repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
riga/tfdeploy
tfdeploy.py
Unpack
def Unpack(a, num, axis): """ Unpack op. """ return tuple(np.squeeze(b, axis=axis) for b in np.split(a, num, axis=axis))
python
def Unpack(a, num, axis): """ Unpack op. """ return tuple(np.squeeze(b, axis=axis) for b in np.split(a, num, axis=axis))
Unpack op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1216-L1220
riga/tfdeploy
tfdeploy.py
ReverseSequence
def ReverseSequence(a, seq_lengths, seq_dim, batch_dim): """ Sequential reverse op. """ r = np.copy(a) invidxs = (len(r.shape) - 1) * [slice(None)] if seq_dim < batch_dim: invidxs[seq_dim] = slice(None, None, -1) else: invidxs[seq_dim - 1] = slice(None, None, -1) _invidxs = tuple(invidxs) selidxs = len(r.shape) * [slice(None)] for i, l in enumerate(seq_lengths): if not l: continue selidxs[batch_dim] = i selidxs[seq_dim] = slice(0, l) _selidxs = tuple(selidxs) r[_selidxs] = a[_selidxs][_invidxs] return r,
python
def ReverseSequence(a, seq_lengths, seq_dim, batch_dim): """ Sequential reverse op. """ r = np.copy(a) invidxs = (len(r.shape) - 1) * [slice(None)] if seq_dim < batch_dim: invidxs[seq_dim] = slice(None, None, -1) else: invidxs[seq_dim - 1] = slice(None, None, -1) _invidxs = tuple(invidxs) selidxs = len(r.shape) * [slice(None)] for i, l in enumerate(seq_lengths): if not l: continue selidxs[batch_dim] = i selidxs[seq_dim] = slice(0, l) _selidxs = tuple(selidxs) r[_selidxs] = a[_selidxs][_invidxs] return r,
Sequential reverse op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1224-L1243
riga/tfdeploy
tfdeploy.py
ReverseV2
def ReverseV2(a, axes): """ Reverse op. """ idxs = tuple(slice(None, None, 2 * int(i not in axes) - 1) for i in range(len(a.shape))) return np.copy(a[idxs]),
python
def ReverseV2(a, axes): """ Reverse op. """ idxs = tuple(slice(None, None, 2 * int(i not in axes) - 1) for i in range(len(a.shape))) return np.copy(a[idxs]),
Reverse op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1247-L1252
riga/tfdeploy
tfdeploy.py
Betainc
def Betainc(a, b, x): """ Complemented, incomplete gamma op. """ return sp.special.betainc(a, b, x),
python
def Betainc(a, b, x): """ Complemented, incomplete gamma op. """ return sp.special.betainc(a, b, x),
Complemented, incomplete gamma op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1588-L1592
riga/tfdeploy
tfdeploy.py
Diag
def Diag(a): """ Diag op. """ r = np.zeros(2 * a.shape, dtype=a.dtype) for idx, v in np.ndenumerate(a): r[2 * idx] = v return r,
python
def Diag(a): """ Diag op. """ r = np.zeros(2 * a.shape, dtype=a.dtype) for idx, v in np.ndenumerate(a): r[2 * idx] = v return r,
Diag op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1600-L1607
riga/tfdeploy
tfdeploy.py
MatrixDiagPart
def MatrixDiagPart(a): """ Batched diag op that returns only the diagonal elements. """ r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),)) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.diagonal(a[pos]) return r,
python
def MatrixDiagPart(a): """ Batched diag op that returns only the diagonal elements. """ r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),)) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.diagonal(a[pos]) return r,
Batched diag op that returns only the diagonal elements.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1619-L1627
riga/tfdeploy
tfdeploy.py
MatMul
def MatMul(a, b, transpose_a, transpose_b): """ Matrix multiplication op. """ return np.dot(a if not transpose_a else np.transpose(a), b if not transpose_b else np.transpose(b)),
python
def MatMul(a, b, transpose_a, transpose_b): """ Matrix multiplication op. """ return np.dot(a if not transpose_a else np.transpose(a), b if not transpose_b else np.transpose(b)),
Matrix multiplication op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1631-L1636
riga/tfdeploy
tfdeploy.py
MatrixInverse
def MatrixInverse(a, adj): """ Matrix inversion op. """ return np.linalg.inv(a if not adj else _adjoint(a)),
python
def MatrixInverse(a, adj): """ Matrix inversion op. """ return np.linalg.inv(a if not adj else _adjoint(a)),
Matrix inversion op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1648-L1652
riga/tfdeploy
tfdeploy.py
MatrixSolve
def MatrixSolve(a, rhs, adj): """ Matrix solve op. """ return np.linalg.solve(a if not adj else _adjoint(a), rhs),
python
def MatrixSolve(a, rhs, adj): """ Matrix solve op. """ return np.linalg.solve(a if not adj else _adjoint(a), rhs),
Matrix solve op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1664-L1668
riga/tfdeploy
tfdeploy.py
MatrixTriangularSolve
def MatrixTriangularSolve(a, rhs, lower, adj): """ Matrix triangular solve op. """ trans = 0 if not adj else 2 r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = sp.linalg.solve_triangular(a[pos] if not adj else np.conj(a[pos]), rhs[pos], trans=trans, lower=lower) return r,
python
def MatrixTriangularSolve(a, rhs, lower, adj): """ Matrix triangular solve op. """ trans = 0 if not adj else 2 r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = sp.linalg.solve_triangular(a[pos] if not adj else np.conj(a[pos]), rhs[pos], trans=trans, lower=lower) return r,
Matrix triangular solve op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1672-L1684
riga/tfdeploy
tfdeploy.py
MatrixSolveLs
def MatrixSolveLs(a, rhs, l2_reg): """ Matrix least-squares solve op. """ r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0] return r,
python
def MatrixSolveLs(a, rhs, l2_reg): """ Matrix least-squares solve op. """ r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0] return r,
Matrix least-squares solve op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1688-L1697
riga/tfdeploy
tfdeploy.py
SelfAdjointEig
def SelfAdjointEig(a): """ Eigen decomp op. """ shape = list(a.shape) shape[-2] += 1 return np.append(*np.linalg.eig(a)).reshape(*shape),
python
def SelfAdjointEig(a): """ Eigen decomp op. """ shape = list(a.shape) shape[-2] += 1 return np.append(*np.linalg.eig(a)).reshape(*shape),
Eigen decomp op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1701-L1707
riga/tfdeploy
tfdeploy.py
Svd
def Svd(a, uv, full): """ Single value decomp op. """ u, s, v = np.linalg.svd(a, full_matrices=full, compute_uv=uv) return s, u, v
python
def Svd(a, uv, full): """ Single value decomp op. """ u, s, v = np.linalg.svd(a, full_matrices=full, compute_uv=uv) return s, u, v
Single value decomp op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1719-L1724
riga/tfdeploy
tfdeploy.py
Sum
def Sum(a, axis, keep_dims): """ Sum reduction op. """ return np.sum(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Sum(a, axis, keep_dims): """ Sum reduction op. """ return np.sum(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Sum reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1804-L1809
riga/tfdeploy
tfdeploy.py
Prod
def Prod(a, axis, keep_dims): """ Prod reduction op. """ return np.prod(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Prod(a, axis, keep_dims): """ Prod reduction op. """ return np.prod(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Prod reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1813-L1818
riga/tfdeploy
tfdeploy.py
Min
def Min(a, axis, keep_dims): """ Min reduction op. """ return np.amin(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Min(a, axis, keep_dims): """ Min reduction op. """ return np.amin(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Min reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1822-L1827
riga/tfdeploy
tfdeploy.py
Max
def Max(a, axis, keep_dims): """ Max reduction op. """ return np.amax(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Max(a, axis, keep_dims): """ Max reduction op. """ return np.amax(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Max reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1831-L1836
riga/tfdeploy
tfdeploy.py
Mean
def Mean(a, axis, keep_dims): """ Mean reduction op. """ return np.mean(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Mean(a, axis, keep_dims): """ Mean reduction op. """ return np.mean(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Mean reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1840-L1845
riga/tfdeploy
tfdeploy.py
All
def All(a, axis, keep_dims): """ All reduction op. """ return np.all(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def All(a, axis, keep_dims): """ All reduction op. """ return np.all(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
All reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1849-L1854
riga/tfdeploy
tfdeploy.py
Any
def Any(a, axis, keep_dims): """ Any reduction op. """ return np.any(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
python
def Any(a, axis, keep_dims): """ Any reduction op. """ return np.any(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
Any reduction op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1858-L1863
riga/tfdeploy
tfdeploy.py
SegmentSum
def SegmentSum(a, ids, *args): """ Segmented sum op. """ func = lambda idxs: reduce(np.add, a[idxs]) return seg_map(func, a, ids),
python
def SegmentSum(a, ids, *args): """ Segmented sum op. """ func = lambda idxs: reduce(np.add, a[idxs]) return seg_map(func, a, ids),
Segmented sum op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1881-L1886
riga/tfdeploy
tfdeploy.py
SegmentProd
def SegmentProd(a, ids): """ Segmented prod op. """ func = lambda idxs: reduce(np.multiply, a[idxs]) return seg_map(func, a, ids),
python
def SegmentProd(a, ids): """ Segmented prod op. """ func = lambda idxs: reduce(np.multiply, a[idxs]) return seg_map(func, a, ids),
Segmented prod op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1890-L1895
riga/tfdeploy
tfdeploy.py
SegmentMin
def SegmentMin(a, ids): """ Segmented min op. """ func = lambda idxs: np.amin(a[idxs], axis=0) return seg_map(func, a, ids),
python
def SegmentMin(a, ids): """ Segmented min op. """ func = lambda idxs: np.amin(a[idxs], axis=0) return seg_map(func, a, ids),
Segmented min op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1899-L1904
riga/tfdeploy
tfdeploy.py
SegmentMax
def SegmentMax(a, ids): """ Segmented max op. """ func = lambda idxs: np.amax(a[idxs], axis=0) return seg_map(func, a, ids),
python
def SegmentMax(a, ids): """ Segmented max op. """ func = lambda idxs: np.amax(a[idxs], axis=0) return seg_map(func, a, ids),
Segmented max op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1908-L1913
riga/tfdeploy
tfdeploy.py
SegmentMean
def SegmentMean(a, ids): """ Segmented mean op. """ func = lambda idxs: np.mean(a[idxs], axis=0) return seg_map(func, a, ids),
python
def SegmentMean(a, ids): """ Segmented mean op. """ func = lambda idxs: np.mean(a[idxs], axis=0) return seg_map(func, a, ids),
Segmented mean op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1917-L1922
riga/tfdeploy
tfdeploy.py
SparseSegmentSqrtN
def SparseSegmentSqrtN(a, idxs, ids): """ Sparse segmented sum / sqrt(n=len(idxs)) op. """ func = lambda _idxs: np.divide(reduce(np.add, a[idxs][_idxs]), np.math.sqrt(len(_idxs))) return seg_map(func, a, ids),
python
def SparseSegmentSqrtN(a, idxs, ids): """ Sparse segmented sum / sqrt(n=len(idxs)) op. """ func = lambda _idxs: np.divide(reduce(np.add, a[idxs][_idxs]), np.math.sqrt(len(_idxs))) return seg_map(func, a, ids),
Sparse segmented sum / sqrt(n=len(idxs)) op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1942-L1947
riga/tfdeploy
tfdeploy.py
ListDiff
def ListDiff(a, b): """ List diff op. """ d = np.setdiff1d(a, b) return d, np.searchsorted(a, d).astype(np.int32)
python
def ListDiff(a, b): """ List diff op. """ d = np.setdiff1d(a, b) return d, np.searchsorted(a, d).astype(np.int32)
List diff op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1971-L1976
riga/tfdeploy
tfdeploy.py
Unique
def Unique(a, t): """ Unique op. """ _, idxs, inv = np.unique(a, return_index=True, return_inverse=True) return np.copy(a)[np.sort(idxs)], idxs[inv].astype(dtype_map[t])
python
def Unique(a, t): """ Unique op. """ _, idxs, inv = np.unique(a, return_index=True, return_inverse=True) return np.copy(a)[np.sort(idxs)], idxs[inv].astype(dtype_map[t])
Unique op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1988-L1993
riga/tfdeploy
tfdeploy.py
Elu
def Elu(a): """ Elu op. """ return np.where(a < 0, np.subtract(np.exp(a), 1), a),
python
def Elu(a): """ Elu op. """ return np.where(a < 0, np.subtract(np.exp(a), 1), a),
Elu op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2037-L2041
riga/tfdeploy
tfdeploy.py
Softsign
def Softsign(a): """ Softsign op. """ return np.divide(a, np.add(np.abs(a), 1)),
python
def Softsign(a): """ Softsign op. """ return np.divide(a, np.add(np.abs(a), 1)),
Softsign op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2053-L2057
riga/tfdeploy
tfdeploy.py
Softmax
def Softmax(a): """ Softmax op. """ e = np.exp(a) return np.divide(e, np.sum(e, axis=-1, keepdims=True)),
python
def Softmax(a): """ Softmax op. """ e = np.exp(a) return np.divide(e, np.sum(e, axis=-1, keepdims=True)),
Softmax op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2077-L2082
riga/tfdeploy
tfdeploy.py
Conv1D
def Conv1D(a, f, strides, padding, data_format): """ 1D conv op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _conv_patches(a, f, 3 * [strides], padding.decode("ascii")) conv = np.sum(patches, axis=tuple(range(-f.ndim, -1))) if data_format.decode("ascii") == "NCHW": conv = np.rollaxis(conv, -1, 1) return conv,
python
def Conv1D(a, f, strides, padding, data_format): """ 1D conv op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _conv_patches(a, f, 3 * [strides], padding.decode("ascii")) conv = np.sum(patches, axis=tuple(range(-f.ndim, -1))) if data_format.decode("ascii") == "NCHW": conv = np.rollaxis(conv, -1, 1) return conv,
1D conv op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2125-L2138
riga/tfdeploy
tfdeploy.py
Conv3D
def Conv3D(a, f, strides, padding): """ 3D conv op. """ patches = _conv_patches(a, f, strides, padding.decode("ascii")) return np.sum(patches, axis=tuple(range(-f.ndim, -1))),
python
def Conv3D(a, f, strides, padding): """ 3D conv op. """ patches = _conv_patches(a, f, strides, padding.decode("ascii")) return np.sum(patches, axis=tuple(range(-f.ndim, -1))),
3D conv op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2159-L2164
riga/tfdeploy
tfdeploy.py
AvgPool
def AvgPool(a, k, strides, padding, data_format): """ Average pooling op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.average(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
python
def AvgPool(a, k, strides, padding, data_format): """ Average pooling op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.average(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
Average pooling op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2190-L2203
riga/tfdeploy
tfdeploy.py
MaxPool
def MaxPool(a, k, strides, padding, data_format): """ Maximum pooling op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.amax(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
python
def MaxPool(a, k, strides, padding, data_format): """ Maximum pooling op. """ if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.amax(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
Maximum pooling op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2207-L2220
riga/tfdeploy
tfdeploy.py
AvgPool3D
def AvgPool3D(a, k, strides, padding): """ Average 3D pooling op. """ patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.average(patches, axis=tuple(range(-len(k), 0))),
python
def AvgPool3D(a, k, strides, padding): """ Average 3D pooling op. """ patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.average(patches, axis=tuple(range(-len(k), 0))),
Average 3D pooling op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2224-L2229
riga/tfdeploy
tfdeploy.py
MaxPool3D
def MaxPool3D(a, k, strides, padding): """ Maximum 3D pooling op. """ patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.amax(patches, axis=tuple(range(-len(k), 0))),
python
def MaxPool3D(a, k, strides, padding): """ Maximum 3D pooling op. """ patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.amax(patches, axis=tuple(range(-len(k), 0))),
Maximum 3D pooling op.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2233-L2238
riga/tfdeploy
tfdeploy.py
Model.get
def get(self, *names, **kwargs): """ get(*names, key=None) Returns one or more :py:class:`Tensor` instances given by *names* using a deep lookup within the model. If *key* is not *None*, only the root tensor with that *key* is traversed. *None* is returned when no tensor was found. In case a tensor is passed, it's name is used for the lookup. """ tensors = tuple(self._get(name, **kwargs) for name in names) return tensors[0] if len(names) == 1 else tensors
python
def get(self, *names, **kwargs): """ get(*names, key=None) Returns one or more :py:class:`Tensor` instances given by *names* using a deep lookup within the model. If *key* is not *None*, only the root tensor with that *key* is traversed. *None* is returned when no tensor was found. In case a tensor is passed, it's name is used for the lookup. """ tensors = tuple(self._get(name, **kwargs) for name in names) return tensors[0] if len(names) == 1 else tensors
get(*names, key=None) Returns one or more :py:class:`Tensor` instances given by *names* using a deep lookup within the model. If *key* is not *None*, only the root tensor with that *key* is traversed. *None* is returned when no tensor was found. In case a tensor is passed, it's name is used for the lookup.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L115-L123
riga/tfdeploy
tfdeploy.py
Model.add
def add(self, tensor, tf_sess=None, key=None, **kwargs): """ Adds a new root *tensor* for a *key* which, if *None*, defaults to a consecutive number. When *tensor* is not an instance of :py:class:`Tensor` but an instance of ``tensorflow.Tensor``, it is converted first. In that case, *tf_sess* should be a valid tensorflow session and *kwargs* are forwarded to the :py:class:`Tensor` constructor. """ if not isinstance(tensor, Tensor): tensor = Tensor(tensor, tf_sess, **kwargs) if key is None: if len(self.roots) == 0: key = 0 else: key = max(self.roots.keys()) + 1 self.roots[key] = tensor
python
def add(self, tensor, tf_sess=None, key=None, **kwargs): """ Adds a new root *tensor* for a *key* which, if *None*, defaults to a consecutive number. When *tensor* is not an instance of :py:class:`Tensor` but an instance of ``tensorflow.Tensor``, it is converted first. In that case, *tf_sess* should be a valid tensorflow session and *kwargs* are forwarded to the :py:class:`Tensor` constructor. """ if not isinstance(tensor, Tensor): tensor = Tensor(tensor, tf_sess, **kwargs) if key is None: if len(self.roots) == 0: key = 0 else: key = max(self.roots.keys()) + 1 self.roots[key] = tensor
Adds a new root *tensor* for a *key* which, if *None*, defaults to a consecutive number. When *tensor* is not an instance of :py:class:`Tensor` but an instance of ``tensorflow.Tensor``, it is converted first. In that case, *tf_sess* should be a valid tensorflow session and *kwargs* are forwarded to the :py:class:`Tensor` constructor.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L145-L161
riga/tfdeploy
tfdeploy.py
Model.load
def load(self, path): """ Loads all tensors from a file defined by *path* and adds them to the root set. """ path = os.path.expandvars(os.path.expanduser(path)) with open(path, "rb") as f: roots = pickle.load(f) for key, tensor in roots.items(): self.add(tensor, key=key)
python
def load(self, path): """ Loads all tensors from a file defined by *path* and adds them to the root set. """ path = os.path.expandvars(os.path.expanduser(path)) with open(path, "rb") as f: roots = pickle.load(f) for key, tensor in roots.items(): self.add(tensor, key=key)
Loads all tensors from a file defined by *path* and adds them to the root set.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L163-L172
riga/tfdeploy
tfdeploy.py
Model.save
def save(self, path): """ Saves all tensors of the root set to a file defined by *path*. """ path = os.path.expandvars(os.path.expanduser(path)) with open(path, "wb") as f: pickle.dump(self.roots, f)
python
def save(self, path): """ Saves all tensors of the root set to a file defined by *path*. """ path = os.path.expandvars(os.path.expanduser(path)) with open(path, "wb") as f: pickle.dump(self.roots, f)
Saves all tensors of the root set to a file defined by *path*.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L174-L180
riga/tfdeploy
tfdeploy.py
Ensemble.get
def get(self, *names, **kwargs): """ get(*names, key=None) Returns one or more :py:class:`TensorEnsemble` instances given by *names* using a deep lookup within all read models. Each returned tensor ensemble will have ``len(models)`` tensors. If a model does not contain a specific tensor defined by a specific *name*, the associated ensemble tensor will contain a *None* for that model in its tensors. If *key* is not *None*, only the root tensors with that *key* are traversed. """ # create empty tensor ensembles with our method tensor_ensembles = [TensorEnsemble([], self.method) for name in names] # loop over models, collect and add tensors for model in self.models: tensors = model.get(*names, **kwargs) if not isinstance(tensors, tuple): tensors = (tensors,) for i, t in enumerate(tensors if isinstance(tensors, tuple) else (tensors,)): tensor_ensembles[i].tensors.append(t) return tensor_ensembles[0] if len(names) == 1 else tuple(tensor_ensembles)
python
def get(self, *names, **kwargs): """ get(*names, key=None) Returns one or more :py:class:`TensorEnsemble` instances given by *names* using a deep lookup within all read models. Each returned tensor ensemble will have ``len(models)`` tensors. If a model does not contain a specific tensor defined by a specific *name*, the associated ensemble tensor will contain a *None* for that model in its tensors. If *key* is not *None*, only the root tensors with that *key* are traversed. """ # create empty tensor ensembles with our method tensor_ensembles = [TensorEnsemble([], self.method) for name in names] # loop over models, collect and add tensors for model in self.models: tensors = model.get(*names, **kwargs) if not isinstance(tensors, tuple): tensors = (tensors,) for i, t in enumerate(tensors if isinstance(tensors, tuple) else (tensors,)): tensor_ensembles[i].tensors.append(t) return tensor_ensembles[0] if len(names) == 1 else tuple(tensor_ensembles)
get(*names, key=None) Returns one or more :py:class:`TensorEnsemble` instances given by *names* using a deep lookup within all read models. Each returned tensor ensemble will have ``len(models)`` tensors. If a model does not contain a specific tensor defined by a specific *name*, the associated ensemble tensor will contain a *None* for that model in its tensors. If *key* is not *None*, only the root tensors with that *key* are traversed.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L620-L639
riga/tfdeploy
tfdeploy.py
Ensemble.load
def load(self, paths): """ Loads models from a list of *paths*. """ for path in paths: self.models.append(Model(path))
python
def load(self, paths): """ Loads models from a list of *paths*. """ for path in paths: self.models.append(Model(path))
Loads models from a list of *paths*.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L641-L646
riga/tfdeploy
tfdeploy.py
TensorEnsemble.eval
def eval(self, feed_dict=None): """ Evaluates all contained tensors using a *feed_dict* and returns the ensemble value. The keys of *feed_dict* must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or lists or tuples of batches. In the latter case, these lists or tuples must have the same length as the list of stored tensors as they will be mapped. """ # first, check that the length of all feed_dict keys match our own length for tensor_ensemble in feed_dict: if len(tensor_ensemble.tensors) != len(self.tensors): raise EnsembleMismatchException("incompatible lengths of tensors: %d, %d" \ % (len(self.tensors), len(tensor_ensemble.tensors))) # create a joined uuid _uuid = uuid4() # prepare feed_dicts feed_dicts = [{} for _ in range(len(self.tensors))] for tensor_ensemble, value in feed_dict.items(): for i, tensor in enumerate(tensor_ensemble.tensors): if tensor is not None: feed_dicts[i][tensor] = value[i] if isinstance(value, (list, tuple)) else value # eval all tensors values = [t.eval(feed_dict=d, _uuid=_uuid) for t, d in zip(self.tensors, feed_dicts)] # return the computed ensemble value return self.func(values)
python
def eval(self, feed_dict=None): """ Evaluates all contained tensors using a *feed_dict* and returns the ensemble value. The keys of *feed_dict* must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or lists or tuples of batches. In the latter case, these lists or tuples must have the same length as the list of stored tensors as they will be mapped. """ # first, check that the length of all feed_dict keys match our own length for tensor_ensemble in feed_dict: if len(tensor_ensemble.tensors) != len(self.tensors): raise EnsembleMismatchException("incompatible lengths of tensors: %d, %d" \ % (len(self.tensors), len(tensor_ensemble.tensors))) # create a joined uuid _uuid = uuid4() # prepare feed_dicts feed_dicts = [{} for _ in range(len(self.tensors))] for tensor_ensemble, value in feed_dict.items(): for i, tensor in enumerate(tensor_ensemble.tensors): if tensor is not None: feed_dicts[i][tensor] = value[i] if isinstance(value, (list, tuple)) else value # eval all tensors values = [t.eval(feed_dict=d, _uuid=_uuid) for t, d in zip(self.tensors, feed_dicts)] # return the computed ensemble value return self.func(values)
Evaluates all contained tensors using a *feed_dict* and returns the ensemble value. The keys of *feed_dict* must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or lists or tuples of batches. In the latter case, these lists or tuples must have the same length as the list of stored tensors as they will be mapped.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L673-L700
riga/tfdeploy
tfdeploy.py
TensorEnsemble.func
def func(self, values): """ The actual ensembling logic that combines multiple *values*. The method call is forwareded tothe ensemble method-specific variant which is determined using *method*. """ if self.method == METHOD_MEAN: return self.func_mean(values) elif self.method == METHOD_MAX: return self.func_max(values) elif self.method == METHOD_MIN: return self.func_min(values) elif self.method == METHOD_CUSTOM: return self.func_custom(values) else: raise UnknownEnsembleMethodException(self.method)
python
def func(self, values): """ The actual ensembling logic that combines multiple *values*. The method call is forwareded tothe ensemble method-specific variant which is determined using *method*. """ if self.method == METHOD_MEAN: return self.func_mean(values) elif self.method == METHOD_MAX: return self.func_max(values) elif self.method == METHOD_MIN: return self.func_min(values) elif self.method == METHOD_CUSTOM: return self.func_custom(values) else: raise UnknownEnsembleMethodException(self.method)
The actual ensembling logic that combines multiple *values*. The method call is forwareded tothe ensemble method-specific variant which is determined using *method*.
https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L705-L719
adafruit/Adafruit_CircuitPython_MatrixKeypad
adafruit_matrixkeypad.py
Matrix_Keypad.pressed_keys
def pressed_keys(self): """An array containing all detected keys that are pressed from the initalized list-of-lists passed in during creation""" # make a list of all the keys that are detected pressed = [] # set all pins pins to be inputs w/pullups for pin in self.row_pins+self.col_pins: pin.direction = Direction.INPUT pin.pull = Pull.UP for row in range(len(self.row_pins)): # set one row low at a time self.row_pins[row].direction = Direction.OUTPUT self.row_pins[row].value = False # check the column pins, which ones are pulled down for col in range(len(self.col_pins)): if not self.col_pins[col].value: pressed.append(self.keys[row][col]) # reset the pin to be an input self.row_pins[row].direction = Direction.INPUT self.row_pins[row].pull = Pull.UP return pressed
python
def pressed_keys(self): """An array containing all detected keys that are pressed from the initalized list-of-lists passed in during creation""" # make a list of all the keys that are detected pressed = [] # set all pins pins to be inputs w/pullups for pin in self.row_pins+self.col_pins: pin.direction = Direction.INPUT pin.pull = Pull.UP for row in range(len(self.row_pins)): # set one row low at a time self.row_pins[row].direction = Direction.OUTPUT self.row_pins[row].value = False # check the column pins, which ones are pulled down for col in range(len(self.col_pins)): if not self.col_pins[col].value: pressed.append(self.keys[row][col]) # reset the pin to be an input self.row_pins[row].direction = Direction.INPUT self.row_pins[row].pull = Pull.UP return pressed
An array containing all detected keys that are pressed from the initalized list-of-lists passed in during creation
https://github.com/adafruit/Adafruit_CircuitPython_MatrixKeypad/blob/f530b1a920a40ef09ec1394b7760f243a243045a/adafruit_matrixkeypad.py#L69-L91
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.get_load_times
def get_load_times(self, asset_type): """ Just a ``list`` of the load times of a certain asset type for each page :param asset_type: ``str`` of the asset type to return load times for """ load_times = [] search_str = '{0}_load_time'.format(asset_type) for har_page in self.pages: val = getattr(har_page, search_str, None) if val is not None: load_times.append(val) return load_times
python
def get_load_times(self, asset_type): """ Just a ``list`` of the load times of a certain asset type for each page :param asset_type: ``str`` of the asset type to return load times for """ load_times = [] search_str = '{0}_load_time'.format(asset_type) for har_page in self.pages: val = getattr(har_page, search_str, None) if val is not None: load_times.append(val) return load_times
Just a ``list`` of the load times of a certain asset type for each page :param asset_type: ``str`` of the asset type to return load times for
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L41-L53
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.get_stdev
def get_stdev(self, asset_type): """ Returns the standard deviation for a set of a certain asset type. :param asset_type: ``str`` of the asset type to calculate standard deviation for. :returns: A ``int`` or ``float`` of standard deviation, depending on the self.decimal_precision """ load_times = [] # Handle edge cases like TTFB if asset_type == 'ttfb': for page in self.pages: if page.time_to_first_byte is not None: load_times.append(page.time_to_first_byte) elif asset_type not in self.asset_types and asset_type != 'page': raise ValueError('asset_type must be one of:\nttfb\n{0}'.format( '\n'.join(self.asset_types))) else: load_times = self.get_load_times(asset_type) if not load_times or not sum(load_times): return 0 return round(stdev(load_times), self.decimal_precision)
python
def get_stdev(self, asset_type): """ Returns the standard deviation for a set of a certain asset type. :param asset_type: ``str`` of the asset type to calculate standard deviation for. :returns: A ``int`` or ``float`` of standard deviation, depending on the self.decimal_precision """ load_times = [] # Handle edge cases like TTFB if asset_type == 'ttfb': for page in self.pages: if page.time_to_first_byte is not None: load_times.append(page.time_to_first_byte) elif asset_type not in self.asset_types and asset_type != 'page': raise ValueError('asset_type must be one of:\nttfb\n{0}'.format( '\n'.join(self.asset_types))) else: load_times = self.get_load_times(asset_type) if not load_times or not sum(load_times): return 0 return round(stdev(load_times), self.decimal_precision)
Returns the standard deviation for a set of a certain asset type. :param asset_type: ``str`` of the asset type to calculate standard deviation for. :returns: A ``int`` or ``float`` of standard deviation, depending on the self.decimal_precision
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L55-L79
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.pages
def pages(self): """ The aggregate pages of all the parser objects. """ pages = [] for har_dict in self.har_data: har_parser = HarParser(har_data=har_dict) if self.page_id: for page in har_parser.pages: if page.page_id == self.page_id: pages.append(page) else: pages = pages + har_parser.pages return pages
python
def pages(self): """ The aggregate pages of all the parser objects. """ pages = [] for har_dict in self.har_data: har_parser = HarParser(har_data=har_dict) if self.page_id: for page in har_parser.pages: if page.page_id == self.page_id: pages.append(page) else: pages = pages + har_parser.pages return pages
The aggregate pages of all the parser objects.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L82-L95
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.time_to_first_byte
def time_to_first_byte(self): """ The aggregate time to first byte for all pages. """ ttfb = [] for page in self.pages: if page.time_to_first_byte is not None: ttfb.append(page.time_to_first_byte) return round(mean(ttfb), self.decimal_precision)
python
def time_to_first_byte(self): """ The aggregate time to first byte for all pages. """ ttfb = [] for page in self.pages: if page.time_to_first_byte is not None: ttfb.append(page.time_to_first_byte) return round(mean(ttfb), self.decimal_precision)
The aggregate time to first byte for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L105-L113
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.page_load_time
def page_load_time(self): """ The average total load time for all runs (not weighted). """ load_times = self.get_load_times('page') return round(mean(load_times), self.decimal_precision)
python
def page_load_time(self): """ The average total load time for all runs (not weighted). """ load_times = self.get_load_times('page') return round(mean(load_times), self.decimal_precision)
The average total load time for all runs (not weighted).
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L116-L121
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.js_load_time
def js_load_time(self): """ Returns aggregate javascript load time. """ load_times = self.get_load_times('js') return round(mean(load_times), self.decimal_precision)
python
def js_load_time(self): """ Returns aggregate javascript load time. """ load_times = self.get_load_times('js') return round(mean(load_times), self.decimal_precision)
Returns aggregate javascript load time.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L124-L129
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.css_load_time
def css_load_time(self): """ Returns aggregate css load time for all pages. """ load_times = self.get_load_times('css') return round(mean(load_times), self.decimal_precision)
python
def css_load_time(self): """ Returns aggregate css load time for all pages. """ load_times = self.get_load_times('css') return round(mean(load_times), self.decimal_precision)
Returns aggregate css load time for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L132-L137
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.image_load_time
def image_load_time(self): """ Returns aggregate image load time for all pages. """ load_times = self.get_load_times('image') return round(mean(load_times), self.decimal_precision)
python
def image_load_time(self): """ Returns aggregate image load time for all pages. """ load_times = self.get_load_times('image') return round(mean(load_times), self.decimal_precision)
Returns aggregate image load time for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L140-L145
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.html_load_time
def html_load_time(self): """ Returns aggregate html load time for all pages. """ load_times = self.get_load_times('html') return round(mean(load_times), self.decimal_precision)
python
def html_load_time(self): """ Returns aggregate html load time for all pages. """ load_times = self.get_load_times('html') return round(mean(load_times), self.decimal_precision)
Returns aggregate html load time for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L148-L153
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.audio_load_time
def audio_load_time(self): """ Returns aggregate audio load time for all pages. """ load_times = self.get_load_times('audio') return round(mean(load_times), self.decimal_precision)
python
def audio_load_time(self): """ Returns aggregate audio load time for all pages. """ load_times = self.get_load_times('audio') return round(mean(load_times), self.decimal_precision)
Returns aggregate audio load time for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L156-L161
mrname/haralyzer
haralyzer/multihar.py
MultiHarParser.video_load_time
def video_load_time(self): """ Returns aggregate video load time for all pages. """ load_times = self.get_load_times('video') return round(mean(load_times), self.decimal_precision)
python
def video_load_time(self): """ Returns aggregate video load time for all pages. """ load_times = self.get_load_times('video') return round(mean(load_times), self.decimal_precision)
Returns aggregate video load time for all pages.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L164-L169
mrname/haralyzer
haralyzer/assets.py
HarParser.match_headers
def match_headers(self, entry, header_type, header, value, regex=True): """ Function to match headers. Since the output of headers might use different case, like: 'content-type' vs 'Content-Type' This function is case-insensitive :param entry: entry object :param header_type: ``str`` of header type. Valid values: * 'request' * 'response' :param header: ``str`` of the header to search for :param value: ``str`` of value to search for :param regex: ``bool`` indicating whether to use regex or exact match :returns: a ``bool`` indicating whether a match was found """ if header_type not in entry: raise ValueError('Invalid header_type, should be either:\n\n' '* \'request\'\n*\'response\'') # TODO - headers are empty in some HAR data.... need fallbacks here for h in entry[header_type]['headers']: if h['name'].lower() == header.lower() and h['value'] is not None: if regex and re.search(value, h['value'], flags=re.IGNORECASE): return True elif value == h['value']: return True return False
python
def match_headers(self, entry, header_type, header, value, regex=True): """ Function to match headers. Since the output of headers might use different case, like: 'content-type' vs 'Content-Type' This function is case-insensitive :param entry: entry object :param header_type: ``str`` of header type. Valid values: * 'request' * 'response' :param header: ``str`` of the header to search for :param value: ``str`` of value to search for :param regex: ``bool`` indicating whether to use regex or exact match :returns: a ``bool`` indicating whether a match was found """ if header_type not in entry: raise ValueError('Invalid header_type, should be either:\n\n' '* \'request\'\n*\'response\'') # TODO - headers are empty in some HAR data.... need fallbacks here for h in entry[header_type]['headers']: if h['name'].lower() == header.lower() and h['value'] is not None: if regex and re.search(value, h['value'], flags=re.IGNORECASE): return True elif value == h['value']: return True return False
Function to match headers. Since the output of headers might use different case, like: 'content-type' vs 'Content-Type' This function is case-insensitive :param entry: entry object :param header_type: ``str`` of header type. Valid values: * 'request' * 'response' :param header: ``str`` of the header to search for :param value: ``str`` of value to search for :param regex: ``bool`` indicating whether to use regex or exact match :returns: a ``bool`` indicating whether a match was found
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L40-L73
mrname/haralyzer
haralyzer/assets.py
HarParser.match_content_type
def match_content_type(entry, content_type, regex=True): """ Matches the content type of a request using the mimeType metadata. :param entry: ``dict`` of a single entry from a HarPage :param content_type: ``str`` of regex to use for finding content type :param regex: ``bool`` indicating whether to use regex or exact match. """ mimeType = entry['response']['content']['mimeType'] if regex and re.search(content_type, mimeType, flags=re.IGNORECASE): return True elif content_type == mimeType: return True return False
python
def match_content_type(entry, content_type, regex=True): """ Matches the content type of a request using the mimeType metadata. :param entry: ``dict`` of a single entry from a HarPage :param content_type: ``str`` of regex to use for finding content type :param regex: ``bool`` indicating whether to use regex or exact match. """ mimeType = entry['response']['content']['mimeType'] if regex and re.search(content_type, mimeType, flags=re.IGNORECASE): return True elif content_type == mimeType: return True return False
Matches the content type of a request using the mimeType metadata. :param entry: ``dict`` of a single entry from a HarPage :param content_type: ``str`` of regex to use for finding content type :param regex: ``bool`` indicating whether to use regex or exact match.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L76-L92
mrname/haralyzer
haralyzer/assets.py
HarParser.match_request_type
def match_request_type(self, entry, request_type, regex=True): """ Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match """ if regex: return re.search(request_type, entry['request']['method'], flags=re.IGNORECASE) is not None else: return entry['request']['method'] == request_type
python
def match_request_type(self, entry, request_type, regex=True): """ Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match """ if regex: return re.search(request_type, entry['request']['method'], flags=re.IGNORECASE) is not None else: return entry['request']['method'] == request_type
Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L94-L107
mrname/haralyzer
haralyzer/assets.py
HarParser.match_http_version
def match_http_version(entry, http_version, regex=True): """ Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match """ response_version = entry['response']['httpVersion'] if regex: return re.search(http_version, response_version, flags=re.IGNORECASE) is not None else: return response_version == http_version
python
def match_http_version(entry, http_version, regex=True): """ Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match """ response_version = entry['response']['httpVersion'] if regex: return re.search(http_version, response_version, flags=re.IGNORECASE) is not None else: return response_version == http_version
Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L110-L124
mrname/haralyzer
haralyzer/assets.py
HarParser.match_status_code
def match_status_code(self, entry, status_code, regex=True): """ Helper function that returns entries with a status code matching then given `status_code` argument. NOTE: This is doing a STRING comparison NOT NUMERICAL :param entry: entry object to analyze :param status_code: ``str`` of status code to search for :param request_type: ``regex`` of request type to match """ if regex: return re.search(status_code, str(entry['response']['status'])) is not None else: return str(entry['response']['status']) == status_code
python
def match_status_code(self, entry, status_code, regex=True): """ Helper function that returns entries with a status code matching then given `status_code` argument. NOTE: This is doing a STRING comparison NOT NUMERICAL :param entry: entry object to analyze :param status_code: ``str`` of status code to search for :param request_type: ``regex`` of request type to match """ if regex: return re.search(status_code, str(entry['response']['status'])) is not None else: return str(entry['response']['status']) == status_code
Helper function that returns entries with a status code matching then given `status_code` argument. NOTE: This is doing a STRING comparison NOT NUMERICAL :param entry: entry object to analyze :param status_code: ``str`` of status code to search for :param request_type: ``regex`` of request type to match
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L126-L141
mrname/haralyzer
haralyzer/assets.py
HarParser.create_asset_timeline
def create_asset_timeline(self, asset_list): """ Returns a ``dict`` of the timeline for the requested assets. The key is a datetime object (down to the millisecond) of ANY time where at least one of the requested assets was loaded. The value is a ``list`` of ALL assets that were loading at that time. :param asset_list: ``list`` of the assets to create a timeline for. """ results = dict() for asset in asset_list: time_key = dateutil.parser.parse(asset['startedDateTime']) load_time = int(asset['time']) # Add the start time and asset to the results dict if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] # For each millisecond the asset was loading, insert the asset # into the appropriate key of the results dict. Starting the range() # index at 1 because we already inserted the first millisecond. for _ in range(1, load_time): time_key = time_key + datetime.timedelta(milliseconds=1) if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] return results
python
def create_asset_timeline(self, asset_list): """ Returns a ``dict`` of the timeline for the requested assets. The key is a datetime object (down to the millisecond) of ANY time where at least one of the requested assets was loaded. The value is a ``list`` of ALL assets that were loading at that time. :param asset_list: ``list`` of the assets to create a timeline for. """ results = dict() for asset in asset_list: time_key = dateutil.parser.parse(asset['startedDateTime']) load_time = int(asset['time']) # Add the start time and asset to the results dict if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] # For each millisecond the asset was loading, insert the asset # into the appropriate key of the results dict. Starting the range() # index at 1 because we already inserted the first millisecond. for _ in range(1, load_time): time_key = time_key + datetime.timedelta(milliseconds=1) if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] return results
Returns a ``dict`` of the timeline for the requested assets. The key is a datetime object (down to the millisecond) of ANY time where at least one of the requested assets was loaded. The value is a ``list`` of ALL assets that were loading at that time. :param asset_list: ``list`` of the assets to create a timeline for.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L143-L171
mrname/haralyzer
haralyzer/assets.py
HarParser.pages
def pages(self): """ This is a list of HarPage objects, each of which represents a page from the HAR file. """ # Start with a page object for unknown entries if the HAR data has # any entries with no page ID pages = [] if any('pageref' not in entry for entry in self.har_data['entries']): pages.append(HarPage('unknown', har_parser=self)) for har_page in self.har_data['pages']: page = HarPage(har_page['id'], har_parser=self) pages.append(page) return pages
python
def pages(self): """ This is a list of HarPage objects, each of which represents a page from the HAR file. """ # Start with a page object for unknown entries if the HAR data has # any entries with no page ID pages = [] if any('pageref' not in entry for entry in self.har_data['entries']): pages.append(HarPage('unknown', har_parser=self)) for har_page in self.har_data['pages']: page = HarPage(har_page['id'], har_parser=self) pages.append(page) return pages
This is a list of HarPage objects, each of which represents a page from the HAR file.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L174-L188
mrname/haralyzer
haralyzer/assets.py
HarPage._get_asset_size_trans
def _get_asset_size_trans(self, asset_type): """ Helper function to dynamically create *_size properties. """ if asset_type == 'page': assets = self.entries else: assets = getattr(self, '{0}_files'.format(asset_type), None) return self.get_total_size_trans(assets)
python
def _get_asset_size_trans(self, asset_type): """ Helper function to dynamically create *_size properties. """ if asset_type == 'page': assets = self.entries else: assets = getattr(self, '{0}_files'.format(asset_type), None) return self.get_total_size_trans(assets)
Helper function to dynamically create *_size properties.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L266-L274
mrname/haralyzer
haralyzer/assets.py
HarPage._get_asset_size
def _get_asset_size(self, asset_type): """ Helper function to dynamically create *_size properties. """ if asset_type == 'page': assets = self.entries else: assets = getattr(self, '{0}_files'.format(asset_type), None) return self.get_total_size(assets)
python
def _get_asset_size(self, asset_type): """ Helper function to dynamically create *_size properties. """ if asset_type == 'page': assets = self.entries else: assets = getattr(self, '{0}_files'.format(asset_type), None) return self.get_total_size(assets)
Helper function to dynamically create *_size properties.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L276-L284
mrname/haralyzer
haralyzer/assets.py
HarPage._get_asset_load
def _get_asset_load(self, asset_type): """ Helper function to dynamically create *_load_time properties. Return value is in ms. """ if asset_type == 'initial': return self.actual_page['time'] elif asset_type == 'content': return self.pageTimings['onContentLoad'] elif asset_type == 'page': if self.page_id == 'unknown': return None return self.pageTimings['onLoad'] # TODO - should we return a slightly fake total load time to # accomodate HAR data that cannot understand things like JS # rendering or just throw a warning? #return self.get_load_time(request_type='.*',content_type='.*', status_code='.*', asynchronous=False) else: return self.get_load_time( content_type=self.asset_types[asset_type] )
python
def _get_asset_load(self, asset_type): """ Helper function to dynamically create *_load_time properties. Return value is in ms. """ if asset_type == 'initial': return self.actual_page['time'] elif asset_type == 'content': return self.pageTimings['onContentLoad'] elif asset_type == 'page': if self.page_id == 'unknown': return None return self.pageTimings['onLoad'] # TODO - should we return a slightly fake total load time to # accomodate HAR data that cannot understand things like JS # rendering or just throw a warning? #return self.get_load_time(request_type='.*',content_type='.*', status_code='.*', asynchronous=False) else: return self.get_load_time( content_type=self.asset_types[asset_type] )
Helper function to dynamically create *_load_time properties. Return value is in ms.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L286-L306
mrname/haralyzer
haralyzer/assets.py
HarPage.filter_entries
def filter_entries(self, request_type=None, content_type=None, status_code=None, http_version=None, regex=True): """ Returns a ``list`` of entry objects based on the filter criteria. :param request_type: ``str`` of request type (i.e. - GET or POST) :param content_type: ``str`` of regex to use for finding content type :param status_code: ``int`` of the desired status code :param http_version: ``str`` of HTTP version of request :param regex: ``bool`` indicating whether to use regex or exact match. """ results = [] for entry in self.entries: """ So yea... this is a bit ugly. We are looking for: * The request type using self._match_request_type() * The content type using self._match_headers() * The HTTP response status code using self._match_status_code() * The HTTP version using self._match_headers() Oh lords of python.... please forgive my soul """ valid_entry = True p = self.parser if request_type is not None and not p.match_request_type( entry, request_type, regex=regex): valid_entry = False if content_type is not None: if not self.parser.match_content_type(entry, content_type, regex=regex): valid_entry = False if status_code is not None and not p.match_status_code( entry, status_code, regex=regex): valid_entry = False if http_version is not None and not p.match_http_version( entry, http_version, regex=regex): valid_entry = False if valid_entry: results.append(entry) return results
python
def filter_entries(self, request_type=None, content_type=None, status_code=None, http_version=None, regex=True): """ Returns a ``list`` of entry objects based on the filter criteria. :param request_type: ``str`` of request type (i.e. - GET or POST) :param content_type: ``str`` of regex to use for finding content type :param status_code: ``int`` of the desired status code :param http_version: ``str`` of HTTP version of request :param regex: ``bool`` indicating whether to use regex or exact match. """ results = [] for entry in self.entries: """ So yea... this is a bit ugly. We are looking for: * The request type using self._match_request_type() * The content type using self._match_headers() * The HTTP response status code using self._match_status_code() * The HTTP version using self._match_headers() Oh lords of python.... please forgive my soul """ valid_entry = True p = self.parser if request_type is not None and not p.match_request_type( entry, request_type, regex=regex): valid_entry = False if content_type is not None: if not self.parser.match_content_type(entry, content_type, regex=regex): valid_entry = False if status_code is not None and not p.match_status_code( entry, status_code, regex=regex): valid_entry = False if http_version is not None and not p.match_http_version( entry, http_version, regex=regex): valid_entry = False if valid_entry: results.append(entry) return results
Returns a ``list`` of entry objects based on the filter criteria. :param request_type: ``str`` of request type (i.e. - GET or POST) :param content_type: ``str`` of regex to use for finding content type :param status_code: ``int`` of the desired status code :param http_version: ``str`` of HTTP version of request :param regex: ``bool`` indicating whether to use regex or exact match.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L308-L351
mrname/haralyzer
haralyzer/assets.py
HarPage.get_load_time
def get_load_time(self, request_type=None, content_type=None, status_code=None, asynchronous=True, **kwargs): """ This method can return the TOTAL load time for the assets or the ACTUAL load time, the difference being that the actual load time takes asynchronous transactions into account. So, if you want the total load time, set asynchronous=False. EXAMPLE: I want to know the load time for images on a page that has two images, each of which took 2 seconds to download, but the browser downloaded them at the same time. self.get_load_time(content_types=['image']) (returns 2) self.get_load_time(content_types=['image'], asynchronous=False) (returns 4) """ entries = self.filter_entries( request_type=request_type, content_type=content_type, status_code=status_code ) if "async" in kwargs: asynchronous = kwargs['async'] if not asynchronous: time = 0 for entry in entries: time += entry['time'] return time else: return len(self.parser.create_asset_timeline(entries))
python
def get_load_time(self, request_type=None, content_type=None, status_code=None, asynchronous=True, **kwargs): """ This method can return the TOTAL load time for the assets or the ACTUAL load time, the difference being that the actual load time takes asynchronous transactions into account. So, if you want the total load time, set asynchronous=False. EXAMPLE: I want to know the load time for images on a page that has two images, each of which took 2 seconds to download, but the browser downloaded them at the same time. self.get_load_time(content_types=['image']) (returns 2) self.get_load_time(content_types=['image'], asynchronous=False) (returns 4) """ entries = self.filter_entries( request_type=request_type, content_type=content_type, status_code=status_code ) if "async" in kwargs: asynchronous = kwargs['async'] if not asynchronous: time = 0 for entry in entries: time += entry['time'] return time else: return len(self.parser.create_asset_timeline(entries))
This method can return the TOTAL load time for the assets or the ACTUAL load time, the difference being that the actual load time takes asynchronous transactions into account. So, if you want the total load time, set asynchronous=False. EXAMPLE: I want to know the load time for images on a page that has two images, each of which took 2 seconds to download, but the browser downloaded them at the same time. self.get_load_time(content_types=['image']) (returns 2) self.get_load_time(content_types=['image'], asynchronous=False) (returns 4)
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L353-L384
mrname/haralyzer
haralyzer/assets.py
HarPage.get_total_size
def get_total_size(self, entries): """ Returns the total size of a collection of entries. :param entries: ``list`` of entries to calculate the total size of. """ size = 0 for entry in entries: if entry['response']['bodySize'] > 0: size += entry['response']['bodySize'] return size
python
def get_total_size(self, entries): """ Returns the total size of a collection of entries. :param entries: ``list`` of entries to calculate the total size of. """ size = 0 for entry in entries: if entry['response']['bodySize'] > 0: size += entry['response']['bodySize'] return size
Returns the total size of a collection of entries. :param entries: ``list`` of entries to calculate the total size of.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L386-L396
mrname/haralyzer
haralyzer/assets.py
HarPage.get_total_size_trans
def get_total_size_trans(self, entries): """ Returns the total size of a collection of entries - transferred. NOTE: use with har file generated with chrome-har-capturer :param entries: ``list`` of entries to calculate the total size of. """ size = 0 for entry in entries: if entry['response']['_transferSize'] > 0: size += entry['response']['_transferSize'] return size
python
def get_total_size_trans(self, entries): """ Returns the total size of a collection of entries - transferred. NOTE: use with har file generated with chrome-har-capturer :param entries: ``list`` of entries to calculate the total size of. """ size = 0 for entry in entries: if entry['response']['_transferSize'] > 0: size += entry['response']['_transferSize'] return size
Returns the total size of a collection of entries - transferred. NOTE: use with har file generated with chrome-har-capturer :param entries: ``list`` of entries to calculate the total size of.
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L398-L410
mrname/haralyzer
haralyzer/assets.py
HarPage.time_to_first_byte
def time_to_first_byte(self): """ Time to first byte of the page request in ms """ # The unknown page is just a placeholder for entries with no page ID. # As such, it would not have a TTFB if self.page_id == 'unknown': return None ttfb = 0 for entry in self.entries: if entry['response']['status'] == 200: for k, v in iteritems(entry['timings']): if k != 'receive': if v > 0: ttfb += v break else: ttfb += entry['time'] return ttfb
python
def time_to_first_byte(self): """ Time to first byte of the page request in ms """ # The unknown page is just a placeholder for entries with no page ID. # As such, it would not have a TTFB if self.page_id == 'unknown': return None ttfb = 0 for entry in self.entries: if entry['response']['status'] == 200: for k, v in iteritems(entry['timings']): if k != 'receive': if v > 0: ttfb += v break else: ttfb += entry['time'] return ttfb
Time to first byte of the page request in ms
https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L449-L468
kako-nawao/django-group-by
django_group_by/queryset.py
GroupByQuerySetMixinBase.group_by
def group_by(self, *fields): """ Clone the queryset using GroupByQuerySet. :param fields: :return: """ fields = self._expand_group_by_fields(self.model, fields) return self._clone(klass=GroupByQuerySet, setup=True, _fields=fields)
python
def group_by(self, *fields): """ Clone the queryset using GroupByQuerySet. :param fields: :return: """ fields = self._expand_group_by_fields(self.model, fields) return self._clone(klass=GroupByQuerySet, setup=True, _fields=fields)
Clone the queryset using GroupByQuerySet. :param fields: :return:
https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/queryset.py#L34-L42
kako-nawao/django-group-by
django_group_by/group.py
AggregatedGroup._data
def _data(self): """ Cached data built from instance raw _values as a dictionary. """ d = {} # Iterate all keys and values for k, v in self._row_values.items(): # Split related model fields attrs = k.rsplit('__', 1) # Set value depending case if len(attrs) == 2: # Related model field, store nested fk, fn = attrs if fk not in d: d[fk] = {} d[fk][fn] = v else: # Own model field, store directly d[k] = v # Return (+cache) data return d
python
def _data(self): """ Cached data built from instance raw _values as a dictionary. """ d = {} # Iterate all keys and values for k, v in self._row_values.items(): # Split related model fields attrs = k.rsplit('__', 1) # Set value depending case if len(attrs) == 2: # Related model field, store nested fk, fn = attrs if fk not in d: d[fk] = {} d[fk][fn] = v else: # Own model field, store directly d[k] = v # Return (+cache) data return d
Cached data built from instance raw _values as a dictionary.
https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/group.py#L19-L43
kako-nawao/django-group-by
django_group_by/group.py
AggregatedGroup._set_values
def _set_values(self): """ Populate instance with given. """ # Iterate all keys and values in data for k, v in self._data.items(): # If it's a dict, process it (it's probably instance data) if isinstance(v, dict): try: # Get related model from field (follow path) rel_model = self._model for attr in k.split('__'): rel_model = getattr(rel_model, attr).field.related_model except AttributeError: # Not a model, maybe it is a dict field (?) pass else: # Model, first shorten field name k = k.replace('__', '_') # Now init instance if required (not if we got ID None) if 'id' in v and v['id'] is None: # This means we grouped by ID, if it's none then FK is None v = None else: # Either we have ID or we didn't group by ID, use instance v = rel_model(**v) # Set value setattr(self, k, v)
python
def _set_values(self): """ Populate instance with given. """ # Iterate all keys and values in data for k, v in self._data.items(): # If it's a dict, process it (it's probably instance data) if isinstance(v, dict): try: # Get related model from field (follow path) rel_model = self._model for attr in k.split('__'): rel_model = getattr(rel_model, attr).field.related_model except AttributeError: # Not a model, maybe it is a dict field (?) pass else: # Model, first shorten field name k = k.replace('__', '_') # Now init instance if required (not if we got ID None) if 'id' in v and v['id'] is None: # This means we grouped by ID, if it's none then FK is None v = None else: # Either we have ID or we didn't group by ID, use instance v = rel_model(**v) # Set value setattr(self, k, v)
Populate instance with given.
https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/group.py#L45-L77
kako-nawao/django-group-by
django_group_by/iterable.py
GroupByIterableMixinBase.group_by
def group_by(self, *fields): """ Clone the queryset using GroupByQuerySet. :param fields: :return: """ fields = self._expand_group_by_fields(self.model, fields) clone = self._values(*fields) clone._iterable_class = GroupByIterable return clone
python
def group_by(self, *fields): """ Clone the queryset using GroupByQuerySet. :param fields: :return: """ fields = self._expand_group_by_fields(self.model, fields) clone = self._values(*fields) clone._iterable_class = GroupByIterable return clone
Clone the queryset using GroupByQuerySet. :param fields: :return:
https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/iterable.py#L37-L47
kako-nawao/django-group-by
django_group_by/mixin.py
GroupByMixin._expand_group_by_fields
def _expand_group_by_fields(cls, model, fields): """ Expand FK fields into all related object's fields to avoid future lookups. :param fields: fields to "group by" :return: expanded fields """ # Containers for resulting fields and related model fields res = [] related = {} # Add own fields and populate related fields for field_name in fields: if '__' in field_name: # Related model field: append to related model's fields fk_field_name, related_field = field_name.split('__', 1) if fk_field_name not in related: related[fk_field_name] = [related_field] else: related[fk_field_name].append(related_field) else: # Simple field, get the field instance model_field = model._meta.get_field(field_name) if isinstance(model_field, (ForeignKey, ManyToManyField)): # It's a related field, get model related_model = model_field.related_model # Append all its fields with the correct prefix res.extend('{}__{}'.format(field_name, f.column) for f in related_model._meta.fields) else: # It's a common field, just append it res.append(field_name) # Resolve all related fields for fk_field_name, field_names in related.items(): # Get field fk = model._meta.get_field(fk_field_name) # Get all fields for that related model related_fields = cls._expand_group_by_fields(fk.related_model, field_names) # Append them with the correct prefix res.extend('{}__{}'.format(fk_field_name, f) for f in related_fields) # Return all fields return res
python
def _expand_group_by_fields(cls, model, fields): """ Expand FK fields into all related object's fields to avoid future lookups. :param fields: fields to "group by" :return: expanded fields """ # Containers for resulting fields and related model fields res = [] related = {} # Add own fields and populate related fields for field_name in fields: if '__' in field_name: # Related model field: append to related model's fields fk_field_name, related_field = field_name.split('__', 1) if fk_field_name not in related: related[fk_field_name] = [related_field] else: related[fk_field_name].append(related_field) else: # Simple field, get the field instance model_field = model._meta.get_field(field_name) if isinstance(model_field, (ForeignKey, ManyToManyField)): # It's a related field, get model related_model = model_field.related_model # Append all its fields with the correct prefix res.extend('{}__{}'.format(field_name, f.column) for f in related_model._meta.fields) else: # It's a common field, just append it res.append(field_name) # Resolve all related fields for fk_field_name, field_names in related.items(): # Get field fk = model._meta.get_field(fk_field_name) # Get all fields for that related model related_fields = cls._expand_group_by_fields(fk.related_model, field_names) # Append them with the correct prefix res.extend('{}__{}'.format(fk_field_name, f) for f in related_fields) # Return all fields return res
Expand FK fields into all related object's fields to avoid future lookups. :param fields: fields to "group by" :return: expanded fields
https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/mixin.py#L23-L74
SiLab-Bonn/basil
basil/TL/Dummy.py
Dummy.write
def write(self, addr, data): '''Write to dummy memory Parameters ---------- addr : int The register address. data : list, tuple Data (byte array) to be written. Returns ------- nothing ''' logger.debug( "Dummy SiTransferLayer.write addr: %s data: %s" % (hex(addr), data)) for curr_addr, d in enumerate(data, start=addr): self.mem[curr_addr] = array.array('B', [d])[0]
python
def write(self, addr, data): '''Write to dummy memory Parameters ---------- addr : int The register address. data : list, tuple Data (byte array) to be written. Returns ------- nothing ''' logger.debug( "Dummy SiTransferLayer.write addr: %s data: %s" % (hex(addr), data)) for curr_addr, d in enumerate(data, start=addr): self.mem[curr_addr] = array.array('B', [d])[0]
Write to dummy memory Parameters ---------- addr : int The register address. data : list, tuple Data (byte array) to be written. Returns ------- nothing
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/TL/Dummy.py#L36-L53
SiLab-Bonn/basil
basil/TL/Dummy.py
Dummy.read
def read(self, addr, size): ''' Parameters ---------- addr : int The register address. size : int Length of data to be read (number of bytes). Returns ------- array : array Data (byte array) read from memory. Returns 0 for each byte if it hasn't been written to. ''' logger.debug("Dummy SiTransferLayer.read addr: %s size: %s" % (hex(addr), size)) return array.array('B', [self.mem[curr_addr] if curr_addr in self.mem else 0 for curr_addr in range(addr, addr + size)])
python
def read(self, addr, size): ''' Parameters ---------- addr : int The register address. size : int Length of data to be read (number of bytes). Returns ------- array : array Data (byte array) read from memory. Returns 0 for each byte if it hasn't been written to. ''' logger.debug("Dummy SiTransferLayer.read addr: %s size: %s" % (hex(addr), size)) return array.array('B', [self.mem[curr_addr] if curr_addr in self.mem else 0 for curr_addr in range(addr, addr + size)])
Parameters ---------- addr : int The register address. size : int Length of data to be read (number of bytes). Returns ------- array : array Data (byte array) read from memory. Returns 0 for each byte if it hasn't been written to.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/TL/Dummy.py#L55-L70
SiLab-Bonn/basil
basil/HL/RegisterHardwareLayer.py
RegisterHardwareLayer.set_value
def set_value(self, value, addr, size, offset, **kwargs): '''Writing a value of any arbitrary size (max. unsigned int 64) and offset to a register Parameters ---------- value : int, str The register value (int, long, bit string) to be written. addr : int The register address. size : int Bit size/length of the value to be written to the register. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- nothing ''' div_offset, mod_offset = divmod(offset, 8) div_size, mod_size = divmod(size + mod_offset, 8) if mod_size: div_size += 1 if mod_offset == 0 and mod_size == 0: reg = BitLogic.from_value(0, size=div_size * 8) else: ret = self._intf.read(self._base_addr + addr + div_offset, size=div_size) reg = BitLogic() reg.frombytes(tobytes(ret)) reg[size + mod_offset - 1:mod_offset] = value self._intf.write(self._base_addr + addr + div_offset, data=array.array('B', reg.tobytes()))
python
def set_value(self, value, addr, size, offset, **kwargs): '''Writing a value of any arbitrary size (max. unsigned int 64) and offset to a register Parameters ---------- value : int, str The register value (int, long, bit string) to be written. addr : int The register address. size : int Bit size/length of the value to be written to the register. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- nothing ''' div_offset, mod_offset = divmod(offset, 8) div_size, mod_size = divmod(size + mod_offset, 8) if mod_size: div_size += 1 if mod_offset == 0 and mod_size == 0: reg = BitLogic.from_value(0, size=div_size * 8) else: ret = self._intf.read(self._base_addr + addr + div_offset, size=div_size) reg = BitLogic() reg.frombytes(tobytes(ret)) reg[size + mod_offset - 1:mod_offset] = value self._intf.write(self._base_addr + addr + div_offset, data=array.array('B', reg.tobytes()))
Writing a value of any arbitrary size (max. unsigned int 64) and offset to a register Parameters ---------- value : int, str The register value (int, long, bit string) to be written. addr : int The register address. size : int Bit size/length of the value to be written to the register. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- nothing
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/RegisterHardwareLayer.py#L81-L110
SiLab-Bonn/basil
basil/HL/RegisterHardwareLayer.py
RegisterHardwareLayer.get_value
def get_value(self, addr, size, offset, **kwargs): '''Reading a value of any arbitrary size (max. unsigned int 64) and offset from a register Parameters ---------- addr : int The register address. size : int Bit size/length of the value. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- reg : int Register value. ''' div_offset, mod_offset = divmod(offset, 8) div_size, mod_size = divmod(size + mod_offset, 8) if mod_size: div_size += 1 ret = self._intf.read(self._base_addr + addr + div_offset, size=div_size) reg = BitLogic() reg.frombytes(tobytes(ret)) return reg[size + mod_offset - 1:mod_offset].tovalue()
python
def get_value(self, addr, size, offset, **kwargs): '''Reading a value of any arbitrary size (max. unsigned int 64) and offset from a register Parameters ---------- addr : int The register address. size : int Bit size/length of the value. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- reg : int Register value. ''' div_offset, mod_offset = divmod(offset, 8) div_size, mod_size = divmod(size + mod_offset, 8) if mod_size: div_size += 1 ret = self._intf.read(self._base_addr + addr + div_offset, size=div_size) reg = BitLogic() reg.frombytes(tobytes(ret)) return reg[size + mod_offset - 1:mod_offset].tovalue()
Reading a value of any arbitrary size (max. unsigned int 64) and offset from a register Parameters ---------- addr : int The register address. size : int Bit size/length of the value. offset : int Offset of the value to be written to the register (in number of bits). Returns ------- reg : int Register value.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/RegisterHardwareLayer.py#L112-L136
SiLab-Bonn/basil
basil/HL/RegisterHardwareLayer.py
RegisterHardwareLayer.set_bytes
def set_bytes(self, data, addr, **kwargs): '''Writing bytes of any arbitrary size Parameters ---------- data : iterable The data (byte array) to be written. addr : int The register address. Returns ------- nothing ''' self._intf.write(self._conf['base_addr'] + addr, data)
python
def set_bytes(self, data, addr, **kwargs): '''Writing bytes of any arbitrary size Parameters ---------- data : iterable The data (byte array) to be written. addr : int The register address. Returns ------- nothing ''' self._intf.write(self._conf['base_addr'] + addr, data)
Writing bytes of any arbitrary size Parameters ---------- data : iterable The data (byte array) to be written. addr : int The register address. Returns ------- nothing
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/RegisterHardwareLayer.py#L138-L152
SiLab-Bonn/basil
basil/HL/RegisterHardwareLayer.py
RegisterHardwareLayer.get_bytes
def get_bytes(self, addr, size, **kwargs): '''Reading bytes of any arbitrary size Parameters ----------. addr : int The register address. size : int Byte length of the value. Returns ------- data : iterable Byte array. ''' return self._intf.read(self._conf['base_addr'] + addr, size)
python
def get_bytes(self, addr, size, **kwargs): '''Reading bytes of any arbitrary size Parameters ----------. addr : int The register address. size : int Byte length of the value. Returns ------- data : iterable Byte array. ''' return self._intf.read(self._conf['base_addr'] + addr, size)
Reading bytes of any arbitrary size Parameters ----------. addr : int The register address. size : int Byte length of the value. Returns ------- data : iterable Byte array.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/RegisterHardwareLayer.py#L154-L169
SiLab-Bonn/basil
basil/RL/StdRegister.py
StdRegister.write
def write(self, size=None): """ to call start() automatically, set yaml file as follows: registers: - name : CCPD_PCB type : StdRegister hw_driver : CCPD_PCB_SPI size : 32 auto_start : True <------ add this fields: ...... """ if size is None: self._drv.set_data(self.tobytes()) else: self._drv.set_data(self.tobytes()[:size]) if "auto_start" in self._conf: if self._conf["auto_start"]: self._drv.start()
python
def write(self, size=None): """ to call start() automatically, set yaml file as follows: registers: - name : CCPD_PCB type : StdRegister hw_driver : CCPD_PCB_SPI size : 32 auto_start : True <------ add this fields: ...... """ if size is None: self._drv.set_data(self.tobytes()) else: self._drv.set_data(self.tobytes()[:size]) if "auto_start" in self._conf: if self._conf["auto_start"]: self._drv.start()
to call start() automatically, set yaml file as follows: registers: - name : CCPD_PCB type : StdRegister hw_driver : CCPD_PCB_SPI size : 32 auto_start : True <------ add this fields: ......
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/RL/StdRegister.py#L102-L120
SiLab-Bonn/basil
basil/utils/BitLogic.py
BitLogic.from_value
def from_value(cls, value, size=None, fmt='Q', **kwargs): ''' Factory method For format characters see: https://docs.python.org/2/library/struct.html ''' bl = cls(**kwargs) # size is 0 by default bl.fromvalue(value=value, size=size, fmt=fmt) return bl
python
def from_value(cls, value, size=None, fmt='Q', **kwargs): ''' Factory method For format characters see: https://docs.python.org/2/library/struct.html ''' bl = cls(**kwargs) # size is 0 by default bl.fromvalue(value=value, size=size, fmt=fmt) return bl
Factory method For format characters see: https://docs.python.org/2/library/struct.html
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/BitLogic.py#L32-L40
SiLab-Bonn/basil
basil/utils/BitLogic.py
BitLogic.fromvalue
def fromvalue(self, value, size=None, fmt='Q'): ''' Append from a int/long number. ''' if size and value.bit_length() > size: raise TypeError('Value is too big for given size') self.frombytes(struct.pack(fmt, value)) if size: if not isinstance(size, integer_types) or not size > 0: raise TypeError('Size must be greater than zero') if size > self.length(): bitarray.extend(self, (size - self.length()) * [0]) else: bitarray.__delitem__(self, slice(size, self.length()))
python
def fromvalue(self, value, size=None, fmt='Q'): ''' Append from a int/long number. ''' if size and value.bit_length() > size: raise TypeError('Value is too big for given size') self.frombytes(struct.pack(fmt, value)) if size: if not isinstance(size, integer_types) or not size > 0: raise TypeError('Size must be greater than zero') if size > self.length(): bitarray.extend(self, (size - self.length()) * [0]) else: bitarray.__delitem__(self, slice(size, self.length()))
Append from a int/long number.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/BitLogic.py#L42-L55
SiLab-Bonn/basil
basil/utils/BitLogic.py
BitLogic.tovalue
def tovalue(self, fmt='Q'): ''' Convert bitstring to a int/long number. ''' format_size = struct.calcsize(fmt) if self.length() > format_size * 8: raise TypeError('Cannot convert to number') ba = self.copy() ba.extend((format_size * 8 - self.length()) * [0]) return struct.unpack_from(fmt, ba.tobytes())[0]
python
def tovalue(self, fmt='Q'): ''' Convert bitstring to a int/long number. ''' format_size = struct.calcsize(fmt) if self.length() > format_size * 8: raise TypeError('Cannot convert to number') ba = self.copy() ba.extend((format_size * 8 - self.length()) * [0]) return struct.unpack_from(fmt, ba.tobytes())[0]
Convert bitstring to a int/long number.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/BitLogic.py#L57-L66
SiLab-Bonn/basil
basil/utils/BitLogic.py
BitLogic._swap_slice_indices
def _swap_slice_indices(self, slc, make_slice=False): '''Swap slice indices Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing. ''' try: start = slc.start stop = slc.stop slc_step = slc.step except AttributeError: if make_slice: if slc < 0: slc += self.length() return slice(slc, slc + 1) else: return slc else: if not start and start != 0: slc_stop = self.length() elif start < 0: slc_stop = self.length() + start + 1 else: slc_stop = start + 1 if not stop and stop != 0: slc_start = 0 elif stop < 0: slc_start = self.length() + stop else: slc_start = stop return slice(slc_start, slc_stop, slc_step)
python
def _swap_slice_indices(self, slc, make_slice=False): '''Swap slice indices Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing. ''' try: start = slc.start stop = slc.stop slc_step = slc.step except AttributeError: if make_slice: if slc < 0: slc += self.length() return slice(slc, slc + 1) else: return slc else: if not start and start != 0: slc_stop = self.length() elif start < 0: slc_stop = self.length() + start + 1 else: slc_stop = start + 1 if not stop and stop != 0: slc_start = 0 elif stop < 0: slc_start = self.length() + stop else: slc_start = stop return slice(slc_start, slc_stop, slc_step)
Swap slice indices Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/BitLogic.py#L107-L136
SiLab-Bonn/basil
examples/lx9/host/lx9.py
Pixel._run_seq
def _run_seq(self, size): """ Send the contents of self['SEQ'] to the chip and wait until it finishes. """ # Write the sequence to the sequence generator (hw driver) self['SEQ'].write(size) #write pattern to memory self['SEQ'].set_size(size) # set size self['SEQ'].set_repeat(1) # set repeat for _ in range(1): self['SEQ'].start() # start while not self['SEQ'].get_done(): #time.sleep(0.1) print("Wait for done...")
python
def _run_seq(self, size): """ Send the contents of self['SEQ'] to the chip and wait until it finishes. """ # Write the sequence to the sequence generator (hw driver) self['SEQ'].write(size) #write pattern to memory self['SEQ'].set_size(size) # set size self['SEQ'].set_repeat(1) # set repeat for _ in range(1): self['SEQ'].start() # start while not self['SEQ'].get_done(): #time.sleep(0.1) print("Wait for done...")
Send the contents of self['SEQ'] to the chip and wait until it finishes.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/examples/lx9/host/lx9.py#L73-L89
SiLab-Bonn/basil
examples/lx9/host/lx9.py
Pixel._clear_strobes
def _clear_strobes(self): """ Resets the "enable" and "load" output streams to all 0. """ #reset some stuff self['SEQ']['GLOBAL_SHIFT_EN'].setall(False) self['SEQ']['GLOBAL_CTR_LD'].setall(False) self['SEQ']['GLOBAL_DAC_LD'].setall(False) self['SEQ']['PIXEL_SHIFT_EN'].setall(False) self['SEQ']['INJECTION'].setall(False)
python
def _clear_strobes(self): """ Resets the "enable" and "load" output streams to all 0. """ #reset some stuff self['SEQ']['GLOBAL_SHIFT_EN'].setall(False) self['SEQ']['GLOBAL_CTR_LD'].setall(False) self['SEQ']['GLOBAL_DAC_LD'].setall(False) self['SEQ']['PIXEL_SHIFT_EN'].setall(False) self['SEQ']['INJECTION'].setall(False)
Resets the "enable" and "load" output streams to all 0.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/examples/lx9/host/lx9.py#L91-L101
SiLab-Bonn/basil
basil/HL/spi.py
spi.set_data
def set_data(self, data, addr=0): ''' Sets data for outgoing stream ''' if self._mem_bytes < len(data): raise ValueError('Size of data (%d bytes) is too big for memory (%d bytes)' % (len(data), self._mem_bytes)) self._intf.write(self._conf['base_addr'] + self._spi_mem_offset + addr, data)
python
def set_data(self, data, addr=0): ''' Sets data for outgoing stream ''' if self._mem_bytes < len(data): raise ValueError('Size of data (%d bytes) is too big for memory (%d bytes)' % (len(data), self._mem_bytes)) self._intf.write(self._conf['base_addr'] + self._spi_mem_offset + addr, data)
Sets data for outgoing stream
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/spi.py#L107-L113
SiLab-Bonn/basil
basil/HL/spi.py
spi.get_data
def get_data(self, size=None, addr=None): ''' Gets data for incoming stream ''' # readback memory offset if addr is None: addr = self._mem_bytes if size and self._mem_bytes < size: raise ValueError('Size is too big') if size is None: return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, self._mem_bytes) else: return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, size)
python
def get_data(self, size=None, addr=None): ''' Gets data for incoming stream ''' # readback memory offset if addr is None: addr = self._mem_bytes if size and self._mem_bytes < size: raise ValueError('Size is too big') if size is None: return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, self._mem_bytes) else: return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, size)
Gets data for incoming stream
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/spi.py#L116-L130
SiLab-Bonn/basil
basil/TL/Serial.py
Serial.init
def init(self): ''' Initialize serial device. Parameters of serial.Serial: http://pyserial.sourceforge.net/pyserial_api.html Plus termination string parameter eol ''' super(Serial, self).init() self.read_termination = self._init.get('read_termination', None) self.write_termination = self._init.get('write_termination', self.read_termination) try: self.read_termination = bytes(self.read_termination, 'utf-8') self.write_termination = bytes(self.write_termination, 'utf-8') except TypeError as e: logger.debug(e) self.timeout = self._init.get('timeout', None) # timeout of 0 returns immediately self._port = serial.Serial(**{key: value for key, value in self._init.items() if key not in ("read_termination", "write_termination")})
python
def init(self): ''' Initialize serial device. Parameters of serial.Serial: http://pyserial.sourceforge.net/pyserial_api.html Plus termination string parameter eol ''' super(Serial, self).init() self.read_termination = self._init.get('read_termination', None) self.write_termination = self._init.get('write_termination', self.read_termination) try: self.read_termination = bytes(self.read_termination, 'utf-8') self.write_termination = bytes(self.write_termination, 'utf-8') except TypeError as e: logger.debug(e) self.timeout = self._init.get('timeout', None) # timeout of 0 returns immediately self._port = serial.Serial(**{key: value for key, value in self._init.items() if key not in ("read_termination", "write_termination")})
Initialize serial device. Parameters of serial.Serial: http://pyserial.sourceforge.net/pyserial_api.html Plus termination string parameter eol
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/TL/Serial.py#L24-L40
SiLab-Bonn/basil
basil/HL/GPAC.py
AdcMax11644._setup_adc
def _setup_adc(self, flags): '''Initialize ADC ''' self._intf.write(self._base_addr + self.MAX11644_ADD, array('B', pack('B', flags | self.MAX11644_SETUP)))
python
def _setup_adc(self, flags): '''Initialize ADC ''' self._intf.write(self._base_addr + self.MAX11644_ADD, array('B', pack('B', flags | self.MAX11644_SETUP)))
Initialize ADC
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L174-L177
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.read_eeprom_calibration
def read_eeprom_calibration(self): # use default values for temperature, EEPROM values are usually not calibrated and random '''Reading EEPROM calibration for sources and regulators ''' header = self.get_format() if header == self.HEADER_GPAC: data = self._read_eeprom(self.CAL_DATA_ADDR, size=calcsize(self.CAL_DATA_GPAC_FORMAT)) for idx, channel in enumerate(self._ch_cal.iterkeys()): ch_data = data[idx * calcsize(self.CAL_DATA_CH_GPAC_FORMAT):(idx + 1) * calcsize(self.CAL_DATA_CH_GPAC_FORMAT)] values = unpack_from(self.CAL_DATA_CH_GPAC_FORMAT, ch_data) self._ch_cal[channel]['name'] = "".join([c for c in values[0] if (c in string.printable)]) # values[0].strip() self._ch_cal[channel]['default'] = values[1] self._ch_cal[channel]['min'] = values[2] self._ch_cal[channel]['max'] = values[3] self._ch_cal[channel]['ADCI']['gain'] = -values[4] # fix gain sign self._ch_cal[channel]['ADCI']['offset'] = values[5] self._ch_cal[channel]['ADCV']['gain'] = values[6] self._ch_cal[channel]['ADCV']['offset'] = values[7] self._ch_cal[channel]['DAC']['gain'] = values[8] self._ch_cal[channel]['DAC']['offset'] = values[9] self._ch_cal[channel]['limit'] = values[10] else: raise ValueError('EEPROM data format not supported (header: %s)' % header)
python
def read_eeprom_calibration(self): # use default values for temperature, EEPROM values are usually not calibrated and random '''Reading EEPROM calibration for sources and regulators ''' header = self.get_format() if header == self.HEADER_GPAC: data = self._read_eeprom(self.CAL_DATA_ADDR, size=calcsize(self.CAL_DATA_GPAC_FORMAT)) for idx, channel in enumerate(self._ch_cal.iterkeys()): ch_data = data[idx * calcsize(self.CAL_DATA_CH_GPAC_FORMAT):(idx + 1) * calcsize(self.CAL_DATA_CH_GPAC_FORMAT)] values = unpack_from(self.CAL_DATA_CH_GPAC_FORMAT, ch_data) self._ch_cal[channel]['name'] = "".join([c for c in values[0] if (c in string.printable)]) # values[0].strip() self._ch_cal[channel]['default'] = values[1] self._ch_cal[channel]['min'] = values[2] self._ch_cal[channel]['max'] = values[3] self._ch_cal[channel]['ADCI']['gain'] = -values[4] # fix gain sign self._ch_cal[channel]['ADCI']['offset'] = values[5] self._ch_cal[channel]['ADCV']['gain'] = values[6] self._ch_cal[channel]['ADCV']['offset'] = values[7] self._ch_cal[channel]['DAC']['gain'] = values[8] self._ch_cal[channel]['DAC']['offset'] = values[9] self._ch_cal[channel]['limit'] = values[10] else: raise ValueError('EEPROM data format not supported (header: %s)' % header)
Reading EEPROM calibration for sources and regulators
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L716-L737
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.get_voltage
def get_voltage(self, channel, unit='V'): '''Reading voltage ''' adc_ch = self._ch_map[channel]['ADCV']['adc_ch'] address = self._ch_map[channel]['ADCV']['address'] raw = self._get_adc_value(address=address)[adc_ch] dac_offset = self._ch_cal[channel]['ADCV']['offset'] dac_gain = self._ch_cal[channel]['ADCV']['gain'] voltage = ((raw - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'V': return voltage / 1000 elif unit == 'mV': return voltage else: raise TypeError("Invalid unit type.")
python
def get_voltage(self, channel, unit='V'): '''Reading voltage ''' adc_ch = self._ch_map[channel]['ADCV']['adc_ch'] address = self._ch_map[channel]['ADCV']['address'] raw = self._get_adc_value(address=address)[adc_ch] dac_offset = self._ch_cal[channel]['ADCV']['offset'] dac_gain = self._ch_cal[channel]['ADCV']['gain'] voltage = ((raw - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'V': return voltage / 1000 elif unit == 'mV': return voltage else: raise TypeError("Invalid unit type.")
Reading voltage
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L764-L783
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.get_current
def get_current(self, channel, unit='A'): '''Reading current ''' values = self._get_adc_value(address=self._ch_map[channel]['ADCI']['address']) raw = values[self._ch_map[channel]['ADCI']['adc_ch']] dac_offset = self._ch_cal[channel]['ADCI']['offset'] dac_gain = self._ch_cal[channel]['ADCI']['gain'] if 'PWR' in channel: current = ((raw - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'A': return current / 1000 elif unit == 'mA': return current elif unit == 'uA': return current * 1000 else: raise TypeError("Invalid unit type.") else: voltage = values[self._ch_map[channel]['ADCV']['adc_ch']] current = (((raw - voltage) - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'A': return current / 1000000 elif unit == 'mA': return current / 1000 elif unit == 'uA': return current else: raise TypeError("Invalid unit type.")
python
def get_current(self, channel, unit='A'): '''Reading current ''' values = self._get_adc_value(address=self._ch_map[channel]['ADCI']['address']) raw = values[self._ch_map[channel]['ADCI']['adc_ch']] dac_offset = self._ch_cal[channel]['ADCI']['offset'] dac_gain = self._ch_cal[channel]['ADCI']['gain'] if 'PWR' in channel: current = ((raw - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'A': return current / 1000 elif unit == 'mA': return current elif unit == 'uA': return current * 1000 else: raise TypeError("Invalid unit type.") else: voltage = values[self._ch_map[channel]['ADCV']['adc_ch']] current = (((raw - voltage) - dac_offset) / dac_gain) if unit == 'raw': return raw elif unit == 'A': return current / 1000000 elif unit == 'mA': return current / 1000 elif unit == 'uA': return current else: raise TypeError("Invalid unit type.")
Reading current
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L785-L819
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.set_enable
def set_enable(self, channel, value): '''Enable/Disable output of power channel ''' try: bit = self._ch_map[channel]['GPIOEN']['bit'] except KeyError: raise ValueError('set_enable() not supported for channel %s' % channel) self._set_power_gpio_value(bit=bit, value=value)
python
def set_enable(self, channel, value): '''Enable/Disable output of power channel ''' try: bit = self._ch_map[channel]['GPIOEN']['bit'] except KeyError: raise ValueError('set_enable() not supported for channel %s' % channel) self._set_power_gpio_value(bit=bit, value=value)
Enable/Disable output of power channel
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L821-L828
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.get_over_current
def get_over_current(self, channel): '''Reading over current status of power channel ''' try: bit = self._ch_map[channel]['GPIOOC']['bit'] except KeyError: raise ValueError('get_over_current() not supported for channel %s' % channel) return not self._get_power_gpio_value(bit)
python
def get_over_current(self, channel): '''Reading over current status of power channel ''' try: bit = self._ch_map[channel]['GPIOOC']['bit'] except KeyError: raise ValueError('get_over_current() not supported for channel %s' % channel) return not self._get_power_gpio_value(bit)
Reading over current status of power channel
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L830-L837
SiLab-Bonn/basil
basil/HL/GPAC.py
GPAC.set_current_limit
def set_current_limit(self, channel, value, unit='A'): '''Setting current limit Note: same limit for all channels. ''' # TODO: add units / calibration if unit == 'raw': value = value elif unit == 'A': value = int(value * 1000 * self.CURRENT_LIMIT_GAIN) elif unit == 'mA': value = int(value * self.CURRENT_LIMIT_GAIN) elif unit == 'uA': value = int(value / 1000 * self.CURRENT_LIMIT_GAIN) else: raise TypeError("Invalid unit type.") I2cAnalogChannel._set_dac_value(self, address=self.CURRENT_LIMIT_DAC_SLAVE_ADD, dac_ch=self.CURRENT_LIMIT_DAC_CH, value=value)
python
def set_current_limit(self, channel, value, unit='A'): '''Setting current limit Note: same limit for all channels. ''' # TODO: add units / calibration if unit == 'raw': value = value elif unit == 'A': value = int(value * 1000 * self.CURRENT_LIMIT_GAIN) elif unit == 'mA': value = int(value * self.CURRENT_LIMIT_GAIN) elif unit == 'uA': value = int(value / 1000 * self.CURRENT_LIMIT_GAIN) else: raise TypeError("Invalid unit type.") I2cAnalogChannel._set_dac_value(self, address=self.CURRENT_LIMIT_DAC_SLAVE_ADD, dac_ch=self.CURRENT_LIMIT_DAC_CH, value=value)
Setting current limit Note: same limit for all channels.
https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L839-L856