 0
"""
self.params['offset'] = str(int(self.params['offset']) - int(self.params['limit']))
return self.marvel.get_characters(self.marvel, (), **self.params) | Returns new CharacterDataWrapper
TODO: Don't lower offset below 0 | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/character.py#L23-L29 |
gpennington/PyMarvel | marvel/marvel.py | Marvel._call | def _call(self, resource_url, params=None):
"""
Calls the Marvel API endpoint
:param resource_url: url slug of the resource
:type resource_url: str
:param params: query params to add to endpoint
:type params: str
:returns: response -- Requests response
"""
url = "%s%s" % (self._endpoint(), resource_url)
if params:
url += "?%s&%s" % (params, self._auth())
else:
url += "?%s" % self._auth()
return requests.get(url) | python | def _call(self, resource_url, params=None):
"""
Calls the Marvel API endpoint
:param resource_url: url slug of the resource
:type resource_url: str
:param params: query params to add to endpoint
:type params: str
:returns: response -- Requests response
"""
url = "%s%s" % (self._endpoint(), resource_url)
if params:
url += "?%s&%s" % (params, self._auth())
else:
url += "?%s" % self._auth()
return requests.get(url) | Calls the Marvel API endpoint
:param resource_url: url slug of the resource
:type resource_url: str
:param params: query params to add to endpoint
:type params: str
:returns: response -- Requests response | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L38-L55 |
gpennington/PyMarvel | marvel/marvel.py | Marvel._auth | def _auth(self):
"""
Creates hash from api keys and returns all required parametsrs
:returns: str -- URL encoded query parameters containing "ts", "apikey", and "hash"
"""
ts = datetime.datetime.now().strftime("%Y-%m-%d%H:%M:%S")
hash_string = hashlib.md5("%s%s%s" % (ts, self.private_key, self.public_key)).hexdigest()
return "ts=%s&apikey=%s&hash=%s" % (ts, self.public_key, hash_string) | python | def _auth(self):
"""
Creates hash from api keys and returns all required parametsrs
:returns: str -- URL encoded query parameters containing "ts", "apikey", and "hash"
"""
ts = datetime.datetime.now().strftime("%Y-%m-%d%H:%M:%S")
hash_string = hashlib.md5("%s%s%s" % (ts, self.private_key, self.public_key)).hexdigest()
return "ts=%s&apikey=%s&hash=%s" % (ts, self.public_key, hash_string) | Creates hash from api keys and returns all required parametsrs
:returns: str -- URL encoded query parameters containing "ts", "apikey", and "hash" | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L69-L77 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_character | def get_character(self, id):
"""Fetches a single character by id.
get /v1/public/characters
:param id: ID of Character
:type params: int
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_character(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.results[0].name
Wolverine
"""
url = "%s/%s" % (Character.resource_url(), id)
response = json.loads(self._call(url).text)
return CharacterDataWrapper(self, response) | python | def get_character(self, id):
"""Fetches a single character by id.
get /v1/public/characters
:param id: ID of Character
:type params: int
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_character(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.results[0].name
Wolverine
"""
url = "%s/%s" % (Character.resource_url(), id)
response = json.loads(self._call(url).text)
return CharacterDataWrapper(self, response) | Fetches a single character by id.
get /v1/public/characters
:param id: ID of Character
:type params: int
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_character(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.results[0].name
Wolverine | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L84-L104 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_characters | def get_characters(self, *args, **kwargs):
"""Fetches lists of comic characters with optional filters.
get /v1/public/characters/{characterId}
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_characters(orderBy="name,-modified", limit="5", offset="15")
>>> print cdw.data.count
1401
>>> for result in cdw.data.results:
... print result.name
Aginar
Air-Walker (Gabriel Lan)
Ajak
Ajaxis
Akemi
"""
#pass url string and params string to _call
response = json.loads(self._call(Character.resource_url(), self._params(kwargs)).text)
return CharacterDataWrapper(self, response, kwargs) | python | def get_characters(self, *args, **kwargs):
"""Fetches lists of comic characters with optional filters.
get /v1/public/characters/{characterId}
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_characters(orderBy="name,-modified", limit="5", offset="15")
>>> print cdw.data.count
1401
>>> for result in cdw.data.results:
... print result.name
Aginar
Air-Walker (Gabriel Lan)
Ajak
Ajaxis
Akemi
"""
#pass url string and params string to _call
response = json.loads(self._call(Character.resource_url(), self._params(kwargs)).text)
return CharacterDataWrapper(self, response, kwargs) | Fetches lists of comic characters with optional filters.
get /v1/public/characters/{characterId}
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_characters(orderBy="name,-modified", limit="5", offset="15")
>>> print cdw.data.count
1401
>>> for result in cdw.data.results:
... print result.name
Aginar
Air-Walker (Gabriel Lan)
Ajak
Ajaxis
Akemi | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L106-L128 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_comic | def get_comic(self, id):
"""Fetches a single comic by id.
get /v1/public/comics/{comicId}
:param id: ID of Comic
:type params: int
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comic(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.result.name
Some Comic
"""
url = "%s/%s" % (Comic.resource_url(), id)
response = json.loads(self._call(url).text)
return ComicDataWrapper(self, response) | python | def get_comic(self, id):
"""Fetches a single comic by id.
get /v1/public/comics/{comicId}
:param id: ID of Comic
:type params: int
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comic(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.result.name
Some Comic
"""
url = "%s/%s" % (Comic.resource_url(), id)
response = json.loads(self._call(url).text)
return ComicDataWrapper(self, response) | Fetches a single comic by id.
get /v1/public/comics/{comicId}
:param id: ID of Comic
:type params: int
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comic(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.result.name
Some Comic | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L130-L150 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_comics | def get_comics(self, *args, **kwargs):
"""
Fetches list of comics.
get /v1/public/comics
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comics(orderBy="issueNumber,-modified", limit="10", offset="15")
>>> print cdw.data.count
10
>>> print cdw.data.results[0].name
Some Comic
"""
response = json.loads(self._call(Comic.resource_url(), self._params(kwargs)).text)
return ComicDataWrapper(self, response) | python | def get_comics(self, *args, **kwargs):
"""
Fetches list of comics.
get /v1/public/comics
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comics(orderBy="issueNumber,-modified", limit="10", offset="15")
>>> print cdw.data.count
10
>>> print cdw.data.results[0].name
Some Comic
"""
response = json.loads(self._call(Comic.resource_url(), self._params(kwargs)).text)
return ComicDataWrapper(self, response) | Fetches list of comics.
get /v1/public/comics
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comics(orderBy="issueNumber,-modified", limit="10", offset="15")
>>> print cdw.data.count
10
>>> print cdw.data.results[0].name
Some Comic | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L152-L170 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_creator | def get_creator(self, id):
"""Fetches a single creator by id.
get /v1/public/creators/{creatorId}
:param id: ID of Creator
:type params: int
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creator(30)
>>> print cdw.data.count
1
>>> print cdw.data.result.fullName
Stan Lee
"""
url = "%s/%s" % (Creator.resource_url(), id)
response = json.loads(self._call(url).text)
return CreatorDataWrapper(self, response) | python | def get_creator(self, id):
"""Fetches a single creator by id.
get /v1/public/creators/{creatorId}
:param id: ID of Creator
:type params: int
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creator(30)
>>> print cdw.data.count
1
>>> print cdw.data.result.fullName
Stan Lee
"""
url = "%s/%s" % (Creator.resource_url(), id)
response = json.loads(self._call(url).text)
return CreatorDataWrapper(self, response) | Fetches a single creator by id.
get /v1/public/creators/{creatorId}
:param id: ID of Creator
:type params: int
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creator(30)
>>> print cdw.data.count
1
>>> print cdw.data.result.fullName
Stan Lee | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L173-L193 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_creators | def get_creators(self, *args, **kwargs):
"""Fetches lists of creators.
get /v1/public/creators
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creators(lastName="Lee", orderBy="firstName,-modified", limit="5", offset="15")
>>> print cdw.data.total
25
>>> print cdw.data.results[0].fullName
Alvin Lee
"""
response = json.loads(self._call(Creator.resource_url(), self._params(kwargs)).text)
return CreatorDataWrapper(self, response) | python | def get_creators(self, *args, **kwargs):
"""Fetches lists of creators.
get /v1/public/creators
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creators(lastName="Lee", orderBy="firstName,-modified", limit="5", offset="15")
>>> print cdw.data.total
25
>>> print cdw.data.results[0].fullName
Alvin Lee
"""
response = json.loads(self._call(Creator.resource_url(), self._params(kwargs)).text)
return CreatorDataWrapper(self, response) | Fetches lists of creators.
get /v1/public/creators
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creators(lastName="Lee", orderBy="firstName,-modified", limit="5", offset="15")
>>> print cdw.data.total
25
>>> print cdw.data.results[0].fullName
Alvin Lee | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L196-L212 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_event | def get_event(self, id):
"""Fetches a single event by id.
get /v1/public/event/{eventId}
:param id: ID of Event
:type params: int
:returns: EventDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_event(253)
>>> print response.data.result.title
Infinity Gauntlet
"""
url = "%s/%s" % (Event.resource_url(), id)
response = json.loads(self._call(url).text)
return EventDataWrapper(self, response) | python | def get_event(self, id):
"""Fetches a single event by id.
get /v1/public/event/{eventId}
:param id: ID of Event
:type params: int
:returns: EventDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_event(253)
>>> print response.data.result.title
Infinity Gauntlet
"""
url = "%s/%s" % (Event.resource_url(), id)
response = json.loads(self._call(url).text)
return EventDataWrapper(self, response) | Fetches a single event by id.
get /v1/public/event/{eventId}
:param id: ID of Event
:type params: int
:returns: EventDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_event(253)
>>> print response.data.result.title
Infinity Gauntlet | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L215-L233 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_events | def get_events(self, *args, **kwargs):
"""Fetches lists of events.
get /v1/public/events
:returns: EventDataWrapper
>>> #Find all the events that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_events(characters="1009351,1009718")
>>> print response.data.total
38
>>> events = response.data.results
>>> print events[1].title
Age of Apocalypse
"""
response = json.loads(self._call(Event.resource_url(), self._params(kwargs)).text)
return EventDataWrapper(self, response) | python | def get_events(self, *args, **kwargs):
"""Fetches lists of events.
get /v1/public/events
:returns: EventDataWrapper
>>> #Find all the events that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_events(characters="1009351,1009718")
>>> print response.data.total
38
>>> events = response.data.results
>>> print events[1].title
Age of Apocalypse
"""
response = json.loads(self._call(Event.resource_url(), self._params(kwargs)).text)
return EventDataWrapper(self, response) | Fetches lists of events.
get /v1/public/events
:returns: EventDataWrapper
>>> #Find all the events that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_events(characters="1009351,1009718")
>>> print response.data.total
38
>>> events = response.data.results
>>> print events[1].title
Age of Apocalypse | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L236-L256 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_single_series | def get_single_series(self, id):
"""Fetches a single comic series by id.
get /v1/public/series/{seriesId}
:param id: ID of Series
:type params: int
:returns: SeriesDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_single_series(12429)
>>> print response.data.result.title
5 Ronin (2010)
"""
url = "%s/%s" % (Series.resource_url(), id)
response = json.loads(self._call(url).text)
return SeriesDataWrapper(self, response) | python | def get_single_series(self, id):
"""Fetches a single comic series by id.
get /v1/public/series/{seriesId}
:param id: ID of Series
:type params: int
:returns: SeriesDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_single_series(12429)
>>> print response.data.result.title
5 Ronin (2010)
"""
url = "%s/%s" % (Series.resource_url(), id)
response = json.loads(self._call(url).text)
return SeriesDataWrapper(self, response) | Fetches a single comic series by id.
get /v1/public/series/{seriesId}
:param id: ID of Series
:type params: int
:returns: SeriesDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_single_series(12429)
>>> print response.data.result.title
5 Ronin (2010) | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L259-L277 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_series | def get_series(self, *args, **kwargs):
"""Fetches lists of events.
get /v1/public/events
:returns: SeriesDataWrapper
>>> #Find all the series that involved Wolverine
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_series(characters="1009718")
>>> print response.data.total
435
>>> series = response.data.results
>>> print series[0].title
5 Ronin (2010)
"""
response = json.loads(self._call(Series.resource_url(), self._params(kwargs)).text)
return SeriesDataWrapper(self, response) | python | def get_series(self, *args, **kwargs):
"""Fetches lists of events.
get /v1/public/events
:returns: SeriesDataWrapper
>>> #Find all the series that involved Wolverine
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_series(characters="1009718")
>>> print response.data.total
435
>>> series = response.data.results
>>> print series[0].title
5 Ronin (2010)
"""
response = json.loads(self._call(Series.resource_url(), self._params(kwargs)).text)
return SeriesDataWrapper(self, response) | Fetches lists of events.
get /v1/public/events
:returns: SeriesDataWrapper
>>> #Find all the series that involved Wolverine
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_series(characters="1009718")
>>> print response.data.total
435
>>> series = response.data.results
>>> print series[0].title
5 Ronin (2010) | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L280-L299 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_story | def get_story(self, id):
"""Fetches a single story by id.
get /v1/public/stories/{storyId}
:param id: ID of Story
:type params: int
:returns: StoryDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_story(29)
>>> print response.data.result.title
Caught in the heart of a nuclear explosion, mild-mannered scientist Bruce Banner finds himself...
"""
url = "%s/%s" % (Story.resource_url(), id)
response = json.loads(self._call(url).text)
return StoryDataWrapper(self, response) | python | def get_story(self, id):
"""Fetches a single story by id.
get /v1/public/stories/{storyId}
:param id: ID of Story
:type params: int
:returns: StoryDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_story(29)
>>> print response.data.result.title
Caught in the heart of a nuclear explosion, mild-mannered scientist Bruce Banner finds himself...
"""
url = "%s/%s" % (Story.resource_url(), id)
response = json.loads(self._call(url).text)
return StoryDataWrapper(self, response) | Fetches a single story by id.
get /v1/public/stories/{storyId}
:param id: ID of Story
:type params: int
:returns: StoryDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_story(29)
>>> print response.data.result.title
Caught in the heart of a nuclear explosion, mild-mannered scientist Bruce Banner finds himself... | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L301-L319 |
gpennington/PyMarvel | marvel/marvel.py | Marvel.get_stories | def get_stories(self, *args, **kwargs):
"""Fetches lists of stories.
get /v1/public/stories
:returns: StoryDataWrapper
>>> #Find all the stories that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_stories(characters="1009351,1009718")
>>> print response.data.total
4066
>>> stories = response.data.results
>>> print stories[1].title
Cover #477
"""
response = json.loads(self._call(Story.resource_url(), self._params(kwargs)).text)
return StoryDataWrapper(self, response) | python | def get_stories(self, *args, **kwargs):
"""Fetches lists of stories.
get /v1/public/stories
:returns: StoryDataWrapper
>>> #Find all the stories that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_stories(characters="1009351,1009718")
>>> print response.data.total
4066
>>> stories = response.data.results
>>> print stories[1].title
Cover #477
"""
response = json.loads(self._call(Story.resource_url(), self._params(kwargs)).text)
return StoryDataWrapper(self, response) | Fetches lists of stories.
get /v1/public/stories
:returns: StoryDataWrapper
>>> #Find all the stories that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_stories(characters="1009351,1009718")
>>> print response.data.total
4066
>>> stories = response.data.results
>>> print stories[1].title
Cover #477 | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/marvel.py#L322-L342 |
gpennington/PyMarvel | marvel/story.py | Story.get_creators | def get_creators(self, *args, **kwargs):
"""
Returns a full CreatorDataWrapper object for this story.
/stories/{storyId}/creators
:returns: CreatorDataWrapper -- A new request to API. Contains full results set.
"""
from .creator import Creator, CreatorDataWrapper
return self.get_related_resource(Creator, CreatorDataWrapper, args, kwargs) | python | def get_creators(self, *args, **kwargs):
"""
Returns a full CreatorDataWrapper object for this story.
/stories/{storyId}/creators
:returns: CreatorDataWrapper -- A new request to API. Contains full results set.
"""
from .creator import Creator, CreatorDataWrapper
return self.get_related_resource(Creator, CreatorDataWrapper, args, kwargs) | Returns a full CreatorDataWrapper object for this story.
/stories/{storyId}/creators
:returns: CreatorDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/story.py#L91-L100 |
gpennington/PyMarvel | marvel/story.py | Story.get_characters | def get_characters(self, *args, **kwargs):
"""
Returns a full CharacterDataWrapper object for this story.
/stories/{storyId}/characters
:returns: CharacterDataWrapper -- A new request to API. Contains full results set.
"""
from .character import Character, CharacterDataWrapper
return self.get_related_resource(Character, CharacterDataWrapper, args, kwargs) | python | def get_characters(self, *args, **kwargs):
"""
Returns a full CharacterDataWrapper object for this story.
/stories/{storyId}/characters
:returns: CharacterDataWrapper -- A new request to API. Contains full results set.
"""
from .character import Character, CharacterDataWrapper
return self.get_related_resource(Character, CharacterDataWrapper, args, kwargs) | Returns a full CharacterDataWrapper object for this story.
/stories/{storyId}/characters
:returns: CharacterDataWrapper -- A new request to API. Contains full results set. | https://github.com/gpennington/PyMarvel/blob/2617162836f2b7c525ed6c4ff6f1e86a07284fd1/marvel/story.py#L102-L111 |
faroit/stempeg | stempeg/__init__.py | ffmpeg_version | def ffmpeg_version():
"""Returns the available ffmpeg version
Returns
----------
version : str
version number as string
"""
cmd = [
'ffmpeg',
'-version'
]
output = sp.check_output(cmd)
aac_codecs = [
x for x in
output.splitlines() if "ffmpeg version " in str(x)
][0]
hay = aac_codecs.decode('ascii')
match = re.findall(r'ffmpeg version (\d+\.)?(\d+\.)?(\*|\d+)', hay)
if match:
return "".join(match[0])
else:
return None | python | def ffmpeg_version():
"""Returns the available ffmpeg version
Returns
----------
version : str
version number as string
"""
cmd = [
'ffmpeg',
'-version'
]
output = sp.check_output(cmd)
aac_codecs = [
x for x in
output.splitlines() if "ffmpeg version " in str(x)
][0]
hay = aac_codecs.decode('ascii')
match = re.findall(r'ffmpeg version (\d+\.)?(\d+\.)?(\*|\d+)', hay)
if match:
return "".join(match[0])
else:
return None | Returns the available ffmpeg version
Returns
----------
version : str
version number as string | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/__init__.py#L32-L56 |
faroit/stempeg | stempeg/__init__.py | cli | def cli(inargs=None):
"""
Commandline interface for receiving stem files
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--version', '-V',
action='version',
version='%%(prog)s %s' % __version__
)
parser.add_argument(
'filename',
metavar="filename",
help="Input STEM file"
)
parser.add_argument(
'--id',
metavar='id',
type=int,
nargs='+',
help="A list of stem_ids"
)
parser.add_argument(
'-s',
type=float,
nargs='?',
help="start offset in seconds"
)
parser.add_argument(
'-t',
type=float,
nargs='?',
help="read duration"
)
parser.add_argument(
'outdir',
metavar='outdir',
nargs='?',
help="Output folder"
)
args = parser.parse_args(inargs)
stem2wav(args.filename, args.outdir, args.id, args.s, args.t) | python | def cli(inargs=None):
"""
Commandline interface for receiving stem files
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--version', '-V',
action='version',
version='%%(prog)s %s' % __version__
)
parser.add_argument(
'filename',
metavar="filename",
help="Input STEM file"
)
parser.add_argument(
'--id',
metavar='id',
type=int,
nargs='+',
help="A list of stem_ids"
)
parser.add_argument(
'-s',
type=float,
nargs='?',
help="start offset in seconds"
)
parser.add_argument(
'-t',
type=float,
nargs='?',
help="read duration"
)
parser.add_argument(
'outdir',
metavar='outdir',
nargs='?',
help="Output folder"
)
args = parser.parse_args(inargs)
stem2wav(args.filename, args.outdir, args.id, args.s, args.t) | Commandline interface for receiving stem files | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/__init__.py#L59-L108 |
faroit/stempeg | stempeg/write.py | check_available_aac_encoders | def check_available_aac_encoders():
"""Returns the available AAC encoders
Returns
----------
codecs : list(str)
List of available encoder codecs
"""
cmd = [
'ffmpeg',
'-v', 'error',
'-codecs'
]
output = sp.check_output(cmd)
aac_codecs = [
x for x in
output.splitlines() if "AAC (Advanced Audio Coding)" in str(x)
][0]
hay = aac_codecs.decode('ascii')
match = re.findall(r'\(encoders: ([^\)]*) \)', hay)
if match:
return match[0].split(" ")
else:
return None | python | def check_available_aac_encoders():
"""Returns the available AAC encoders
Returns
----------
codecs : list(str)
List of available encoder codecs
"""
cmd = [
'ffmpeg',
'-v', 'error',
'-codecs'
]
output = sp.check_output(cmd)
aac_codecs = [
x for x in
output.splitlines() if "AAC (Advanced Audio Coding)" in str(x)
][0]
hay = aac_codecs.decode('ascii')
match = re.findall(r'\(encoders: ([^\)]*) \)', hay)
if match:
return match[0].split(" ")
else:
return None | Returns the available AAC encoders
Returns
----------
codecs : list(str)
List of available encoder codecs | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/write.py#L10-L35 |
faroit/stempeg | stempeg/write.py | write_stems | def write_stems(
audio,
filename,
rate=44100,
bitrate=256000,
codec=None,
ffmpeg_params=None
):
"""Write stems from numpy Tensor
Parameters
----------
audio : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
filename : str
Output file_name of the stems file
rate : int
Output samplerate. Defaults to 44100 Hz.
bitrate : int
AAC Bitrate in Bits per second. Defaults to 256 Kbit/s
codec : str
AAC codec used. Defaults to `None` which automatically selects
either `libfdk_aac` or `aac` in that order, determined by availability.
ffmpeg_params : list(str)
List of additional ffmpeg parameters
Notes
-----
Output is written as 16bit/44.1 kHz
"""
if int(stempeg.ffmpeg_version()[0]) < 3:
warnings.warn(
"Writing STEMS with FFMPEG version < 3 is unsupported", UserWarning
)
if codec is None:
avail = check_available_aac_encoders()
if avail is not None:
if 'libfdk_aac' in avail:
codec = 'libfdk_aac'
else:
codec = 'aac'
warnings.warn("For better quality, please install libfdc_aac")
else:
codec = 'aac'
warnings.warn("For better quality, please install libfdc_aac")
tmps = [
tmp.NamedTemporaryFile(delete=False, suffix='.wav')
for t in range(audio.shape[0])
]
if audio.shape[1] % 1024 != 0:
warnings.warn(
"Number of samples does not divide by 1024, be aware that "
"the AAC encoder add silence to the input signal"
)
for k in range(audio.shape[0]):
sf.write(tmps[k].name, audio[k], rate)
cmd = (
[
'ffmpeg', '-y',
"-f", 's%dle' % (16),
"-acodec", 'pcm_s%dle' % (16),
'-ar', "%d" % rate,
'-ac', "%d" % 2
] +
list(chain.from_iterable(
[['-i', i.name] for i in tmps]
)) +
list(chain.from_iterable(
[['-map', str(k)] for k, _ in enumerate(tmps)]
)) +
[
'-vn',
'-acodec', codec,
'-ar', "%d" % rate,
'-strict', '-2',
'-loglevel', 'error'
] +
(['-ab', str(bitrate)] if (bitrate is not None) else []) +
(ffmpeg_params if ffmpeg_params else []) +
[filename]
)
sp.call(cmd) | python | def write_stems(
audio,
filename,
rate=44100,
bitrate=256000,
codec=None,
ffmpeg_params=None
):
"""Write stems from numpy Tensor
Parameters
----------
audio : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
filename : str
Output file_name of the stems file
rate : int
Output samplerate. Defaults to 44100 Hz.
bitrate : int
AAC Bitrate in Bits per second. Defaults to 256 Kbit/s
codec : str
AAC codec used. Defaults to `None` which automatically selects
either `libfdk_aac` or `aac` in that order, determined by availability.
ffmpeg_params : list(str)
List of additional ffmpeg parameters
Notes
-----
Output is written as 16bit/44.1 kHz
"""
if int(stempeg.ffmpeg_version()[0]) < 3:
warnings.warn(
"Writing STEMS with FFMPEG version < 3 is unsupported", UserWarning
)
if codec is None:
avail = check_available_aac_encoders()
if avail is not None:
if 'libfdk_aac' in avail:
codec = 'libfdk_aac'
else:
codec = 'aac'
warnings.warn("For better quality, please install libfdc_aac")
else:
codec = 'aac'
warnings.warn("For better quality, please install libfdc_aac")
tmps = [
tmp.NamedTemporaryFile(delete=False, suffix='.wav')
for t in range(audio.shape[0])
]
if audio.shape[1] % 1024 != 0:
warnings.warn(
"Number of samples does not divide by 1024, be aware that "
"the AAC encoder add silence to the input signal"
)
for k in range(audio.shape[0]):
sf.write(tmps[k].name, audio[k], rate)
cmd = (
[
'ffmpeg', '-y',
"-f", 's%dle' % (16),
"-acodec", 'pcm_s%dle' % (16),
'-ar', "%d" % rate,
'-ac', "%d" % 2
] +
list(chain.from_iterable(
[['-i', i.name] for i in tmps]
)) +
list(chain.from_iterable(
[['-map', str(k)] for k, _ in enumerate(tmps)]
)) +
[
'-vn',
'-acodec', codec,
'-ar', "%d" % rate,
'-strict', '-2',
'-loglevel', 'error'
] +
(['-ab', str(bitrate)] if (bitrate is not None) else []) +
(ffmpeg_params if ffmpeg_params else []) +
[filename]
)
sp.call(cmd) | Write stems from numpy Tensor
Parameters
----------
audio : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
filename : str
Output file_name of the stems file
rate : int
Output samplerate. Defaults to 44100 Hz.
bitrate : int
AAC Bitrate in Bits per second. Defaults to 256 Kbit/s
codec : str
AAC codec used. Defaults to `None` which automatically selects
either `libfdk_aac` or `aac` in that order, determined by availability.
ffmpeg_params : list(str)
List of additional ffmpeg parameters
Notes
-----
Output is written as 16bit/44.1 kHz | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/write.py#L38-L128 |
faroit/stempeg | stempeg/read.py | read_info | def read_info(
filename
):
"""Extracts FFMPEG info and returns info as JSON
Returns
-------
info : Dict
JSON info dict
"""
cmd = [
'ffprobe',
filename,
'-v', 'error',
'-print_format', 'json',
'-show_format', '-show_streams',
]
out = sp.check_output(cmd)
info = json.loads(out.decode('utf-8'))
return info | python | def read_info(
filename
):
"""Extracts FFMPEG info and returns info as JSON
Returns
-------
info : Dict
JSON info dict
"""
cmd = [
'ffprobe',
filename,
'-v', 'error',
'-print_format', 'json',
'-show_format', '-show_streams',
]
out = sp.check_output(cmd)
info = json.loads(out.decode('utf-8'))
return info | Extracts FFMPEG info and returns info as JSON
Returns
-------
info : Dict
JSON info dict | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/read.py#L56-L77 |
faroit/stempeg | stempeg/read.py | read_stems | def read_stems(
filename,
out_type=np.float_,
stem_id=None,
start=0,
duration=None,
info=None
):
"""Read STEMS format into numpy Tensor
Parameters
----------
filename : str
Filename of STEMS format. Typically `filename.stem.mp4`.
out_type : type
Output type. Defaults to 32bit float aka `np.float32`.
stem_id : int
Stem ID (Stream ID) to read. Defaults to `None`, which reads all
available stems.
start : float
Start position (seek) in seconds, defaults to 0.
duration : float
Read `duration` seconds. End position then is `start + duration`.
Defaults to `None`: read till the end.
info : object
provide info object, useful if read_stems is called frequently on
file with same configuration (#streams, #channels, samplerate).
Returns
-------
stems : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
Notes
-----
Input is expected to be in 16bit/44.1 kHz
"""
if info is None:
FFinfo = Info(filename)
else:
FFinfo = info
if stem_id is not None:
substreams = stem_id
else:
substreams = FFinfo.audio_stream_idx()
if not isinstance(substreams, list):
substreams = [substreams]
stems = []
tmps = [
tmp.NamedTemporaryFile(delete=False, suffix='.wav')
for t in substreams
]
for tmp_id, stem in enumerate(substreams):
rate = FFinfo.rate(stem)
channels = FFinfo.channels(stem)
cmd = [
'ffmpeg',
'-y',
'-vn',
'-i', filename,
'-map', '0:' + str(stem),
'-acodec', 'pcm_s16le',
'-ar', str(rate),
'-ac', str(channels),
'-loglevel', 'error',
tmps[tmp_id].name
]
if start:
cmd.insert(3, '-ss')
cmd.insert(4, str(start))
if duration is not None:
cmd.insert(-1, '-t')
cmd.insert(-1, str(duration))
sp.call(cmd)
# read wav files
audio, rate = sf.read(tmps[tmp_id].name)
tmps[tmp_id].close()
os.remove(tmps[tmp_id].name)
stems.append(audio)
# check if all stems have the same duration
stem_durations = np.array([t.shape[0] for t in stems])
if not (stem_durations == stem_durations[0]).all():
warnings.warn("Warning.......Stems differ in length and were shortend")
min_length = np.min(stem_durations)
stems = [t[:min_length, :] for t in stems]
stems = np.array(stems)
stems = np.squeeze(stems).astype(out_type)
return stems, rate | python | def read_stems(
filename,
out_type=np.float_,
stem_id=None,
start=0,
duration=None,
info=None
):
"""Read STEMS format into numpy Tensor
Parameters
----------
filename : str
Filename of STEMS format. Typically `filename.stem.mp4`.
out_type : type
Output type. Defaults to 32bit float aka `np.float32`.
stem_id : int
Stem ID (Stream ID) to read. Defaults to `None`, which reads all
available stems.
start : float
Start position (seek) in seconds, defaults to 0.
duration : float
Read `duration` seconds. End position then is `start + duration`.
Defaults to `None`: read till the end.
info : object
provide info object, useful if read_stems is called frequently on
file with same configuration (#streams, #channels, samplerate).
Returns
-------
stems : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
Notes
-----
Input is expected to be in 16bit/44.1 kHz
"""
if info is None:
FFinfo = Info(filename)
else:
FFinfo = info
if stem_id is not None:
substreams = stem_id
else:
substreams = FFinfo.audio_stream_idx()
if not isinstance(substreams, list):
substreams = [substreams]
stems = []
tmps = [
tmp.NamedTemporaryFile(delete=False, suffix='.wav')
for t in substreams
]
for tmp_id, stem in enumerate(substreams):
rate = FFinfo.rate(stem)
channels = FFinfo.channels(stem)
cmd = [
'ffmpeg',
'-y',
'-vn',
'-i', filename,
'-map', '0:' + str(stem),
'-acodec', 'pcm_s16le',
'-ar', str(rate),
'-ac', str(channels),
'-loglevel', 'error',
tmps[tmp_id].name
]
if start:
cmd.insert(3, '-ss')
cmd.insert(4, str(start))
if duration is not None:
cmd.insert(-1, '-t')
cmd.insert(-1, str(duration))
sp.call(cmd)
# read wav files
audio, rate = sf.read(tmps[tmp_id].name)
tmps[tmp_id].close()
os.remove(tmps[tmp_id].name)
stems.append(audio)
# check if all stems have the same duration
stem_durations = np.array([t.shape[0] for t in stems])
if not (stem_durations == stem_durations[0]).all():
warnings.warn("Warning.......Stems differ in length and were shortend")
min_length = np.min(stem_durations)
stems = [t[:min_length, :] for t in stems]
stems = np.array(stems)
stems = np.squeeze(stems).astype(out_type)
return stems, rate | Read STEMS format into numpy Tensor
Parameters
----------
filename : str
Filename of STEMS format. Typically `filename.stem.mp4`.
out_type : type
Output type. Defaults to 32bit float aka `np.float32`.
stem_id : int
Stem ID (Stream ID) to read. Defaults to `None`, which reads all
available stems.
start : float
Start position (seek) in seconds, defaults to 0.
duration : float
Read `duration` seconds. End position then is `start + duration`.
Defaults to `None`: read till the end.
info : object
provide info object, useful if read_stems is called frequently on
file with same configuration (#streams, #channels, samplerate).
Returns
-------
stems : array_like
The tensor of Matrix of stems. The data shape is formatted as
:code:`stems x channels x samples`.
Notes
-----
Input is expected to be in 16bit/44.1 kHz | https://github.com/faroit/stempeg/blob/ebbaec87ea440fcbb06423d708e7847749e63d38/stempeg/read.py#L80-L176 |
titusjan/argos | argos/repo/rtiplugins/pandasio.py | PandasIndexRti.nDims | def nDims(self):
""" The number of dimensions of the index. Will always be 1.
"""
result = self._index.ndim
assert result == 1, "Expected index to be 1D, got: {}D".format(result)
return result | python | def nDims(self):
""" The number of dimensions of the index. Will always be 1.
"""
result = self._index.ndim
assert result == 1, "Expected index to be 1D, got: {}D".format(result)
return result | The number of dimensions of the index. Will always be 1. | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/repo/rtiplugins/pandasio.py#L80-L85 |
titusjan/argos | argos/repo/rtiplugins/pandasio.py | AbstractPandasNDFrameRti.elementTypeName | def elementTypeName(self):
""" String representation of the element type.
"""
if self._ndFrame is None:
return super(AbstractPandasNDFrameRti, self).elementTypeName
else:
try:
return str(self._ndFrame.dtype) # Series
except AttributeError:
return '<structured>' | python | def elementTypeName(self):
""" String representation of the element type.
"""
if self._ndFrame is None:
return super(AbstractPandasNDFrameRti, self).elementTypeName
else:
try:
return str(self._ndFrame.dtype) # Series
except AttributeError:
return '<structured>' | String representation of the element type. | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/repo/rtiplugins/pandasio.py#L196-L205 |
titusjan/argos | argos/repo/rtiplugins/pandasio.py | AbstractPandasNDFrameRti._createIndexRti | def _createIndexRti(self, index, nodeName):
""" Auxiliary method that creates a PandasIndexRti.
"""
return PandasIndexRti(index=index, nodeName=nodeName, fileName=self.fileName,
iconColor=self._iconColor) | python | def _createIndexRti(self, index, nodeName):
""" Auxiliary method that creates a PandasIndexRti.
"""
return PandasIndexRti(index=index, nodeName=nodeName, fileName=self.fileName,
iconColor=self._iconColor) | Auxiliary method that creates a PandasIndexRti. | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/repo/rtiplugins/pandasio.py#L208-L212 |
titusjan/argos | argos/repo/rtiplugins/pandasio.py | PandasSeriesRti._fetchAllChildren | def _fetchAllChildren(self):
""" Fetches the index if the showIndex member is True
Descendants can override this function to add the subdevicions.
"""
assert self.isSliceable, "No underlying pandas object: self._ndFrame is None"
childItems = []
if self._standAlone:
childItems.append(self._createIndexRti(self._ndFrame.index, 'index'))
return childItems | python | def _fetchAllChildren(self):
""" Fetches the index if the showIndex member is True
Descendants can override this function to add the subdevicions.
"""
assert self.isSliceable, "No underlying pandas object: self._ndFrame is None"
childItems = []
if self._standAlone:
childItems.append(self._createIndexRti(self._ndFrame.index, 'index'))
return childItems | Fetches the index if the showIndex member is True
Descendants can override this function to add the subdevicions. | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/repo/rtiplugins/pandasio.py#L234-L243 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.