repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.encode_fetch_request | def encode_fetch_request(cls, client_id, correlation_id, payloads=None,
max_wait_time=100, min_bytes=4096):
"""
Encodes some FetchRequest structs
:param bytes client_id:
:param int correlation_id:
:param list payloads: list of :class:`FetchRequest`
:param int max_wait_time: how long to block waiting on min_bytes of data
:param int min_bytes:
the minimum number of bytes to accumulate before returning the
response
"""
payloads = [] if payloads is None else payloads
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(client_id, correlation_id,
KafkaCodec.FETCH_KEY)
assert isinstance(max_wait_time, int)
# -1 is the replica id
message += struct.pack('>iiii', -1, max_wait_time, min_bytes,
len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition, payload in topic_payloads.items():
message += struct.pack('>iqi', partition, payload.offset,
payload.max_bytes)
return message | python | def encode_fetch_request(cls, client_id, correlation_id, payloads=None,
max_wait_time=100, min_bytes=4096):
"""
Encodes some FetchRequest structs
:param bytes client_id:
:param int correlation_id:
:param list payloads: list of :class:`FetchRequest`
:param int max_wait_time: how long to block waiting on min_bytes of data
:param int min_bytes:
the minimum number of bytes to accumulate before returning the
response
"""
payloads = [] if payloads is None else payloads
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(client_id, correlation_id,
KafkaCodec.FETCH_KEY)
assert isinstance(max_wait_time, int)
# -1 is the replica id
message += struct.pack('>iiii', -1, max_wait_time, min_bytes,
len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition, payload in topic_payloads.items():
message += struct.pack('>iqi', partition, payload.offset,
payload.max_bytes)
return message | Encodes some FetchRequest structs
:param bytes client_id:
:param int correlation_id:
:param list payloads: list of :class:`FetchRequest`
:param int max_wait_time: how long to block waiting on min_bytes of data
:param int min_bytes:
the minimum number of bytes to accumulate before returning the
response | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L268-L300 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_fetch_response | def decode_fetch_response(cls, data):
"""
Decode bytes to a FetchResponse
:param bytes data: bytes to decode
"""
((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error, highwater_mark_offset), cur) = \
relative_unpack('>ihq', data, cur)
(message_set, cur) = read_int_string(data, cur)
yield FetchResponse(
topic, partition, error,
highwater_mark_offset,
KafkaCodec._decode_message_set_iter(message_set)) | python | def decode_fetch_response(cls, data):
"""
Decode bytes to a FetchResponse
:param bytes data: bytes to decode
"""
((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error, highwater_mark_offset), cur) = \
relative_unpack('>ihq', data, cur)
(message_set, cur) = read_int_string(data, cur)
yield FetchResponse(
topic, partition, error,
highwater_mark_offset,
KafkaCodec._decode_message_set_iter(message_set)) | Decode bytes to a FetchResponse
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L303-L324 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_offset_response | def decode_offset_response(cls, data):
"""
Decode bytes to an :class:`OffsetResponse`
:param bytes data: bytes to decode
"""
((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error, num_offsets), cur) = \
relative_unpack('>ihi', data, cur)
offsets = []
for _i in range(num_offsets):
((offset,), cur) = relative_unpack('>q', data, cur)
offsets.append(offset)
yield OffsetResponse(topic, partition, error, tuple(offsets)) | python | def decode_offset_response(cls, data):
"""
Decode bytes to an :class:`OffsetResponse`
:param bytes data: bytes to decode
"""
((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error, num_offsets), cur) = \
relative_unpack('>ihi', data, cur)
offsets = []
for _i in range(num_offsets):
((offset,), cur) = relative_unpack('>q', data, cur)
offsets.append(offset)
yield OffsetResponse(topic, partition, error, tuple(offsets)) | Decode bytes to an :class:`OffsetResponse`
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L348-L369 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.encode_metadata_request | def encode_metadata_request(cls, client_id, correlation_id, topics=None):
"""
Encode a MetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param list topics: list of text
"""
topics = [] if topics is None else topics
message = [
cls._encode_message_header(client_id, correlation_id,
KafkaCodec.METADATA_KEY),
struct.pack('>i', len(topics)),
]
for topic in topics:
message.append(write_short_ascii(topic))
return b''.join(message) | python | def encode_metadata_request(cls, client_id, correlation_id, topics=None):
"""
Encode a MetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param list topics: list of text
"""
topics = [] if topics is None else topics
message = [
cls._encode_message_header(client_id, correlation_id,
KafkaCodec.METADATA_KEY),
struct.pack('>i', len(topics)),
]
for topic in topics:
message.append(write_short_ascii(topic))
return b''.join(message) | Encode a MetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param list topics: list of text | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L372-L388 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_metadata_response | def decode_metadata_response(cls, data):
"""
Decode bytes to a MetadataResponse
:param bytes data: bytes to decode
"""
((correlation_id, numbrokers), cur) = relative_unpack('>ii', data, 0)
# In testing, I saw this routine swap my machine to death when
# passed bad data. So, some checks are in order...
if numbrokers > MAX_BROKERS:
raise InvalidMessageError(
"Brokers:{} exceeds max:{}".format(numbrokers, MAX_BROKERS))
# Broker info
brokers = {}
for _i in range(numbrokers):
((nodeId, ), cur) = relative_unpack('>i', data, cur)
(host, cur) = read_short_ascii(data, cur)
((port,), cur) = relative_unpack('>i', data, cur)
brokers[nodeId] = BrokerMetadata(nodeId, nativeString(host), port)
# Topic info
((num_topics,), cur) = relative_unpack('>i', data, cur)
topic_metadata = {}
for _i in range(num_topics):
((topic_error,), cur) = relative_unpack('>h', data, cur)
(topic_name, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
partition_metadata = {}
for _j in range(num_partitions):
((partition_error_code, partition, leader, numReplicas),
cur) = relative_unpack('>hiii', data, cur)
(replicas, cur) = relative_unpack(
'>%di' % numReplicas, data, cur)
((num_isr,), cur) = relative_unpack('>i', data, cur)
(isr, cur) = relative_unpack('>%di' % num_isr, data, cur)
partition_metadata[partition] = \
PartitionMetadata(
topic_name, partition, partition_error_code, leader,
replicas, isr)
topic_metadata[topic_name] = TopicMetadata(
topic_name, topic_error, partition_metadata)
return brokers, topic_metadata | python | def decode_metadata_response(cls, data):
"""
Decode bytes to a MetadataResponse
:param bytes data: bytes to decode
"""
((correlation_id, numbrokers), cur) = relative_unpack('>ii', data, 0)
# In testing, I saw this routine swap my machine to death when
# passed bad data. So, some checks are in order...
if numbrokers > MAX_BROKERS:
raise InvalidMessageError(
"Brokers:{} exceeds max:{}".format(numbrokers, MAX_BROKERS))
# Broker info
brokers = {}
for _i in range(numbrokers):
((nodeId, ), cur) = relative_unpack('>i', data, cur)
(host, cur) = read_short_ascii(data, cur)
((port,), cur) = relative_unpack('>i', data, cur)
brokers[nodeId] = BrokerMetadata(nodeId, nativeString(host), port)
# Topic info
((num_topics,), cur) = relative_unpack('>i', data, cur)
topic_metadata = {}
for _i in range(num_topics):
((topic_error,), cur) = relative_unpack('>h', data, cur)
(topic_name, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
partition_metadata = {}
for _j in range(num_partitions):
((partition_error_code, partition, leader, numReplicas),
cur) = relative_unpack('>hiii', data, cur)
(replicas, cur) = relative_unpack(
'>%di' % numReplicas, data, cur)
((num_isr,), cur) = relative_unpack('>i', data, cur)
(isr, cur) = relative_unpack('>%di' % num_isr, data, cur)
partition_metadata[partition] = \
PartitionMetadata(
topic_name, partition, partition_error_code, leader,
replicas, isr)
topic_metadata[topic_name] = TopicMetadata(
topic_name, topic_error, partition_metadata)
return brokers, topic_metadata | Decode bytes to a MetadataResponse
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L391-L441 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.encode_consumermetadata_request | def encode_consumermetadata_request(cls, client_id, correlation_id,
consumer_group):
"""
Encode a ConsumerMetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param str consumer_group: string
"""
message = cls._encode_message_header(client_id, correlation_id,
KafkaCodec.CONSUMER_METADATA_KEY)
message += write_short_ascii(consumer_group)
return message | python | def encode_consumermetadata_request(cls, client_id, correlation_id,
consumer_group):
"""
Encode a ConsumerMetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param str consumer_group: string
"""
message = cls._encode_message_header(client_id, correlation_id,
KafkaCodec.CONSUMER_METADATA_KEY)
message += write_short_ascii(consumer_group)
return message | Encode a ConsumerMetadataRequest
:param bytes client_id: string
:param int correlation_id: int
:param str consumer_group: string | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L444-L456 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_consumermetadata_response | def decode_consumermetadata_response(cls, data):
"""
Decode bytes to a ConsumerMetadataResponse
:param bytes data: bytes to decode
"""
(correlation_id, error_code, node_id), cur = \
relative_unpack('>ihi', data, 0)
host, cur = read_short_ascii(data, cur)
(port,), cur = relative_unpack('>i', data, cur)
return ConsumerMetadataResponse(
error_code, node_id, nativeString(host), port) | python | def decode_consumermetadata_response(cls, data):
"""
Decode bytes to a ConsumerMetadataResponse
:param bytes data: bytes to decode
"""
(correlation_id, error_code, node_id), cur = \
relative_unpack('>ihi', data, 0)
host, cur = read_short_ascii(data, cur)
(port,), cur = relative_unpack('>i', data, cur)
return ConsumerMetadataResponse(
error_code, node_id, nativeString(host), port) | Decode bytes to a ConsumerMetadataResponse
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L459-L471 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.encode_offset_commit_request | def encode_offset_commit_request(cls, client_id, correlation_id,
group, group_generation_id, consumer_id,
payloads):
"""
Encode some OffsetCommitRequest structs (v1)
:param bytes client_id: string
:param int correlation_id: int
:param str group: the consumer group to which you are committing offsets
:param int group_generation_id: int32, generation ID of the group
:param str consumer_id: string, Identifier for the consumer
:param list payloads: list of :class:`OffsetCommitRequest`
"""
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(
client_id, correlation_id, KafkaCodec.OFFSET_COMMIT_KEY,
api_version=1,
)
message += write_short_ascii(group)
message += struct.pack('>i', group_generation_id)
message += write_short_ascii(consumer_id)
message += struct.pack('>i', len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition, payload in topic_payloads.items():
message += struct.pack('>iqq', partition, payload.offset,
payload.timestamp)
message += write_short_bytes(payload.metadata)
return message | python | def encode_offset_commit_request(cls, client_id, correlation_id,
group, group_generation_id, consumer_id,
payloads):
"""
Encode some OffsetCommitRequest structs (v1)
:param bytes client_id: string
:param int correlation_id: int
:param str group: the consumer group to which you are committing offsets
:param int group_generation_id: int32, generation ID of the group
:param str consumer_id: string, Identifier for the consumer
:param list payloads: list of :class:`OffsetCommitRequest`
"""
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(
client_id, correlation_id, KafkaCodec.OFFSET_COMMIT_KEY,
api_version=1,
)
message += write_short_ascii(group)
message += struct.pack('>i', group_generation_id)
message += write_short_ascii(consumer_id)
message += struct.pack('>i', len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition, payload in topic_payloads.items():
message += struct.pack('>iqq', partition, payload.offset,
payload.timestamp)
message += write_short_bytes(payload.metadata)
return message | Encode some OffsetCommitRequest structs (v1)
:param bytes client_id: string
:param int correlation_id: int
:param str group: the consumer group to which you are committing offsets
:param int group_generation_id: int32, generation ID of the group
:param str consumer_id: string, Identifier for the consumer
:param list payloads: list of :class:`OffsetCommitRequest` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L474-L508 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_offset_commit_response | def decode_offset_commit_response(cls, data):
"""
Decode bytes to an OffsetCommitResponse
:param bytes data: bytes to decode
"""
((correlation_id,), cur) = relative_unpack('>i', data, 0)
((num_topics,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error), cur) = relative_unpack('>ih', data, cur)
yield OffsetCommitResponse(topic, partition, error) | python | def decode_offset_commit_response(cls, data):
"""
Decode bytes to an OffsetCommitResponse
:param bytes data: bytes to decode
"""
((correlation_id,), cur) = relative_unpack('>i', data, 0)
((num_topics,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, error), cur) = relative_unpack('>ih', data, cur)
yield OffsetCommitResponse(topic, partition, error) | Decode bytes to an OffsetCommitResponse
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L511-L526 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.encode_offset_fetch_request | def encode_offset_fetch_request(cls, client_id, correlation_id,
group, payloads):
"""
Encode some OffsetFetchRequest structs
:param bytes client_id: string
:param int correlation_id: int
:param bytes group: string, the consumer group you are fetching offsets for
:param list payloads: list of :class:`OffsetFetchRequest`
"""
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(
client_id, correlation_id, KafkaCodec.OFFSET_FETCH_KEY,
api_version=1)
message += write_short_ascii(group)
message += struct.pack('>i', len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition in topic_payloads:
message += struct.pack('>i', partition)
return message | python | def encode_offset_fetch_request(cls, client_id, correlation_id,
group, payloads):
"""
Encode some OffsetFetchRequest structs
:param bytes client_id: string
:param int correlation_id: int
:param bytes group: string, the consumer group you are fetching offsets for
:param list payloads: list of :class:`OffsetFetchRequest`
"""
grouped_payloads = group_by_topic_and_partition(payloads)
message = cls._encode_message_header(
client_id, correlation_id, KafkaCodec.OFFSET_FETCH_KEY,
api_version=1)
message += write_short_ascii(group)
message += struct.pack('>i', len(grouped_payloads))
for topic, topic_payloads in grouped_payloads.items():
message += write_short_ascii(topic)
message += struct.pack('>i', len(topic_payloads))
for partition in topic_payloads:
message += struct.pack('>i', partition)
return message | Encode some OffsetFetchRequest structs
:param bytes client_id: string
:param int correlation_id: int
:param bytes group: string, the consumer group you are fetching offsets for
:param list payloads: list of :class:`OffsetFetchRequest` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L529-L554 |
ciena/afkak | afkak/kafkacodec.py | KafkaCodec.decode_offset_fetch_response | def decode_offset_fetch_response(cls, data):
"""
Decode bytes to an OffsetFetchResponse
:param bytes data: bytes to decode
"""
((correlation_id,), cur) = relative_unpack('>i', data, 0)
((num_topics,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, offset), cur) = relative_unpack('>iq', data, cur)
(metadata, cur) = read_short_bytes(data, cur)
((error,), cur) = relative_unpack('>h', data, cur)
yield OffsetFetchResponse(topic, partition, offset,
metadata, error) | python | def decode_offset_fetch_response(cls, data):
"""
Decode bytes to an OffsetFetchResponse
:param bytes data: bytes to decode
"""
((correlation_id,), cur) = relative_unpack('>i', data, 0)
((num_topics,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_topics):
(topic, cur) = read_short_ascii(data, cur)
((num_partitions,), cur) = relative_unpack('>i', data, cur)
for _i in range(num_partitions):
((partition, offset), cur) = relative_unpack('>iq', data, cur)
(metadata, cur) = read_short_bytes(data, cur)
((error,), cur) = relative_unpack('>h', data, cur)
yield OffsetFetchResponse(topic, partition, offset,
metadata, error) | Decode bytes to an OffsetFetchResponse
:param bytes data: bytes to decode | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L557-L577 |
ciena/afkak | afkak/_protocol.py | KafkaBootstrapProtocol.stringReceived | def stringReceived(self, response):
"""
Handle a response from the broker.
"""
correlation_id = response[0:4]
try:
d = self._pending.pop(correlation_id)
except KeyError:
self._log.warn((
"Response has unknown correlation ID {correlation_id!r}."
" Dropping connection to {peer}."
), correlation_id=correlation_id, peer=self.transport.getPeer())
self.transport.loseConnection()
else:
d.callback(response) | python | def stringReceived(self, response):
"""
Handle a response from the broker.
"""
correlation_id = response[0:4]
try:
d = self._pending.pop(correlation_id)
except KeyError:
self._log.warn((
"Response has unknown correlation ID {correlation_id!r}."
" Dropping connection to {peer}."
), correlation_id=correlation_id, peer=self.transport.getPeer())
self.transport.loseConnection()
else:
d.callback(response) | Handle a response from the broker. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/_protocol.py#L78-L92 |
ciena/afkak | afkak/_protocol.py | KafkaBootstrapProtocol.connectionLost | def connectionLost(self, reason=connectionDone):
"""
Mark the protocol as failed and fail all pending operations.
"""
self._failed = reason
pending, self._pending = self._pending, None
for d in pending.values():
d.errback(reason) | python | def connectionLost(self, reason=connectionDone):
"""
Mark the protocol as failed and fail all pending operations.
"""
self._failed = reason
pending, self._pending = self._pending, None
for d in pending.values():
d.errback(reason) | Mark the protocol as failed and fail all pending operations. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/_protocol.py#L94-L101 |
ciena/afkak | afkak/_protocol.py | KafkaBootstrapProtocol.request | def request(self, request):
"""
Send a request to the Kafka broker.
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns:
`Deferred` which will:
- Succeed with the bytes of a Kafka `ResponseMessage`_
- Fail when the connection terminates
.. _RequestMessage:: https://kafka.apache.org/protocol.html#protocol_messages
"""
if self._failed is not None:
return fail(self._failed)
correlation_id = request[4:8]
assert correlation_id not in self._pending
d = Deferred()
self.sendString(request)
self._pending[correlation_id] = d
return d | python | def request(self, request):
"""
Send a request to the Kafka broker.
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns:
`Deferred` which will:
- Succeed with the bytes of a Kafka `ResponseMessage`_
- Fail when the connection terminates
.. _RequestMessage:: https://kafka.apache.org/protocol.html#protocol_messages
"""
if self._failed is not None:
return fail(self._failed)
correlation_id = request[4:8]
assert correlation_id not in self._pending
d = Deferred()
self.sendString(request)
self._pending[correlation_id] = d
return d | Send a request to the Kafka broker.
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns:
`Deferred` which will:
- Succeed with the bytes of a Kafka `ResponseMessage`_
- Fail when the connection terminates
.. _RequestMessage:: https://kafka.apache.org/protocol.html#protocol_messages | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/_protocol.py#L110-L134 |
ciena/afkak | afkak/producer.py | Producer.send_messages | def send_messages(self, topic, key=None, msgs=()):
"""
Given a topic, and optional key (for partitioning) and a list of
messages, send them to Kafka, either immediately, or when a batch is
ready, depending on the Producer's batch settings.
:param str topic: Kafka topic to send the messages to
:param str key:
Message key used to determine the topic partition to which the
messages will be written. Either `bytes` or `None`.
`None` means that there is no key, but note that that:
- Kafka does not permit producing unkeyed messages to a compacted topic.
- The *partitioner_class* may require a non-`None` key
(`HashedPartitioner` does so).
:param list msgs:
A non-empty sequence of message bytestrings to send. `None`
indicates a ``null`` message (i.e. a tombstone on a compacted
topic).
:returns:
A :class:`~twisted.internet.defer.Deferred` that fires when the
messages have been received by the Kafka cluster.
It will fail with `TypeError` when:
- *topic* is not text (`str` on Python 3, `str` or `unicode` on Python 2)
- *key* is not `bytes` or `None`
- *msgs* is not a sequence of `bytes` or `None`
It will fail with `ValueError` when *msgs* is empty.
"""
try:
topic = _coerce_topic(topic)
if key is not None and not isinstance(key, bytes):
raise TypeError('key={!r} must be bytes or None'.format(key))
if not msgs:
raise ValueError("msgs must be a non-empty sequence")
msg_cnt = len(msgs)
byte_cnt = 0
for index, m in enumerate(msgs):
if m is None:
continue
if not isinstance(m, bytes):
raise TypeError('Message {} to topic {} ({!r:.100}) has type {}, but must have type {}'.format(
index, topic, m, type(m).__name__, type(bytes).__name__))
byte_cnt += len(m)
except Exception:
return fail()
d = Deferred(self._cancel_send_messages)
self._batch_reqs.append(SendRequest(topic, key, msgs, d))
self._waitingMsgCount += msg_cnt
self._waitingByteCount += byte_cnt
# Add request to list of outstanding reqs' callback to remove
self._outstanding.append(d)
d.addBoth(self._remove_from_outstanding, d)
# See if we have enough messages in the batch to do a send.
self._check_send_batch()
return d | python | def send_messages(self, topic, key=None, msgs=()):
"""
Given a topic, and optional key (for partitioning) and a list of
messages, send them to Kafka, either immediately, or when a batch is
ready, depending on the Producer's batch settings.
:param str topic: Kafka topic to send the messages to
:param str key:
Message key used to determine the topic partition to which the
messages will be written. Either `bytes` or `None`.
`None` means that there is no key, but note that that:
- Kafka does not permit producing unkeyed messages to a compacted topic.
- The *partitioner_class* may require a non-`None` key
(`HashedPartitioner` does so).
:param list msgs:
A non-empty sequence of message bytestrings to send. `None`
indicates a ``null`` message (i.e. a tombstone on a compacted
topic).
:returns:
A :class:`~twisted.internet.defer.Deferred` that fires when the
messages have been received by the Kafka cluster.
It will fail with `TypeError` when:
- *topic* is not text (`str` on Python 3, `str` or `unicode` on Python 2)
- *key* is not `bytes` or `None`
- *msgs* is not a sequence of `bytes` or `None`
It will fail with `ValueError` when *msgs* is empty.
"""
try:
topic = _coerce_topic(topic)
if key is not None and not isinstance(key, bytes):
raise TypeError('key={!r} must be bytes or None'.format(key))
if not msgs:
raise ValueError("msgs must be a non-empty sequence")
msg_cnt = len(msgs)
byte_cnt = 0
for index, m in enumerate(msgs):
if m is None:
continue
if not isinstance(m, bytes):
raise TypeError('Message {} to topic {} ({!r:.100}) has type {}, but must have type {}'.format(
index, topic, m, type(m).__name__, type(bytes).__name__))
byte_cnt += len(m)
except Exception:
return fail()
d = Deferred(self._cancel_send_messages)
self._batch_reqs.append(SendRequest(topic, key, msgs, d))
self._waitingMsgCount += msg_cnt
self._waitingByteCount += byte_cnt
# Add request to list of outstanding reqs' callback to remove
self._outstanding.append(d)
d.addBoth(self._remove_from_outstanding, d)
# See if we have enough messages in the batch to do a send.
self._check_send_batch()
return d | Given a topic, and optional key (for partitioning) and a list of
messages, send them to Kafka, either immediately, or when a batch is
ready, depending on the Producer's batch settings.
:param str topic: Kafka topic to send the messages to
:param str key:
Message key used to determine the topic partition to which the
messages will be written. Either `bytes` or `None`.
`None` means that there is no key, but note that that:
- Kafka does not permit producing unkeyed messages to a compacted topic.
- The *partitioner_class* may require a non-`None` key
(`HashedPartitioner` does so).
:param list msgs:
A non-empty sequence of message bytestrings to send. `None`
indicates a ``null`` message (i.e. a tombstone on a compacted
topic).
:returns:
A :class:`~twisted.internet.defer.Deferred` that fires when the
messages have been received by the Kafka cluster.
It will fail with `TypeError` when:
- *topic* is not text (`str` on Python 3, `str` or `unicode` on Python 2)
- *key* is not `bytes` or `None`
- *msgs* is not a sequence of `bytes` or `None`
It will fail with `ValueError` when *msgs* is empty. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L166-L233 |
ciena/afkak | afkak/producer.py | Producer.stop | def stop(self):
"""
Terminate any outstanding requests.
:returns: :class:``Deferred` which fires when fully stopped.
"""
self.stopping = True
# Cancel any outstanding request to our client
if self._batch_send_d:
self._batch_send_d.cancel()
# Do we have to worry about our looping call?
if self.batch_every_t is not None:
# Stop our looping call, and wait for the deferred to be called
if self._sendLooper is not None:
self._sendLooper.stop()
# Make sure requests that wasn't cancelled above are now
self._cancel_outstanding()
return self._sendLooperD or succeed(None) | python | def stop(self):
"""
Terminate any outstanding requests.
:returns: :class:``Deferred` which fires when fully stopped.
"""
self.stopping = True
# Cancel any outstanding request to our client
if self._batch_send_d:
self._batch_send_d.cancel()
# Do we have to worry about our looping call?
if self.batch_every_t is not None:
# Stop our looping call, and wait for the deferred to be called
if self._sendLooper is not None:
self._sendLooper.stop()
# Make sure requests that wasn't cancelled above are now
self._cancel_outstanding()
return self._sendLooperD or succeed(None) | Terminate any outstanding requests.
:returns: :class:``Deferred` which fires when fully stopped. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L235-L252 |
ciena/afkak | afkak/producer.py | Producer._send_timer_failed | def _send_timer_failed(self, fail):
"""
Our _send_batch() function called by the LoopingCall failed. Some
error probably came back from Kafka and _check_error() raised the
exception
For now, just log the failure and restart the loop
"""
log.warning('_send_timer_failed:%r: %s', fail,
fail.getBriefTraceback())
self._sendLooperD = self._sendLooper.start(
self.batch_every_t, now=False) | python | def _send_timer_failed(self, fail):
"""
Our _send_batch() function called by the LoopingCall failed. Some
error probably came back from Kafka and _check_error() raised the
exception
For now, just log the failure and restart the loop
"""
log.warning('_send_timer_failed:%r: %s', fail,
fail.getBriefTraceback())
self._sendLooperD = self._sendLooper.start(
self.batch_every_t, now=False) | Our _send_batch() function called by the LoopingCall failed. Some
error probably came back from Kafka and _check_error() raised the
exception
For now, just log the failure and restart the loop | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L256-L266 |
ciena/afkak | afkak/producer.py | Producer._send_timer_stopped | def _send_timer_stopped(self, lCall):
"""
We're shutting down, clean up our looping call...
"""
if self._sendLooper is not lCall:
log.warning('commitTimerStopped with wrong timer:%s not:%s',
lCall, self._sendLooper)
else:
self._sendLooper = None
self._sendLooperD = None | python | def _send_timer_stopped(self, lCall):
"""
We're shutting down, clean up our looping call...
"""
if self._sendLooper is not lCall:
log.warning('commitTimerStopped with wrong timer:%s not:%s',
lCall, self._sendLooper)
else:
self._sendLooper = None
self._sendLooperD = None | We're shutting down, clean up our looping call... | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L268-L277 |
ciena/afkak | afkak/producer.py | Producer._next_partition | def _next_partition(self, topic, key=None):
"""get the next partition to which to publish
Check with our client for the latest partitions for the topic, then
ask our partitioner for the next partition to which we should publish
for the give key. If needed, create a new partitioner for the topic.
"""
# check if the client has metadata for the topic
while self.client.metadata_error_for_topic(topic):
# client doesn't have good metadata for topic. ask to fetch...
# check if we have request attempts left
if self._req_attempts >= self._max_attempts:
# No, no attempts left, so raise the error
_check_error(self.client.metadata_error_for_topic(topic))
yield self.client.load_metadata_for_topics(topic)
if not self.client.metadata_error_for_topic(topic):
break
self._req_attempts += 1
d = Deferred()
self.client.reactor.callLater(
self._retry_interval, d.callback, True)
self._retry_interval *= self.RETRY_INTERVAL_FACTOR
yield d
# Ok, should be safe to get the partitions now...
partitions = self.client.topic_partitions[topic]
# Do we have a partitioner for this topic already?
if topic not in self.partitioners:
# No, create a new paritioner for topic, partitions
self.partitioners[topic] = \
self.partitioner_class(topic, partitions)
# Lookup the next partition
partition = self.partitioners[topic].partition(key, partitions)
returnValue(partition) | python | def _next_partition(self, topic, key=None):
"""get the next partition to which to publish
Check with our client for the latest partitions for the topic, then
ask our partitioner for the next partition to which we should publish
for the give key. If needed, create a new partitioner for the topic.
"""
# check if the client has metadata for the topic
while self.client.metadata_error_for_topic(topic):
# client doesn't have good metadata for topic. ask to fetch...
# check if we have request attempts left
if self._req_attempts >= self._max_attempts:
# No, no attempts left, so raise the error
_check_error(self.client.metadata_error_for_topic(topic))
yield self.client.load_metadata_for_topics(topic)
if not self.client.metadata_error_for_topic(topic):
break
self._req_attempts += 1
d = Deferred()
self.client.reactor.callLater(
self._retry_interval, d.callback, True)
self._retry_interval *= self.RETRY_INTERVAL_FACTOR
yield d
# Ok, should be safe to get the partitions now...
partitions = self.client.topic_partitions[topic]
# Do we have a partitioner for this topic already?
if topic not in self.partitioners:
# No, create a new paritioner for topic, partitions
self.partitioners[topic] = \
self.partitioner_class(topic, partitions)
# Lookup the next partition
partition = self.partitioners[topic].partition(key, partitions)
returnValue(partition) | get the next partition to which to publish
Check with our client for the latest partitions for the topic, then
ask our partitioner for the next partition to which we should publish
for the give key. If needed, create a new partitioner for the topic. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L280-L313 |
ciena/afkak | afkak/producer.py | Producer._send_requests | def _send_requests(self, parts_results, requests):
"""Send the requests
We've determined the partition for each message group in the batch, or
got errors for them.
"""
# We use these dictionaries to be able to combine all the messages
# destined to the same topic/partition into one request
# the messages & deferreds, both by topic+partition
reqsByTopicPart = defaultdict(list)
payloadsByTopicPart = defaultdict(list)
deferredsByTopicPart = defaultdict(list)
# We now have a list of (succeeded/failed, partition/None) tuples
# for the partition lookups we did on each message group, zipped with
# the requests
for (success, part_or_failure), req in zip(parts_results, requests):
if req.deferred.called:
# Submitter cancelled the request while we were waiting for
# the topic/partition, skip it
continue
if not success:
# We failed to get a partition for this request, errback to the
# caller with the failure. Maybe this should retry? However,
# since this failure is likely to affect an entire Topic, there
# should be no issues with ordering of messages within a
# partition of a topic getting out of order. Let the caller
# retry the particular request if they like, or they could
# cancel all their outstanding requests in
req.deferred.errback(part_or_failure)
continue
# Ok, we now have a partition for this request, we can add the
# request for this topic/partition to reqsByTopicPart, and the
# caller's deferred to deferredsByTopicPart
topicPart = TopicAndPartition(req.topic, part_or_failure)
reqsByTopicPart[topicPart].append(req)
deferredsByTopicPart[topicPart].append(req.deferred)
# Build list of payloads grouped by topic/partition
# That is, we bundle all the messages destined for a given
# topic/partition, even if they were submitted by different
# requests into a single 'payload', and then we submit all the
# payloads as a list to the client for sending to the various
# brokers. The finest granularity of success/failure is at the
# payload (topic/partition) level.
payloads = []
for (topic, partition), reqs in reqsByTopicPart.items():
msgSet = create_message_set(reqs, self.codec)
req = ProduceRequest(topic, partition, msgSet)
topicPart = TopicAndPartition(topic, partition)
payloads.append(req)
payloadsByTopicPart[topicPart] = req
# Make sure we have some payloads to send
if not payloads:
return
# send the request
d = self.client.send_produce_request(
payloads, acks=self.req_acks, timeout=self.ack_timeout,
fail_on_error=False)
self._req_attempts += 1
# add our handlers
d.addBoth(self._handle_send_response, payloadsByTopicPart,
deferredsByTopicPart)
return d | python | def _send_requests(self, parts_results, requests):
"""Send the requests
We've determined the partition for each message group in the batch, or
got errors for them.
"""
# We use these dictionaries to be able to combine all the messages
# destined to the same topic/partition into one request
# the messages & deferreds, both by topic+partition
reqsByTopicPart = defaultdict(list)
payloadsByTopicPart = defaultdict(list)
deferredsByTopicPart = defaultdict(list)
# We now have a list of (succeeded/failed, partition/None) tuples
# for the partition lookups we did on each message group, zipped with
# the requests
for (success, part_or_failure), req in zip(parts_results, requests):
if req.deferred.called:
# Submitter cancelled the request while we were waiting for
# the topic/partition, skip it
continue
if not success:
# We failed to get a partition for this request, errback to the
# caller with the failure. Maybe this should retry? However,
# since this failure is likely to affect an entire Topic, there
# should be no issues with ordering of messages within a
# partition of a topic getting out of order. Let the caller
# retry the particular request if they like, or they could
# cancel all their outstanding requests in
req.deferred.errback(part_or_failure)
continue
# Ok, we now have a partition for this request, we can add the
# request for this topic/partition to reqsByTopicPart, and the
# caller's deferred to deferredsByTopicPart
topicPart = TopicAndPartition(req.topic, part_or_failure)
reqsByTopicPart[topicPart].append(req)
deferredsByTopicPart[topicPart].append(req.deferred)
# Build list of payloads grouped by topic/partition
# That is, we bundle all the messages destined for a given
# topic/partition, even if they were submitted by different
# requests into a single 'payload', and then we submit all the
# payloads as a list to the client for sending to the various
# brokers. The finest granularity of success/failure is at the
# payload (topic/partition) level.
payloads = []
for (topic, partition), reqs in reqsByTopicPart.items():
msgSet = create_message_set(reqs, self.codec)
req = ProduceRequest(topic, partition, msgSet)
topicPart = TopicAndPartition(topic, partition)
payloads.append(req)
payloadsByTopicPart[topicPart] = req
# Make sure we have some payloads to send
if not payloads:
return
# send the request
d = self.client.send_produce_request(
payloads, acks=self.req_acks, timeout=self.ack_timeout,
fail_on_error=False)
self._req_attempts += 1
# add our handlers
d.addBoth(self._handle_send_response, payloadsByTopicPart,
deferredsByTopicPart)
return d | Send the requests
We've determined the partition for each message group in the batch, or
got errors for them. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L315-L378 |
ciena/afkak | afkak/producer.py | Producer._complete_batch_send | def _complete_batch_send(self, resp):
"""Complete the processing of our batch send operation
Clear the deferred tracking our current batch processing
and reset our retry count and retry interval
Return none to eat any errors coming from up the deferred chain
"""
self._batch_send_d = None
self._req_attempts = 0
self._retry_interval = self._init_retry_interval
if isinstance(resp, Failure) and not resp.check(tid_CancelledError,
CancelledError):
log.error("Failure detected in _complete_batch_send: %r\n%r",
resp, resp.getTraceback())
return | python | def _complete_batch_send(self, resp):
"""Complete the processing of our batch send operation
Clear the deferred tracking our current batch processing
and reset our retry count and retry interval
Return none to eat any errors coming from up the deferred chain
"""
self._batch_send_d = None
self._req_attempts = 0
self._retry_interval = self._init_retry_interval
if isinstance(resp, Failure) and not resp.check(tid_CancelledError,
CancelledError):
log.error("Failure detected in _complete_batch_send: %r\n%r",
resp, resp.getTraceback())
return | Complete the processing of our batch send operation
Clear the deferred tracking our current batch processing
and reset our retry count and retry interval
Return none to eat any errors coming from up the deferred chain | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L380-L394 |
ciena/afkak | afkak/producer.py | Producer._check_send_batch | def _check_send_batch(self, result=None):
"""Check if we have enough messages/bytes to send
Since this can be called from the callback chain, we
pass through our first (non-self) arg
"""
if (
(self.batch_every_n and self.batch_every_n <= self._waitingMsgCount) or
(self.batch_every_b and self.batch_every_b <= self._waitingByteCount)
):
self._send_batch()
return result | python | def _check_send_batch(self, result=None):
"""Check if we have enough messages/bytes to send
Since this can be called from the callback chain, we
pass through our first (non-self) arg
"""
if (
(self.batch_every_n and self.batch_every_n <= self._waitingMsgCount) or
(self.batch_every_b and self.batch_every_b <= self._waitingByteCount)
):
self._send_batch()
return result | Check if we have enough messages/bytes to send
Since this can be called from the callback chain, we
pass through our first (non-self) arg | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L396-L406 |
ciena/afkak | afkak/producer.py | Producer._send_batch | def _send_batch(self):
"""
Send the waiting messages, if there are any, and we can...
This is called by our LoopingCall every send_every_t interval, and
from send_messages everytime we have enough messages to send.
This is also called from py:method:`send_messages` via
py:method:`_check_send_batch` if there are enough messages/bytes
to require a send.
Note, the send will be delayed (triggered by completion or failure of
previous) if we are currently trying to complete the last batch send.
"""
# We can be triggered by the LoopingCall, and have nothing to send...
# Or, we've got SendRequest(s) to send, but are still processing the
# previous batch...
if (not self._batch_reqs) or self._batch_send_d:
return
# Save a local copy, and clear the global list & metrics
requests, self._batch_reqs = self._batch_reqs, []
self._waitingByteCount = 0
self._waitingMsgCount = 0
# Iterate over them, fetching the partition for each message batch
d_list = []
for req in requests:
# For each request, we get the topic & key and use that to lookup
# the next partition on which we should produce
d_list.append(self._next_partition(req.topic, req.key))
d = self._batch_send_d = Deferred()
# Since DeferredList doesn't propagate cancel() calls to deferreds it
# might be waiting on for a result, we need to use this structure,
# rather than just using the DeferredList directly
d.addCallback(lambda r: DeferredList(d_list, consumeErrors=True))
d.addCallback(self._send_requests, requests)
# Once we finish fully processing the current batch, clear the
# _batch_send_d and check if any more requests piled up when we
# were busy.
d.addBoth(self._complete_batch_send)
d.addBoth(self._check_send_batch)
# Fire off the callback to start processing...
d.callback(None) | python | def _send_batch(self):
"""
Send the waiting messages, if there are any, and we can...
This is called by our LoopingCall every send_every_t interval, and
from send_messages everytime we have enough messages to send.
This is also called from py:method:`send_messages` via
py:method:`_check_send_batch` if there are enough messages/bytes
to require a send.
Note, the send will be delayed (triggered by completion or failure of
previous) if we are currently trying to complete the last batch send.
"""
# We can be triggered by the LoopingCall, and have nothing to send...
# Or, we've got SendRequest(s) to send, but are still processing the
# previous batch...
if (not self._batch_reqs) or self._batch_send_d:
return
# Save a local copy, and clear the global list & metrics
requests, self._batch_reqs = self._batch_reqs, []
self._waitingByteCount = 0
self._waitingMsgCount = 0
# Iterate over them, fetching the partition for each message batch
d_list = []
for req in requests:
# For each request, we get the topic & key and use that to lookup
# the next partition on which we should produce
d_list.append(self._next_partition(req.topic, req.key))
d = self._batch_send_d = Deferred()
# Since DeferredList doesn't propagate cancel() calls to deferreds it
# might be waiting on for a result, we need to use this structure,
# rather than just using the DeferredList directly
d.addCallback(lambda r: DeferredList(d_list, consumeErrors=True))
d.addCallback(self._send_requests, requests)
# Once we finish fully processing the current batch, clear the
# _batch_send_d and check if any more requests piled up when we
# were busy.
d.addBoth(self._complete_batch_send)
d.addBoth(self._check_send_batch)
# Fire off the callback to start processing...
d.callback(None) | Send the waiting messages, if there are any, and we can...
This is called by our LoopingCall every send_every_t interval, and
from send_messages everytime we have enough messages to send.
This is also called from py:method:`send_messages` via
py:method:`_check_send_batch` if there are enough messages/bytes
to require a send.
Note, the send will be delayed (triggered by completion or failure of
previous) if we are currently trying to complete the last batch send. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L408-L449 |
ciena/afkak | afkak/producer.py | Producer._cancel_send_messages | def _cancel_send_messages(self, d):
"""Cancel a `send_messages` request
First check if the request is in a waiting batch, of so, great, remove
it from the batch. If it's not found, we errback() the deferred and
the downstream processing steps take care of aborting further
processing.
We check if there's a current _batch_send_d to determine where in the
chain we were (getting partitions, or already sent request to Kafka)
and errback differently.
"""
# Is the request in question in an unsent batch?
for req in self._batch_reqs:
if req.deferred == d:
# Found the request, remove it and return.
msgs = req.messages
self._waitingMsgCount -= len(msgs)
for m in (_m for _m in msgs if _m is not None):
self._waitingByteCount -= len(m)
# This _should_ be safe as we abort the iteration upon removal
self._batch_reqs.remove(req)
d.errback(CancelledError(request_sent=False))
return
# If it wasn't found in the unsent batch. We just rely on the
# downstream processing of the request to check if the deferred
# has been called and skip further processing for this request
# Errback the deferred with whether or not we sent the request
# to Kafka already
d.errback(
CancelledError(request_sent=(self._batch_send_d is not None)))
return | python | def _cancel_send_messages(self, d):
"""Cancel a `send_messages` request
First check if the request is in a waiting batch, of so, great, remove
it from the batch. If it's not found, we errback() the deferred and
the downstream processing steps take care of aborting further
processing.
We check if there's a current _batch_send_d to determine where in the
chain we were (getting partitions, or already sent request to Kafka)
and errback differently.
"""
# Is the request in question in an unsent batch?
for req in self._batch_reqs:
if req.deferred == d:
# Found the request, remove it and return.
msgs = req.messages
self._waitingMsgCount -= len(msgs)
for m in (_m for _m in msgs if _m is not None):
self._waitingByteCount -= len(m)
# This _should_ be safe as we abort the iteration upon removal
self._batch_reqs.remove(req)
d.errback(CancelledError(request_sent=False))
return
# If it wasn't found in the unsent batch. We just rely on the
# downstream processing of the request to check if the deferred
# has been called and skip further processing for this request
# Errback the deferred with whether or not we sent the request
# to Kafka already
d.errback(
CancelledError(request_sent=(self._batch_send_d is not None)))
return | Cancel a `send_messages` request
First check if the request is in a waiting batch, of so, great, remove
it from the batch. If it's not found, we errback() the deferred and
the downstream processing steps take care of aborting further
processing.
We check if there's a current _batch_send_d to determine where in the
chain we were (getting partitions, or already sent request to Kafka)
and errback differently. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L451-L481 |
ciena/afkak | afkak/producer.py | Producer._handle_send_response | def _handle_send_response(self, result, payloadsByTopicPart,
deferredsByTopicPart):
"""Handle the response from our client to our send_produce_request
This is a bit complex. Failures can happen in a few ways:
1. The client sent an empty list, False, None or some similar thing
as the result, but we were expecting real responses.
2. The client had a failure before it even tried sending any requests
to any brokers.
a. Kafka error: See if we can retry the whole request
b. Non-kafka: Figure it's a programming error, fail all deferreds
3. The client sent all the requests (it's all or none) to the brokers
but one or more request failed (timed out before receiving a
response, or the brokerclient threw some sort of exception on send
In this case, the client throws FailedPayloadsError, and attaches
the responses (NOTE: some can have errors!), and the payloads
where the send itself failed to the exception.
4. The client sent all the requests, all responses were received, but
the Kafka broker indicated an error with servicing the request on
some of the responses.
"""
def _deliver_result(d_list, result=None):
"""Possibly callback each deferred in a list with single result"""
for d in d_list:
if not isinstance(d, Deferred):
# nested list...
_deliver_result(d, result)
else:
# We check d.called since the request could have been
# cancelled while we waited for the response
if not d.called:
d.callback(result)
def _do_retry(payloads):
# We use 'fail_on_error=False' because we want our client to
# process every response that comes back from the brokers so
# we can determine which requests were successful, and which
# failed for retry
d = self.client.send_produce_request(
payloads, acks=self.req_acks, timeout=self.ack_timeout,
fail_on_error=False)
self._req_attempts += 1
# add our handlers
d.addBoth(self._handle_send_response, payloadsByTopicPart,
deferredsByTopicPart)
return d
def _cancel_retry(failure, dc):
# Cancel the retry callLater and pass-thru the failure
dc.cancel()
# cancel all the top-level deferreds associated with the request
_deliver_result(deferredsByTopicPart.values(), failure)
return failure
def _check_retry_payloads(failed_payloads_with_errs):
"""Check our retry count and retry after a delay or errback
If we have more retries to try, create a deferred that will fire
with the result of delayed retry. If not, errback the remaining
deferreds with failure
Params:
failed_payloads - list of (payload, failure) tuples
"""
# Do we have retries left?
if self._req_attempts >= self._max_attempts:
# No, no retries left, fail each failed_payload with its
# associated failure
for p, f in failed_payloads_with_errs:
t_and_p = TopicAndPartition(p.topic, p.partition)
_deliver_result(deferredsByTopicPart[t_and_p], f)
return
# Retries remain! Schedule one...
d = Deferred()
dc = self.client.reactor.callLater(
self._retry_interval, d.callback, [p for p, f in
failed_payloads])
self._retry_interval *= self.RETRY_INTERVAL_FACTOR
# Cancel the callLater when request is cancelled before it fires
d.addErrback(_cancel_retry, dc)
# Reset the topic metadata for all topics which had failed_requests
# where the failures were of the kind UnknownTopicOrPartitionError
# or NotLeaderForPartitionError, since those indicate our client's
# metadata is out of date.
reset_topics = set()
for payload, e in failed_payloads:
if (isinstance(e, NotLeaderForPartitionError) or
isinstance(e, UnknownTopicOrPartitionError)):
reset_topics.add(payload.topic)
if reset_topics:
self.client.reset_topic_metadata(*reset_topics)
d.addCallback(_do_retry)
return d
# The payloads we need to retry, if we still can..
failed_payloads = []
# In the case we are sending requests without requiring acks, the
# brokerclient will immediately callback() the deferred upon send with
# None. In that case, we just iterate over all the deferreds in
# deferredsByTopicPart and callback them with None
# If we are expecting responses/acks, and we get an empty result, we
# callback with a Failure of NoResponseError
if not result:
# Success, but no results, is that what we're expecting?
if self.req_acks == PRODUCER_ACK_NOT_REQUIRED:
result = None
else:
# We got no result, but we were expecting one? Fail everything!
result = Failure(NoResponseError())
_deliver_result(deferredsByTopicPart.values(), result)
return
elif isinstance(result, Failure):
# Failure! Was it total, or partial?
if not result.check(FailedPayloadsError):
# Total failure of some sort!
# The client was unable to send the request at all. If it's
# a KafkaError (probably Leader/Partition unavailable), retry
if result.check(KafkaError):
# Yep, a kafak error. Set failed_payloads, and we'll retry
# them all below. Set failure for errback to callers if we
# are all out of retries
failure, result = result, [] # no succesful results, retry
failed_payloads = [(p, failure) for p in
payloadsByTopicPart.values()]
else:
# Was the request cancelled?
if not result.check(tid_CancelledError):
# Uh Oh, programming error? Log it!
log.error("Unexpected failure: %r in "
"_handle_send_response", result)
# Cancelled, or programming error, we fail the requests
_deliver_result(deferredsByTopicPart.values(), result)
return
else:
# FailedPayloadsError: This means that some/all of the
# requests to a/some brokerclients failed to send.
# Pull the successful responses and the failed_payloads off
# the exception and handle them below. Preserve the
# FailedPayloadsError as 'failure'
failure = result
result = failure.value.args[0]
failed_payloads = failure.value.args[1]
# Do we have results? Iterate over them and if the response indicates
# success, then callback the associated deferred. If the response
# indicates an error, then setup that request for retry.
# NOTE: In this case, each failed_payload get it's own error...
for res in result:
t_and_p = TopicAndPartition(res.topic, res.partition)
t_and_p_err = _check_error(res, raiseException=False)
if not t_and_p_err:
# Success for this topic/partition
d_list = deferredsByTopicPart[t_and_p]
_deliver_result(d_list, res)
else:
p = payloadsByTopicPart[t_and_p]
failed_payloads.append((p, t_and_p_err))
# Were there any failed requests to possibly retry?
if failed_payloads:
return _check_retry_payloads(failed_payloads)
return | python | def _handle_send_response(self, result, payloadsByTopicPart,
deferredsByTopicPart):
"""Handle the response from our client to our send_produce_request
This is a bit complex. Failures can happen in a few ways:
1. The client sent an empty list, False, None or some similar thing
as the result, but we were expecting real responses.
2. The client had a failure before it even tried sending any requests
to any brokers.
a. Kafka error: See if we can retry the whole request
b. Non-kafka: Figure it's a programming error, fail all deferreds
3. The client sent all the requests (it's all or none) to the brokers
but one or more request failed (timed out before receiving a
response, or the brokerclient threw some sort of exception on send
In this case, the client throws FailedPayloadsError, and attaches
the responses (NOTE: some can have errors!), and the payloads
where the send itself failed to the exception.
4. The client sent all the requests, all responses were received, but
the Kafka broker indicated an error with servicing the request on
some of the responses.
"""
def _deliver_result(d_list, result=None):
"""Possibly callback each deferred in a list with single result"""
for d in d_list:
if not isinstance(d, Deferred):
# nested list...
_deliver_result(d, result)
else:
# We check d.called since the request could have been
# cancelled while we waited for the response
if not d.called:
d.callback(result)
def _do_retry(payloads):
# We use 'fail_on_error=False' because we want our client to
# process every response that comes back from the brokers so
# we can determine which requests were successful, and which
# failed for retry
d = self.client.send_produce_request(
payloads, acks=self.req_acks, timeout=self.ack_timeout,
fail_on_error=False)
self._req_attempts += 1
# add our handlers
d.addBoth(self._handle_send_response, payloadsByTopicPart,
deferredsByTopicPart)
return d
def _cancel_retry(failure, dc):
# Cancel the retry callLater and pass-thru the failure
dc.cancel()
# cancel all the top-level deferreds associated with the request
_deliver_result(deferredsByTopicPart.values(), failure)
return failure
def _check_retry_payloads(failed_payloads_with_errs):
"""Check our retry count and retry after a delay or errback
If we have more retries to try, create a deferred that will fire
with the result of delayed retry. If not, errback the remaining
deferreds with failure
Params:
failed_payloads - list of (payload, failure) tuples
"""
# Do we have retries left?
if self._req_attempts >= self._max_attempts:
# No, no retries left, fail each failed_payload with its
# associated failure
for p, f in failed_payloads_with_errs:
t_and_p = TopicAndPartition(p.topic, p.partition)
_deliver_result(deferredsByTopicPart[t_and_p], f)
return
# Retries remain! Schedule one...
d = Deferred()
dc = self.client.reactor.callLater(
self._retry_interval, d.callback, [p for p, f in
failed_payloads])
self._retry_interval *= self.RETRY_INTERVAL_FACTOR
# Cancel the callLater when request is cancelled before it fires
d.addErrback(_cancel_retry, dc)
# Reset the topic metadata for all topics which had failed_requests
# where the failures were of the kind UnknownTopicOrPartitionError
# or NotLeaderForPartitionError, since those indicate our client's
# metadata is out of date.
reset_topics = set()
for payload, e in failed_payloads:
if (isinstance(e, NotLeaderForPartitionError) or
isinstance(e, UnknownTopicOrPartitionError)):
reset_topics.add(payload.topic)
if reset_topics:
self.client.reset_topic_metadata(*reset_topics)
d.addCallback(_do_retry)
return d
# The payloads we need to retry, if we still can..
failed_payloads = []
# In the case we are sending requests without requiring acks, the
# brokerclient will immediately callback() the deferred upon send with
# None. In that case, we just iterate over all the deferreds in
# deferredsByTopicPart and callback them with None
# If we are expecting responses/acks, and we get an empty result, we
# callback with a Failure of NoResponseError
if not result:
# Success, but no results, is that what we're expecting?
if self.req_acks == PRODUCER_ACK_NOT_REQUIRED:
result = None
else:
# We got no result, but we were expecting one? Fail everything!
result = Failure(NoResponseError())
_deliver_result(deferredsByTopicPart.values(), result)
return
elif isinstance(result, Failure):
# Failure! Was it total, or partial?
if not result.check(FailedPayloadsError):
# Total failure of some sort!
# The client was unable to send the request at all. If it's
# a KafkaError (probably Leader/Partition unavailable), retry
if result.check(KafkaError):
# Yep, a kafak error. Set failed_payloads, and we'll retry
# them all below. Set failure for errback to callers if we
# are all out of retries
failure, result = result, [] # no succesful results, retry
failed_payloads = [(p, failure) for p in
payloadsByTopicPart.values()]
else:
# Was the request cancelled?
if not result.check(tid_CancelledError):
# Uh Oh, programming error? Log it!
log.error("Unexpected failure: %r in "
"_handle_send_response", result)
# Cancelled, or programming error, we fail the requests
_deliver_result(deferredsByTopicPart.values(), result)
return
else:
# FailedPayloadsError: This means that some/all of the
# requests to a/some brokerclients failed to send.
# Pull the successful responses and the failed_payloads off
# the exception and handle them below. Preserve the
# FailedPayloadsError as 'failure'
failure = result
result = failure.value.args[0]
failed_payloads = failure.value.args[1]
# Do we have results? Iterate over them and if the response indicates
# success, then callback the associated deferred. If the response
# indicates an error, then setup that request for retry.
# NOTE: In this case, each failed_payload get it's own error...
for res in result:
t_and_p = TopicAndPartition(res.topic, res.partition)
t_and_p_err = _check_error(res, raiseException=False)
if not t_and_p_err:
# Success for this topic/partition
d_list = deferredsByTopicPart[t_and_p]
_deliver_result(d_list, res)
else:
p = payloadsByTopicPart[t_and_p]
failed_payloads.append((p, t_and_p_err))
# Were there any failed requests to possibly retry?
if failed_payloads:
return _check_retry_payloads(failed_payloads)
return | Handle the response from our client to our send_produce_request
This is a bit complex. Failures can happen in a few ways:
1. The client sent an empty list, False, None or some similar thing
as the result, but we were expecting real responses.
2. The client had a failure before it even tried sending any requests
to any brokers.
a. Kafka error: See if we can retry the whole request
b. Non-kafka: Figure it's a programming error, fail all deferreds
3. The client sent all the requests (it's all or none) to the brokers
but one or more request failed (timed out before receiving a
response, or the brokerclient threw some sort of exception on send
In this case, the client throws FailedPayloadsError, and attaches
the responses (NOTE: some can have errors!), and the payloads
where the send itself failed to the exception.
4. The client sent all the requests, all responses were received, but
the Kafka broker indicated an error with servicing the request on
some of the responses. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L483-L650 |
ciena/afkak | afkak/producer.py | Producer._cancel_outstanding | def _cancel_outstanding(self):
"""Cancel all of our outstanding requests"""
for d in list(self._outstanding):
d.addErrback(lambda _: None) # Eat any uncaught errors
d.cancel() | python | def _cancel_outstanding(self):
"""Cancel all of our outstanding requests"""
for d in list(self._outstanding):
d.addErrback(lambda _: None) # Eat any uncaught errors
d.cancel() | Cancel all of our outstanding requests | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/producer.py#L657-L661 |
ciena/afkak | afkak/client.py | _normalize_hosts | def _normalize_hosts(hosts):
"""
Canonicalize the *hosts* parameter.
>>> _normalize_hosts("host,127.0.0.2:2909")
[('127.0.0.2', 2909), ('host', 9092)]
:param hosts:
A list or comma-separated string of hostnames which may also include
port numbers. All of the following are valid::
b'host'
u'host'
b'host:1234'
u'host:1234,host:2345'
b'host:1234 , host:2345 '
[u'host1', b'host2']
[b'host:1234', b'host:2345']
Hostnames must be ASCII (IDN is not supported). The default Kafka port
of 9092 is implied when no port is given.
:returns: A list of unique (host, port) tuples.
:rtype: :class:`list` of (:class:`str`, :class:`int`) tuples
"""
if isinstance(hosts, bytes):
hosts = hosts.split(b',')
elif isinstance(hosts, _unicode):
hosts = hosts.split(u',')
result = set()
for host_port in hosts:
# FIXME This won't handle IPv6 addresses
res = nativeString(host_port).split(':')
host = res[0].strip()
port = int(res[1].strip()) if len(res) > 1 else DefaultKafkaPort
result.add((host, port))
return sorted(result) | python | def _normalize_hosts(hosts):
"""
Canonicalize the *hosts* parameter.
>>> _normalize_hosts("host,127.0.0.2:2909")
[('127.0.0.2', 2909), ('host', 9092)]
:param hosts:
A list or comma-separated string of hostnames which may also include
port numbers. All of the following are valid::
b'host'
u'host'
b'host:1234'
u'host:1234,host:2345'
b'host:1234 , host:2345 '
[u'host1', b'host2']
[b'host:1234', b'host:2345']
Hostnames must be ASCII (IDN is not supported). The default Kafka port
of 9092 is implied when no port is given.
:returns: A list of unique (host, port) tuples.
:rtype: :class:`list` of (:class:`str`, :class:`int`) tuples
"""
if isinstance(hosts, bytes):
hosts = hosts.split(b',')
elif isinstance(hosts, _unicode):
hosts = hosts.split(u',')
result = set()
for host_port in hosts:
# FIXME This won't handle IPv6 addresses
res = nativeString(host_port).split(':')
host = res[0].strip()
port = int(res[1].strip()) if len(res) > 1 else DefaultKafkaPort
result.add((host, port))
return sorted(result) | Canonicalize the *hosts* parameter.
>>> _normalize_hosts("host,127.0.0.2:2909")
[('127.0.0.2', 2909), ('host', 9092)]
:param hosts:
A list or comma-separated string of hostnames which may also include
port numbers. All of the following are valid::
b'host'
u'host'
b'host:1234'
u'host:1234,host:2345'
b'host:1234 , host:2345 '
[u'host1', b'host2']
[b'host:1234', b'host:2345']
Hostnames must be ASCII (IDN is not supported). The default Kafka port
of 9092 is implied when no port is given.
:returns: A list of unique (host, port) tuples.
:rtype: :class:`list` of (:class:`str`, :class:`int`) tuples | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L1083-L1120 |
ciena/afkak | afkak/client.py | KafkaClient.reset_consumer_group_metadata | def reset_consumer_group_metadata(self, *groups):
"""Reset cache of what broker manages the offset for specified groups
Remove the cache of what Kafka broker should be contacted when
fetching or updating the committed offsets for a given consumer
group or groups.
NOTE: Does not cancel any outstanding requests for updates to the
consumer group metadata for the specified groups.
"""
groups = tuple(_coerce_consumer_group(g) for g in groups)
for group in groups:
if group in self.consumer_group_to_brokers:
del self.consumer_group_to_brokers[group] | python | def reset_consumer_group_metadata(self, *groups):
"""Reset cache of what broker manages the offset for specified groups
Remove the cache of what Kafka broker should be contacted when
fetching or updating the committed offsets for a given consumer
group or groups.
NOTE: Does not cancel any outstanding requests for updates to the
consumer group metadata for the specified groups.
"""
groups = tuple(_coerce_consumer_group(g) for g in groups)
for group in groups:
if group in self.consumer_group_to_brokers:
del self.consumer_group_to_brokers[group] | Reset cache of what broker manages the offset for specified groups
Remove the cache of what Kafka broker should be contacted when
fetching or updating the committed offsets for a given consumer
group or groups.
NOTE: Does not cancel any outstanding requests for updates to the
consumer group metadata for the specified groups. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L252-L265 |
ciena/afkak | afkak/client.py | KafkaClient.reset_all_metadata | def reset_all_metadata(self):
"""Clear all cached metadata
Metadata will be re-fetched as required to satisfy requests.
"""
self.topics_to_brokers.clear()
self.topic_partitions.clear()
self.topic_errors.clear()
self.consumer_group_to_brokers.clear() | python | def reset_all_metadata(self):
"""Clear all cached metadata
Metadata will be re-fetched as required to satisfy requests.
"""
self.topics_to_brokers.clear()
self.topic_partitions.clear()
self.topic_errors.clear()
self.consumer_group_to_brokers.clear() | Clear all cached metadata
Metadata will be re-fetched as required to satisfy requests. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L267-L275 |
ciena/afkak | afkak/client.py | KafkaClient.topic_fully_replicated | def topic_fully_replicated(self, topic):
"""
Determine if the given topic is fully replicated according to the
currently known cluster metadata.
.. note::
This relies on cached cluster metadata. You may call
:meth:`load_metadata_for_topics()` first to refresh this cache.
:param str topic: Topic name
:returns:
A boolean indicating that:
1. The number of partitions in the topic is non-zero.
2. For each partition, all replicas are in the in-sync replica
(ISR) set.
:rtype: :class:`bool`
"""
topic = _coerce_topic(topic)
if topic not in self.topic_partitions:
return False
if not self.topic_partitions[topic]:
# Don't consider an empty partition list 'fully replicated'
return False
return all(
self.partition_fully_replicated(TopicAndPartition(topic, p))
for p in self.topic_partitions[topic]
) | python | def topic_fully_replicated(self, topic):
"""
Determine if the given topic is fully replicated according to the
currently known cluster metadata.
.. note::
This relies on cached cluster metadata. You may call
:meth:`load_metadata_for_topics()` first to refresh this cache.
:param str topic: Topic name
:returns:
A boolean indicating that:
1. The number of partitions in the topic is non-zero.
2. For each partition, all replicas are in the in-sync replica
(ISR) set.
:rtype: :class:`bool`
"""
topic = _coerce_topic(topic)
if topic not in self.topic_partitions:
return False
if not self.topic_partitions[topic]:
# Don't consider an empty partition list 'fully replicated'
return False
return all(
self.partition_fully_replicated(TopicAndPartition(topic, p))
for p in self.topic_partitions[topic]
) | Determine if the given topic is fully replicated according to the
currently known cluster metadata.
.. note::
This relies on cached cluster metadata. You may call
:meth:`load_metadata_for_topics()` first to refresh this cache.
:param str topic: Topic name
:returns:
A boolean indicating that:
1. The number of partitions in the topic is non-zero.
2. For each partition, all replicas are in the in-sync replica
(ISR) set.
:rtype: :class:`bool` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L290-L319 |
ciena/afkak | afkak/client.py | KafkaClient.close | def close(self):
"""Permanently dispose of the client
- Immediately mark the client as closed, causing current operations to
fail with :exc:`~afkak.common.CancelledError` and future operations to
fail with :exc:`~afkak.common.ClientError`.
- Clear cached metadata.
- Close any connections to Kafka brokers.
:returns:
deferred that fires when all resources have been released
"""
# If we're already waiting on an/some outstanding disconnects
# make sure we continue to wait for them...
log.debug("%r: close", self)
self._closing = True
# Close down any clients we have
brokerclients, self.clients = self.clients, None
self._close_brokerclients(brokerclients.values())
# clean up other outstanding operations
self.reset_all_metadata()
return self.close_dlist or defer.succeed(None) | python | def close(self):
"""Permanently dispose of the client
- Immediately mark the client as closed, causing current operations to
fail with :exc:`~afkak.common.CancelledError` and future operations to
fail with :exc:`~afkak.common.ClientError`.
- Clear cached metadata.
- Close any connections to Kafka brokers.
:returns:
deferred that fires when all resources have been released
"""
# If we're already waiting on an/some outstanding disconnects
# make sure we continue to wait for them...
log.debug("%r: close", self)
self._closing = True
# Close down any clients we have
brokerclients, self.clients = self.clients, None
self._close_brokerclients(brokerclients.values())
# clean up other outstanding operations
self.reset_all_metadata()
return self.close_dlist or defer.succeed(None) | Permanently dispose of the client
- Immediately mark the client as closed, causing current operations to
fail with :exc:`~afkak.common.CancelledError` and future operations to
fail with :exc:`~afkak.common.ClientError`.
- Clear cached metadata.
- Close any connections to Kafka brokers.
:returns:
deferred that fires when all resources have been released | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L321-L342 |
ciena/afkak | afkak/client.py | KafkaClient.load_metadata_for_topics | def load_metadata_for_topics(self, *topics):
"""Discover topic metadata and brokers
Afkak internally calls this method whenever metadata is required.
:param str topics:
Topic names to look up. The resulting metadata includes the list of
topic partitions, brokers owning those partitions, and which
partitions are in sync.
Fetching metadata for a topic may trigger auto-creation if that is
enabled on the Kafka broker.
When no topic name is given metadata for *all* topics is fetched.
This is an expensive operation, but it does not trigger topic
creation.
:returns:
:class:`Deferred` for the completion of the metadata fetch.
This will fire with ``True`` on success, ``None`` on
cancellation, or fail with an exception on error.
On success, topic metadata is available from the attributes of
:class:`KafkaClient`: :data:`~KafkaClient.topic_partitions`,
:data:`~KafkaClient.topics_to_brokers`, etc.
"""
topics = tuple(_coerce_topic(t) for t in topics)
log.debug("%r: load_metadata_for_topics(%s)", self, ', '.join(repr(t) for t in topics))
fetch_all_metadata = not topics
# create the request
requestId = self._next_id()
request = KafkaCodec.encode_metadata_request(self._clientIdBytes,
requestId, topics)
# Callbacks for the request deferred...
def _handleMetadataResponse(response):
# Decode the response
brokers, topics = KafkaCodec.decode_metadata_response(response)
log.debug("%r: got metadata brokers=%r topics=%r", self, brokers, topics)
# If we fetched the metadata for all topics, then store away the
# received metadata for diagnostics.
if fetch_all_metadata:
self._brokers = brokers
self._topics = topics
# Iff we were fetching for all topics, and we got at least one
# broker back, then remove brokers when we update our brokers
ok_to_remove = (fetch_all_metadata and len(brokers))
# Take the metadata we got back, update our self.clients, and
# if needed disconnect or connect from/to old/new brokers
self._update_brokers(brokers.values(), remove=ok_to_remove)
# Now loop through all the topics/partitions in the response
# and setup our cache/data-structures
for topic, topic_metadata in topics.items():
_, topic_error, partitions = topic_metadata
self.reset_topic_metadata(topic)
self.topic_errors[topic] = topic_error
if not partitions:
log.warning('No partitions for %s, Err:%d',
topic, topic_error)
continue
self.topic_partitions[topic] = []
for partition, meta in partitions.items():
self.topic_partitions[topic].append(partition)
topic_part = TopicAndPartition(topic, partition)
self.partition_meta[topic_part] = meta
if meta.leader == -1:
log.warning('No leader for topic %s partition %s',
topic, partition)
self.topics_to_brokers[topic_part] = None
else:
self.topics_to_brokers[
topic_part] = brokers[meta.leader]
self.topic_partitions[topic] = sorted(
self.topic_partitions[topic])
return True
def _handleMetadataErr(err):
# This should maybe do more cleanup?
if err.check(t_CancelledError, CancelledError):
# Eat the error
# XXX Shouldn't this return False? The success branch
# returns True.
return None
log.error("Failed to retrieve metadata:%s", err)
raise KafkaUnavailableError(
"Unable to load metadata from configured "
"hosts: {!r}".format(err))
# Send the request, add the handlers
d = self._send_broker_unaware_request(requestId, request)
d.addCallbacks(_handleMetadataResponse, _handleMetadataErr)
return d | python | def load_metadata_for_topics(self, *topics):
"""Discover topic metadata and brokers
Afkak internally calls this method whenever metadata is required.
:param str topics:
Topic names to look up. The resulting metadata includes the list of
topic partitions, brokers owning those partitions, and which
partitions are in sync.
Fetching metadata for a topic may trigger auto-creation if that is
enabled on the Kafka broker.
When no topic name is given metadata for *all* topics is fetched.
This is an expensive operation, but it does not trigger topic
creation.
:returns:
:class:`Deferred` for the completion of the metadata fetch.
This will fire with ``True`` on success, ``None`` on
cancellation, or fail with an exception on error.
On success, topic metadata is available from the attributes of
:class:`KafkaClient`: :data:`~KafkaClient.topic_partitions`,
:data:`~KafkaClient.topics_to_brokers`, etc.
"""
topics = tuple(_coerce_topic(t) for t in topics)
log.debug("%r: load_metadata_for_topics(%s)", self, ', '.join(repr(t) for t in topics))
fetch_all_metadata = not topics
# create the request
requestId = self._next_id()
request = KafkaCodec.encode_metadata_request(self._clientIdBytes,
requestId, topics)
# Callbacks for the request deferred...
def _handleMetadataResponse(response):
# Decode the response
brokers, topics = KafkaCodec.decode_metadata_response(response)
log.debug("%r: got metadata brokers=%r topics=%r", self, brokers, topics)
# If we fetched the metadata for all topics, then store away the
# received metadata for diagnostics.
if fetch_all_metadata:
self._brokers = brokers
self._topics = topics
# Iff we were fetching for all topics, and we got at least one
# broker back, then remove brokers when we update our brokers
ok_to_remove = (fetch_all_metadata and len(brokers))
# Take the metadata we got back, update our self.clients, and
# if needed disconnect or connect from/to old/new brokers
self._update_brokers(brokers.values(), remove=ok_to_remove)
# Now loop through all the topics/partitions in the response
# and setup our cache/data-structures
for topic, topic_metadata in topics.items():
_, topic_error, partitions = topic_metadata
self.reset_topic_metadata(topic)
self.topic_errors[topic] = topic_error
if not partitions:
log.warning('No partitions for %s, Err:%d',
topic, topic_error)
continue
self.topic_partitions[topic] = []
for partition, meta in partitions.items():
self.topic_partitions[topic].append(partition)
topic_part = TopicAndPartition(topic, partition)
self.partition_meta[topic_part] = meta
if meta.leader == -1:
log.warning('No leader for topic %s partition %s',
topic, partition)
self.topics_to_brokers[topic_part] = None
else:
self.topics_to_brokers[
topic_part] = brokers[meta.leader]
self.topic_partitions[topic] = sorted(
self.topic_partitions[topic])
return True
def _handleMetadataErr(err):
# This should maybe do more cleanup?
if err.check(t_CancelledError, CancelledError):
# Eat the error
# XXX Shouldn't this return False? The success branch
# returns True.
return None
log.error("Failed to retrieve metadata:%s", err)
raise KafkaUnavailableError(
"Unable to load metadata from configured "
"hosts: {!r}".format(err))
# Send the request, add the handlers
d = self._send_broker_unaware_request(requestId, request)
d.addCallbacks(_handleMetadataResponse, _handleMetadataErr)
return d | Discover topic metadata and brokers
Afkak internally calls this method whenever metadata is required.
:param str topics:
Topic names to look up. The resulting metadata includes the list of
topic partitions, brokers owning those partitions, and which
partitions are in sync.
Fetching metadata for a topic may trigger auto-creation if that is
enabled on the Kafka broker.
When no topic name is given metadata for *all* topics is fetched.
This is an expensive operation, but it does not trigger topic
creation.
:returns:
:class:`Deferred` for the completion of the metadata fetch.
This will fire with ``True`` on success, ``None`` on
cancellation, or fail with an exception on error.
On success, topic metadata is available from the attributes of
:class:`KafkaClient`: :data:`~KafkaClient.topic_partitions`,
:data:`~KafkaClient.topics_to_brokers`, etc. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L344-L440 |
ciena/afkak | afkak/client.py | KafkaClient.load_consumer_metadata_for_group | def load_consumer_metadata_for_group(self, group):
"""
Determine broker for the consumer metadata for the specified group
Returns a deferred which callbacks with True if the group's coordinator
could be determined, or errbacks with
ConsumerCoordinatorNotAvailableError if not.
Parameters
----------
group:
group name as `str`
"""
group = _coerce_consumer_group(group)
log.debug("%r: load_consumer_metadata_for_group(%r)", self, group)
# If we are already loading the metadata for this group, then
# just return the outstanding deferred
if group in self.coordinator_fetches:
d = defer.Deferred()
self.coordinator_fetches[group][1].append(d)
return d
# No outstanding request, create a new one
requestId = self._next_id()
request = KafkaCodec.encode_consumermetadata_request(
self._clientIdBytes, requestId, group)
# Callbacks for the request deferred...
def _handleConsumerMetadataResponse(response_bytes):
# Decode the response (returns ConsumerMetadataResponse)
response = KafkaCodec.decode_consumermetadata_response(response_bytes)
log.debug("%r: load_consumer_metadata_for_group(%r) -> %r", self, group, response)
if response.error:
raise BrokerResponseError.errnos.get(response.error, UnknownError)(response)
bm = BrokerMetadata(response.node_id, response.host, response.port)
self.consumer_group_to_brokers[group] = bm
self._update_brokers([bm])
return True
def _handleConsumerMetadataErr(err):
log.error("Failed to retrieve consumer metadata for group %r", group,
exc_info=(err.type, err.value, err.getTracebackObject()))
# Clear any stored value for the group's coordinator
self.reset_consumer_group_metadata(group)
# FIXME: This exception should chain from err.
raise ConsumerCoordinatorNotAvailableError(
"Coordinator for group {!r} not available".format(group),
)
def _propagate(result):
[_, ds] = self.coordinator_fetches.pop(group, None)
for d in ds:
d.callback(result)
# Send the request, add the handlers
request_d = self._send_broker_unaware_request(requestId, request)
d = defer.Deferred()
# Save the deferred under the fetches for this group
self.coordinator_fetches[group] = (request_d, [d])
request_d.addCallback(_handleConsumerMetadataResponse)
request_d.addErrback(_handleConsumerMetadataErr)
request_d.addBoth(_propagate)
return d | python | def load_consumer_metadata_for_group(self, group):
"""
Determine broker for the consumer metadata for the specified group
Returns a deferred which callbacks with True if the group's coordinator
could be determined, or errbacks with
ConsumerCoordinatorNotAvailableError if not.
Parameters
----------
group:
group name as `str`
"""
group = _coerce_consumer_group(group)
log.debug("%r: load_consumer_metadata_for_group(%r)", self, group)
# If we are already loading the metadata for this group, then
# just return the outstanding deferred
if group in self.coordinator_fetches:
d = defer.Deferred()
self.coordinator_fetches[group][1].append(d)
return d
# No outstanding request, create a new one
requestId = self._next_id()
request = KafkaCodec.encode_consumermetadata_request(
self._clientIdBytes, requestId, group)
# Callbacks for the request deferred...
def _handleConsumerMetadataResponse(response_bytes):
# Decode the response (returns ConsumerMetadataResponse)
response = KafkaCodec.decode_consumermetadata_response(response_bytes)
log.debug("%r: load_consumer_metadata_for_group(%r) -> %r", self, group, response)
if response.error:
raise BrokerResponseError.errnos.get(response.error, UnknownError)(response)
bm = BrokerMetadata(response.node_id, response.host, response.port)
self.consumer_group_to_brokers[group] = bm
self._update_brokers([bm])
return True
def _handleConsumerMetadataErr(err):
log.error("Failed to retrieve consumer metadata for group %r", group,
exc_info=(err.type, err.value, err.getTracebackObject()))
# Clear any stored value for the group's coordinator
self.reset_consumer_group_metadata(group)
# FIXME: This exception should chain from err.
raise ConsumerCoordinatorNotAvailableError(
"Coordinator for group {!r} not available".format(group),
)
def _propagate(result):
[_, ds] = self.coordinator_fetches.pop(group, None)
for d in ds:
d.callback(result)
# Send the request, add the handlers
request_d = self._send_broker_unaware_request(requestId, request)
d = defer.Deferred()
# Save the deferred under the fetches for this group
self.coordinator_fetches[group] = (request_d, [d])
request_d.addCallback(_handleConsumerMetadataResponse)
request_d.addErrback(_handleConsumerMetadataErr)
request_d.addBoth(_propagate)
return d | Determine broker for the consumer metadata for the specified group
Returns a deferred which callbacks with True if the group's coordinator
could be determined, or errbacks with
ConsumerCoordinatorNotAvailableError if not.
Parameters
----------
group:
group name as `str` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L442-L506 |
ciena/afkak | afkak/client.py | KafkaClient.send_produce_request | def send_produce_request(self, payloads=None, acks=1,
timeout=DEFAULT_REPLICAS_ACK_MSECS,
fail_on_error=True, callback=None):
"""
Encode and send some ProduceRequests
ProduceRequests will be grouped by (topic, partition) and then
sent to a specific broker. Output is a list of responses in the
same order as the list of payloads specified
Parameters
----------
payloads:
list of ProduceRequest
acks:
How many Kafka broker replicas need to write before
the leader replies with a response
timeout:
How long the server has to receive the acks from the
replicas before returning an error.
fail_on_error:
boolean, should we raise an Exception if we encounter an API error?
callback:
function, instead of returning the ProduceResponse,
first pass it through this function
Return
------
a deferred which callbacks with a list of ProduceResponse
Raises
------
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError
"""
encoder = partial(
KafkaCodec.encode_produce_request,
acks=acks,
timeout=timeout)
if acks == 0:
decoder = None
else:
decoder = KafkaCodec.decode_produce_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder)
returnValue(self._handle_responses(resps, fail_on_error, callback)) | python | def send_produce_request(self, payloads=None, acks=1,
timeout=DEFAULT_REPLICAS_ACK_MSECS,
fail_on_error=True, callback=None):
"""
Encode and send some ProduceRequests
ProduceRequests will be grouped by (topic, partition) and then
sent to a specific broker. Output is a list of responses in the
same order as the list of payloads specified
Parameters
----------
payloads:
list of ProduceRequest
acks:
How many Kafka broker replicas need to write before
the leader replies with a response
timeout:
How long the server has to receive the acks from the
replicas before returning an error.
fail_on_error:
boolean, should we raise an Exception if we encounter an API error?
callback:
function, instead of returning the ProduceResponse,
first pass it through this function
Return
------
a deferred which callbacks with a list of ProduceResponse
Raises
------
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError
"""
encoder = partial(
KafkaCodec.encode_produce_request,
acks=acks,
timeout=timeout)
if acks == 0:
decoder = None
else:
decoder = KafkaCodec.decode_produce_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder)
returnValue(self._handle_responses(resps, fail_on_error, callback)) | Encode and send some ProduceRequests
ProduceRequests will be grouped by (topic, partition) and then
sent to a specific broker. Output is a list of responses in the
same order as the list of payloads specified
Parameters
----------
payloads:
list of ProduceRequest
acks:
How many Kafka broker replicas need to write before
the leader replies with a response
timeout:
How long the server has to receive the acks from the
replicas before returning an error.
fail_on_error:
boolean, should we raise an Exception if we encounter an API error?
callback:
function, instead of returning the ProduceResponse,
first pass it through this function
Return
------
a deferred which callbacks with a list of ProduceResponse
Raises
------
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L509-L557 |
ciena/afkak | afkak/client.py | KafkaClient.send_fetch_request | def send_fetch_request(self, payloads=None, fail_on_error=True,
callback=None,
max_wait_time=DEFAULT_FETCH_SERVER_WAIT_MSECS,
min_bytes=DEFAULT_FETCH_MIN_BYTES):
"""
Encode and send a FetchRequest
Payloads are grouped by topic and partition so they can be pipelined
to the same brokers.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError
"""
if (max_wait_time / 1000) > (self.timeout - 0.1):
raise ValueError(
"%r: max_wait_time: %d must be less than client.timeout by "
"at least 100 milliseconds.", self, max_wait_time)
encoder = partial(KafkaCodec.encode_fetch_request,
max_wait_time=max_wait_time,
min_bytes=min_bytes)
# resps is a list of FetchResponse() objects, each of which can hold
# 1-n messages.
resps = yield self._send_broker_aware_request(
payloads, encoder,
KafkaCodec.decode_fetch_response)
returnValue(self._handle_responses(resps, fail_on_error, callback)) | python | def send_fetch_request(self, payloads=None, fail_on_error=True,
callback=None,
max_wait_time=DEFAULT_FETCH_SERVER_WAIT_MSECS,
min_bytes=DEFAULT_FETCH_MIN_BYTES):
"""
Encode and send a FetchRequest
Payloads are grouped by topic and partition so they can be pipelined
to the same brokers.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError
"""
if (max_wait_time / 1000) > (self.timeout - 0.1):
raise ValueError(
"%r: max_wait_time: %d must be less than client.timeout by "
"at least 100 milliseconds.", self, max_wait_time)
encoder = partial(KafkaCodec.encode_fetch_request,
max_wait_time=max_wait_time,
min_bytes=min_bytes)
# resps is a list of FetchResponse() objects, each of which can hold
# 1-n messages.
resps = yield self._send_broker_aware_request(
payloads, encoder,
KafkaCodec.decode_fetch_response)
returnValue(self._handle_responses(resps, fail_on_error, callback)) | Encode and send a FetchRequest
Payloads are grouped by topic and partition so they can be pipelined
to the same brokers.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L560-L589 |
ciena/afkak | afkak/client.py | KafkaClient.send_offset_fetch_request | def send_offset_fetch_request(self, group, payloads=None,
fail_on_error=True, callback=None):
"""
Takes a group (string) and list of OffsetFetchRequest and returns
a list of OffsetFetchResponse objects
"""
encoder = partial(KafkaCodec.encode_offset_fetch_request,
group=group)
decoder = KafkaCodec.decode_offset_fetch_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder, consumer_group=group)
returnValue(self._handle_responses(
resps, fail_on_error, callback, group)) | python | def send_offset_fetch_request(self, group, payloads=None,
fail_on_error=True, callback=None):
"""
Takes a group (string) and list of OffsetFetchRequest and returns
a list of OffsetFetchResponse objects
"""
encoder = partial(KafkaCodec.encode_offset_fetch_request,
group=group)
decoder = KafkaCodec.decode_offset_fetch_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder, consumer_group=group)
returnValue(self._handle_responses(
resps, fail_on_error, callback, group)) | Takes a group (string) and list of OffsetFetchRequest and returns
a list of OffsetFetchResponse objects | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L602-L615 |
ciena/afkak | afkak/client.py | KafkaClient.send_offset_commit_request | def send_offset_commit_request(self, group, payloads=None,
fail_on_error=True, callback=None,
group_generation_id=-1,
consumer_id=''):
"""Send a list of OffsetCommitRequests to the Kafka broker for the
given consumer group.
Args:
group (str): The consumer group to which to commit the offsets
payloads ([OffsetCommitRequest]): List of topic, partition, offsets
to commit.
fail_on_error (bool): Whether to raise an exception if a response
from the Kafka broker indicates an error
callback (callable): a function to call with each of the responses
before returning the returned value to the caller.
group_generation_id (int): Must currently always be -1
consumer_id (str): Must currently always be empty string
Returns:
[OffsetCommitResponse]: List of OffsetCommitResponse objects.
Will raise KafkaError for failed requests if fail_on_error is True
"""
group = _coerce_consumer_group(group)
encoder = partial(KafkaCodec.encode_offset_commit_request,
group=group, group_generation_id=group_generation_id,
consumer_id=consumer_id)
decoder = KafkaCodec.decode_offset_commit_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder, consumer_group=group)
returnValue(self._handle_responses(
resps, fail_on_error, callback, group)) | python | def send_offset_commit_request(self, group, payloads=None,
fail_on_error=True, callback=None,
group_generation_id=-1,
consumer_id=''):
"""Send a list of OffsetCommitRequests to the Kafka broker for the
given consumer group.
Args:
group (str): The consumer group to which to commit the offsets
payloads ([OffsetCommitRequest]): List of topic, partition, offsets
to commit.
fail_on_error (bool): Whether to raise an exception if a response
from the Kafka broker indicates an error
callback (callable): a function to call with each of the responses
before returning the returned value to the caller.
group_generation_id (int): Must currently always be -1
consumer_id (str): Must currently always be empty string
Returns:
[OffsetCommitResponse]: List of OffsetCommitResponse objects.
Will raise KafkaError for failed requests if fail_on_error is True
"""
group = _coerce_consumer_group(group)
encoder = partial(KafkaCodec.encode_offset_commit_request,
group=group, group_generation_id=group_generation_id,
consumer_id=consumer_id)
decoder = KafkaCodec.decode_offset_commit_response
resps = yield self._send_broker_aware_request(
payloads, encoder, decoder, consumer_group=group)
returnValue(self._handle_responses(
resps, fail_on_error, callback, group)) | Send a list of OffsetCommitRequests to the Kafka broker for the
given consumer group.
Args:
group (str): The consumer group to which to commit the offsets
payloads ([OffsetCommitRequest]): List of topic, partition, offsets
to commit.
fail_on_error (bool): Whether to raise an exception if a response
from the Kafka broker indicates an error
callback (callable): a function to call with each of the responses
before returning the returned value to the caller.
group_generation_id (int): Must currently always be -1
consumer_id (str): Must currently always be empty string
Returns:
[OffsetCommitResponse]: List of OffsetCommitResponse objects.
Will raise KafkaError for failed requests if fail_on_error is True | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L618-L648 |
ciena/afkak | afkak/client.py | KafkaClient._get_brokerclient | def _get_brokerclient(self, node_id):
"""
Get a broker client.
:param int node_id: Broker node ID
:raises KeyError: for an unknown node ID
:returns: :class:`_KafkaBrokerClient`
"""
if self._closing:
raise ClientError("Cannot get broker client for node_id={}: {} has been closed".format(node_id, self))
if node_id not in self.clients:
broker_metadata = self._brokers[node_id]
log.debug("%r: creating client for %s", self, broker_metadata)
self.clients[node_id] = _KafkaBrokerClient(
self.reactor, self._endpoint_factory,
broker_metadata, self.clientId, self._retry_policy,
)
return self.clients[node_id] | python | def _get_brokerclient(self, node_id):
"""
Get a broker client.
:param int node_id: Broker node ID
:raises KeyError: for an unknown node ID
:returns: :class:`_KafkaBrokerClient`
"""
if self._closing:
raise ClientError("Cannot get broker client for node_id={}: {} has been closed".format(node_id, self))
if node_id not in self.clients:
broker_metadata = self._brokers[node_id]
log.debug("%r: creating client for %s", self, broker_metadata)
self.clients[node_id] = _KafkaBrokerClient(
self.reactor, self._endpoint_factory,
broker_metadata, self.clientId, self._retry_policy,
)
return self.clients[node_id] | Get a broker client.
:param int node_id: Broker node ID
:raises KeyError: for an unknown node ID
:returns: :class:`_KafkaBrokerClient` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L678-L695 |
ciena/afkak | afkak/client.py | KafkaClient._close_brokerclients | def _close_brokerclients(self, clients):
"""
Close the given broker clients.
:param clients: Iterable of `_KafkaBrokerClient`
"""
def _log_close_failure(failure, brokerclient):
log.debug(
'BrokerClient: %s close result: %s: %s', brokerclient,
failure.type.__name__, failure.getErrorMessage())
def _clean_close_dlist(result, close_dlist):
# If there aren't any other outstanding closings going on, then
# close_dlist == self.close_dlist, and we can reset it.
if close_dlist == self.close_dlist:
self.close_dlist = None
if not self.close_dlist:
dList = []
else:
log.debug("%r: _close_brokerclients has nested deferredlist: %r",
self, self.close_dlist)
dList = [self.close_dlist]
for brokerClient in clients:
log.debug("Calling close on: %r", brokerClient)
d = brokerClient.close().addErrback(_log_close_failure, brokerClient)
dList.append(d)
self.close_dlist = DeferredList(dList)
self.close_dlist.addBoth(_clean_close_dlist, self.close_dlist) | python | def _close_brokerclients(self, clients):
"""
Close the given broker clients.
:param clients: Iterable of `_KafkaBrokerClient`
"""
def _log_close_failure(failure, brokerclient):
log.debug(
'BrokerClient: %s close result: %s: %s', brokerclient,
failure.type.__name__, failure.getErrorMessage())
def _clean_close_dlist(result, close_dlist):
# If there aren't any other outstanding closings going on, then
# close_dlist == self.close_dlist, and we can reset it.
if close_dlist == self.close_dlist:
self.close_dlist = None
if not self.close_dlist:
dList = []
else:
log.debug("%r: _close_brokerclients has nested deferredlist: %r",
self, self.close_dlist)
dList = [self.close_dlist]
for brokerClient in clients:
log.debug("Calling close on: %r", brokerClient)
d = brokerClient.close().addErrback(_log_close_failure, brokerClient)
dList.append(d)
self.close_dlist = DeferredList(dList)
self.close_dlist.addBoth(_clean_close_dlist, self.close_dlist) | Close the given broker clients.
:param clients: Iterable of `_KafkaBrokerClient` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L697-L725 |
ciena/afkak | afkak/client.py | KafkaClient._update_brokers | def _update_brokers(self, brokers, remove=False):
"""
Update `self._brokers` and `self.clients`
Update our self.clients based on brokers in received metadata
Take the received dict of brokers and reconcile it with our current
list of brokers (self.clients). If there is a new one, bring up a new
connection to it, and if remove is True, and any in our current list
aren't in the metadata returned, disconnect from it.
:param brokers: Iterable of `BrokerMetadata`. A client will be created
for every broker given if it doesn't yet exist.
:param bool remove:
Is this metadata for *all* brokers? If so, clients for brokers
which are no longer found in the metadata will be closed.
"""
log.debug("%r: _update_brokers(%r, remove=%r)",
self, brokers, remove)
brokers_by_id = {bm.node_id: bm for bm in brokers}
self._brokers.update(brokers_by_id)
# Update the metadata of broker clients that already exist.
for node_id, broker_meta in brokers_by_id.items():
if node_id not in self.clients:
continue
self.clients[node_id].updateMetadata(broker_meta)
# Remove any clients for brokers which no longer exist.
if remove:
to_close = [
self.clients.pop(node_id)
for node_id in set(self.clients) - set(brokers_by_id)
]
if to_close:
self._close_brokerclients(to_close) | python | def _update_brokers(self, brokers, remove=False):
"""
Update `self._brokers` and `self.clients`
Update our self.clients based on brokers in received metadata
Take the received dict of brokers and reconcile it with our current
list of brokers (self.clients). If there is a new one, bring up a new
connection to it, and if remove is True, and any in our current list
aren't in the metadata returned, disconnect from it.
:param brokers: Iterable of `BrokerMetadata`. A client will be created
for every broker given if it doesn't yet exist.
:param bool remove:
Is this metadata for *all* brokers? If so, clients for brokers
which are no longer found in the metadata will be closed.
"""
log.debug("%r: _update_brokers(%r, remove=%r)",
self, brokers, remove)
brokers_by_id = {bm.node_id: bm for bm in brokers}
self._brokers.update(brokers_by_id)
# Update the metadata of broker clients that already exist.
for node_id, broker_meta in brokers_by_id.items():
if node_id not in self.clients:
continue
self.clients[node_id].updateMetadata(broker_meta)
# Remove any clients for brokers which no longer exist.
if remove:
to_close = [
self.clients.pop(node_id)
for node_id in set(self.clients) - set(brokers_by_id)
]
if to_close:
self._close_brokerclients(to_close) | Update `self._brokers` and `self.clients`
Update our self.clients based on brokers in received metadata
Take the received dict of brokers and reconcile it with our current
list of brokers (self.clients). If there is a new one, bring up a new
connection to it, and if remove is True, and any in our current list
aren't in the metadata returned, disconnect from it.
:param brokers: Iterable of `BrokerMetadata`. A client will be created
for every broker given if it doesn't yet exist.
:param bool remove:
Is this metadata for *all* brokers? If so, clients for brokers
which are no longer found in the metadata will be closed. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L727-L762 |
ciena/afkak | afkak/client.py | KafkaClient._get_leader_for_partition | def _get_leader_for_partition(self, topic, partition):
"""
Returns the leader for a partition or None if the partition exists
but has no leader.
PartitionUnavailableError will be raised if the topic or partition
is not part of the metadata.
"""
key = TopicAndPartition(topic, partition)
# reload metadata whether the partition is not available
# or has no leader (broker is None)
if self.topics_to_brokers.get(key) is None:
yield self.load_metadata_for_topics(topic)
if key not in self.topics_to_brokers:
raise PartitionUnavailableError("%s not available" % str(key))
returnValue(self.topics_to_brokers[key]) | python | def _get_leader_for_partition(self, topic, partition):
"""
Returns the leader for a partition or None if the partition exists
but has no leader.
PartitionUnavailableError will be raised if the topic or partition
is not part of the metadata.
"""
key = TopicAndPartition(topic, partition)
# reload metadata whether the partition is not available
# or has no leader (broker is None)
if self.topics_to_brokers.get(key) is None:
yield self.load_metadata_for_topics(topic)
if key not in self.topics_to_brokers:
raise PartitionUnavailableError("%s not available" % str(key))
returnValue(self.topics_to_brokers[key]) | Returns the leader for a partition or None if the partition exists
but has no leader.
PartitionUnavailableError will be raised if the topic or partition
is not part of the metadata. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L765-L783 |
ciena/afkak | afkak/client.py | KafkaClient._get_coordinator_for_group | def _get_coordinator_for_group(self, consumer_group):
"""Returns the coordinator (broker) for a consumer group
Returns the broker for a given consumer group or
Raises ConsumerCoordinatorNotAvailableError
"""
if self.consumer_group_to_brokers.get(consumer_group) is None:
yield self.load_consumer_metadata_for_group(consumer_group)
returnValue(self.consumer_group_to_brokers.get(consumer_group)) | python | def _get_coordinator_for_group(self, consumer_group):
"""Returns the coordinator (broker) for a consumer group
Returns the broker for a given consumer group or
Raises ConsumerCoordinatorNotAvailableError
"""
if self.consumer_group_to_brokers.get(consumer_group) is None:
yield self.load_consumer_metadata_for_group(consumer_group)
returnValue(self.consumer_group_to_brokers.get(consumer_group)) | Returns the coordinator (broker) for a consumer group
Returns the broker for a given consumer group or
Raises ConsumerCoordinatorNotAvailableError | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L786-L795 |
ciena/afkak | afkak/client.py | KafkaClient._make_request_to_broker | def _make_request_to_broker(self, broker, requestId, request, **kwArgs):
"""Send a request to the specified broker."""
def _timeout_request(broker, requestId):
"""The time we allotted for the request expired, cancel it."""
try:
# FIXME: This should be done by calling .cancel() on the Deferred
# returned by the broker client.
broker.cancelRequest(requestId, reason=RequestTimedOutError(
'Request: {} cancelled due to timeout'.format(requestId)))
except KeyError: # pragma: no cover This should never happen...
log.exception('ERROR: Failed to find key for timed-out '
'request. Broker: %r Req: %d',
broker, requestId)
raise
if self._disconnect_on_timeout:
broker.disconnect()
def _alert_blocked_reactor(timeout, start):
"""Complain if this timer didn't fire before the timeout elapsed"""
now = self.reactor.seconds()
if now >= (start + timeout):
log.warning('Reactor was starved for %r seconds', now - start)
def _cancel_timeout(result, dc):
"""Request completed/cancelled, cancel the timeout delayedCall."""
if dc.active():
dc.cancel()
return result
# Make the request to the specified broker
log.debug('_mrtb: sending request: %d to broker: %r',
requestId, broker)
d = broker.makeRequest(requestId, request, **kwArgs)
# Set a delayedCall to fire if we don't get a reply in time
dc = self.reactor.callLater(
self.timeout, _timeout_request, broker, requestId)
# Set a delayedCall to complain if the reactor has been blocked
rc = self.reactor.callLater(
(self.timeout * 0.9), _alert_blocked_reactor, self.timeout,
self.reactor.seconds())
# Setup a callback on the request deferred to cancel both callLater
d.addBoth(_cancel_timeout, dc)
d.addBoth(_cancel_timeout, rc)
return d | python | def _make_request_to_broker(self, broker, requestId, request, **kwArgs):
"""Send a request to the specified broker."""
def _timeout_request(broker, requestId):
"""The time we allotted for the request expired, cancel it."""
try:
# FIXME: This should be done by calling .cancel() on the Deferred
# returned by the broker client.
broker.cancelRequest(requestId, reason=RequestTimedOutError(
'Request: {} cancelled due to timeout'.format(requestId)))
except KeyError: # pragma: no cover This should never happen...
log.exception('ERROR: Failed to find key for timed-out '
'request. Broker: %r Req: %d',
broker, requestId)
raise
if self._disconnect_on_timeout:
broker.disconnect()
def _alert_blocked_reactor(timeout, start):
"""Complain if this timer didn't fire before the timeout elapsed"""
now = self.reactor.seconds()
if now >= (start + timeout):
log.warning('Reactor was starved for %r seconds', now - start)
def _cancel_timeout(result, dc):
"""Request completed/cancelled, cancel the timeout delayedCall."""
if dc.active():
dc.cancel()
return result
# Make the request to the specified broker
log.debug('_mrtb: sending request: %d to broker: %r',
requestId, broker)
d = broker.makeRequest(requestId, request, **kwArgs)
# Set a delayedCall to fire if we don't get a reply in time
dc = self.reactor.callLater(
self.timeout, _timeout_request, broker, requestId)
# Set a delayedCall to complain if the reactor has been blocked
rc = self.reactor.callLater(
(self.timeout * 0.9), _alert_blocked_reactor, self.timeout,
self.reactor.seconds())
# Setup a callback on the request deferred to cancel both callLater
d.addBoth(_cancel_timeout, dc)
d.addBoth(_cancel_timeout, rc)
return d | Send a request to the specified broker. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L803-L846 |
ciena/afkak | afkak/client.py | KafkaClient._send_broker_unaware_request | def _send_broker_unaware_request(self, requestId, request):
"""
Attempt to send a broker-agnostic request to one of the known brokers:
1. Try each connected broker (in random order)
2. Try each known but unconnected broker (in random order)
3. Try each of the bootstrap hosts (in random order)
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
`KafkaUnavailableError` when making the request of all known hosts
has failed.
"""
node_ids = list(self._brokers.keys())
# Randomly shuffle the brokers to distribute the load
random.shuffle(node_ids)
# Prioritize connected brokers
def connected(node_id):
try:
return self.clients[node_id].connected()
except KeyError:
return False
node_ids.sort(reverse=True, key=connected)
for node_id in node_ids:
broker = self._get_brokerclient(node_id)
try:
log.debug('_sbur: sending request %d to broker %r', requestId, broker)
d = self._make_request_to_broker(broker, requestId, request)
resp = yield d
returnValue(resp)
except KafkaError as e:
log.warning((
"Will try next server after request with correlationId=%d"
" failed against server %s:%i. Error: %s"
), requestId, broker.host, broker.port, e)
# The request was not handled, likely because no broker metadata has
# loaded yet (or all broker connections have failed). Fall back to
# boostrapping.
returnValue((yield self._send_bootstrap_request(request))) | python | def _send_broker_unaware_request(self, requestId, request):
"""
Attempt to send a broker-agnostic request to one of the known brokers:
1. Try each connected broker (in random order)
2. Try each known but unconnected broker (in random order)
3. Try each of the bootstrap hosts (in random order)
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
`KafkaUnavailableError` when making the request of all known hosts
has failed.
"""
node_ids = list(self._brokers.keys())
# Randomly shuffle the brokers to distribute the load
random.shuffle(node_ids)
# Prioritize connected brokers
def connected(node_id):
try:
return self.clients[node_id].connected()
except KeyError:
return False
node_ids.sort(reverse=True, key=connected)
for node_id in node_ids:
broker = self._get_brokerclient(node_id)
try:
log.debug('_sbur: sending request %d to broker %r', requestId, broker)
d = self._make_request_to_broker(broker, requestId, request)
resp = yield d
returnValue(resp)
except KafkaError as e:
log.warning((
"Will try next server after request with correlationId=%d"
" failed against server %s:%i. Error: %s"
), requestId, broker.host, broker.port, e)
# The request was not handled, likely because no broker metadata has
# loaded yet (or all broker connections have failed). Fall back to
# boostrapping.
returnValue((yield self._send_bootstrap_request(request))) | Attempt to send a broker-agnostic request to one of the known brokers:
1. Try each connected broker (in random order)
2. Try each known but unconnected broker (in random order)
3. Try each of the bootstrap hosts (in random order)
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
`KafkaUnavailableError` when making the request of all known hosts
has failed. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L849-L897 |
ciena/afkak | afkak/client.py | KafkaClient._send_bootstrap_request | def _send_bootstrap_request(self, request):
"""Make a request using an ephemeral broker connection
This routine is used to make broker-unaware requests to get the initial
cluster metadata. It cycles through the configured hosts, trying to
connect and send the request to each in turn. This temporary connection
is closed once a response is received.
Note that most Kafka APIs require requests be sent to a specific
broker. This method will only function for broker-agnostic requests
like:
* `Metadata <https://kafka.apache.org/protocol.html#The_Messages_Metadata>`_
* `FindCoordinator <https://kafka.apache.org/protocol.html#The_Messages_FindCoordinator>`_
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
- `KafkaUnavailableError` when making the request of all known hosts
has failed.
- `twisted.internet.defer.TimeoutError` when connecting or making
a request exceeds the timeout.
"""
hostports = list(self._bootstrap_hosts)
random.shuffle(hostports)
for host, port in hostports:
ep = self._endpoint_factory(self.reactor, host, port)
try:
protocol = yield ep.connect(_bootstrapFactory)
except Exception as e:
log.debug("%s: bootstrap connect to %s:%s -> %s", self, host, port, e)
continue
try:
response = yield protocol.request(request).addTimeout(self.timeout, self.reactor)
except Exception:
log.debug("%s: bootstrap request to %s:%s failed", self, host, port, exc_info=True)
else:
returnValue(response)
finally:
protocol.transport.loseConnection()
raise KafkaUnavailableError("Failed to bootstrap from hosts {}".format(hostports)) | python | def _send_bootstrap_request(self, request):
"""Make a request using an ephemeral broker connection
This routine is used to make broker-unaware requests to get the initial
cluster metadata. It cycles through the configured hosts, trying to
connect and send the request to each in turn. This temporary connection
is closed once a response is received.
Note that most Kafka APIs require requests be sent to a specific
broker. This method will only function for broker-agnostic requests
like:
* `Metadata <https://kafka.apache.org/protocol.html#The_Messages_Metadata>`_
* `FindCoordinator <https://kafka.apache.org/protocol.html#The_Messages_FindCoordinator>`_
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
- `KafkaUnavailableError` when making the request of all known hosts
has failed.
- `twisted.internet.defer.TimeoutError` when connecting or making
a request exceeds the timeout.
"""
hostports = list(self._bootstrap_hosts)
random.shuffle(hostports)
for host, port in hostports:
ep = self._endpoint_factory(self.reactor, host, port)
try:
protocol = yield ep.connect(_bootstrapFactory)
except Exception as e:
log.debug("%s: bootstrap connect to %s:%s -> %s", self, host, port, e)
continue
try:
response = yield protocol.request(request).addTimeout(self.timeout, self.reactor)
except Exception:
log.debug("%s: bootstrap request to %s:%s failed", self, host, port, exc_info=True)
else:
returnValue(response)
finally:
protocol.transport.loseConnection()
raise KafkaUnavailableError("Failed to bootstrap from hosts {}".format(hostports)) | Make a request using an ephemeral broker connection
This routine is used to make broker-unaware requests to get the initial
cluster metadata. It cycles through the configured hosts, trying to
connect and send the request to each in turn. This temporary connection
is closed once a response is received.
Note that most Kafka APIs require requests be sent to a specific
broker. This method will only function for broker-agnostic requests
like:
* `Metadata <https://kafka.apache.org/protocol.html#The_Messages_Metadata>`_
* `FindCoordinator <https://kafka.apache.org/protocol.html#The_Messages_FindCoordinator>`_
:param bytes request:
The bytes of a Kafka `RequestMessage`_ structure. It must have
a unique (to this connection) correlation ID.
:returns: API response message for *request*
:rtype: Deferred[bytes]
:raises:
- `KafkaUnavailableError` when making the request of all known hosts
has failed.
- `twisted.internet.defer.TimeoutError` when connecting or making
a request exceeds the timeout. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L900-L947 |
ciena/afkak | afkak/client.py | KafkaClient._send_broker_aware_request | def _send_broker_aware_request(self, payloads, encoder_fn, decode_fn,
consumer_group=None):
"""
Group a list of request payloads by topic+partition and send them to
the leader broker for that partition using the supplied encode/decode
functions
Params
======
payloads: list of object-like entities with a topic and
partition attribute. payloads must be grouped by
(topic, partition) tuples.
encode_fn: a method to encode the list of payloads to a request body,
must accept client_id, correlation_id, and payloads as
keyword arguments
decode_fn: a method to decode a response body into response objects.
The response objects must be object-like and have topic
and partition attributes
consumer_group: [string], optional. Indicates the request should be
directed to the Offset Coordinator for the specified
consumer_group.
Return
======
deferred yielding a list of response objects in the same order
as the supplied payloads, or None if decode_fn is None.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError,
"""
# Calling this without payloads is nonsensical
if not payloads:
raise ValueError("Payloads parameter is empty")
# Group the requests by topic+partition
original_keys = []
payloads_by_broker = collections.defaultdict(list)
# Go through all the payloads, lookup the leader/coordinator for that
# payload's topic/partition or consumer group. If there's no
# leader/coordinator (broker), raise. For each broker, keep
# a list of the payloads to be sent to it. Also, for each payload in
# the list of payloads, make a corresponding list (original_keys) with
# the topic/partition in the same order, so we can lookup the returned
# result(s) by that topic/partition key in the set of returned results
# and return them in a list the same order the payloads were supplied
for payload in payloads:
# get leader/coordinator, depending on consumer_group
if consumer_group is None:
leader = yield self._get_leader_for_partition(
payload.topic, payload.partition)
if leader is None:
raise LeaderUnavailableError(
"Leader not available for topic %s partition %s" %
(payload.topic, payload.partition))
else:
leader = yield self._get_coordinator_for_group(consumer_group)
if leader is None:
raise ConsumerCoordinatorNotAvailableError(
"Coordinator not available for group: %s" %
(consumer_group))
payloads_by_broker[leader].append(payload)
original_keys.append((payload.topic, payload.partition))
# Accumulate the responses in a dictionary
acc = {}
# The kafka server doesn't send replies to produce requests
# with acks=0. In that case, our decode_fn will be
# None, and we need to let the brokerclient know not
# to expect a reply. makeRequest() returns a deferred
# regardless, but in the expectResponse=False case, it will
# fire as soon as the request is sent, and it can errBack()
# due to being cancelled prior to the broker being able to
# send the request.
expectResponse = decode_fn is not None
# keep a list of payloads that were failed to be sent to brokers
failed_payloads = []
# Keep track of outstanding requests in a list of deferreds
inFlight = []
# and the payloads that go along with them
payloadsList = []
# For each broker, send the list of request payloads,
for broker_meta, payloads in payloads_by_broker.items():
broker = self._get_brokerclient(broker_meta.node_id)
requestId = self._next_id()
request = encoder_fn(client_id=self._clientIdBytes,
correlation_id=requestId, payloads=payloads)
# Make the request
d = self._make_request_to_broker(broker, requestId, request,
expectResponse=expectResponse)
inFlight.append(d)
payloadsList.append(payloads)
# Wait for all the responses to come back, or the requests to fail
results = yield DeferredList(inFlight, consumeErrors=True)
# We now have a list of (succeeded, response/Failure) tuples. Check 'em
for (success, response), payloads in zip(results, payloadsList):
if not success:
# The brokerclient deferred was errback()'d:
# The send failed, or this request was cancelled (by timeout)
log.debug("%r: request:%r to broker failed: %r", self,
payloads, response)
failed_payloads.extend([(p, response) for p in payloads])
continue
if not expectResponse:
continue
# Successful request/response. Decode it and store by topic/part
for response in decode_fn(response):
acc[(response.topic, response.partition)] = response
# Order the accumulated responses by the original key order
# Note that this scheme will throw away responses which we did
# not request. See test_send_fetch_request, where the response
# includes an error, but for a topic/part we didn't request.
# Since that topic/partition isn't in original_keys, we don't pass
# it back from here and it doesn't error out.
# If any of the payloads failed, fail
responses = [acc[k] for k in original_keys if k in acc] if acc else []
if failed_payloads:
self.reset_all_metadata()
raise FailedPayloadsError(responses, failed_payloads)
returnValue(responses) | python | def _send_broker_aware_request(self, payloads, encoder_fn, decode_fn,
consumer_group=None):
"""
Group a list of request payloads by topic+partition and send them to
the leader broker for that partition using the supplied encode/decode
functions
Params
======
payloads: list of object-like entities with a topic and
partition attribute. payloads must be grouped by
(topic, partition) tuples.
encode_fn: a method to encode the list of payloads to a request body,
must accept client_id, correlation_id, and payloads as
keyword arguments
decode_fn: a method to decode a response body into response objects.
The response objects must be object-like and have topic
and partition attributes
consumer_group: [string], optional. Indicates the request should be
directed to the Offset Coordinator for the specified
consumer_group.
Return
======
deferred yielding a list of response objects in the same order
as the supplied payloads, or None if decode_fn is None.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError,
"""
# Calling this without payloads is nonsensical
if not payloads:
raise ValueError("Payloads parameter is empty")
# Group the requests by topic+partition
original_keys = []
payloads_by_broker = collections.defaultdict(list)
# Go through all the payloads, lookup the leader/coordinator for that
# payload's topic/partition or consumer group. If there's no
# leader/coordinator (broker), raise. For each broker, keep
# a list of the payloads to be sent to it. Also, for each payload in
# the list of payloads, make a corresponding list (original_keys) with
# the topic/partition in the same order, so we can lookup the returned
# result(s) by that topic/partition key in the set of returned results
# and return them in a list the same order the payloads were supplied
for payload in payloads:
# get leader/coordinator, depending on consumer_group
if consumer_group is None:
leader = yield self._get_leader_for_partition(
payload.topic, payload.partition)
if leader is None:
raise LeaderUnavailableError(
"Leader not available for topic %s partition %s" %
(payload.topic, payload.partition))
else:
leader = yield self._get_coordinator_for_group(consumer_group)
if leader is None:
raise ConsumerCoordinatorNotAvailableError(
"Coordinator not available for group: %s" %
(consumer_group))
payloads_by_broker[leader].append(payload)
original_keys.append((payload.topic, payload.partition))
# Accumulate the responses in a dictionary
acc = {}
# The kafka server doesn't send replies to produce requests
# with acks=0. In that case, our decode_fn will be
# None, and we need to let the brokerclient know not
# to expect a reply. makeRequest() returns a deferred
# regardless, but in the expectResponse=False case, it will
# fire as soon as the request is sent, and it can errBack()
# due to being cancelled prior to the broker being able to
# send the request.
expectResponse = decode_fn is not None
# keep a list of payloads that were failed to be sent to brokers
failed_payloads = []
# Keep track of outstanding requests in a list of deferreds
inFlight = []
# and the payloads that go along with them
payloadsList = []
# For each broker, send the list of request payloads,
for broker_meta, payloads in payloads_by_broker.items():
broker = self._get_brokerclient(broker_meta.node_id)
requestId = self._next_id()
request = encoder_fn(client_id=self._clientIdBytes,
correlation_id=requestId, payloads=payloads)
# Make the request
d = self._make_request_to_broker(broker, requestId, request,
expectResponse=expectResponse)
inFlight.append(d)
payloadsList.append(payloads)
# Wait for all the responses to come back, or the requests to fail
results = yield DeferredList(inFlight, consumeErrors=True)
# We now have a list of (succeeded, response/Failure) tuples. Check 'em
for (success, response), payloads in zip(results, payloadsList):
if not success:
# The brokerclient deferred was errback()'d:
# The send failed, or this request was cancelled (by timeout)
log.debug("%r: request:%r to broker failed: %r", self,
payloads, response)
failed_payloads.extend([(p, response) for p in payloads])
continue
if not expectResponse:
continue
# Successful request/response. Decode it and store by topic/part
for response in decode_fn(response):
acc[(response.topic, response.partition)] = response
# Order the accumulated responses by the original key order
# Note that this scheme will throw away responses which we did
# not request. See test_send_fetch_request, where the response
# includes an error, but for a topic/part we didn't request.
# Since that topic/partition isn't in original_keys, we don't pass
# it back from here and it doesn't error out.
# If any of the payloads failed, fail
responses = [acc[k] for k in original_keys if k in acc] if acc else []
if failed_payloads:
self.reset_all_metadata()
raise FailedPayloadsError(responses, failed_payloads)
returnValue(responses) | Group a list of request payloads by topic+partition and send them to
the leader broker for that partition using the supplied encode/decode
functions
Params
======
payloads: list of object-like entities with a topic and
partition attribute. payloads must be grouped by
(topic, partition) tuples.
encode_fn: a method to encode the list of payloads to a request body,
must accept client_id, correlation_id, and payloads as
keyword arguments
decode_fn: a method to decode a response body into response objects.
The response objects must be object-like and have topic
and partition attributes
consumer_group: [string], optional. Indicates the request should be
directed to the Offset Coordinator for the specified
consumer_group.
Return
======
deferred yielding a list of response objects in the same order
as the supplied payloads, or None if decode_fn is None.
Raises
======
FailedPayloadsError, LeaderUnavailableError, PartitionUnavailableError, | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/client.py#L950-L1080 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | get_description | def get_description(expression, options=None):
"""Generates a human readable string for the Cron Expression
Args:
expression: The cron expression string
options: Options to control the output description
Returns:
The cron expression description
"""
descripter = ExpressionDescriptor(expression, options)
return descripter.get_description(DescriptionTypeEnum.FULL) | python | def get_description(expression, options=None):
"""Generates a human readable string for the Cron Expression
Args:
expression: The cron expression string
options: Options to control the output description
Returns:
The cron expression description
"""
descripter = ExpressionDescriptor(expression, options)
return descripter.get_description(DescriptionTypeEnum.FULL) | Generates a human readable string for the Cron Expression
Args:
expression: The cron expression string
options: Options to control the output description
Returns:
The cron expression description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L605-L615 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_description | def get_description(self, description_type=DescriptionTypeEnum.FULL):
"""Generates a human readable string for the Cron Expression
Args:
description_type: Which part(s) of the expression to describe
Returns:
The cron expression description
Raises:
Exception: if throw_exception_on_parse_error is True
"""
try:
if self._parsed is False:
parser = ExpressionParser(self._expression, self._options)
self._expression_parts = parser.parse()
self._parsed = True
choices = {
DescriptionTypeEnum.FULL: self.get_full_description,
DescriptionTypeEnum.TIMEOFDAY: self.get_time_of_day_description,
DescriptionTypeEnum.HOURS: self.get_hours_description,
DescriptionTypeEnum.MINUTES: self.get_minutes_description,
DescriptionTypeEnum.SECONDS: self.get_seconds_description,
DescriptionTypeEnum.DAYOFMONTH: self.get_day_of_month_description,
DescriptionTypeEnum.MONTH: self.get_month_description,
DescriptionTypeEnum.DAYOFWEEK: self.get_day_of_week_description,
DescriptionTypeEnum.YEAR: self.get_year_description,
}
description = choices.get(description_type, self.get_seconds_description)()
except Exception as ex:
if self._options.throw_exception_on_parse_error:
raise
else:
description = str(ex)
return description | python | def get_description(self, description_type=DescriptionTypeEnum.FULL):
"""Generates a human readable string for the Cron Expression
Args:
description_type: Which part(s) of the expression to describe
Returns:
The cron expression description
Raises:
Exception: if throw_exception_on_parse_error is True
"""
try:
if self._parsed is False:
parser = ExpressionParser(self._expression, self._options)
self._expression_parts = parser.parse()
self._parsed = True
choices = {
DescriptionTypeEnum.FULL: self.get_full_description,
DescriptionTypeEnum.TIMEOFDAY: self.get_time_of_day_description,
DescriptionTypeEnum.HOURS: self.get_hours_description,
DescriptionTypeEnum.MINUTES: self.get_minutes_description,
DescriptionTypeEnum.SECONDS: self.get_seconds_description,
DescriptionTypeEnum.DAYOFMONTH: self.get_day_of_month_description,
DescriptionTypeEnum.MONTH: self.get_month_description,
DescriptionTypeEnum.DAYOFWEEK: self.get_day_of_week_description,
DescriptionTypeEnum.YEAR: self.get_year_description,
}
description = choices.get(description_type, self.get_seconds_description)()
except Exception as ex:
if self._options.throw_exception_on_parse_error:
raise
else:
description = str(ex)
return description | Generates a human readable string for the Cron Expression
Args:
description_type: Which part(s) of the expression to describe
Returns:
The cron expression description
Raises:
Exception: if throw_exception_on_parse_error is True | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L76-L112 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_full_description | def get_full_description(self):
"""Generates the FULL description
Returns:
The FULL description
Raises:
FormatException: if formating fails and throw_exception_on_parse_error is True
"""
try:
time_segment = self.get_time_of_day_description()
day_of_month_desc = self.get_day_of_month_description()
month_desc = self.get_month_description()
day_of_week_desc = self.get_day_of_week_description()
year_desc = self.get_year_description()
description = "{0}{1}{2}{3}{4}".format(
time_segment,
day_of_month_desc,
day_of_week_desc,
month_desc,
year_desc)
description = self.transform_verbosity(
description, self._options.verbose)
description = self.transform_case(
description,
self._options.casing_type)
except Exception:
description = _(
"An error occured when generating the expression description. Check the cron expression syntax.")
if self._options.throw_exception_on_parse_error:
raise FormatException(description)
return description | python | def get_full_description(self):
"""Generates the FULL description
Returns:
The FULL description
Raises:
FormatException: if formating fails and throw_exception_on_parse_error is True
"""
try:
time_segment = self.get_time_of_day_description()
day_of_month_desc = self.get_day_of_month_description()
month_desc = self.get_month_description()
day_of_week_desc = self.get_day_of_week_description()
year_desc = self.get_year_description()
description = "{0}{1}{2}{3}{4}".format(
time_segment,
day_of_month_desc,
day_of_week_desc,
month_desc,
year_desc)
description = self.transform_verbosity(
description, self._options.verbose)
description = self.transform_case(
description,
self._options.casing_type)
except Exception:
description = _(
"An error occured when generating the expression description. Check the cron expression syntax.")
if self._options.throw_exception_on_parse_error:
raise FormatException(description)
return description | Generates the FULL description
Returns:
The FULL description
Raises:
FormatException: if formating fails and throw_exception_on_parse_error is True | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L114-L149 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_time_of_day_description | def get_time_of_day_description(self):
"""Generates a description for only the TIMEOFDAY portion of the expression
Returns:
The TIMEOFDAY description
"""
seconds_expression = self._expression_parts[0]
minute_expression = self._expression_parts[1]
hour_expression = self._expression_parts[2]
description = StringBuilder()
# handle special cases first
if any(exp in minute_expression for exp in self._special_characters) is False and \
any(exp in hour_expression for exp in self._special_characters) is False and \
any(exp in seconds_expression for exp in self._special_characters) is False:
# specific time of day (i.e. 10 14)
description.append(_("At "))
description.append(
self.format_time(
hour_expression,
minute_expression,
seconds_expression))
elif "-" in minute_expression and \
"," not in minute_expression and \
any(exp in hour_expression for exp in self._special_characters) is False:
# minute range in single hour (i.e. 0-10 11)
minute_parts = minute_expression.split('-')
description.append(_("Every minute between {0} and {1}").format(
self.format_time(hour_expression, minute_parts[0]), self.format_time(hour_expression, minute_parts[1])))
elif "," in hour_expression and "-" not in hour_expression and \
any(exp in minute_expression for exp in self._special_characters) is False:
# hours list with single minute (o.e. 30 6,14,16)
hour_parts = hour_expression.split(',')
description.append(_("At"))
for i, hour_part in enumerate(hour_parts):
description.append(" ")
description.append(
self.format_time(hour_part, minute_expression))
if i < (len(hour_parts) - 2):
description.append(",")
if i == len(hour_parts) - 2:
description.append(_(" and"))
else:
# default time description
seconds_description = self.get_seconds_description()
minutes_description = self.get_minutes_description()
hours_description = self.get_hours_description()
description.append(seconds_description)
if description:
description.append(", ")
description.append(minutes_description)
if description:
description.append(", ")
description.append(hours_description)
return str(description) | python | def get_time_of_day_description(self):
"""Generates a description for only the TIMEOFDAY portion of the expression
Returns:
The TIMEOFDAY description
"""
seconds_expression = self._expression_parts[0]
minute_expression = self._expression_parts[1]
hour_expression = self._expression_parts[2]
description = StringBuilder()
# handle special cases first
if any(exp in minute_expression for exp in self._special_characters) is False and \
any(exp in hour_expression for exp in self._special_characters) is False and \
any(exp in seconds_expression for exp in self._special_characters) is False:
# specific time of day (i.e. 10 14)
description.append(_("At "))
description.append(
self.format_time(
hour_expression,
minute_expression,
seconds_expression))
elif "-" in minute_expression and \
"," not in minute_expression and \
any(exp in hour_expression for exp in self._special_characters) is False:
# minute range in single hour (i.e. 0-10 11)
minute_parts = minute_expression.split('-')
description.append(_("Every minute between {0} and {1}").format(
self.format_time(hour_expression, minute_parts[0]), self.format_time(hour_expression, minute_parts[1])))
elif "," in hour_expression and "-" not in hour_expression and \
any(exp in minute_expression for exp in self._special_characters) is False:
# hours list with single minute (o.e. 30 6,14,16)
hour_parts = hour_expression.split(',')
description.append(_("At"))
for i, hour_part in enumerate(hour_parts):
description.append(" ")
description.append(
self.format_time(hour_part, minute_expression))
if i < (len(hour_parts) - 2):
description.append(",")
if i == len(hour_parts) - 2:
description.append(_(" and"))
else:
# default time description
seconds_description = self.get_seconds_description()
minutes_description = self.get_minutes_description()
hours_description = self.get_hours_description()
description.append(seconds_description)
if description:
description.append(", ")
description.append(minutes_description)
if description:
description.append(", ")
description.append(hours_description)
return str(description) | Generates a description for only the TIMEOFDAY portion of the expression
Returns:
The TIMEOFDAY description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L151-L214 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_seconds_description | def get_seconds_description(self):
"""Generates a description for only the SECONDS portion of the expression
Returns:
The SECONDS description
"""
return self.get_segment_description(
self._expression_parts[0],
_("every second"),
lambda s: s,
lambda s: _("every {0} seconds").format(s),
lambda s: _("seconds {0} through {1} past the minute"),
lambda s: _("at {0} seconds past the minute")
) | python | def get_seconds_description(self):
"""Generates a description for only the SECONDS portion of the expression
Returns:
The SECONDS description
"""
return self.get_segment_description(
self._expression_parts[0],
_("every second"),
lambda s: s,
lambda s: _("every {0} seconds").format(s),
lambda s: _("seconds {0} through {1} past the minute"),
lambda s: _("at {0} seconds past the minute")
) | Generates a description for only the SECONDS portion of the expression
Returns:
The SECONDS description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L216-L231 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_minutes_description | def get_minutes_description(self):
"""Generates a description for only the MINUTE portion of the expression
Returns:
The MINUTE description
"""
return self.get_segment_description(
self._expression_parts[1],
_("every minute"),
lambda s: s,
lambda s: _("every {0} minutes").format(s),
lambda s: _("minutes {0} through {1} past the hour"),
lambda s: '' if s == "0" else _("at {0} minutes past the hour")
) | python | def get_minutes_description(self):
"""Generates a description for only the MINUTE portion of the expression
Returns:
The MINUTE description
"""
return self.get_segment_description(
self._expression_parts[1],
_("every minute"),
lambda s: s,
lambda s: _("every {0} minutes").format(s),
lambda s: _("minutes {0} through {1} past the hour"),
lambda s: '' if s == "0" else _("at {0} minutes past the hour")
) | Generates a description for only the MINUTE portion of the expression
Returns:
The MINUTE description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L233-L248 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_hours_description | def get_hours_description(self):
"""Generates a description for only the HOUR portion of the expression
Returns:
The HOUR description
"""
expression = self._expression_parts[2]
return self.get_segment_description(
expression,
_("every hour"),
lambda s: self.format_time(s, "0"),
lambda s: _("every {0} hours").format(s),
lambda s: _("between {0} and {1}"),
lambda s: _("at {0}")
) | python | def get_hours_description(self):
"""Generates a description for only the HOUR portion of the expression
Returns:
The HOUR description
"""
expression = self._expression_parts[2]
return self.get_segment_description(
expression,
_("every hour"),
lambda s: self.format_time(s, "0"),
lambda s: _("every {0} hours").format(s),
lambda s: _("between {0} and {1}"),
lambda s: _("at {0}")
) | Generates a description for only the HOUR portion of the expression
Returns:
The HOUR description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L250-L265 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_day_of_week_description | def get_day_of_week_description(self):
"""Generates a description for only the DAYOFWEEK portion of the expression
Returns:
The DAYOFWEEK description
"""
if self._expression_parts[5] == "*" and self._expression_parts[3] != "*":
# DOM is specified and DOW is * so to prevent contradiction like "on day 1 of the month, every day"
# we will not specified a DOW description.
return ""
def get_day_name(s):
exp = s
if "#" in s:
exp, useless = s.split("#", 2)
elif "L" in s:
exp = exp.replace("L", '')
return self.number_to_day(int(exp))
def get_format(s):
if "#" in s:
day_of_week_of_month = s[s.find("#") + 1:]
try:
day_of_week_of_month_number = int(day_of_week_of_month)
choices = {
1: _("first"),
2: _("second"),
3: _("third"),
4: _("forth"),
5: _("fifth"),
}
day_of_week_of_month_description = choices.get(day_of_week_of_month_number, '')
except ValueError:
day_of_week_of_month_description = ''
formated = "{}{}{}".format(_(", on the "),
day_of_week_of_month_description, _(" {0} of the month"))
elif "L" in s:
formated = _(", on the last {0} of the month")
else:
formated = _(", only on {0}")
return formated
return self.get_segment_description(
self._expression_parts[5],
_(", every day"),
lambda s: get_day_name(s),
lambda s: _(", every {0} days of the week").format(s),
lambda s: _(", {0} through {1}"),
lambda s: get_format(s)
) | python | def get_day_of_week_description(self):
"""Generates a description for only the DAYOFWEEK portion of the expression
Returns:
The DAYOFWEEK description
"""
if self._expression_parts[5] == "*" and self._expression_parts[3] != "*":
# DOM is specified and DOW is * so to prevent contradiction like "on day 1 of the month, every day"
# we will not specified a DOW description.
return ""
def get_day_name(s):
exp = s
if "#" in s:
exp, useless = s.split("#", 2)
elif "L" in s:
exp = exp.replace("L", '')
return self.number_to_day(int(exp))
def get_format(s):
if "#" in s:
day_of_week_of_month = s[s.find("#") + 1:]
try:
day_of_week_of_month_number = int(day_of_week_of_month)
choices = {
1: _("first"),
2: _("second"),
3: _("third"),
4: _("forth"),
5: _("fifth"),
}
day_of_week_of_month_description = choices.get(day_of_week_of_month_number, '')
except ValueError:
day_of_week_of_month_description = ''
formated = "{}{}{}".format(_(", on the "),
day_of_week_of_month_description, _(" {0} of the month"))
elif "L" in s:
formated = _(", on the last {0} of the month")
else:
formated = _(", only on {0}")
return formated
return self.get_segment_description(
self._expression_parts[5],
_(", every day"),
lambda s: get_day_name(s),
lambda s: _(", every {0} days of the week").format(s),
lambda s: _(", {0} through {1}"),
lambda s: get_format(s)
) | Generates a description for only the DAYOFWEEK portion of the expression
Returns:
The DAYOFWEEK description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L267-L321 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_month_description | def get_month_description(self):
"""Generates a description for only the MONTH portion of the expression
Returns:
The MONTH description
"""
return self.get_segment_description(
self._expression_parts[4],
'',
lambda s: datetime.date(datetime.date.today().year, int(s), 1).strftime("%B"),
lambda s: _(", every {0} months").format(s),
lambda s: _(", {0} through {1}"),
lambda s: _(", only in {0}")
) | python | def get_month_description(self):
"""Generates a description for only the MONTH portion of the expression
Returns:
The MONTH description
"""
return self.get_segment_description(
self._expression_parts[4],
'',
lambda s: datetime.date(datetime.date.today().year, int(s), 1).strftime("%B"),
lambda s: _(", every {0} months").format(s),
lambda s: _(", {0} through {1}"),
lambda s: _(", only in {0}")
) | Generates a description for only the MONTH portion of the expression
Returns:
The MONTH description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L323-L337 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_day_of_month_description | def get_day_of_month_description(self):
"""Generates a description for only the DAYOFMONTH portion of the expression
Returns:
The DAYOFMONTH description
"""
expression = self._expression_parts[3]
expression = expression.replace("?", "*")
if expression == "L":
description = _(", on the last day of the month")
elif expression == "LW" or expression == "WL":
description = _(", on the last weekday of the month")
else:
regex = re.compile("(\\d{1,2}W)|(W\\d{1,2})")
if regex.match(expression):
m = regex.match(expression)
day_number = int(m.group().replace("W", ""))
day_string = _("first weekday") if day_number == 1 else _("weekday nearest day {0}").format(
day_number)
description = _(", on the {0} of the month").format(
day_string)
else:
description = self.get_segment_description(
expression,
_(", every day"),
lambda s: s,
lambda s: _(", every day") if s == "1" else _(", every {0} days"),
lambda s: _(", between day {0} and {1} of the month"),
lambda s: _(", on day {0} of the month")
)
return description | python | def get_day_of_month_description(self):
"""Generates a description for only the DAYOFMONTH portion of the expression
Returns:
The DAYOFMONTH description
"""
expression = self._expression_parts[3]
expression = expression.replace("?", "*")
if expression == "L":
description = _(", on the last day of the month")
elif expression == "LW" or expression == "WL":
description = _(", on the last weekday of the month")
else:
regex = re.compile("(\\d{1,2}W)|(W\\d{1,2})")
if regex.match(expression):
m = regex.match(expression)
day_number = int(m.group().replace("W", ""))
day_string = _("first weekday") if day_number == 1 else _("weekday nearest day {0}").format(
day_number)
description = _(", on the {0} of the month").format(
day_string)
else:
description = self.get_segment_description(
expression,
_(", every day"),
lambda s: s,
lambda s: _(", every day") if s == "1" else _(", every {0} days"),
lambda s: _(", between day {0} and {1} of the month"),
lambda s: _(", on day {0} of the month")
)
return description | Generates a description for only the DAYOFMONTH portion of the expression
Returns:
The DAYOFMONTH description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L339-L373 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_year_description | def get_year_description(self):
"""Generates a description for only the YEAR portion of the expression
Returns:
The YEAR description
"""
def format_year(s):
regex = re.compile(r"^\d+$")
if regex.match(s):
year_int = int(s)
if year_int < 1900:
return year_int
return datetime.date(year_int, 1, 1).strftime("%Y")
else:
return s
return self.get_segment_description(
self._expression_parts[6],
'',
lambda s: format_year(s),
lambda s: _(", every {0} years").format(s),
lambda s: _(", {0} through {1}"),
lambda s: _(", only in {0}")
) | python | def get_year_description(self):
"""Generates a description for only the YEAR portion of the expression
Returns:
The YEAR description
"""
def format_year(s):
regex = re.compile(r"^\d+$")
if regex.match(s):
year_int = int(s)
if year_int < 1900:
return year_int
return datetime.date(year_int, 1, 1).strftime("%Y")
else:
return s
return self.get_segment_description(
self._expression_parts[6],
'',
lambda s: format_year(s),
lambda s: _(", every {0} years").format(s),
lambda s: _(", {0} through {1}"),
lambda s: _(", only in {0}")
) | Generates a description for only the YEAR portion of the expression
Returns:
The YEAR description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L375-L400 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.get_segment_description | def get_segment_description(
self,
expression,
all_description,
get_single_item_description,
get_interval_description_format,
get_between_description_format,
get_description_format
):
"""Returns segment description
Args:
expression: Segment to descript
all_description: *
get_single_item_description: 1
get_interval_description_format: 1/2
get_between_description_format: 1-2
get_description_format: format get_single_item_description
Returns:
segment description
"""
description = None
if expression is None or expression == '':
description = ''
elif expression == "*":
description = all_description
elif any(ext in expression for ext in ['/', '-', ',']) is False:
description = get_description_format(expression).format(
get_single_item_description(expression))
elif "/" in expression:
segments = expression.split('/')
description = get_interval_description_format(
segments[1]).format(get_single_item_description(segments[1]))
# interval contains 'between' piece (i.e. 2-59/3 )
if "-" in segments[0]:
between_segment_description = self.generate_between_segment_description(
segments[0], get_between_description_format, get_single_item_description)
if not between_segment_description.startswith(", "):
description += ", "
description += between_segment_description
elif any(ext in segments[0] for ext in ['*', ',']) is False:
range_item_description = get_description_format(segments[0]).format(
get_single_item_description(segments[0])
)
range_item_description = range_item_description.replace(", ", "")
description += _(", starting {0}").format(range_item_description)
elif "," in expression:
segments = expression.split(',')
description_content = ''
for i, segment in enumerate(segments):
if i > 0 and len(segments) > 2:
description_content += ","
if i < len(segments) - 1:
description_content += " "
if i > 0 and len(segments) > 1 and (i == len(segments) - 1 or len(segments) == 2):
description_content += _(" and ")
if "-" in segment:
between_description = self.generate_between_segment_description(
segment,
lambda s: _(", {0} through {1}"),
get_single_item_description
)
between_description = between_description.replace(", ", "")
description_content += between_description
else:
description_content += get_single_item_description(segment)
description = get_description_format(
expression).format(
description_content)
elif "-" in expression:
description = self.generate_between_segment_description(
expression, get_between_description_format, get_single_item_description)
return description | python | def get_segment_description(
self,
expression,
all_description,
get_single_item_description,
get_interval_description_format,
get_between_description_format,
get_description_format
):
"""Returns segment description
Args:
expression: Segment to descript
all_description: *
get_single_item_description: 1
get_interval_description_format: 1/2
get_between_description_format: 1-2
get_description_format: format get_single_item_description
Returns:
segment description
"""
description = None
if expression is None or expression == '':
description = ''
elif expression == "*":
description = all_description
elif any(ext in expression for ext in ['/', '-', ',']) is False:
description = get_description_format(expression).format(
get_single_item_description(expression))
elif "/" in expression:
segments = expression.split('/')
description = get_interval_description_format(
segments[1]).format(get_single_item_description(segments[1]))
# interval contains 'between' piece (i.e. 2-59/3 )
if "-" in segments[0]:
between_segment_description = self.generate_between_segment_description(
segments[0], get_between_description_format, get_single_item_description)
if not between_segment_description.startswith(", "):
description += ", "
description += between_segment_description
elif any(ext in segments[0] for ext in ['*', ',']) is False:
range_item_description = get_description_format(segments[0]).format(
get_single_item_description(segments[0])
)
range_item_description = range_item_description.replace(", ", "")
description += _(", starting {0}").format(range_item_description)
elif "," in expression:
segments = expression.split(',')
description_content = ''
for i, segment in enumerate(segments):
if i > 0 and len(segments) > 2:
description_content += ","
if i < len(segments) - 1:
description_content += " "
if i > 0 and len(segments) > 1 and (i == len(segments) - 1 or len(segments) == 2):
description_content += _(" and ")
if "-" in segment:
between_description = self.generate_between_segment_description(
segment,
lambda s: _(", {0} through {1}"),
get_single_item_description
)
between_description = between_description.replace(", ", "")
description_content += between_description
else:
description_content += get_single_item_description(segment)
description = get_description_format(
expression).format(
description_content)
elif "-" in expression:
description = self.generate_between_segment_description(
expression, get_between_description_format, get_single_item_description)
return description | Returns segment description
Args:
expression: Segment to descript
all_description: *
get_single_item_description: 1
get_interval_description_format: 1/2
get_between_description_format: 1-2
get_description_format: format get_single_item_description
Returns:
segment description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L402-L484 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.generate_between_segment_description | def generate_between_segment_description(
self,
between_expression,
get_between_description_format,
get_single_item_description
):
"""
Generates the between segment description
:param between_expression:
:param get_between_description_format:
:param get_single_item_description:
:return: The between segment description
"""
description = ""
between_segments = between_expression.split('-')
between_segment_1_description = get_single_item_description(between_segments[0])
between_segment_2_description = get_single_item_description(between_segments[1])
between_segment_2_description = between_segment_2_description.replace(
":00", ":59")
between_description_format = get_between_description_format(between_expression)
description += between_description_format.format(between_segment_1_description, between_segment_2_description)
return description | python | def generate_between_segment_description(
self,
between_expression,
get_between_description_format,
get_single_item_description
):
"""
Generates the between segment description
:param between_expression:
:param get_between_description_format:
:param get_single_item_description:
:return: The between segment description
"""
description = ""
between_segments = between_expression.split('-')
between_segment_1_description = get_single_item_description(between_segments[0])
between_segment_2_description = get_single_item_description(between_segments[1])
between_segment_2_description = between_segment_2_description.replace(
":00", ":59")
between_description_format = get_between_description_format(between_expression)
description += between_description_format.format(between_segment_1_description, between_segment_2_description)
return description | Generates the between segment description
:param between_expression:
:param get_between_description_format:
:param get_single_item_description:
:return: The between segment description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L486-L509 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.format_time | def format_time(
self,
hour_expression,
minute_expression,
second_expression=''
):
"""Given time parts, will contruct a formatted time description
Args:
hour_expression: Hours part
minute_expression: Minutes part
second_expression: Seconds part
Returns:
Formatted time description
"""
hour = int(hour_expression)
period = ''
if self._options.use_24hour_time_format is False:
period = " PM" if (hour >= 12) else " AM"
if hour > 12:
hour -= 12
minute = str(int(minute_expression)) # !FIXME WUT ???
second = ''
if second_expression is not None and second_expression:
second = "{}{}".format(":", str(int(second_expression)).zfill(2))
return "{0}:{1}{2}{3}".format(str(hour).zfill(2), minute.zfill(2), second, period) | python | def format_time(
self,
hour_expression,
minute_expression,
second_expression=''
):
"""Given time parts, will contruct a formatted time description
Args:
hour_expression: Hours part
minute_expression: Minutes part
second_expression: Seconds part
Returns:
Formatted time description
"""
hour = int(hour_expression)
period = ''
if self._options.use_24hour_time_format is False:
period = " PM" if (hour >= 12) else " AM"
if hour > 12:
hour -= 12
minute = str(int(minute_expression)) # !FIXME WUT ???
second = ''
if second_expression is not None and second_expression:
second = "{}{}".format(":", str(int(second_expression)).zfill(2))
return "{0}:{1}{2}{3}".format(str(hour).zfill(2), minute.zfill(2), second, period) | Given time parts, will contruct a formatted time description
Args:
hour_expression: Hours part
minute_expression: Minutes part
second_expression: Seconds part
Returns:
Formatted time description | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L511-L539 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.transform_verbosity | def transform_verbosity(self, description, use_verbose_format):
"""Transforms the verbosity of the expression description by stripping verbosity from original description
Args:
description: The description to transform
use_verbose_format: If True, will leave description as it, if False, will strip verbose parts
second_expression: Seconds part
Returns:
The transformed description with proper verbosity
"""
if use_verbose_format is False:
description = description.replace(
_(", every minute"), '')
description = description.replace(_(", every hour"), '')
description = description.replace(_(", every day"), '')
return description | python | def transform_verbosity(self, description, use_verbose_format):
"""Transforms the verbosity of the expression description by stripping verbosity from original description
Args:
description: The description to transform
use_verbose_format: If True, will leave description as it, if False, will strip verbose parts
second_expression: Seconds part
Returns:
The transformed description with proper verbosity
"""
if use_verbose_format is False:
description = description.replace(
_(", every minute"), '')
description = description.replace(_(", every hour"), '')
description = description.replace(_(", every day"), '')
return description | Transforms the verbosity of the expression description by stripping verbosity from original description
Args:
description: The description to transform
use_verbose_format: If True, will leave description as it, if False, will strip verbose parts
second_expression: Seconds part
Returns:
The transformed description with proper verbosity | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L541-L556 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.transform_case | def transform_case(self, description, case_type):
"""Transforms the case of the expression description, based on options
Args:
description: The description to transform
case_type: The casing type that controls the output casing
second_expression: Seconds part
Returns:
The transformed description with proper casing
"""
if case_type == CasingTypeEnum.Sentence:
description = "{}{}".format(
description[0].upper(),
description[1:])
elif case_type == CasingTypeEnum.Title:
description = description.title()
else:
description = description.lower()
return description | python | def transform_case(self, description, case_type):
"""Transforms the case of the expression description, based on options
Args:
description: The description to transform
case_type: The casing type that controls the output casing
second_expression: Seconds part
Returns:
The transformed description with proper casing
"""
if case_type == CasingTypeEnum.Sentence:
description = "{}{}".format(
description[0].upper(),
description[1:])
elif case_type == CasingTypeEnum.Title:
description = description.title()
else:
description = description.lower()
return description | Transforms the case of the expression description, based on options
Args:
description: The description to transform
case_type: The casing type that controls the output casing
second_expression: Seconds part
Returns:
The transformed description with proper casing | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L558-L576 |
Salamek/cron-descriptor | cron_descriptor/ExpressionDescriptor.py | ExpressionDescriptor.number_to_day | def number_to_day(self, day_number):
"""Returns localized day name by its CRON number
Args:
day_number: Number of a day
Returns:
Day corresponding to day_number
Raises:
IndexError: When day_number is not found
"""
return [
calendar.day_name[6],
calendar.day_name[0],
calendar.day_name[1],
calendar.day_name[2],
calendar.day_name[3],
calendar.day_name[4],
calendar.day_name[5]
][day_number] | python | def number_to_day(self, day_number):
"""Returns localized day name by its CRON number
Args:
day_number: Number of a day
Returns:
Day corresponding to day_number
Raises:
IndexError: When day_number is not found
"""
return [
calendar.day_name[6],
calendar.day_name[0],
calendar.day_name[1],
calendar.day_name[2],
calendar.day_name[3],
calendar.day_name[4],
calendar.day_name[5]
][day_number] | Returns localized day name by its CRON number
Args:
day_number: Number of a day
Returns:
Day corresponding to day_number
Raises:
IndexError: When day_number is not found | https://github.com/Salamek/cron-descriptor/blob/fafe86b33e190caf205836fa1c719d27c7b408c7/cron_descriptor/ExpressionDescriptor.py#L578-L596 |
ciena/afkak | afkak/consumer.py | Consumer.start | def start(self, start_offset):
"""
Starts fetching messages from Kafka and delivering them to the
:attr:`.processor` function.
:param int start_offset:
The offset within the partition from which to start fetching.
Special values include: :const:`OFFSET_EARLIEST`,
:const:`OFFSET_LATEST`, and :const:`OFFSET_COMMITTED`. If the
supplied offset is :const:`OFFSET_EARLIEST` or
:const:`OFFSET_LATEST` the :class:`Consumer` will use the
OffsetRequest Kafka API to retrieve the actual offset used for
fetching. In the case :const:`OFFSET_COMMITTED` is used,
`commit_policy` MUST be set on the Consumer, and the Consumer
will use the OffsetFetchRequest Kafka API to retrieve the actual
offset used for fetching.
:returns:
A :class:`~twisted.internet.defer.Deferred` which will resolve
successfully when the consumer is cleanly stopped, or with
a failure if the :class:`Consumer` encounters an error from which
it is unable to recover.
:raises: :exc:`RestartError` if already running.
"""
# Have we been started already, and not stopped?
if self._start_d is not None:
raise RestartError("Start called on already-started consumer")
# Keep track of state for debugging
self._state = '[started]'
# Create and return a deferred for alerting on errors/stoppage
start_d = self._start_d = Deferred()
# Start a new fetch request, possibly just for the starting offset
self._fetch_offset = start_offset
self._do_fetch()
# Set up the auto-commit timer, if needed
if self.consumer_group and self.auto_commit_every_s:
self._commit_looper = LoopingCall(self._auto_commit)
self._commit_looper.clock = self.client.reactor
self._commit_looper_d = self._commit_looper.start(
self.auto_commit_every_s, now=False)
self._commit_looper_d.addCallbacks(self._commit_timer_stopped,
self._commit_timer_failed)
return start_d | python | def start(self, start_offset):
"""
Starts fetching messages from Kafka and delivering them to the
:attr:`.processor` function.
:param int start_offset:
The offset within the partition from which to start fetching.
Special values include: :const:`OFFSET_EARLIEST`,
:const:`OFFSET_LATEST`, and :const:`OFFSET_COMMITTED`. If the
supplied offset is :const:`OFFSET_EARLIEST` or
:const:`OFFSET_LATEST` the :class:`Consumer` will use the
OffsetRequest Kafka API to retrieve the actual offset used for
fetching. In the case :const:`OFFSET_COMMITTED` is used,
`commit_policy` MUST be set on the Consumer, and the Consumer
will use the OffsetFetchRequest Kafka API to retrieve the actual
offset used for fetching.
:returns:
A :class:`~twisted.internet.defer.Deferred` which will resolve
successfully when the consumer is cleanly stopped, or with
a failure if the :class:`Consumer` encounters an error from which
it is unable to recover.
:raises: :exc:`RestartError` if already running.
"""
# Have we been started already, and not stopped?
if self._start_d is not None:
raise RestartError("Start called on already-started consumer")
# Keep track of state for debugging
self._state = '[started]'
# Create and return a deferred for alerting on errors/stoppage
start_d = self._start_d = Deferred()
# Start a new fetch request, possibly just for the starting offset
self._fetch_offset = start_offset
self._do_fetch()
# Set up the auto-commit timer, if needed
if self.consumer_group and self.auto_commit_every_s:
self._commit_looper = LoopingCall(self._auto_commit)
self._commit_looper.clock = self.client.reactor
self._commit_looper_d = self._commit_looper.start(
self.auto_commit_every_s, now=False)
self._commit_looper_d.addCallbacks(self._commit_timer_stopped,
self._commit_timer_failed)
return start_d | Starts fetching messages from Kafka and delivering them to the
:attr:`.processor` function.
:param int start_offset:
The offset within the partition from which to start fetching.
Special values include: :const:`OFFSET_EARLIEST`,
:const:`OFFSET_LATEST`, and :const:`OFFSET_COMMITTED`. If the
supplied offset is :const:`OFFSET_EARLIEST` or
:const:`OFFSET_LATEST` the :class:`Consumer` will use the
OffsetRequest Kafka API to retrieve the actual offset used for
fetching. In the case :const:`OFFSET_COMMITTED` is used,
`commit_policy` MUST be set on the Consumer, and the Consumer
will use the OffsetFetchRequest Kafka API to retrieve the actual
offset used for fetching.
:returns:
A :class:`~twisted.internet.defer.Deferred` which will resolve
successfully when the consumer is cleanly stopped, or with
a failure if the :class:`Consumer` encounters an error from which
it is unable to recover.
:raises: :exc:`RestartError` if already running. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L236-L283 |
ciena/afkak | afkak/consumer.py | Consumer.shutdown | def shutdown(self):
"""Gracefully shutdown the consumer
Consumer will complete any outstanding processing, commit its current
offsets (if so configured) and stop.
Returns deferred which callbacks with a tuple of:
(last processed offset, last committed offset) if it was able to
successfully commit, or errbacks with the commit failure, if any,
or fail(RestopError) if consumer is not running.
"""
def _handle_shutdown_commit_success(result):
"""Handle the result of the commit attempted by shutdown"""
self._shutdown_d, d = None, self._shutdown_d
self.stop()
self._shuttingdown = False # Shutdown complete
d.callback((self._last_processed_offset,
self._last_committed_offset))
def _handle_shutdown_commit_failure(failure):
"""Handle failure of commit() attempted by shutdown"""
if failure.check(OperationInProgress):
failure.value.deferred.addCallback(_commit_and_stop)
return
self._shutdown_d, d = None, self._shutdown_d
self.stop()
self._shuttingdown = False # Shutdown complete
d.errback(failure)
def _commit_and_stop(result):
"""Commit the current offsets (if needed) and stop the consumer"""
if not self.consumer_group: # No consumer group, no committing
return _handle_shutdown_commit_success(None)
# Need to commit prior to stopping
self.commit().addCallbacks(_handle_shutdown_commit_success,
_handle_shutdown_commit_failure)
# If we're not running, return an failure
if self._start_d is None:
return fail(Failure(
RestopError("Shutdown called on non-running consumer")))
# If we're called multiple times, return a failure
if self._shutdown_d:
return fail(Failure(
RestopError("Shutdown called more than once.")))
# Set our _shuttingdown flag, so our _process_message routine will stop
# feeding new messages to the processor, and fetches won't be retried
self._shuttingdown = True
# Keep track of state for debugging
self._state = '[shutting down]'
# Create a deferred to track the shutdown
self._shutdown_d = d = Deferred()
# Are we waiting for the processor to complete? If so, when it's done,
# commit our offsets and stop.
if self._processor_d:
self._processor_d.addCallback(_commit_and_stop)
else:
# No need to wait for the processor, we can commit and stop now
_commit_and_stop(None)
# return the deferred
return d | python | def shutdown(self):
"""Gracefully shutdown the consumer
Consumer will complete any outstanding processing, commit its current
offsets (if so configured) and stop.
Returns deferred which callbacks with a tuple of:
(last processed offset, last committed offset) if it was able to
successfully commit, or errbacks with the commit failure, if any,
or fail(RestopError) if consumer is not running.
"""
def _handle_shutdown_commit_success(result):
"""Handle the result of the commit attempted by shutdown"""
self._shutdown_d, d = None, self._shutdown_d
self.stop()
self._shuttingdown = False # Shutdown complete
d.callback((self._last_processed_offset,
self._last_committed_offset))
def _handle_shutdown_commit_failure(failure):
"""Handle failure of commit() attempted by shutdown"""
if failure.check(OperationInProgress):
failure.value.deferred.addCallback(_commit_and_stop)
return
self._shutdown_d, d = None, self._shutdown_d
self.stop()
self._shuttingdown = False # Shutdown complete
d.errback(failure)
def _commit_and_stop(result):
"""Commit the current offsets (if needed) and stop the consumer"""
if not self.consumer_group: # No consumer group, no committing
return _handle_shutdown_commit_success(None)
# Need to commit prior to stopping
self.commit().addCallbacks(_handle_shutdown_commit_success,
_handle_shutdown_commit_failure)
# If we're not running, return an failure
if self._start_d is None:
return fail(Failure(
RestopError("Shutdown called on non-running consumer")))
# If we're called multiple times, return a failure
if self._shutdown_d:
return fail(Failure(
RestopError("Shutdown called more than once.")))
# Set our _shuttingdown flag, so our _process_message routine will stop
# feeding new messages to the processor, and fetches won't be retried
self._shuttingdown = True
# Keep track of state for debugging
self._state = '[shutting down]'
# Create a deferred to track the shutdown
self._shutdown_d = d = Deferred()
# Are we waiting for the processor to complete? If so, when it's done,
# commit our offsets and stop.
if self._processor_d:
self._processor_d.addCallback(_commit_and_stop)
else:
# No need to wait for the processor, we can commit and stop now
_commit_and_stop(None)
# return the deferred
return d | Gracefully shutdown the consumer
Consumer will complete any outstanding processing, commit its current
offsets (if so configured) and stop.
Returns deferred which callbacks with a tuple of:
(last processed offset, last committed offset) if it was able to
successfully commit, or errbacks with the commit failure, if any,
or fail(RestopError) if consumer is not running. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L285-L350 |
ciena/afkak | afkak/consumer.py | Consumer.stop | def stop(self):
"""
Stop the consumer and return offset of last processed message. This
cancels all outstanding operations. Also, if the deferred returned
by `start` hasn't been called, it is called with a tuple consisting
of the last processed offset and the last committed offset.
:raises: :exc:`RestopError` if the :class:`Consumer` is not running.
"""
if self._start_d is None:
raise RestopError("Stop called on non-running consumer")
self._stopping = True
# Keep track of state for debugging
self._state = '[stopping]'
# Are we waiting for a request to come back?
if self._request_d:
self._request_d.cancel()
# Are we working our way through a block of messages?
if self._msg_block_d:
# Need to add a cancel handler...
_msg_block_d, self._msg_block_d = self._msg_block_d, None
_msg_block_d.addErrback(lambda fail: fail.trap(CancelledError))
_msg_block_d.cancel()
# Are we waiting for the processor to complete?
if self._processor_d:
self._processor_d.cancel()
# Are we waiting to retry a request?
if self._retry_call:
self._retry_call.cancel()
# Are we waiting on a commit request?
if self._commit_ds:
while self._commit_ds:
d = self._commit_ds.pop()
d.cancel()
if self._commit_req:
self._commit_req.cancel()
# Are we waiting to retry a commit?
if self._commit_call:
self._commit_call.cancel()
# Do we have an auto-commit looping call?
if self._commit_looper is not None:
self._commit_looper.stop()
# Done stopping
self._stopping = False
# Keep track of state for debugging
self._state = '[stopped]'
# Clear and possibly callback our start() Deferred
self._start_d, d = None, self._start_d
if not d.called:
d.callback((self._last_processed_offset,
self._last_committed_offset))
# Return the offset of the message we last processed
return self._last_processed_offset | python | def stop(self):
"""
Stop the consumer and return offset of last processed message. This
cancels all outstanding operations. Also, if the deferred returned
by `start` hasn't been called, it is called with a tuple consisting
of the last processed offset and the last committed offset.
:raises: :exc:`RestopError` if the :class:`Consumer` is not running.
"""
if self._start_d is None:
raise RestopError("Stop called on non-running consumer")
self._stopping = True
# Keep track of state for debugging
self._state = '[stopping]'
# Are we waiting for a request to come back?
if self._request_d:
self._request_d.cancel()
# Are we working our way through a block of messages?
if self._msg_block_d:
# Need to add a cancel handler...
_msg_block_d, self._msg_block_d = self._msg_block_d, None
_msg_block_d.addErrback(lambda fail: fail.trap(CancelledError))
_msg_block_d.cancel()
# Are we waiting for the processor to complete?
if self._processor_d:
self._processor_d.cancel()
# Are we waiting to retry a request?
if self._retry_call:
self._retry_call.cancel()
# Are we waiting on a commit request?
if self._commit_ds:
while self._commit_ds:
d = self._commit_ds.pop()
d.cancel()
if self._commit_req:
self._commit_req.cancel()
# Are we waiting to retry a commit?
if self._commit_call:
self._commit_call.cancel()
# Do we have an auto-commit looping call?
if self._commit_looper is not None:
self._commit_looper.stop()
# Done stopping
self._stopping = False
# Keep track of state for debugging
self._state = '[stopped]'
# Clear and possibly callback our start() Deferred
self._start_d, d = None, self._start_d
if not d.called:
d.callback((self._last_processed_offset,
self._last_committed_offset))
# Return the offset of the message we last processed
return self._last_processed_offset | Stop the consumer and return offset of last processed message. This
cancels all outstanding operations. Also, if the deferred returned
by `start` hasn't been called, it is called with a tuple consisting
of the last processed offset and the last committed offset.
:raises: :exc:`RestopError` if the :class:`Consumer` is not running. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L352-L407 |
ciena/afkak | afkak/consumer.py | Consumer.commit | def commit(self):
"""
Commit the offset of the message we last processed if it is different
from what we believe is the last offset committed to Kafka.
.. note::
It is possible to commit a smaller offset than Kafka has stored.
This is by design, so we can reprocess a Kafka message stream if
desired.
On error, will retry according to :attr:`request_retry_max_attempts`
(by default, forever).
If called while a commit operation is in progress, and new messages
have been processed since the last request was sent then the commit
will fail with :exc:`OperationInProgress`. The
:exc:`OperationInProgress` exception wraps
a :class:`~twisted.internet.defer.Deferred` which fires when the
outstanding commit operation completes.
:returns:
A :class:`~twisted.internet.defer.Deferred` which resolves with the
committed offset when the operation has completed. It will resolve
immediately if the current offset and the last committed offset do
not differ.
"""
# Can't commit without a consumer_group
if not self.consumer_group:
return fail(Failure(InvalidConsumerGroupError(
"Bad Group_id:{0!r}".format(self.consumer_group))))
# short circuit if we are 'up to date', or haven't processed anything
if ((self._last_processed_offset is None) or
(self._last_processed_offset == self._last_committed_offset)):
return succeed(self._last_committed_offset)
# If we're currently processing a commit we return a failure
# with a deferred we'll fire when the in-progress one completes
if self._commit_ds:
d = Deferred()
self._commit_ds.append(d)
return fail(OperationInProgress(d))
# Ok, we have processed messages since our last commit attempt, and
# we're not currently waiting on a commit request to complete:
# Start a new one
d = Deferred()
self._commit_ds.append(d)
# Send the request
self._send_commit_request()
# Reset the commit_looper here, rather than on success to give
# more stability to the commit interval.
if self._commit_looper is not None:
self._commit_looper.reset()
# return the deferred
return d | python | def commit(self):
"""
Commit the offset of the message we last processed if it is different
from what we believe is the last offset committed to Kafka.
.. note::
It is possible to commit a smaller offset than Kafka has stored.
This is by design, so we can reprocess a Kafka message stream if
desired.
On error, will retry according to :attr:`request_retry_max_attempts`
(by default, forever).
If called while a commit operation is in progress, and new messages
have been processed since the last request was sent then the commit
will fail with :exc:`OperationInProgress`. The
:exc:`OperationInProgress` exception wraps
a :class:`~twisted.internet.defer.Deferred` which fires when the
outstanding commit operation completes.
:returns:
A :class:`~twisted.internet.defer.Deferred` which resolves with the
committed offset when the operation has completed. It will resolve
immediately if the current offset and the last committed offset do
not differ.
"""
# Can't commit without a consumer_group
if not self.consumer_group:
return fail(Failure(InvalidConsumerGroupError(
"Bad Group_id:{0!r}".format(self.consumer_group))))
# short circuit if we are 'up to date', or haven't processed anything
if ((self._last_processed_offset is None) or
(self._last_processed_offset == self._last_committed_offset)):
return succeed(self._last_committed_offset)
# If we're currently processing a commit we return a failure
# with a deferred we'll fire when the in-progress one completes
if self._commit_ds:
d = Deferred()
self._commit_ds.append(d)
return fail(OperationInProgress(d))
# Ok, we have processed messages since our last commit attempt, and
# we're not currently waiting on a commit request to complete:
# Start a new one
d = Deferred()
self._commit_ds.append(d)
# Send the request
self._send_commit_request()
# Reset the commit_looper here, rather than on success to give
# more stability to the commit interval.
if self._commit_looper is not None:
self._commit_looper.reset()
# return the deferred
return d | Commit the offset of the message we last processed if it is different
from what we believe is the last offset committed to Kafka.
.. note::
It is possible to commit a smaller offset than Kafka has stored.
This is by design, so we can reprocess a Kafka message stream if
desired.
On error, will retry according to :attr:`request_retry_max_attempts`
(by default, forever).
If called while a commit operation is in progress, and new messages
have been processed since the last request was sent then the commit
will fail with :exc:`OperationInProgress`. The
:exc:`OperationInProgress` exception wraps
a :class:`~twisted.internet.defer.Deferred` which fires when the
outstanding commit operation completes.
:returns:
A :class:`~twisted.internet.defer.Deferred` which resolves with the
committed offset when the operation has completed. It will resolve
immediately if the current offset and the last committed offset do
not differ. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L409-L467 |
ciena/afkak | afkak/consumer.py | Consumer._auto_commit | def _auto_commit(self, by_count=False):
"""Check if we should start a new commit operation and commit"""
# Check if we are even supposed to do any auto-committing
if (self._stopping or self._shuttingdown or (not self._start_d) or
(self._last_processed_offset is None) or
(not self.consumer_group) or
(by_count and not self.auto_commit_every_n)):
return
# If we're auto_committing because the timer expired, or by count and
# we don't have a record of our last_committed_offset, or we've
# processed enough messages since our last commit, then try to commit
if (not by_count or self._last_committed_offset is None or
(self._last_processed_offset - self._last_committed_offset
) >= self.auto_commit_every_n):
if not self._commit_ds:
commit_d = self.commit()
commit_d.addErrback(self._handle_auto_commit_error)
else:
# We're waiting on the last commit to complete, so add a
# callback to be called when the current request completes
d = Deferred()
d.addCallback(self._retry_auto_commit, by_count)
self._commit_ds.append(d) | python | def _auto_commit(self, by_count=False):
"""Check if we should start a new commit operation and commit"""
# Check if we are even supposed to do any auto-committing
if (self._stopping or self._shuttingdown or (not self._start_d) or
(self._last_processed_offset is None) or
(not self.consumer_group) or
(by_count and not self.auto_commit_every_n)):
return
# If we're auto_committing because the timer expired, or by count and
# we don't have a record of our last_committed_offset, or we've
# processed enough messages since our last commit, then try to commit
if (not by_count or self._last_committed_offset is None or
(self._last_processed_offset - self._last_committed_offset
) >= self.auto_commit_every_n):
if not self._commit_ds:
commit_d = self.commit()
commit_d.addErrback(self._handle_auto_commit_error)
else:
# We're waiting on the last commit to complete, so add a
# callback to be called when the current request completes
d = Deferred()
d.addCallback(self._retry_auto_commit, by_count)
self._commit_ds.append(d) | Check if we should start a new commit operation and commit | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L475-L498 |
ciena/afkak | afkak/consumer.py | Consumer._retry_fetch | def _retry_fetch(self, after=None):
"""
Schedule a delayed :meth:`_do_fetch` call after a failure
:param float after:
The delay in seconds after which to do the retried fetch. If
`None`, our internal :attr:`retry_delay` is used, and adjusted by
:const:`REQUEST_RETRY_FACTOR`.
"""
# Have we been told to stop or shutdown? Then don't actually retry.
if self._stopping or self._shuttingdown or self._start_d is None:
# Stopping, or stopped already? No more fetching.
return
if self._retry_call is None:
if after is None:
after = self.retry_delay
self.retry_delay = min(self.retry_delay * REQUEST_RETRY_FACTOR,
self.retry_max_delay)
self._fetch_attempt_count += 1
self._retry_call = self.client.reactor.callLater(
after, self._do_fetch) | python | def _retry_fetch(self, after=None):
"""
Schedule a delayed :meth:`_do_fetch` call after a failure
:param float after:
The delay in seconds after which to do the retried fetch. If
`None`, our internal :attr:`retry_delay` is used, and adjusted by
:const:`REQUEST_RETRY_FACTOR`.
"""
# Have we been told to stop or shutdown? Then don't actually retry.
if self._stopping or self._shuttingdown or self._start_d is None:
# Stopping, or stopped already? No more fetching.
return
if self._retry_call is None:
if after is None:
after = self.retry_delay
self.retry_delay = min(self.retry_delay * REQUEST_RETRY_FACTOR,
self.retry_max_delay)
self._fetch_attempt_count += 1
self._retry_call = self.client.reactor.callLater(
after, self._do_fetch) | Schedule a delayed :meth:`_do_fetch` call after a failure
:param float after:
The delay in seconds after which to do the retried fetch. If
`None`, our internal :attr:`retry_delay` is used, and adjusted by
:const:`REQUEST_RETRY_FACTOR`. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L500-L522 |
ciena/afkak | afkak/consumer.py | Consumer._handle_offset_response | def _handle_offset_response(self, response):
"""
Handle responses to both OffsetRequest and OffsetFetchRequest, since
they are similar enough.
:param response:
A tuple of a single OffsetFetchResponse or OffsetResponse
"""
# Got a response, clear our outstanding request deferred
self._request_d = None
# Successful request, reset our retry delay, count, etc
self.retry_delay = self.retry_init_delay
self._fetch_attempt_count = 1
response = response[0]
if hasattr(response, 'offsets'):
# It's a response to an OffsetRequest
self._fetch_offset = response.offsets[0]
else:
# It's a response to an OffsetFetchRequest
# Make sure we got a valid offset back. Kafka uses -1 to indicate
# no committed offset was retrieved
if response.offset == OFFSET_NOT_COMMITTED:
self._fetch_offset = OFFSET_EARLIEST
else:
self._fetch_offset = response.offset + 1
self._last_committed_offset = response.offset
self._do_fetch() | python | def _handle_offset_response(self, response):
"""
Handle responses to both OffsetRequest and OffsetFetchRequest, since
they are similar enough.
:param response:
A tuple of a single OffsetFetchResponse or OffsetResponse
"""
# Got a response, clear our outstanding request deferred
self._request_d = None
# Successful request, reset our retry delay, count, etc
self.retry_delay = self.retry_init_delay
self._fetch_attempt_count = 1
response = response[0]
if hasattr(response, 'offsets'):
# It's a response to an OffsetRequest
self._fetch_offset = response.offsets[0]
else:
# It's a response to an OffsetFetchRequest
# Make sure we got a valid offset back. Kafka uses -1 to indicate
# no committed offset was retrieved
if response.offset == OFFSET_NOT_COMMITTED:
self._fetch_offset = OFFSET_EARLIEST
else:
self._fetch_offset = response.offset + 1
self._last_committed_offset = response.offset
self._do_fetch() | Handle responses to both OffsetRequest and OffsetFetchRequest, since
they are similar enough.
:param response:
A tuple of a single OffsetFetchResponse or OffsetResponse | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L524-L552 |
ciena/afkak | afkak/consumer.py | Consumer._handle_offset_error | def _handle_offset_error(self, failure):
"""
Retry the offset fetch request if appropriate.
Once the :attr:`.retry_delay` reaches our :attr:`.retry_max_delay`, we
log a warning. This should perhaps be extended to abort sooner on
certain errors.
"""
# outstanding request got errback'd, clear it
self._request_d = None
if self._stopping and failure.check(CancelledError):
# Not really an error
return
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
self._fetch_attempt_count >= self.request_retry_max_attempts):
log.debug(
"%r: Exhausted attempts: %d fetching offset from kafka: %r",
self, self.request_retry_max_attempts, failure)
self._start_d.errback(failure)
return
# Decide how to log this failure... If we have retried so many times
# we're at the retry_max_delay, then we log at warning every other time
# debug otherwise
if (self.retry_delay < self.retry_max_delay or
0 == (self._fetch_attempt_count % 2)):
log.debug("%r: Failure fetching offset from kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log at warn
log.warning("%r: Still failing fetching offset from kafka: %r",
self, failure)
self._retry_fetch() | python | def _handle_offset_error(self, failure):
"""
Retry the offset fetch request if appropriate.
Once the :attr:`.retry_delay` reaches our :attr:`.retry_max_delay`, we
log a warning. This should perhaps be extended to abort sooner on
certain errors.
"""
# outstanding request got errback'd, clear it
self._request_d = None
if self._stopping and failure.check(CancelledError):
# Not really an error
return
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
self._fetch_attempt_count >= self.request_retry_max_attempts):
log.debug(
"%r: Exhausted attempts: %d fetching offset from kafka: %r",
self, self.request_retry_max_attempts, failure)
self._start_d.errback(failure)
return
# Decide how to log this failure... If we have retried so many times
# we're at the retry_max_delay, then we log at warning every other time
# debug otherwise
if (self.retry_delay < self.retry_max_delay or
0 == (self._fetch_attempt_count % 2)):
log.debug("%r: Failure fetching offset from kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log at warn
log.warning("%r: Still failing fetching offset from kafka: %r",
self, failure)
self._retry_fetch() | Retry the offset fetch request if appropriate.
Once the :attr:`.retry_delay` reaches our :attr:`.retry_max_delay`, we
log a warning. This should perhaps be extended to abort sooner on
certain errors. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L554-L587 |
ciena/afkak | afkak/consumer.py | Consumer._send_commit_request | def _send_commit_request(self, retry_delay=None, attempt=None):
"""Send a commit request with our last_processed_offset"""
# If there's a _commit_call, and it's not active, clear it, it probably
# just called us...
if self._commit_call and not self._commit_call.active():
self._commit_call = None
# Make sure we only have one outstanding commit request at a time
if self._commit_req is not None:
raise OperationInProgress(self._commit_req)
# Handle defaults
if retry_delay is None:
retry_delay = self.retry_init_delay
if attempt is None:
attempt = 1
# Create new OffsetCommitRequest with the latest processed offset
commit_offset = self._last_processed_offset
commit_request = OffsetCommitRequest(
self.topic, self.partition, commit_offset,
TIMESTAMP_INVALID, self.commit_metadata)
log.debug("Committing off=%d grp=%s tpc=%s part=%s req=%r",
self._last_processed_offset, self.consumer_group,
self.topic, self.partition, commit_request)
# Send the request, add our callbacks
self._commit_req = d = self.client.send_offset_commit_request(
self.consumer_group, [commit_request])
d.addBoth(self._clear_commit_req)
d.addCallbacks(
self._update_committed_offset, self._handle_commit_error,
callbackArgs=(commit_offset,),
errbackArgs=(retry_delay, attempt)) | python | def _send_commit_request(self, retry_delay=None, attempt=None):
"""Send a commit request with our last_processed_offset"""
# If there's a _commit_call, and it's not active, clear it, it probably
# just called us...
if self._commit_call and not self._commit_call.active():
self._commit_call = None
# Make sure we only have one outstanding commit request at a time
if self._commit_req is not None:
raise OperationInProgress(self._commit_req)
# Handle defaults
if retry_delay is None:
retry_delay = self.retry_init_delay
if attempt is None:
attempt = 1
# Create new OffsetCommitRequest with the latest processed offset
commit_offset = self._last_processed_offset
commit_request = OffsetCommitRequest(
self.topic, self.partition, commit_offset,
TIMESTAMP_INVALID, self.commit_metadata)
log.debug("Committing off=%d grp=%s tpc=%s part=%s req=%r",
self._last_processed_offset, self.consumer_group,
self.topic, self.partition, commit_request)
# Send the request, add our callbacks
self._commit_req = d = self.client.send_offset_commit_request(
self.consumer_group, [commit_request])
d.addBoth(self._clear_commit_req)
d.addCallbacks(
self._update_committed_offset, self._handle_commit_error,
callbackArgs=(commit_offset,),
errbackArgs=(retry_delay, attempt)) | Send a commit request with our last_processed_offset | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L616-L650 |
ciena/afkak | afkak/consumer.py | Consumer._handle_commit_error | def _handle_commit_error(self, failure, retry_delay, attempt):
""" Retry the commit request, depending on failure type
Depending on the type of the failure, we retry the commit request
with the latest processed offset, or callback/errback self._commit_ds
"""
# Check if we are stopping and the request was cancelled
if self._stopping and failure.check(CancelledError):
# Not really an error
return self._deliver_commit_result(self._last_committed_offset)
# Check that the failure type is a Kafka error...this could maybe be
# a tighter check to determine whether a retry will succeed...
if not failure.check(KafkaError):
log.error("Unhandleable failure during commit attempt: %r\n\t%r",
failure, failure.getBriefTraceback())
return self._deliver_commit_result(failure)
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
attempt >= self.request_retry_max_attempts):
log.debug("%r: Exhausted attempts: %d to commit offset: %r",
self, self.request_retry_max_attempts, failure)
return self._deliver_commit_result(failure)
# Check the retry_delay to see if we should log at the higher level
# Using attempts % 2 gets us 1-warn/minute with defaults timings
if retry_delay < self.retry_max_delay or 0 == (attempt % 2):
log.debug("%r: Failure committing offset to kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log alternately at warn
log.warning("%r: Still failing committing offset to kafka: %r",
self, failure)
# Schedule a delayed call to retry the commit
retry_delay = min(retry_delay * REQUEST_RETRY_FACTOR,
self.retry_max_delay)
self._commit_call = self.client.reactor.callLater(
retry_delay, self._send_commit_request, retry_delay, attempt + 1) | python | def _handle_commit_error(self, failure, retry_delay, attempt):
""" Retry the commit request, depending on failure type
Depending on the type of the failure, we retry the commit request
with the latest processed offset, or callback/errback self._commit_ds
"""
# Check if we are stopping and the request was cancelled
if self._stopping and failure.check(CancelledError):
# Not really an error
return self._deliver_commit_result(self._last_committed_offset)
# Check that the failure type is a Kafka error...this could maybe be
# a tighter check to determine whether a retry will succeed...
if not failure.check(KafkaError):
log.error("Unhandleable failure during commit attempt: %r\n\t%r",
failure, failure.getBriefTraceback())
return self._deliver_commit_result(failure)
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
attempt >= self.request_retry_max_attempts):
log.debug("%r: Exhausted attempts: %d to commit offset: %r",
self, self.request_retry_max_attempts, failure)
return self._deliver_commit_result(failure)
# Check the retry_delay to see if we should log at the higher level
# Using attempts % 2 gets us 1-warn/minute with defaults timings
if retry_delay < self.retry_max_delay or 0 == (attempt % 2):
log.debug("%r: Failure committing offset to kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log alternately at warn
log.warning("%r: Still failing committing offset to kafka: %r",
self, failure)
# Schedule a delayed call to retry the commit
retry_delay = min(retry_delay * REQUEST_RETRY_FACTOR,
self.retry_max_delay)
self._commit_call = self.client.reactor.callLater(
retry_delay, self._send_commit_request, retry_delay, attempt + 1) | Retry the commit request, depending on failure type
Depending on the type of the failure, we retry the commit request
with the latest processed offset, or callback/errback self._commit_ds | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L652-L691 |
ciena/afkak | afkak/consumer.py | Consumer._handle_processor_error | def _handle_processor_error(self, failure):
"""Handle a failure in the processing of a block of messages
This method is called when the processor func fails while processing
a block of messages. Since we can't know how best to handle a
processor failure, we just :func:`errback` our :func:`start` method's
deferred to let our user know about the failure.
"""
# Check if we're stopping/stopped and the errback of the processor
# deferred is just the cancelling we initiated. If so, we skip
# notifying via the _start_d deferred, as it will be 'callback'd at the
# end of stop()
if not (self._stopping and failure.check(CancelledError)):
if self._start_d: # Make sure we're not already stopped
self._start_d.errback(failure) | python | def _handle_processor_error(self, failure):
"""Handle a failure in the processing of a block of messages
This method is called when the processor func fails while processing
a block of messages. Since we can't know how best to handle a
processor failure, we just :func:`errback` our :func:`start` method's
deferred to let our user know about the failure.
"""
# Check if we're stopping/stopped and the errback of the processor
# deferred is just the cancelling we initiated. If so, we skip
# notifying via the _start_d deferred, as it will be 'callback'd at the
# end of stop()
if not (self._stopping and failure.check(CancelledError)):
if self._start_d: # Make sure we're not already stopped
self._start_d.errback(failure) | Handle a failure in the processing of a block of messages
This method is called when the processor func fails while processing
a block of messages. Since we can't know how best to handle a
processor failure, we just :func:`errback` our :func:`start` method's
deferred to let our user know about the failure. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L697-L711 |
ciena/afkak | afkak/consumer.py | Consumer._handle_fetch_error | def _handle_fetch_error(self, failure):
"""A fetch request resulted in an error. Retry after our current delay
When a fetch error occurs, we check to see if the Consumer is being
stopped, and if so just return, trapping the CancelledError. If not, we
check if the Consumer has a non-zero setting for
:attr:`request_retry_max_attempts` and if so and we have reached that limit we
errback() the Consumer's start() deferred with the failure. If not, we
determine whether to log at debug or warning (we log at warning every
other retry after backing off to the max retry delay, resulting in a
warning message approximately once per minute with the default timings)
We then wait our current :attr:`retry_delay`, and retry the fetch. We
also increase our retry_delay by Apery's constant (1.20205) and note
the failed fetch by incrementing :attr:`_fetch_attempt_count`.
NOTE: this may retry forever.
TODO: Possibly make this differentiate based on the failure
"""
# The _request_d deferred has fired, clear it.
self._request_d = None
if failure.check(OffsetOutOfRangeError):
if self.auto_offset_reset is None:
self._start_d.errback(failure)
return
self._fetch_offset = self.auto_offset_reset
if self._stopping and failure.check(CancelledError):
# Not really an error
return
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
self._fetch_attempt_count >= self.request_retry_max_attempts):
log.debug(
"%r: Exhausted attempts: %d fetching messages from kafka: %r",
self, self.request_retry_max_attempts, failure)
self._start_d.errback(failure)
return
# Decide how to log this failure... If we have retried so many times
# we're at the retry_max_delay, then we log at warning every other time
# debug otherwise
if (self.retry_delay < self.retry_max_delay or
0 == (self._fetch_attempt_count % 2)):
log.debug("%r: Failure fetching messages from kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log at warn
log.warning("%r: Still failing fetching messages from kafka: %r",
self, failure)
self._retry_fetch() | python | def _handle_fetch_error(self, failure):
"""A fetch request resulted in an error. Retry after our current delay
When a fetch error occurs, we check to see if the Consumer is being
stopped, and if so just return, trapping the CancelledError. If not, we
check if the Consumer has a non-zero setting for
:attr:`request_retry_max_attempts` and if so and we have reached that limit we
errback() the Consumer's start() deferred with the failure. If not, we
determine whether to log at debug or warning (we log at warning every
other retry after backing off to the max retry delay, resulting in a
warning message approximately once per minute with the default timings)
We then wait our current :attr:`retry_delay`, and retry the fetch. We
also increase our retry_delay by Apery's constant (1.20205) and note
the failed fetch by incrementing :attr:`_fetch_attempt_count`.
NOTE: this may retry forever.
TODO: Possibly make this differentiate based on the failure
"""
# The _request_d deferred has fired, clear it.
self._request_d = None
if failure.check(OffsetOutOfRangeError):
if self.auto_offset_reset is None:
self._start_d.errback(failure)
return
self._fetch_offset = self.auto_offset_reset
if self._stopping and failure.check(CancelledError):
# Not really an error
return
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
self._fetch_attempt_count >= self.request_retry_max_attempts):
log.debug(
"%r: Exhausted attempts: %d fetching messages from kafka: %r",
self, self.request_retry_max_attempts, failure)
self._start_d.errback(failure)
return
# Decide how to log this failure... If we have retried so many times
# we're at the retry_max_delay, then we log at warning every other time
# debug otherwise
if (self.retry_delay < self.retry_max_delay or
0 == (self._fetch_attempt_count % 2)):
log.debug("%r: Failure fetching messages from kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log at warn
log.warning("%r: Still failing fetching messages from kafka: %r",
self, failure)
self._retry_fetch() | A fetch request resulted in an error. Retry after our current delay
When a fetch error occurs, we check to see if the Consumer is being
stopped, and if so just return, trapping the CancelledError. If not, we
check if the Consumer has a non-zero setting for
:attr:`request_retry_max_attempts` and if so and we have reached that limit we
errback() the Consumer's start() deferred with the failure. If not, we
determine whether to log at debug or warning (we log at warning every
other retry after backing off to the max retry delay, resulting in a
warning message approximately once per minute with the default timings)
We then wait our current :attr:`retry_delay`, and retry the fetch. We
also increase our retry_delay by Apery's constant (1.20205) and note
the failed fetch by incrementing :attr:`_fetch_attempt_count`.
NOTE: this may retry forever.
TODO: Possibly make this differentiate based on the failure | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L713-L763 |
ciena/afkak | afkak/consumer.py | Consumer._handle_fetch_response | def _handle_fetch_response(self, responses):
"""The callback handling the successful response from the fetch request
Delivers the message list to the processor, handles per-message errors
(ConsumerFetchSizeTooSmall), triggers another fetch request
If the processor is still processing the last batch of messages, we
defer this processing until it's done. Otherwise, we start another
fetch request and submit the messages to the processor
"""
# Successful fetch, reset our retry delay
self.retry_delay = self.retry_init_delay
self._fetch_attempt_count = 1
# Check to see if we are still processing the last block we fetched...
if self._msg_block_d:
# We are still working through the last block of messages...
# We have to wait until it's done, then process this response
self._msg_block_d.addCallback(
lambda _: self._handle_fetch_response(responses))
return
# No ongoing processing, great, let's get some started.
# Request no longer outstanding, clear the deferred tracker so we
# can refetch
self._request_d = None
messages = []
try:
for resp in responses: # We should really only ever get one...
if resp.partition != self.partition:
log.warning(
"%r: Got response with partition: %r not our own: %r",
self, resp.partition, self.partition)
continue
# resp.messages is a KafkaCodec._decode_message_set_iter
# Note that 'message' here is really an OffsetAndMessage
for message in resp.messages:
# Check for messages included which are from prior to our
# desired offset: can happen due to compressed message sets
if message.offset < self._fetch_offset:
log.debug(
'Skipping message at offset: %d, because its '
'offset is less that our fetch offset: %d.',
message.offset, self._fetch_offset)
continue
# Create a 'SourcedMessage' and add it to the messages list
messages.append(
SourcedMessage(
message=message.message,
offset=message.offset, topic=self.topic,
partition=self.partition))
# Update our notion of from where to fetch.
self._fetch_offset = message.offset + 1
except ConsumerFetchSizeTooSmall:
# A message was too large for us to receive, given our current
# buffer size. Grow it until it works, or we hit our max
# Grow by 16x up to 1MB (could result in 16MB buf), then by 2x
factor = 2
if self.buffer_size <= 2**20:
factor = 16
if self.max_buffer_size is None:
# No limit, increase until we succeed or fail to alloc RAM
self.buffer_size *= factor
elif (self.max_buffer_size is not None and
self.buffer_size < self.max_buffer_size):
# Limited, but currently below it.
self.buffer_size = min(
self.buffer_size * factor, self.max_buffer_size)
else:
# We failed, and are already at our max. Nothing we can do but
# create a Failure and errback() our start() deferred
log.error("Max fetch size %d too small", self.max_buffer_size)
failure = Failure(
ConsumerFetchSizeTooSmall(
"Max buffer size:%d too small for message",
self.max_buffer_size))
self._start_d.errback(failure)
return
log.debug(
"Next message larger than fetch size, increasing "
"to %d (~2x) and retrying", self.buffer_size)
finally:
# If we were able to extract any messages, deliver them to the
# processor now.
if messages:
self._msg_block_d = Deferred()
self._process_messages(messages)
# start another fetch, if needed, but use callLater to avoid recursion
self._retry_fetch(0) | python | def _handle_fetch_response(self, responses):
"""The callback handling the successful response from the fetch request
Delivers the message list to the processor, handles per-message errors
(ConsumerFetchSizeTooSmall), triggers another fetch request
If the processor is still processing the last batch of messages, we
defer this processing until it's done. Otherwise, we start another
fetch request and submit the messages to the processor
"""
# Successful fetch, reset our retry delay
self.retry_delay = self.retry_init_delay
self._fetch_attempt_count = 1
# Check to see if we are still processing the last block we fetched...
if self._msg_block_d:
# We are still working through the last block of messages...
# We have to wait until it's done, then process this response
self._msg_block_d.addCallback(
lambda _: self._handle_fetch_response(responses))
return
# No ongoing processing, great, let's get some started.
# Request no longer outstanding, clear the deferred tracker so we
# can refetch
self._request_d = None
messages = []
try:
for resp in responses: # We should really only ever get one...
if resp.partition != self.partition:
log.warning(
"%r: Got response with partition: %r not our own: %r",
self, resp.partition, self.partition)
continue
# resp.messages is a KafkaCodec._decode_message_set_iter
# Note that 'message' here is really an OffsetAndMessage
for message in resp.messages:
# Check for messages included which are from prior to our
# desired offset: can happen due to compressed message sets
if message.offset < self._fetch_offset:
log.debug(
'Skipping message at offset: %d, because its '
'offset is less that our fetch offset: %d.',
message.offset, self._fetch_offset)
continue
# Create a 'SourcedMessage' and add it to the messages list
messages.append(
SourcedMessage(
message=message.message,
offset=message.offset, topic=self.topic,
partition=self.partition))
# Update our notion of from where to fetch.
self._fetch_offset = message.offset + 1
except ConsumerFetchSizeTooSmall:
# A message was too large for us to receive, given our current
# buffer size. Grow it until it works, or we hit our max
# Grow by 16x up to 1MB (could result in 16MB buf), then by 2x
factor = 2
if self.buffer_size <= 2**20:
factor = 16
if self.max_buffer_size is None:
# No limit, increase until we succeed or fail to alloc RAM
self.buffer_size *= factor
elif (self.max_buffer_size is not None and
self.buffer_size < self.max_buffer_size):
# Limited, but currently below it.
self.buffer_size = min(
self.buffer_size * factor, self.max_buffer_size)
else:
# We failed, and are already at our max. Nothing we can do but
# create a Failure and errback() our start() deferred
log.error("Max fetch size %d too small", self.max_buffer_size)
failure = Failure(
ConsumerFetchSizeTooSmall(
"Max buffer size:%d too small for message",
self.max_buffer_size))
self._start_d.errback(failure)
return
log.debug(
"Next message larger than fetch size, increasing "
"to %d (~2x) and retrying", self.buffer_size)
finally:
# If we were able to extract any messages, deliver them to the
# processor now.
if messages:
self._msg_block_d = Deferred()
self._process_messages(messages)
# start another fetch, if needed, but use callLater to avoid recursion
self._retry_fetch(0) | The callback handling the successful response from the fetch request
Delivers the message list to the processor, handles per-message errors
(ConsumerFetchSizeTooSmall), triggers another fetch request
If the processor is still processing the last batch of messages, we
defer this processing until it's done. Otherwise, we start another
fetch request and submit the messages to the processor | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L765-L856 |
ciena/afkak | afkak/consumer.py | Consumer._process_messages | def _process_messages(self, messages):
"""Send messages to the `processor` callback to be processed
In the case we have a commit policy, we send messages to the processor
in blocks no bigger than auto_commit_every_n (if set). Otherwise, we
send the entire message block to be processed.
"""
# Have we been told to shutdown?
if self._shuttingdown:
return
# Do we have any messages to process?
if not messages:
# No, we're done with this block. If we had another fetch result
# waiting, this callback will trigger the processing thereof.
if self._msg_block_d:
_msg_block_d, self._msg_block_d = self._msg_block_d, None
_msg_block_d.callback(True)
return
# Yes, we've got some messages to process.
# Default to processing the entire block...
proc_block_size = sys.maxsize
# Unless our auto commit_policy restricts us to process less
if self.auto_commit_every_n:
proc_block_size = self.auto_commit_every_n
# Divide messages into two lists: one to process now, and remainder
msgs_to_proc = messages[:proc_block_size]
msgs_remainder = messages[proc_block_size:]
# Call our processor callable and handle the possibility it returned
# a deferred...
last_offset = msgs_to_proc[-1].offset
self._processor_d = d = maybeDeferred(self.processor, self, msgs_to_proc)
log.debug('self.processor return: %r, last_offset: %r', d, last_offset)
# Once the processor completes, clear our _processor_d
d.addBoth(self._clear_processor_deferred)
# Record the offset of the last processed message and check autocommit
d.addCallback(self._update_processed_offset, last_offset)
# If we were stopped, cancel the processor deferred. Note, we have to
# do this here, in addition to in stop() because the processor func
# itself could have called stop(), and then when it returned, we re-set
# self._processor_d to the return of maybeDeferred().
if self._stopping or self._start_d is None:
d.cancel()
else:
# Setup to process the rest of our messages
d.addCallback(lambda _: self._process_messages(msgs_remainder))
# Add an error handler
d.addErrback(self._handle_processor_error) | python | def _process_messages(self, messages):
"""Send messages to the `processor` callback to be processed
In the case we have a commit policy, we send messages to the processor
in blocks no bigger than auto_commit_every_n (if set). Otherwise, we
send the entire message block to be processed.
"""
# Have we been told to shutdown?
if self._shuttingdown:
return
# Do we have any messages to process?
if not messages:
# No, we're done with this block. If we had another fetch result
# waiting, this callback will trigger the processing thereof.
if self._msg_block_d:
_msg_block_d, self._msg_block_d = self._msg_block_d, None
_msg_block_d.callback(True)
return
# Yes, we've got some messages to process.
# Default to processing the entire block...
proc_block_size = sys.maxsize
# Unless our auto commit_policy restricts us to process less
if self.auto_commit_every_n:
proc_block_size = self.auto_commit_every_n
# Divide messages into two lists: one to process now, and remainder
msgs_to_proc = messages[:proc_block_size]
msgs_remainder = messages[proc_block_size:]
# Call our processor callable and handle the possibility it returned
# a deferred...
last_offset = msgs_to_proc[-1].offset
self._processor_d = d = maybeDeferred(self.processor, self, msgs_to_proc)
log.debug('self.processor return: %r, last_offset: %r', d, last_offset)
# Once the processor completes, clear our _processor_d
d.addBoth(self._clear_processor_deferred)
# Record the offset of the last processed message and check autocommit
d.addCallback(self._update_processed_offset, last_offset)
# If we were stopped, cancel the processor deferred. Note, we have to
# do this here, in addition to in stop() because the processor func
# itself could have called stop(), and then when it returned, we re-set
# self._processor_d to the return of maybeDeferred().
if self._stopping or self._start_d is None:
d.cancel()
else:
# Setup to process the rest of our messages
d.addCallback(lambda _: self._process_messages(msgs_remainder))
# Add an error handler
d.addErrback(self._handle_processor_error) | Send messages to the `processor` callback to be processed
In the case we have a commit policy, we send messages to the processor
in blocks no bigger than auto_commit_every_n (if set). Otherwise, we
send the entire message block to be processed. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L858-L906 |
ciena/afkak | afkak/consumer.py | Consumer._do_fetch | def _do_fetch(self):
"""Send a fetch request if there isn't a request outstanding
Sends a fetch request to the Kafka cluster to get messages at the
current offset. When the response comes back, if there are messages,
it delivers them to the :attr:`processor` callback and initiates
another fetch request. If there is a recoverable error, the fetch is
retried after :attr:`retry_delay`.
In the case of an unrecoverable error, :func:`errback` is called on the
:class:`Deferred` returned by :meth:`start()`.
"""
# Check for outstanding request.
if self._request_d:
log.debug("_do_fetch: Outstanding request: %r", self._request_d)
return
# Cleanup our _retry_call, if we have one
if self._retry_call is not None:
if self._retry_call.active():
self._retry_call.cancel()
self._retry_call = None
# Do we know our offset yet, or do we need to figure it out?
if (self._fetch_offset == OFFSET_EARLIEST or
self._fetch_offset == OFFSET_LATEST):
# We need to fetch the offset for our topic/partition
offset_request = OffsetRequest(
self.topic, self.partition, self._fetch_offset, 1)
self._request_d = self.client.send_offset_request([offset_request])
self._request_d.addCallbacks(
self._handle_offset_response, self._handle_offset_error)
elif self._fetch_offset == OFFSET_COMMITTED:
# We need to fetch the committed offset for our topic/partition
# Note we use the same callbacks, as the responses are "close
# enough" for our needs here
if not self.consumer_group:
# consumer_group must be set for OFFSET_COMMITTED
failure = Failure(
InvalidConsumerGroupError("Bad Group_id:{0!r}".format(
self.consumer_group)))
self._start_d.errback(failure)
request = OffsetFetchRequest(self.topic, self.partition)
self._request_d = self.client.send_offset_fetch_request(
self.consumer_group, [request])
self._request_d.addCallbacks(
self._handle_offset_response, self._handle_offset_error)
else:
# Create fetch request payload for our partition
request = FetchRequest(
self.topic, self.partition, self._fetch_offset,
self.buffer_size)
# Send request and add handlers for the response
self._request_d = self.client.send_fetch_request(
[request], max_wait_time=self.fetch_max_wait_time,
min_bytes=self.fetch_min_bytes)
# We need a temp for this because if the response is already
# available, _handle_fetch_response() will clear self._request_d
d = self._request_d
d.addCallback(self._handle_fetch_response)
d.addErrback(self._handle_fetch_error) | python | def _do_fetch(self):
"""Send a fetch request if there isn't a request outstanding
Sends a fetch request to the Kafka cluster to get messages at the
current offset. When the response comes back, if there are messages,
it delivers them to the :attr:`processor` callback and initiates
another fetch request. If there is a recoverable error, the fetch is
retried after :attr:`retry_delay`.
In the case of an unrecoverable error, :func:`errback` is called on the
:class:`Deferred` returned by :meth:`start()`.
"""
# Check for outstanding request.
if self._request_d:
log.debug("_do_fetch: Outstanding request: %r", self._request_d)
return
# Cleanup our _retry_call, if we have one
if self._retry_call is not None:
if self._retry_call.active():
self._retry_call.cancel()
self._retry_call = None
# Do we know our offset yet, or do we need to figure it out?
if (self._fetch_offset == OFFSET_EARLIEST or
self._fetch_offset == OFFSET_LATEST):
# We need to fetch the offset for our topic/partition
offset_request = OffsetRequest(
self.topic, self.partition, self._fetch_offset, 1)
self._request_d = self.client.send_offset_request([offset_request])
self._request_d.addCallbacks(
self._handle_offset_response, self._handle_offset_error)
elif self._fetch_offset == OFFSET_COMMITTED:
# We need to fetch the committed offset for our topic/partition
# Note we use the same callbacks, as the responses are "close
# enough" for our needs here
if not self.consumer_group:
# consumer_group must be set for OFFSET_COMMITTED
failure = Failure(
InvalidConsumerGroupError("Bad Group_id:{0!r}".format(
self.consumer_group)))
self._start_d.errback(failure)
request = OffsetFetchRequest(self.topic, self.partition)
self._request_d = self.client.send_offset_fetch_request(
self.consumer_group, [request])
self._request_d.addCallbacks(
self._handle_offset_response, self._handle_offset_error)
else:
# Create fetch request payload for our partition
request = FetchRequest(
self.topic, self.partition, self._fetch_offset,
self.buffer_size)
# Send request and add handlers for the response
self._request_d = self.client.send_fetch_request(
[request], max_wait_time=self.fetch_max_wait_time,
min_bytes=self.fetch_min_bytes)
# We need a temp for this because if the response is already
# available, _handle_fetch_response() will clear self._request_d
d = self._request_d
d.addCallback(self._handle_fetch_response)
d.addErrback(self._handle_fetch_error) | Send a fetch request if there isn't a request outstanding
Sends a fetch request to the Kafka cluster to get messages at the
current offset. When the response comes back, if there are messages,
it delivers them to the :attr:`processor` callback and initiates
another fetch request. If there is a recoverable error, the fetch is
retried after :attr:`retry_delay`.
In the case of an unrecoverable error, :func:`errback` is called on the
:class:`Deferred` returned by :meth:`start()`. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L908-L968 |
ciena/afkak | afkak/consumer.py | Consumer._commit_timer_failed | def _commit_timer_failed(self, fail):
"""Handle an error in the commit() function
Our commit() function called by the LoopingCall failed. Some error
probably came back from Kafka and _check_error() raised the exception
For now, just log the failure and restart the loop
"""
log.warning(
'_commit_timer_failed: uncaught error %r: %s in _auto_commit',
fail, fail.getBriefTraceback())
self._commit_looper_d = self._commit_looper.start(
self.auto_commit_every_s, now=False) | python | def _commit_timer_failed(self, fail):
"""Handle an error in the commit() function
Our commit() function called by the LoopingCall failed. Some error
probably came back from Kafka and _check_error() raised the exception
For now, just log the failure and restart the loop
"""
log.warning(
'_commit_timer_failed: uncaught error %r: %s in _auto_commit',
fail, fail.getBriefTraceback())
self._commit_looper_d = self._commit_looper.start(
self.auto_commit_every_s, now=False) | Handle an error in the commit() function
Our commit() function called by the LoopingCall failed. Some error
probably came back from Kafka and _check_error() raised the exception
For now, just log the failure and restart the loop | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L970-L981 |
ciena/afkak | afkak/consumer.py | Consumer._commit_timer_stopped | def _commit_timer_stopped(self, lCall):
"""We're shutting down, clean up our looping call..."""
if self._commit_looper is not lCall:
log.warning('_commit_timer_stopped with wrong timer:%s not:%s',
lCall, self._commit_looper)
else:
log.debug('_commit_timer_stopped: %s %s', lCall,
self._commit_looper)
self._commit_looper = None
self._commit_looper_d = None | python | def _commit_timer_stopped(self, lCall):
"""We're shutting down, clean up our looping call..."""
if self._commit_looper is not lCall:
log.warning('_commit_timer_stopped with wrong timer:%s not:%s',
lCall, self._commit_looper)
else:
log.debug('_commit_timer_stopped: %s %s', lCall,
self._commit_looper)
self._commit_looper = None
self._commit_looper_d = None | We're shutting down, clean up our looping call... | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/consumer.py#L983-L992 |
ciena/afkak | afkak/partitioner.py | pure_murmur2 | def pure_murmur2(byte_array, seed=0x9747b28c):
"""Pure-python Murmur2 implementation.
Based on java client, see org.apache.kafka.common.utils.Utils.murmur2
https://github.com/apache/kafka/blob/0.8.2/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L244
Args:
byte_array: bytearray - Raises TypeError otherwise
Returns: MurmurHash2 of byte_array bytearray
Raises: TypeError if byte_array arg is not of type bytearray
"""
# Ensure byte_array arg is a bytearray
if not isinstance(byte_array, bytearray):
raise TypeError("Type: %r of 'byte_array' arg must be 'bytearray'",
type(byte_array))
length = len(byte_array)
# 'm' and 'r' are mixing constants generated offline.
# They're not really 'magic', they just happen to work well.
m = 0x5bd1e995
r = 24
mod32bits = 0xffffffff
# Initialize the hash to a random value
h = seed ^ length
length4 = length // 4
for i in range(length4):
i4 = i * 4
k = ((byte_array[i4 + 0] & 0xff) + ((byte_array[i4 + 1] & 0xff) << 8) +
((byte_array[i4 + 2] & 0xff) << 16) + ((byte_array[i4 + 3] & 0xff) << 24))
k &= mod32bits
k *= m
k &= mod32bits
k ^= (k % 0x100000000) >> r # k ^= k >>> r
k &= mod32bits
k *= m
k &= mod32bits
h *= m
h &= mod32bits
h ^= k
h &= mod32bits
# Handle the last few bytes of the input array
extra_bytes = length % 4
if extra_bytes == 3:
h ^= (byte_array[(length & ~3) + 2] & 0xff) << 16
h &= mod32bits
if extra_bytes >= 2:
h ^= (byte_array[(length & ~3) + 1] & 0xff) << 8
h &= mod32bits
if extra_bytes >= 1:
h ^= (byte_array[length & ~3] & 0xff)
h &= mod32bits
h *= m
h &= mod32bits
h ^= (h % 0x100000000) >> 13 # h >>> 13;
h &= mod32bits
h *= m
h &= mod32bits
h ^= (h % 0x100000000) >> 15 # h >>> 15;
h &= mod32bits
return h | python | def pure_murmur2(byte_array, seed=0x9747b28c):
"""Pure-python Murmur2 implementation.
Based on java client, see org.apache.kafka.common.utils.Utils.murmur2
https://github.com/apache/kafka/blob/0.8.2/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L244
Args:
byte_array: bytearray - Raises TypeError otherwise
Returns: MurmurHash2 of byte_array bytearray
Raises: TypeError if byte_array arg is not of type bytearray
"""
# Ensure byte_array arg is a bytearray
if not isinstance(byte_array, bytearray):
raise TypeError("Type: %r of 'byte_array' arg must be 'bytearray'",
type(byte_array))
length = len(byte_array)
# 'm' and 'r' are mixing constants generated offline.
# They're not really 'magic', they just happen to work well.
m = 0x5bd1e995
r = 24
mod32bits = 0xffffffff
# Initialize the hash to a random value
h = seed ^ length
length4 = length // 4
for i in range(length4):
i4 = i * 4
k = ((byte_array[i4 + 0] & 0xff) + ((byte_array[i4 + 1] & 0xff) << 8) +
((byte_array[i4 + 2] & 0xff) << 16) + ((byte_array[i4 + 3] & 0xff) << 24))
k &= mod32bits
k *= m
k &= mod32bits
k ^= (k % 0x100000000) >> r # k ^= k >>> r
k &= mod32bits
k *= m
k &= mod32bits
h *= m
h &= mod32bits
h ^= k
h &= mod32bits
# Handle the last few bytes of the input array
extra_bytes = length % 4
if extra_bytes == 3:
h ^= (byte_array[(length & ~3) + 2] & 0xff) << 16
h &= mod32bits
if extra_bytes >= 2:
h ^= (byte_array[(length & ~3) + 1] & 0xff) << 8
h &= mod32bits
if extra_bytes >= 1:
h ^= (byte_array[length & ~3] & 0xff)
h &= mod32bits
h *= m
h &= mod32bits
h ^= (h % 0x100000000) >> 13 # h >>> 13;
h &= mod32bits
h *= m
h &= mod32bits
h ^= (h % 0x100000000) >> 15 # h >>> 15;
h &= mod32bits
return h | Pure-python Murmur2 implementation.
Based on java client, see org.apache.kafka.common.utils.Utils.murmur2
https://github.com/apache/kafka/blob/0.8.2/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L244
Args:
byte_array: bytearray - Raises TypeError otherwise
Returns: MurmurHash2 of byte_array bytearray
Raises: TypeError if byte_array arg is not of type bytearray | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/partitioner.py#L31-L98 |
ciena/afkak | afkak/partitioner.py | HashedPartitioner.partition | def partition(self, key, partitions):
"""
Select a partition based on the hash of the key.
:param key: Partition key
:type key: text string or UTF-8 `bytes` or `bytearray`
:param list partitions:
An indexed sequence of partition identifiers.
:returns:
One of the given partition identifiers. The result will be the same
each time the same key and partition list is passed.
"""
return partitions[(self._hash(key) & 0x7FFFFFFF) % len(partitions)] | python | def partition(self, key, partitions):
"""
Select a partition based on the hash of the key.
:param key: Partition key
:type key: text string or UTF-8 `bytes` or `bytearray`
:param list partitions:
An indexed sequence of partition identifiers.
:returns:
One of the given partition identifiers. The result will be the same
each time the same key and partition list is passed.
"""
return partitions[(self._hash(key) & 0x7FFFFFFF) % len(partitions)] | Select a partition based on the hash of the key.
:param key: Partition key
:type key: text string or UTF-8 `bytes` or `bytearray`
:param list partitions:
An indexed sequence of partition identifiers.
:returns:
One of the given partition identifiers. The result will be the same
each time the same key and partition list is passed. | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/partitioner.py#L196-L208 |
ciena/afkak | afkak/codec.py | snappy_encode | def snappy_encode(payload, xerial_compatible=False,
xerial_blocksize=32 * 1024):
"""
Compress the given data with the Snappy algorithm.
:param bytes payload: Data to compress.
:param bool xerial_compatible:
If set then the stream is broken into length-prefixed blocks in
a fashion compatible with the xerial snappy library.
The format winds up being::
+-------------+------------+--------------+------------+--------------+
| Header | Block1_len | Block1 data | BlockN len | BlockN data |
|-------------+------------+--------------+------------+--------------|
| 16 bytes | BE int32 | snappy bytes | BE int32 | snappy bytes |
+-------------+------------+--------------+------------+--------------+
:param int xerial_blocksize:
Number of bytes per chunk to independently Snappy encode. 32k is the
default in the xerial library.
:returns: Compressed bytes.
:rtype: :class:`bytes`
"""
if not has_snappy(): # FIXME This should be static, not checked every call.
raise NotImplementedError("Snappy codec is not available")
if xerial_compatible:
def _chunker():
for i in range(0, len(payload), xerial_blocksize):
yield payload[i:i+xerial_blocksize]
out = BytesIO()
out.write(_XERIAL_HEADER)
for chunk in _chunker():
block = snappy.compress(chunk)
out.write(struct.pack('!i', len(block)))
out.write(block)
out.seek(0)
return out.read()
else:
return snappy.compress(payload) | python | def snappy_encode(payload, xerial_compatible=False,
xerial_blocksize=32 * 1024):
"""
Compress the given data with the Snappy algorithm.
:param bytes payload: Data to compress.
:param bool xerial_compatible:
If set then the stream is broken into length-prefixed blocks in
a fashion compatible with the xerial snappy library.
The format winds up being::
+-------------+------------+--------------+------------+--------------+
| Header | Block1_len | Block1 data | BlockN len | BlockN data |
|-------------+------------+--------------+------------+--------------|
| 16 bytes | BE int32 | snappy bytes | BE int32 | snappy bytes |
+-------------+------------+--------------+------------+--------------+
:param int xerial_blocksize:
Number of bytes per chunk to independently Snappy encode. 32k is the
default in the xerial library.
:returns: Compressed bytes.
:rtype: :class:`bytes`
"""
if not has_snappy(): # FIXME This should be static, not checked every call.
raise NotImplementedError("Snappy codec is not available")
if xerial_compatible:
def _chunker():
for i in range(0, len(payload), xerial_blocksize):
yield payload[i:i+xerial_blocksize]
out = BytesIO()
out.write(_XERIAL_HEADER)
for chunk in _chunker():
block = snappy.compress(chunk)
out.write(struct.pack('!i', len(block)))
out.write(block)
out.seek(0)
return out.read()
else:
return snappy.compress(payload) | Compress the given data with the Snappy algorithm.
:param bytes payload: Data to compress.
:param bool xerial_compatible:
If set then the stream is broken into length-prefixed blocks in
a fashion compatible with the xerial snappy library.
The format winds up being::
+-------------+------------+--------------+------------+--------------+
| Header | Block1_len | Block1 data | BlockN len | BlockN data |
|-------------+------------+--------------+------------+--------------|
| 16 bytes | BE int32 | snappy bytes | BE int32 | snappy bytes |
+-------------+------------+--------------+------------+--------------+
:param int xerial_blocksize:
Number of bytes per chunk to independently Snappy encode. 32k is the
default in the xerial library.
:returns: Compressed bytes.
:rtype: :class:`bytes` | https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/codec.py#L69-L114 |
escaped/django-video-encoding | video_encoding/files.py | VideoFile._get_video_info | def _get_video_info(self):
"""
Returns basic information about the video as dictionary.
"""
if not hasattr(self, '_info_cache'):
encoding_backend = get_backend()
try:
path = os.path.abspath(self.path)
except AttributeError:
path = os.path.abspath(self.name)
self._info_cache = encoding_backend.get_media_info(path)
return self._info_cache | python | def _get_video_info(self):
"""
Returns basic information about the video as dictionary.
"""
if not hasattr(self, '_info_cache'):
encoding_backend = get_backend()
try:
path = os.path.abspath(self.path)
except AttributeError:
path = os.path.abspath(self.name)
self._info_cache = encoding_backend.get_media_info(path)
return self._info_cache | Returns basic information about the video as dictionary. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/files.py#L35-L46 |
escaped/django-video-encoding | video_encoding/backends/ffmpeg.py | FFmpegBackend.encode | def encode(self, source_path, target_path, params): # NOQA: C901
"""
Encodes a video to a specified file. All encoder specific options
are passed in using `params`.
"""
total_time = self.get_media_info(source_path)['duration']
cmds = [self.ffmpeg_path, '-i', source_path]
cmds.extend(self.params)
cmds.extend(params)
cmds.extend([target_path])
process = self._spawn(cmds)
buf = output = ''
# update progress
while True:
# any more data?
out = process.stderr.read(10)
if not out:
break
out = out.decode(console_encoding)
output += out
buf += out
try:
line, buf = buf.split('\r', 1)
except ValueError:
continue
try:
time_str = RE_TIMECODE.findall(line)[0]
except IndexError:
continue
# convert progress to percent
time = 0
for part in time_str.split(':'):
time = 60 * time + float(part)
percent = time / total_time
logger.debug('yield {}%'.format(percent))
yield percent
if os.path.getsize(target_path) == 0:
raise exceptions.FFmpegError("File size of generated file is 0")
# wait for process to exit
self._check_returncode(process)
logger.debug(output)
if not output:
raise exceptions.FFmpegError("No output from FFmpeg.")
yield 100 | python | def encode(self, source_path, target_path, params): # NOQA: C901
"""
Encodes a video to a specified file. All encoder specific options
are passed in using `params`.
"""
total_time = self.get_media_info(source_path)['duration']
cmds = [self.ffmpeg_path, '-i', source_path]
cmds.extend(self.params)
cmds.extend(params)
cmds.extend([target_path])
process = self._spawn(cmds)
buf = output = ''
# update progress
while True:
# any more data?
out = process.stderr.read(10)
if not out:
break
out = out.decode(console_encoding)
output += out
buf += out
try:
line, buf = buf.split('\r', 1)
except ValueError:
continue
try:
time_str = RE_TIMECODE.findall(line)[0]
except IndexError:
continue
# convert progress to percent
time = 0
for part in time_str.split(':'):
time = 60 * time + float(part)
percent = time / total_time
logger.debug('yield {}%'.format(percent))
yield percent
if os.path.getsize(target_path) == 0:
raise exceptions.FFmpegError("File size of generated file is 0")
# wait for process to exit
self._check_returncode(process)
logger.debug(output)
if not output:
raise exceptions.FFmpegError("No output from FFmpeg.")
yield 100 | Encodes a video to a specified file. All encoder specific options
are passed in using `params`. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/backends/ffmpeg.py#L84-L139 |
escaped/django-video-encoding | video_encoding/backends/ffmpeg.py | FFmpegBackend.get_media_info | def get_media_info(self, video_path):
"""
Returns information about the given video as dict.
"""
cmds = [self.ffprobe_path, '-i', video_path]
cmds.extend(['-print_format', 'json'])
cmds.extend(['-show_format', '-show_streams'])
process = self._spawn(cmds)
stdout, __ = self._check_returncode(process)
media_info = self._parse_media_info(stdout)
return {
'duration': float(media_info['format']['duration']),
'width': int(media_info['video'][0]['width']),
'height': int(media_info['video'][0]['height']),
} | python | def get_media_info(self, video_path):
"""
Returns information about the given video as dict.
"""
cmds = [self.ffprobe_path, '-i', video_path]
cmds.extend(['-print_format', 'json'])
cmds.extend(['-show_format', '-show_streams'])
process = self._spawn(cmds)
stdout, __ = self._check_returncode(process)
media_info = self._parse_media_info(stdout)
return {
'duration': float(media_info['format']['duration']),
'width': int(media_info['video'][0]['width']),
'height': int(media_info['video'][0]['height']),
} | Returns information about the given video as dict. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/backends/ffmpeg.py#L152-L169 |
escaped/django-video-encoding | video_encoding/backends/ffmpeg.py | FFmpegBackend.get_thumbnail | def get_thumbnail(self, video_path, at_time=0.5):
"""
Extracts an image of a video and returns its path.
If the requested thumbnail is not within the duration of the video
an `InvalidTimeError` is thrown.
"""
filename = os.path.basename(video_path)
filename, __ = os.path.splitext(filename)
_, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename))
video_duration = self.get_media_info(video_path)['duration']
if at_time > video_duration:
raise exceptions.InvalidTimeError()
thumbnail_time = at_time
cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1']
cmds.extend(['-ss', str(thumbnail_time), '-y', image_path])
process = self._spawn(cmds)
self._check_returncode(process)
if not os.path.getsize(image_path):
# we somehow failed to generate thumbnail
os.unlink(image_path)
raise exceptions.InvalidTimeError()
return image_path | python | def get_thumbnail(self, video_path, at_time=0.5):
"""
Extracts an image of a video and returns its path.
If the requested thumbnail is not within the duration of the video
an `InvalidTimeError` is thrown.
"""
filename = os.path.basename(video_path)
filename, __ = os.path.splitext(filename)
_, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename))
video_duration = self.get_media_info(video_path)['duration']
if at_time > video_duration:
raise exceptions.InvalidTimeError()
thumbnail_time = at_time
cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1']
cmds.extend(['-ss', str(thumbnail_time), '-y', image_path])
process = self._spawn(cmds)
self._check_returncode(process)
if not os.path.getsize(image_path):
# we somehow failed to generate thumbnail
os.unlink(image_path)
raise exceptions.InvalidTimeError()
return image_path | Extracts an image of a video and returns its path.
If the requested thumbnail is not within the duration of the video
an `InvalidTimeError` is thrown. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/backends/ffmpeg.py#L171-L198 |
escaped/django-video-encoding | video_encoding/tasks.py | convert_all_videos | def convert_all_videos(app_label, model_name, object_pk):
"""
Automatically converts all videos of a given instance.
"""
# get instance
Model = apps.get_model(app_label=app_label, model_name=model_name)
instance = Model.objects.get(pk=object_pk)
# search for `VideoFields`
fields = instance._meta.fields
for field in fields:
if isinstance(field, VideoField):
if not getattr(instance, field.name):
# ignore empty fields
continue
# trigger conversion
fieldfile = getattr(instance, field.name)
convert_video(fieldfile) | python | def convert_all_videos(app_label, model_name, object_pk):
"""
Automatically converts all videos of a given instance.
"""
# get instance
Model = apps.get_model(app_label=app_label, model_name=model_name)
instance = Model.objects.get(pk=object_pk)
# search for `VideoFields`
fields = instance._meta.fields
for field in fields:
if isinstance(field, VideoField):
if not getattr(instance, field.name):
# ignore empty fields
continue
# trigger conversion
fieldfile = getattr(instance, field.name)
convert_video(fieldfile) | Automatically converts all videos of a given instance. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/tasks.py#L15-L33 |
escaped/django-video-encoding | video_encoding/tasks.py | convert_video | def convert_video(fieldfile, force=False):
"""
Converts a given video file into all defined formats.
"""
instance = fieldfile.instance
field = fieldfile.field
filename = os.path.basename(fieldfile.path)
source_path = fieldfile.path
encoding_backend = get_backend()
for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]:
video_format, created = Format.objects.get_or_create(
object_id=instance.pk,
content_type=ContentType.objects.get_for_model(instance),
field_name=field.name, format=options['name'])
# do not reencode if not requested
if video_format.file and not force:
continue
else:
# set progress to 0
video_format.reset_progress()
# TODO do not upscale videos
_, target_path = tempfile.mkstemp(
suffix='_{name}.{extension}'.format(**options))
try:
encoding = encoding_backend.encode(
source_path, target_path, options['params'])
while encoding:
try:
progress = next(encoding)
except StopIteration:
break
video_format.update_progress(progress)
except VideoEncodingError:
# TODO handle with more care
video_format.delete()
os.remove(target_path)
continue
# save encoded file
video_format.file.save(
'{filename}_{name}.{extension}'.format(filename=filename,
**options),
File(open(target_path, mode='rb')))
video_format.update_progress(100) # now we are ready
# remove temporary file
os.remove(target_path) | python | def convert_video(fieldfile, force=False):
"""
Converts a given video file into all defined formats.
"""
instance = fieldfile.instance
field = fieldfile.field
filename = os.path.basename(fieldfile.path)
source_path = fieldfile.path
encoding_backend = get_backend()
for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]:
video_format, created = Format.objects.get_or_create(
object_id=instance.pk,
content_type=ContentType.objects.get_for_model(instance),
field_name=field.name, format=options['name'])
# do not reencode if not requested
if video_format.file and not force:
continue
else:
# set progress to 0
video_format.reset_progress()
# TODO do not upscale videos
_, target_path = tempfile.mkstemp(
suffix='_{name}.{extension}'.format(**options))
try:
encoding = encoding_backend.encode(
source_path, target_path, options['params'])
while encoding:
try:
progress = next(encoding)
except StopIteration:
break
video_format.update_progress(progress)
except VideoEncodingError:
# TODO handle with more care
video_format.delete()
os.remove(target_path)
continue
# save encoded file
video_format.file.save(
'{filename}_{name}.{extension}'.format(filename=filename,
**options),
File(open(target_path, mode='rb')))
video_format.update_progress(100) # now we are ready
# remove temporary file
os.remove(target_path) | Converts a given video file into all defined formats. | https://github.com/escaped/django-video-encoding/blob/50d228dd91aca40acc7f9293808b1e87cb645e5d/video_encoding/tasks.py#L36-L90 |
benvanwerkhoven/kernel_tuner | kernel_tuner/strategies/firefly_algorithm.py | tune | def tune(runner, kernel_options, device_options, tuning_options):
""" Find the best performing kernel configuration in the parameter space
:params runner: A runner from kernel_tuner.runners
:type runner: kernel_tuner.runner
:param kernel_options: A dictionary with all options for the kernel.
:type kernel_options: dict
:param device_options: A dictionary with all options for the device
on which the kernel should be tuned.
:type device_options: dict
:param tuning_options: A dictionary with all options regarding the tuning
process.
:type tuning_options: dict
:returns: A list of dictionaries for executed kernel configurations and their
execution times. And a dictionary that contains a information
about the hardware/software environment on which the tuning took place.
:rtype: list(dict()), dict()
"""
results = []
cache = {}
#scale variables in x because PSO works with velocities to visit different configurations
tuning_options["scaling"] = True
#using this instead of get_bounds because scaling is used
bounds, _, _ = get_bounds_x0_eps(tuning_options)
args = (kernel_options, tuning_options, runner, results, cache)
num_particles = 20
maxiter = 100
#parameters needed by the Firefly Algorithm
B0 = 1.0
gamma = 1.0
alpha = 0.20
best_time_global = 1e20
best_position_global = []
# init particle swarm
swarm = []
for i in range(0, num_particles):
swarm.append(Firefly(bounds, args))
# compute initial intensities
for j in range(num_particles):
swarm[j].compute_intensity(_cost_func)
for c in range(maxiter):
if tuning_options.verbose:
print("start iteration ", c, "best time global", best_time_global)
# compare all to all and compute attractiveness
for i in range(num_particles):
for j in range(num_particles):
if swarm[i].intensity < swarm[j].intensity:
dist = swarm[i].distance_to(swarm[j])
beta = B0 * np.exp(-gamma * dist * dist)
swarm[i].move_towards(swarm[j], beta, alpha)
swarm[i].compute_intensity(_cost_func)
# update global best if needed, actually only used for printing
if swarm[i].time <= best_time_global:
best_position_global = swarm[i].position
best_time_global = swarm[i].time
swarm.sort(key=lambda x: x.time)
if tuning_options.verbose:
print('Final result:')
print(best_position_global)
print(best_time_global)
return results, runner.dev.get_environment() | python | def tune(runner, kernel_options, device_options, tuning_options):
""" Find the best performing kernel configuration in the parameter space
:params runner: A runner from kernel_tuner.runners
:type runner: kernel_tuner.runner
:param kernel_options: A dictionary with all options for the kernel.
:type kernel_options: dict
:param device_options: A dictionary with all options for the device
on which the kernel should be tuned.
:type device_options: dict
:param tuning_options: A dictionary with all options regarding the tuning
process.
:type tuning_options: dict
:returns: A list of dictionaries for executed kernel configurations and their
execution times. And a dictionary that contains a information
about the hardware/software environment on which the tuning took place.
:rtype: list(dict()), dict()
"""
results = []
cache = {}
#scale variables in x because PSO works with velocities to visit different configurations
tuning_options["scaling"] = True
#using this instead of get_bounds because scaling is used
bounds, _, _ = get_bounds_x0_eps(tuning_options)
args = (kernel_options, tuning_options, runner, results, cache)
num_particles = 20
maxiter = 100
#parameters needed by the Firefly Algorithm
B0 = 1.0
gamma = 1.0
alpha = 0.20
best_time_global = 1e20
best_position_global = []
# init particle swarm
swarm = []
for i in range(0, num_particles):
swarm.append(Firefly(bounds, args))
# compute initial intensities
for j in range(num_particles):
swarm[j].compute_intensity(_cost_func)
for c in range(maxiter):
if tuning_options.verbose:
print("start iteration ", c, "best time global", best_time_global)
# compare all to all and compute attractiveness
for i in range(num_particles):
for j in range(num_particles):
if swarm[i].intensity < swarm[j].intensity:
dist = swarm[i].distance_to(swarm[j])
beta = B0 * np.exp(-gamma * dist * dist)
swarm[i].move_towards(swarm[j], beta, alpha)
swarm[i].compute_intensity(_cost_func)
# update global best if needed, actually only used for printing
if swarm[i].time <= best_time_global:
best_position_global = swarm[i].position
best_time_global = swarm[i].time
swarm.sort(key=lambda x: x.time)
if tuning_options.verbose:
print('Final result:')
print(best_position_global)
print(best_time_global)
return results, runner.dev.get_environment() | Find the best performing kernel configuration in the parameter space
:params runner: A runner from kernel_tuner.runners
:type runner: kernel_tuner.runner
:param kernel_options: A dictionary with all options for the kernel.
:type kernel_options: dict
:param device_options: A dictionary with all options for the device
on which the kernel should be tuned.
:type device_options: dict
:param tuning_options: A dictionary with all options regarding the tuning
process.
:type tuning_options: dict
:returns: A list of dictionaries for executed kernel configurations and their
execution times. And a dictionary that contains a information
about the hardware/software environment on which the tuning took place.
:rtype: list(dict()), dict() | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/strategies/firefly_algorithm.py#L8-L90 |
benvanwerkhoven/kernel_tuner | kernel_tuner/strategies/firefly_algorithm.py | Firefly.distance_to | def distance_to(self, other):
"""Return Euclidian distance between self and other Firefly"""
return np.linalg.norm(self.position-other.position) | python | def distance_to(self, other):
"""Return Euclidian distance between self and other Firefly"""
return np.linalg.norm(self.position-other.position) | Return Euclidian distance between self and other Firefly | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/strategies/firefly_algorithm.py#L102-L104 |
benvanwerkhoven/kernel_tuner | kernel_tuner/strategies/firefly_algorithm.py | Firefly.compute_intensity | def compute_intensity(self, _cost_func):
"""Evaluate cost function and compute intensity at this position"""
self.evaluate(_cost_func)
self.intensity = 1 / self.time | python | def compute_intensity(self, _cost_func):
"""Evaluate cost function and compute intensity at this position"""
self.evaluate(_cost_func)
self.intensity = 1 / self.time | Evaluate cost function and compute intensity at this position | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/strategies/firefly_algorithm.py#L106-L109 |
benvanwerkhoven/kernel_tuner | kernel_tuner/strategies/firefly_algorithm.py | Firefly.move_towards | def move_towards(self, other, beta, alpha):
"""Move firefly towards another given beta and alpha values"""
self.position += beta * (other.position - self.position)
self.position += alpha * (np.random.uniform(-0.5, 0.5, len(self.position)))
self.position = np.minimum(self.position, [b[1] for b in self.bounds])
self.position = np.maximum(self.position, [b[0] for b in self.bounds]) | python | def move_towards(self, other, beta, alpha):
"""Move firefly towards another given beta and alpha values"""
self.position += beta * (other.position - self.position)
self.position += alpha * (np.random.uniform(-0.5, 0.5, len(self.position)))
self.position = np.minimum(self.position, [b[1] for b in self.bounds])
self.position = np.maximum(self.position, [b[0] for b in self.bounds]) | Move firefly towards another given beta and alpha values | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/strategies/firefly_algorithm.py#L111-L116 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | _default_verify_function | def _default_verify_function(instance, answer, result_host, atol, verbose):
"""default verify function based on numpy.allclose"""
#first check if the length is the same
if len(instance.arguments) != len(answer):
raise TypeError("The length of argument list and provided results do not match.")
#for each element in the argument list, check if the types match
for i, arg in enumerate(instance.arguments):
if answer[i] is not None: #skip None elements in the answer list
if isinstance(answer[i], numpy.ndarray) and isinstance(arg, numpy.ndarray):
if answer[i].dtype != arg.dtype:
raise TypeError("Element " + str(i)
+ " of the expected results list is not of the same dtype as the kernel output: "
+ str(answer[i].dtype) + " != " + str(arg.dtype) + ".")
if answer[i].size != arg.size:
raise TypeError("Element " + str(i)
+ " of the expected results list has a size different from "
+ "the kernel argument: "
+ str(answer[i].size) + " != " + str(arg.size) + ".")
elif isinstance(answer[i], numpy.number) and isinstance(arg, numpy.number):
if answer[i].dtype != arg.dtype:
raise TypeError("Element " + str(i)
+ " of the expected results list is not the same as the kernel output: "
+ str(answer[i].dtype) + " != " + str(arg.dtype) + ".")
else:
#either answer[i] and argument have different types or answer[i] is not a numpy type
if not isinstance(answer[i], numpy.ndarray) or not isinstance(answer[i], numpy.number):
raise TypeError("Element " + str(i)
+ " of expected results list is not a numpy array or numpy scalar.")
else:
raise TypeError("Element " + str(i)
+ " of expected results list and kernel arguments have different types.")
def _ravel(a):
if hasattr(a, 'ravel') and len(a.shape) > 1:
return a.ravel()
return a
def _flatten(a):
if hasattr(a, 'flatten'):
return a.flatten()
return a
correct = True
for i, arg in enumerate(instance.arguments):
expected = answer[i]
if expected is not None:
result = _ravel(result_host[i])
expected = _flatten(expected)
output_test = numpy.allclose(expected, result, atol=atol)
if not output_test and verbose:
print("Error: " + util.get_config_string(instance.params) + " detected during correctness check")
print("this error occured when checking value of the %oth kernel argument" % (i,))
print("Printing kernel output and expected result, set verbose=False to suppress this debug print")
numpy.set_printoptions(edgeitems=50)
print("Kernel output:")
print(result)
print("Expected:")
print(expected)
correct = correct and output_test
if not correct:
logging.debug('correctness check has found a correctness issue')
raise Exception("Error: " + util.get_config_string(instance.params) + " failed correctness check")
return correct | python | def _default_verify_function(instance, answer, result_host, atol, verbose):
"""default verify function based on numpy.allclose"""
#first check if the length is the same
if len(instance.arguments) != len(answer):
raise TypeError("The length of argument list and provided results do not match.")
#for each element in the argument list, check if the types match
for i, arg in enumerate(instance.arguments):
if answer[i] is not None: #skip None elements in the answer list
if isinstance(answer[i], numpy.ndarray) and isinstance(arg, numpy.ndarray):
if answer[i].dtype != arg.dtype:
raise TypeError("Element " + str(i)
+ " of the expected results list is not of the same dtype as the kernel output: "
+ str(answer[i].dtype) + " != " + str(arg.dtype) + ".")
if answer[i].size != arg.size:
raise TypeError("Element " + str(i)
+ " of the expected results list has a size different from "
+ "the kernel argument: "
+ str(answer[i].size) + " != " + str(arg.size) + ".")
elif isinstance(answer[i], numpy.number) and isinstance(arg, numpy.number):
if answer[i].dtype != arg.dtype:
raise TypeError("Element " + str(i)
+ " of the expected results list is not the same as the kernel output: "
+ str(answer[i].dtype) + " != " + str(arg.dtype) + ".")
else:
#either answer[i] and argument have different types or answer[i] is not a numpy type
if not isinstance(answer[i], numpy.ndarray) or not isinstance(answer[i], numpy.number):
raise TypeError("Element " + str(i)
+ " of expected results list is not a numpy array or numpy scalar.")
else:
raise TypeError("Element " + str(i)
+ " of expected results list and kernel arguments have different types.")
def _ravel(a):
if hasattr(a, 'ravel') and len(a.shape) > 1:
return a.ravel()
return a
def _flatten(a):
if hasattr(a, 'flatten'):
return a.flatten()
return a
correct = True
for i, arg in enumerate(instance.arguments):
expected = answer[i]
if expected is not None:
result = _ravel(result_host[i])
expected = _flatten(expected)
output_test = numpy.allclose(expected, result, atol=atol)
if not output_test and verbose:
print("Error: " + util.get_config_string(instance.params) + " detected during correctness check")
print("this error occured when checking value of the %oth kernel argument" % (i,))
print("Printing kernel output and expected result, set verbose=False to suppress this debug print")
numpy.set_printoptions(edgeitems=50)
print("Kernel output:")
print(result)
print("Expected:")
print(expected)
correct = correct and output_test
if not correct:
logging.debug('correctness check has found a correctness issue')
raise Exception("Error: " + util.get_config_string(instance.params) + " failed correctness check")
return correct | default verify function based on numpy.allclose | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L278-L345 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.benchmark | def benchmark(self, func, gpu_args, instance, times, verbose):
"""benchmark the kernel instance"""
logging.debug('benchmark ' + instance.name)
logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads)
logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid)
time = None
try:
time = self.dev.benchmark(func, gpu_args, instance.threads, instance.grid, times)
except Exception as e:
#some launches may fail because too many registers are required
#to run the kernel given the current thread block size
#the desired behavior is to simply skip over this configuration
#and proceed to try the next one
skippable_exceptions = ["too many resources requested for launch", "OUT_OF_RESOURCES", "INVALID_WORK_GROUP_SIZE"]
if any([skip_str in str(e) for skip_str in skippable_exceptions]):
logging.debug('benchmark fails due to runtime failure too many resources required')
if verbose:
print("skipping config", instance.name, "reason: too many resources requested for launch")
else:
logging.debug('benchmark encountered runtime failure: ' + str(e))
print("Error while benchmarking:", instance.name)
raise e
return time | python | def benchmark(self, func, gpu_args, instance, times, verbose):
"""benchmark the kernel instance"""
logging.debug('benchmark ' + instance.name)
logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads)
logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid)
time = None
try:
time = self.dev.benchmark(func, gpu_args, instance.threads, instance.grid, times)
except Exception as e:
#some launches may fail because too many registers are required
#to run the kernel given the current thread block size
#the desired behavior is to simply skip over this configuration
#and proceed to try the next one
skippable_exceptions = ["too many resources requested for launch", "OUT_OF_RESOURCES", "INVALID_WORK_GROUP_SIZE"]
if any([skip_str in str(e) for skip_str in skippable_exceptions]):
logging.debug('benchmark fails due to runtime failure too many resources required')
if verbose:
print("skipping config", instance.name, "reason: too many resources requested for launch")
else:
logging.debug('benchmark encountered runtime failure: ' + str(e))
print("Error while benchmarking:", instance.name)
raise e
return time | benchmark the kernel instance | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L68-L91 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.check_kernel_output | def check_kernel_output(self, func, gpu_args, instance, answer, atol, verify, verbose):
"""runs the kernel once and checks the result against answer"""
logging.debug('check_kernel_output')
#if not using custom verify function, check if the length is the same
if not verify and len(instance.arguments) != len(answer):
raise TypeError("The length of argument list and provided results do not match.")
#zero GPU memory for output arguments
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
self.dev.memcpy_htod(gpu_args[i], arg)
#run the kernel
check = self.run_kernel(func, gpu_args, instance)
if not check:
return True #runtime failure occured that should be ignored, skip correctness check
#retrieve gpu results to host memory
result_host = []
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
result_host.append(numpy.zeros_like(arg))
self.dev.memcpy_dtoh(result_host[-1], gpu_args[i])
else:
result_host.append(None)
#if the user has specified a custom verify function, then call it, else use default based on numpy allclose
if verify:
try:
return verify(answer, result_host, atol=atol)
except TypeError:
return verify(answer, result_host)
else:
return _default_verify_function(instance, answer, result_host, atol, verbose) | python | def check_kernel_output(self, func, gpu_args, instance, answer, atol, verify, verbose):
"""runs the kernel once and checks the result against answer"""
logging.debug('check_kernel_output')
#if not using custom verify function, check if the length is the same
if not verify and len(instance.arguments) != len(answer):
raise TypeError("The length of argument list and provided results do not match.")
#zero GPU memory for output arguments
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
self.dev.memcpy_htod(gpu_args[i], arg)
#run the kernel
check = self.run_kernel(func, gpu_args, instance)
if not check:
return True #runtime failure occured that should be ignored, skip correctness check
#retrieve gpu results to host memory
result_host = []
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
result_host.append(numpy.zeros_like(arg))
self.dev.memcpy_dtoh(result_host[-1], gpu_args[i])
else:
result_host.append(None)
#if the user has specified a custom verify function, then call it, else use default based on numpy allclose
if verify:
try:
return verify(answer, result_host, atol=atol)
except TypeError:
return verify(answer, result_host)
else:
return _default_verify_function(instance, answer, result_host, atol, verbose) | runs the kernel once and checks the result against answer | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L93-L129 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.compile_and_benchmark | def compile_and_benchmark(self, gpu_args, params, kernel_options, tuning_options):
""" Compile and benchmark a kernel instance based on kernel strings and parameters """
instance_string = util.get_instance_string(params)
logging.debug('compile_and_benchmark ' + instance_string)
mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024.0, 1)
logging.debug('Memory usage : %2.2f MB', mem_usage)
verbose = tuning_options.verbose
instance = self.create_kernel_instance(kernel_options, params, verbose)
if instance is None:
return None
try:
#compile the kernel
func = self.compile_kernel(instance, verbose)
if func is None:
return None
#add constant memory arguments to compiled module
if kernel_options.cmem_args is not None:
self.dev.copy_constant_memory_args(kernel_options.cmem_args)
#add texture memory arguments to compiled module
if kernel_options.texmem_args is not None:
self.dev.copy_texture_memory_args(kernel_options.texmem_args)
#test kernel for correctness and benchmark
if tuning_options.answer is not None:
self.check_kernel_output(func, gpu_args, instance, tuning_options.answer, tuning_options.atol, tuning_options.verify, verbose)
#benchmark
time = self.benchmark(func, gpu_args, instance, tuning_options.times, verbose)
except Exception as e:
#dump kernel_string to temp file
temp_filename = util.get_temp_filename(suffix=".c")
util.write_file(temp_filename, instance.kernel_string)
print("Error while compiling or benchmarking, see source files: " + temp_filename + " ".join(instance.temp_files.values()))
raise e
#clean up any temporary files, if no error occured
for v in instance.temp_files.values():
util.delete_temp_file(v)
return time | python | def compile_and_benchmark(self, gpu_args, params, kernel_options, tuning_options):
""" Compile and benchmark a kernel instance based on kernel strings and parameters """
instance_string = util.get_instance_string(params)
logging.debug('compile_and_benchmark ' + instance_string)
mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024.0, 1)
logging.debug('Memory usage : %2.2f MB', mem_usage)
verbose = tuning_options.verbose
instance = self.create_kernel_instance(kernel_options, params, verbose)
if instance is None:
return None
try:
#compile the kernel
func = self.compile_kernel(instance, verbose)
if func is None:
return None
#add constant memory arguments to compiled module
if kernel_options.cmem_args is not None:
self.dev.copy_constant_memory_args(kernel_options.cmem_args)
#add texture memory arguments to compiled module
if kernel_options.texmem_args is not None:
self.dev.copy_texture_memory_args(kernel_options.texmem_args)
#test kernel for correctness and benchmark
if tuning_options.answer is not None:
self.check_kernel_output(func, gpu_args, instance, tuning_options.answer, tuning_options.atol, tuning_options.verify, verbose)
#benchmark
time = self.benchmark(func, gpu_args, instance, tuning_options.times, verbose)
except Exception as e:
#dump kernel_string to temp file
temp_filename = util.get_temp_filename(suffix=".c")
util.write_file(temp_filename, instance.kernel_string)
print("Error while compiling or benchmarking, see source files: " + temp_filename + " ".join(instance.temp_files.values()))
raise e
#clean up any temporary files, if no error occured
for v in instance.temp_files.values():
util.delete_temp_file(v)
return time | Compile and benchmark a kernel instance based on kernel strings and parameters | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L132-L178 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.compile_kernel | def compile_kernel(self, instance, verbose):
"""compile the kernel for this specific instance"""
logging.debug('compile_kernel ' + instance.name)
#compile kernel_string into device func
func = None
try:
func = self.dev.compile(instance.name, instance.kernel_string)
except Exception as e:
#compiles may fail because certain kernel configurations use too
#much shared memory for example, the desired behavior is to simply
#skip over this configuration and try the next one
if "uses too much shared data" in str(e):
logging.debug('compile_kernel failed due to kernel using too much shared memory')
if verbose:
print("skipping config", instance.name, "reason: too much shared memory used")
else:
logging.debug('compile_kernel failed due to error: ' + str(e))
print("Error while compiling:", instance.name)
raise e
return func | python | def compile_kernel(self, instance, verbose):
"""compile the kernel for this specific instance"""
logging.debug('compile_kernel ' + instance.name)
#compile kernel_string into device func
func = None
try:
func = self.dev.compile(instance.name, instance.kernel_string)
except Exception as e:
#compiles may fail because certain kernel configurations use too
#much shared memory for example, the desired behavior is to simply
#skip over this configuration and try the next one
if "uses too much shared data" in str(e):
logging.debug('compile_kernel failed due to kernel using too much shared memory')
if verbose:
print("skipping config", instance.name, "reason: too much shared memory used")
else:
logging.debug('compile_kernel failed due to error: ' + str(e))
print("Error while compiling:", instance.name)
raise e
return func | compile the kernel for this specific instance | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L180-L200 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.copy_constant_memory_args | def copy_constant_memory_args(self, cmem_args):
"""adds constant memory arguments to the most recently compiled module, if using CUDA"""
if self.lang == "CUDA":
self.dev.copy_constant_memory_args(cmem_args)
else:
raise Exception("Error cannot copy constant memory arguments when language is not CUDA") | python | def copy_constant_memory_args(self, cmem_args):
"""adds constant memory arguments to the most recently compiled module, if using CUDA"""
if self.lang == "CUDA":
self.dev.copy_constant_memory_args(cmem_args)
else:
raise Exception("Error cannot copy constant memory arguments when language is not CUDA") | adds constant memory arguments to the most recently compiled module, if using CUDA | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L202-L207 |
benvanwerkhoven/kernel_tuner | kernel_tuner/core.py | DeviceInterface.copy_texture_memory_args | def copy_texture_memory_args(self, texmem_args):
"""adds texture memory arguments to the most recently compiled module, if using CUDA"""
if self.lang == "CUDA":
self.dev.copy_texture_memory_args(texmem_args)
else:
raise Exception("Error cannot copy texture memory arguments when language is not CUDA") | python | def copy_texture_memory_args(self, texmem_args):
"""adds texture memory arguments to the most recently compiled module, if using CUDA"""
if self.lang == "CUDA":
self.dev.copy_texture_memory_args(texmem_args)
else:
raise Exception("Error cannot copy texture memory arguments when language is not CUDA") | adds texture memory arguments to the most recently compiled module, if using CUDA | https://github.com/benvanwerkhoven/kernel_tuner/blob/cfcb5da5e510db494f8219c22566ab65d5fcbd9f/kernel_tuner/core.py#L209-L214 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.