repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
PmagPy/PmagPy
programs/mk_redo.py
main
def main(): """ NAME mk_redo.py DESCRIPTION Makes thellier_redo and zeq_redo files from existing pmag_specimens format file SYNTAX mk_redo.py [-h] [command line options] INPUT takes specimens.txt formatted input file OPTIONS -h: prints help message and quits -f FILE: specify input file, default is 'specimens.txt' -F REDO: specify output file suffix, default is redo so that output filenames are 'thellier_redo' for thellier data and 'zeq_redo' for direction only data OUTPUT makes a thellier_redo or a zeq_redo format file """ if '-h' in sys.argv: print(main.__doc__) sys.exit() zfile, tfile = 'zeq_redo', 'thellier_redo' zredo, tredo = "", "" dir_path = pmag.get_named_arg('-WD', '.') inspec = pmag.get_named_arg('-f', 'specimens.txt') if '-F' in sys.argv: ind = sys.argv.index('-F') redo = sys.argv[ind + 1] tfile = redo zfile = redo inspec = pmag.resolve_file_name(inspec, dir_path) zfile = pmag.resolve_file_name(zfile, dir_path) tfile = pmag.resolve_file_name(tfile, dir_path) # # read in data # specs = [] prior_spec_data, file_type = pmag.magic_read(inspec) if file_type != 'specimens': print(file_type, " this is not a valid pmag_specimens file") sys.exit() outstrings = [] for spec in prior_spec_data: tmp = spec["method_codes"].split(":") meths = [] for meth in tmp: methods = meth.strip().split('-') for m in methods: if m not in meths: meths.append(m) if 'DIR' in meths: # DE-BFL, DE-BFP or DE-FM specs.append(spec['specimen']) if 'dir_comp' in list(spec.keys()) and spec['dir_comp'] != "" and spec['dir_comp'] != " ": comp_name = spec['dir_comp'] else: comp_name = string.ascii_uppercase[specs.count( spec['specimen']) - 1] calculation_type = "DE-BFL" # assume default calculation type is best-fit line if "BFP" in meths: calculation_type = 'DE-BFP' elif "FM" in meths: calculation_type = 'DE-FM' if zredo == "": zredo = open(zfile, "w") outstring = '%s %s %s %s %s \n' % ( spec["specimen"], calculation_type, spec["meas_step_min"], spec["meas_step_max"], comp_name) if outstring not in outstrings: zredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions elif "PI" in meths and "TRM" in meths: # thellier record if tredo == "": tredo = open(tfile, "w") outstring = '%s %i %i \n' % (spec["specimen"], float( spec["meas_step_min"]), float(spec["meas_step_max"])) if outstring not in outstrings: tredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions print('Redo files saved to: ', zfile, tfile)
python
def main(): """ NAME mk_redo.py DESCRIPTION Makes thellier_redo and zeq_redo files from existing pmag_specimens format file SYNTAX mk_redo.py [-h] [command line options] INPUT takes specimens.txt formatted input file OPTIONS -h: prints help message and quits -f FILE: specify input file, default is 'specimens.txt' -F REDO: specify output file suffix, default is redo so that output filenames are 'thellier_redo' for thellier data and 'zeq_redo' for direction only data OUTPUT makes a thellier_redo or a zeq_redo format file """ if '-h' in sys.argv: print(main.__doc__) sys.exit() zfile, tfile = 'zeq_redo', 'thellier_redo' zredo, tredo = "", "" dir_path = pmag.get_named_arg('-WD', '.') inspec = pmag.get_named_arg('-f', 'specimens.txt') if '-F' in sys.argv: ind = sys.argv.index('-F') redo = sys.argv[ind + 1] tfile = redo zfile = redo inspec = pmag.resolve_file_name(inspec, dir_path) zfile = pmag.resolve_file_name(zfile, dir_path) tfile = pmag.resolve_file_name(tfile, dir_path) # # read in data # specs = [] prior_spec_data, file_type = pmag.magic_read(inspec) if file_type != 'specimens': print(file_type, " this is not a valid pmag_specimens file") sys.exit() outstrings = [] for spec in prior_spec_data: tmp = spec["method_codes"].split(":") meths = [] for meth in tmp: methods = meth.strip().split('-') for m in methods: if m not in meths: meths.append(m) if 'DIR' in meths: # DE-BFL, DE-BFP or DE-FM specs.append(spec['specimen']) if 'dir_comp' in list(spec.keys()) and spec['dir_comp'] != "" and spec['dir_comp'] != " ": comp_name = spec['dir_comp'] else: comp_name = string.ascii_uppercase[specs.count( spec['specimen']) - 1] calculation_type = "DE-BFL" # assume default calculation type is best-fit line if "BFP" in meths: calculation_type = 'DE-BFP' elif "FM" in meths: calculation_type = 'DE-FM' if zredo == "": zredo = open(zfile, "w") outstring = '%s %s %s %s %s \n' % ( spec["specimen"], calculation_type, spec["meas_step_min"], spec["meas_step_max"], comp_name) if outstring not in outstrings: zredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions elif "PI" in meths and "TRM" in meths: # thellier record if tredo == "": tredo = open(tfile, "w") outstring = '%s %i %i \n' % (spec["specimen"], float( spec["meas_step_min"]), float(spec["meas_step_max"])) if outstring not in outstrings: tredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions print('Redo files saved to: ', zfile, tfile)
NAME mk_redo.py DESCRIPTION Makes thellier_redo and zeq_redo files from existing pmag_specimens format file SYNTAX mk_redo.py [-h] [command line options] INPUT takes specimens.txt formatted input file OPTIONS -h: prints help message and quits -f FILE: specify input file, default is 'specimens.txt' -F REDO: specify output file suffix, default is redo so that output filenames are 'thellier_redo' for thellier data and 'zeq_redo' for direction only data OUTPUT makes a thellier_redo or a zeq_redo format file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/mk_redo.py#L8-L90
PmagPy/PmagPy
pmagpy/lcc_ticks.py
find_side
def find_side(ls, side): """ Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle. """ minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side])
python
def find_side(ls, side): """ Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle. """ minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side])
Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/lcc_ticks.py#L5-L16
PmagPy/PmagPy
pmagpy/lcc_ticks.py
lambert_xticks
def lambert_xticks(ax, ticks): """Draw ticks on the bottom x-axis of a Lambert Conformal projection.""" te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels])
python
def lambert_xticks(ax, ticks): """Draw ticks on the bottom x-axis of a Lambert Conformal projection.""" te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels])
Draw ticks on the bottom x-axis of a Lambert Conformal projection.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/lcc_ticks.py#L19-L26
PmagPy/PmagPy
pmagpy/lcc_ticks.py
lambert_yticks
def lambert_yticks(ax, ticks): """Draw ricks on the left y-axis of a Lamber Conformal projection.""" te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels])
python
def lambert_yticks(ax, ticks): """Draw ricks on the left y-axis of a Lamber Conformal projection.""" te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels])
Draw ricks on the left y-axis of a Lamber Conformal projection.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/lcc_ticks.py#L29-L36
PmagPy/PmagPy
pmagpy/lcc_ticks.py
_lambert_ticks
def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor): """Get the tick locations and labels for an axis of a Lambert Conformal projection.""" outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels
python
def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor): """Get the tick locations and labels for an axis of a Lambert Conformal projection.""" outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels
Get the tick locations and labels for an axis of a Lambert Conformal projection.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/lcc_ticks.py#L38-L65
PmagPy/PmagPy
programs/deprecated/umich_magic.py
main
def main(): """ NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...) """ # initialize some stuff dir_path='.' infile_type="mag" noave=0 methcode,inst="","" phi,theta,peakfield,labfield=0,0,0,0 pTRM,MD,samp_con,Z=0,0,'1',1 missing=1 demag="N" er_location_name="" citation='This study' args=sys.argv methcode="LP-NO" samp_file,ErSamps='',[] specnum=0 # # get command line arguments # meas_file="magic_measurements.txt" user="" if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=dir_path+'/'+args[ind+1] if '-f' in args: ind=args.index("-f") magfile=dir_path+'/'+args[ind+1] try: input=open(magfile,'r') except: print("bad mag file name") sys.exit() else: print("mag_file field is required option") print(main.__doc__) sys.exit() if "-spc" in args: ind=args.index("-spc") specnum=int(args[ind+1]) if specnum!=0:specnum=-specnum if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) if "-A" in args: noave=1 if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" samp_con=sys.argv[ind+1] if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" MagRecs,specs=[],[] version_num=pmag.get_version() if infile_type=="mag": for line in input.readlines(): instcode="" if len(line)>2: MagRec={} MagRec['er_location_name']=er_location_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["treatment_ac_field"]='0' MagRec["treatment_dc_field"]='0' MagRec["treatment_dc_field_phi"]='0' MagRec["treatment_dc_field_theta"]='0' meas_type="LT-NO" rec=line.split() labfield=0 code1=rec[6].split(';') date=code1[0].split('/') # break date into mon/day/year yy=int(date[2]) if yy <90: yyyy=str(2000+yy) else: yyyy=str(1900+yy) mm=int(date[0]) if mm<10: mm="0"+str(mm) else: mm=str(mm) dd=int(date[1]) if dd<10: dd="0"+str(dd) else: dd=str(dd) time=code1[1].split(':') hh=int(time[0]) if hh<10: hh="0"+str(hh) else: hh=str(hh) min=int(time[1]) if min<10: min= "0"+str(min) else: min=str(min) MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00" MagRec["measurement_time_zone"]='' instcode='' if len(code1)>1: MagRec["measurement_positions"]=code1[6][2] else: MagRec["measurement_positions"]=code1[7] # takes care of awkward format with bubba and flo being different if user=="":user=code1[5] if code1[2][-1]=='C': demag="T" if code1[2]=='mT': demag="AF" treat=rec[1].split('.') if len(treat)==1:treat.append('0') if demag=='T' and treat!=0: meas_type="LT-T-Z" MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin if demag=="AF": meas_type="LT-AF-Z" MagRec["treatment_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # Af field in T MagRec["treatment_dc_field"]='0' MagRec["er_specimen_name"]=rec[0] if rec[0] not in specs:specs.append(rec[0]) # get a list of specimen names experiment=rec[0]+":" MagRec["er_site_name"]="" if specnum!=0: MagRec["er_sample_name"]=rec[0][:specnum] else: MagRec["er_sample_name"]=rec[0] if "-fsa" in args: for samp in Samps: if samp["er_sample_name"] == MagRec["er_sample_name"]: MagRec["er_location_name"]=samp["er_location_name"] MagRec["er_site_name"]=samp["er_site_name"] break elif int(samp_con)!=6: site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z) MagRec["er_site_name"]=site if MagRec['er_site_name']=="": print('No site name found for: ',MagRec['er_specimen_name'],MagRec['er_sample_name']) if MagRec["er_location_name"]=="": print('no location name for: ',MagRec["er_specimen_name"]) if rec[1]==".00":rec[1]="0.00" MagRec["measurement_csd"]=rec[2] MagRec["measurement_magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu) MagRec["measurement_dec"]=rec[4] MagRec["measurement_inc"]=rec[5] MagRec["magic_instrument_codes"]=instcode MagRec["er_analyst_mail_names"]=user MagRec["er_citation_names"]=citation MagRec["magic_method_codes"]=meas_type MagRec["measurement_flag"]='g' MagRec["er_specimen_name"]=rec[0] MagRec["measurement_number"]='1' MagRecs.append(MagRec) MagOuts=[] for spec in specs: # gather all demag types for this specimen SpecRecs,meths,measnum=[],[],1 for rec in MagRecs: if rec['er_specimen_name']==spec: rec['measurement_number']=str(measnum) measnum+=1 if rec['magic_method_codes'] not in meths:meths.append(rec['magic_method_codes']) SpecRecs.append(rec) expname=spec if "LT-AF-Z" in meths:expname=expname+ ':LP-DIR-AF' if "LT-T-Z" in meths:expname=expname+ ':LP-DIR-T' for rec in SpecRecs: rec['magic_experiment_name']=expname MagOuts.append(rec) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file)
python
def main(): """ NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...) """ # initialize some stuff dir_path='.' infile_type="mag" noave=0 methcode,inst="","" phi,theta,peakfield,labfield=0,0,0,0 pTRM,MD,samp_con,Z=0,0,'1',1 missing=1 demag="N" er_location_name="" citation='This study' args=sys.argv methcode="LP-NO" samp_file,ErSamps='',[] specnum=0 # # get command line arguments # meas_file="magic_measurements.txt" user="" if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=dir_path+'/'+args[ind+1] if '-f' in args: ind=args.index("-f") magfile=dir_path+'/'+args[ind+1] try: input=open(magfile,'r') except: print("bad mag file name") sys.exit() else: print("mag_file field is required option") print(main.__doc__) sys.exit() if "-spc" in args: ind=args.index("-spc") specnum=int(args[ind+1]) if specnum!=0:specnum=-specnum if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) if "-A" in args: noave=1 if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" samp_con=sys.argv[ind+1] if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" MagRecs,specs=[],[] version_num=pmag.get_version() if infile_type=="mag": for line in input.readlines(): instcode="" if len(line)>2: MagRec={} MagRec['er_location_name']=er_location_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["treatment_ac_field"]='0' MagRec["treatment_dc_field"]='0' MagRec["treatment_dc_field_phi"]='0' MagRec["treatment_dc_field_theta"]='0' meas_type="LT-NO" rec=line.split() labfield=0 code1=rec[6].split(';') date=code1[0].split('/') # break date into mon/day/year yy=int(date[2]) if yy <90: yyyy=str(2000+yy) else: yyyy=str(1900+yy) mm=int(date[0]) if mm<10: mm="0"+str(mm) else: mm=str(mm) dd=int(date[1]) if dd<10: dd="0"+str(dd) else: dd=str(dd) time=code1[1].split(':') hh=int(time[0]) if hh<10: hh="0"+str(hh) else: hh=str(hh) min=int(time[1]) if min<10: min= "0"+str(min) else: min=str(min) MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00" MagRec["measurement_time_zone"]='' instcode='' if len(code1)>1: MagRec["measurement_positions"]=code1[6][2] else: MagRec["measurement_positions"]=code1[7] # takes care of awkward format with bubba and flo being different if user=="":user=code1[5] if code1[2][-1]=='C': demag="T" if code1[2]=='mT': demag="AF" treat=rec[1].split('.') if len(treat)==1:treat.append('0') if demag=='T' and treat!=0: meas_type="LT-T-Z" MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin if demag=="AF": meas_type="LT-AF-Z" MagRec["treatment_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # Af field in T MagRec["treatment_dc_field"]='0' MagRec["er_specimen_name"]=rec[0] if rec[0] not in specs:specs.append(rec[0]) # get a list of specimen names experiment=rec[0]+":" MagRec["er_site_name"]="" if specnum!=0: MagRec["er_sample_name"]=rec[0][:specnum] else: MagRec["er_sample_name"]=rec[0] if "-fsa" in args: for samp in Samps: if samp["er_sample_name"] == MagRec["er_sample_name"]: MagRec["er_location_name"]=samp["er_location_name"] MagRec["er_site_name"]=samp["er_site_name"] break elif int(samp_con)!=6: site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z) MagRec["er_site_name"]=site if MagRec['er_site_name']=="": print('No site name found for: ',MagRec['er_specimen_name'],MagRec['er_sample_name']) if MagRec["er_location_name"]=="": print('no location name for: ',MagRec["er_specimen_name"]) if rec[1]==".00":rec[1]="0.00" MagRec["measurement_csd"]=rec[2] MagRec["measurement_magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu) MagRec["measurement_dec"]=rec[4] MagRec["measurement_inc"]=rec[5] MagRec["magic_instrument_codes"]=instcode MagRec["er_analyst_mail_names"]=user MagRec["er_citation_names"]=citation MagRec["magic_method_codes"]=meas_type MagRec["measurement_flag"]='g' MagRec["er_specimen_name"]=rec[0] MagRec["measurement_number"]='1' MagRecs.append(MagRec) MagOuts=[] for spec in specs: # gather all demag types for this specimen SpecRecs,meths,measnum=[],[],1 for rec in MagRecs: if rec['er_specimen_name']==spec: rec['measurement_number']=str(measnum) measnum+=1 if rec['magic_method_codes'] not in meths:meths.append(rec['magic_method_codes']) SpecRecs.append(rec) expname=spec if "LT-AF-Z" in meths:expname=expname+ ':LP-DIR-AF' if "LT-T-Z" in meths:expname=expname+ ':LP-DIR-T' for rec in SpecRecs: rec['magic_experiment_name']=expname MagOuts.append(rec) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file)
NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/umich_magic.py#L7-L244
PmagPy/PmagPy
programs/dmag_magic.py
dmag_magic
def dmag_magic(in_file="measurements.txt", dir_path=".", input_dir_path="", spec_file="specimens.txt", samp_file="samples.txt", site_file="sites.txt", loc_file="locations.txt", plot_by="loc", LT="AF", norm=True, XLP="", save_plots=True, fmt="svg"): """ plots intensity decay curves for demagnetization experiments Parameters ---------- in_file : str, default "measurements.txt" dir_path : str output directory, default "." input_dir_path : str input file directory (if different from dir_path), default "" spec_file : str input specimen file name, default "specimens.txt" samp_file: str input sample file name, default "samples.txt" site_file : str input site file name, default "sites.txt" loc_file : str input location file name, default "locations.txt" plot_by : str [spc, sam, sit, loc] (specimen, sample, site, location), default "loc" LT : str lab treatment [T, AF, M], default AF norm : bool normalize by NRM magnetization, default True XLP : str exclude specific lab protocols, (for example, method codes like LP-PI) default "" save_plots : bool plot and save non-interactively, default True fmt : str ["png", "svg", "pdf", "jpg"], default "svg" Returns --------- type - Tuple : (True or False indicating if conversion was sucessful, file name(s) written) """ dir_path = os.path.realpath(dir_path) if not input_dir_path: input_dir_path = dir_path input_dir_path = os.path.realpath(input_dir_path) # format plot_key name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc': 'specimen'} if plot_by not in name_dict.values(): try: plot_key = name_dict[plot_by] except KeyError: print('Unrecognized plot_by {}, falling back to plot by location'.format(plot_by)) plot_key = "loc" else: plot_key = plot_by # figure out what kind of experiment LT = "LT-" + LT + "-Z" print('LT', LT) if LT == "LT-T-Z": units, dmag_key = 'K', 'treat_temp' elif LT == "LT-AF-Z": units, dmag_key = 'T', 'treat_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treat_mw_energy' else: units = 'U' # init FIG = {} # plot dictionary FIG['demag'] = 1 # demag is figure 1 # create contribution and add required headers fnames = {"specimens": spec_file, "samples": samp_file, 'sites': site_file, 'locations': loc_file} if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)): print('-E- Could not find {}'.format(in_file)) return False, [] contribution = cb.Contribution(input_dir_path, single_file=in_file, custom_filenames=fnames) file_type = list(contribution.tables.keys())[0] print(len(contribution.tables['measurements'].df), ' records read from ', in_file) # add plot_key into measurements table if plot_key not in contribution.tables['measurements'].df.columns: #contribution.propagate_name_down(plot_key, 'measurements') contribution.propagate_location_to_measurements() data_container = contribution.tables[file_type] # pare down to only records with useful data # grab records that have the requested code data_slice = data_container.get_records_for_code(LT) # and don't have the offending code data = data_container.get_records_for_code(XLP, incl=False, use_slice=True, sli=data_slice, strict_match=False) # make sure quality is in the dataframe if 'quality' not in data.columns: data['quality'] = 'g' # get intensity key and make sure intensity data is not blank intlist = ['magn_moment', 'magn_volume', 'magn_mass'] IntMeths = [col_name for col_name in data.columns if col_name in intlist] # get rid of any entirely blank intensity columns for col_name in IntMeths: if not data[col_name].any(): data.drop(col_name, axis=1, inplace=True) IntMeths = [col_name for col_name in data.columns if col_name in intlist] if len(IntMeths) == 0: print('-E- No intensity headers found') return False, [] int_key = IntMeths[0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used data = data[data[int_key].notnull()] # make list of individual plots # by default, will be by location_name plotlist = data[plot_key].unique() plotlist.sort() pmagplotlib.plot_init(FIG['demag'], 5, 5) last_plot = False # iterate through and plot the data for plot in plotlist: if plot == plotlist[-1]: last_plot = True plot_data = data[data[plot_key] == plot].copy() if not save_plots: print(plot, 'plotting by: ', plot_key) if len(plot_data) > 2: title = plot spcs = [] spcs = plot_data['specimen'].unique() for spc in spcs: INTblock = [] spec_data = plot_data[plot_data['specimen'] == spc] for ind, rec in spec_data.iterrows(): INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]), 1, rec['quality']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if save_plots: files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) else: pmagplotlib.draw_figs(FIG) prompt = " S[a]ve to save plot, [q]uit, Return to continue: " ans = input(prompt) if ans == 'q': return True, [] if ans == "a": files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) pmagplotlib.clearFIG(FIG['demag']) if last_plot: return True, []
python
def dmag_magic(in_file="measurements.txt", dir_path=".", input_dir_path="", spec_file="specimens.txt", samp_file="samples.txt", site_file="sites.txt", loc_file="locations.txt", plot_by="loc", LT="AF", norm=True, XLP="", save_plots=True, fmt="svg"): """ plots intensity decay curves for demagnetization experiments Parameters ---------- in_file : str, default "measurements.txt" dir_path : str output directory, default "." input_dir_path : str input file directory (if different from dir_path), default "" spec_file : str input specimen file name, default "specimens.txt" samp_file: str input sample file name, default "samples.txt" site_file : str input site file name, default "sites.txt" loc_file : str input location file name, default "locations.txt" plot_by : str [spc, sam, sit, loc] (specimen, sample, site, location), default "loc" LT : str lab treatment [T, AF, M], default AF norm : bool normalize by NRM magnetization, default True XLP : str exclude specific lab protocols, (for example, method codes like LP-PI) default "" save_plots : bool plot and save non-interactively, default True fmt : str ["png", "svg", "pdf", "jpg"], default "svg" Returns --------- type - Tuple : (True or False indicating if conversion was sucessful, file name(s) written) """ dir_path = os.path.realpath(dir_path) if not input_dir_path: input_dir_path = dir_path input_dir_path = os.path.realpath(input_dir_path) # format plot_key name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc': 'specimen'} if plot_by not in name_dict.values(): try: plot_key = name_dict[plot_by] except KeyError: print('Unrecognized plot_by {}, falling back to plot by location'.format(plot_by)) plot_key = "loc" else: plot_key = plot_by # figure out what kind of experiment LT = "LT-" + LT + "-Z" print('LT', LT) if LT == "LT-T-Z": units, dmag_key = 'K', 'treat_temp' elif LT == "LT-AF-Z": units, dmag_key = 'T', 'treat_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treat_mw_energy' else: units = 'U' # init FIG = {} # plot dictionary FIG['demag'] = 1 # demag is figure 1 # create contribution and add required headers fnames = {"specimens": spec_file, "samples": samp_file, 'sites': site_file, 'locations': loc_file} if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)): print('-E- Could not find {}'.format(in_file)) return False, [] contribution = cb.Contribution(input_dir_path, single_file=in_file, custom_filenames=fnames) file_type = list(contribution.tables.keys())[0] print(len(contribution.tables['measurements'].df), ' records read from ', in_file) # add plot_key into measurements table if plot_key not in contribution.tables['measurements'].df.columns: #contribution.propagate_name_down(plot_key, 'measurements') contribution.propagate_location_to_measurements() data_container = contribution.tables[file_type] # pare down to only records with useful data # grab records that have the requested code data_slice = data_container.get_records_for_code(LT) # and don't have the offending code data = data_container.get_records_for_code(XLP, incl=False, use_slice=True, sli=data_slice, strict_match=False) # make sure quality is in the dataframe if 'quality' not in data.columns: data['quality'] = 'g' # get intensity key and make sure intensity data is not blank intlist = ['magn_moment', 'magn_volume', 'magn_mass'] IntMeths = [col_name for col_name in data.columns if col_name in intlist] # get rid of any entirely blank intensity columns for col_name in IntMeths: if not data[col_name].any(): data.drop(col_name, axis=1, inplace=True) IntMeths = [col_name for col_name in data.columns if col_name in intlist] if len(IntMeths) == 0: print('-E- No intensity headers found') return False, [] int_key = IntMeths[0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used data = data[data[int_key].notnull()] # make list of individual plots # by default, will be by location_name plotlist = data[plot_key].unique() plotlist.sort() pmagplotlib.plot_init(FIG['demag'], 5, 5) last_plot = False # iterate through and plot the data for plot in plotlist: if plot == plotlist[-1]: last_plot = True plot_data = data[data[plot_key] == plot].copy() if not save_plots: print(plot, 'plotting by: ', plot_key) if len(plot_data) > 2: title = plot spcs = [] spcs = plot_data['specimen'].unique() for spc in spcs: INTblock = [] spec_data = plot_data[plot_data['specimen'] == spc] for ind, rec in spec_data.iterrows(): INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]), 1, rec['quality']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if save_plots: files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) else: pmagplotlib.draw_figs(FIG) prompt = " S[a]ve to save plot, [q]uit, Return to continue: " ans = input(prompt) if ans == 'q': return True, [] if ans == "a": files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) pmagplotlib.clearFIG(FIG['demag']) if last_plot: return True, []
plots intensity decay curves for demagnetization experiments Parameters ---------- in_file : str, default "measurements.txt" dir_path : str output directory, default "." input_dir_path : str input file directory (if different from dir_path), default "" spec_file : str input specimen file name, default "specimens.txt" samp_file: str input sample file name, default "samples.txt" site_file : str input site file name, default "sites.txt" loc_file : str input location file name, default "locations.txt" plot_by : str [spc, sam, sit, loc] (specimen, sample, site, location), default "loc" LT : str lab treatment [T, AF, M], default AF norm : bool normalize by NRM magnetization, default True XLP : str exclude specific lab protocols, (for example, method codes like LP-PI) default "" save_plots : bool plot and save non-interactively, default True fmt : str ["png", "svg", "pdf", "jpg"], default "svg" Returns --------- type - Tuple : (True or False indicating if conversion was sucessful, file name(s) written)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/dmag_magic.py#L16-L187
PmagPy/PmagPy
programs/dmag_magic.py
main
def main(): """ NAME dmag_magic.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols, (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen """ if '-h' in sys.argv: print(main.__doc__) sys.exit() # initialize variables from command line + defaults dir_path = pmag.get_named_arg("-WD", default_val=".") input_dir_path = pmag.get_named_arg('-ID', '') if not input_dir_path: input_dir_path = dir_path in_file = pmag.get_named_arg("-f", default_val="measurements.txt") in_file = pmag.resolve_file_name(in_file, input_dir_path) if "-ID" not in sys.argv: input_dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg("-obj", default_val="loc") LT = pmag.get_named_arg("-LT", "AF") no_norm = pmag.get_flag_arg_from_sys("-N") norm = False if no_norm else True save_plots = pmag.get_flag_arg_from_sys("-sav") fmt = pmag.get_named_arg("-fmt", "svg") XLP = pmag.get_named_arg("-XLP", "") spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg("-fsi", default_val="sites.txt") loc_file = pmag.get_named_arg("-flo", default_val="locations.txt") dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
python
def main(): """ NAME dmag_magic.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols, (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen """ if '-h' in sys.argv: print(main.__doc__) sys.exit() # initialize variables from command line + defaults dir_path = pmag.get_named_arg("-WD", default_val=".") input_dir_path = pmag.get_named_arg('-ID', '') if not input_dir_path: input_dir_path = dir_path in_file = pmag.get_named_arg("-f", default_val="measurements.txt") in_file = pmag.resolve_file_name(in_file, input_dir_path) if "-ID" not in sys.argv: input_dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg("-obj", default_val="loc") LT = pmag.get_named_arg("-LT", "AF") no_norm = pmag.get_flag_arg_from_sys("-N") norm = False if no_norm else True save_plots = pmag.get_flag_arg_from_sys("-sav") fmt = pmag.get_named_arg("-fmt", "svg") XLP = pmag.get_named_arg("-XLP", "") spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg("-fsi", default_val="sites.txt") loc_file = pmag.get_named_arg("-flo", default_val="locations.txt") dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
NAME dmag_magic.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols, (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/dmag_magic.py#L191-L244
PmagPy/PmagPy
programs/watsons_v.py
main
def main(): """ NAME watsons_v.py DESCRIPTION calculates Watson's V statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_v.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions to opposite direction in first file if only one file or flip all in second, if two files -P (don't save or show plot) -sav save figure and quit silently -fmt [png,svg,eps,pdf,jpg] format for saved figure OUTPUT Watson's V and the Monte Carlo Critical Value Vc. in plot, V is solid and Vc is dashed. """ Flip=0 show,plot=1,0 fmt='svg' file2="" if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-sav' in sys.argv: show,plot=0,1 # don't display, but do save plot if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-P' in sys.argv: show=0 # don't display or save plot if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] data=numpy.loadtxt(file1).transpose() D1=numpy.array([data[0],data[1]]).transpose() file1_name=os.path.split(file1)[1].split('.')[0] else: print("-f is required") print(main.__doc__) sys.exit() if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] data2=numpy.loadtxt(file2).transpose() D2=numpy.array([data2[0],data2[1]]).transpose() file2_name=os.path.split(file2)[1].split('.')[0] if Flip==1: D2,D=pmag.flip(D2) # D2 are now flipped if len(D2)!=0: if len(D)!=0: D2=numpy.concatenate(D,D2) # put all in D2 elif len(D)!=0: D2=D else: print('length of second file is zero') sys.exit() elif Flip==1:D2,D1=pmag.flip(D1) # peel out antipodal directions, put in D2 # counter,NumSims=0,5000 # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get V statistic for these # V=pmag.vfunc(pars_1,pars_2) # # do monte carlo simulation of datasets with same kappas, but common mean # Vp=[] # set of Vs from simulations if show==1:print("Doing ",NumSims," simulations") for k in range(NumSims): counter+=1 if counter==50: if show==1:print(k+1) counter=0 Dirp=[] # get a set of N1 fisher distributed vectors with k1, calculate fisher stats for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, calculate fisher stats Dirp=[] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # # sort the Vs, get Vcrit (95th one) # Vp.sort() k=int(.95*NumSims) if show==1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f'%(V,Vp[k])) if show==1 or plot==1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f'%(V,Vp[k])) CDF={'cdf':1} pmagplotlib.plot_init(CDF['cdf'],5,5) pmagplotlib.plot_cdf(CDF['cdf'],Vp,"Watson's V",'r',"") pmagplotlib.plot_vs(CDF['cdf'],[V],'g','-') pmagplotlib.plot_vs(CDF['cdf'],[Vp[k]],'b','--') if plot==0:pmagplotlib.draw_figs(CDF) files={} if pmagplotlib.isServer: # use server plot naming convention if file2!="": files['cdf']='watsons_v_'+file1+'_'+file2+'.'+fmt else: files['cdf']='watsons_v_'+file1+'.'+fmt else: # use more readable plot naming convention if file2!="": files['cdf']='watsons_v_'+file1_name+'_'+file2_name+'.'+fmt else: files['cdf']='watsons_v_'+file1_name+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['cdf']='Cumulative Distribution' CDF = pmagplotlib.add_borders(CDF,titles,black,purple) pmagplotlib.save_plots(CDF,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.save_plots(CDF,files) if plot==1: # save and quit silently pmagplotlib.save_plots(CDF,files)
python
def main(): """ NAME watsons_v.py DESCRIPTION calculates Watson's V statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_v.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions to opposite direction in first file if only one file or flip all in second, if two files -P (don't save or show plot) -sav save figure and quit silently -fmt [png,svg,eps,pdf,jpg] format for saved figure OUTPUT Watson's V and the Monte Carlo Critical Value Vc. in plot, V is solid and Vc is dashed. """ Flip=0 show,plot=1,0 fmt='svg' file2="" if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-sav' in sys.argv: show,plot=0,1 # don't display, but do save plot if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-P' in sys.argv: show=0 # don't display or save plot if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] data=numpy.loadtxt(file1).transpose() D1=numpy.array([data[0],data[1]]).transpose() file1_name=os.path.split(file1)[1].split('.')[0] else: print("-f is required") print(main.__doc__) sys.exit() if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] data2=numpy.loadtxt(file2).transpose() D2=numpy.array([data2[0],data2[1]]).transpose() file2_name=os.path.split(file2)[1].split('.')[0] if Flip==1: D2,D=pmag.flip(D2) # D2 are now flipped if len(D2)!=0: if len(D)!=0: D2=numpy.concatenate(D,D2) # put all in D2 elif len(D)!=0: D2=D else: print('length of second file is zero') sys.exit() elif Flip==1:D2,D1=pmag.flip(D1) # peel out antipodal directions, put in D2 # counter,NumSims=0,5000 # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get V statistic for these # V=pmag.vfunc(pars_1,pars_2) # # do monte carlo simulation of datasets with same kappas, but common mean # Vp=[] # set of Vs from simulations if show==1:print("Doing ",NumSims," simulations") for k in range(NumSims): counter+=1 if counter==50: if show==1:print(k+1) counter=0 Dirp=[] # get a set of N1 fisher distributed vectors with k1, calculate fisher stats for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, calculate fisher stats Dirp=[] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # # sort the Vs, get Vcrit (95th one) # Vp.sort() k=int(.95*NumSims) if show==1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f'%(V,Vp[k])) if show==1 or plot==1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f'%(V,Vp[k])) CDF={'cdf':1} pmagplotlib.plot_init(CDF['cdf'],5,5) pmagplotlib.plot_cdf(CDF['cdf'],Vp,"Watson's V",'r',"") pmagplotlib.plot_vs(CDF['cdf'],[V],'g','-') pmagplotlib.plot_vs(CDF['cdf'],[Vp[k]],'b','--') if plot==0:pmagplotlib.draw_figs(CDF) files={} if pmagplotlib.isServer: # use server plot naming convention if file2!="": files['cdf']='watsons_v_'+file1+'_'+file2+'.'+fmt else: files['cdf']='watsons_v_'+file1+'.'+fmt else: # use more readable plot naming convention if file2!="": files['cdf']='watsons_v_'+file1_name+'_'+file2_name+'.'+fmt else: files['cdf']='watsons_v_'+file1_name+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['cdf']='Cumulative Distribution' CDF = pmagplotlib.add_borders(CDF,titles,black,purple) pmagplotlib.save_plots(CDF,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.save_plots(CDF,files) if plot==1: # save and quit silently pmagplotlib.save_plots(CDF,files)
NAME watsons_v.py DESCRIPTION calculates Watson's V statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_v.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions to opposite direction in first file if only one file or flip all in second, if two files -P (don't save or show plot) -sav save figure and quit silently -fmt [png,svg,eps,pdf,jpg] format for saved figure OUTPUT Watson's V and the Monte Carlo Critical Value Vc. in plot, V is solid and Vc is dashed.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/watsons_v.py#L15-L158
PmagPy/PmagPy
programs/deprecated/biplot_magic.py
main
def main(): """ NAME biplot_magic.py DESCRIPTION makes a biplot of specified variables from magic_measurements.txt format file SYNTAX biplot_magic.py [-h] [-i] [command line options] INPUT takes magic formated magic_measurments file OPTIONS -h prints help message and quits -i interactively set filename and axes for plotting -f FILE: specifies file name, default: magic_measurements.txt -fmt [svg,png,jpg], format for images - default is svg -sav figure and quit -x XMETH:key:step, specify method code for X axis (optional key and treatment values) -y YMETH:key:step, specify method code for X axis -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is whole file -n [V,M] plot volume or mass normalized data only NOTES if nothing is specified for x and y, the user will be presented with options key = ['treatment_ac_field','treatment_dc_field',treatment_temp'] step in mT for fields, K for temperatures """ # file='magic_measurements.txt' methx,methy,fmt="","",'.svg' plot_key='' norm_by="" #plot=0 no_plot = pmag.get_flag_arg_from_sys('-sav') if not no_plot: do_plot = True else: do_plot = False if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt='.'+sys.argv[ind+1] if '-n' in sys.argv: ind=sys.argv.index('-n') norm_by=sys.argv[ind+1] xtreat_key,ytreat_key,xstep,ystep="","","","" if '-x' in sys.argv: ind=sys.argv.index('-x') meths=sys.argv[ind+1].split(':') methx=meths[0] if len(meths)>1: xtreat_key=meths[1] xstep=float(meths[2]) if '-y' in sys.argv: ind=sys.argv.index('-y') meths=sys.argv[ind+1].split(':') methy=meths[0] if len(meths)>1: ytreat_key=meths[1] ystep=float(meths[2]) if '-obj' in sys.argv: ind=sys.argv.index('-obj') plot_by=sys.argv[ind+1] if plot_by=='loc':plot_key='er_location_name' if plot_by=='sit':plot_key='er_site_name' if plot_by=='sam':plot_key='er_sample_name' if plot_by=='spc':plot_key='er_specimen_name' if '-h' in sys.argv: do_plot = False if '-i' in sys.argv: # # get name of file from command line # file=input("Input magic_measurments file name? [magic_measurements.txt] ") if file=="":file="magic_measurements.txt" # # FIG={'fig':1} pmagplotlib.plot_init(FIG['fig'],5,5) data,file_type=pmag.magic_read(file) if file_type!="magic_measurements": print(file_type,' not correct format for magic_measurments file') sys.exit() # # collect method codes methods,plotlist=[],[] for rec in data: if plot_key!="": if rec[plot_key] not in plotlist:plotlist.append(rec[plot_key]) elif len(plotlist)==0: plotlist.append('All') meths=rec['magic_method_codes'].split(':') for meth in meths: if meth.strip() not in methods and meth.strip()!="LP-": methods.append(meth.strip()) # if '-i' in sys.argv: print(methods) elif methx =="" or methy=="": print(methods) sys.exit() GoOn=1 while GoOn==1: if '-i' in sys.argv:methx=input('Select method for x axis: ') if methx not in methods: if '-i' in sys.argv: print('try again! method not available') else: print(main.__doc__) print('\n must specify X axis method\n') sys.exit() else: if pmagplotlib.verbose: print(methx, ' selected for X axis') GoOn=0 GoOn=1 while GoOn==1: if '-i' in sys.argv:methy=input('Select method for y axis: ') if methy not in methods: if '-i' in sys.argv: print('try again! method not available') else: print(main.__doc__) print('\n must specify Y axis method\n') sys.exit() else: if pmagplotlib.verbose: print(methy, ' selected for Y axis') GoOn=0 if norm_by=="": measkeys=['measurement_magn_mass','measurement_magn_volume','measurement_magn_moment','measurement_magnitude','measurement_chi_volume','measurement_chi_mass','measurement_chi'] elif norm_by=="V": measkeys=['measurement_magn_volume','measurement_chi_volume'] elif norm_by=="M": measkeys=['measurement_magn_mass','measurement_chi_mass'] xmeaskey,ymeaskey="","" plotlist.sort() for plot in plotlist: # go through objects if pmagplotlib.verbose: print(plot) X,Y=[],[] x,y='','' for rec in data: if plot_key!="" and rec[plot_key]!=plot: pass else: meths=rec['magic_method_codes'].split(':') for meth in meths: if meth.strip()==methx: if xmeaskey=="": for key in measkeys: if key in list(rec.keys()) and rec[key]!="": xmeaskey=key if pmagplotlib.verbose: print(xmeaskey,' being used for plotting X.') break if meth.strip()==methy: if ymeaskey=="": for key in measkeys: if key in list(rec.keys()) and rec[key]!="": ymeaskey=key if pmagplotlib.verbose: print(ymeaskey,' being used for plotting Y') break if ymeaskey!="" and xmeaskey!="": for rec in data: x,y='','' spec=rec['er_specimen_name'] # get the ydata for this specimen if rec[ymeaskey]!="" and methy in rec['magic_method_codes'].split(':'): if ytreat_key=="" or (ytreat_key in list(rec.keys()) and float(rec[ytreat_key])==ystep): y=float(rec[ymeaskey]) for rec in data: # now find the xdata if rec['er_specimen_name']==spec and rec[xmeaskey]!="" and methx in rec['magic_method_codes'].split(':'): if xtreat_key=="" or (xtreat_key in list(rec.keys()) and float(rec[xtreat_key])==xstep): x=float(rec[xmeaskey]) if x != '' and y!= '': X.append(x) Y.append(y) if len(X)>0: pmagplotlib.clearFIG(FIG['fig']) pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=methx,ylab=methy,title=plot+':Biplot') if not pmagplotlib.isServer and do_plot: pmagplotlib.draw_figs(FIG) ans=input('S[a]ve plots, [q]uit, Return for next plot ' ) if ans=='a': files={} for key in list(FIG.keys()): files[key]=plot+'_'+key+fmt pmagplotlib.save_plots(FIG,files) if ans=='q': print("Good-bye\n") sys.exit() else: files={} for key in list(FIG.keys()): files[key]=plot+'_'+key+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['fig']='X Y Plot' FIG = pmagplotlib.add_borders(FIG,titles,black,purple) pmagplotlib.save_plots(FIG,files) else: print('nothing to plot for ',plot)
python
def main(): """ NAME biplot_magic.py DESCRIPTION makes a biplot of specified variables from magic_measurements.txt format file SYNTAX biplot_magic.py [-h] [-i] [command line options] INPUT takes magic formated magic_measurments file OPTIONS -h prints help message and quits -i interactively set filename and axes for plotting -f FILE: specifies file name, default: magic_measurements.txt -fmt [svg,png,jpg], format for images - default is svg -sav figure and quit -x XMETH:key:step, specify method code for X axis (optional key and treatment values) -y YMETH:key:step, specify method code for X axis -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is whole file -n [V,M] plot volume or mass normalized data only NOTES if nothing is specified for x and y, the user will be presented with options key = ['treatment_ac_field','treatment_dc_field',treatment_temp'] step in mT for fields, K for temperatures """ # file='magic_measurements.txt' methx,methy,fmt="","",'.svg' plot_key='' norm_by="" #plot=0 no_plot = pmag.get_flag_arg_from_sys('-sav') if not no_plot: do_plot = True else: do_plot = False if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt='.'+sys.argv[ind+1] if '-n' in sys.argv: ind=sys.argv.index('-n') norm_by=sys.argv[ind+1] xtreat_key,ytreat_key,xstep,ystep="","","","" if '-x' in sys.argv: ind=sys.argv.index('-x') meths=sys.argv[ind+1].split(':') methx=meths[0] if len(meths)>1: xtreat_key=meths[1] xstep=float(meths[2]) if '-y' in sys.argv: ind=sys.argv.index('-y') meths=sys.argv[ind+1].split(':') methy=meths[0] if len(meths)>1: ytreat_key=meths[1] ystep=float(meths[2]) if '-obj' in sys.argv: ind=sys.argv.index('-obj') plot_by=sys.argv[ind+1] if plot_by=='loc':plot_key='er_location_name' if plot_by=='sit':plot_key='er_site_name' if plot_by=='sam':plot_key='er_sample_name' if plot_by=='spc':plot_key='er_specimen_name' if '-h' in sys.argv: do_plot = False if '-i' in sys.argv: # # get name of file from command line # file=input("Input magic_measurments file name? [magic_measurements.txt] ") if file=="":file="magic_measurements.txt" # # FIG={'fig':1} pmagplotlib.plot_init(FIG['fig'],5,5) data,file_type=pmag.magic_read(file) if file_type!="magic_measurements": print(file_type,' not correct format for magic_measurments file') sys.exit() # # collect method codes methods,plotlist=[],[] for rec in data: if plot_key!="": if rec[plot_key] not in plotlist:plotlist.append(rec[plot_key]) elif len(plotlist)==0: plotlist.append('All') meths=rec['magic_method_codes'].split(':') for meth in meths: if meth.strip() not in methods and meth.strip()!="LP-": methods.append(meth.strip()) # if '-i' in sys.argv: print(methods) elif methx =="" or methy=="": print(methods) sys.exit() GoOn=1 while GoOn==1: if '-i' in sys.argv:methx=input('Select method for x axis: ') if methx not in methods: if '-i' in sys.argv: print('try again! method not available') else: print(main.__doc__) print('\n must specify X axis method\n') sys.exit() else: if pmagplotlib.verbose: print(methx, ' selected for X axis') GoOn=0 GoOn=1 while GoOn==1: if '-i' in sys.argv:methy=input('Select method for y axis: ') if methy not in methods: if '-i' in sys.argv: print('try again! method not available') else: print(main.__doc__) print('\n must specify Y axis method\n') sys.exit() else: if pmagplotlib.verbose: print(methy, ' selected for Y axis') GoOn=0 if norm_by=="": measkeys=['measurement_magn_mass','measurement_magn_volume','measurement_magn_moment','measurement_magnitude','measurement_chi_volume','measurement_chi_mass','measurement_chi'] elif norm_by=="V": measkeys=['measurement_magn_volume','measurement_chi_volume'] elif norm_by=="M": measkeys=['measurement_magn_mass','measurement_chi_mass'] xmeaskey,ymeaskey="","" plotlist.sort() for plot in plotlist: # go through objects if pmagplotlib.verbose: print(plot) X,Y=[],[] x,y='','' for rec in data: if plot_key!="" and rec[plot_key]!=plot: pass else: meths=rec['magic_method_codes'].split(':') for meth in meths: if meth.strip()==methx: if xmeaskey=="": for key in measkeys: if key in list(rec.keys()) and rec[key]!="": xmeaskey=key if pmagplotlib.verbose: print(xmeaskey,' being used for plotting X.') break if meth.strip()==methy: if ymeaskey=="": for key in measkeys: if key in list(rec.keys()) and rec[key]!="": ymeaskey=key if pmagplotlib.verbose: print(ymeaskey,' being used for plotting Y') break if ymeaskey!="" and xmeaskey!="": for rec in data: x,y='','' spec=rec['er_specimen_name'] # get the ydata for this specimen if rec[ymeaskey]!="" and methy in rec['magic_method_codes'].split(':'): if ytreat_key=="" or (ytreat_key in list(rec.keys()) and float(rec[ytreat_key])==ystep): y=float(rec[ymeaskey]) for rec in data: # now find the xdata if rec['er_specimen_name']==spec and rec[xmeaskey]!="" and methx in rec['magic_method_codes'].split(':'): if xtreat_key=="" or (xtreat_key in list(rec.keys()) and float(rec[xtreat_key])==xstep): x=float(rec[xmeaskey]) if x != '' and y!= '': X.append(x) Y.append(y) if len(X)>0: pmagplotlib.clearFIG(FIG['fig']) pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=methx,ylab=methy,title=plot+':Biplot') if not pmagplotlib.isServer and do_plot: pmagplotlib.draw_figs(FIG) ans=input('S[a]ve plots, [q]uit, Return for next plot ' ) if ans=='a': files={} for key in list(FIG.keys()): files[key]=plot+'_'+key+fmt pmagplotlib.save_plots(FIG,files) if ans=='q': print("Good-bye\n") sys.exit() else: files={} for key in list(FIG.keys()): files[key]=plot+'_'+key+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['fig']='X Y Plot' FIG = pmagplotlib.add_borders(FIG,titles,black,purple) pmagplotlib.save_plots(FIG,files) else: print('nothing to plot for ',plot)
NAME biplot_magic.py DESCRIPTION makes a biplot of specified variables from magic_measurements.txt format file SYNTAX biplot_magic.py [-h] [-i] [command line options] INPUT takes magic formated magic_measurments file OPTIONS -h prints help message and quits -i interactively set filename and axes for plotting -f FILE: specifies file name, default: magic_measurements.txt -fmt [svg,png,jpg], format for images - default is svg -sav figure and quit -x XMETH:key:step, specify method code for X axis (optional key and treatment values) -y YMETH:key:step, specify method code for X axis -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is whole file -n [V,M] plot volume or mass normalized data only NOTES if nothing is specified for x and y, the user will be presented with options key = ['treatment_ac_field','treatment_dc_field',treatment_temp'] step in mT for fields, K for temperatures
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/biplot_magic.py#L10-L217
PmagPy/PmagPy
programs/strip_magic.py
main
def main(): """ NAME strip_magic.py DESCRIPTION plots various parameters versus depth or age SYNTAX strip_magic.py [command line optins] OPTIONS -h prints help message and quits -DM NUM: specify data model num, options 2 (legacy) or 3 (default) -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj [sit,sam,all]: specify object to site,sample,all for pmag_result table, default is all -fmt [svg,png,jpg], format for images - default is svg -x [age,pos]: specify whether age or stratigraphic position -y [dec,inc,int,chi,lat,lon,vdm,vadm] (lat and lon are VGP lat and lon) -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04] -mcd method_code, specify method code, default is first one encountered -sav save plot and quit NOTES when x and/or y are not specified, a list of possibilities will be presented to the user for choosing """ if '-h' in sys.argv: print(main.__doc__) sys.exit() xaxis, xplotind, yplotind = "", 0, 0 # (0 for strat pos) yaxis, Xinc = "", "" plot = 0 obj = 'all' data_model_num = int(pmag.get_named_arg("-DM", 3)) # 2.5 keys if data_model_num == 2: supported = ['pmag_specimens', 'pmag_samples', 'pmag_sites', 'pmag_results', 'magic_web'] # available file types Depth_keys = ['specimen_core_depth', 'specimen_height', 'specimen_elevation', 'specimen_composite_depth', 'sample_core_depth', 'sample_height', 'sample_elevation', 'sample_composite_depth', 'site_core_depth', 'site_height', 'site_elevation', 'site_composite_depth', 'average_height'] Age_keys = ['specimen_inferred_age', 'sample_inferred_age', 'site_inferred_age', 'average_age'] Unit_keys = {'specimen_inferred_age': 'specimen_inferred_age_unit', 'sample_inferred_age': 'sample_inferred_age_unit', 'site_inferred_age': 'site_inferred_age_unit', 'average_age': 'average_age_unit'} Dec_keys = ['measurement_dec', 'specimen_dec', 'sample_dec', 'site_dec', 'average_dec'] Inc_keys = ['measurement_inc', 'specimen_inc', 'sample_inc', 'site_inc', 'average_inc'] Int_keys = ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'specimen_int', 'specimen_int_rel', 'sample_int', 'sample_int_rel', 'site_int', 'site_int_rel', 'average_int', 'average_int_rel'] Chi_keys = ['measurement_chi_volume', 'measurement_chi_mass'] Lat_keys = ['sample_lat', 'site_lat', 'average_lat'] VLat_keys = ['vgp_lat'] VLon_keys = ['vgp_lon'] Vdm_keys = ['vdm'] Vadm_keys = ['vadm'] method_col_name = "magic_method_codes" else: # 3.0 keys supported = ["specimens", "samples", "sites", "locations"] # available file types Depth_keys = [ "height", "core_depth", "elevation", "composite_depth" ] Age_keys = [ "age" ] Unit_keys = { "age": "age" } Chi_keys = [ "susc_chi_volume", "susc_chi_mass" ] Int_keys = [ "magn_moment", "magn_volume", "magn_mass", "int_abs", "int_rel" ] Inc_keys = [ "dir_inc" ] Dec_keys = [ "dir_dec" ] Lat_Keys = [ "lat" ] VLat_keys = [ "vgp_lat", "pole_lat" ] VLon_keys = [ "vgp_lon", "pole_lon" ] Vdm_keys = [ "vdm", "pdm" ] Vadm_keys = [ "vadm", "padm" ] method_col_name = "method_codes" # X_keys = [Age_keys, Depth_keys] Y_keys = [Dec_keys, Inc_keys, Int_keys, Chi_keys, VLat_keys, VLon_keys, Vdm_keys, Vadm_keys] method, fmt = "", 'svg' FIG = {'strat': 1} plotexp, pTS = 0, 0 dir_path = pmag.get_named_arg("-WD", ".") # default files if data_model_num == 3: res_file = pmag.get_named_arg("-f", "sites.txt") else: res_file = pmag.get_named_arg("-f", "pmag_results.txt") res_file = pmag.resolve_file_name(res_file, dir_path) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') obj = sys.argv[ind+1] if '-x' in sys.argv: ind = sys.argv.index('-x') xaxis = sys.argv[ind+1] if '-y' in sys.argv: ind = sys.argv.index('-y') yaxis = sys.argv[ind+1] if yaxis == 'dec': ykeys = Dec_keys if yaxis == 'inc': ykeys = Inc_keys if yaxis == 'int': ykeys = Int_keys if yaxis == 'chi': ykeys = Chi_keys if yaxis == 'lat': ykeys = VLat_keys if yaxis == 'lon': ykeys = VLon_keys if yaxis == 'vdm': ykeys = Vdm_keys if yaxis == 'vadm': ykeys = Vadm_keys if '-mcd' in sys.argv: ind = sys.argv.index('-mcd') method = sys.argv[ind+1] if '-ts' in sys.argv: ind = sys.argv.index('-ts') ts = sys.argv[ind+1] amin = float(sys.argv[ind+2]) amax = float(sys.argv[ind+3]) pTS = 1 if '-Iex' in sys.argv: plotexp = 1 if '-sav' in sys.argv: plot = 1 # # # get data read in Results, file_type = pmag.magic_read(res_file) if file_type not in supported: print("Unsupported file type ({}), try again".format(file_type)) sys.exit() PltObjs = ['all'] if data_model_num == 2: if file_type == 'pmag_results': # find out what to plot for rec in Results: resname = rec['pmag_result_name'].split() if 'Sample' in resname and 'sam' not in PltObjs: PltObjs.append('sam') if 'Site' in resname and 'sit' not in PltObjs: PltObjs.append('sit') methcodes = [] # need to know all the measurement types from method_codes if "magic_method_codes" in list(Results[0].keys()): for rec in Results: meths = rec["magic_method_codes"].split(":") for meth in meths: if meth.strip() not in methcodes and 'LP' in meth: # look for the lab treatments methcodes.append(meth.strip()) # # initialize some variables X_unit = "" # Unit for age or depth plotting (meters if depth) Xplots, Yplots = [], [] Xunits = [] yplotind, xplotind = 0, 0 # # step through possible plottable keys # if xaxis == "" or yaxis == "": for key in list(Results[0].keys()): for keys in X_keys: for xkeys in keys: if key in xkeys: for ResRec in Results: if ResRec[key] != "": # only plot something if there is something to plot! Xplots.append(key) break for keys in Y_keys: for pkeys in keys: if key in pkeys: for ResRec in Results: if ResRec[key] != "": Yplots.append(key) break X, Y = [], [] for plt in Xplots: if plt in Age_keys and 'age' not in X: X.append('age') if plt in Depth_keys and 'pos' not in X: X.append('pos') for plt in Yplots: if plt in Dec_keys and 'dec' not in Y: Y.append('dec') if plt in Inc_keys and 'inc' not in Y: Y.append('inc') if plt in Int_keys and 'int' not in Y: Y.append('int') if plt in Chi_keys and 'chi' not in Y: Y.append('chi') if plt in VLat_keys and 'lat' not in Y: Y.append('lat') if plt in VLon_keys and 'lon' not in Y: Y.append('lon') if plt in Vadm_keys and 'vadm' not in Y: Y.append('vadm') if plt in Vdm_keys and 'vdm' not in Y: Y.append('vdm') if file_type == 'pmag_results': print('available objects for plotting: ', PltObjs) print('available X plots: ', X) print('available Y plots: ', Y) print('available method codes: ', methcodes) f = open(dir_path+'/.striprc', 'w') for x in X: f.write('x:'+x+'\n') for y in Y: f.write('y:'+y+'\n') for m in methcodes: f.write('m:'+m+'\n') for obj in PltObjs: f.write('obj:'+obj+'\n') sys.exit() if plotexp == 1: for lkey in Lat_keys: for key in list(Results[0].keys()): if key == lkey: lat = float(Results[0][lkey]) Xinc = [pmag.pinc(lat), -pmag.pinc(lat)] break if Xinc == "": print('can not plot expected inc for site - lat unknown') if method != "" and method not in methcodes: print('your method not available, but these are: ') print(methcodes) print('use ', methcodes[0], '? ^D to quit') if xaxis == 'age': for akey in Age_keys: for key in list(Results[0].keys()): if key == akey: Xplots.append(key) Xunits.append(Unit_keys[key]) if xaxis == 'pos': for dkey in Depth_keys: for key in list(Results[0].keys()): if key == dkey: Xplots.append(key) if len(Xplots) == 0: print('desired X axis information not found') sys.exit() if xaxis == 'age': age_unit = Results[0][Xunits[0]] if len(Xplots) > 1: print('multiple X axis keys found, using: ', Xplots[xplotind]) for ykey in ykeys: for key in list(Results[0].keys()): if key == ykey: Yplots.append(key) if len(Yplots) == 0: print('desired Y axis information not found') sys.exit() if len(Yplots) > 1: print('multiple Y axis keys found, using: ', Yplots[yplotind]) # check if age or depth info if len(Xplots) == 0: print("Must have either age or height info to plot ") sys.exit() # # check for variable to plot # # # determine X axis (age or depth) # if xaxis == "age": plotind = "1" if method == "": try: method = methcodes[0] except IndexError: method = "" if xaxis == 'pos': xlab = "Stratigraphic Height (meters)" else: xlab = "Age ("+age_unit+")" Xkey = Xplots[xplotind] Ykey = Yplots[yplotind] ylab = Ykey # # collect the data for plotting XY = [] isign = 1. # if float(Results[0][Xkey])/float(Results[-1][Xkey])>0 and float(Results[0][Xkey])<0: # isign=-1. # x axis all same sign and negative, take positive (e.g.,for depth in core) # xlab="Stratigraphic Position (meters)" # else: # isign=1. for rec in Results: if "magic_method_codes" in list(rec.keys()): meths = rec["magic_method_codes"].split(":") if method in meths: # make sure it is desired lab treatment step if obj == 'all' and rec[Xkey].strip() != "": XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif rec[Xkey].strip() != "": name = rec['pmag_result_name'].split() if obj == 'sit' and "Site" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) if obj == 'sam' and "Sample" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif method == "": if obj == 'all' and rec[Xkey].strip() != "": XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif rec[Xkey].strip() != "": name = rec['pmag_result_name'].split() if obj == 'sit' and "Site" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) if obj == 'sam' and "Sample" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) else: print("Something wrong with your plotting choices") break XY.sort() title = "" if "er_locations_names" in list(Results[0].keys()): title = Results[0]["er_location_names"] if "er_locations_name" in list(Results[0].keys()): title = Results[0]["er_location_name"] labels = [xlab, ylab, title] pmagplotlib.plot_init(FIG['strat'], 10, 5) pmagplotlib.plot_strat(FIG['strat'], XY, labels) # plot them if plotexp == 1: pmagplotlib.plot_hs(FIG['strat'], Xinc, 'b', '--') if yaxis == 'inc' or yaxis == 'lat': pmagplotlib.plot_hs(FIG['strat'], [0], 'b', '-') pmagplotlib.plot_hs(FIG['strat'], [-90, 90], 'g', '-') if pTS == 1: FIG['ts'] = 2 pmagplotlib.plot_init(FIG['ts'], 10, 5) pmagplotlib.plot_ts(FIG['ts'], [amin, amax], ts) files = {} for key in list(FIG.keys()): files[key] = key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' files = {} files['strat'] = xaxis+'_'+yaxis+'_.'+fmt files['ts'] = 'ts.'+fmt titles = {} titles['strat'] = 'Depth/Time Series Plot' titles['ts'] = 'Time Series Plot' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif plot == 1: pmagplotlib.save_plots(FIG, files) else: pmagplotlib.draw_figs(FIG) ans = input(" S[a]ve to save plot, [q]uit without saving: ") if ans == "a": pmagplotlib.save_plots(FIG, files)
python
def main(): """ NAME strip_magic.py DESCRIPTION plots various parameters versus depth or age SYNTAX strip_magic.py [command line optins] OPTIONS -h prints help message and quits -DM NUM: specify data model num, options 2 (legacy) or 3 (default) -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj [sit,sam,all]: specify object to site,sample,all for pmag_result table, default is all -fmt [svg,png,jpg], format for images - default is svg -x [age,pos]: specify whether age or stratigraphic position -y [dec,inc,int,chi,lat,lon,vdm,vadm] (lat and lon are VGP lat and lon) -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04] -mcd method_code, specify method code, default is first one encountered -sav save plot and quit NOTES when x and/or y are not specified, a list of possibilities will be presented to the user for choosing """ if '-h' in sys.argv: print(main.__doc__) sys.exit() xaxis, xplotind, yplotind = "", 0, 0 # (0 for strat pos) yaxis, Xinc = "", "" plot = 0 obj = 'all' data_model_num = int(pmag.get_named_arg("-DM", 3)) # 2.5 keys if data_model_num == 2: supported = ['pmag_specimens', 'pmag_samples', 'pmag_sites', 'pmag_results', 'magic_web'] # available file types Depth_keys = ['specimen_core_depth', 'specimen_height', 'specimen_elevation', 'specimen_composite_depth', 'sample_core_depth', 'sample_height', 'sample_elevation', 'sample_composite_depth', 'site_core_depth', 'site_height', 'site_elevation', 'site_composite_depth', 'average_height'] Age_keys = ['specimen_inferred_age', 'sample_inferred_age', 'site_inferred_age', 'average_age'] Unit_keys = {'specimen_inferred_age': 'specimen_inferred_age_unit', 'sample_inferred_age': 'sample_inferred_age_unit', 'site_inferred_age': 'site_inferred_age_unit', 'average_age': 'average_age_unit'} Dec_keys = ['measurement_dec', 'specimen_dec', 'sample_dec', 'site_dec', 'average_dec'] Inc_keys = ['measurement_inc', 'specimen_inc', 'sample_inc', 'site_inc', 'average_inc'] Int_keys = ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'specimen_int', 'specimen_int_rel', 'sample_int', 'sample_int_rel', 'site_int', 'site_int_rel', 'average_int', 'average_int_rel'] Chi_keys = ['measurement_chi_volume', 'measurement_chi_mass'] Lat_keys = ['sample_lat', 'site_lat', 'average_lat'] VLat_keys = ['vgp_lat'] VLon_keys = ['vgp_lon'] Vdm_keys = ['vdm'] Vadm_keys = ['vadm'] method_col_name = "magic_method_codes" else: # 3.0 keys supported = ["specimens", "samples", "sites", "locations"] # available file types Depth_keys = [ "height", "core_depth", "elevation", "composite_depth" ] Age_keys = [ "age" ] Unit_keys = { "age": "age" } Chi_keys = [ "susc_chi_volume", "susc_chi_mass" ] Int_keys = [ "magn_moment", "magn_volume", "magn_mass", "int_abs", "int_rel" ] Inc_keys = [ "dir_inc" ] Dec_keys = [ "dir_dec" ] Lat_Keys = [ "lat" ] VLat_keys = [ "vgp_lat", "pole_lat" ] VLon_keys = [ "vgp_lon", "pole_lon" ] Vdm_keys = [ "vdm", "pdm" ] Vadm_keys = [ "vadm", "padm" ] method_col_name = "method_codes" # X_keys = [Age_keys, Depth_keys] Y_keys = [Dec_keys, Inc_keys, Int_keys, Chi_keys, VLat_keys, VLon_keys, Vdm_keys, Vadm_keys] method, fmt = "", 'svg' FIG = {'strat': 1} plotexp, pTS = 0, 0 dir_path = pmag.get_named_arg("-WD", ".") # default files if data_model_num == 3: res_file = pmag.get_named_arg("-f", "sites.txt") else: res_file = pmag.get_named_arg("-f", "pmag_results.txt") res_file = pmag.resolve_file_name(res_file, dir_path) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') obj = sys.argv[ind+1] if '-x' in sys.argv: ind = sys.argv.index('-x') xaxis = sys.argv[ind+1] if '-y' in sys.argv: ind = sys.argv.index('-y') yaxis = sys.argv[ind+1] if yaxis == 'dec': ykeys = Dec_keys if yaxis == 'inc': ykeys = Inc_keys if yaxis == 'int': ykeys = Int_keys if yaxis == 'chi': ykeys = Chi_keys if yaxis == 'lat': ykeys = VLat_keys if yaxis == 'lon': ykeys = VLon_keys if yaxis == 'vdm': ykeys = Vdm_keys if yaxis == 'vadm': ykeys = Vadm_keys if '-mcd' in sys.argv: ind = sys.argv.index('-mcd') method = sys.argv[ind+1] if '-ts' in sys.argv: ind = sys.argv.index('-ts') ts = sys.argv[ind+1] amin = float(sys.argv[ind+2]) amax = float(sys.argv[ind+3]) pTS = 1 if '-Iex' in sys.argv: plotexp = 1 if '-sav' in sys.argv: plot = 1 # # # get data read in Results, file_type = pmag.magic_read(res_file) if file_type not in supported: print("Unsupported file type ({}), try again".format(file_type)) sys.exit() PltObjs = ['all'] if data_model_num == 2: if file_type == 'pmag_results': # find out what to plot for rec in Results: resname = rec['pmag_result_name'].split() if 'Sample' in resname and 'sam' not in PltObjs: PltObjs.append('sam') if 'Site' in resname and 'sit' not in PltObjs: PltObjs.append('sit') methcodes = [] # need to know all the measurement types from method_codes if "magic_method_codes" in list(Results[0].keys()): for rec in Results: meths = rec["magic_method_codes"].split(":") for meth in meths: if meth.strip() not in methcodes and 'LP' in meth: # look for the lab treatments methcodes.append(meth.strip()) # # initialize some variables X_unit = "" # Unit for age or depth plotting (meters if depth) Xplots, Yplots = [], [] Xunits = [] yplotind, xplotind = 0, 0 # # step through possible plottable keys # if xaxis == "" or yaxis == "": for key in list(Results[0].keys()): for keys in X_keys: for xkeys in keys: if key in xkeys: for ResRec in Results: if ResRec[key] != "": # only plot something if there is something to plot! Xplots.append(key) break for keys in Y_keys: for pkeys in keys: if key in pkeys: for ResRec in Results: if ResRec[key] != "": Yplots.append(key) break X, Y = [], [] for plt in Xplots: if plt in Age_keys and 'age' not in X: X.append('age') if plt in Depth_keys and 'pos' not in X: X.append('pos') for plt in Yplots: if plt in Dec_keys and 'dec' not in Y: Y.append('dec') if plt in Inc_keys and 'inc' not in Y: Y.append('inc') if plt in Int_keys and 'int' not in Y: Y.append('int') if plt in Chi_keys and 'chi' not in Y: Y.append('chi') if plt in VLat_keys and 'lat' not in Y: Y.append('lat') if plt in VLon_keys and 'lon' not in Y: Y.append('lon') if plt in Vadm_keys and 'vadm' not in Y: Y.append('vadm') if plt in Vdm_keys and 'vdm' not in Y: Y.append('vdm') if file_type == 'pmag_results': print('available objects for plotting: ', PltObjs) print('available X plots: ', X) print('available Y plots: ', Y) print('available method codes: ', methcodes) f = open(dir_path+'/.striprc', 'w') for x in X: f.write('x:'+x+'\n') for y in Y: f.write('y:'+y+'\n') for m in methcodes: f.write('m:'+m+'\n') for obj in PltObjs: f.write('obj:'+obj+'\n') sys.exit() if plotexp == 1: for lkey in Lat_keys: for key in list(Results[0].keys()): if key == lkey: lat = float(Results[0][lkey]) Xinc = [pmag.pinc(lat), -pmag.pinc(lat)] break if Xinc == "": print('can not plot expected inc for site - lat unknown') if method != "" and method not in methcodes: print('your method not available, but these are: ') print(methcodes) print('use ', methcodes[0], '? ^D to quit') if xaxis == 'age': for akey in Age_keys: for key in list(Results[0].keys()): if key == akey: Xplots.append(key) Xunits.append(Unit_keys[key]) if xaxis == 'pos': for dkey in Depth_keys: for key in list(Results[0].keys()): if key == dkey: Xplots.append(key) if len(Xplots) == 0: print('desired X axis information not found') sys.exit() if xaxis == 'age': age_unit = Results[0][Xunits[0]] if len(Xplots) > 1: print('multiple X axis keys found, using: ', Xplots[xplotind]) for ykey in ykeys: for key in list(Results[0].keys()): if key == ykey: Yplots.append(key) if len(Yplots) == 0: print('desired Y axis information not found') sys.exit() if len(Yplots) > 1: print('multiple Y axis keys found, using: ', Yplots[yplotind]) # check if age or depth info if len(Xplots) == 0: print("Must have either age or height info to plot ") sys.exit() # # check for variable to plot # # # determine X axis (age or depth) # if xaxis == "age": plotind = "1" if method == "": try: method = methcodes[0] except IndexError: method = "" if xaxis == 'pos': xlab = "Stratigraphic Height (meters)" else: xlab = "Age ("+age_unit+")" Xkey = Xplots[xplotind] Ykey = Yplots[yplotind] ylab = Ykey # # collect the data for plotting XY = [] isign = 1. # if float(Results[0][Xkey])/float(Results[-1][Xkey])>0 and float(Results[0][Xkey])<0: # isign=-1. # x axis all same sign and negative, take positive (e.g.,for depth in core) # xlab="Stratigraphic Position (meters)" # else: # isign=1. for rec in Results: if "magic_method_codes" in list(rec.keys()): meths = rec["magic_method_codes"].split(":") if method in meths: # make sure it is desired lab treatment step if obj == 'all' and rec[Xkey].strip() != "": XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif rec[Xkey].strip() != "": name = rec['pmag_result_name'].split() if obj == 'sit' and "Site" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) if obj == 'sam' and "Sample" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif method == "": if obj == 'all' and rec[Xkey].strip() != "": XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) elif rec[Xkey].strip() != "": name = rec['pmag_result_name'].split() if obj == 'sit' and "Site" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) if obj == 'sam' and "Sample" in name: XY.append([isign*float(rec[Xkey]), float(rec[Ykey])]) else: print("Something wrong with your plotting choices") break XY.sort() title = "" if "er_locations_names" in list(Results[0].keys()): title = Results[0]["er_location_names"] if "er_locations_name" in list(Results[0].keys()): title = Results[0]["er_location_name"] labels = [xlab, ylab, title] pmagplotlib.plot_init(FIG['strat'], 10, 5) pmagplotlib.plot_strat(FIG['strat'], XY, labels) # plot them if plotexp == 1: pmagplotlib.plot_hs(FIG['strat'], Xinc, 'b', '--') if yaxis == 'inc' or yaxis == 'lat': pmagplotlib.plot_hs(FIG['strat'], [0], 'b', '-') pmagplotlib.plot_hs(FIG['strat'], [-90, 90], 'g', '-') if pTS == 1: FIG['ts'] = 2 pmagplotlib.plot_init(FIG['ts'], 10, 5) pmagplotlib.plot_ts(FIG['ts'], [amin, amax], ts) files = {} for key in list(FIG.keys()): files[key] = key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' files = {} files['strat'] = xaxis+'_'+yaxis+'_.'+fmt files['ts'] = 'ts.'+fmt titles = {} titles['strat'] = 'Depth/Time Series Plot' titles['ts'] = 'Time Series Plot' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif plot == 1: pmagplotlib.save_plots(FIG, files) else: pmagplotlib.draw_figs(FIG) ans = input(" S[a]ve to save plot, [q]uit without saving: ") if ans == "a": pmagplotlib.save_plots(FIG, files)
NAME strip_magic.py DESCRIPTION plots various parameters versus depth or age SYNTAX strip_magic.py [command line optins] OPTIONS -h prints help message and quits -DM NUM: specify data model num, options 2 (legacy) or 3 (default) -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj [sit,sam,all]: specify object to site,sample,all for pmag_result table, default is all -fmt [svg,png,jpg], format for images - default is svg -x [age,pos]: specify whether age or stratigraphic position -y [dec,inc,int,chi,lat,lon,vdm,vadm] (lat and lon are VGP lat and lon) -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04] -mcd method_code, specify method code, default is first one encountered -sav save plot and quit NOTES when x and/or y are not specified, a list of possibilities will be presented to the user for choosing
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/strip_magic.py#L11-L375
PmagPy/PmagPy
programs/site_edit_magic.py
main
def main(): """ NAME site_edit_magic.py DESCRIPTION makes equal area projections site by site from pmag_specimens.txt file with Fisher confidence ellipse using McFadden and McElhinny (1988) technique for combining lines and planes allows testing and reject specimens for bad orientations SYNTAX site_edit_magic.py [command line options] OPTIONS -h: prints help and quits -f: specify pmag_specimen format file, default is pmag_specimens.txt -fsa: specify er_samples.txt file -exc: use existing pmag_criteria.txt file -N: reset all sample flags to good OUPUT edited er_samples.txt file """ dir_path='.' FIG={} # plot dictionary FIG['eqarea']=1 # eqarea is figure 1 in_file='pmag_specimens.txt' sampfile='er_samples.txt' out_file="" fmt,plot='svg',1 Crits="" M,N=180.,1 repeat='' renew=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index("-f") in_file=sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index("-fsa") sampfile=sys.argv[ind+1] if '-exc' in sys.argv: Crits,file_type=pmag.magic_read(dir_path+'/pmag_criteria.txt') for crit in Crits: if crit['pmag_criteria_code']=='DE-SPEC': M=float(crit['specimen_mad']) N=float(crit['specimen_n']) if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] if '-N' in sys.argv: renew=1 # if in_file[0]!="/":in_file=dir_path+'/'+in_file if sampfile[0]!="/":sampfile=dir_path+'/'+sampfile crd='s' Specs,file_type=pmag.magic_read(in_file) if file_type!='pmag_specimens': print(' bad pmag_specimen input file') sys.exit() Samps,file_type=pmag.magic_read(sampfile) if file_type!='er_samples': print(' bad er_samples input file') sys.exit() SO_methods=[] for rec in Samps: if 'sample_orientation_flag' not in list(rec.keys()): rec['sample_orientation_flag']='g' if 'sample_description' not in list(rec.keys()): rec['sample_description']='' if renew==1: rec['sample_orientation_flag']='g' description=rec['sample_description'] if '#' in description: newdesc="" c=0 while description[c]!='#' and c<len(description)-1: # look for first pound sign newdesc=newdesc+description[c] c+=1 while description[c]=='#': c+=1# skip first set of pound signs while description[c]!='#':c+=1 # find second set of pound signs while description[c]=='#' and c<len(description)-1:c+=1 # skip second set of pound signs while c<len(description)-1: # look for first pound sign newdesc=newdesc+description[c] c+=1 rec['sample_description']=newdesc # edit out old comment about orientations if "magic_method_codes" in rec: methlist=rec["magic_method_codes"] for meth in methlist.split(":"): if "SO" in meth.strip() and "SO-POM" not in meth.strip(): if meth.strip() not in SO_methods: SO_methods.append(meth.strip()) pmag.magic_write(sampfile,Samps,'er_samples') SO_priorities=pmag.set_priorities(SO_methods,0) sitelist=[] for rec in Specs: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() EQ={} EQ['eqarea']=1 pmagplotlib.plot_init(EQ['eqarea'],5,5) k=0 while k<len(sitelist): site=sitelist[k] print(site) data=[] ThisSiteSpecs=pmag.get_dictitem(Specs,'er_site_name',site,'T') ThisSiteSpecs=pmag.get_dictitem(ThisSiteSpecs,'specimen_tilt_correction','-1','T') # get all the unoriented data for spec in ThisSiteSpecs: if spec['specimen_mad']!="" and spec['specimen_n']!="" and float(spec['specimen_mad'])<=M and float(spec['specimen_n'])>=N: # good spec, now get orientation.... redo,p=1,0 if len(SO_methods)<=1: az_type=SO_methods[0] orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type) redo=0 while redo==1: if p>=len(SO_priorities): print("no orientation data for ",spec['er_sample_name']) orient["sample_azimuth"]="" orient["sample_dip"]="" redo=0 else: az_type=SO_methods[SO_methods.index(SO_priorities[p])] orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type) if orient["sample_azimuth"] !="": redo=0 p+=1 if orient['sample_azimuth']!="": rec={} for key in list(spec.keys()):rec[key]=spec[key] rec['dec'],rec['inc']=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(orient['sample_azimuth']),float(orient['sample_dip'])) rec["tilt_correction"]='1' crd='g' rec['sample_azimuth']=orient['sample_azimuth'] rec['sample_dip']=orient['sample_dip'] data.append(rec) if len(data)>2: print('specimen, dec, inc, n_meas/MAD,| method codes ') for i in range(len(data)): print('%s: %7.1f %7.1f %s / %s | %s' % (data[i]['er_specimen_name'], data[i]['dec'], data[i]['inc'], data[i]['specimen_n'], data[i]['specimen_mad'], data[i]['magic_method_codes'])) fpars=pmag.dolnp(data,'specimen_direction_type') print("\n Site lines planes kappa a95 dec inc") print(site, fpars["n_lines"], fpars["n_planes"], fpars["K"], fpars["alpha95"], fpars["dec"], fpars["inc"], fpars["R"]) if out_file!="": if float(fpars["alpha95"])<=acutoff and float(fpars["K"])>=kcutoff: out.write('%s %s %s\n'%(fpars["dec"],fpars['inc'],fpars['alpha95'])) pmagplotlib.plot_lnp(EQ['eqarea'],site,data,fpars,'specimen_direction_type') pmagplotlib.draw_figs(EQ) if k!=0 and repeat!='y': ans=input("s[a]ve plot, [q]uit, [e]dit specimens, [p]revious site, <return> to continue:\n ") elif k==0 and repeat!='y': ans=input("s[a]ve plot, [q]uit, [e]dit specimens, <return> to continue:\n ") if ans=="p": k-=2 if ans=="a": files={} files['eqarea']=site+'_'+crd+'_eqarea'+'.'+fmt pmagplotlib.save_plots(EQ,files) if ans=="q": sys.exit() if ans=="e" and Samps==[]: print("can't edit samples without orientation file, sorry") elif ans=="e": # k-=1 testspec=input("Enter name of specimen to check: ") for spec in data: if spec['er_specimen_name']==testspec: # first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,-float(spec['sample_dip'])) XY=pmag.dimap(d,i) pmagplotlib.plot_xy(EQ['eqarea'],[XY[0]],[XY[1]],sym='g^') # first test wrong end of compass (take az-180.) d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,float(spec['sample_dip'])) XY=pmag.dimap(d,i) pmagplotlib.plot_xy(EQ['eqarea'],[XY[0]],[XY[1]],sym='kv') # did the sample spin in the hole? # now spin around specimen's z X_up,Y_up,X_d,Y_d=[],[],[],[] for incr in range(0,360,5): d,i=pmag.dogeo(float(spec['specimen_dec'])+incr,float(spec['specimen_inc']),float(spec['sample_azimuth']),float(spec['sample_dip'])) XY=pmag.dimap(d,i) if i>=0: X_d.append(XY[0]) Y_d.append(XY[1]) else: X_up.append(XY[0]) Y_up.append(XY[1]) pmagplotlib.plot_xy(EQ['eqarea'],X_d,Y_d,sym='b.') pmagplotlib.plot_xy(EQ['eqarea'],X_up,Y_up,sym='c.') pmagplotlib.draw_figs(EQ) break print("Triangle: wrong arrow for drill direction.") print("Delta: wrong end of compass.") print("Small circle: wrong mark on sample. [cyan upper hemisphere]") deleteme=input("Mark this sample as bad? y/[n] ") if deleteme=='y': reason=input("Reason: [1] broke, [2] wrong drill direction, [3] wrong compass direction, [4] bad mark, [5] displaced block [6] other ") if reason=='1': description=' sample broke while drilling' if reason=='2': description=' wrong drill direction ' if reason=='3': description=' wrong compass direction ' if reason=='4': description=' bad mark in field' if reason=='5': description=' displaced block' if reason=='6': description=input('Enter brief reason for deletion: ') for samp in Samps: if samp['er_sample_name']==spec['er_sample_name']: samp['sample_orientation_flag']='b' samp['sample_description']=samp['sample_description']+' ## direction deleted because: '+description+'##' # mark description pmag.magic_write(sampfile,Samps,'er_samples') repeat=input("Mark another sample, this site? y/[n] ") if repeat=='y': k-=1 else: print('skipping site - not enough data with specified coordinate system') k+=1 print("sample flags stored in ",sampfile)
python
def main(): """ NAME site_edit_magic.py DESCRIPTION makes equal area projections site by site from pmag_specimens.txt file with Fisher confidence ellipse using McFadden and McElhinny (1988) technique for combining lines and planes allows testing and reject specimens for bad orientations SYNTAX site_edit_magic.py [command line options] OPTIONS -h: prints help and quits -f: specify pmag_specimen format file, default is pmag_specimens.txt -fsa: specify er_samples.txt file -exc: use existing pmag_criteria.txt file -N: reset all sample flags to good OUPUT edited er_samples.txt file """ dir_path='.' FIG={} # plot dictionary FIG['eqarea']=1 # eqarea is figure 1 in_file='pmag_specimens.txt' sampfile='er_samples.txt' out_file="" fmt,plot='svg',1 Crits="" M,N=180.,1 repeat='' renew=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index("-f") in_file=sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index("-fsa") sampfile=sys.argv[ind+1] if '-exc' in sys.argv: Crits,file_type=pmag.magic_read(dir_path+'/pmag_criteria.txt') for crit in Crits: if crit['pmag_criteria_code']=='DE-SPEC': M=float(crit['specimen_mad']) N=float(crit['specimen_n']) if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] if '-N' in sys.argv: renew=1 # if in_file[0]!="/":in_file=dir_path+'/'+in_file if sampfile[0]!="/":sampfile=dir_path+'/'+sampfile crd='s' Specs,file_type=pmag.magic_read(in_file) if file_type!='pmag_specimens': print(' bad pmag_specimen input file') sys.exit() Samps,file_type=pmag.magic_read(sampfile) if file_type!='er_samples': print(' bad er_samples input file') sys.exit() SO_methods=[] for rec in Samps: if 'sample_orientation_flag' not in list(rec.keys()): rec['sample_orientation_flag']='g' if 'sample_description' not in list(rec.keys()): rec['sample_description']='' if renew==1: rec['sample_orientation_flag']='g' description=rec['sample_description'] if '#' in description: newdesc="" c=0 while description[c]!='#' and c<len(description)-1: # look for first pound sign newdesc=newdesc+description[c] c+=1 while description[c]=='#': c+=1# skip first set of pound signs while description[c]!='#':c+=1 # find second set of pound signs while description[c]=='#' and c<len(description)-1:c+=1 # skip second set of pound signs while c<len(description)-1: # look for first pound sign newdesc=newdesc+description[c] c+=1 rec['sample_description']=newdesc # edit out old comment about orientations if "magic_method_codes" in rec: methlist=rec["magic_method_codes"] for meth in methlist.split(":"): if "SO" in meth.strip() and "SO-POM" not in meth.strip(): if meth.strip() not in SO_methods: SO_methods.append(meth.strip()) pmag.magic_write(sampfile,Samps,'er_samples') SO_priorities=pmag.set_priorities(SO_methods,0) sitelist=[] for rec in Specs: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() EQ={} EQ['eqarea']=1 pmagplotlib.plot_init(EQ['eqarea'],5,5) k=0 while k<len(sitelist): site=sitelist[k] print(site) data=[] ThisSiteSpecs=pmag.get_dictitem(Specs,'er_site_name',site,'T') ThisSiteSpecs=pmag.get_dictitem(ThisSiteSpecs,'specimen_tilt_correction','-1','T') # get all the unoriented data for spec in ThisSiteSpecs: if spec['specimen_mad']!="" and spec['specimen_n']!="" and float(spec['specimen_mad'])<=M and float(spec['specimen_n'])>=N: # good spec, now get orientation.... redo,p=1,0 if len(SO_methods)<=1: az_type=SO_methods[0] orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type) redo=0 while redo==1: if p>=len(SO_priorities): print("no orientation data for ",spec['er_sample_name']) orient["sample_azimuth"]="" orient["sample_dip"]="" redo=0 else: az_type=SO_methods[SO_methods.index(SO_priorities[p])] orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type) if orient["sample_azimuth"] !="": redo=0 p+=1 if orient['sample_azimuth']!="": rec={} for key in list(spec.keys()):rec[key]=spec[key] rec['dec'],rec['inc']=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(orient['sample_azimuth']),float(orient['sample_dip'])) rec["tilt_correction"]='1' crd='g' rec['sample_azimuth']=orient['sample_azimuth'] rec['sample_dip']=orient['sample_dip'] data.append(rec) if len(data)>2: print('specimen, dec, inc, n_meas/MAD,| method codes ') for i in range(len(data)): print('%s: %7.1f %7.1f %s / %s | %s' % (data[i]['er_specimen_name'], data[i]['dec'], data[i]['inc'], data[i]['specimen_n'], data[i]['specimen_mad'], data[i]['magic_method_codes'])) fpars=pmag.dolnp(data,'specimen_direction_type') print("\n Site lines planes kappa a95 dec inc") print(site, fpars["n_lines"], fpars["n_planes"], fpars["K"], fpars["alpha95"], fpars["dec"], fpars["inc"], fpars["R"]) if out_file!="": if float(fpars["alpha95"])<=acutoff and float(fpars["K"])>=kcutoff: out.write('%s %s %s\n'%(fpars["dec"],fpars['inc'],fpars['alpha95'])) pmagplotlib.plot_lnp(EQ['eqarea'],site,data,fpars,'specimen_direction_type') pmagplotlib.draw_figs(EQ) if k!=0 and repeat!='y': ans=input("s[a]ve plot, [q]uit, [e]dit specimens, [p]revious site, <return> to continue:\n ") elif k==0 and repeat!='y': ans=input("s[a]ve plot, [q]uit, [e]dit specimens, <return> to continue:\n ") if ans=="p": k-=2 if ans=="a": files={} files['eqarea']=site+'_'+crd+'_eqarea'+'.'+fmt pmagplotlib.save_plots(EQ,files) if ans=="q": sys.exit() if ans=="e" and Samps==[]: print("can't edit samples without orientation file, sorry") elif ans=="e": # k-=1 testspec=input("Enter name of specimen to check: ") for spec in data: if spec['er_specimen_name']==testspec: # first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,-float(spec['sample_dip'])) XY=pmag.dimap(d,i) pmagplotlib.plot_xy(EQ['eqarea'],[XY[0]],[XY[1]],sym='g^') # first test wrong end of compass (take az-180.) d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,float(spec['sample_dip'])) XY=pmag.dimap(d,i) pmagplotlib.plot_xy(EQ['eqarea'],[XY[0]],[XY[1]],sym='kv') # did the sample spin in the hole? # now spin around specimen's z X_up,Y_up,X_d,Y_d=[],[],[],[] for incr in range(0,360,5): d,i=pmag.dogeo(float(spec['specimen_dec'])+incr,float(spec['specimen_inc']),float(spec['sample_azimuth']),float(spec['sample_dip'])) XY=pmag.dimap(d,i) if i>=0: X_d.append(XY[0]) Y_d.append(XY[1]) else: X_up.append(XY[0]) Y_up.append(XY[1]) pmagplotlib.plot_xy(EQ['eqarea'],X_d,Y_d,sym='b.') pmagplotlib.plot_xy(EQ['eqarea'],X_up,Y_up,sym='c.') pmagplotlib.draw_figs(EQ) break print("Triangle: wrong arrow for drill direction.") print("Delta: wrong end of compass.") print("Small circle: wrong mark on sample. [cyan upper hemisphere]") deleteme=input("Mark this sample as bad? y/[n] ") if deleteme=='y': reason=input("Reason: [1] broke, [2] wrong drill direction, [3] wrong compass direction, [4] bad mark, [5] displaced block [6] other ") if reason=='1': description=' sample broke while drilling' if reason=='2': description=' wrong drill direction ' if reason=='3': description=' wrong compass direction ' if reason=='4': description=' bad mark in field' if reason=='5': description=' displaced block' if reason=='6': description=input('Enter brief reason for deletion: ') for samp in Samps: if samp['er_sample_name']==spec['er_sample_name']: samp['sample_orientation_flag']='b' samp['sample_description']=samp['sample_description']+' ## direction deleted because: '+description+'##' # mark description pmag.magic_write(sampfile,Samps,'er_samples') repeat=input("Mark another sample, this site? y/[n] ") if repeat=='y': k-=1 else: print('skipping site - not enough data with specified coordinate system') k+=1 print("sample flags stored in ",sampfile)
NAME site_edit_magic.py DESCRIPTION makes equal area projections site by site from pmag_specimens.txt file with Fisher confidence ellipse using McFadden and McElhinny (1988) technique for combining lines and planes allows testing and reject specimens for bad orientations SYNTAX site_edit_magic.py [command line options] OPTIONS -h: prints help and quits -f: specify pmag_specimen format file, default is pmag_specimens.txt -fsa: specify er_samples.txt file -exc: use existing pmag_criteria.txt file -N: reset all sample flags to good OUPUT edited er_samples.txt file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/site_edit_magic.py#L11-L235
PmagPy/PmagPy
programs/lowes.py
main
def main(): """ NAME lowes.py DESCRIPTION Plots Lowes spectrum for input IGRF-like file SYNTAX lowes.py [options] OPTIONS: -h prints help message and quits -f FILE specify file name with input data -d date specify desired date -r read desired dates from file -n normalize to dipole term INPUT FORMAT: l m g h """ norm=0 if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=np.loadtxt(file) dates=[2000] elif '-d' in sys.argv: ind=sys.argv.index('-d') dates=[float(sys.argv[ind+1])] elif '-r' in sys.argv: ind=sys.argv.index('-r') dates=np.loadtxt(sys.argv[ind+1]) if '-n' in sys.argv: norm=1 if len(sys.argv)!=0 and '-h' in sys.argv: print(main.__doc__) sys.exit() plt.semilogy() plt.xlabel('Degree (l)') plt.ylabel('Power ($\mu$T$^2$)') labels=[] for date in dates: if date!=2000: gh=pmag.doigrf(0,0,0,date,coeffs=1) data=pmag.unpack(gh) Ls,Rs=pmag.lowes(data) labels.append(str(date)) print(date,Rs[0]) if norm==1: Rs=old_div(np.array(Rs),Rs[0]) #plt.plot(Ls,Rs,'ro') plt.plot(Ls,Rs,linewidth=2) plt.legend(labels,'upper right') plt.draw() input()
python
def main(): """ NAME lowes.py DESCRIPTION Plots Lowes spectrum for input IGRF-like file SYNTAX lowes.py [options] OPTIONS: -h prints help message and quits -f FILE specify file name with input data -d date specify desired date -r read desired dates from file -n normalize to dipole term INPUT FORMAT: l m g h """ norm=0 if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=np.loadtxt(file) dates=[2000] elif '-d' in sys.argv: ind=sys.argv.index('-d') dates=[float(sys.argv[ind+1])] elif '-r' in sys.argv: ind=sys.argv.index('-r') dates=np.loadtxt(sys.argv[ind+1]) if '-n' in sys.argv: norm=1 if len(sys.argv)!=0 and '-h' in sys.argv: print(main.__doc__) sys.exit() plt.semilogy() plt.xlabel('Degree (l)') plt.ylabel('Power ($\mu$T$^2$)') labels=[] for date in dates: if date!=2000: gh=pmag.doigrf(0,0,0,date,coeffs=1) data=pmag.unpack(gh) Ls,Rs=pmag.lowes(data) labels.append(str(date)) print(date,Rs[0]) if norm==1: Rs=old_div(np.array(Rs),Rs[0]) #plt.plot(Ls,Rs,'ro') plt.plot(Ls,Rs,linewidth=2) plt.legend(labels,'upper right') plt.draw() input()
NAME lowes.py DESCRIPTION Plots Lowes spectrum for input IGRF-like file SYNTAX lowes.py [options] OPTIONS: -h prints help message and quits -f FILE specify file name with input data -d date specify desired date -r read desired dates from file -n normalize to dipole term INPUT FORMAT: l m g h
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/lowes.py#L15-L66
PmagPy/PmagPy
data_files/LearningPython/main.py
main
def main(): """This program prints doubled values!""" import numpy X=arange(.1,10.1,.2) #make a list of numbers Y=myfunc(X) # calls myfunc with argument X for i in range(len(X)): print(X[i],Y[i])
python
def main(): """This program prints doubled values!""" import numpy X=arange(.1,10.1,.2) #make a list of numbers Y=myfunc(X) # calls myfunc with argument X for i in range(len(X)): print(X[i],Y[i])
This program prints doubled values!
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/data_files/LearningPython/main.py#L11-L17
PmagPy/PmagPy
programs/common_mean.py
main
def main(): """ NAME common_mean.py DESCRIPTION calculates bootstrap statistics to test for common mean INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX common_mean.py [command line options] OPTIONS -h prints help message and quits -f FILE, input file -f2 FILE, optional second file to compare with first file -dir D I, optional direction to compare with input file -fmt [svg,jpg,pnd,pdf] set figure format [default is svg] NOTES must have either F2 OR dir but not both """ d,i,file2="","","" fmt,plot='svg',0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot=1 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') d=float(sys.argv[ind+1]) i=float(sys.argv[ind+2]) D1=numpy.loadtxt(file1,dtype=numpy.float) if file2!="": D2=numpy.loadtxt(file2,dtype=numpy.float) # counter,NumSims=0,1000 # # get bootstrapped means for first data set # print("Doing first set of directions, please be patient..") BDI1=pmag.di_boot(D1) # # convert to cartesian coordinates X1,X2, Y1,Y2 and Z1, Z2 # if d=="": # repeat for second data set print("Doing second set of directions, please be patient..") BDI2=pmag.di_boot(D2) else: BDI2=[] # set up plots CDF={'X':1,'Y':2,'Z':3} pmagplotlib.plot_init(CDF['X'],4,4) pmagplotlib.plot_init(CDF['Y'],4,4) pmagplotlib.plot_init(CDF['Z'],4,4) # draw the cdfs pmagplotlib.plot_com(CDF,BDI1,BDI2,[d,i]) files={} files['X']='CD_X.'+fmt files['Y']='CD_Y.'+fmt files['Z']='CD_Z.'+fmt if plot==0: pmagplotlib.draw_figs(CDF) ans=input("S[a]ve plots, <Return> to quit ") if ans=="a": pmagplotlib.save_plots(CDF,files) else: sys.exit() else: pmagplotlib.save_plots(CDF,files) sys.exit()
python
def main(): """ NAME common_mean.py DESCRIPTION calculates bootstrap statistics to test for common mean INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX common_mean.py [command line options] OPTIONS -h prints help message and quits -f FILE, input file -f2 FILE, optional second file to compare with first file -dir D I, optional direction to compare with input file -fmt [svg,jpg,pnd,pdf] set figure format [default is svg] NOTES must have either F2 OR dir but not both """ d,i,file2="","","" fmt,plot='svg',0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot=1 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') d=float(sys.argv[ind+1]) i=float(sys.argv[ind+2]) D1=numpy.loadtxt(file1,dtype=numpy.float) if file2!="": D2=numpy.loadtxt(file2,dtype=numpy.float) # counter,NumSims=0,1000 # # get bootstrapped means for first data set # print("Doing first set of directions, please be patient..") BDI1=pmag.di_boot(D1) # # convert to cartesian coordinates X1,X2, Y1,Y2 and Z1, Z2 # if d=="": # repeat for second data set print("Doing second set of directions, please be patient..") BDI2=pmag.di_boot(D2) else: BDI2=[] # set up plots CDF={'X':1,'Y':2,'Z':3} pmagplotlib.plot_init(CDF['X'],4,4) pmagplotlib.plot_init(CDF['Y'],4,4) pmagplotlib.plot_init(CDF['Z'],4,4) # draw the cdfs pmagplotlib.plot_com(CDF,BDI1,BDI2,[d,i]) files={} files['X']='CD_X.'+fmt files['Y']='CD_Y.'+fmt files['Z']='CD_Z.'+fmt if plot==0: pmagplotlib.draw_figs(CDF) ans=input("S[a]ve plots, <Return> to quit ") if ans=="a": pmagplotlib.save_plots(CDF,files) else: sys.exit() else: pmagplotlib.save_plots(CDF,files) sys.exit()
NAME common_mean.py DESCRIPTION calculates bootstrap statistics to test for common mean INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX common_mean.py [command line options] OPTIONS -h prints help message and quits -f FILE, input file -f2 FILE, optional second file to compare with first file -dir D I, optional direction to compare with input file -fmt [svg,jpg,pnd,pdf] set figure format [default is svg] NOTES must have either F2 OR dir but not both
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/common_mean.py#L12-L94
PmagPy/PmagPy
SPD/lib/lib_curvature.py
AraiCurvature
def AraiCurvature(x=x,y=y): """ input: list of x points, list of y points output: k, a, b, SSE. curvature, circle center, and SSE Function for calculating the radius of the best fit circle to a set of x-y coordinates. Paterson, G. A., (2011), A simple test for the presence of multidomain behaviour during paleointensity experiments, J. Geophys. Res., in press, doi: 10.1029/2011JB008369 """ # makes sure all values are floats, then norms them by largest value X = numpy.array(list(map(float, x))) X = old_div(X, max(X)) Y = numpy.array(list(map(float, y))) Y = old_div(Y, max(Y)) XY = numpy.array(list(zip(X, Y))) #Provide the intitial estimate E1=TaubinSVD(XY); #Determine the iterative solution E2=LMA(XY, E1); estimates=[E2[2], E2[0], E2[1]]; best_a = E2[0] best_b = E2[1] best_r = E2[2] if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y): k = old_div(-1.,best_r) else: k = old_div(1.,best_r) SSE = get_SSE(best_a, best_b, best_r, X, Y) return k, best_a, best_b, SSE
python
def AraiCurvature(x=x,y=y): """ input: list of x points, list of y points output: k, a, b, SSE. curvature, circle center, and SSE Function for calculating the radius of the best fit circle to a set of x-y coordinates. Paterson, G. A., (2011), A simple test for the presence of multidomain behaviour during paleointensity experiments, J. Geophys. Res., in press, doi: 10.1029/2011JB008369 """ # makes sure all values are floats, then norms them by largest value X = numpy.array(list(map(float, x))) X = old_div(X, max(X)) Y = numpy.array(list(map(float, y))) Y = old_div(Y, max(Y)) XY = numpy.array(list(zip(X, Y))) #Provide the intitial estimate E1=TaubinSVD(XY); #Determine the iterative solution E2=LMA(XY, E1); estimates=[E2[2], E2[0], E2[1]]; best_a = E2[0] best_b = E2[1] best_r = E2[2] if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y): k = old_div(-1.,best_r) else: k = old_div(1.,best_r) SSE = get_SSE(best_a, best_b, best_r, X, Y) return k, best_a, best_b, SSE
input: list of x points, list of y points output: k, a, b, SSE. curvature, circle center, and SSE Function for calculating the radius of the best fit circle to a set of x-y coordinates. Paterson, G. A., (2011), A simple test for the presence of multidomain behaviour during paleointensity experiments, J. Geophys. Res., in press, doi: 10.1029/2011JB008369
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_curvature.py#L19-L55
PmagPy/PmagPy
SPD/lib/lib_curvature.py
TaubinSVD
def TaubinSVD(XY): """ algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) """ XY = numpy.array(XY) X = XY[:,0] - numpy.mean(XY[:,0]) # norming points by x avg Y = XY[:,1] - numpy.mean(XY[:,1]) # norming points by y avg centroid = [numpy.mean(XY[:,0]), numpy.mean(XY[:,1])] Z = X * X + Y * Y Zmean = numpy.mean(Z) Z0 = old_div((Z - Zmean), (2. * numpy.sqrt(Zmean))) ZXY = numpy.array([Z0, X, Y]).T U, S, V = numpy.linalg.svd(ZXY, full_matrices=False) # V = V.transpose() A = V[:,2] A[0] = old_div(A[0], (2. * numpy.sqrt(Zmean))) A = numpy.concatenate([A, [(-1. * Zmean * A[0])]], axis=0) a, b = (-1 * A[1:3]) / A[0] / 2 + centroid r = numpy.sqrt(A[1]*A[1]+A[2]*A[2]-4*A[0]*A[3])/abs(A[0])/2; return a,b,r
python
def TaubinSVD(XY): """ algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) """ XY = numpy.array(XY) X = XY[:,0] - numpy.mean(XY[:,0]) # norming points by x avg Y = XY[:,1] - numpy.mean(XY[:,1]) # norming points by y avg centroid = [numpy.mean(XY[:,0]), numpy.mean(XY[:,1])] Z = X * X + Y * Y Zmean = numpy.mean(Z) Z0 = old_div((Z - Zmean), (2. * numpy.sqrt(Zmean))) ZXY = numpy.array([Z0, X, Y]).T U, S, V = numpy.linalg.svd(ZXY, full_matrices=False) # V = V.transpose() A = V[:,2] A[0] = old_div(A[0], (2. * numpy.sqrt(Zmean))) A = numpy.concatenate([A, [(-1. * Zmean * A[0])]], axis=0) a, b = (-1 * A[1:3]) / A[0] / 2 + centroid r = numpy.sqrt(A[1]*A[1]+A[2]*A[2]-4*A[0]*A[3])/abs(A[0])/2; return a,b,r
algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_curvature.py#L58-L85
PmagPy/PmagPy
SPD/lib/lib_curvature.py
VarCircle
def VarCircle(XY, Par): # must have at least 4 sets of xy points or else division by zero occurs """ computing the sample variance of distances from data points (XY) to the circle Par = [a b R] """ if type(XY) != numpy.ndarray: XY = numpy.array(XY) n = len(XY) if n < 4: raise Warning("Circle cannot be calculated with less than 4 data points. Please include more data") Dx = XY[:,0] - Par[0] Dy = XY[:,1] - Par[1] D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2] result = old_div(numpy.dot(D, D),(n-3)) return result
python
def VarCircle(XY, Par): # must have at least 4 sets of xy points or else division by zero occurs """ computing the sample variance of distances from data points (XY) to the circle Par = [a b R] """ if type(XY) != numpy.ndarray: XY = numpy.array(XY) n = len(XY) if n < 4: raise Warning("Circle cannot be calculated with less than 4 data points. Please include more data") Dx = XY[:,0] - Par[0] Dy = XY[:,1] - Par[1] D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2] result = old_div(numpy.dot(D, D),(n-3)) return result
computing the sample variance of distances from data points (XY) to the circle Par = [a b R]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_curvature.py#L88-L101
PmagPy/PmagPy
SPD/lib/lib_curvature.py
LMA
def LMA(XY,ParIni): """ input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005) """ factorUp=10 factorDown=0.04 lambda0=0.01 epsilon=0.000001 IterMAX = 50 AdjustMax = 20 Xshift=0 Yshift=0 dX=1 dY=0; n = len(XY); # number of data points anew = ParIni[0] + Xshift bnew = ParIni[1] + Yshift Anew = old_div(1.,(2.*ParIni[2])) aabb = anew*anew + bnew*bnew Fnew = (aabb - ParIni[2]*ParIni[2])*Anew Tnew = numpy.arccos(old_div(-anew,numpy.sqrt(aabb))) if bnew > 0: Tnew = 2*numpy.pi - Tnew VarNew = VarCircle(XY,ParIni) VarLambda = lambda0; finish = 0; for it in range(0,IterMAX): Aold = Anew Fold = Fnew Told = Tnew VarOld = VarNew H = numpy.sqrt(1+4*Aold*Fold); aold = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; bold = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; Rold = old_div(1,abs(Aold+Aold)); DD = 1 + 4*Aold*Fold; D = numpy.sqrt(DD); CT = numpy.cos(Told); ST = numpy.sin(Told); H11=0; H12=0; H13=0; H22=0; H23=0; H33=0; F1=0; F2=0; F3=0; for i in range(0,n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; Vi =-Xi*ST + Yi*CT; ADF = Aold*Zi + D*Ui + Fold; SQ = numpy.sqrt(4*Aold*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; FACT = 2/DEN*(1 - Aold*Gi/SQ); DGDAi = FACT*(Zi + 2*Fold*Ui/D) - Gi*Gi/SQ; DGDFi = FACT*(2*Aold*Ui/D + 1); DGDTi = FACT*D*Vi; H11 = H11 + DGDAi*DGDAi; H12 = H12 + DGDAi*DGDFi; H13 = H13 + DGDAi*DGDTi; H22 = H22 + DGDFi*DGDFi; H23 = H23 + DGDFi*DGDTi; H33 = H33 + DGDTi*DGDTi; F1 = F1 + Gi*DGDAi; F2 = F2 + Gi*DGDFi; F3 = F3 + Gi*DGDTi; for adjust in range(1,AdjustMax): # Cholesly decomposition G11 = numpy.sqrt(H11 + VarLambda); G12 = old_div(H12,G11) G13 = old_div(H13,G11) G22 = numpy.sqrt(H22 + VarLambda - G12*G12); G23 = old_div((H23 - G12*G13),G22); G33 = numpy.sqrt(H33 + VarLambda - G13*G13 - G23*G23); D1 = old_div(F1,G11); D2 = old_div((F2 - G12*D1),G22); D3 = old_div((F3 - G13*D1 - G23*D2),G33); dT = old_div(D3,G33); dF = old_div((D2 - G23*dT),G22) dA = old_div((D1 - G12*dF - G13*dT),G11) # updating the parameters Anew = Aold - dA; Fnew = Fold - dF; Tnew = Told - dT; if 1+4*Anew*Fnew < epsilon and VarLambda>1: Xshift = Xshift + dX; Yshift = Yshift + dY; H = numpy.sqrt(1+4*Aold*Fold); aTemp = -H*numpy.cos(Told)/(Aold+Aold) + dX; bTemp = -H*numpy.sin(Told)/(Aold+Aold) + dY; rTemp = old_div(1,abs(Aold+Aold)); Anew = old_div(1,(rTemp + rTemp)); aabb = aTemp*aTemp + bTemp*bTemp; Fnew = (aabb - rTemp*rTemp)*Anew; Tnew = numpy.arccos(old_div(-aTemp,numpy.sqrt(aabb))); if bTemp > 0: Tnew = 2*numpy.pi - Tnew; VarNew = VarOld; break; if 1+4*Anew*Fnew < epsilon: VarLambda = VarLambda * factorUp; continue; DD = 1 + 4*Anew*Fnew; D = numpy.sqrt(DD); CT = numpy.cos(Tnew); ST = numpy.sin(Tnew); GG = 0; for i in range(0, n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; ADF = Anew*Zi + D*Ui + Fnew; SQ = numpy.sqrt(4*Anew*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; GG = GG + Gi*Gi; VarNew = old_div(GG,(n-3)); H = numpy.sqrt(1+4*Anew*Fnew); anew = -H*numpy.cos(Tnew)/(Anew+Anew) - Xshift; bnew = -H*numpy.sin(Tnew)/(Anew+Anew) - Yshift; Rnew = old_div(1,abs(Anew+Anew)); if VarNew <= VarOld: progress = old_div((abs(anew-aold) + abs(bnew-bold) + abs(Rnew-Rold)),(Rnew+Rold)); if progress < epsilon: Aold = Anew; Fold = Fnew; Told = Tnew; VarOld = VarNew # %#ok<NASGU> finish = 1; break; VarLambda = VarLambda * factorDown break else: # % no improvement VarLambda = VarLambda * factorUp; continue; if finish == 1: break H = numpy.sqrt(1+4*Aold*Fold); result_a = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; result_b = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; result_r = old_div(1,abs(Aold+Aold)); return result_a, result_b, result_r
python
def LMA(XY,ParIni): """ input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005) """ factorUp=10 factorDown=0.04 lambda0=0.01 epsilon=0.000001 IterMAX = 50 AdjustMax = 20 Xshift=0 Yshift=0 dX=1 dY=0; n = len(XY); # number of data points anew = ParIni[0] + Xshift bnew = ParIni[1] + Yshift Anew = old_div(1.,(2.*ParIni[2])) aabb = anew*anew + bnew*bnew Fnew = (aabb - ParIni[2]*ParIni[2])*Anew Tnew = numpy.arccos(old_div(-anew,numpy.sqrt(aabb))) if bnew > 0: Tnew = 2*numpy.pi - Tnew VarNew = VarCircle(XY,ParIni) VarLambda = lambda0; finish = 0; for it in range(0,IterMAX): Aold = Anew Fold = Fnew Told = Tnew VarOld = VarNew H = numpy.sqrt(1+4*Aold*Fold); aold = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; bold = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; Rold = old_div(1,abs(Aold+Aold)); DD = 1 + 4*Aold*Fold; D = numpy.sqrt(DD); CT = numpy.cos(Told); ST = numpy.sin(Told); H11=0; H12=0; H13=0; H22=0; H23=0; H33=0; F1=0; F2=0; F3=0; for i in range(0,n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; Vi =-Xi*ST + Yi*CT; ADF = Aold*Zi + D*Ui + Fold; SQ = numpy.sqrt(4*Aold*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; FACT = 2/DEN*(1 - Aold*Gi/SQ); DGDAi = FACT*(Zi + 2*Fold*Ui/D) - Gi*Gi/SQ; DGDFi = FACT*(2*Aold*Ui/D + 1); DGDTi = FACT*D*Vi; H11 = H11 + DGDAi*DGDAi; H12 = H12 + DGDAi*DGDFi; H13 = H13 + DGDAi*DGDTi; H22 = H22 + DGDFi*DGDFi; H23 = H23 + DGDFi*DGDTi; H33 = H33 + DGDTi*DGDTi; F1 = F1 + Gi*DGDAi; F2 = F2 + Gi*DGDFi; F3 = F3 + Gi*DGDTi; for adjust in range(1,AdjustMax): # Cholesly decomposition G11 = numpy.sqrt(H11 + VarLambda); G12 = old_div(H12,G11) G13 = old_div(H13,G11) G22 = numpy.sqrt(H22 + VarLambda - G12*G12); G23 = old_div((H23 - G12*G13),G22); G33 = numpy.sqrt(H33 + VarLambda - G13*G13 - G23*G23); D1 = old_div(F1,G11); D2 = old_div((F2 - G12*D1),G22); D3 = old_div((F3 - G13*D1 - G23*D2),G33); dT = old_div(D3,G33); dF = old_div((D2 - G23*dT),G22) dA = old_div((D1 - G12*dF - G13*dT),G11) # updating the parameters Anew = Aold - dA; Fnew = Fold - dF; Tnew = Told - dT; if 1+4*Anew*Fnew < epsilon and VarLambda>1: Xshift = Xshift + dX; Yshift = Yshift + dY; H = numpy.sqrt(1+4*Aold*Fold); aTemp = -H*numpy.cos(Told)/(Aold+Aold) + dX; bTemp = -H*numpy.sin(Told)/(Aold+Aold) + dY; rTemp = old_div(1,abs(Aold+Aold)); Anew = old_div(1,(rTemp + rTemp)); aabb = aTemp*aTemp + bTemp*bTemp; Fnew = (aabb - rTemp*rTemp)*Anew; Tnew = numpy.arccos(old_div(-aTemp,numpy.sqrt(aabb))); if bTemp > 0: Tnew = 2*numpy.pi - Tnew; VarNew = VarOld; break; if 1+4*Anew*Fnew < epsilon: VarLambda = VarLambda * factorUp; continue; DD = 1 + 4*Anew*Fnew; D = numpy.sqrt(DD); CT = numpy.cos(Tnew); ST = numpy.sin(Tnew); GG = 0; for i in range(0, n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; ADF = Anew*Zi + D*Ui + Fnew; SQ = numpy.sqrt(4*Anew*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; GG = GG + Gi*Gi; VarNew = old_div(GG,(n-3)); H = numpy.sqrt(1+4*Anew*Fnew); anew = -H*numpy.cos(Tnew)/(Anew+Anew) - Xshift; bnew = -H*numpy.sin(Tnew)/(Anew+Anew) - Yshift; Rnew = old_div(1,abs(Anew+Anew)); if VarNew <= VarOld: progress = old_div((abs(anew-aold) + abs(bnew-bold) + abs(Rnew-Rold)),(Rnew+Rold)); if progress < epsilon: Aold = Anew; Fold = Fnew; Told = Tnew; VarOld = VarNew # %#ok<NASGU> finish = 1; break; VarLambda = VarLambda * factorDown break else: # % no improvement VarLambda = VarLambda * factorUp; continue; if finish == 1: break H = numpy.sqrt(1+4*Aold*Fold); result_a = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; result_b = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; result_r = old_div(1,abs(Aold+Aold)); return result_a, result_b, result_r
input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_curvature.py#L104-L293
PmagPy/PmagPy
SPD/lib/lib_curvature.py
get_SSE
def get_SSE(a,b,r,x,y): """ input: a, b, r, x, y. circle center, radius, xpts, ypts output: SSE """ SSE = 0 X = numpy.array(x) Y = numpy.array(y) for i in range(len(X)): x = X[i] y = Y[i] v = (numpy.sqrt( (x -a)**2 + (y - b)**2 ) - r )**2 SSE += v return SSE
python
def get_SSE(a,b,r,x,y): """ input: a, b, r, x, y. circle center, radius, xpts, ypts output: SSE """ SSE = 0 X = numpy.array(x) Y = numpy.array(y) for i in range(len(X)): x = X[i] y = Y[i] v = (numpy.sqrt( (x -a)**2 + (y - b)**2 ) - r )**2 SSE += v return SSE
input: a, b, r, x, y. circle center, radius, xpts, ypts output: SSE
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_curvature.py#L297-L310
PmagPy/PmagPy
programs/sundec.py
main
def main(): """ NAME sundec.py DESCRIPTION calculates calculates declination from sun compass measurements INPUT FORMAT GMT_offset, lat,long,year,month,day,hours,minutes,shadow_angle where GMT_offset is the hours to subtract from local time for GMT. SYNTAX sundec.py [-i][-f FILE] [< filename ] OPTIONS -i for interactive data entry -f FILE to set file name on command line otherwise put data in input format in space delimited file OUTPUT: declination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line) sys.exit() if '-i' in sys.argv: while 1: # repeat this block until program killed sundata={} # dictionary with sundata in it print ("Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): ") try: sundata["delta_u"]=input("<cntl-D> to quit ") except: print("\n Good-bye\n") sys.exit() date="" date=date+input("Year: <cntl-D to quit> ") date=date+":"+input("Month: ") date=date+":"+input("Day: ") date=date+":"+input("hour: ") date=date+":"+input("minute: ") sundata["date"]=date sundata["lat"]=input("Latitude of sampling site (negative in southern hemisphere): ") sundata["lon"]=input("Longitude of sampling site (negative for western hemisphere): ") sundata["shadow_angle"]=input("Shadow angle: ") print('%7.1f'%(pmag.dosundec(sundata))) # call sundec function from pmag module and print else: data=sys.stdin.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line)
python
def main(): """ NAME sundec.py DESCRIPTION calculates calculates declination from sun compass measurements INPUT FORMAT GMT_offset, lat,long,year,month,day,hours,minutes,shadow_angle where GMT_offset is the hours to subtract from local time for GMT. SYNTAX sundec.py [-i][-f FILE] [< filename ] OPTIONS -i for interactive data entry -f FILE to set file name on command line otherwise put data in input format in space delimited file OUTPUT: declination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line) sys.exit() if '-i' in sys.argv: while 1: # repeat this block until program killed sundata={} # dictionary with sundata in it print ("Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): ") try: sundata["delta_u"]=input("<cntl-D> to quit ") except: print("\n Good-bye\n") sys.exit() date="" date=date+input("Year: <cntl-D to quit> ") date=date+":"+input("Month: ") date=date+":"+input("Day: ") date=date+":"+input("hour: ") date=date+":"+input("minute: ") sundata["date"]=date sundata["lat"]=input("Latitude of sampling site (negative in southern hemisphere): ") sundata["lon"]=input("Longitude of sampling site (negative for western hemisphere): ") sundata["shadow_angle"]=input("Shadow angle: ") print('%7.1f'%(pmag.dosundec(sundata))) # call sundec function from pmag module and print else: data=sys.stdin.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line)
NAME sundec.py DESCRIPTION calculates calculates declination from sun compass measurements INPUT FORMAT GMT_offset, lat,long,year,month,day,hours,minutes,shadow_angle where GMT_offset is the hours to subtract from local time for GMT. SYNTAX sundec.py [-i][-f FILE] [< filename ] OPTIONS -i for interactive data entry -f FILE to set file name on command line otherwise put data in input format in space delimited file OUTPUT: declination
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/sundec.py#L23-L79
PmagPy/PmagPy
programs/deprecated/sites_locations.py
main
def main(): """ NAME sites_locations.py DESCRIPTION reads in er_sites.txt file and finds all locations and bounds of locations outputs er_locations.txt file SYNTAX sites_locations.py [command line options] OPTIONS -h prints help message and quits -f: specimen input er_sites format file, default is "er_sites.txt" -F: locations table: default is "er_locations.txt" """ # set defaults site_file="er_sites.txt" loc_file="er_locations.txt" Names,user=[],"unknown" Done=[] version_num=pmag.get_version() args=sys.argv dir_path='.' # get command line stuff if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if '-f' in args: ind=args.index("-f") site_file=args[ind+1] if '-F' in args: ind=args.index("-F") loc_file=args[ind+1] # site_file=dir_path+'/'+site_file loc_file=dir_path+'/'+loc_file Sites,file_type=pmag.magic_read(site_file) if file_type != 'er_sites': print(file_type) print(file_type,"This is not a valid er_sites file ") sys.exit() # read in site data # LocNames,Locations=[],[] for site in Sites: if site['er_location_name'] not in LocNames: # new location name LocNames.append(site['er_location_name']) sites_locs=pmag.get_dictitem(Sites,'er_location_name',site['er_location_name'],'T') # get all sites for this loc lats=pmag.get_dictkey(sites_locs,'site_lat','f') # get all the latitudes as floats lons=pmag.get_dictkey(sites_locs,'site_lon','f') # get all the longitudes as floats LocRec={'er_citation_names':'This study','er_location_name':site['er_location_name'],'location_type':''} LocRec['location_begin_lat']=str(min(lats)) LocRec['location_end_lat']=str(max(lats)) LocRec['location_begin_lon']=str(min(lons)) LocRec['location_end_lon']=str(max(lons)) Locations.append(LocRec) if len(Locations)>0: pmag.magic_write(loc_file,Locations,"er_locations") print("Locations written to: ",loc_file)
python
def main(): """ NAME sites_locations.py DESCRIPTION reads in er_sites.txt file and finds all locations and bounds of locations outputs er_locations.txt file SYNTAX sites_locations.py [command line options] OPTIONS -h prints help message and quits -f: specimen input er_sites format file, default is "er_sites.txt" -F: locations table: default is "er_locations.txt" """ # set defaults site_file="er_sites.txt" loc_file="er_locations.txt" Names,user=[],"unknown" Done=[] version_num=pmag.get_version() args=sys.argv dir_path='.' # get command line stuff if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if '-f' in args: ind=args.index("-f") site_file=args[ind+1] if '-F' in args: ind=args.index("-F") loc_file=args[ind+1] # site_file=dir_path+'/'+site_file loc_file=dir_path+'/'+loc_file Sites,file_type=pmag.magic_read(site_file) if file_type != 'er_sites': print(file_type) print(file_type,"This is not a valid er_sites file ") sys.exit() # read in site data # LocNames,Locations=[],[] for site in Sites: if site['er_location_name'] not in LocNames: # new location name LocNames.append(site['er_location_name']) sites_locs=pmag.get_dictitem(Sites,'er_location_name',site['er_location_name'],'T') # get all sites for this loc lats=pmag.get_dictkey(sites_locs,'site_lat','f') # get all the latitudes as floats lons=pmag.get_dictkey(sites_locs,'site_lon','f') # get all the longitudes as floats LocRec={'er_citation_names':'This study','er_location_name':site['er_location_name'],'location_type':''} LocRec['location_begin_lat']=str(min(lats)) LocRec['location_end_lat']=str(max(lats)) LocRec['location_begin_lon']=str(min(lons)) LocRec['location_end_lon']=str(max(lons)) Locations.append(LocRec) if len(Locations)>0: pmag.magic_write(loc_file,Locations,"er_locations") print("Locations written to: ",loc_file)
NAME sites_locations.py DESCRIPTION reads in er_sites.txt file and finds all locations and bounds of locations outputs er_locations.txt file SYNTAX sites_locations.py [command line options] OPTIONS -h prints help message and quits -f: specimen input er_sites format file, default is "er_sites.txt" -F: locations table: default is "er_locations.txt"
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/sites_locations.py#L7-L70
PmagPy/PmagPy
programs/zeq_magic2.py
main
def main(): """ NAME zeq_magic.py DESCRIPTION reads in magic_measurements formatted file, makes plots of remanence decay during demagnetization experiments. Reads in prior interpretations saved in a pmag_specimens formatted file and allows re-interpretations of best-fit lines and planes and saves (revised or new) interpretations in a pmag_specimens file. interpretations are saved in the coordinate system used. Also allows judicious editting of measurements to eliminate "bad" measurements. These are marked as such in the magic_measurements input file. they are NOT deleted, just ignored. SYNTAX zeq_magic.py [command line options] OPTIONS -h prints help message and quits -f MEASFILE: sets magic_measurements format input file, default: magic_measurements.txt -fsp SPECFILE: sets pmag_specimens format file with prior interpreations, default: zeq_specimens.txt -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve) -crd [s,g,t]: sets coordinate system, g=geographic, t=tilt adjusted, default: specimen coordinate system -fsa SAMPFILE: sets er_samples format file with orientation information, default: er_samples.txt -spc SPEC plots single specimen SPEC, saves plot with specified format with optional -dir settings and quits -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none beg: starting step for PCA calculation end: ending step for PCA calculation [L,P,F]: calculation type for line, plane or fisher mean must be used with -spc option -fmt FMT: set format of saved plot [png,svg,jpg] -A: suppresses averaging of replicate measurements, default is to average -sav: saves all plots without review SCREEN OUTPUT: Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type """ # initialize some variables doave,e,b=1,0,0 # average replicates, initial end and beginning step plots,coord=0,'s' noorient=0 version_num=pmag.get_version() verbose=pmagplotlib.verbose beg_pca,end_pca,direction_type="","",'l' calculation_type,fmt="","svg" user,spec_keys,locname="",[],'' plot_file="" sfile="" plot_file="" PriorRecs=[] # empty list for prior interpretations backup=0 specimen="" # can skip everything and just plot one specimen with bounds e,b if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] else: dir_path='.' inspec=dir_path+'/'+'zeq_specimens.txt' meas_file,geo,tilt,ask,samp_file=dir_path+'/magic_measurements.txt',0,0,0,dir_path+'/er_samples.txt' if '-f' in sys.argv: ind=sys.argv.index('-f') meas_file=dir_path+'/'+sys.argv[ind+1] if '-fsp' in sys.argv: ind=sys.argv.index('-fsp') inspec=dir_path+'/'+sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index('-fsa') samp_file=dir_path+'/'+sys.argv[ind+1] sfile='ok' if '-crd' in sys.argv: ind=sys.argv.index('-crd') coord=sys.argv[ind+1] if coord=='g' or coord=='t': samp_data,file_type=pmag.magic_read(samp_file) if file_type=='er_samples':sfile='ok' geo=1 if coord=='t':tilt=1 if '-spc' in sys.argv: ind=sys.argv.index('-spc') specimen=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') direction_type=sys.argv[ind+1] beg_pca=int(sys.argv[ind+2]) end_pca=int(sys.argv[ind+3]) if direction_type=='L':calculation_type='DE-BFL' if direction_type=='P':calculation_type='DE-BFP' if direction_type=='F':calculation_type='DE-FM' if '-Fp' in sys.argv: ind=sys.argv.index('-Fp') plot_file=dir_path+'/'+sys.argv[ind+1] if '-A' in sys.argv: doave=0 if '-sav' in sys.argv: plots=1 verbose=0 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] # first_save=1 meas_data,file_type=pmag.magic_read(meas_file) changeM,changeS=0,0 # check if data or interpretations have changed if file_type != 'magic_measurements': print(file_type) print(file_type,"This is not a valid magic_measurements file ") sys.exit() for rec in meas_data: if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"]="" methods="" tmp=rec["magic_method_codes"].replace(" ","").split(":") for meth in tmp: methods=methods+meth+":" rec["magic_method_codes"]=methods[:-1] # get rid of annoying spaces in Anthony's export files if "magic_instrument_codes" not in rec.keys() :rec["magic_instrument_codes"]="" PriorSpecs=[] PriorRecs,file_type=pmag.magic_read(inspec) if len(PriorRecs)==0: if verbose:print("starting new file ",inspec) for Rec in PriorRecs: if 'magic_software_packages' not in Rec.keys():Rec['magic_software_packages']="" if Rec['er_specimen_name'] not in PriorSpecs: if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A" PriorSpecs.append(Rec['er_specimen_name']) else: if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A" if "magic_method_codes" in Rec.keys(): methods=[] tmp=Rec["magic_method_codes"].replace(" ","").split(":") for meth in tmp: methods.append(meth) if 'DE-FM' in methods: Rec['calculation_type']='DE-FM' # this won't be imported but helps if 'DE-BFL' in methods: Rec['calculation_type']='DE-BFL' if 'DE-BFL-A' in methods: Rec['calculation_type']='DE-BFL-A' if 'DE-BFL-O' in methods: Rec['calculation_type']='DE-BFL-O' if 'DE-BFP' in methods: Rec['calculation_type']='DE-BFP' else: Rec['calculation_type']='DE-BFL' # default is to assume a best-fit line # # get list of unique specimen names # sids=pmag.get_specs(meas_data) # # set up plots, angle sets X axis to horizontal, direction_type 'l' is best-fit line # direction_type='p' is great circle # # # draw plots for sample s - default is just to step through zijderveld diagrams # # # define figure numbers for equal area, zijderveld, # and intensity vs. demagnetiztion step respectively ZED={} ZED['eqarea'],ZED['zijd'], ZED['demag']=1,2,3 pmagplotlib.plot_init(ZED['eqarea'],5,5) pmagplotlib.plot_init(ZED['zijd'],6,5) pmagplotlib.plot_init(ZED['demag'],5,5) save_pca=0 if specimen=="": k = 0 else: k=sids.index(specimen) angle,direction_type="","" setangle=0 CurrRecs=[] while k < len(sids): CurrRecs=[] if setangle==0:angle="" method_codes,inst_code=[],"" s=sids[k] PmagSpecRec={} PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec['magic_software_packages']=version_num PmagSpecRec['specimen_description']="" PmagSpecRec['magic_method_codes']="" if verbose and s!="":print(s, k , 'out of ',len(sids)) # # collect info for the PmagSpecRec dictionary # s_meas=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') # fish out this specimen s_meas=pmag.get_dictitem(s_meas,'magic_method_codes','Z','has') # fish out zero field steps if len(s_meas)>0: for rec in s_meas: # fix up a few things for the output record PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] # copy over instruments PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] locname=rec['er_location_name'] if 'er_expedition_name' in rec.keys(): PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] PmagSpecRec["magic_method_codes"]=rec["magic_method_codes"] if "magic_experiment_name" not in rec.keys(): PmagSpecRec["magic_experiment_names"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] break # # find the data from the meas_data file for this specimen # data,units=pmag.find_dmag_rec(s,meas_data) PmagSpecRec["measurement_step_unit"]= units u=units.split(":") if "T" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-AF" if "K" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-T" if "J" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-M" # # find prior interpretation # if len(CurrRecs)==0: # check if already in beg_pca,end_pca="","" calculation_type="" if inspec !="": if verbose: print(" looking up previous interpretations...") precs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'T') # get all the prior recs with this specimen name precs=pmag.get_dictitem(precs,'magic_method_codes','LP-DIR','has') # get the directional data PriorRecs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'F') # take them all out of prior recs # get the ones that meet the current coordinate system for prec in precs: if 'specimen_tilt_correction' not in prec.keys() or prec['specimen_tilt_correction']=='-1': crd='s' elif prec['specimen_tilt_correction']=='0': crd='g' elif prec['specimen_tilt_correction']=='100': crd='t' else: crd='?' CurrRec={} for key in prec.keys():CurrRec[key]=prec[key] CurrRecs.append(CurrRec) # put in CurrRecs method_codes= CurrRec["magic_method_codes"].replace(" ","").split(':') calculation_type='DE-BFL' if 'DE-FM' in method_codes: calculation_type='DE-FM' if 'DE-BFP' in method_codes: calculation_type='DE-BFP' if 'DE-BFL-A' in method_codes: calculation_type='DE-BFL-A' if 'specimen_dang' not in CurrRec.keys(): if verbose:print('Run mk_redo.py and zeq_magic_redo.py to get the specimen_dang values') CurrRec['specimen_dang']=-1 if calculation_type!='DE-FM' and crd==coord: # not a fisher mean if verbose:print("Specimen N MAD DANG start end dec inc type component coordinates") if units=='K': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif units=='T': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif 'T' in units and 'K' in units: if float(CurrRec['measurement_step_min'])<1.0 : min=float(CurrRec['measurement_step_min'])*1e3 else: min=float(CurrRec['measurement_step_min'])-273 if float(CurrRec['measurement_step_max'])<1.0 : max=float(CurrRec['measurement_step_max'])*1e3 else: max=float(CurrRec['measurement_step_max'])-273 if verbose:print('%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s %s\n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)) elif 'J' in units: if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif calculation_type=='DE-FM' and crd==coord: # fisher mean if verbose:print("Specimen a95 DANG start end dec inc type component coordinates") if units=='K': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif units=='T': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif 'T' in units and 'K' in units: if float(CurrRec['measurement_step_min'])<1.0 : min=float(CurrRec['measurement_step_min'])*1e3 else: min=float(CurrRec['measurement_step_min'])-273 if float(CurrRec['measurement_step_max'])<1.0 : max=float(CurrRec['measurement_step_max'])*1e3 else: max=float(CurrRec['measurement_step_max'])-273 if verbose:print('%s %i %7.1f %i %i %7.1f %7.1f %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)) elif 'J' in units: if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) if len(CurrRecs)==0:beg_pca,end_pca="","" datablock=data noskip=1 if len(datablock) <3: noskip=0 if backup==0: k+=1 else: k-=1 if len(CurrRecs)>0: for rec in CurrRecs: PriorRecs.append(rec) CurrRecs=[] else: backup=0 if noskip: # # find replicate measurements at given treatment step and average them # # step_meth,avedata=pmag.vspec(data) # if len(avedata) != len(datablock): # if doave==1: # method_codes.append("DE-VM") # datablock=avedata # # # do geo or stratigraphic correction now # if geo==1: # # find top priority orientation method orient,az_type=pmag.get_orient(samp_data,PmagSpecRec["er_sample_name"]) if az_type=='SO-NO': if verbose: print("no orientation data for ",s) orient["sample_azimuth"]=0 orient["sample_dip"]=0 noorient=1 method_codes.append("SO-NO") orient["sample_azimuth"]=0 orient["sample_dip"]=0 orient["sample_bed_dip_azimuth"]=0 orient["sample_bed_dip"]=0 noorient=1 method_codes.append("SO-NO") else: noorient=0 # # if stratigraphic selected, get stratigraphic correction # tiltblock,geoblock=[],[] for rec in datablock: d_geo,i_geo=pmag.dogeo(rec[1],rec[2],float(orient["sample_azimuth"]),float(orient["sample_dip"])) geoblock.append([rec[0],d_geo,i_geo,rec[3],rec[4],rec[5],rec[6]]) if tilt==1 and "sample_bed_dip" in orient.keys() and float(orient['sample_bed_dip'])!=0: d_tilt,i_tilt=pmag.dotilt(d_geo,i_geo,float(orient["sample_bed_dip_direction"]),float(orient["sample_bed_dip"])) tiltblock.append([rec[0],d_tilt,i_tilt,rec[3],rec[4],rec[5],rec[6]]) if tilt==1: plotblock=tiltblock if geo==1 and tilt==0:plotblock=geoblock if geo==0 and tilt==0: plotblock=datablock # # set the end pca point to last point if not set if e==0 or e>len(plotblock)-1: e=len(plotblock)-1 if angle=="": angle=plotblock[0][1] # rotate to NRM declination title=s+'_s' if geo==1 and tilt==0 and noorient!=1:title=s+'_g' if tilt==1 and noorient!=1:title=s+'_t' pmagplotlib.plot_zed(ZED,plotblock,angle,title,units) if verbose:pmagplotlib.draw_figs(ZED) if len(CurrRecs)!=0: for prec in CurrRecs: if 'calculation_type' not in prec.keys(): calculation_type='' else: calculation_type=prec["calculation_type"] direction_type=prec["specimen_direction_type"] if calculation_type !="": beg_pca,end_pca="","" for j in range(len(datablock)): if data[j][0]==float(prec["measurement_step_min"]):beg_pca=j if data[j][0]==float(prec["measurement_step_max"]):end_pca=j if beg_pca=="" or end_pca=="": if verbose: print("something wrong with prior interpretation ") break if calculation_type!="": if beg_pca=="":beg_pca=0 if end_pca=="":end_pca=len(plotblock)-1 if geo==1 and tilt==0: mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,geoblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==1: mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,tiltblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==0 and tilt==0: mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,plotblock,angle) if verbose:pmagplotlib.draw_figs(ZED) # # print out data for this sample to screen # recnum=0 for plotrec in plotblock: if units=='T' and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if units=="K" and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if units=="J" and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0],' J',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if 'K' in units and 'T' in units: if plotrec[0]>=1. and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if plotrec[0]<1. and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])) recnum += 1 if specimen!="": if plot_file=="": basename=locname+'_'+s else: basename=plot_file files={} for key in ZED.keys(): files[key]=basename+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) sys.exit() else: # interactive if plots==0: ans='b' k+=1 changeS=0 while ans != "": if len(CurrRecs)==0: print(""" g/b: indicates good/bad measurement. "bad" measurements excluded from calculation set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, change [h]orizontal projection angle, change [c]oordinate systems, [e]dit data, [q]uit: """) else: print(""" g/b: indicates good/bad measurement. "bad" measurements excluded from calculation set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, change [h]orizontal projection angle, change [c]oordinate systems, [d]elete current interpretation(s), [e]dit data, [q]uit: """) ans=input('<Return> for next specimen \n') setangle=0 if ans=='d': # delete this interpretation CurrRecs=[] k-=1 # replot same specimen ans="" changeS=1 if ans=='q': if changeM==1: ans=input('Save changes to magic_measurements.txt? y/[n] ') if ans=='y': pmag.magic_write(meas_file,meas_data,'magic_measurements') print("Good bye") sys.exit() if ans=='a': if plot_file=="": basename=locname+'_'+s+'_' else: basename=plot_file files={} for key in ZED.keys(): files[key]=basename+'_'+coord+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) ans="" if ans=='p': k-=2 ans="" backup=1 if ans=='c': k-=1 # replot same block if tilt==0 and geo ==1:print("You are currently viewing geographic coordinates ") if tilt==1 and geo ==1:print("You are currently viewing stratigraphic coordinates ") if tilt==0 and geo ==0: print("You are currently viewing sample coordinates ") print("\n Which coordinate system do you wish to view? ") coord=input(" <Return> specimen, [g] geographic, [t] tilt corrected ") if coord=="g":geo,tilt=1,0 if coord=="t": geo=1 tilt=1 if coord=="": coord='s' geo=0 tilt=0 if geo==1 and sfile=="": samp_file=input(" Input er_samples file for sample orientations [er_samples.txt] " ) if samp_file=="":samp_file="er_samples.txt" samp_data,file_type=pmag.magic_read(samp_file) if file_type != 'er_samples': print(file_type) print("This is not a valid er_samples file - coordinate system not changed") else: sfile="ok" ans="" if ans=='s': keepon=1 sample=input('Enter desired specimen name (or first part there of): ') while keepon==1: try: k =sids.index(sample) keepon=0 except: tmplist=[] for qq in range(len(sids)): if sample in sids[qq]:tmplist.append(sids[qq]) print(sample," not found, but this was: ") print(tmplist) sample=input('Select one or try again\n ') angle,direction_type="","" setangle=0 ans="" if ans=='h': k-=1 angle=input("Enter desired declination for X axis 0-360 ") angle=float(angle) if angle==0:angle=0.001 s=sids[k] setangle=1 ans="" if ans=='e': k-=1 ans="" recnum=0 for plotrec in plotblock: if plotrec[0]<=200 and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2])) if plotrec[0]>200 and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2])) recnum += 1 answer=input('Enter index of point to change from bad to good or vice versa: ') try: ind=int(answer) meas_data=pmag.mark_dmag_rec(s,ind,meas_data) changeM=1 except: 'bad entry, try again' if ans=='b': if end_pca=="":end_pca=len(plotblock)-1 if beg_pca=="":beg_pca=0 k-=1 # stay on same sample until through GoOn=0 while GoOn==0: print('Enter index of first point for pca: ','[',beg_pca,']') answer=input('return to keep default ') if answer != "": beg_pca=int(answer) print('Enter index of last point for pca: ','[',end_pca,']') answer=input('return to keep default ') try: end_pca=int(answer) if plotblock[beg_pca][5]=='b' or plotblock[end_pca][5]=='b': print("Can't select 'bad' measurement for PCA bounds -try again") end_pca=len(plotblock)-1 beg_pca=0 elif beg_pca >=0 and beg_pca<=len(plotblock)-2 and end_pca>0 and end_pca<len(plotblock): GoOn=1 else: print(beg_pca,end_pca, " are bad entry of indices - try again") end_pca=len(plotblock)-1 beg_pca=0 except: print(beg_pca,end_pca, " are bad entry of indices - try again") end_pca=len(plotblock)-1 beg_pca=0 GoOn=0 while GoOn==0: if calculation_type!="": print("Prior calculation type = ",calculation_type) ct=input('Enter new Calculation Type: best-fit line, plane or fisher mean [l]/p/f : ' ) if ct=="" or ct=="l": direction_type="l" calculation_type="DE-BFL" GoOn=1 elif ct=='p': direction_type="p" calculation_type="DE-BFP" GoOn=1 elif ct=='f': direction_type="l" calculation_type="DE-FM" GoOn=1 else: print("bad entry of calculation type: try again. ") pmagplotlib.plot_zed(ZED,plotblock,angle,s,units) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==0: mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) if "SO-NO" not in method_codes: PmagSpecRec["specimen_tilt_correction"]='0' method_codes.append("DA-DIR-GEO") else: PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,geoblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==1: mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) if "SO-NO" not in method_codes: PmagSpecRec["specimen_tilt_correction"]='100' method_codes.append("DA-DIR-TILT") else: PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,tiltblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==0 and tilt==0: mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,plotblock,angle) if verbose:pmagplotlib.draw_figs(ZED) PmagSpecRec["measurement_step_min"]='%8.3e ' %(mpars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e ' %(mpars["measurement_step_max"]) PmagSpecRec["specimen_correction"]='u' PmagSpecRec["specimen_dang"]='%7.1f ' %(mpars['specimen_dang']) print('DANG: ',PmagSpecRec["specimen_dang"]) if calculation_type!='DE-FM': PmagSpecRec["specimen_mad"]='%7.1f ' %(mpars["specimen_mad"]) PmagSpecRec["specimen_alpha95"]="" else: PmagSpecRec["specimen_alpha95"]='%7.1f ' %(mpars["specimen_alpha95"]) PmagSpecRec["specimen_mad"]="" PmagSpecRec["specimen_n"]='%i ' %(mpars["specimen_n"]) PmagSpecRec["specimen_direction_type"]=direction_type PmagSpecRec["calculation_type"]=calculation_type # redundant and won't be imported - just for convenience method_codes=PmagSpecRec["magic_method_codes"].split(':') if len(method_codes) != 0: methstring="" for meth in method_codes: ctype=meth.split('-') if 'DE' not in ctype:methstring=methstring+ ":" +meth # don't include old direction estimation methods methstring=methstring+':'+calculation_type PmagSpecRec["magic_method_codes"]= methstring.strip(':') print('Method codes: ',PmagSpecRec['magic_method_codes']) if calculation_type!='DE-FM': if units=='K': print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif units== 'T': print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units and 'K' in units: if float(PmagSpecRec['measurement_step_min'])<1.0 : min=float(PmagSpecRec['measurement_step_min'])*1e3 else: min=float(PmagSpecRec['measurement_step_min'])-273 if float(PmagSpecRec['measurement_step_max'])<1.0 : max=float(PmagSpecRec['measurement_step_max'])*1e3 else: max=float(PmagSpecRec['measurement_step_max'])-273 print('%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: if 'K' in units: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units and 'K' in units: if float(PmagSpecRec['measurement_step_min'])<1.0 : min=float(PmagSpecRec['measurement_step_min'])*1e3 else: min=float(PmagSpecRec['measurement_step_min'])-273 if float(PmagSpecRec['measurement_step_max'])<1.0 : max=float(PmagSpecRec['measurement_step_max'])*1e3 else: max=float(PmagSpecRec['measurement_step_max'])-273 print('%s %i %7.1f %i %i %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) saveit=input("Save this interpretation? [y]/n \n") if saveit!="n": changeS=1 # # put in details # angle,direction_type,setangle="","",0 if len(CurrRecs)>0: replace=input(" [0] add new component, or [1] replace existing interpretation(s) [default is replace] ") if replace=="1" or replace=="": CurrRecs=[] PmagSpecRec['specimen_comp_name']='A' CurrRecs.append(PmagSpecRec) else: print('These are the current component names for this specimen: ') for trec in CurrRecs:print(trec['specimen_comp_name']) compnum=input("Enter new component name: ") PmagSpecRec['specimen_comp_name']=compnum print("Adding new component: ",PmagSpecRec['specimen_comp_name']) CurrRecs.append(PmagSpecRec) else: PmagSpecRec['specimen_comp_name']='A' CurrRecs.append(PmagSpecRec) k+=1 ans="" else: ans="" else: # plots=1 k+=1 files={} locname.replace('/','-') print(PmagSpecRec) for key in ZED.keys(): files[key]="LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_'+PmagSpecRec['er_sample_name']+'_SP:_'+s+'_CO:_'+coord+'_TY:_'+key+'_.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['demag']='DeMag Plot' titles['zijd']='Zijderveld Plot' titles['eqarea']='Equal Area Plot' ZED = pmagplotlib.add_borders(ZED,titles,black,purple) pmagplotlib.save_plots(ZED,files) if len(CurrRecs)>0: for rec in CurrRecs: PriorRecs.append(rec) if changeS==1: if len(PriorRecs)>0: save_redo(PriorRecs,inspec) else: os.system('rm '+inspec) CurrRecs,beg_pca,end_pca=[],"","" # next up changeS=0 else: k+=1 # skip record - not enough data if changeM==1: pmag.magic_write(meas_file,meas_data,'magic_measurements')
python
def main(): """ NAME zeq_magic.py DESCRIPTION reads in magic_measurements formatted file, makes plots of remanence decay during demagnetization experiments. Reads in prior interpretations saved in a pmag_specimens formatted file and allows re-interpretations of best-fit lines and planes and saves (revised or new) interpretations in a pmag_specimens file. interpretations are saved in the coordinate system used. Also allows judicious editting of measurements to eliminate "bad" measurements. These are marked as such in the magic_measurements input file. they are NOT deleted, just ignored. SYNTAX zeq_magic.py [command line options] OPTIONS -h prints help message and quits -f MEASFILE: sets magic_measurements format input file, default: magic_measurements.txt -fsp SPECFILE: sets pmag_specimens format file with prior interpreations, default: zeq_specimens.txt -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve) -crd [s,g,t]: sets coordinate system, g=geographic, t=tilt adjusted, default: specimen coordinate system -fsa SAMPFILE: sets er_samples format file with orientation information, default: er_samples.txt -spc SPEC plots single specimen SPEC, saves plot with specified format with optional -dir settings and quits -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none beg: starting step for PCA calculation end: ending step for PCA calculation [L,P,F]: calculation type for line, plane or fisher mean must be used with -spc option -fmt FMT: set format of saved plot [png,svg,jpg] -A: suppresses averaging of replicate measurements, default is to average -sav: saves all plots without review SCREEN OUTPUT: Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type """ # initialize some variables doave,e,b=1,0,0 # average replicates, initial end and beginning step plots,coord=0,'s' noorient=0 version_num=pmag.get_version() verbose=pmagplotlib.verbose beg_pca,end_pca,direction_type="","",'l' calculation_type,fmt="","svg" user,spec_keys,locname="",[],'' plot_file="" sfile="" plot_file="" PriorRecs=[] # empty list for prior interpretations backup=0 specimen="" # can skip everything and just plot one specimen with bounds e,b if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] else: dir_path='.' inspec=dir_path+'/'+'zeq_specimens.txt' meas_file,geo,tilt,ask,samp_file=dir_path+'/magic_measurements.txt',0,0,0,dir_path+'/er_samples.txt' if '-f' in sys.argv: ind=sys.argv.index('-f') meas_file=dir_path+'/'+sys.argv[ind+1] if '-fsp' in sys.argv: ind=sys.argv.index('-fsp') inspec=dir_path+'/'+sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index('-fsa') samp_file=dir_path+'/'+sys.argv[ind+1] sfile='ok' if '-crd' in sys.argv: ind=sys.argv.index('-crd') coord=sys.argv[ind+1] if coord=='g' or coord=='t': samp_data,file_type=pmag.magic_read(samp_file) if file_type=='er_samples':sfile='ok' geo=1 if coord=='t':tilt=1 if '-spc' in sys.argv: ind=sys.argv.index('-spc') specimen=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') direction_type=sys.argv[ind+1] beg_pca=int(sys.argv[ind+2]) end_pca=int(sys.argv[ind+3]) if direction_type=='L':calculation_type='DE-BFL' if direction_type=='P':calculation_type='DE-BFP' if direction_type=='F':calculation_type='DE-FM' if '-Fp' in sys.argv: ind=sys.argv.index('-Fp') plot_file=dir_path+'/'+sys.argv[ind+1] if '-A' in sys.argv: doave=0 if '-sav' in sys.argv: plots=1 verbose=0 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] # first_save=1 meas_data,file_type=pmag.magic_read(meas_file) changeM,changeS=0,0 # check if data or interpretations have changed if file_type != 'magic_measurements': print(file_type) print(file_type,"This is not a valid magic_measurements file ") sys.exit() for rec in meas_data: if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"]="" methods="" tmp=rec["magic_method_codes"].replace(" ","").split(":") for meth in tmp: methods=methods+meth+":" rec["magic_method_codes"]=methods[:-1] # get rid of annoying spaces in Anthony's export files if "magic_instrument_codes" not in rec.keys() :rec["magic_instrument_codes"]="" PriorSpecs=[] PriorRecs,file_type=pmag.magic_read(inspec) if len(PriorRecs)==0: if verbose:print("starting new file ",inspec) for Rec in PriorRecs: if 'magic_software_packages' not in Rec.keys():Rec['magic_software_packages']="" if Rec['er_specimen_name'] not in PriorSpecs: if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A" PriorSpecs.append(Rec['er_specimen_name']) else: if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A" if "magic_method_codes" in Rec.keys(): methods=[] tmp=Rec["magic_method_codes"].replace(" ","").split(":") for meth in tmp: methods.append(meth) if 'DE-FM' in methods: Rec['calculation_type']='DE-FM' # this won't be imported but helps if 'DE-BFL' in methods: Rec['calculation_type']='DE-BFL' if 'DE-BFL-A' in methods: Rec['calculation_type']='DE-BFL-A' if 'DE-BFL-O' in methods: Rec['calculation_type']='DE-BFL-O' if 'DE-BFP' in methods: Rec['calculation_type']='DE-BFP' else: Rec['calculation_type']='DE-BFL' # default is to assume a best-fit line # # get list of unique specimen names # sids=pmag.get_specs(meas_data) # # set up plots, angle sets X axis to horizontal, direction_type 'l' is best-fit line # direction_type='p' is great circle # # # draw plots for sample s - default is just to step through zijderveld diagrams # # # define figure numbers for equal area, zijderveld, # and intensity vs. demagnetiztion step respectively ZED={} ZED['eqarea'],ZED['zijd'], ZED['demag']=1,2,3 pmagplotlib.plot_init(ZED['eqarea'],5,5) pmagplotlib.plot_init(ZED['zijd'],6,5) pmagplotlib.plot_init(ZED['demag'],5,5) save_pca=0 if specimen=="": k = 0 else: k=sids.index(specimen) angle,direction_type="","" setangle=0 CurrRecs=[] while k < len(sids): CurrRecs=[] if setangle==0:angle="" method_codes,inst_code=[],"" s=sids[k] PmagSpecRec={} PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec['magic_software_packages']=version_num PmagSpecRec['specimen_description']="" PmagSpecRec['magic_method_codes']="" if verbose and s!="":print(s, k , 'out of ',len(sids)) # # collect info for the PmagSpecRec dictionary # s_meas=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') # fish out this specimen s_meas=pmag.get_dictitem(s_meas,'magic_method_codes','Z','has') # fish out zero field steps if len(s_meas)>0: for rec in s_meas: # fix up a few things for the output record PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] # copy over instruments PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] locname=rec['er_location_name'] if 'er_expedition_name' in rec.keys(): PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] PmagSpecRec["magic_method_codes"]=rec["magic_method_codes"] if "magic_experiment_name" not in rec.keys(): PmagSpecRec["magic_experiment_names"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] break # # find the data from the meas_data file for this specimen # data,units=pmag.find_dmag_rec(s,meas_data) PmagSpecRec["measurement_step_unit"]= units u=units.split(":") if "T" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-AF" if "K" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-T" if "J" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-M" # # find prior interpretation # if len(CurrRecs)==0: # check if already in beg_pca,end_pca="","" calculation_type="" if inspec !="": if verbose: print(" looking up previous interpretations...") precs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'T') # get all the prior recs with this specimen name precs=pmag.get_dictitem(precs,'magic_method_codes','LP-DIR','has') # get the directional data PriorRecs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'F') # take them all out of prior recs # get the ones that meet the current coordinate system for prec in precs: if 'specimen_tilt_correction' not in prec.keys() or prec['specimen_tilt_correction']=='-1': crd='s' elif prec['specimen_tilt_correction']=='0': crd='g' elif prec['specimen_tilt_correction']=='100': crd='t' else: crd='?' CurrRec={} for key in prec.keys():CurrRec[key]=prec[key] CurrRecs.append(CurrRec) # put in CurrRecs method_codes= CurrRec["magic_method_codes"].replace(" ","").split(':') calculation_type='DE-BFL' if 'DE-FM' in method_codes: calculation_type='DE-FM' if 'DE-BFP' in method_codes: calculation_type='DE-BFP' if 'DE-BFL-A' in method_codes: calculation_type='DE-BFL-A' if 'specimen_dang' not in CurrRec.keys(): if verbose:print('Run mk_redo.py and zeq_magic_redo.py to get the specimen_dang values') CurrRec['specimen_dang']=-1 if calculation_type!='DE-FM' and crd==coord: # not a fisher mean if verbose:print("Specimen N MAD DANG start end dec inc type component coordinates") if units=='K': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif units=='T': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif 'T' in units and 'K' in units: if float(CurrRec['measurement_step_min'])<1.0 : min=float(CurrRec['measurement_step_min'])*1e3 else: min=float(CurrRec['measurement_step_min'])-273 if float(CurrRec['measurement_step_max'])<1.0 : max=float(CurrRec['measurement_step_max'])*1e3 else: max=float(CurrRec['measurement_step_max'])-273 if verbose:print('%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s %s\n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)) elif 'J' in units: if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif calculation_type=='DE-FM' and crd==coord: # fisher mean if verbose:print("Specimen a95 DANG start end dec inc type component coordinates") if units=='K': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif units=='T': if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) elif 'T' in units and 'K' in units: if float(CurrRec['measurement_step_min'])<1.0 : min=float(CurrRec['measurement_step_min'])*1e3 else: min=float(CurrRec['measurement_step_min'])-273 if float(CurrRec['measurement_step_max'])<1.0 : max=float(CurrRec['measurement_step_max'])*1e3 else: max=float(CurrRec['measurement_step_max'])-273 if verbose:print('%s %i %7.1f %i %i %7.1f %7.1f %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)) elif 'J' in units: if verbose:print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)) if len(CurrRecs)==0:beg_pca,end_pca="","" datablock=data noskip=1 if len(datablock) <3: noskip=0 if backup==0: k+=1 else: k-=1 if len(CurrRecs)>0: for rec in CurrRecs: PriorRecs.append(rec) CurrRecs=[] else: backup=0 if noskip: # # find replicate measurements at given treatment step and average them # # step_meth,avedata=pmag.vspec(data) # if len(avedata) != len(datablock): # if doave==1: # method_codes.append("DE-VM") # datablock=avedata # # # do geo or stratigraphic correction now # if geo==1: # # find top priority orientation method orient,az_type=pmag.get_orient(samp_data,PmagSpecRec["er_sample_name"]) if az_type=='SO-NO': if verbose: print("no orientation data for ",s) orient["sample_azimuth"]=0 orient["sample_dip"]=0 noorient=1 method_codes.append("SO-NO") orient["sample_azimuth"]=0 orient["sample_dip"]=0 orient["sample_bed_dip_azimuth"]=0 orient["sample_bed_dip"]=0 noorient=1 method_codes.append("SO-NO") else: noorient=0 # # if stratigraphic selected, get stratigraphic correction # tiltblock,geoblock=[],[] for rec in datablock: d_geo,i_geo=pmag.dogeo(rec[1],rec[2],float(orient["sample_azimuth"]),float(orient["sample_dip"])) geoblock.append([rec[0],d_geo,i_geo,rec[3],rec[4],rec[5],rec[6]]) if tilt==1 and "sample_bed_dip" in orient.keys() and float(orient['sample_bed_dip'])!=0: d_tilt,i_tilt=pmag.dotilt(d_geo,i_geo,float(orient["sample_bed_dip_direction"]),float(orient["sample_bed_dip"])) tiltblock.append([rec[0],d_tilt,i_tilt,rec[3],rec[4],rec[5],rec[6]]) if tilt==1: plotblock=tiltblock if geo==1 and tilt==0:plotblock=geoblock if geo==0 and tilt==0: plotblock=datablock # # set the end pca point to last point if not set if e==0 or e>len(plotblock)-1: e=len(plotblock)-1 if angle=="": angle=plotblock[0][1] # rotate to NRM declination title=s+'_s' if geo==1 and tilt==0 and noorient!=1:title=s+'_g' if tilt==1 and noorient!=1:title=s+'_t' pmagplotlib.plot_zed(ZED,plotblock,angle,title,units) if verbose:pmagplotlib.draw_figs(ZED) if len(CurrRecs)!=0: for prec in CurrRecs: if 'calculation_type' not in prec.keys(): calculation_type='' else: calculation_type=prec["calculation_type"] direction_type=prec["specimen_direction_type"] if calculation_type !="": beg_pca,end_pca="","" for j in range(len(datablock)): if data[j][0]==float(prec["measurement_step_min"]):beg_pca=j if data[j][0]==float(prec["measurement_step_max"]):end_pca=j if beg_pca=="" or end_pca=="": if verbose: print("something wrong with prior interpretation ") break if calculation_type!="": if beg_pca=="":beg_pca=0 if end_pca=="":end_pca=len(plotblock)-1 if geo==1 and tilt==0: mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,geoblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==1: mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,tiltblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==0 and tilt==0: mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if mpars["specimen_direction_type"]!="Error": pmagplotlib.plot_dir(ZED,mpars,plotblock,angle) if verbose:pmagplotlib.draw_figs(ZED) # # print out data for this sample to screen # recnum=0 for plotrec in plotblock: if units=='T' and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if units=="K" and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if units=="J" and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0],' J',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if 'K' in units and 'T' in units: if plotrec[0]>=1. and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])) if plotrec[0]<1. and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])) recnum += 1 if specimen!="": if plot_file=="": basename=locname+'_'+s else: basename=plot_file files={} for key in ZED.keys(): files[key]=basename+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) sys.exit() else: # interactive if plots==0: ans='b' k+=1 changeS=0 while ans != "": if len(CurrRecs)==0: print(""" g/b: indicates good/bad measurement. "bad" measurements excluded from calculation set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, change [h]orizontal projection angle, change [c]oordinate systems, [e]dit data, [q]uit: """) else: print(""" g/b: indicates good/bad measurement. "bad" measurements excluded from calculation set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, change [h]orizontal projection angle, change [c]oordinate systems, [d]elete current interpretation(s), [e]dit data, [q]uit: """) ans=input('<Return> for next specimen \n') setangle=0 if ans=='d': # delete this interpretation CurrRecs=[] k-=1 # replot same specimen ans="" changeS=1 if ans=='q': if changeM==1: ans=input('Save changes to magic_measurements.txt? y/[n] ') if ans=='y': pmag.magic_write(meas_file,meas_data,'magic_measurements') print("Good bye") sys.exit() if ans=='a': if plot_file=="": basename=locname+'_'+s+'_' else: basename=plot_file files={} for key in ZED.keys(): files[key]=basename+'_'+coord+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) ans="" if ans=='p': k-=2 ans="" backup=1 if ans=='c': k-=1 # replot same block if tilt==0 and geo ==1:print("You are currently viewing geographic coordinates ") if tilt==1 and geo ==1:print("You are currently viewing stratigraphic coordinates ") if tilt==0 and geo ==0: print("You are currently viewing sample coordinates ") print("\n Which coordinate system do you wish to view? ") coord=input(" <Return> specimen, [g] geographic, [t] tilt corrected ") if coord=="g":geo,tilt=1,0 if coord=="t": geo=1 tilt=1 if coord=="": coord='s' geo=0 tilt=0 if geo==1 and sfile=="": samp_file=input(" Input er_samples file for sample orientations [er_samples.txt] " ) if samp_file=="":samp_file="er_samples.txt" samp_data,file_type=pmag.magic_read(samp_file) if file_type != 'er_samples': print(file_type) print("This is not a valid er_samples file - coordinate system not changed") else: sfile="ok" ans="" if ans=='s': keepon=1 sample=input('Enter desired specimen name (or first part there of): ') while keepon==1: try: k =sids.index(sample) keepon=0 except: tmplist=[] for qq in range(len(sids)): if sample in sids[qq]:tmplist.append(sids[qq]) print(sample," not found, but this was: ") print(tmplist) sample=input('Select one or try again\n ') angle,direction_type="","" setangle=0 ans="" if ans=='h': k-=1 angle=input("Enter desired declination for X axis 0-360 ") angle=float(angle) if angle==0:angle=0.001 s=sids[k] setangle=1 ans="" if ans=='e': k-=1 ans="" recnum=0 for plotrec in plotblock: if plotrec[0]<=200 and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2])) if plotrec[0]>200 and verbose: print('%s: %i %7.1f %s %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2])) recnum += 1 answer=input('Enter index of point to change from bad to good or vice versa: ') try: ind=int(answer) meas_data=pmag.mark_dmag_rec(s,ind,meas_data) changeM=1 except: 'bad entry, try again' if ans=='b': if end_pca=="":end_pca=len(plotblock)-1 if beg_pca=="":beg_pca=0 k-=1 # stay on same sample until through GoOn=0 while GoOn==0: print('Enter index of first point for pca: ','[',beg_pca,']') answer=input('return to keep default ') if answer != "": beg_pca=int(answer) print('Enter index of last point for pca: ','[',end_pca,']') answer=input('return to keep default ') try: end_pca=int(answer) if plotblock[beg_pca][5]=='b' or plotblock[end_pca][5]=='b': print("Can't select 'bad' measurement for PCA bounds -try again") end_pca=len(plotblock)-1 beg_pca=0 elif beg_pca >=0 and beg_pca<=len(plotblock)-2 and end_pca>0 and end_pca<len(plotblock): GoOn=1 else: print(beg_pca,end_pca, " are bad entry of indices - try again") end_pca=len(plotblock)-1 beg_pca=0 except: print(beg_pca,end_pca, " are bad entry of indices - try again") end_pca=len(plotblock)-1 beg_pca=0 GoOn=0 while GoOn==0: if calculation_type!="": print("Prior calculation type = ",calculation_type) ct=input('Enter new Calculation Type: best-fit line, plane or fisher mean [l]/p/f : ' ) if ct=="" or ct=="l": direction_type="l" calculation_type="DE-BFL" GoOn=1 elif ct=='p': direction_type="p" calculation_type="DE-BFP" GoOn=1 elif ct=='f': direction_type="l" calculation_type="DE-FM" GoOn=1 else: print("bad entry of calculation type: try again. ") pmagplotlib.plot_zed(ZED,plotblock,angle,s,units) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==0: mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) if "SO-NO" not in method_codes: PmagSpecRec["specimen_tilt_correction"]='0' method_codes.append("DA-DIR-GEO") else: PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,geoblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==1 and tilt==1: mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) if "SO-NO" not in method_codes: PmagSpecRec["specimen_tilt_correction"]='100' method_codes.append("DA-DIR-TILT") else: PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,tiltblock,angle) if verbose:pmagplotlib.draw_figs(ZED) if geo==0 and tilt==0: mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if mpars['specimen_direction_type']=='Error':break PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' pmagplotlib.plot_dir(ZED,mpars,plotblock,angle) if verbose:pmagplotlib.draw_figs(ZED) PmagSpecRec["measurement_step_min"]='%8.3e ' %(mpars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e ' %(mpars["measurement_step_max"]) PmagSpecRec["specimen_correction"]='u' PmagSpecRec["specimen_dang"]='%7.1f ' %(mpars['specimen_dang']) print('DANG: ',PmagSpecRec["specimen_dang"]) if calculation_type!='DE-FM': PmagSpecRec["specimen_mad"]='%7.1f ' %(mpars["specimen_mad"]) PmagSpecRec["specimen_alpha95"]="" else: PmagSpecRec["specimen_alpha95"]='%7.1f ' %(mpars["specimen_alpha95"]) PmagSpecRec["specimen_mad"]="" PmagSpecRec["specimen_n"]='%i ' %(mpars["specimen_n"]) PmagSpecRec["specimen_direction_type"]=direction_type PmagSpecRec["calculation_type"]=calculation_type # redundant and won't be imported - just for convenience method_codes=PmagSpecRec["magic_method_codes"].split(':') if len(method_codes) != 0: methstring="" for meth in method_codes: ctype=meth.split('-') if 'DE' not in ctype:methstring=methstring+ ":" +meth # don't include old direction estimation methods methstring=methstring+':'+calculation_type PmagSpecRec["magic_method_codes"]= methstring.strip(':') print('Method codes: ',PmagSpecRec['magic_method_codes']) if calculation_type!='DE-FM': if units=='K': print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif units== 'T': print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units and 'K' in units: if float(PmagSpecRec['measurement_step_min'])<1.0 : min=float(PmagSpecRec['measurement_step_min'])*1e3 else: min=float(PmagSpecRec['measurement_step_min'])-273 if float(PmagSpecRec['measurement_step_max'])<1.0 : max=float(PmagSpecRec['measurement_step_max'])*1e3 else: max=float(PmagSpecRec['measurement_step_max'])-273 print('%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: if 'K' in units: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) elif 'T' in units and 'K' in units: if float(PmagSpecRec['measurement_step_min'])<1.0 : min=float(PmagSpecRec['measurement_step_min'])*1e3 else: min=float(PmagSpecRec['measurement_step_min'])-273 if float(PmagSpecRec['measurement_step_max'])<1.0 : max=float(PmagSpecRec['measurement_step_max'])*1e3 else: max=float(PmagSpecRec['measurement_step_max'])-273 print('%s %i %7.1f %i %i %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) else: print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)) saveit=input("Save this interpretation? [y]/n \n") if saveit!="n": changeS=1 # # put in details # angle,direction_type,setangle="","",0 if len(CurrRecs)>0: replace=input(" [0] add new component, or [1] replace existing interpretation(s) [default is replace] ") if replace=="1" or replace=="": CurrRecs=[] PmagSpecRec['specimen_comp_name']='A' CurrRecs.append(PmagSpecRec) else: print('These are the current component names for this specimen: ') for trec in CurrRecs:print(trec['specimen_comp_name']) compnum=input("Enter new component name: ") PmagSpecRec['specimen_comp_name']=compnum print("Adding new component: ",PmagSpecRec['specimen_comp_name']) CurrRecs.append(PmagSpecRec) else: PmagSpecRec['specimen_comp_name']='A' CurrRecs.append(PmagSpecRec) k+=1 ans="" else: ans="" else: # plots=1 k+=1 files={} locname.replace('/','-') print(PmagSpecRec) for key in ZED.keys(): files[key]="LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_'+PmagSpecRec['er_sample_name']+'_SP:_'+s+'_CO:_'+coord+'_TY:_'+key+'_.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['demag']='DeMag Plot' titles['zijd']='Zijderveld Plot' titles['eqarea']='Equal Area Plot' ZED = pmagplotlib.add_borders(ZED,titles,black,purple) pmagplotlib.save_plots(ZED,files) if len(CurrRecs)>0: for rec in CurrRecs: PriorRecs.append(rec) if changeS==1: if len(PriorRecs)>0: save_redo(PriorRecs,inspec) else: os.system('rm '+inspec) CurrRecs,beg_pca,end_pca=[],"","" # next up changeS=0 else: k+=1 # skip record - not enough data if changeM==1: pmag.magic_write(meas_file,meas_data,'magic_measurements')
NAME zeq_magic.py DESCRIPTION reads in magic_measurements formatted file, makes plots of remanence decay during demagnetization experiments. Reads in prior interpretations saved in a pmag_specimens formatted file and allows re-interpretations of best-fit lines and planes and saves (revised or new) interpretations in a pmag_specimens file. interpretations are saved in the coordinate system used. Also allows judicious editting of measurements to eliminate "bad" measurements. These are marked as such in the magic_measurements input file. they are NOT deleted, just ignored. SYNTAX zeq_magic.py [command line options] OPTIONS -h prints help message and quits -f MEASFILE: sets magic_measurements format input file, default: magic_measurements.txt -fsp SPECFILE: sets pmag_specimens format file with prior interpreations, default: zeq_specimens.txt -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve) -crd [s,g,t]: sets coordinate system, g=geographic, t=tilt adjusted, default: specimen coordinate system -fsa SAMPFILE: sets er_samples format file with orientation information, default: er_samples.txt -spc SPEC plots single specimen SPEC, saves plot with specified format with optional -dir settings and quits -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none beg: starting step for PCA calculation end: ending step for PCA calculation [L,P,F]: calculation type for line, plane or fisher mean must be used with -spc option -fmt FMT: set format of saved plot [png,svg,jpg] -A: suppresses averaging of replicate measurements, default is to average -sav: saves all plots without review SCREEN OUTPUT: Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/zeq_magic2.py#L17-L729
PmagPy/PmagPy
pmagpy/controlled_vocabularies2.py
Vocabulary.get_one_meth_type
def get_one_meth_type(self, mtype, method_list): """ Get all codes of one type (i.e., 'anisotropy_estimation') """ cond = method_list['dtype'] == mtype codes = method_list[cond] return codes
python
def get_one_meth_type(self, mtype, method_list): """ Get all codes of one type (i.e., 'anisotropy_estimation') """ cond = method_list['dtype'] == mtype codes = method_list[cond] return codes
Get all codes of one type (i.e., 'anisotropy_estimation')
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/controlled_vocabularies2.py#L29-L35
PmagPy/PmagPy
pmagpy/controlled_vocabularies2.py
Vocabulary.get_one_meth_category
def get_one_meth_category(self, category, all_codes, code_types): """ Get all codes in one category (i.e., all pmag codes). This can include multiple method types (i.e., 'anisotropy_estimation', 'sample_prepartion', etc.) """ categories = Series(code_types[code_types[category] == True].index) cond = all_codes['dtype'].isin(categories) codes = all_codes[cond] return codes
python
def get_one_meth_category(self, category, all_codes, code_types): """ Get all codes in one category (i.e., all pmag codes). This can include multiple method types (i.e., 'anisotropy_estimation', 'sample_prepartion', etc.) """ categories = Series(code_types[code_types[category] == True].index) cond = all_codes['dtype'].isin(categories) codes = all_codes[cond] return codes
Get all codes in one category (i.e., all pmag codes). This can include multiple method types (i.e., 'anisotropy_estimation', 'sample_prepartion', etc.)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/controlled_vocabularies2.py#L37-L45
PmagPy/PmagPy
programs/azdip_magic.py
main
def main(): """ NAME azdip_magic.py DESCRIPTION takes space delimited AzDip file and converts to MagIC formatted tables SYNTAX azdip_magic.py [command line options] OPTIONS -f FILE: specify input file -Fsa FILE: specify output file, default is: er_samples.txt/samples.txt -ncn NCON: specify naming convention: default is #1 below -mcd: specify sampling method codes as a colon delimited string: [default is: FS-FD] FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass -loc: location name, default="unknown" -app appends to existing samples file, default is to overwrite INPUT FORMAT Input files must be space delimited: Samp Az Dip Strike Dip Orientation convention: Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip e.g. field_dip is degrees from horizontal of drill direction Magnetic declination convention: Az is already corrected in file Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. OUTPUT output saved in samples file will overwrite any existing files """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'], ['Fsa', False, 'samples.txt'], ['ncn', False, "1"], ['mcd', False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) #print('checked_args:', checked_args) orient_file, samp_file, samp_con, method_codes, location_name, append, output_dir, input_dir, data_model = extractor.get_vars(['f', 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args) if len(str(samp_con)) > 1: samp_con, Z = samp_con.split('-') Z = float(Z) else: Z = 1 ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes, location_name, append, output_dir, input_dir, data_model)
python
def main(): """ NAME azdip_magic.py DESCRIPTION takes space delimited AzDip file and converts to MagIC formatted tables SYNTAX azdip_magic.py [command line options] OPTIONS -f FILE: specify input file -Fsa FILE: specify output file, default is: er_samples.txt/samples.txt -ncn NCON: specify naming convention: default is #1 below -mcd: specify sampling method codes as a colon delimited string: [default is: FS-FD] FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass -loc: location name, default="unknown" -app appends to existing samples file, default is to overwrite INPUT FORMAT Input files must be space delimited: Samp Az Dip Strike Dip Orientation convention: Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip e.g. field_dip is degrees from horizontal of drill direction Magnetic declination convention: Az is already corrected in file Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. OUTPUT output saved in samples file will overwrite any existing files """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'], ['Fsa', False, 'samples.txt'], ['ncn', False, "1"], ['mcd', False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) #print('checked_args:', checked_args) orient_file, samp_file, samp_con, method_codes, location_name, append, output_dir, input_dir, data_model = extractor.get_vars(['f', 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args) if len(str(samp_con)) > 1: samp_con, Z = samp_con.split('-') Z = float(Z) else: Z = 1 ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes, location_name, append, output_dir, input_dir, data_model)
NAME azdip_magic.py DESCRIPTION takes space delimited AzDip file and converts to MagIC formatted tables SYNTAX azdip_magic.py [command line options] OPTIONS -f FILE: specify input file -Fsa FILE: specify output file, default is: er_samples.txt/samples.txt -ncn NCON: specify naming convention: default is #1 below -mcd: specify sampling method codes as a colon delimited string: [default is: FS-FD] FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass -loc: location name, default="unknown" -app appends to existing samples file, default is to overwrite INPUT FORMAT Input files must be space delimited: Samp Az Dip Strike Dip Orientation convention: Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip e.g. field_dip is degrees from horizontal of drill direction Magnetic declination convention: Az is already corrected in file Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. OUTPUT output saved in samples file will overwrite any existing files
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/azdip_magic.py#L10-L79
PmagPy/PmagPy
programs/plot_geomagia.py
main
def main(): """ NAME plot_geomagia.py DESCRIPTION makes a map and VADM plot of geomagia download file SYNTAX plot_geomagia.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify geomagia download file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -o color ocean blue/land green (default is not) -d plot details of rivers, boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS resolution: intermediate saved images are in pdf """ dir_path='.' names,res,proj,locs,padlon,padlat,fancy,gridspace,details=[],'l','lcc','',0,0,0,15,1 Age_bounds=[-5000,2000] Lat_bounds=[20,45] Lon_bounds=[15,55] fmt='pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file=sys.argv[ind+1] if '-res' in sys.argv: ind = sys.argv.index('-res') res=sys.argv[ind+1] if '-etp' in sys.argv:fancy=1 if '-o' in sys.argv:ocean=1 if '-d' in sys.argv:details=1 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj=sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt=sys.argv[ind+1] verbose=pmagplotlib.verbose if '-sav' in sys.argv: verbose=0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat=float(sys.argv[ind+1]) padlon=float(sys.argv[ind+2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace=float(sys.argv[ind+1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] sites_file=dir_path+'/'+sites_file geo_in=open(sites_file,'r').readlines() Age,AgeErr,Vadm,VadmErr,slats,slons=[],[],[],[],[],[] for line in geo_in[2:]: # skip top two rows` rec=line.split() if float(rec[0])>Age_bounds[0] and float(rec[0])<Age_bounds[1] \ and float(rec[12])>Lat_bounds[0] and float(rec[12]) < Lat_bounds[1]\ and float(rec[13])>Lon_bounds[0] and float(rec[13])<Lon_bounds[1]: Age.append(float(rec[0])) AgeErr.append(float(rec[1])) Vadm.append(10.*float(rec[6])) VadmErr.append(10.*float(rec[7])) slats.append(float(rec[12])) slons.append(float(rec[13])) FIGS={'map':1,'vadms':2} pmagplotlib.plot_init(FIGS['map'],6,6) pmagplotlib.plot_init(FIGS['vadms'],6,6) Opts={'res':res,'proj':proj,'loc_name':locs,'padlon':padlon,'padlat':padlat,'latmin':numpy.min(slats)-padlat,'latmax':numpy.max(slats)+padlat,'lonmin':numpy.min(slons)-padlon,'lonmax':numpy.max(slons)+padlon,'sym':'ro','boundinglat':0.,'pltgrid':1} Opts['lon_0']=int(0.5*(numpy.min(slons)+numpy.max(slons))) Opts['lat_0']=int(0.5*(numpy.min(slats)+numpy.max(slats))) Opts['gridspace']=gridspace if details==1: Opts['details']={'coasts':1,'rivers':0,'states':1,'countries':1,'ocean':1} else: Opts['details']={'coasts':1,'rivers':0,'states':0,'countries':0,'ocean':1} Opts['details']['fancy']=fancy pmagplotlib.plot_map(FIGS['map'],slats,slons,Opts) pmagplotlib.plot_xy(FIGS['vadms'],Age,Vadm,sym='bo',xlab='Age (Years CE)',ylab=r'VADM (ZAm$^2$)') if verbose:pmagplotlib.draw_figs(FIGS) files={} for key in list(FIGS.keys()): files[key]=key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['map']='Map' titles['vadms']='VADMs' FIG = pmagplotlib.add_borders(FIGS,titles,black,purple) pmagplotlib.save_plots(FIGS,files) elif verbose: ans=input(" S[a]ve to save plot, Return to quit: ") if ans=="a": pmagplotlib.save_plots(FIGS,files) else: pmagplotlib.save_plots(FIGS,files)
python
def main(): """ NAME plot_geomagia.py DESCRIPTION makes a map and VADM plot of geomagia download file SYNTAX plot_geomagia.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify geomagia download file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -o color ocean blue/land green (default is not) -d plot details of rivers, boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS resolution: intermediate saved images are in pdf """ dir_path='.' names,res,proj,locs,padlon,padlat,fancy,gridspace,details=[],'l','lcc','',0,0,0,15,1 Age_bounds=[-5000,2000] Lat_bounds=[20,45] Lon_bounds=[15,55] fmt='pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file=sys.argv[ind+1] if '-res' in sys.argv: ind = sys.argv.index('-res') res=sys.argv[ind+1] if '-etp' in sys.argv:fancy=1 if '-o' in sys.argv:ocean=1 if '-d' in sys.argv:details=1 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj=sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt=sys.argv[ind+1] verbose=pmagplotlib.verbose if '-sav' in sys.argv: verbose=0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat=float(sys.argv[ind+1]) padlon=float(sys.argv[ind+2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace=float(sys.argv[ind+1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] sites_file=dir_path+'/'+sites_file geo_in=open(sites_file,'r').readlines() Age,AgeErr,Vadm,VadmErr,slats,slons=[],[],[],[],[],[] for line in geo_in[2:]: # skip top two rows` rec=line.split() if float(rec[0])>Age_bounds[0] and float(rec[0])<Age_bounds[1] \ and float(rec[12])>Lat_bounds[0] and float(rec[12]) < Lat_bounds[1]\ and float(rec[13])>Lon_bounds[0] and float(rec[13])<Lon_bounds[1]: Age.append(float(rec[0])) AgeErr.append(float(rec[1])) Vadm.append(10.*float(rec[6])) VadmErr.append(10.*float(rec[7])) slats.append(float(rec[12])) slons.append(float(rec[13])) FIGS={'map':1,'vadms':2} pmagplotlib.plot_init(FIGS['map'],6,6) pmagplotlib.plot_init(FIGS['vadms'],6,6) Opts={'res':res,'proj':proj,'loc_name':locs,'padlon':padlon,'padlat':padlat,'latmin':numpy.min(slats)-padlat,'latmax':numpy.max(slats)+padlat,'lonmin':numpy.min(slons)-padlon,'lonmax':numpy.max(slons)+padlon,'sym':'ro','boundinglat':0.,'pltgrid':1} Opts['lon_0']=int(0.5*(numpy.min(slons)+numpy.max(slons))) Opts['lat_0']=int(0.5*(numpy.min(slats)+numpy.max(slats))) Opts['gridspace']=gridspace if details==1: Opts['details']={'coasts':1,'rivers':0,'states':1,'countries':1,'ocean':1} else: Opts['details']={'coasts':1,'rivers':0,'states':0,'countries':0,'ocean':1} Opts['details']['fancy']=fancy pmagplotlib.plot_map(FIGS['map'],slats,slons,Opts) pmagplotlib.plot_xy(FIGS['vadms'],Age,Vadm,sym='bo',xlab='Age (Years CE)',ylab=r'VADM (ZAm$^2$)') if verbose:pmagplotlib.draw_figs(FIGS) files={} for key in list(FIGS.keys()): files[key]=key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['map']='Map' titles['vadms']='VADMs' FIG = pmagplotlib.add_borders(FIGS,titles,black,purple) pmagplotlib.save_plots(FIGS,files) elif verbose: ans=input(" S[a]ve to save plot, Return to quit: ") if ans=="a": pmagplotlib.save_plots(FIGS,files) else: pmagplotlib.save_plots(FIGS,files)
NAME plot_geomagia.py DESCRIPTION makes a map and VADM plot of geomagia download file SYNTAX plot_geomagia.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify geomagia download file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -o color ocean blue/land green (default is not) -d plot details of rivers, boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS resolution: intermediate saved images are in pdf
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/plot_geomagia.py#L15-L124
PmagPy/PmagPy
programs/conversion_scripts/k15_magic.py
main
def main(): """ NAME k15_magic.py DESCRIPTION converts .k15 format data to magic_measurements format. assums Jelinek Kappabridge measurement scheme SYNTAX k15_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL: specify data model 2 or 3 (default 3) -f KFILE: specify .k15 format input file -F MFILE: specify measurement output file -Fsa SFILE, specify sample file for output -Fa AFILE, specify specimen file for output [rmag_anisotropy for data model 2 only] #-ins INST: specify instrument that measurements were made on # not implemented -spc NUM: specify number of digits for specimen ID, default is 0 -ncn NCOM: specify naming convention (default is #1) Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULTS MFILE: measurements.txt SFILE: samples.txt AFILE: specimens.txt INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen """ args = sys.argv if '-h' in args: print(do_help()) sys.exit() # def k15_magic(k15file, specnum=0, sample_naming_con='1', er_location_name="unknown", measfile='magic_measurements.txt', sampfile="er_samples.txt", aniso_outfile='rmag_anisotropy.txt', result_file="rmag_results.txt", input_dir_path='.', output_dir_path='.'): dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', False, 'specimens.txt'], [ 'Fr', False, 'rmag_results.txt'], ['spc', False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) k15file, measfile, sampfile, aniso_outfile, result_file, specnum, sample_naming_con, location_name, output_dir_path, input_dir_path, data_model_num = extractor.get_vars( ['f', 'F', 'Fsa', 'Fa', 'Fr', 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args) program_ran, error_message = convert.k15(k15file, specnum=specnum, sample_naming_con=sample_naming_con, location=location_name, meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile, result_file=result_file, input_dir_path=input_dir_path, dir_path=output_dir_path, data_model_num=data_model_num)
python
def main(): """ NAME k15_magic.py DESCRIPTION converts .k15 format data to magic_measurements format. assums Jelinek Kappabridge measurement scheme SYNTAX k15_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL: specify data model 2 or 3 (default 3) -f KFILE: specify .k15 format input file -F MFILE: specify measurement output file -Fsa SFILE, specify sample file for output -Fa AFILE, specify specimen file for output [rmag_anisotropy for data model 2 only] #-ins INST: specify instrument that measurements were made on # not implemented -spc NUM: specify number of digits for specimen ID, default is 0 -ncn NCOM: specify naming convention (default is #1) Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULTS MFILE: measurements.txt SFILE: samples.txt AFILE: specimens.txt INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen """ args = sys.argv if '-h' in args: print(do_help()) sys.exit() # def k15_magic(k15file, specnum=0, sample_naming_con='1', er_location_name="unknown", measfile='magic_measurements.txt', sampfile="er_samples.txt", aniso_outfile='rmag_anisotropy.txt', result_file="rmag_results.txt", input_dir_path='.', output_dir_path='.'): dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', False, 'specimens.txt'], [ 'Fr', False, 'rmag_results.txt'], ['spc', False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) k15file, measfile, sampfile, aniso_outfile, result_file, specnum, sample_naming_con, location_name, output_dir_path, input_dir_path, data_model_num = extractor.get_vars( ['f', 'F', 'Fsa', 'Fa', 'Fr', 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args) program_ran, error_message = convert.k15(k15file, specnum=specnum, sample_naming_con=sample_naming_con, location=location_name, meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile, result_file=result_file, input_dir_path=input_dir_path, dir_path=output_dir_path, data_model_num=data_model_num)
NAME k15_magic.py DESCRIPTION converts .k15 format data to magic_measurements format. assums Jelinek Kappabridge measurement scheme SYNTAX k15_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL: specify data model 2 or 3 (default 3) -f KFILE: specify .k15 format input file -F MFILE: specify measurement output file -Fsa SFILE, specify sample file for output -Fa AFILE, specify specimen file for output [rmag_anisotropy for data model 2 only] #-ins INST: specify instrument that measurements were made on # not implemented -spc NUM: specify number of digits for specimen ID, default is 0 -ncn NCOM: specify naming convention (default is #1) Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULTS MFILE: measurements.txt SFILE: samples.txt AFILE: specimens.txt INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts/k15_magic.py#L8-L67
PmagPy/PmagPy
programs/conversion_scripts2/cit_magic2.py
main
def main(command_line=True, **kwargs): """ NAME cit_magic.py DESCRIPTION converts CIT and .sam format files to magic_measurements format files SYNTAX cit_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .sam format input file, required -WD Working Directory: output directory where files are going to go -fsi SITEFILE : specify file with site names and locations [tab delimited magic file] -F FILE: specify output measurements file, default is magic_measurements.txt -Fsp FILE: specify output er_specimens.txt file, default is er_specimens.txt -Fsi FILE: specify output er_sites.txt file, default is er_sites.txt -Fsa FILE: specify output er_samples.txt file, default is er_samples.txt # LORI -n [gm,kg,cc,m3]: specify normalization -A: don't average replicate measurements -spc NUM : specify number of characters to designate a specimen, default = 0 -ncn NCON: specify naming convention -loc LOCNAME : specify location/study name, must have either LOCNAME or SITEFILE or be a synthetic -mcd [FS-FD:SO-MAG,.....] colon delimited list for method codes applied to all specimens in .sam file -dc B PHI THETA: dc lab field (in microTesla), phi,and theta must be input as a tuple "(DC,PHI,THETA)". If not input user will be asked for values, this is advantagious if there are differing dc fields between steps or specimens. Note: this currently only works with the decimal IZZI naming convetion (XXX.0,1,2 where XXX is the treatment temperature and 0 is a zero field step, 1 is in field, and 2 is a pTRM check). All other steps are hardcoded dc_field = 0. INPUT Best to put separate experiments in separate files (all AF, thermal, thellier, trm aquisition, Shaw, etc.) NOTES: Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3: default] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] or [email protected] for help. """ # # NB: use PHI, THETA = -1 -1 to signal that it changes, i.e. in anisotropy experiment # -ac B : peak AF field (in mT) for ARM acquisition, default is none # #initialize variables norm='cc' samp_con,Z='3',1 meas_file='magic_measurements.txt' spec_file='er_specimens.txt' samp_file='er_samples.txt' site_file='er_sites.txt' ErSpecs,ErSamps,ErSites,ErLocs,ErCits=[],[],[],[],[] MeasRecs=[] specnum,units,locname=0,"1","unknown" citation="This study" dir_path='.' args=sys.argv if command_line: if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) return False if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=args[ind+1] if '-Fsp' in args: ind=args.index("-Fsp") spec_file=args[ind+1] if '-Fsa' in args: ind=args.index("-Fsa") samp_file=args[ind+1] if '-Fsi' in args: # LORI addition ind=args.index("-Fsi") site_file=args[ind+1] if '-loc' in args: ind=args.index("-loc") locname=args[ind+1] if '-mcd' in args: ind=args.index("-mcd") methods=args[ind+1] else: methods='SO-MAG' if '-spc' in args: ind=args.index("-spc") specnum=-int(args[ind+1]) if '-n' in args: ind=args.index("-n") norm=args[ind+1] if "-A" in args: avg=1 else: avg=0 if '-dc' in args: ind=args.index('-dc') DC_FIELD,DC_PHI,DC_THETA=list(map(float,args[ind+1].strip('( ) [ ]').split(','))) DC_FIELD *= 1e-6 yn='' GET_DC_PARAMS=False else: GET_DC_PARAMS,DC_FIELD,DC_PHI,DC_THETA,yn=True,0,0,-90,'' if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" elif "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" if '-f' in args: ind=args.index("-f") magfile=args[ind+1] if '-ID' in args: ind = args.index('-ID') input_dir_path = args[ind+1] else: input_dir_path = os.path.split(magfile)[0] output_dir_path = dir_path # LJ # if you are running as a module: elif not command_line: dir_path = kwargs.get('dir_path', '.') user = kwargs.get('user', '') meas_file = kwargs.get('meas_file', 'magic_measurements.txt') # outfile spec_file = kwargs.get('spec_file', 'er_specimens.txt') # specimen outfile samp_file = kwargs.get('samp_file', 'er_samples.txt') # sample outfile site_file = kwargs.get('site_file', 'er_sites.txt') # site outfile locname = kwargs.get('locname', '') methods = kwargs.get('methods', ['SO-MAG']) specnum = -int(kwargs.get('specnum', 0)) norm = kwargs.get('norm', 'cc') avg = kwargs.get('avg', 0) # 0 means do average, 1 means don't samp_con = kwargs.get('samp_con', '3') magfile = kwargs.get('magfile', '') input_dir_path = kwargs.get('input_dir_path', os.path.split(magfile)[0]) output_dir_path = dir_path DC_FIELD,DC_PHI,DC_THETA = list(map(float, kwargs.get('dc_params', (0,0,-90)))) DC_FIELD *= 1e-6 yn = '' if DC_FIELD==0 and DC_PHI==0 and DC_THETA==-90: GET_DC_PARAMS=True else: GET_DC_PARAMS=False # done with module-specific stuff # formatting and checking variables if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" elif "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" magfile = os.path.join(input_dir_path, magfile) spec_file = os.path.join(output_dir_path, spec_file) samp_file = os.path.join(output_dir_path, samp_file) site_file = os.path.join(output_dir_path, site_file) meas_file= os.path.join(output_dir_path, meas_file) FIRST_GET_DC=True try: with open(magfile,'r') as file_input: File = file_input.readlines() except Exception as ex: print("bad sam file name: ", magfile) return False, "bad sam file name" if len(File) == 1: File = File[0].split('\r'); File = [x+"\r\n" for x in File] sids,ln,format=[],0,'CIT' formats=['CIT','2G','APP','JRA'] if File[ln].strip()=='CIT': ln+=1 ErLocRec={} ErLocRec["er_location_name"]=locname ErLocRec["er_citation_names"]=citation comment=File[ln] if comment=='CIT': format=comment ln+=1 comment=File[ln] print(comment) ln+=1 specimens,samples,sites=[],[],[] if format=='CIT': line=File[ln].split() site_lat=line[0] site_lon=line[1] ErLocRec["location_begin_lat"]=site_lat ErLocRec["location_begin_lon"]=site_lon ErLocRec["location_end_lat"]=site_lat ErLocRec["location_end_lon"]=site_lon ErLocs.append(ErLocRec) try: Cdec=float(line[2]) except ValueError: pdb.set_trace() for k in range(ln+1,len(File)): line=File[k] rec=line.split() if rec == []: continue specimen=rec[0] specimens.append(specimen) for specimen in specimens: ErSpecRec,ErSampRec,ErSiteRec={},{},{} if specnum!=0: sample=specimen[:specnum] else: sample=specimen site=pmag.parse_site(sample,samp_con,Z) ErSpecRec['er_specimen_name']=specimen ErSpecRec['er_sample_name']=sample ErSpecRec['er_site_name']=site ErSpecRec['er_location_name']=locname ErSpecRec['er_citation_names']=citation ErSampRec['er_sample_name']=sample ErSampRec['er_site_name']=site ErSampRec['er_location_name']=locname ErSampRec['er_citation_names']=citation ErSampRec['magic_method_codes']=methods ErSampRec['sample_declination_correction']='%7.1f'%(Cdec) ErSiteRec['er_site_name']=site ErSiteRec['er_location_name']=locname ErSiteRec['er_citation_names']=citation ErSiteRec['site_lat']=site_lat ErSiteRec['site_lon']=site_lon with open(os.path.join(input_dir_path,specimen),'r') as finput: Lines = list(finput.readlines()) comment = "" line=Lines[0].split() if len(line)>2: comment=line[2] info=Lines[1].split() vol=float(info[-1]) if vol!=1.0: if norm=='cc':units="1" if norm=='m3':units="2" ErSpecRec['specimen_weight']="" if units=="1" or "": ErSpecRec['specimen_volume']='%10.3e'%(vol*1e-6) else: ErSpecRec['specimen_volume']='%10.3e'%(vol) else: if norm=='cc':units="1" if norm=='m3':units="2" ErSpecRec['specimen_volume']="" if units=="1" or "": ErSpecRec['specimen_weight']='%10.3e'%(vol*1e-3) else: ErSpecRec['specimen_weight']='%10.3e'%(vol) dip=float(info[-2]) dip_direction=float(info[-3])+Cdec+90. sample_dip=-float(info[-4]) sample_azimuth=float(info[-5])+Cdec-90. if len(info)>5: ErSampRec['sample_height']=info[-6] else: ErSampRec['sample_height']='0' ErSampRec['sample_azimuth']='%7.1f'%(sample_azimuth) ErSampRec['sample_dip']='%7.1f'%(sample_dip) ErSampRec['sample_bed_dip']='%7.1f'%(dip) ErSampRec['sample_bed_dip_direction']='%7.1f'%(dip_direction) ErSampRec['sample_class']='' ErSampRec['sample_type']='' ErSampRec['sample_lithology']='' if Cdec!=0 or Cdec!="": ErSampRec['magic_method_codes']='SO-CMD-NORTH' else: ErSampRec['magic_method_codes']='SO-MAG' for line in Lines[2:len(Lines)]: if line == '\n': continue MeasRec=ErSpecRec.copy() # Remove specimen_volume and specimen_weight as they do not exits in the magic_measurement table del MeasRec["specimen_volume"] del MeasRec["specimen_weight"] treat_type=line[0:3] if treat_type[1] == '.': treat_type = 'NRM' treat=line[2:6] try: float(treat) except ValueError: treat = line[3:6] if treat_type.startswith('NRM'): MeasRec['magic_method_codes']='LT-NO' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif treat_type.startswith('AF'): MeasRec['magic_method_codes']='LT-AF-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA if treat.strip() == '': MeasRec['treatment_ac_field']='0' else: MeasRec['treatment_ac_field']='%10.3e'%(float(treat)*1e-3) elif treat_type.startswith('ARM'): MeasRec['magic_method_codes']="LP-ARM" MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA if treat.strip() == '': MeasRec['treatment_ac_field']='0' else: MeasRec['magic_method_codes']="LP-ARM-AFD" MeasRec['treatment_ac_field']='%10.3e'%(float(treat)*1e-3) elif treat_type.startswith('TT'): MeasRec['magic_method_codes']='LT-T-Z' MeasRec['measurement_temp']='273' if treat.strip() == '': MeasRec['treatment_temp']='273' else: MeasRec['treatment_temp']='%7.1f'%(float(treat)+273) MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif treat_type.startswith('LT') or treat_type.startswith('LN2'): MeasRec['magic_method_codes']='LT-LT-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='77' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '0': #assume decimal IZZI format 0 field thus can hardcode the dc fields MeasRec['magic_method_codes']='LT-T-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '1': #assume decimal IZZI format in constant field if GET_DC_PARAMS: GET_DC_PARAMS, FIRST_GET_DC, yn, DC_FIELD, DC_PHI, DC_THETA = get_dc_params(FIRST_GET_DC,specimen,treat_type,yn) MeasRec['magic_method_codes']='LT-T-I' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='%1.2e'%DC_FIELD MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '2': #assume decimal IZZI format PTRM step if GET_DC_PARAMS: GET_DC_PARAMS, FIRST_GET_DC, yn, DC_FIELD, DC_PHI, DC_THETA = get_dc_params(FIRST_GET_DC,specimen,treat_type,yn) MeasRec['magic_method_codes']='LT-PTRM-I' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='%1.2e'%DC_FIELD MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' else: print("trouble with your treatment steps") MeasRec['measurement_dec']=line[46:51] MeasRec['measurement_inc']=line[52:58] M='%8.2e'%(float(line[31:39])*vol*1e-3) # convert to Am2 MeasRec['measurement_magn_moment']=M MeasRec['measurement_csd']='%7.1f'%(eval(line[41:46])) MeasRec["measurement_positions"]='1' MeasRec['measurement_standard']='u' if len(line)>60: MeasRec['magic_instrument_codes']=line[85:] MeasRec['measurement_sd_x']='%8.2e'%(float(line[58:67])*1e-8) #(convert e-5emu to Am2) MeasRec['measurement_sd_y']='%8.2e'%(float(line[67:76])*1e-8) MeasRec['measurement_sd_z']='%8.2e'%(float(line[76:85])*1e-8) MeasRecs.append(MeasRec) ErSpecs.append(ErSpecRec) if sample not in samples: samples.append(sample) ErSamps.append(ErSampRec) site=pmag.parse_site(sample,samp_con,Z) if site not in sites: sites.append(site) ErSites.append(ErSiteRec) pmag.magic_write(spec_file,ErSpecs,'er_specimens') print('specimens stored in ',spec_file) pmag.magic_write(samp_file,ErSamps,'er_samples') print('samples stored in ',samp_file) pmag.magic_write(site_file,ErSites,'er_sites') print('sites stored in ', site_file) Fixed=pmag.measurements_methods(MeasRecs,avg) pmag.magic_write(meas_file,Fixed,'magic_measurements') print('data stored in ',meas_file) return True, meas_file
python
def main(command_line=True, **kwargs): """ NAME cit_magic.py DESCRIPTION converts CIT and .sam format files to magic_measurements format files SYNTAX cit_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .sam format input file, required -WD Working Directory: output directory where files are going to go -fsi SITEFILE : specify file with site names and locations [tab delimited magic file] -F FILE: specify output measurements file, default is magic_measurements.txt -Fsp FILE: specify output er_specimens.txt file, default is er_specimens.txt -Fsi FILE: specify output er_sites.txt file, default is er_sites.txt -Fsa FILE: specify output er_samples.txt file, default is er_samples.txt # LORI -n [gm,kg,cc,m3]: specify normalization -A: don't average replicate measurements -spc NUM : specify number of characters to designate a specimen, default = 0 -ncn NCON: specify naming convention -loc LOCNAME : specify location/study name, must have either LOCNAME or SITEFILE or be a synthetic -mcd [FS-FD:SO-MAG,.....] colon delimited list for method codes applied to all specimens in .sam file -dc B PHI THETA: dc lab field (in microTesla), phi,and theta must be input as a tuple "(DC,PHI,THETA)". If not input user will be asked for values, this is advantagious if there are differing dc fields between steps or specimens. Note: this currently only works with the decimal IZZI naming convetion (XXX.0,1,2 where XXX is the treatment temperature and 0 is a zero field step, 1 is in field, and 2 is a pTRM check). All other steps are hardcoded dc_field = 0. INPUT Best to put separate experiments in separate files (all AF, thermal, thellier, trm aquisition, Shaw, etc.) NOTES: Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3: default] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] or [email protected] for help. """ # # NB: use PHI, THETA = -1 -1 to signal that it changes, i.e. in anisotropy experiment # -ac B : peak AF field (in mT) for ARM acquisition, default is none # #initialize variables norm='cc' samp_con,Z='3',1 meas_file='magic_measurements.txt' spec_file='er_specimens.txt' samp_file='er_samples.txt' site_file='er_sites.txt' ErSpecs,ErSamps,ErSites,ErLocs,ErCits=[],[],[],[],[] MeasRecs=[] specnum,units,locname=0,"1","unknown" citation="This study" dir_path='.' args=sys.argv if command_line: if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) return False if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=args[ind+1] if '-Fsp' in args: ind=args.index("-Fsp") spec_file=args[ind+1] if '-Fsa' in args: ind=args.index("-Fsa") samp_file=args[ind+1] if '-Fsi' in args: # LORI addition ind=args.index("-Fsi") site_file=args[ind+1] if '-loc' in args: ind=args.index("-loc") locname=args[ind+1] if '-mcd' in args: ind=args.index("-mcd") methods=args[ind+1] else: methods='SO-MAG' if '-spc' in args: ind=args.index("-spc") specnum=-int(args[ind+1]) if '-n' in args: ind=args.index("-n") norm=args[ind+1] if "-A" in args: avg=1 else: avg=0 if '-dc' in args: ind=args.index('-dc') DC_FIELD,DC_PHI,DC_THETA=list(map(float,args[ind+1].strip('( ) [ ]').split(','))) DC_FIELD *= 1e-6 yn='' GET_DC_PARAMS=False else: GET_DC_PARAMS,DC_FIELD,DC_PHI,DC_THETA,yn=True,0,0,-90,'' if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" elif "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" if '-f' in args: ind=args.index("-f") magfile=args[ind+1] if '-ID' in args: ind = args.index('-ID') input_dir_path = args[ind+1] else: input_dir_path = os.path.split(magfile)[0] output_dir_path = dir_path # LJ # if you are running as a module: elif not command_line: dir_path = kwargs.get('dir_path', '.') user = kwargs.get('user', '') meas_file = kwargs.get('meas_file', 'magic_measurements.txt') # outfile spec_file = kwargs.get('spec_file', 'er_specimens.txt') # specimen outfile samp_file = kwargs.get('samp_file', 'er_samples.txt') # sample outfile site_file = kwargs.get('site_file', 'er_sites.txt') # site outfile locname = kwargs.get('locname', '') methods = kwargs.get('methods', ['SO-MAG']) specnum = -int(kwargs.get('specnum', 0)) norm = kwargs.get('norm', 'cc') avg = kwargs.get('avg', 0) # 0 means do average, 1 means don't samp_con = kwargs.get('samp_con', '3') magfile = kwargs.get('magfile', '') input_dir_path = kwargs.get('input_dir_path', os.path.split(magfile)[0]) output_dir_path = dir_path DC_FIELD,DC_PHI,DC_THETA = list(map(float, kwargs.get('dc_params', (0,0,-90)))) DC_FIELD *= 1e-6 yn = '' if DC_FIELD==0 and DC_PHI==0 and DC_THETA==-90: GET_DC_PARAMS=True else: GET_DC_PARAMS=False # done with module-specific stuff # formatting and checking variables if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" elif "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" magfile = os.path.join(input_dir_path, magfile) spec_file = os.path.join(output_dir_path, spec_file) samp_file = os.path.join(output_dir_path, samp_file) site_file = os.path.join(output_dir_path, site_file) meas_file= os.path.join(output_dir_path, meas_file) FIRST_GET_DC=True try: with open(magfile,'r') as file_input: File = file_input.readlines() except Exception as ex: print("bad sam file name: ", magfile) return False, "bad sam file name" if len(File) == 1: File = File[0].split('\r'); File = [x+"\r\n" for x in File] sids,ln,format=[],0,'CIT' formats=['CIT','2G','APP','JRA'] if File[ln].strip()=='CIT': ln+=1 ErLocRec={} ErLocRec["er_location_name"]=locname ErLocRec["er_citation_names"]=citation comment=File[ln] if comment=='CIT': format=comment ln+=1 comment=File[ln] print(comment) ln+=1 specimens,samples,sites=[],[],[] if format=='CIT': line=File[ln].split() site_lat=line[0] site_lon=line[1] ErLocRec["location_begin_lat"]=site_lat ErLocRec["location_begin_lon"]=site_lon ErLocRec["location_end_lat"]=site_lat ErLocRec["location_end_lon"]=site_lon ErLocs.append(ErLocRec) try: Cdec=float(line[2]) except ValueError: pdb.set_trace() for k in range(ln+1,len(File)): line=File[k] rec=line.split() if rec == []: continue specimen=rec[0] specimens.append(specimen) for specimen in specimens: ErSpecRec,ErSampRec,ErSiteRec={},{},{} if specnum!=0: sample=specimen[:specnum] else: sample=specimen site=pmag.parse_site(sample,samp_con,Z) ErSpecRec['er_specimen_name']=specimen ErSpecRec['er_sample_name']=sample ErSpecRec['er_site_name']=site ErSpecRec['er_location_name']=locname ErSpecRec['er_citation_names']=citation ErSampRec['er_sample_name']=sample ErSampRec['er_site_name']=site ErSampRec['er_location_name']=locname ErSampRec['er_citation_names']=citation ErSampRec['magic_method_codes']=methods ErSampRec['sample_declination_correction']='%7.1f'%(Cdec) ErSiteRec['er_site_name']=site ErSiteRec['er_location_name']=locname ErSiteRec['er_citation_names']=citation ErSiteRec['site_lat']=site_lat ErSiteRec['site_lon']=site_lon with open(os.path.join(input_dir_path,specimen),'r') as finput: Lines = list(finput.readlines()) comment = "" line=Lines[0].split() if len(line)>2: comment=line[2] info=Lines[1].split() vol=float(info[-1]) if vol!=1.0: if norm=='cc':units="1" if norm=='m3':units="2" ErSpecRec['specimen_weight']="" if units=="1" or "": ErSpecRec['specimen_volume']='%10.3e'%(vol*1e-6) else: ErSpecRec['specimen_volume']='%10.3e'%(vol) else: if norm=='cc':units="1" if norm=='m3':units="2" ErSpecRec['specimen_volume']="" if units=="1" or "": ErSpecRec['specimen_weight']='%10.3e'%(vol*1e-3) else: ErSpecRec['specimen_weight']='%10.3e'%(vol) dip=float(info[-2]) dip_direction=float(info[-3])+Cdec+90. sample_dip=-float(info[-4]) sample_azimuth=float(info[-5])+Cdec-90. if len(info)>5: ErSampRec['sample_height']=info[-6] else: ErSampRec['sample_height']='0' ErSampRec['sample_azimuth']='%7.1f'%(sample_azimuth) ErSampRec['sample_dip']='%7.1f'%(sample_dip) ErSampRec['sample_bed_dip']='%7.1f'%(dip) ErSampRec['sample_bed_dip_direction']='%7.1f'%(dip_direction) ErSampRec['sample_class']='' ErSampRec['sample_type']='' ErSampRec['sample_lithology']='' if Cdec!=0 or Cdec!="": ErSampRec['magic_method_codes']='SO-CMD-NORTH' else: ErSampRec['magic_method_codes']='SO-MAG' for line in Lines[2:len(Lines)]: if line == '\n': continue MeasRec=ErSpecRec.copy() # Remove specimen_volume and specimen_weight as they do not exits in the magic_measurement table del MeasRec["specimen_volume"] del MeasRec["specimen_weight"] treat_type=line[0:3] if treat_type[1] == '.': treat_type = 'NRM' treat=line[2:6] try: float(treat) except ValueError: treat = line[3:6] if treat_type.startswith('NRM'): MeasRec['magic_method_codes']='LT-NO' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif treat_type.startswith('AF'): MeasRec['magic_method_codes']='LT-AF-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA if treat.strip() == '': MeasRec['treatment_ac_field']='0' else: MeasRec['treatment_ac_field']='%10.3e'%(float(treat)*1e-3) elif treat_type.startswith('ARM'): MeasRec['magic_method_codes']="LP-ARM" MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='273' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA if treat.strip() == '': MeasRec['treatment_ac_field']='0' else: MeasRec['magic_method_codes']="LP-ARM-AFD" MeasRec['treatment_ac_field']='%10.3e'%(float(treat)*1e-3) elif treat_type.startswith('TT'): MeasRec['magic_method_codes']='LT-T-Z' MeasRec['measurement_temp']='273' if treat.strip() == '': MeasRec['treatment_temp']='273' else: MeasRec['treatment_temp']='%7.1f'%(float(treat)+273) MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif treat_type.startswith('LT') or treat_type.startswith('LN2'): MeasRec['magic_method_codes']='LT-LT-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']='77' MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '0': #assume decimal IZZI format 0 field thus can hardcode the dc fields MeasRec['magic_method_codes']='LT-T-Z' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='0' MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '1': #assume decimal IZZI format in constant field if GET_DC_PARAMS: GET_DC_PARAMS, FIRST_GET_DC, yn, DC_FIELD, DC_PHI, DC_THETA = get_dc_params(FIRST_GET_DC,specimen,treat_type,yn) MeasRec['magic_method_codes']='LT-T-I' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='%1.2e'%DC_FIELD MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' elif line[4] == '2': #assume decimal IZZI format PTRM step if GET_DC_PARAMS: GET_DC_PARAMS, FIRST_GET_DC, yn, DC_FIELD, DC_PHI, DC_THETA = get_dc_params(FIRST_GET_DC,specimen,treat_type,yn) MeasRec['magic_method_codes']='LT-PTRM-I' MeasRec['measurement_temp']='273' MeasRec['treatment_temp']=str(int(treat_type) + 273) MeasRec['treatment_dc_field']='%1.2e'%DC_FIELD MeasRec['treatment_dc_field_phi'] = '%1.2f'%DC_PHI MeasRec['treatment_dc_field_theta'] = '%1.2f'%DC_THETA MeasRec['treatment_ac_field']='0' else: print("trouble with your treatment steps") MeasRec['measurement_dec']=line[46:51] MeasRec['measurement_inc']=line[52:58] M='%8.2e'%(float(line[31:39])*vol*1e-3) # convert to Am2 MeasRec['measurement_magn_moment']=M MeasRec['measurement_csd']='%7.1f'%(eval(line[41:46])) MeasRec["measurement_positions"]='1' MeasRec['measurement_standard']='u' if len(line)>60: MeasRec['magic_instrument_codes']=line[85:] MeasRec['measurement_sd_x']='%8.2e'%(float(line[58:67])*1e-8) #(convert e-5emu to Am2) MeasRec['measurement_sd_y']='%8.2e'%(float(line[67:76])*1e-8) MeasRec['measurement_sd_z']='%8.2e'%(float(line[76:85])*1e-8) MeasRecs.append(MeasRec) ErSpecs.append(ErSpecRec) if sample not in samples: samples.append(sample) ErSamps.append(ErSampRec) site=pmag.parse_site(sample,samp_con,Z) if site not in sites: sites.append(site) ErSites.append(ErSiteRec) pmag.magic_write(spec_file,ErSpecs,'er_specimens') print('specimens stored in ',spec_file) pmag.magic_write(samp_file,ErSamps,'er_samples') print('samples stored in ',samp_file) pmag.magic_write(site_file,ErSites,'er_sites') print('sites stored in ', site_file) Fixed=pmag.measurements_methods(MeasRecs,avg) pmag.magic_write(meas_file,Fixed,'magic_measurements') print('data stored in ',meas_file) return True, meas_file
NAME cit_magic.py DESCRIPTION converts CIT and .sam format files to magic_measurements format files SYNTAX cit_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .sam format input file, required -WD Working Directory: output directory where files are going to go -fsi SITEFILE : specify file with site names and locations [tab delimited magic file] -F FILE: specify output measurements file, default is magic_measurements.txt -Fsp FILE: specify output er_specimens.txt file, default is er_specimens.txt -Fsi FILE: specify output er_sites.txt file, default is er_sites.txt -Fsa FILE: specify output er_samples.txt file, default is er_samples.txt # LORI -n [gm,kg,cc,m3]: specify normalization -A: don't average replicate measurements -spc NUM : specify number of characters to designate a specimen, default = 0 -ncn NCON: specify naming convention -loc LOCNAME : specify location/study name, must have either LOCNAME or SITEFILE or be a synthetic -mcd [FS-FD:SO-MAG,.....] colon delimited list for method codes applied to all specimens in .sam file -dc B PHI THETA: dc lab field (in microTesla), phi,and theta must be input as a tuple "(DC,PHI,THETA)". If not input user will be asked for values, this is advantagious if there are differing dc fields between steps or specimens. Note: this currently only works with the decimal IZZI naming convetion (XXX.0,1,2 where XXX is the treatment temperature and 0 is a zero field step, 1 is in field, and 2 is a pTRM check). All other steps are hardcoded dc_field = 0. INPUT Best to put separate experiments in separate files (all AF, thermal, thellier, trm aquisition, Shaw, etc.) NOTES: Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3: default] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] or [email protected] for help.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts2/cit_magic2.py#L11-L419
PmagPy/PmagPy
programs/zeq.py
main
def main(): """ NAME zeq.py DESCRIPTION plots demagnetization data. The equal area projection has the X direction (usually North in geographic coordinates) to the top. The red line is the X axis of the Zijderveld diagram. Solid symbols are lower hemisphere. The solid (open) symbols in the Zijderveld diagram are X,Y (X,Z) pairs. The demagnetization diagram plots the fractional remanence remaining after each step. The green line is the fraction of the total remaence removed between each step. INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX zeq.py [command line options OPTIONS -f FILE for reading from command line -u [mT,C] specify units of mT OR C, default is unscaled -sav save figure and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] -beg [step number] treatment step for beginning of PCA calculation, 0 is default -end [step number] treatment step for end of PCA calculation, last step is default -ct [l,p,f] Calculation Type: best-fit line, plane or fisher mean; line is default """ files,fmt,plot={},'svg',0 end_pca,beg_pca="","" calculation_type='DE-BFL' if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit else: if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-u' in sys.argv: ind=sys.argv.index('-u') units=sys.argv[ind+1] if units=="C":SIunits="K" if units=="mT":SIunits="T" else: units="U" SIunits="U" if '-sav' in sys.argv:plot=1 if '-ct' in sys.argv: ind=sys.argv.index('-ct') ct=sys.argv[ind+1] if ct=='f':calculation_type='DE-FM' if ct=='p':calculation_type='DE-BFP' if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-beg' in sys.argv: ind=sys.argv.index('-beg') beg_pca=int(sys.argv[ind+1]) if '-end' in sys.argv: ind=sys.argv.index('-end') end_pca=int(sys.argv[ind+1]) f=open(file,'r') data=f.readlines() # datablock= [] # set up list for data s="" # initialize specimen name angle=0. for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if angle=="":angle=float(rec[3]) if s=="":s=rec[0] if units=='mT':datablock.append([float(rec[1])*1e-3,float(rec[3]),float(rec[4]),1e-3*float(rec[2]),'','g']) # treatment, dec, inc, int # convert to T and Am^2 (assume emu) if units=='C':datablock.append([float(rec[1])+273.,float(rec[3]),float(rec[4]),1e-3*float(rec[2]),'','g']) # treatment, dec, inc, int, convert to K and Am^2, assume emu if units=='U':datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'','g']) # treatment, dec, inc, int, using unscaled units # define figure numbers in a dictionary for equal area, zijderveld, # and intensity vs. demagnetiztion step respectively ZED={} ZED['eqarea'],ZED['zijd'], ZED['demag']=1,2,3 pmagplotlib.plot_init(ZED['eqarea'],5,5) # initialize plots pmagplotlib.plot_init(ZED['zijd'],5,5) pmagplotlib.plot_init(ZED['demag'],5,5) # # pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data if plot==0:pmagplotlib.draw_figs(ZED) # # print out data for this sample to screen # recnum=0 for plotrec in datablock: if units=='mT':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0]*1e3,plotrec[3],plotrec[1],plotrec[2])) if units=='C':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0]-273.,plotrec[3],plotrec[1],plotrec[2])) if units=='U':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0],plotrec[3],plotrec[1],plotrec[2])) recnum += 1 if plot==0: while 1: if beg_pca!="" and end_pca!="" and calculation_type!="": pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if end_pca=="":end_pca=len(datablock)-1 # initialize end_pca, beg_pca to first and last measurement if beg_pca=="":beg_pca=0 ans=input(" s[a]ve plot, [b]ounds for pca and calculate, change [h]orizontal projection angle, [q]uit: ") if ans =='q': sys.exit() if ans=='a': files={} for key in list(ZED.keys()): files[key]=s+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) if ans=='h': angle=float(input(" Declination to project onto horizontal axis? ")) pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data if ans=='b': GoOn=0 while GoOn==0: # keep going until reasonable bounds are set print('Enter index of first point for pca: ','[',beg_pca,']') answer=input('return to keep default ') if answer != "":beg_pca=int(answer) print('Enter index of last point for pca: ','[',end_pca,']') answer=input('return to keep default ') if answer != "": end_pca=int(answer) if beg_pca >=0 and beg_pca<=len(datablock)-2 and end_pca>0 and end_pca<len(datablock): GoOn=1 else: print("Bad entry of indices - try again") end_pca=len(datablock)-1 beg_pca=0 GoOn=0 while GoOn==0: ct=input('Enter Calculation Type: best-fit line, plane or fisher mean [l]/p/f : ' ) if ct=="" or ct=="l": calculation_type="DE-BFL" GoOn=1 # all good elif ct=='p': calculation_type="DE-BFP" GoOn=1 # all good elif ct=='f': calculation_type="DE-FM" GoOn=1 # all good else: print("bad entry of calculation type: try again. ") # keep going pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) pmagplotlib.draw_figs(ZED) else: print(beg_pca,end_pca) if beg_pca!="" and end_pca!="": pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) files={} for key in list(ZED.keys()): files[key]=s+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files)
python
def main(): """ NAME zeq.py DESCRIPTION plots demagnetization data. The equal area projection has the X direction (usually North in geographic coordinates) to the top. The red line is the X axis of the Zijderveld diagram. Solid symbols are lower hemisphere. The solid (open) symbols in the Zijderveld diagram are X,Y (X,Z) pairs. The demagnetization diagram plots the fractional remanence remaining after each step. The green line is the fraction of the total remaence removed between each step. INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX zeq.py [command line options OPTIONS -f FILE for reading from command line -u [mT,C] specify units of mT OR C, default is unscaled -sav save figure and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] -beg [step number] treatment step for beginning of PCA calculation, 0 is default -end [step number] treatment step for end of PCA calculation, last step is default -ct [l,p,f] Calculation Type: best-fit line, plane or fisher mean; line is default """ files,fmt,plot={},'svg',0 end_pca,beg_pca="","" calculation_type='DE-BFL' if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit else: if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-u' in sys.argv: ind=sys.argv.index('-u') units=sys.argv[ind+1] if units=="C":SIunits="K" if units=="mT":SIunits="T" else: units="U" SIunits="U" if '-sav' in sys.argv:plot=1 if '-ct' in sys.argv: ind=sys.argv.index('-ct') ct=sys.argv[ind+1] if ct=='f':calculation_type='DE-FM' if ct=='p':calculation_type='DE-BFP' if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-beg' in sys.argv: ind=sys.argv.index('-beg') beg_pca=int(sys.argv[ind+1]) if '-end' in sys.argv: ind=sys.argv.index('-end') end_pca=int(sys.argv[ind+1]) f=open(file,'r') data=f.readlines() # datablock= [] # set up list for data s="" # initialize specimen name angle=0. for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if angle=="":angle=float(rec[3]) if s=="":s=rec[0] if units=='mT':datablock.append([float(rec[1])*1e-3,float(rec[3]),float(rec[4]),1e-3*float(rec[2]),'','g']) # treatment, dec, inc, int # convert to T and Am^2 (assume emu) if units=='C':datablock.append([float(rec[1])+273.,float(rec[3]),float(rec[4]),1e-3*float(rec[2]),'','g']) # treatment, dec, inc, int, convert to K and Am^2, assume emu if units=='U':datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'','g']) # treatment, dec, inc, int, using unscaled units # define figure numbers in a dictionary for equal area, zijderveld, # and intensity vs. demagnetiztion step respectively ZED={} ZED['eqarea'],ZED['zijd'], ZED['demag']=1,2,3 pmagplotlib.plot_init(ZED['eqarea'],5,5) # initialize plots pmagplotlib.plot_init(ZED['zijd'],5,5) pmagplotlib.plot_init(ZED['demag'],5,5) # # pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data if plot==0:pmagplotlib.draw_figs(ZED) # # print out data for this sample to screen # recnum=0 for plotrec in datablock: if units=='mT':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0]*1e3,plotrec[3],plotrec[1],plotrec[2])) if units=='C':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0]-273.,plotrec[3],plotrec[1],plotrec[2])) if units=='U':print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum,plotrec[0],plotrec[3],plotrec[1],plotrec[2])) recnum += 1 if plot==0: while 1: if beg_pca!="" and end_pca!="" and calculation_type!="": pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if end_pca=="":end_pca=len(datablock)-1 # initialize end_pca, beg_pca to first and last measurement if beg_pca=="":beg_pca=0 ans=input(" s[a]ve plot, [b]ounds for pca and calculate, change [h]orizontal projection angle, [q]uit: ") if ans =='q': sys.exit() if ans=='a': files={} for key in list(ZED.keys()): files[key]=s+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files) if ans=='h': angle=float(input(" Declination to project onto horizontal axis? ")) pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data if ans=='b': GoOn=0 while GoOn==0: # keep going until reasonable bounds are set print('Enter index of first point for pca: ','[',beg_pca,']') answer=input('return to keep default ') if answer != "":beg_pca=int(answer) print('Enter index of last point for pca: ','[',end_pca,']') answer=input('return to keep default ') if answer != "": end_pca=int(answer) if beg_pca >=0 and beg_pca<=len(datablock)-2 and end_pca>0 and end_pca<len(datablock): GoOn=1 else: print("Bad entry of indices - try again") end_pca=len(datablock)-1 beg_pca=0 GoOn=0 while GoOn==0: ct=input('Enter Calculation Type: best-fit line, plane or fisher mean [l]/p/f : ' ) if ct=="" or ct=="l": calculation_type="DE-BFL" GoOn=1 # all good elif ct=='p': calculation_type="DE-BFP" GoOn=1 # all good elif ct=='f': calculation_type="DE-FM" GoOn=1 # all good else: print("bad entry of calculation type: try again. ") # keep going pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) pmagplotlib.draw_figs(ZED) else: print(beg_pca,end_pca) if beg_pca!="" and end_pca!="": pmagplotlib.plot_zed(ZED,datablock,angle,s,SIunits) # plot the data mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) # get best-fit direction/great circle pmagplotlib.plot_dir(ZED,mpars,datablock,angle) # plot the best-fit direction/great circle print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units=='mT':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]*1e3,mpars["measurement_step_max"]*1e3,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='C':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"]-273,mpars["measurement_step_max"]-273,mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) if units=='U':print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"])) files={} for key in list(ZED.keys()): files[key]=s+'_'+key+'.'+fmt pmagplotlib.save_plots(ZED,files)
NAME zeq.py DESCRIPTION plots demagnetization data. The equal area projection has the X direction (usually North in geographic coordinates) to the top. The red line is the X axis of the Zijderveld diagram. Solid symbols are lower hemisphere. The solid (open) symbols in the Zijderveld diagram are X,Y (X,Z) pairs. The demagnetization diagram plots the fractional remanence remaining after each step. The green line is the fraction of the total remaence removed between each step. INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX zeq.py [command line options OPTIONS -f FILE for reading from command line -u [mT,C] specify units of mT OR C, default is unscaled -sav save figure and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] -beg [step number] treatment step for beginning of PCA calculation, 0 is default -end [step number] treatment step for end of PCA calculation, last step is default -ct [l,p,f] Calculation Type: best-fit line, plane or fisher mean; line is default
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/zeq.py#L13-L186
PmagPy/PmagPy
programs/make_magic_plots.py
check_for_reqd_cols
def check_for_reqd_cols(data, reqd_cols): """ Check data (PmagPy list of dicts) for required columns """ missing = [] for col in reqd_cols: if col not in data[0]: missing.append(col) return missing
python
def check_for_reqd_cols(data, reqd_cols): """ Check data (PmagPy list of dicts) for required columns """ missing = [] for col in reqd_cols: if col not in data[0]: missing.append(col) return missing
Check data (PmagPy list of dicts) for required columns
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/make_magic_plots.py#L26-L34
PmagPy/PmagPy
programs/make_magic_plots.py
main
def main(): """ NAME make_magic_plots.py DESCRIPTION inspects magic directory for available data and makes plots SYNTAX make_magic_plots.py [command line options] INPUT magic files OPTIONS -h prints help message and quits -f FILE specifies input file name -fmt [png,eps,svg,jpg,pdf] specify format, default is png """ if '-h' in sys.argv: print(main.__doc__) sys.exit() # reset log files for fname in ['log.txt', 'errors.txt']: f = os.path.join(os.getcwd(), fname) if os.path.exists(f): os.remove(f) dirlist = ['./'] dir_path = os.getcwd() # if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind + 1] else: fmt = 'png' if '-f' in sys.argv: ind = sys.argv.index("-f") filelist = [sys.argv[ind + 1]] else: filelist = os.listdir(dir_path) ## initialize some variables samp_file = 'samples.txt' azimuth_key = 'azimuth' meas_file = 'measurements.txt' loc_key = 'location' loc_file = 'locations.txt' method_key = 'method_codes' dec_key = 'dir_dec' inc_key = 'dir_inc' tilt_corr_key = "dir_tilt_correction" aniso_tilt_corr_key = "aniso_tilt_correction" hyst_bcr_key = "hyst_bcr" hyst_mr_key = "hyst_mr_moment" hyst_ms_key = "hyst_ms_moment" hyst_bc_key = "hyst_bc" Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass'] results_file = 'sites.txt' hyst_file = 'specimens.txt' aniso_file = 'specimens.txt' # create contribution and propagate data throughout con = cb.Contribution() con.propagate_location_to_measurements() con.propagate_location_to_specimens() con.propagate_location_to_samples() if not con.tables: print('-E- No MagIC tables could be found in this directory') error_log("No MagIC tables found") return # try to get the contribution id for error logging con_id = "" if 'contribution' in con.tables: if 'id' in con.tables['contribution'].df.columns: con_id = con.tables['contribution'].df.iloc[0]['id'] # check to see if propagation worked, otherwise you can't plot by location lowest_table = None for table in con.ancestry: if table in con.tables: lowest_table = table break do_full_directory = False # check that locations propagated down to the lowest table in the contribution if 'location' in con.tables[lowest_table].df.columns: if 'locations' not in con.tables: info_log('location names propagated to {}, but could not be validated'.format(lowest_table)) # are there any locations in the lowest table? elif not all(con.tables[lowest_table].df['location'].isnull()): locs = con.tables['locations'].df.index.unique() lowest_locs = con.tables[lowest_table].df['location'].unique() incorrect_locs = set(lowest_locs).difference(set(locs)) # are they actual locations? if not incorrect_locs: info_log('location names propagated to {}'.format(lowest_table)) else: do_full_directory = True error_log('location names did not propagate fully to {} table (looks like there are some naming inconsistencies between tables)'.format(lowest_table), con_id=con_id) else: do_full_directory = True error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id) else: do_full_directory = True error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id) all_data = {} all_data['measurements'] = con.tables.get('measurements', None) all_data['specimens'] = con.tables.get('specimens', None) all_data['samples'] = con.tables.get('samples', None) all_data['sites'] = con.tables.get('sites', None) all_data['locations'] = con.tables.get('locations', None) if 'locations' in con.tables: locations = con.tables['locations'].df.index.unique() else: locations = [''] dirlist = [loc for loc in locations if cb.not_null(loc, False) and loc != 'nan'] if not dirlist: dirlist = ["./"] if do_full_directory: dirlist = ["./"] # plot the whole contribution as one location if dirlist == ["./"]: error_log('plotting the entire contribution as one location', con_id=con_id) for fname in os.listdir("."): if fname.endswith(".txt"): shutil.copy(fname, "tmp_" + fname) # if possible, go through all data by location # use tmp_*.txt files to separate out by location for loc in dirlist: print('\nworking on: ', loc) def get_data(dtype, loc_name): """ Extract data of type dtype for location loc_name. Write tmp_dtype.txt files if possible. """ if cb.not_null(all_data[dtype], False): data_container = all_data[dtype] if loc_name == "./": data_df = data_container.df else: # awkward workaround for chars like "(" and "?" that break in regex try: data_df = data_container.df[data_container.df['location'].astype(str).str.contains(loc_name, na=False)] except: #sre_constants.error: data_df = data_container.df[data_container.df['location'] == loc_name] data = data_container.convert_to_pmag_data_list(df=data_df) res = data_container.write_magic_file('tmp_{}.txt'.format(dtype), df=data_df) if not res: return [] return data meas_data = get_data('measurements', loc) spec_data = get_data('specimens', loc) samp_data = get_data('samples', loc) site_data = get_data('sites', loc) loc_data = get_data('locations', loc) if loc == "./": # if you can't sort by location, do everything together try: meas_data = con.tables['measurements'].convert_to_pmag_data_list() except KeyError: meas_data = None try: spec_data = con.tables['specimens'].convert_to_pmag_data_list() except KeyError: spec_data = None try: samp_data = con.tables['samples'].convert_to_pmag_data_list() except KeyError: samp_data = None try: site_data = con.tables['sites'].convert_to_pmag_data_list() except KeyError: site_data = None crd = 's' if samp_file in filelist and samp_data: # find coordinate systems samps = samp_data file_type = "samples" # get all non blank sample orientations Srecs = pmag.get_dictitem(samps, azimuth_key, '', 'F') if len(Srecs) > 0: crd = 'g' print('using geographic coordinates') else: print('using specimen coordinates') else: if VERBOSE: print('-I- No sample data found') if meas_file in filelist and meas_data: # start with measurement data print('working on measurements data') data = meas_data file_type = 'measurements' # looking for zeq_magic possibilities # get all non blank method codes AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has') # get all non blank method codes TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has') # get all non blank method codes MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has') # get all dec measurements Drecs = pmag.get_dictitem(data, dec_key, '', 'F') # get all inc measurements Irecs = pmag.get_dictitem(data, inc_key, '', 'F') for key in Mkeys: Mrecs = pmag.get_dictitem( data, key, '', 'F') # get intensity data if len(Mrecs) > 0: break # potential for stepwise demag curves if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0: CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd + " -new" print(CMD) info_log(CMD, loc) os.system(CMD) # looking for thellier_magic possibilities if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM', 'has')) > 0: CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt print(CMD) info_log(CMD, loc) os.system(CMD) # looking for hysteresis possibilities if len(pmag.get_dictitem(data, method_key, 'LP-HYS', 'has')) > 0: # find hyst experiments # check for reqd columns missing = check_for_reqd_cols(data, ['treat_temp']) if missing: error_log('LP-HYS method code present, but required column(s) [{}] missing'.format(", ".join(missing)), loc, "quick_hyst.py", con_id=con_id) else: CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt print(CMD) info_log(CMD, loc) os.system(CMD) # equal area plots of directional data # at measurment level (by specimen) if data: missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc']) if not missing: CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt print(CMD) os.system(CMD) info_log(CMD, loc, "eqarea_magic.py") else: if VERBOSE: print('-I- No measurement data found') # site data if results_file in filelist and site_data: print('-I- result file found', results_file) data = site_data file_type = 'sites' print('-I- working on site directions') print('number of datapoints: ', len(data), loc) dec_key = 'dir_dec' inc_key = 'dir_inc' int_key = 'int_abs' SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F') # find decs SiteDIs = pmag.get_dictitem( SiteDIs, inc_key, "", 'F') # find decs and incs dir_data_found = len(SiteDIs) print('{} Dec/inc pairs found'.format(dir_data_found)) if SiteDIs: # then convert tilt_corr_key to correct format old_SiteDIs = SiteDIs SiteDIs = [] for rec in old_SiteDIs: if tilt_corr_key not in rec: rec[tilt_corr_key] = "0" # make sure tilt_corr_key is a correct format try: rec[tilt_corr_key] = str(int(float(rec[tilt_corr_key]))) except ValueError: rec[tilt_corr_key] = "0" SiteDIs.append(rec) print('number of individual directions: ', len(SiteDIs)) # tilt corrected coordinates SiteDIs_t = pmag.get_dictitem(SiteDIs, tilt_corr_key, '100', 'T', float_to_int=True) print('number of tilt corrected directions: ', len(SiteDIs_t)) SiteDIs_g = pmag.get_dictitem( SiteDIs, tilt_corr_key, '0', 'T', float_to_int=True) # geographic coordinates print('number of geographic directions: ', len(SiteDIs_g)) SiteDIs_s = pmag.get_dictitem( SiteDIs, tilt_corr_key, '-1', 'T', float_to_int=True) # sample coordinates print('number of sample directions: ', len(SiteDIs_s)) SiteDIs_x = pmag.get_dictitem( SiteDIs, tilt_corr_key, '', 'T') # no coordinates print('number of no coordinates directions: ', len(SiteDIs_x)) if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(SiteDIs_s) > 0 or len(SiteDIs_x) > 0: CRD = "" if len(SiteDIs_t) > 0: CRD = ' -crd t' elif len(SiteDIs_g) > 0: CRD = ' -crd g' elif len(SiteDIs_s) > 0: CRD = ' -crd s' CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD print(CMD) info_log(CMD, loc) os.system(CMD) else: if dir_data_found: error_log('{} dec/inc pairs found, but no equal area plots were made'.format(dir_data_found), loc, "equarea_magic.py", con_id=con_id) # print('-I- working on VGP map') VGPs = pmag.get_dictitem( SiteDIs, 'vgp_lat', "", 'F') # are there any VGPs? if len(VGPs) > 0: # YES! CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png' print(CMD) info_log(CMD, loc, 'vgpmap_magic.py') os.system(CMD) else: print('-I- No vgps found') print('-I- Look for intensities') # is there any intensity data? if site_data: if int_key in site_data[0].keys(): # old way, wasn't working right: #CMD = 'magic_select.py -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt' Selection = pmag.get_dictkey(site_data, int_key, dtype="f") with open('intensities.txt', 'w') as out: for rec in Selection: if rec != 0: out.write(str(rec * 1e6) + "\n") loc = loc.replace(" ", "_") if loc == "./": loc_name = "" else: loc_name = loc histfile = 'LO:_' + loc_name + \ '_TY:_intensities_histogram:_.' + fmt # maybe run histplot.main here instead, so you can return an error message CMD = "histplot.py -twin -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile os.system(CMD) info_log(CMD, loc) print(CMD) else: print('-I- No intensities found') else: print('-I- No intensities found') ## if hyst_file in filelist and spec_data: print('working on hysteresis', hyst_file) data = spec_data file_type = 'specimens' hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F') hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F') hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F') # there are data for a dayplot hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F') if len(hdata) > 0: CMD = 'dayplot_magic.py -f tmp_specimens.txt -sav -fmt ' + fmt info_log(CMD, loc) print(CMD) else: print('no hysteresis data found') if aniso_file in filelist and spec_data: # do anisotropy plots if possible print('working on anisotropy', aniso_file) data = spec_data file_type = 'specimens' # make sure there is some anisotropy data if not data: print('No anisotropy data found') elif 'aniso_s' not in data[0]: print('No anisotropy data found') else: # get specimen coordinates if aniso_tilt_corr_key not in data[0]: sdata = data else: sdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '-1', 'T', float_to_int=True) # get specimen coordinates gdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '0', 'T', float_to_int=True) # get specimen coordinates tdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '100', 'T', float_to_int=True) CRD = "" CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt + " -new" if len(sdata) > 3: CMD = CMD + ' -crd s' print(CMD) info_log(CMD, loc) os.system(CMD) if len(gdata) > 3: CMD = CMD + ' -crd g' print(CMD) info_log(CMD, loc) os.system(CMD) if len(tdata) > 3: CMD = CMD + ' -crd t' print(CMD) info_log(CMD, loc) os.system(CMD) # remove temporary files for fname in glob.glob('tmp*.txt'): os.remove(fname) try: os.remove('intensities.txt') except FileNotFoundError: pass if loc_file in filelist and loc_data: #data, file_type = pmag.magic_read(loc_file) # read in location data data = loc_data print('-I- working on pole map') poles = pmag.get_dictitem( data, 'pole_lat', "", 'F') # are there any poles? poles = pmag.get_dictitem( poles, 'pole_lon', "", 'F') # are there any poles? if len(poles) > 0: # YES! CMD = 'polemap_magic.py -sav -fmt png -rev gv 40' print(CMD) info_log(CMD, "all locations", "polemap_magic.py") os.system(CMD) else: print('-I- No poles found') thumbnails.make_thumbnails(dir_path)
python
def main(): """ NAME make_magic_plots.py DESCRIPTION inspects magic directory for available data and makes plots SYNTAX make_magic_plots.py [command line options] INPUT magic files OPTIONS -h prints help message and quits -f FILE specifies input file name -fmt [png,eps,svg,jpg,pdf] specify format, default is png """ if '-h' in sys.argv: print(main.__doc__) sys.exit() # reset log files for fname in ['log.txt', 'errors.txt']: f = os.path.join(os.getcwd(), fname) if os.path.exists(f): os.remove(f) dirlist = ['./'] dir_path = os.getcwd() # if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind + 1] else: fmt = 'png' if '-f' in sys.argv: ind = sys.argv.index("-f") filelist = [sys.argv[ind + 1]] else: filelist = os.listdir(dir_path) ## initialize some variables samp_file = 'samples.txt' azimuth_key = 'azimuth' meas_file = 'measurements.txt' loc_key = 'location' loc_file = 'locations.txt' method_key = 'method_codes' dec_key = 'dir_dec' inc_key = 'dir_inc' tilt_corr_key = "dir_tilt_correction" aniso_tilt_corr_key = "aniso_tilt_correction" hyst_bcr_key = "hyst_bcr" hyst_mr_key = "hyst_mr_moment" hyst_ms_key = "hyst_ms_moment" hyst_bc_key = "hyst_bc" Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass'] results_file = 'sites.txt' hyst_file = 'specimens.txt' aniso_file = 'specimens.txt' # create contribution and propagate data throughout con = cb.Contribution() con.propagate_location_to_measurements() con.propagate_location_to_specimens() con.propagate_location_to_samples() if not con.tables: print('-E- No MagIC tables could be found in this directory') error_log("No MagIC tables found") return # try to get the contribution id for error logging con_id = "" if 'contribution' in con.tables: if 'id' in con.tables['contribution'].df.columns: con_id = con.tables['contribution'].df.iloc[0]['id'] # check to see if propagation worked, otherwise you can't plot by location lowest_table = None for table in con.ancestry: if table in con.tables: lowest_table = table break do_full_directory = False # check that locations propagated down to the lowest table in the contribution if 'location' in con.tables[lowest_table].df.columns: if 'locations' not in con.tables: info_log('location names propagated to {}, but could not be validated'.format(lowest_table)) # are there any locations in the lowest table? elif not all(con.tables[lowest_table].df['location'].isnull()): locs = con.tables['locations'].df.index.unique() lowest_locs = con.tables[lowest_table].df['location'].unique() incorrect_locs = set(lowest_locs).difference(set(locs)) # are they actual locations? if not incorrect_locs: info_log('location names propagated to {}'.format(lowest_table)) else: do_full_directory = True error_log('location names did not propagate fully to {} table (looks like there are some naming inconsistencies between tables)'.format(lowest_table), con_id=con_id) else: do_full_directory = True error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id) else: do_full_directory = True error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id) all_data = {} all_data['measurements'] = con.tables.get('measurements', None) all_data['specimens'] = con.tables.get('specimens', None) all_data['samples'] = con.tables.get('samples', None) all_data['sites'] = con.tables.get('sites', None) all_data['locations'] = con.tables.get('locations', None) if 'locations' in con.tables: locations = con.tables['locations'].df.index.unique() else: locations = [''] dirlist = [loc for loc in locations if cb.not_null(loc, False) and loc != 'nan'] if not dirlist: dirlist = ["./"] if do_full_directory: dirlist = ["./"] # plot the whole contribution as one location if dirlist == ["./"]: error_log('plotting the entire contribution as one location', con_id=con_id) for fname in os.listdir("."): if fname.endswith(".txt"): shutil.copy(fname, "tmp_" + fname) # if possible, go through all data by location # use tmp_*.txt files to separate out by location for loc in dirlist: print('\nworking on: ', loc) def get_data(dtype, loc_name): """ Extract data of type dtype for location loc_name. Write tmp_dtype.txt files if possible. """ if cb.not_null(all_data[dtype], False): data_container = all_data[dtype] if loc_name == "./": data_df = data_container.df else: # awkward workaround for chars like "(" and "?" that break in regex try: data_df = data_container.df[data_container.df['location'].astype(str).str.contains(loc_name, na=False)] except: #sre_constants.error: data_df = data_container.df[data_container.df['location'] == loc_name] data = data_container.convert_to_pmag_data_list(df=data_df) res = data_container.write_magic_file('tmp_{}.txt'.format(dtype), df=data_df) if not res: return [] return data meas_data = get_data('measurements', loc) spec_data = get_data('specimens', loc) samp_data = get_data('samples', loc) site_data = get_data('sites', loc) loc_data = get_data('locations', loc) if loc == "./": # if you can't sort by location, do everything together try: meas_data = con.tables['measurements'].convert_to_pmag_data_list() except KeyError: meas_data = None try: spec_data = con.tables['specimens'].convert_to_pmag_data_list() except KeyError: spec_data = None try: samp_data = con.tables['samples'].convert_to_pmag_data_list() except KeyError: samp_data = None try: site_data = con.tables['sites'].convert_to_pmag_data_list() except KeyError: site_data = None crd = 's' if samp_file in filelist and samp_data: # find coordinate systems samps = samp_data file_type = "samples" # get all non blank sample orientations Srecs = pmag.get_dictitem(samps, azimuth_key, '', 'F') if len(Srecs) > 0: crd = 'g' print('using geographic coordinates') else: print('using specimen coordinates') else: if VERBOSE: print('-I- No sample data found') if meas_file in filelist and meas_data: # start with measurement data print('working on measurements data') data = meas_data file_type = 'measurements' # looking for zeq_magic possibilities # get all non blank method codes AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has') # get all non blank method codes TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has') # get all non blank method codes MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has') # get all dec measurements Drecs = pmag.get_dictitem(data, dec_key, '', 'F') # get all inc measurements Irecs = pmag.get_dictitem(data, inc_key, '', 'F') for key in Mkeys: Mrecs = pmag.get_dictitem( data, key, '', 'F') # get intensity data if len(Mrecs) > 0: break # potential for stepwise demag curves if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0: CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd + " -new" print(CMD) info_log(CMD, loc) os.system(CMD) # looking for thellier_magic possibilities if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM', 'has')) > 0: CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt print(CMD) info_log(CMD, loc) os.system(CMD) # looking for hysteresis possibilities if len(pmag.get_dictitem(data, method_key, 'LP-HYS', 'has')) > 0: # find hyst experiments # check for reqd columns missing = check_for_reqd_cols(data, ['treat_temp']) if missing: error_log('LP-HYS method code present, but required column(s) [{}] missing'.format(", ".join(missing)), loc, "quick_hyst.py", con_id=con_id) else: CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt print(CMD) info_log(CMD, loc) os.system(CMD) # equal area plots of directional data # at measurment level (by specimen) if data: missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc']) if not missing: CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt print(CMD) os.system(CMD) info_log(CMD, loc, "eqarea_magic.py") else: if VERBOSE: print('-I- No measurement data found') # site data if results_file in filelist and site_data: print('-I- result file found', results_file) data = site_data file_type = 'sites' print('-I- working on site directions') print('number of datapoints: ', len(data), loc) dec_key = 'dir_dec' inc_key = 'dir_inc' int_key = 'int_abs' SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F') # find decs SiteDIs = pmag.get_dictitem( SiteDIs, inc_key, "", 'F') # find decs and incs dir_data_found = len(SiteDIs) print('{} Dec/inc pairs found'.format(dir_data_found)) if SiteDIs: # then convert tilt_corr_key to correct format old_SiteDIs = SiteDIs SiteDIs = [] for rec in old_SiteDIs: if tilt_corr_key not in rec: rec[tilt_corr_key] = "0" # make sure tilt_corr_key is a correct format try: rec[tilt_corr_key] = str(int(float(rec[tilt_corr_key]))) except ValueError: rec[tilt_corr_key] = "0" SiteDIs.append(rec) print('number of individual directions: ', len(SiteDIs)) # tilt corrected coordinates SiteDIs_t = pmag.get_dictitem(SiteDIs, tilt_corr_key, '100', 'T', float_to_int=True) print('number of tilt corrected directions: ', len(SiteDIs_t)) SiteDIs_g = pmag.get_dictitem( SiteDIs, tilt_corr_key, '0', 'T', float_to_int=True) # geographic coordinates print('number of geographic directions: ', len(SiteDIs_g)) SiteDIs_s = pmag.get_dictitem( SiteDIs, tilt_corr_key, '-1', 'T', float_to_int=True) # sample coordinates print('number of sample directions: ', len(SiteDIs_s)) SiteDIs_x = pmag.get_dictitem( SiteDIs, tilt_corr_key, '', 'T') # no coordinates print('number of no coordinates directions: ', len(SiteDIs_x)) if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(SiteDIs_s) > 0 or len(SiteDIs_x) > 0: CRD = "" if len(SiteDIs_t) > 0: CRD = ' -crd t' elif len(SiteDIs_g) > 0: CRD = ' -crd g' elif len(SiteDIs_s) > 0: CRD = ' -crd s' CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD print(CMD) info_log(CMD, loc) os.system(CMD) else: if dir_data_found: error_log('{} dec/inc pairs found, but no equal area plots were made'.format(dir_data_found), loc, "equarea_magic.py", con_id=con_id) # print('-I- working on VGP map') VGPs = pmag.get_dictitem( SiteDIs, 'vgp_lat', "", 'F') # are there any VGPs? if len(VGPs) > 0: # YES! CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png' print(CMD) info_log(CMD, loc, 'vgpmap_magic.py') os.system(CMD) else: print('-I- No vgps found') print('-I- Look for intensities') # is there any intensity data? if site_data: if int_key in site_data[0].keys(): # old way, wasn't working right: #CMD = 'magic_select.py -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt' Selection = pmag.get_dictkey(site_data, int_key, dtype="f") with open('intensities.txt', 'w') as out: for rec in Selection: if rec != 0: out.write(str(rec * 1e6) + "\n") loc = loc.replace(" ", "_") if loc == "./": loc_name = "" else: loc_name = loc histfile = 'LO:_' + loc_name + \ '_TY:_intensities_histogram:_.' + fmt # maybe run histplot.main here instead, so you can return an error message CMD = "histplot.py -twin -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile os.system(CMD) info_log(CMD, loc) print(CMD) else: print('-I- No intensities found') else: print('-I- No intensities found') ## if hyst_file in filelist and spec_data: print('working on hysteresis', hyst_file) data = spec_data file_type = 'specimens' hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F') hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F') hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F') # there are data for a dayplot hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F') if len(hdata) > 0: CMD = 'dayplot_magic.py -f tmp_specimens.txt -sav -fmt ' + fmt info_log(CMD, loc) print(CMD) else: print('no hysteresis data found') if aniso_file in filelist and spec_data: # do anisotropy plots if possible print('working on anisotropy', aniso_file) data = spec_data file_type = 'specimens' # make sure there is some anisotropy data if not data: print('No anisotropy data found') elif 'aniso_s' not in data[0]: print('No anisotropy data found') else: # get specimen coordinates if aniso_tilt_corr_key not in data[0]: sdata = data else: sdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '-1', 'T', float_to_int=True) # get specimen coordinates gdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '0', 'T', float_to_int=True) # get specimen coordinates tdata = pmag.get_dictitem( data, aniso_tilt_corr_key, '100', 'T', float_to_int=True) CRD = "" CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt + " -new" if len(sdata) > 3: CMD = CMD + ' -crd s' print(CMD) info_log(CMD, loc) os.system(CMD) if len(gdata) > 3: CMD = CMD + ' -crd g' print(CMD) info_log(CMD, loc) os.system(CMD) if len(tdata) > 3: CMD = CMD + ' -crd t' print(CMD) info_log(CMD, loc) os.system(CMD) # remove temporary files for fname in glob.glob('tmp*.txt'): os.remove(fname) try: os.remove('intensities.txt') except FileNotFoundError: pass if loc_file in filelist and loc_data: #data, file_type = pmag.magic_read(loc_file) # read in location data data = loc_data print('-I- working on pole map') poles = pmag.get_dictitem( data, 'pole_lat', "", 'F') # are there any poles? poles = pmag.get_dictitem( poles, 'pole_lon', "", 'F') # are there any poles? if len(poles) > 0: # YES! CMD = 'polemap_magic.py -sav -fmt png -rev gv 40' print(CMD) info_log(CMD, "all locations", "polemap_magic.py") os.system(CMD) else: print('-I- No poles found') thumbnails.make_thumbnails(dir_path)
NAME make_magic_plots.py DESCRIPTION inspects magic directory for available data and makes plots SYNTAX make_magic_plots.py [command line options] INPUT magic files OPTIONS -h prints help message and quits -f FILE specifies input file name -fmt [png,eps,svg,jpg,pdf] specify format, default is png
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/make_magic_plots.py#L37-L464
PmagPy/PmagPy
programs/core_depthplot.py
main
def main(): """ NAME core_depthplot.py DESCRIPTION plots various measurements versus core_depth or age. plots data flagged as 'FS-SS-C' as discrete samples. SYNTAX core_depthplot.py [command line options] # or, for Anaconda users: core_depthplot_anaconda [command line options] OPTIONS -h prints help message and quits -f FILE: specify input measurments format file -fsum FILE: specify input LIMS database (IODP) core summary csv file -fwig FILE: specify input depth,wiggle to plot, in magic format with sample_core_depth key for depth -fsa FILE: specify input er_samples format file from magic for depth -fa FILE: specify input ages format file from magic for age NB: must have either -fsa OR -fa (not both) -fsp FILE sym size: specify input zeq_specimen format file from magic, sym and size NB: PCAs will have specified color, while fisher means will be white with specified color as the edgecolor -fres FILE specify input pmag_results file from magic, sym and size -LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot -S do not plot blanket treatment data (if this is set, you don't need the -LP) -sym SYM SIZE, symbol, size for continuous points (e.g., ro 5, bs 10, g^ 10 for red dot, blue square, green triangle), default is blue dot at 5 pt -D do not plot declination -M do not plot magnetization -log plot magnetization on a log scale -L do not connect dots with a line -I do not plot inclination -d min max [in m] depth range to plot -n normalize by weight in er_specimen table -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04, gts12] -ds [mbsf,mcd] specify depth scale, mbsf default -fmt [svg, eps, pdf, png] specify output format for plot (default: svg) -sav save plot silently DEFAULTS: Measurements file: measurements.txt Samples file: samples.txt NRM step Summary file: none """ args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([ ['f', False, 'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], ['fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres', False, '' ], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False, False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.'], ['L', False, True], ['S', False, True], ['D', False, True], ['I', False, True], ['M', False, True], ['log', False, 0], ['ds', False, 'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], ['sav', False, False], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file, fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus, pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save, data_model_num = extractor.get_vars( ['f', 'fsum', 'fwig', 'fsa', 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S', 'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args) # format some variables # format symbol/size try: sym, size = symbol.split() size = int(size) except: print('you should provide -sym in this format: ro 5') print('using defaults instead') sym, size = 'ro', 5 # format result file, symbol, size if res_file: try: res_file, res_sym, res_size = res_file.split() except: print('you must provide -fres in this format: -fres filename symbol size') print( 'could not parse {}, defaulting to using no result file'.format(res_file)) res_file, res_sym, res_size = '', '', 0 else: res_file, res_sym, res_size = '', '', 0 # format specimen file, symbol, size if spc_file: try: spc_file, spc_sym, spc_size = spc_file.split() except: print('you must provide -fsp in this format: -fsp filename symbol size') print( 'could not parse {}, defaulting to using no specimen file'.format(spc_file)) spc_file, spc_sym, spc_size = '', '', 0 else: spc_file, spc_sym, spc_size = '', '', 0 # format min/max depth try: dmin, dmax = depth.split() except: print('you must provide -d in this format: -d dmin dmax') print('could not parse {}, defaulting to plotting all depths'.format(depth)) dmin, dmax = -1, -1 # format timescale, min/max time if timescale: try: timescale, amin, amax = timescale.split() pltTime = True except: print( 'you must provide -ts in this format: -ts timescale minimum_age maximum_age') print( 'could not parse {}, defaulting to using no timescale'.format(timescale)) timescale, amin, amax = None, -1, -1 pltTime = False else: timescale, amin, amax = None, -1, -1 pltTime = False # format norm and wt_file if norm and not isinstance(norm, bool): wt_file = norm norm = True else: norm = False wt_file = '' # format list of protcols and step try: method, step = meth.split() except: print( 'To use the -LP flag you must provide both the protocol and the step in this format:\n-LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot') print('Defaulting to using no protocol') method, step = 'LT-NO', 0 # list of varnames #['f', 'fsum', 'fwig', 'fsa', 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S', 'D', 'I', 'M', 'log', 'ds', 'sym' ] #meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file, fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus, pltDec, pltInc, pltMag, logit, depth_scale, symbol fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file, samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax, sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc, pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax, norm, data_model_num) if not pmagplotlib.isServer: figname = figname.replace(':', '_') if fig and save: print('-I- Created plot: {}'.format(figname)) plt.savefig(figname) return app = wx.App(redirect=False) if not fig: pw.simple_warning( 'No plot was able to be created with the data you provided.\nMake sure you have given all the required information and try again') return False dpi = fig.get_dpi() pixel_width = dpi * fig.get_figwidth() pixel_height = dpi * fig.get_figheight() figname = os.path.join(dir_path, figname) plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int(pixel_height + 50)), fig, figname, standalone=True) app.MainLoop()
python
def main(): """ NAME core_depthplot.py DESCRIPTION plots various measurements versus core_depth or age. plots data flagged as 'FS-SS-C' as discrete samples. SYNTAX core_depthplot.py [command line options] # or, for Anaconda users: core_depthplot_anaconda [command line options] OPTIONS -h prints help message and quits -f FILE: specify input measurments format file -fsum FILE: specify input LIMS database (IODP) core summary csv file -fwig FILE: specify input depth,wiggle to plot, in magic format with sample_core_depth key for depth -fsa FILE: specify input er_samples format file from magic for depth -fa FILE: specify input ages format file from magic for age NB: must have either -fsa OR -fa (not both) -fsp FILE sym size: specify input zeq_specimen format file from magic, sym and size NB: PCAs will have specified color, while fisher means will be white with specified color as the edgecolor -fres FILE specify input pmag_results file from magic, sym and size -LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot -S do not plot blanket treatment data (if this is set, you don't need the -LP) -sym SYM SIZE, symbol, size for continuous points (e.g., ro 5, bs 10, g^ 10 for red dot, blue square, green triangle), default is blue dot at 5 pt -D do not plot declination -M do not plot magnetization -log plot magnetization on a log scale -L do not connect dots with a line -I do not plot inclination -d min max [in m] depth range to plot -n normalize by weight in er_specimen table -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04, gts12] -ds [mbsf,mcd] specify depth scale, mbsf default -fmt [svg, eps, pdf, png] specify output format for plot (default: svg) -sav save plot silently DEFAULTS: Measurements file: measurements.txt Samples file: samples.txt NRM step Summary file: none """ args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([ ['f', False, 'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], ['fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres', False, '' ], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False, False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.'], ['L', False, True], ['S', False, True], ['D', False, True], ['I', False, True], ['M', False, True], ['log', False, 0], ['ds', False, 'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], ['sav', False, False], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file, fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus, pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save, data_model_num = extractor.get_vars( ['f', 'fsum', 'fwig', 'fsa', 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S', 'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args) # format some variables # format symbol/size try: sym, size = symbol.split() size = int(size) except: print('you should provide -sym in this format: ro 5') print('using defaults instead') sym, size = 'ro', 5 # format result file, symbol, size if res_file: try: res_file, res_sym, res_size = res_file.split() except: print('you must provide -fres in this format: -fres filename symbol size') print( 'could not parse {}, defaulting to using no result file'.format(res_file)) res_file, res_sym, res_size = '', '', 0 else: res_file, res_sym, res_size = '', '', 0 # format specimen file, symbol, size if spc_file: try: spc_file, spc_sym, spc_size = spc_file.split() except: print('you must provide -fsp in this format: -fsp filename symbol size') print( 'could not parse {}, defaulting to using no specimen file'.format(spc_file)) spc_file, spc_sym, spc_size = '', '', 0 else: spc_file, spc_sym, spc_size = '', '', 0 # format min/max depth try: dmin, dmax = depth.split() except: print('you must provide -d in this format: -d dmin dmax') print('could not parse {}, defaulting to plotting all depths'.format(depth)) dmin, dmax = -1, -1 # format timescale, min/max time if timescale: try: timescale, amin, amax = timescale.split() pltTime = True except: print( 'you must provide -ts in this format: -ts timescale minimum_age maximum_age') print( 'could not parse {}, defaulting to using no timescale'.format(timescale)) timescale, amin, amax = None, -1, -1 pltTime = False else: timescale, amin, amax = None, -1, -1 pltTime = False # format norm and wt_file if norm and not isinstance(norm, bool): wt_file = norm norm = True else: norm = False wt_file = '' # format list of protcols and step try: method, step = meth.split() except: print( 'To use the -LP flag you must provide both the protocol and the step in this format:\n-LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot') print('Defaulting to using no protocol') method, step = 'LT-NO', 0 # list of varnames #['f', 'fsum', 'fwig', 'fsa', 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S', 'D', 'I', 'M', 'log', 'ds', 'sym' ] #meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file, fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus, pltDec, pltInc, pltMag, logit, depth_scale, symbol fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file, samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax, sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc, pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax, norm, data_model_num) if not pmagplotlib.isServer: figname = figname.replace(':', '_') if fig and save: print('-I- Created plot: {}'.format(figname)) plt.savefig(figname) return app = wx.App(redirect=False) if not fig: pw.simple_warning( 'No plot was able to be created with the data you provided.\nMake sure you have given all the required information and try again') return False dpi = fig.get_dpi() pixel_width = dpi * fig.get_figwidth() pixel_height = dpi * fig.get_figheight() figname = os.path.join(dir_path, figname) plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int(pixel_height + 50)), fig, figname, standalone=True) app.MainLoop()
NAME core_depthplot.py DESCRIPTION plots various measurements versus core_depth or age. plots data flagged as 'FS-SS-C' as discrete samples. SYNTAX core_depthplot.py [command line options] # or, for Anaconda users: core_depthplot_anaconda [command line options] OPTIONS -h prints help message and quits -f FILE: specify input measurments format file -fsum FILE: specify input LIMS database (IODP) core summary csv file -fwig FILE: specify input depth,wiggle to plot, in magic format with sample_core_depth key for depth -fsa FILE: specify input er_samples format file from magic for depth -fa FILE: specify input ages format file from magic for age NB: must have either -fsa OR -fa (not both) -fsp FILE sym size: specify input zeq_specimen format file from magic, sym and size NB: PCAs will have specified color, while fisher means will be white with specified color as the edgecolor -fres FILE specify input pmag_results file from magic, sym and size -LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot -S do not plot blanket treatment data (if this is set, you don't need the -LP) -sym SYM SIZE, symbol, size for continuous points (e.g., ro 5, bs 10, g^ 10 for red dot, blue square, green triangle), default is blue dot at 5 pt -D do not plot declination -M do not plot magnetization -log plot magnetization on a log scale -L do not connect dots with a line -I do not plot inclination -d min max [in m] depth range to plot -n normalize by weight in er_specimen table -Iex: plot the expected inc at lat - only available for results with lat info in file -ts TS amin amax: plot the GPTS for the time interval between amin and amax (numbers in Ma) TS: [ck95, gts04, gts12] -ds [mbsf,mcd] specify depth scale, mbsf default -fmt [svg, eps, pdf, png] specify output format for plot (default: svg) -sav save plot silently DEFAULTS: Measurements file: measurements.txt Samples file: samples.txt NRM step Summary file: none
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/core_depthplot.py#L19-L193
PmagPy/PmagPy
programs/pca.py
main
def main(): """ NAME pca.py DESCRIPTION calculates best-fit line/plane through demagnetization data INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX pca.py [command line options][< filename] OPTIONS -h prints help and quits -f FILE -dir [L,P,F][BEG][END] specify direction type, beginning and end (L:line, P:plane or F:fisher mean of unit vectors) BEG: first step (NRM = step zero) END: last step (NRM = step zero) < filename for reading from standard input OUTPUT: specimen_name calculation_type N beg end MAD dec inc if calculation_type is 'p', dec and inc are pole to plane, otherwise, best-fit direction EXAMPLE: pca.py -dir L 1 5 <ex3.3 will calculate best-fit line through demagnetization steps 1 and 5 from file ex5.1 """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input if '-dir' in sys.argv: # ind=sys.argv.index('-dir') typ=sys.argv[ind+1] if typ=='L': calculation_type='DE-BFL' if typ=='P': calculation_type='DE-BFP' if typ=='F': calculation_type='DE-FM' beg_pca = int(sys.argv[ind+2]) end_pca = int(sys.argv[ind+3]) # # datablock= [] # set up list for data s="" ind=0 for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if s=="": s=rec[0] print(s, calculation_type) print(ind,rec[1],rec[3],rec[4],rec[2]) ind+=1 datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'0']) # treatment,dec,inc,int,dummy mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if calculation_type=="DE-FM": print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_a95"],mpars["specimen_dec"],mpars["specimen_inc"])) else: print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"]))
python
def main(): """ NAME pca.py DESCRIPTION calculates best-fit line/plane through demagnetization data INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX pca.py [command line options][< filename] OPTIONS -h prints help and quits -f FILE -dir [L,P,F][BEG][END] specify direction type, beginning and end (L:line, P:plane or F:fisher mean of unit vectors) BEG: first step (NRM = step zero) END: last step (NRM = step zero) < filename for reading from standard input OUTPUT: specimen_name calculation_type N beg end MAD dec inc if calculation_type is 'p', dec and inc are pole to plane, otherwise, best-fit direction EXAMPLE: pca.py -dir L 1 5 <ex3.3 will calculate best-fit line through demagnetization steps 1 and 5 from file ex5.1 """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input if '-dir' in sys.argv: # ind=sys.argv.index('-dir') typ=sys.argv[ind+1] if typ=='L': calculation_type='DE-BFL' if typ=='P': calculation_type='DE-BFP' if typ=='F': calculation_type='DE-FM' beg_pca = int(sys.argv[ind+2]) end_pca = int(sys.argv[ind+3]) # # datablock= [] # set up list for data s="" ind=0 for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if s=="": s=rec[0] print(s, calculation_type) print(ind,rec[1],rec[3],rec[4],rec[2]) ind+=1 datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'0']) # treatment,dec,inc,int,dummy mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if calculation_type=="DE-FM": print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_a95"],mpars["specimen_dec"],mpars["specimen_inc"])) else: print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"]))
NAME pca.py DESCRIPTION calculates best-fit line/plane through demagnetization data INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX pca.py [command line options][< filename] OPTIONS -h prints help and quits -f FILE -dir [L,P,F][BEG][END] specify direction type, beginning and end (L:line, P:plane or F:fisher mean of unit vectors) BEG: first step (NRM = step zero) END: last step (NRM = step zero) < filename for reading from standard input OUTPUT: specimen_name calculation_type N beg end MAD dec inc if calculation_type is 'p', dec and inc are pole to plane, otherwise, best-fit direction EXAMPLE: pca.py -dir L 1 5 <ex3.3 will calculate best-fit line through demagnetization steps 1 and 5 from file ex5.1
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/pca.py#L6-L72
PmagPy/PmagPy
programs/pt_rot.py
main
def main(): """ NAME pt_rot.py DESCRIPTION rotates pt according to specified age and plate SYNTAX pt_rot.py [command line options] OPTIONS -h prints help and quits -f file with lon lat plate age Dplate as space delimited input Dplate is the destination plate coordinates desires - default is "fixed south africa" Dplate should be one of: [nwaf, neaf,saf,aus, eur, ind, sam, ant, grn, nam] -ff file Efile, file has lat lon data file and Efile has sequential rotation poles: Elat Elon Omega -F OFILE, output sites (pmag_results) formatted file with rotated points stored in pole_lon, pole_lat (vgp_lon, vgp_lat). (data_model=2.5) default is to print out rotated lon, lat to standard output -dm [2.5,3] set data model for output. Default is 3 """ dir_path='.' PTS=[] ResRecs=[] ofile="" data_model=3 Dplates=['nwaf', 'neaf','saf','aus', 'eur', 'ind', 'sam', 'ant', 'grn', 'nam'] if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile=dir_path+'/'+sys.argv[ind+1] if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model=dir_path+'/'+sys.argv[ind+1] if '-f' in sys.argv: ind = sys.argv.index('-f') file=dir_path+'/'+sys.argv[ind+1] f=open(file,'r') data=f.readlines() elif '-ff' in sys.argv: ind = sys.argv.index('-ff') file=dir_path+'/'+sys.argv[ind+1] f=open(file,'r') data=f.readlines() Efile=dir_path+'/'+sys.argv[ind+2] f=open(Efile,'r') edata=f.readlines() Poles=[] for p in edata: rec=p.split() pole=[float(rec[0]),float(rec[1]),float(rec[2])] # pole is lat/lon/omega Poles.append(pole) else: data=sys.stdin.readlines() polelatkey,polelonkey='pole_lat','pole_lon' if data_model!=3: polelatkey,polelonkey='vgp_lat','vgp_lon' for line in data: PtRec={} rec=line.split() PtRec['site_lon']=rec[0] PtRec['site_lat']=rec[1] if '-ff' in sys.argv: pt_lat,pt_lon=float(rec[1]),float(rec[0]) for pole in Poles: ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: PtRec['cont']=rec[2] if PtRec['cont']=='af':PtRec['cont']='saf' # use fixed south africa PtRec['age']=rec[3] if len(rec)>4: PtRec['dcont']=rec[4] PTS.append(PtRec) if '-ff' not in sys.argv: for pt in PTS: pole='not specified' pt_lat=float(pt['site_lat']) pt_lon=float(pt['site_lon']) age=float(pt['age']) ptrot=[[pt_lat],[pt_lon]] if pt['cont']=='ib': pole=frp.get_pole(pt['cont'],age) ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] pt['cont']='eur' if pt['cont']!='saf': pole1=frp.get_pole(pt['cont'],age) ptrot= pmag.pt_rot(pole1,[pt_lat],[pt_lon]) if 'dcont' in list(pt.keys()): pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] pole=frp.get_pole(pt['dcont'],age) pole[2]=-pole[2] ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: if 'dcont' in list(pt.keys()): pole=frp.get_pole(pt['dcont'],age) pole[2]=-pole[2] ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) print(ptrot) if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) if len(ResRecs)>0: if data_model==3: pmag.magic_write(ofile,ResRecs,'locations') else: pmag.magic_write(ofile,ResRecs,'pmag_results')
python
def main(): """ NAME pt_rot.py DESCRIPTION rotates pt according to specified age and plate SYNTAX pt_rot.py [command line options] OPTIONS -h prints help and quits -f file with lon lat plate age Dplate as space delimited input Dplate is the destination plate coordinates desires - default is "fixed south africa" Dplate should be one of: [nwaf, neaf,saf,aus, eur, ind, sam, ant, grn, nam] -ff file Efile, file has lat lon data file and Efile has sequential rotation poles: Elat Elon Omega -F OFILE, output sites (pmag_results) formatted file with rotated points stored in pole_lon, pole_lat (vgp_lon, vgp_lat). (data_model=2.5) default is to print out rotated lon, lat to standard output -dm [2.5,3] set data model for output. Default is 3 """ dir_path='.' PTS=[] ResRecs=[] ofile="" data_model=3 Dplates=['nwaf', 'neaf','saf','aus', 'eur', 'ind', 'sam', 'ant', 'grn', 'nam'] if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile=dir_path+'/'+sys.argv[ind+1] if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model=dir_path+'/'+sys.argv[ind+1] if '-f' in sys.argv: ind = sys.argv.index('-f') file=dir_path+'/'+sys.argv[ind+1] f=open(file,'r') data=f.readlines() elif '-ff' in sys.argv: ind = sys.argv.index('-ff') file=dir_path+'/'+sys.argv[ind+1] f=open(file,'r') data=f.readlines() Efile=dir_path+'/'+sys.argv[ind+2] f=open(Efile,'r') edata=f.readlines() Poles=[] for p in edata: rec=p.split() pole=[float(rec[0]),float(rec[1]),float(rec[2])] # pole is lat/lon/omega Poles.append(pole) else: data=sys.stdin.readlines() polelatkey,polelonkey='pole_lat','pole_lon' if data_model!=3: polelatkey,polelonkey='vgp_lat','vgp_lon' for line in data: PtRec={} rec=line.split() PtRec['site_lon']=rec[0] PtRec['site_lat']=rec[1] if '-ff' in sys.argv: pt_lat,pt_lon=float(rec[1]),float(rec[0]) for pole in Poles: ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: PtRec['cont']=rec[2] if PtRec['cont']=='af':PtRec['cont']='saf' # use fixed south africa PtRec['age']=rec[3] if len(rec)>4: PtRec['dcont']=rec[4] PTS.append(PtRec) if '-ff' not in sys.argv: for pt in PTS: pole='not specified' pt_lat=float(pt['site_lat']) pt_lon=float(pt['site_lon']) age=float(pt['age']) ptrot=[[pt_lat],[pt_lon]] if pt['cont']=='ib': pole=frp.get_pole(pt['cont'],age) ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] pt['cont']='eur' if pt['cont']!='saf': pole1=frp.get_pole(pt['cont'],age) ptrot= pmag.pt_rot(pole1,[pt_lat],[pt_lon]) if 'dcont' in list(pt.keys()): pt_lat=ptrot[0][0] pt_lon=ptrot[1][0] pole=frp.get_pole(pt['dcont'],age) pole[2]=-pole[2] ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: if 'dcont' in list(pt.keys()): pole=frp.get_pole(pt['dcont'],age) pole[2]=-pole[2] ptrot= pmag.pt_rot(pole,[pt_lat],[pt_lon]) print(ptrot) if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) else: if ofile=="": print(ptrot[1][0], ptrot[0][0]) else: ResRec={polelonkey: '%7.1f'%(ptrot[0][0]),polelatkey:'%7.1f'%( ptrot[1][0])} ResRecs.append(ResRec) if len(ResRecs)>0: if data_model==3: pmag.magic_write(ofile,ResRecs,'locations') else: pmag.magic_write(ofile,ResRecs,'pmag_results')
NAME pt_rot.py DESCRIPTION rotates pt according to specified age and plate SYNTAX pt_rot.py [command line options] OPTIONS -h prints help and quits -f file with lon lat plate age Dplate as space delimited input Dplate is the destination plate coordinates desires - default is "fixed south africa" Dplate should be one of: [nwaf, neaf,saf,aus, eur, ind, sam, ant, grn, nam] -ff file Efile, file has lat lon data file and Efile has sequential rotation poles: Elat Elon Omega -F OFILE, output sites (pmag_results) formatted file with rotated points stored in pole_lon, pole_lat (vgp_lon, vgp_lat). (data_model=2.5) default is to print out rotated lon, lat to standard output -dm [2.5,3] set data model for output. Default is 3
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/pt_rot.py#L12-L146
PmagPy/PmagPy
pmagpy/validate_upload3.py
requiredUnless
def requiredUnless(col_name, arg, dm, df, *args): """ Arg is a string in the format "str1, str2, ..." Each string will be a column name. Col_name is required in df unless each column from arg is present. """ # if column name is present, no need to check if it is required if col_name in df.columns: return None arg_list = arg.split(",") arg_list = [argument.strip('"') for argument in arg_list] msg = "" for a in arg_list: # ignore validations that reference a different table if "." in a: continue if a not in df.columns: msg += "{} column is required unless {} is present. ".format(col_name, a) if msg: return msg else: return None return None
python
def requiredUnless(col_name, arg, dm, df, *args): """ Arg is a string in the format "str1, str2, ..." Each string will be a column name. Col_name is required in df unless each column from arg is present. """ # if column name is present, no need to check if it is required if col_name in df.columns: return None arg_list = arg.split(",") arg_list = [argument.strip('"') for argument in arg_list] msg = "" for a in arg_list: # ignore validations that reference a different table if "." in a: continue if a not in df.columns: msg += "{} column is required unless {} is present. ".format(col_name, a) if msg: return msg else: return None return None
Arg is a string in the format "str1, str2, ..." Each string will be a column name. Col_name is required in df unless each column from arg is present.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L15-L37
PmagPy/PmagPy
pmagpy/validate_upload3.py
requiredUnlessTable
def requiredUnlessTable(col_name, arg, dm, df, con=None): """ Col_name must be present in df unless arg (table_name) is present in contribution """ table_name = arg if col_name in df.columns: return None elif not con: return None elif table_name in con.tables: return None else: return "{} column is required unless table {} is present".format(col_name, table_name)
python
def requiredUnlessTable(col_name, arg, dm, df, con=None): """ Col_name must be present in df unless arg (table_name) is present in contribution """ table_name = arg if col_name in df.columns: return None elif not con: return None elif table_name in con.tables: return None else: return "{} column is required unless table {} is present".format(col_name, table_name)
Col_name must be present in df unless arg (table_name) is present in contribution
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L40-L53
PmagPy/PmagPy
pmagpy/validate_upload3.py
requiredIfGroup
def requiredIfGroup(col_name, arg, dm, df, *args): """ Col_name is required if other columns of the group arg are present. """ group_name = arg groups = set() columns = df.columns for col in columns: if col not in dm.index: continue group = dm.loc[col]['group'] groups.add(group) if group_name in groups: if col_name in columns: return None else: return "{} column is required if column group {} is used".format(col_name, group_name) return None
python
def requiredIfGroup(col_name, arg, dm, df, *args): """ Col_name is required if other columns of the group arg are present. """ group_name = arg groups = set() columns = df.columns for col in columns: if col not in dm.index: continue group = dm.loc[col]['group'] groups.add(group) if group_name in groups: if col_name in columns: return None else: return "{} column is required if column group {} is used".format(col_name, group_name) return None
Col_name is required if other columns of the group arg are present.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L56-L74
PmagPy/PmagPy
pmagpy/validate_upload3.py
required
def required(col_name, arg, dm, df, *args): """ Col_name is required in df.columns. Return error message if not. """ if col_name in df.columns: return None else: return '"{}" column is required'.format(col_name)
python
def required(col_name, arg, dm, df, *args): """ Col_name is required in df.columns. Return error message if not. """ if col_name in df.columns: return None else: return '"{}" column is required'.format(col_name)
Col_name is required in df.columns. Return error message if not.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L77-L85
PmagPy/PmagPy
pmagpy/validate_upload3.py
isIn
def isIn(row, col_name, arg, dm, df, con=None): """ row[col_name] must contain a value from another column. If not, return error message. """ #grade = df.apply(func, args=(validation_name, arg, dm), axis=1) cell_value = row[col_name] cell_value = str(cell_value) if not cell_value: return None elif cell_value == 'None': return None elif cell_value == 'nan': return None elif not con: return None # if it's in another table cell_values = [v.strip(" ") for v in cell_value.split(":")] if "." in arg: table_name, table_col_name = arg.split(".") if table_name not in con.tables: return None #return "Must contain a value from {} table. Missing {} table.".format(table_name, table_name) if table_col_name not in con.tables[table_name].df.columns: return '{} table is missing "{}" column, which is required for validating "{}" column'.format(table_name, table_col_name, col_name) possible_values = con.tables[table_name].df[table_col_name].unique() for value in cell_values: if value not in possible_values: trunc_possible_values = [val.replace(' ', '') for val in possible_values if val] trunc_cell_value = cell_value.replace(' ', '') if trunc_cell_value not in trunc_possible_values: if trunc_cell_value != value: return 'This value (long): "{}" is not found in: {} column in {} table. Also (short): {} is not in {}'.format(value, table_col_name, table_name, trunc_cell_value, arg) else: return 'This value: "{}" is not found in: {} column in {} table'.format(value, table_col_name, table_name) break # if it's in the present table: else: possible_values = df[arg].unique() for value in cell_values: if value not in possible_values: return 'This value: "{}" is not found in: {} column'.format(value, arg) break return None
python
def isIn(row, col_name, arg, dm, df, con=None): """ row[col_name] must contain a value from another column. If not, return error message. """ #grade = df.apply(func, args=(validation_name, arg, dm), axis=1) cell_value = row[col_name] cell_value = str(cell_value) if not cell_value: return None elif cell_value == 'None': return None elif cell_value == 'nan': return None elif not con: return None # if it's in another table cell_values = [v.strip(" ") for v in cell_value.split(":")] if "." in arg: table_name, table_col_name = arg.split(".") if table_name not in con.tables: return None #return "Must contain a value from {} table. Missing {} table.".format(table_name, table_name) if table_col_name not in con.tables[table_name].df.columns: return '{} table is missing "{}" column, which is required for validating "{}" column'.format(table_name, table_col_name, col_name) possible_values = con.tables[table_name].df[table_col_name].unique() for value in cell_values: if value not in possible_values: trunc_possible_values = [val.replace(' ', '') for val in possible_values if val] trunc_cell_value = cell_value.replace(' ', '') if trunc_cell_value not in trunc_possible_values: if trunc_cell_value != value: return 'This value (long): "{}" is not found in: {} column in {} table. Also (short): {} is not in {}'.format(value, table_col_name, table_name, trunc_cell_value, arg) else: return 'This value: "{}" is not found in: {} column in {} table'.format(value, table_col_name, table_name) break # if it's in the present table: else: possible_values = df[arg].unique() for value in cell_values: if value not in possible_values: return 'This value: "{}" is not found in: {} column'.format(value, arg) break return None
row[col_name] must contain a value from another column. If not, return error message.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L87-L130
PmagPy/PmagPy
pmagpy/validate_upload3.py
checkMax
def checkMax(row, col_name, arg, *args): """ row[col_name] must be less than or equal to arg. else, return error message. """ cell_value = row[col_name] if not cell_value: return None elif isinstance(cell_value, float): if np.isnan(cell_value): return None try: arg_val = float(arg) except ValueError: if arg in row.index: arg_val = row[arg] else: return None if cb.is_null(arg_val): return None #arg = float(arg) try: if float(cell_value) <= float(arg_val): return None else: return "{} ({}) must be <= {} ({})".format(str(cell_value), col_name, str(arg_val), str(arg)) # this happens when the value isn't a float (an error which will be caught elsewhere) except ValueError: return None
python
def checkMax(row, col_name, arg, *args): """ row[col_name] must be less than or equal to arg. else, return error message. """ cell_value = row[col_name] if not cell_value: return None elif isinstance(cell_value, float): if np.isnan(cell_value): return None try: arg_val = float(arg) except ValueError: if arg in row.index: arg_val = row[arg] else: return None if cb.is_null(arg_val): return None #arg = float(arg) try: if float(cell_value) <= float(arg_val): return None else: return "{} ({}) must be <= {} ({})".format(str(cell_value), col_name, str(arg_val), str(arg)) # this happens when the value isn't a float (an error which will be caught elsewhere) except ValueError: return None
row[col_name] must be less than or equal to arg. else, return error message.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L132-L160
PmagPy/PmagPy
pmagpy/validate_upload3.py
cv
def cv(row, col_name, arg, current_data_model, df, con): """ row[col_name] must contain only values from the appropriate controlled vocabulary """ vocabulary = con.vocab.vocabularies cell_value = str(row[col_name]) if not cell_value: return None elif cell_value == "None": return None cell_values = cell_value.split(":") cell_values = [c.strip() for c in cell_values] # get possible values for controlled vocabulary # exclude weird unicode possible_values = [] for val in vocabulary[col_name]: try: possible_values.append(str(val).lower()) except UnicodeEncodeError as ex: print(val, ex) for value in cell_values: if str(value).lower() == "nan": continue elif str(value).lower() in possible_values: continue elif value.lower() == "none": continue else: try: if str(float(value)) in possible_values: continue except: pass return '"{}" is not in controlled vocabulary for {}'.format(value, arg) return None
python
def cv(row, col_name, arg, current_data_model, df, con): """ row[col_name] must contain only values from the appropriate controlled vocabulary """ vocabulary = con.vocab.vocabularies cell_value = str(row[col_name]) if not cell_value: return None elif cell_value == "None": return None cell_values = cell_value.split(":") cell_values = [c.strip() for c in cell_values] # get possible values for controlled vocabulary # exclude weird unicode possible_values = [] for val in vocabulary[col_name]: try: possible_values.append(str(val).lower()) except UnicodeEncodeError as ex: print(val, ex) for value in cell_values: if str(value).lower() == "nan": continue elif str(value).lower() in possible_values: continue elif value.lower() == "none": continue else: try: if str(float(value)) in possible_values: continue except: pass return '"{}" is not in controlled vocabulary for {}'.format(value, arg) return None
row[col_name] must contain only values from the appropriate controlled vocabulary
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L191-L225
PmagPy/PmagPy
pmagpy/validate_upload3.py
requiredOneInGroup
def requiredOneInGroup(col_name, group, dm, df, *args): """ If col_name is present in df, the group validation is satisfied. If not, it still may be satisfied, but not by THIS col_name. If col_name is missing, return col_name, else return None. Later, we will validate to see if there is at least one None (non-missing) value for this group. """ if col_name in df.columns: # if the column name is present, return nothing return None else: # if the column name is missing, return column name return col_name
python
def requiredOneInGroup(col_name, group, dm, df, *args): """ If col_name is present in df, the group validation is satisfied. If not, it still may be satisfied, but not by THIS col_name. If col_name is missing, return col_name, else return None. Later, we will validate to see if there is at least one None (non-missing) value for this group. """ if col_name in df.columns: # if the column name is present, return nothing return None else: # if the column name is missing, return column name return col_name
If col_name is present in df, the group validation is satisfied. If not, it still may be satisfied, but not by THIS col_name. If col_name is missing, return col_name, else return None. Later, we will validate to see if there is at least one None (non-missing) value for this group.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L228-L241
PmagPy/PmagPy
pmagpy/validate_upload3.py
validate_df
def validate_df(df, dm, con=None): """ Take in a DataFrame and corresponding data model. Run all validations for that DataFrame. Output is the original DataFrame with some new columns that contain the validation output. Validation columns start with: presence_pass_ (checking that req'd columns are present) type_pass_ (checking that the data is of the correct type) value_pass_ (checking that the value is within the appropriate range) group_pass_ (making sure that group validations pass) """ # check column validity required_one = {} # keep track of req'd one in group validations here cols = df.columns invalid_cols = [col for col in cols if col not in dm.index] # go through and run all validations for the data type for validation_name, validation in dm.iterrows(): value_type = validation['type'] if validation_name in df.columns: output = df[validation_name].apply(test_type, args=(value_type,)) df["type_pass" + "_" + validation_name + "_" + value_type] = output # val_list = validation['validations'] if not val_list or isinstance(val_list, float): continue for num, val in enumerate(val_list): func_name, arg = split_func(val) if arg == "magic_table_column": continue # first validate for presence if func_name in presence_operations: func = presence_operations[func_name] #grade = func(validation_name, df, arg, dm) grade = func(validation_name, arg, dm, df, con) pass_col_name = "presence_pass_" + validation_name + "_" + func.__name__ df[pass_col_name] = grade # then validate for correct values elif func_name in value_operations: func = value_operations[func_name] if validation_name in df.columns: grade = df.apply(func, args=(validation_name, arg, dm, df, con), axis=1) col_name = "value_pass_" + validation_name + "_" + func.__name__ if col_name in df.columns: num_range = list(range(1, 10)) for num in num_range: if (col_name + str(num)) in df.columns: continue else: col_name = col_name + str(num) break df[col_name] = grade.astype(object) # last, validate at the column group level elif func_name in group_operations: func = group_operations[func_name] missing = func(validation_name, arg, dm, df) if arg not in required_one: required_one[arg] = [missing] else: required_one[arg].append(missing) # format the group validation columns for key, value in list(required_one.items()): if None in value: # this means at least one value from the required group is present, # so the validation passes continue else: # otherwise, all of the values from the required group are missing, # so the validation fails df["group_pass_{}".format(key)] = "you must have one column from group {}: {}".format(key, ", ".join(value)) return df
python
def validate_df(df, dm, con=None): """ Take in a DataFrame and corresponding data model. Run all validations for that DataFrame. Output is the original DataFrame with some new columns that contain the validation output. Validation columns start with: presence_pass_ (checking that req'd columns are present) type_pass_ (checking that the data is of the correct type) value_pass_ (checking that the value is within the appropriate range) group_pass_ (making sure that group validations pass) """ # check column validity required_one = {} # keep track of req'd one in group validations here cols = df.columns invalid_cols = [col for col in cols if col not in dm.index] # go through and run all validations for the data type for validation_name, validation in dm.iterrows(): value_type = validation['type'] if validation_name in df.columns: output = df[validation_name].apply(test_type, args=(value_type,)) df["type_pass" + "_" + validation_name + "_" + value_type] = output # val_list = validation['validations'] if not val_list or isinstance(val_list, float): continue for num, val in enumerate(val_list): func_name, arg = split_func(val) if arg == "magic_table_column": continue # first validate for presence if func_name in presence_operations: func = presence_operations[func_name] #grade = func(validation_name, df, arg, dm) grade = func(validation_name, arg, dm, df, con) pass_col_name = "presence_pass_" + validation_name + "_" + func.__name__ df[pass_col_name] = grade # then validate for correct values elif func_name in value_operations: func = value_operations[func_name] if validation_name in df.columns: grade = df.apply(func, args=(validation_name, arg, dm, df, con), axis=1) col_name = "value_pass_" + validation_name + "_" + func.__name__ if col_name in df.columns: num_range = list(range(1, 10)) for num in num_range: if (col_name + str(num)) in df.columns: continue else: col_name = col_name + str(num) break df[col_name] = grade.astype(object) # last, validate at the column group level elif func_name in group_operations: func = group_operations[func_name] missing = func(validation_name, arg, dm, df) if arg not in required_one: required_one[arg] = [missing] else: required_one[arg].append(missing) # format the group validation columns for key, value in list(required_one.items()): if None in value: # this means at least one value from the required group is present, # so the validation passes continue else: # otherwise, all of the values from the required group are missing, # so the validation fails df["group_pass_{}".format(key)] = "you must have one column from group {}: {}".format(key, ", ".join(value)) return df
Take in a DataFrame and corresponding data model. Run all validations for that DataFrame. Output is the original DataFrame with some new columns that contain the validation output. Validation columns start with: presence_pass_ (checking that req'd columns are present) type_pass_ (checking that the data is of the correct type) value_pass_ (checking that the value is within the appropriate range) group_pass_ (making sure that group validations pass)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L298-L369
PmagPy/PmagPy
pmagpy/validate_upload3.py
get_validation_col_names
def get_validation_col_names(df): """ Input: validated pandas DataFrame (using validate_df) Output: names of all value validation columns, names of all presence validation columns, names of all type validation columns, names of all missing group columns, names of all validation columns (excluding groups). """ value_cols = df.columns.str.match("^value_pass_") present_cols = df.columns.str.match("^presence_pass") type_cols = df.columns.str.match("^type_pass_") groups_missing = df.columns.str.match("^group_pass_") # value_col_names = df.columns[value_cols] present_col_names = df.columns[present_cols] type_col_names = df.columns[type_cols] group_missing_names = df.columns[groups_missing] # # all validation columns validation_cols = np.where(value_cols, value_cols, present_cols) validation_cols = np.where(validation_cols, validation_cols, type_cols) validation_col_names = df.columns[validation_cols] return value_col_names, present_col_names, type_col_names, group_missing_names, validation_col_names
python
def get_validation_col_names(df): """ Input: validated pandas DataFrame (using validate_df) Output: names of all value validation columns, names of all presence validation columns, names of all type validation columns, names of all missing group columns, names of all validation columns (excluding groups). """ value_cols = df.columns.str.match("^value_pass_") present_cols = df.columns.str.match("^presence_pass") type_cols = df.columns.str.match("^type_pass_") groups_missing = df.columns.str.match("^group_pass_") # value_col_names = df.columns[value_cols] present_col_names = df.columns[present_cols] type_col_names = df.columns[type_cols] group_missing_names = df.columns[groups_missing] # # all validation columns validation_cols = np.where(value_cols, value_cols, present_cols) validation_cols = np.where(validation_cols, validation_cols, type_cols) validation_col_names = df.columns[validation_cols] return value_col_names, present_col_names, type_col_names, group_missing_names, validation_col_names
Input: validated pandas DataFrame (using validate_df) Output: names of all value validation columns, names of all presence validation columns, names of all type validation columns, names of all missing group columns, names of all validation columns (excluding groups).
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L374-L397
PmagPy/PmagPy
pmagpy/validate_upload3.py
print_row_failures
def print_row_failures(failing_items, verbose=False, outfile_name=None): """ Take output from get_row_failures (DataFrame), and output it to stdout, an outfile, or both. """ if outfile_name: outfile = open(outfile_name, "w") outfile.write("\t".join(["name", "row_number", "problem_type", "problem_col", "error_message"])) outfile.write("\n") else: outfile = None for ind, row in failing_items.iterrows(): issues = row['issues'] string = "{:10} | row number: {}".format(ind, str(row["num"])) first_string = "\t".join([str(ind), str(row["num"])]) if verbose: print(first_string) #if outfile: # ofile.write("{}\n".format(string)) for key, issue in list(issues.items()): issue_type, issue_col = extract_col_name(key) string = "{:10} | {:10} | {}".format(issue_type, issue_col, issue) string = "\t".join([issue_type, issue_col, issue]) if verbose: print(string) if outfile: outfile.write(first_string + "\t" + string + "\n") if outfile: outfile.close()
python
def print_row_failures(failing_items, verbose=False, outfile_name=None): """ Take output from get_row_failures (DataFrame), and output it to stdout, an outfile, or both. """ if outfile_name: outfile = open(outfile_name, "w") outfile.write("\t".join(["name", "row_number", "problem_type", "problem_col", "error_message"])) outfile.write("\n") else: outfile = None for ind, row in failing_items.iterrows(): issues = row['issues'] string = "{:10} | row number: {}".format(ind, str(row["num"])) first_string = "\t".join([str(ind), str(row["num"])]) if verbose: print(first_string) #if outfile: # ofile.write("{}\n".format(string)) for key, issue in list(issues.items()): issue_type, issue_col = extract_col_name(key) string = "{:10} | {:10} | {}".format(issue_type, issue_col, issue) string = "\t".join([issue_type, issue_col, issue]) if verbose: print(string) if outfile: outfile.write(first_string + "\t" + string + "\n") if outfile: outfile.close()
Take output from get_row_failures (DataFrame), and output it to stdout, an outfile, or both.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L400-L429
PmagPy/PmagPy
pmagpy/validate_upload3.py
get_row_failures
def get_row_failures(df, value_cols, type_cols, verbose=False, outfile=None): """ Input: already validated DataFrame, value & type column names, and output options. Get details on each detected issue, row by row. Output: DataFrame with type & value validation columns, plus an "issues" column with a dictionary of every problem for that row. """ # set temporary numeric index df["num"] = list(range(len(df))) # get column names for value & type validations names = value_cols.union(type_cols) # drop all non validation columns value_problems = df[names.union(["num"])] # drop validation columns that contain no problems failing_items = value_problems.dropna(how="all", subset=names) if not len(failing_items): if verbose: print("No problems") return [] failing_items = failing_items.dropna(how="all", axis=1) # get names of the failing items bad_items = list(failing_items.index) # get index numbers of the failing items bad_indices = list(failing_items["num"]) failing_items['issues'] = failing_items.drop("num", axis=1).apply(make_row_dict, axis=1).values # take output and print/write to file print_row_failures(failing_items, verbose, outfile) return failing_items
python
def get_row_failures(df, value_cols, type_cols, verbose=False, outfile=None): """ Input: already validated DataFrame, value & type column names, and output options. Get details on each detected issue, row by row. Output: DataFrame with type & value validation columns, plus an "issues" column with a dictionary of every problem for that row. """ # set temporary numeric index df["num"] = list(range(len(df))) # get column names for value & type validations names = value_cols.union(type_cols) # drop all non validation columns value_problems = df[names.union(["num"])] # drop validation columns that contain no problems failing_items = value_problems.dropna(how="all", subset=names) if not len(failing_items): if verbose: print("No problems") return [] failing_items = failing_items.dropna(how="all", axis=1) # get names of the failing items bad_items = list(failing_items.index) # get index numbers of the failing items bad_indices = list(failing_items["num"]) failing_items['issues'] = failing_items.drop("num", axis=1).apply(make_row_dict, axis=1).values # take output and print/write to file print_row_failures(failing_items, verbose, outfile) return failing_items
Input: already validated DataFrame, value & type column names, and output options. Get details on each detected issue, row by row. Output: DataFrame with type & value validation columns, plus an "issues" column with a dictionary of every problem for that row.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L432-L461
PmagPy/PmagPy
pmagpy/validate_upload3.py
get_bad_rows_and_cols
def get_bad_rows_and_cols(df, validation_names, type_col_names, value_col_names, verbose=False): """ Input: validated DataFrame, all validation names, names of the type columns, names of the value columns, verbose (True or False). Output: list of rows with bad values, list of columns with bad values, list of missing (but required) columns. """ df["num"] = list(range(len(df))) problems = df[validation_names.union(["num"])] all_problems = problems.dropna(how='all', axis=0, subset=validation_names) value_problems = problems.dropna(how='all', axis=0, subset=type_col_names.union(value_col_names)) all_problems = all_problems.dropna(how='all', axis=1) value_problems = value_problems.dropna(how='all', axis=1) if not len(problems): return None, None, None # bad_cols = all_problems.columns prefixes = ["value_pass_", "type_pass_"] missing_prefix = "presence_pass_" problem_cols = [] missing_cols = [] long_missing_cols = [] problem_rows = [] for col in bad_cols: pre, stripped_col = extract_col_name(col) for prefix in prefixes: if col.startswith(prefix): problem_cols.append(stripped_col) continue if col.startswith(missing_prefix): missing_cols.append(stripped_col) long_missing_cols.append(col) if len(value_problems): bad_rows = list(zip(list(value_problems["num"]), list(value_problems.index))) else: bad_rows = [] if verbose: if bad_rows: formatted_rows = ["row: {}, name: {}".format(row[0], row[1]) for row in bad_rows] if len(bad_rows) > 5: print("-W- these rows have problems:\n", "\n".join(formatted_rows[:5]), " ...") print("(for full error output see error file)") else: print("-W- these rows have problems:", "\n".join(formatted_rows)) if problem_cols: print("-W- these columns contain bad values:", ", ".join(set(problem_cols))) if missing_cols: print("-W- these required columns are missing:", ", ".join(missing_cols)) return bad_rows, problem_cols, missing_cols
python
def get_bad_rows_and_cols(df, validation_names, type_col_names, value_col_names, verbose=False): """ Input: validated DataFrame, all validation names, names of the type columns, names of the value columns, verbose (True or False). Output: list of rows with bad values, list of columns with bad values, list of missing (but required) columns. """ df["num"] = list(range(len(df))) problems = df[validation_names.union(["num"])] all_problems = problems.dropna(how='all', axis=0, subset=validation_names) value_problems = problems.dropna(how='all', axis=0, subset=type_col_names.union(value_col_names)) all_problems = all_problems.dropna(how='all', axis=1) value_problems = value_problems.dropna(how='all', axis=1) if not len(problems): return None, None, None # bad_cols = all_problems.columns prefixes = ["value_pass_", "type_pass_"] missing_prefix = "presence_pass_" problem_cols = [] missing_cols = [] long_missing_cols = [] problem_rows = [] for col in bad_cols: pre, stripped_col = extract_col_name(col) for prefix in prefixes: if col.startswith(prefix): problem_cols.append(stripped_col) continue if col.startswith(missing_prefix): missing_cols.append(stripped_col) long_missing_cols.append(col) if len(value_problems): bad_rows = list(zip(list(value_problems["num"]), list(value_problems.index))) else: bad_rows = [] if verbose: if bad_rows: formatted_rows = ["row: {}, name: {}".format(row[0], row[1]) for row in bad_rows] if len(bad_rows) > 5: print("-W- these rows have problems:\n", "\n".join(formatted_rows[:5]), " ...") print("(for full error output see error file)") else: print("-W- these rows have problems:", "\n".join(formatted_rows)) if problem_cols: print("-W- these columns contain bad values:", ", ".join(set(problem_cols))) if missing_cols: print("-W- these required columns are missing:", ", ".join(missing_cols)) return bad_rows, problem_cols, missing_cols
Input: validated DataFrame, all validation names, names of the type columns, names of the value columns, verbose (True or False). Output: list of rows with bad values, list of columns with bad values, list of missing (but required) columns.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L464-L513
PmagPy/PmagPy
pmagpy/validate_upload3.py
validate_table
def validate_table(the_con, dtype, verbose=False, output_dir="."): """ Return name of bad table, or False if no errors found. Calls validate_df then parses its output. """ print("-I- Validating {}".format(dtype)) # grab dataframe current_df = the_con.tables[dtype].df # grab data model current_dm = the_con.tables[dtype].data_model.dm[dtype] # run all validations (will add columns to current_df) current_df = validate_df(current_df, current_dm, the_con) # get names of the added columns value_col_names, present_col_names, type_col_names, missing_groups, validation_col_names = get_validation_col_names(current_df) # print out failure messages ofile = os.path.join(output_dir, "{}_errors.txt".format(dtype)) failing_items = get_row_failures(current_df, value_col_names, type_col_names, verbose, outfile=ofile) bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df, validation_col_names, value_col_names, type_col_names, verbose=True) # delete all validation rows current_df.drop(validation_col_names, axis=1, inplace=True) current_df.drop(missing_groups, axis=1, inplace=True) if len(failing_items): print("-I- Complete list of row errors can be found in {}".format(ofile)) return dtype, bad_rows, bad_cols, missing_cols, missing_groups, failing_items elif len(missing_cols) or len(missing_groups): print("-I- You are missing some required headers") if len(missing_cols): print("-I- You are missing these required headers: {}".format(", ".join(missing_cols))) if len(missing_groups): formatted_groups = [group[11:] for group in missing_groups] print('-I- You need at least one header from these groups: {}'.format(", ".join(formatted_groups))) else: formatted_groups = [] return dtype, bad_rows, bad_cols, missing_cols, formatted_groups, failing_items else: print("-I- No row errors found!") return False
python
def validate_table(the_con, dtype, verbose=False, output_dir="."): """ Return name of bad table, or False if no errors found. Calls validate_df then parses its output. """ print("-I- Validating {}".format(dtype)) # grab dataframe current_df = the_con.tables[dtype].df # grab data model current_dm = the_con.tables[dtype].data_model.dm[dtype] # run all validations (will add columns to current_df) current_df = validate_df(current_df, current_dm, the_con) # get names of the added columns value_col_names, present_col_names, type_col_names, missing_groups, validation_col_names = get_validation_col_names(current_df) # print out failure messages ofile = os.path.join(output_dir, "{}_errors.txt".format(dtype)) failing_items = get_row_failures(current_df, value_col_names, type_col_names, verbose, outfile=ofile) bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df, validation_col_names, value_col_names, type_col_names, verbose=True) # delete all validation rows current_df.drop(validation_col_names, axis=1, inplace=True) current_df.drop(missing_groups, axis=1, inplace=True) if len(failing_items): print("-I- Complete list of row errors can be found in {}".format(ofile)) return dtype, bad_rows, bad_cols, missing_cols, missing_groups, failing_items elif len(missing_cols) or len(missing_groups): print("-I- You are missing some required headers") if len(missing_cols): print("-I- You are missing these required headers: {}".format(", ".join(missing_cols))) if len(missing_groups): formatted_groups = [group[11:] for group in missing_groups] print('-I- You need at least one header from these groups: {}'.format(", ".join(formatted_groups))) else: formatted_groups = [] return dtype, bad_rows, bad_cols, missing_cols, formatted_groups, failing_items else: print("-I- No row errors found!") return False
Return name of bad table, or False if no errors found. Calls validate_df then parses its output.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L518-L557
PmagPy/PmagPy
pmagpy/validate_upload3.py
validate_contribution
def validate_contribution(the_con): """ Go through a Contribution and validate each table """ passing = True for dtype in list(the_con.tables.keys()): print("validating {}".format(dtype)) fail = validate_table(the_con, dtype) if fail: passing = False print('--')
python
def validate_contribution(the_con): """ Go through a Contribution and validate each table """ passing = True for dtype in list(the_con.tables.keys()): print("validating {}".format(dtype)) fail = validate_table(the_con, dtype) if fail: passing = False print('--')
Go through a Contribution and validate each table
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L562-L572
PmagPy/PmagPy
pmagpy/validate_upload3.py
split_func
def split_func(string): """ Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name) """ ind = string.index("(") return string[:ind], string[ind+1:-1].strip('"')
python
def split_func(string): """ Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name) """ ind = string.index("(") return string[:ind], string[ind+1:-1].strip('"')
Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L578-L585
PmagPy/PmagPy
pmagpy/validate_upload3.py
get_degree_cols
def get_degree_cols(df): """ Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees. """ vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
python
def get_degree_cols(df): """ Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees. """ vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L588-L599
PmagPy/PmagPy
pmagpy/validate_upload3.py
extract_col_name
def extract_col_name(string): """ Take a string and split it. String will be a format like "presence_pass_azimuth", where "azimuth" is the MagIC column name and "presence_pass" is the validation. Return "presence", "azimuth". """ prefixes = ["presence_pass_", "value_pass_", "type_pass_"] end = string.rfind("_") for prefix in prefixes: if string.startswith(prefix): return prefix[:-6], string[len(prefix):end] return string, string
python
def extract_col_name(string): """ Take a string and split it. String will be a format like "presence_pass_azimuth", where "azimuth" is the MagIC column name and "presence_pass" is the validation. Return "presence", "azimuth". """ prefixes = ["presence_pass_", "value_pass_", "type_pass_"] end = string.rfind("_") for prefix in prefixes: if string.startswith(prefix): return prefix[:-6], string[len(prefix):end] return string, string
Take a string and split it. String will be a format like "presence_pass_azimuth", where "azimuth" is the MagIC column name and "presence_pass" is the validation. Return "presence", "azimuth".
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L602-L615
PmagPy/PmagPy
pmagpy/validate_upload3.py
make_row_dict
def make_row_dict(row): """ Takes in a DataFrame row (Series), and return a dictionary with the row's index as key, and the row's values as values. {col1_name: col1_value, col2_name: col2_value} """ ind = row[row.notnull()].index values = row[row.notnull()].values # to transformation with extract_col_name here??? return dict(list(zip(ind, values)))
python
def make_row_dict(row): """ Takes in a DataFrame row (Series), and return a dictionary with the row's index as key, and the row's values as values. {col1_name: col1_value, col2_name: col2_value} """ ind = row[row.notnull()].index values = row[row.notnull()].values # to transformation with extract_col_name here??? return dict(list(zip(ind, values)))
Takes in a DataFrame row (Series), and return a dictionary with the row's index as key, and the row's values as values. {col1_name: col1_value, col2_name: col2_value}
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/validate_upload3.py#L618-L628
PmagPy/PmagPy
programs/eq_di.py
main
def main(): """ NAME eq_di.py DESCRIPTION converts x,y pairs digitized from equal area projection to dec inc data SYNTAX eq_di.py [command line options] [< filename] OPTIONS -f FILE, input file -F FILE, specifies output file name -up if data are upper hemisphere """ out="" UP=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: dat=[] ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') input=f.readlines() else: input = sys.stdin.readlines() # read from standard input # NEW ofile = "" if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile, 'w + a') # end NEW if '-up' in sys.argv: UP=1 for line in input: rec=line.split() x,y=float(rec[1]),float(rec[0]) # swap x,y cartesian for x,y geographic #d,i=pmag.doeqdi(x,y) r=math.sqrt(x**2+y**2) z=1.-r**2 t=math.asin(z) if UP==1:t=-t if x==0.: if y<0: p=3.*math.pi/2. else: p=old_div(math.pi,2.) else: p=math.atan2(y,x) d,i=p*180./math.pi,t*180./math.pi if d<0:d+=360. # new outstring = '%7.1f %7.1f'%(d,i) if ofile == "": # print '%7.1f %7.1f'%(d,i) print(outstring) else: out.write(outstring+'\n')
python
def main(): """ NAME eq_di.py DESCRIPTION converts x,y pairs digitized from equal area projection to dec inc data SYNTAX eq_di.py [command line options] [< filename] OPTIONS -f FILE, input file -F FILE, specifies output file name -up if data are upper hemisphere """ out="" UP=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: dat=[] ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') input=f.readlines() else: input = sys.stdin.readlines() # read from standard input # NEW ofile = "" if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile, 'w + a') # end NEW if '-up' in sys.argv: UP=1 for line in input: rec=line.split() x,y=float(rec[1]),float(rec[0]) # swap x,y cartesian for x,y geographic #d,i=pmag.doeqdi(x,y) r=math.sqrt(x**2+y**2) z=1.-r**2 t=math.asin(z) if UP==1:t=-t if x==0.: if y<0: p=3.*math.pi/2. else: p=old_div(math.pi,2.) else: p=math.atan2(y,x) d,i=p*180./math.pi,t*180./math.pi if d<0:d+=360. # new outstring = '%7.1f %7.1f'%(d,i) if ofile == "": # print '%7.1f %7.1f'%(d,i) print(outstring) else: out.write(outstring+'\n')
NAME eq_di.py DESCRIPTION converts x,y pairs digitized from equal area projection to dec inc data SYNTAX eq_di.py [command line options] [< filename] OPTIONS -f FILE, input file -F FILE, specifies output file name -up if data are upper hemisphere
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/eq_di.py#L9-L69
PmagPy/PmagPy
programs/chartmaker.py
main
def main(): """ Welcome to the thellier-thellier experiment automatic chart maker. Please select desired step interval and upper bound for which it is valid. e.g., 50 500 10 600 a blank entry signals the end of data entry. which would generate steps with 50 degree intervals up to 500, followed by 10 degree intervals up to 600. chart is stored in: chart.txt """ print(main.__doc__) if '-h' in sys.argv:sys.exit() cont,Int,Top=1,[],[] while cont==1: try: Int.append(int(input(" Enter desired treatment step interval: <return> to quit "))) Top.append(int(input(" Enter upper bound for this interval: "))) except: cont=0 pmag.chart_maker(Int,Top)
python
def main(): """ Welcome to the thellier-thellier experiment automatic chart maker. Please select desired step interval and upper bound for which it is valid. e.g., 50 500 10 600 a blank entry signals the end of data entry. which would generate steps with 50 degree intervals up to 500, followed by 10 degree intervals up to 600. chart is stored in: chart.txt """ print(main.__doc__) if '-h' in sys.argv:sys.exit() cont,Int,Top=1,[],[] while cont==1: try: Int.append(int(input(" Enter desired treatment step interval: <return> to quit "))) Top.append(int(input(" Enter upper bound for this interval: "))) except: cont=0 pmag.chart_maker(Int,Top)
Welcome to the thellier-thellier experiment automatic chart maker. Please select desired step interval and upper bound for which it is valid. e.g., 50 500 10 600 a blank entry signals the end of data entry. which would generate steps with 50 degree intervals up to 500, followed by 10 degree intervals up to 600. chart is stored in: chart.txt
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/chartmaker.py#L9-L33
PmagPy/PmagPy
programs/conversion_scripts/s_magic.py
main
def main(): """ NAME s_magic.py DESCRIPTION converts .s format data to measurements format. SYNTAX s_magic.py [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL_NUM data model number (default is 3) -f SFILE specifies the .s file name -sig last column has sigma -typ Anisotropy type: AMS,AARM,ATRM (default is AMS) -F FILE specifies the specimens formatted file name -usr USER specify username -loc location specify location/study name -spc NUM : specify number of characters to designate a specimen, default = 0 -spn SPECNAME, this specimen has the name SPECNAME -n first column has specimen name -crd [s,g,t], specify coordinate system of data s=specimen,g=geographic,t=tilt adjusted, default is 's' -ncn NCON: naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] sample = site [6] sample, site, location info in er_samples.txt -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULT FILE: specimens.txt INPUT X11,X22,X33,X12,X23,X13 (.s format file) X11,X22,X33,X12,X23,X13,sigma (.s format file with -sig option) SID, X11,X22,X33,X12,X23,X13 (.s format file with -n option) OUTPUT specimens.txt format file NOTE because .s files do not have specimen names or location information, the output MagIC files will have to be changed prior to importing to data base. """ if '-h' in sys.argv: print(main.__doc__) sys.exit() data_model_num = pmag.get_named_arg("-DM", 3) data_model_num = int(float(data_model_num)) sfile = pmag.get_named_arg("-f", reqd=True) if data_model_num == 2: anisfile = pmag.get_named_arg("-F", "rmag_anisotropy.txt") else: anisfile = pmag.get_named_arg("-F", "specimens.txt") location = pmag.get_named_arg("-loc", "unknown") user = pmag.get_named_arg("-usr", "") sitename = pmag.get_named_arg("unknown", "") specnum = pmag.get_named_arg("-spc", 0) specnum = -int(specnum) dir_path = pmag.get_named_arg("-WD", ".") name = pmag.get_flag_arg_from_sys("-n") sigma = pmag.get_flag_arg_from_sys("-sig") spec = pmag.get_named_arg("-spn", "unknown") atype = pmag.get_named_arg("-typ", 'AMS') samp_con = pmag.get_named_arg("-ncn", "1") #if '-sig' in sys.argv: # sigma = 1 #if "-n" in sys.argv: # name = 1 coord_type = pmag.get_named_arg("-crd", 's') convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma, samp_con, specnum, location, spec, sitename, user, data_model_num, name)
python
def main(): """ NAME s_magic.py DESCRIPTION converts .s format data to measurements format. SYNTAX s_magic.py [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL_NUM data model number (default is 3) -f SFILE specifies the .s file name -sig last column has sigma -typ Anisotropy type: AMS,AARM,ATRM (default is AMS) -F FILE specifies the specimens formatted file name -usr USER specify username -loc location specify location/study name -spc NUM : specify number of characters to designate a specimen, default = 0 -spn SPECNAME, this specimen has the name SPECNAME -n first column has specimen name -crd [s,g,t], specify coordinate system of data s=specimen,g=geographic,t=tilt adjusted, default is 's' -ncn NCON: naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] sample = site [6] sample, site, location info in er_samples.txt -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULT FILE: specimens.txt INPUT X11,X22,X33,X12,X23,X13 (.s format file) X11,X22,X33,X12,X23,X13,sigma (.s format file with -sig option) SID, X11,X22,X33,X12,X23,X13 (.s format file with -n option) OUTPUT specimens.txt format file NOTE because .s files do not have specimen names or location information, the output MagIC files will have to be changed prior to importing to data base. """ if '-h' in sys.argv: print(main.__doc__) sys.exit() data_model_num = pmag.get_named_arg("-DM", 3) data_model_num = int(float(data_model_num)) sfile = pmag.get_named_arg("-f", reqd=True) if data_model_num == 2: anisfile = pmag.get_named_arg("-F", "rmag_anisotropy.txt") else: anisfile = pmag.get_named_arg("-F", "specimens.txt") location = pmag.get_named_arg("-loc", "unknown") user = pmag.get_named_arg("-usr", "") sitename = pmag.get_named_arg("unknown", "") specnum = pmag.get_named_arg("-spc", 0) specnum = -int(specnum) dir_path = pmag.get_named_arg("-WD", ".") name = pmag.get_flag_arg_from_sys("-n") sigma = pmag.get_flag_arg_from_sys("-sig") spec = pmag.get_named_arg("-spn", "unknown") atype = pmag.get_named_arg("-typ", 'AMS') samp_con = pmag.get_named_arg("-ncn", "1") #if '-sig' in sys.argv: # sigma = 1 #if "-n" in sys.argv: # name = 1 coord_type = pmag.get_named_arg("-crd", 's') convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma, samp_con, specnum, location, spec, sitename, user, data_model_num, name)
NAME s_magic.py DESCRIPTION converts .s format data to measurements format. SYNTAX s_magic.py [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL_NUM data model number (default is 3) -f SFILE specifies the .s file name -sig last column has sigma -typ Anisotropy type: AMS,AARM,ATRM (default is AMS) -F FILE specifies the specimens formatted file name -usr USER specify username -loc location specify location/study name -spc NUM : specify number of characters to designate a specimen, default = 0 -spn SPECNAME, this specimen has the name SPECNAME -n first column has specimen name -crd [s,g,t], specify coordinate system of data s=specimen,g=geographic,t=tilt adjusted, default is 's' -ncn NCON: naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] sample = site [6] sample, site, location info in er_samples.txt -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail [email protected] for help. DEFAULT FILE: specimens.txt INPUT X11,X22,X33,X12,X23,X13 (.s format file) X11,X22,X33,X12,X23,X13,sigma (.s format file with -sig option) SID, X11,X22,X33,X12,X23,X13 (.s format file with -n option) OUTPUT specimens.txt format file NOTE because .s files do not have specimen names or location information, the output MagIC files will have to be changed prior to importing to data base.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts/s_magic.py#L8-L92
PmagPy/PmagPy
programs/deprecated/basemap_magic.py
main
def main(): """ NAME basemap_magic.py NB: this program no longer maintained - use plot_map_pts.py for greater functionality DESCRIPTION makes a map of locations in er_sites.txt SYNTAX basemap_magic.py [command line options] OPTIONS -h prints help message and quits -f SFILE, specify er_sites.txt or pmag_results.txt format file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -n print site names (default is not) -l print location names (default is not) -o color ocean blue/land green (default is not) -R don't plot details of rivers -B don't plot national/state boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS SFILE: 'er_sites.txt' resolution: intermediate saved images are in pdf """ dir_path = '.' sites_file = 'er_sites.txt' ocean = 0 res = 'i' proj = 'merc' prn_name = 0 prn_loc = 0 fancy = 0 rivers, boundaries = 0, 0 padlon, padlat, gridspace, details = .5, .5, .5, 1 fmt = 'pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file = sys.argv[ind+1] if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind+1] if '-etp' in sys.argv: fancy = 1 if '-n' in sys.argv: prn_name = 1 if '-l' in sys.argv: prn_loc = 1 if '-o' in sys.argv: ocean = 1 if '-R' in sys.argv: rivers = 0 if '-B' in sys.argv: boundaries = 0 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] verbose = pmagplotlib.verbose if '-sav' in sys.argv: verbose = 0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat = float(sys.argv[ind+1]) padlon = float(sys.argv[ind+2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace = float(sys.argv[ind+1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] sites_file = dir_path+'/'+sites_file location = "" FIG = {'map': 1} pmagplotlib.plot_init(FIG['map'], 6, 6) # read in er_sites file Sites, file_type = pmag.magic_read(sites_file) if 'results' in file_type: latkey = 'average_lat' lonkey = 'average_lon' namekey = 'pmag_result_name' lockey = 'er_location_names' else: latkey = 'site_lat' lonkey = 'site_lon' namekey = 'er_site_name' lockey = 'er_location_name' lats, lons = [], [] slats, slons = [], [] names, locs = [], [] for site in Sites: if prn_loc == 1 and location == "": location = site['er_location_name'] lats.append(float(site[latkey])) l = float(site[lonkey]) if l < 0: l = l+360. # make positive lons.append(l) if prn_name == 1: names.append(site[namekey]) if prn_loc == 1: locs.append(site[lockey]) for lat in lats: slats.append(lat) for lon in lons: slons.append(lon) Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon, 'padlat': padlat, 'latmin': numpy.min(slats)-padlat, 'latmax': numpy.max( slats)+padlat, 'lonmin': numpy.min(slons)-padlon, 'lonmax': numpy.max(slons)+padlon, 'sym': 'ro', 'boundinglat': 0., 'pltgrid': 1.} Opts['lon_0'] = 0.5*(numpy.min(slons)+numpy.max(slons)) Opts['lat_0'] = 0.5*(numpy.min(slats)+numpy.max(slats)) Opts['names'] = names Opts['gridspace'] = gridspace Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries': 1, 'ocean': 0} if ocean == 1: Opts['details']['ocean'] = 1 if rivers == 1: Opts['details']['rivers'] = 0 if boundaries == 1: Opts['details']['states'] = 0 Opts['details']['countries'] = 0 Opts['details']['fancy'] = fancy pmagplotlib.plot_map(FIG['map'], lats, lons, Opts) if verbose: pmagplotlib.draw_figs(FIG) files = {} for key in list(FIG.keys()): files[key] = 'Site_map'+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['map'] = 'Site Map' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif verbose: ans = input(" S[a]ve to save plot, Return to quit: ") if ans == "a": pmagplotlib.save_plots(FIG, files) else: pmagplotlib.save_plots(FIG, files)
python
def main(): """ NAME basemap_magic.py NB: this program no longer maintained - use plot_map_pts.py for greater functionality DESCRIPTION makes a map of locations in er_sites.txt SYNTAX basemap_magic.py [command line options] OPTIONS -h prints help message and quits -f SFILE, specify er_sites.txt or pmag_results.txt format file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -n print site names (default is not) -l print location names (default is not) -o color ocean blue/land green (default is not) -R don't plot details of rivers -B don't plot national/state boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS SFILE: 'er_sites.txt' resolution: intermediate saved images are in pdf """ dir_path = '.' sites_file = 'er_sites.txt' ocean = 0 res = 'i' proj = 'merc' prn_name = 0 prn_loc = 0 fancy = 0 rivers, boundaries = 0, 0 padlon, padlat, gridspace, details = .5, .5, .5, 1 fmt = 'pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file = sys.argv[ind+1] if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind+1] if '-etp' in sys.argv: fancy = 1 if '-n' in sys.argv: prn_name = 1 if '-l' in sys.argv: prn_loc = 1 if '-o' in sys.argv: ocean = 1 if '-R' in sys.argv: rivers = 0 if '-B' in sys.argv: boundaries = 0 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] verbose = pmagplotlib.verbose if '-sav' in sys.argv: verbose = 0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat = float(sys.argv[ind+1]) padlon = float(sys.argv[ind+2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace = float(sys.argv[ind+1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] sites_file = dir_path+'/'+sites_file location = "" FIG = {'map': 1} pmagplotlib.plot_init(FIG['map'], 6, 6) # read in er_sites file Sites, file_type = pmag.magic_read(sites_file) if 'results' in file_type: latkey = 'average_lat' lonkey = 'average_lon' namekey = 'pmag_result_name' lockey = 'er_location_names' else: latkey = 'site_lat' lonkey = 'site_lon' namekey = 'er_site_name' lockey = 'er_location_name' lats, lons = [], [] slats, slons = [], [] names, locs = [], [] for site in Sites: if prn_loc == 1 and location == "": location = site['er_location_name'] lats.append(float(site[latkey])) l = float(site[lonkey]) if l < 0: l = l+360. # make positive lons.append(l) if prn_name == 1: names.append(site[namekey]) if prn_loc == 1: locs.append(site[lockey]) for lat in lats: slats.append(lat) for lon in lons: slons.append(lon) Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon, 'padlat': padlat, 'latmin': numpy.min(slats)-padlat, 'latmax': numpy.max( slats)+padlat, 'lonmin': numpy.min(slons)-padlon, 'lonmax': numpy.max(slons)+padlon, 'sym': 'ro', 'boundinglat': 0., 'pltgrid': 1.} Opts['lon_0'] = 0.5*(numpy.min(slons)+numpy.max(slons)) Opts['lat_0'] = 0.5*(numpy.min(slats)+numpy.max(slats)) Opts['names'] = names Opts['gridspace'] = gridspace Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries': 1, 'ocean': 0} if ocean == 1: Opts['details']['ocean'] = 1 if rivers == 1: Opts['details']['rivers'] = 0 if boundaries == 1: Opts['details']['states'] = 0 Opts['details']['countries'] = 0 Opts['details']['fancy'] = fancy pmagplotlib.plot_map(FIG['map'], lats, lons, Opts) if verbose: pmagplotlib.draw_figs(FIG) files = {} for key in list(FIG.keys()): files[key] = 'Site_map'+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['map'] = 'Site Map' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif verbose: ans = input(" S[a]ve to save plot, Return to quit: ") if ans == "a": pmagplotlib.save_plots(FIG, files) else: pmagplotlib.save_plots(FIG, files)
NAME basemap_magic.py NB: this program no longer maintained - use plot_map_pts.py for greater functionality DESCRIPTION makes a map of locations in er_sites.txt SYNTAX basemap_magic.py [command line options] OPTIONS -h prints help message and quits -f SFILE, specify er_sites.txt or pmag_results.txt format file -res [c,l,i,h] specify resolution (crude,low,intermediate,high) -etp plot the etopo20 topographic mesh -pad [LAT LON] pad bounding box by LAT/LON (default is [.5 .5] degrees) -grd SPACE specify grid spacing -prj [lcc] , specify projection (lcc=lambert conic conformable), default is mercator -n print site names (default is not) -l print location names (default is not) -o color ocean blue/land green (default is not) -R don't plot details of rivers -B don't plot national/state boundaries, etc. -sav save plot and quit quietly -fmt [png,svg,eps,jpg,pdf] specify format for output, default is pdf DEFAULTS SFILE: 'er_sites.txt' resolution: intermediate saved images are in pdf
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/basemap_magic.py#L17-L169
PmagPy/PmagPy
programs/incfish.py
main
def main(): """ NAME incfish.py DESCRIPTION calculates fisher parameters from inc only data INPUT FORMAT takes inc data SYNTAX incfish.py [options] [< filename] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify input file name -F FILE, specify output file name < filename for reading from standard input OUTPUT mean inc,Fisher inc, N, R, k, a95 NOTES takes the absolute value of inclinations (to take into account reversals), but returns gaussian mean if < 50.0, because of polarity ambiguity and lack of bias. """ inc=[] if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file=input("Enter file name with inc data: ") inc=numpy.loadtxt(file) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inc=numpy.loadtxt(file) else: inc = numpy.loadtxt(sys.stdin,dtype=numpy.float) ofile="" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') # #get doincfish to do the dirty work: fpars= pmag.doincfish(inc) outstring='%7.1f %7.1f %i %8.1f %7.1f %7.1f'%(fpars['ginc'],fpars['inc'],fpars['n'],fpars['r'],fpars['k'],fpars['alpha95']) if ofile == "": print(outstring) else: out.write(outstring+'\n')
python
def main(): """ NAME incfish.py DESCRIPTION calculates fisher parameters from inc only data INPUT FORMAT takes inc data SYNTAX incfish.py [options] [< filename] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify input file name -F FILE, specify output file name < filename for reading from standard input OUTPUT mean inc,Fisher inc, N, R, k, a95 NOTES takes the absolute value of inclinations (to take into account reversals), but returns gaussian mean if < 50.0, because of polarity ambiguity and lack of bias. """ inc=[] if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file=input("Enter file name with inc data: ") inc=numpy.loadtxt(file) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inc=numpy.loadtxt(file) else: inc = numpy.loadtxt(sys.stdin,dtype=numpy.float) ofile="" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') # #get doincfish to do the dirty work: fpars= pmag.doincfish(inc) outstring='%7.1f %7.1f %i %8.1f %7.1f %7.1f'%(fpars['ginc'],fpars['inc'],fpars['n'],fpars['r'],fpars['k'],fpars['alpha95']) if ofile == "": print(outstring) else: out.write(outstring+'\n')
NAME incfish.py DESCRIPTION calculates fisher parameters from inc only data INPUT FORMAT takes inc data SYNTAX incfish.py [options] [< filename] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify input file name -F FILE, specify output file name < filename for reading from standard input OUTPUT mean inc,Fisher inc, N, R, k, a95 NOTES takes the absolute value of inclinations (to take into account reversals), but returns gaussian mean if < 50.0, because of polarity ambiguity and lack of bias.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/incfish.py#L8-L63
PmagPy/PmagPy
pmagpy/pmag.py
sort_diclist
def sort_diclist(undecorated, sort_on): """ Sort a list of dictionaries by the value in each dictionary for the sorting key Parameters ---------- undecorated : list of dicts sort_on : str, numeric key that is present in all dicts to sort on Returns --------- ordered list of dicts Examples --------- >>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}] >>> sort_diclist(lst, 'key1') [{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}] >>> sort_diclist(lst, 'key2') [{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}] """ decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[ sort_on], index) for (index, dict_) in enumerate(undecorated)] decorated.sort() return[undecorated[index] for (key, index) in decorated]
python
def sort_diclist(undecorated, sort_on): """ Sort a list of dictionaries by the value in each dictionary for the sorting key Parameters ---------- undecorated : list of dicts sort_on : str, numeric key that is present in all dicts to sort on Returns --------- ordered list of dicts Examples --------- >>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}] >>> sort_diclist(lst, 'key1') [{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}] >>> sort_diclist(lst, 'key2') [{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}] """ decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[ sort_on], index) for (index, dict_) in enumerate(undecorated)] decorated.sort() return[undecorated[index] for (key, index) in decorated]
Sort a list of dictionaries by the value in each dictionary for the sorting key Parameters ---------- undecorated : list of dicts sort_on : str, numeric key that is present in all dicts to sort on Returns --------- ordered list of dicts Examples --------- >>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}] >>> sort_diclist(lst, 'key1') [{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}] >>> sort_diclist(lst, 'key2') [{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L32-L58
PmagPy/PmagPy
pmagpy/pmag.py
get_dictitem
def get_dictitem(In, k, v, flag, float_to_int=False): """ returns a list of dictionaries from list In with key,k = value, v . CASE INSENSITIVE # allowed keywords: requires that the value of k in the dictionaries contained in In be castable to string and requires that v be castable to a string if flag is T,F ,has or not and requires they be castable to float if flag is eval, min, or max. float_to_int goes through the relvant values in In and truncates them, (like "0.0" to "0") for evaluation, default is False Parameters __________ In : list of dictionaries to work on k : key to test v : key value to test flag : [T,F,has, or not] float_to int : if True, truncates to integer Returns ______ list of dictionaries that meet condition """ if float_to_int: try: v = str(math.trunc(float(v))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass fixed_In = [] for dictionary in In: if k in dictionary: val = dictionary[k] try: val = str(math.trunc(float(val))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass dictionary[k] = val fixed_In.append(dictionary) In = fixed_In if flag == "T": # return that which is return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() == str(v).lower()] if flag == "F": # return that which is not return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() != str(v).lower()] if flag == "has": # return that which is contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() in str(dictionary[k]).lower()] if flag == "not": # return that which is not contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() not in str(dictionary[k]).lower()] if flag == "eval": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) == float(v)] if flag == "min": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is greater than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) >= float(v)] if flag == "max": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is less than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) <= float(v)] if flag == 'not_null': return [dictionary for dictionary in In if dictionary[k]]
python
def get_dictitem(In, k, v, flag, float_to_int=False): """ returns a list of dictionaries from list In with key,k = value, v . CASE INSENSITIVE # allowed keywords: requires that the value of k in the dictionaries contained in In be castable to string and requires that v be castable to a string if flag is T,F ,has or not and requires they be castable to float if flag is eval, min, or max. float_to_int goes through the relvant values in In and truncates them, (like "0.0" to "0") for evaluation, default is False Parameters __________ In : list of dictionaries to work on k : key to test v : key value to test flag : [T,F,has, or not] float_to int : if True, truncates to integer Returns ______ list of dictionaries that meet condition """ if float_to_int: try: v = str(math.trunc(float(v))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass fixed_In = [] for dictionary in In: if k in dictionary: val = dictionary[k] try: val = str(math.trunc(float(val))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass dictionary[k] = val fixed_In.append(dictionary) In = fixed_In if flag == "T": # return that which is return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() == str(v).lower()] if flag == "F": # return that which is not return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() != str(v).lower()] if flag == "has": # return that which is contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() in str(dictionary[k]).lower()] if flag == "not": # return that which is not contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() not in str(dictionary[k]).lower()] if flag == "eval": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) == float(v)] if flag == "min": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is greater than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) >= float(v)] if flag == "max": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is less than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) <= float(v)] if flag == 'not_null': return [dictionary for dictionary in In if dictionary[k]]
returns a list of dictionaries from list In with key,k = value, v . CASE INSENSITIVE # allowed keywords: requires that the value of k in the dictionaries contained in In be castable to string and requires that v be castable to a string if flag is T,F ,has or not and requires they be castable to float if flag is eval, min, or max. float_to_int goes through the relvant values in In and truncates them, (like "0.0" to "0") for evaluation, default is False Parameters __________ In : list of dictionaries to work on k : key to test v : key value to test flag : [T,F,has, or not] float_to int : if True, truncates to integer Returns ______ list of dictionaries that meet condition
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L61-L127
PmagPy/PmagPy
pmagpy/pmag.py
get_dictkey
def get_dictkey(In, k, dtype): """ returns list of given key (k) from input list of dictionaries (In) in data type dtype. uses command: get_dictkey(In,k,dtype). If dtype =="", data are strings; if "int", data are integers; if "f", data are floats. """ Out = [] for d in In: if dtype == '': Out.append(d[k]) if dtype == 'f': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(float(d[k])) if dtype == 'int': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(int(d[k])) return Out
python
def get_dictkey(In, k, dtype): """ returns list of given key (k) from input list of dictionaries (In) in data type dtype. uses command: get_dictkey(In,k,dtype). If dtype =="", data are strings; if "int", data are integers; if "f", data are floats. """ Out = [] for d in In: if dtype == '': Out.append(d[k]) if dtype == 'f': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(float(d[k])) if dtype == 'int': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(int(d[k])) return Out
returns list of given key (k) from input list of dictionaries (In) in data type dtype. uses command: get_dictkey(In,k,dtype). If dtype =="", data are strings; if "int", data are integers; if "f", data are floats.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L130-L154
PmagPy/PmagPy
pmagpy/pmag.py
get_orient
def get_orient(samp_data, er_sample_name, **kwargs): """ samp_data : PmagPy list of dicts or pandas DataFrame er_sample_name : sample name """ if isinstance(samp_data, pd.DataFrame): samp_data = (samp_data.T.apply(dict)) # set orientation priorities EX = ["SO-ASC", "SO-POM"] samp_key, az_key, dip_key = 'er_sample_name', 'sample_azimuth', 'sample_dip' disc_key, or_key, meth_key = 'sample_description', 'sample_orientation_flag',\ 'magic_method_codes' if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3: samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip' disc_key, or_key, meth_key = 'description', 'orientation_quality',\ 'method_codes' orient = {samp_key: er_sample_name, az_key: "", dip_key: "", disc_key: ""} # get all the orientation data for this sample orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orients) > 0 and or_key in list(orients[0].keys()): # exclude all samples with bad orientation flag orients = get_dictitem(orients, or_key, 'b', 'F') if len(orients) > 0: orient = orients[0] # re-initialize to first one methods = get_dictitem(orients, meth_key, 'SO-', 'has') # get a list of all orientation methods for this sample methods = get_dictkey(methods, meth_key, '') SO_methods = [] for methcode in methods: meths = methcode.split(":") for meth in meths: if (meth.strip() not in EX) and meth.startswith('SO-'): SO_methods.append(meth.strip()) # find top priority orientation method if len(SO_methods) == 0: print("no orientation data for sample ", er_sample_name) # preserve meta-data anyway even though orientation is bad # get all the orientation data for this sample orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orig_data) > 0: orig_data = orig_data[0] else: orig_data = [] az_type = "SO-NO" else: SO_priorities = set_priorities(SO_methods, 0) az_type = SO_methods[SO_methods.index(SO_priorities[0])] orient = get_dictitem(orients, meth_key, az_type, 'has')[ 0] # re-initialize to best one return orient, az_type
python
def get_orient(samp_data, er_sample_name, **kwargs): """ samp_data : PmagPy list of dicts or pandas DataFrame er_sample_name : sample name """ if isinstance(samp_data, pd.DataFrame): samp_data = (samp_data.T.apply(dict)) # set orientation priorities EX = ["SO-ASC", "SO-POM"] samp_key, az_key, dip_key = 'er_sample_name', 'sample_azimuth', 'sample_dip' disc_key, or_key, meth_key = 'sample_description', 'sample_orientation_flag',\ 'magic_method_codes' if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3: samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip' disc_key, or_key, meth_key = 'description', 'orientation_quality',\ 'method_codes' orient = {samp_key: er_sample_name, az_key: "", dip_key: "", disc_key: ""} # get all the orientation data for this sample orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orients) > 0 and or_key in list(orients[0].keys()): # exclude all samples with bad orientation flag orients = get_dictitem(orients, or_key, 'b', 'F') if len(orients) > 0: orient = orients[0] # re-initialize to first one methods = get_dictitem(orients, meth_key, 'SO-', 'has') # get a list of all orientation methods for this sample methods = get_dictkey(methods, meth_key, '') SO_methods = [] for methcode in methods: meths = methcode.split(":") for meth in meths: if (meth.strip() not in EX) and meth.startswith('SO-'): SO_methods.append(meth.strip()) # find top priority orientation method if len(SO_methods) == 0: print("no orientation data for sample ", er_sample_name) # preserve meta-data anyway even though orientation is bad # get all the orientation data for this sample orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orig_data) > 0: orig_data = orig_data[0] else: orig_data = [] az_type = "SO-NO" else: SO_priorities = set_priorities(SO_methods, 0) az_type = SO_methods[SO_methods.index(SO_priorities[0])] orient = get_dictitem(orients, meth_key, az_type, 'has')[ 0] # re-initialize to best one return orient, az_type
samp_data : PmagPy list of dicts or pandas DataFrame er_sample_name : sample name
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L164-L214
PmagPy/PmagPy
pmagpy/pmag.py
EI
def EI(inc): """ Given a mean inclination value of a distribution of directions, this function calculates the expected elongation of this distribution using a best-fit polynomial of the TK03 GAD secular variation model (Tauxe and Kent, 2004). Parameters ---------- inc : inclination in degrees (int or float) Returns --------- elongation : float Examples --------- >>> pmag.EI(20) 2.4863973732 >>> pmag.EI(90) 1.0241570135500004 """ poly_tk03 = [3.15976125e-06, -3.52459817e-04, - 1.46641090e-02, 2.89538539e+00] return poly_tk03[0] * inc**3 + poly_tk03[1] * inc**2 + poly_tk03[2] * inc + poly_tk03[3]
python
def EI(inc): """ Given a mean inclination value of a distribution of directions, this function calculates the expected elongation of this distribution using a best-fit polynomial of the TK03 GAD secular variation model (Tauxe and Kent, 2004). Parameters ---------- inc : inclination in degrees (int or float) Returns --------- elongation : float Examples --------- >>> pmag.EI(20) 2.4863973732 >>> pmag.EI(90) 1.0241570135500004 """ poly_tk03 = [3.15976125e-06, -3.52459817e-04, - 1.46641090e-02, 2.89538539e+00] return poly_tk03[0] * inc**3 + poly_tk03[1] * inc**2 + poly_tk03[2] * inc + poly_tk03[3]
Given a mean inclination value of a distribution of directions, this function calculates the expected elongation of this distribution using a best-fit polynomial of the TK03 GAD secular variation model (Tauxe and Kent, 2004). Parameters ---------- inc : inclination in degrees (int or float) Returns --------- elongation : float Examples --------- >>> pmag.EI(20) 2.4863973732 >>> pmag.EI(90) 1.0241570135500004
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L217-L241
PmagPy/PmagPy
pmagpy/pmag.py
find_f
def find_f(data): """ Given a distribution of directions, this function determines parameters (elongation, inclination, flattening factor, and elongation direction) that are consistent with the TK03 secular variation model. Parameters ---------- data : array of declination, inclination pairs (e.g. np.array([[140,21],[127,23],[142,19],[136,22]])) Returns --------- Es : list of elongation values Is : list of inclination values Fs : list of flattening factors V2s : list of elongation directions (relative to the distribution) The function will return a zero list ([0]) for each of these parameters if the directions constitute a pathological distribution. Examples --------- >>> directions = np.array([[140,21],[127,23],[142,19],[136,22]]) >>> Es, Is, Fs, V2s = pmag.find_f(directions) """ rad = np.pi/180. Es, Is, Fs, V2s = [], [], [], [] ppars = doprinc(data) D = ppars['dec'] Decs, Incs = data.transpose()[0], data.transpose()[1] Tan_Incs = np.tan(Incs * rad) for f in np.arange(1., .2, -.01): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) Is.append(abs(ppars["inc"])) if EI(abs(ppars["inc"])) <= Es[-1]: del Es[-1] del Is[-1] del Fs[-1] del V2s[-1] if len(Fs) > 0: for f in np.arange(Fs[-1], .2, -.005): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) Is.append(abs(ppars["inc"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) if EI(abs(ppars["inc"])) <= Es[-1]: return Es, Is, Fs, V2s return [0], [0], [0], [0]
python
def find_f(data): """ Given a distribution of directions, this function determines parameters (elongation, inclination, flattening factor, and elongation direction) that are consistent with the TK03 secular variation model. Parameters ---------- data : array of declination, inclination pairs (e.g. np.array([[140,21],[127,23],[142,19],[136,22]])) Returns --------- Es : list of elongation values Is : list of inclination values Fs : list of flattening factors V2s : list of elongation directions (relative to the distribution) The function will return a zero list ([0]) for each of these parameters if the directions constitute a pathological distribution. Examples --------- >>> directions = np.array([[140,21],[127,23],[142,19],[136,22]]) >>> Es, Is, Fs, V2s = pmag.find_f(directions) """ rad = np.pi/180. Es, Is, Fs, V2s = [], [], [], [] ppars = doprinc(data) D = ppars['dec'] Decs, Incs = data.transpose()[0], data.transpose()[1] Tan_Incs = np.tan(Incs * rad) for f in np.arange(1., .2, -.01): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) Is.append(abs(ppars["inc"])) if EI(abs(ppars["inc"])) <= Es[-1]: del Es[-1] del Is[-1] del Fs[-1] del V2s[-1] if len(Fs) > 0: for f in np.arange(Fs[-1], .2, -.005): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) Is.append(abs(ppars["inc"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) if EI(abs(ppars["inc"])) <= Es[-1]: return Es, Is, Fs, V2s return [0], [0], [0], [0]
Given a distribution of directions, this function determines parameters (elongation, inclination, flattening factor, and elongation direction) that are consistent with the TK03 secular variation model. Parameters ---------- data : array of declination, inclination pairs (e.g. np.array([[140,21],[127,23],[142,19],[136,22]])) Returns --------- Es : list of elongation values Is : list of inclination values Fs : list of flattening factors V2s : list of elongation directions (relative to the distribution) The function will return a zero list ([0]) for each of these parameters if the directions constitute a pathological distribution. Examples --------- >>> directions = np.array([[140,21],[127,23],[142,19],[136,22]]) >>> Es, Is, Fs, V2s = pmag.find_f(directions)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L244-L305
PmagPy/PmagPy
pmagpy/pmag.py
convert_lat
def convert_lat(Recs): """ uses lat, for age<5Ma, model_lat if present, else tries to use average_inc to estimate plat. """ New = [] for rec in Recs: if 'model_lat' in list(rec.keys()) and rec['model_lat'] != "": New.append(rec) elif 'average_age' in list(rec.keys()) and rec['average_age'] != "" and float(rec['average_age']) <= 5.: if 'site_lat' in list(rec.keys()) and rec['site_lat'] != "": rec['model_lat'] = rec['site_lat'] New.append(rec) elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != "": rec['model_lat'] = '%7.1f' % (plat(float(rec['average_inc']))) New.append(rec) return New
python
def convert_lat(Recs): """ uses lat, for age<5Ma, model_lat if present, else tries to use average_inc to estimate plat. """ New = [] for rec in Recs: if 'model_lat' in list(rec.keys()) and rec['model_lat'] != "": New.append(rec) elif 'average_age' in list(rec.keys()) and rec['average_age'] != "" and float(rec['average_age']) <= 5.: if 'site_lat' in list(rec.keys()) and rec['site_lat'] != "": rec['model_lat'] = rec['site_lat'] New.append(rec) elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != "": rec['model_lat'] = '%7.1f' % (plat(float(rec['average_inc']))) New.append(rec) return New
uses lat, for age<5Ma, model_lat if present, else tries to use average_inc to estimate plat.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L332-L347
PmagPy/PmagPy
pmagpy/pmag.py
convert_ages
def convert_ages(Recs, data_model=3): """ converts ages to Ma Parameters _________ Recs : list of dictionaries in data model by data_model data_model : MagIC data model (default is 3) """ if data_model == 3: site_key = 'site' agekey = "age" keybase = "" else: site_key = 'er_site_names' agekey = find('age', list(rec.keys())) if agekey != "": keybase = agekey.split('_')[0] + '_' New = [] for rec in Recs: age = '' if rec[keybase + 'age'] != "": age = float(rec[keybase + "age"]) elif rec[keybase + 'age_low'] != "" and rec[keybase + 'age_high'] != '': age = np.mean([rec[keybase + 'age_high'], rec[keybase + "age_low"]]) # age = float(rec[keybase + 'age_low']) + old_div( # (float(rec[keybase + 'age_high']) - float(rec[keybase + 'age_low'])), 2.) if age != '': rec[keybase + 'age_unit'] if rec[keybase + 'age_unit'] == 'Ma': rec[keybase + 'age'] = '%10.4e' % (age) elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'] == 'Ka': rec[keybase + 'age'] = '%10.4e' % (age * .001) elif rec[keybase + 'age_unit'] == 'Years AD (+/-)': rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-6) elif rec[keybase + 'age_unit'] == 'Years BP': rec[keybase + 'age'] = '%10.4e' % ((age) * 1e-6) rec[keybase + 'age_unit'] = 'Ma' New.append(rec) else: if 'site_key' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) elif 'er_site_name' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) else: print('problem in convert_ages:', rec) if len(New) == 0: print('no age key:', rec) return New
python
def convert_ages(Recs, data_model=3): """ converts ages to Ma Parameters _________ Recs : list of dictionaries in data model by data_model data_model : MagIC data model (default is 3) """ if data_model == 3: site_key = 'site' agekey = "age" keybase = "" else: site_key = 'er_site_names' agekey = find('age', list(rec.keys())) if agekey != "": keybase = agekey.split('_')[0] + '_' New = [] for rec in Recs: age = '' if rec[keybase + 'age'] != "": age = float(rec[keybase + "age"]) elif rec[keybase + 'age_low'] != "" and rec[keybase + 'age_high'] != '': age = np.mean([rec[keybase + 'age_high'], rec[keybase + "age_low"]]) # age = float(rec[keybase + 'age_low']) + old_div( # (float(rec[keybase + 'age_high']) - float(rec[keybase + 'age_low'])), 2.) if age != '': rec[keybase + 'age_unit'] if rec[keybase + 'age_unit'] == 'Ma': rec[keybase + 'age'] = '%10.4e' % (age) elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'] == 'Ka': rec[keybase + 'age'] = '%10.4e' % (age * .001) elif rec[keybase + 'age_unit'] == 'Years AD (+/-)': rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-6) elif rec[keybase + 'age_unit'] == 'Years BP': rec[keybase + 'age'] = '%10.4e' % ((age) * 1e-6) rec[keybase + 'age_unit'] = 'Ma' New.append(rec) else: if 'site_key' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) elif 'er_site_name' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) else: print('problem in convert_ages:', rec) if len(New) == 0: print('no age key:', rec) return New
converts ages to Ma Parameters _________ Recs : list of dictionaries in data model by data_model data_model : MagIC data model (default is 3)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L350-L399
PmagPy/PmagPy
pmagpy/pmag.py
convert_items
def convert_items(data, mapping): """ Input: list of dicts (each dict a record for one item), mapping with column names to swap into the records. Output: updated list of dicts. """ new_recs = [] for rec in data: new_rec = map_magic.mapping(rec, mapping) new_recs.append(new_rec) return new_recs
python
def convert_items(data, mapping): """ Input: list of dicts (each dict a record for one item), mapping with column names to swap into the records. Output: updated list of dicts. """ new_recs = [] for rec in data: new_rec = map_magic.mapping(rec, mapping) new_recs.append(new_rec) return new_recs
Input: list of dicts (each dict a record for one item), mapping with column names to swap into the records. Output: updated list of dicts.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L412-L422
PmagPy/PmagPy
pmagpy/pmag.py
convert_directory_2_to_3
def convert_directory_2_to_3(meas_fname="magic_measurements.txt", input_dir=".", output_dir=".", meas_only=False, data_model=None): """ Convert 2.0 measurements file into 3.0 measurements file. Merge and convert specimen, sample, site, and location data. Also translates criteria data. Parameters ---------- meas_name : name of measurement file (do not include full path, default is "magic_measurements.txt") input_dir : name of input directory (default is ".") output_dir : name of output directory (default is ".") meas_only : boolean, convert only measurement data (default is False) data_model : data_model3.DataModel object (default is None) Returns --------- NewMeas : 3.0 measurements data (output of pmag.convert_items) upgraded : list of files successfully upgraded to 3.0 no_upgrade: list of 2.5 files not upgraded to 3.0 """ convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples': map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.site_magic2_2_magic3_map, 'locations': map_magic.loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map} full_name = os.path.join(input_dir, meas_fname) if not os.path.exists(full_name): print("-W- {} is not a file".format(full_name)) return False, False, False # read in data model 2.5 measurements file data2, filetype = magic_read(full_name) # convert list of dicts to 3.0 NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map) # write 3.0 output to file ofile = os.path.join(output_dir, 'measurements.txt') magic_write(ofile, NewMeas, 'measurements') upgraded = [] if os.path.exists(ofile): print("-I- 3.0 format measurements file was successfully created: {}".format(ofile)) upgraded.append("measurements.txt") else: print("-W- 3.0 format measurements file could not be created") # no_upgrade = [] if not meas_only: # try to convert specimens, samples, sites, & locations for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']: mapping = convert[dtype] res = convert_and_combine_2_to_3( dtype, mapping, input_dir, output_dir, data_model) if res: upgraded.append(res) # try to upgrade criteria file if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')): crit_file = convert_criteria_file_2_to_3(input_dir=input_dir, output_dir=output_dir, data_model=data_model)[0] if crit_file: upgraded.append(crit_file) else: no_upgrade.append("pmag_criteria.txt") # create list of all un-upgradeable files for fname in os.listdir(input_dir): if fname in ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt']: continue elif 'rmag' in fname: no_upgrade.append(fname) elif fname in ['pmag_results.txt', 'er_synthetics.txt', 'er_images.txt', 'er_plots.txt']: no_upgrade.append(fname) return NewMeas, upgraded, no_upgrade
python
def convert_directory_2_to_3(meas_fname="magic_measurements.txt", input_dir=".", output_dir=".", meas_only=False, data_model=None): """ Convert 2.0 measurements file into 3.0 measurements file. Merge and convert specimen, sample, site, and location data. Also translates criteria data. Parameters ---------- meas_name : name of measurement file (do not include full path, default is "magic_measurements.txt") input_dir : name of input directory (default is ".") output_dir : name of output directory (default is ".") meas_only : boolean, convert only measurement data (default is False) data_model : data_model3.DataModel object (default is None) Returns --------- NewMeas : 3.0 measurements data (output of pmag.convert_items) upgraded : list of files successfully upgraded to 3.0 no_upgrade: list of 2.5 files not upgraded to 3.0 """ convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples': map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.site_magic2_2_magic3_map, 'locations': map_magic.loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map} full_name = os.path.join(input_dir, meas_fname) if not os.path.exists(full_name): print("-W- {} is not a file".format(full_name)) return False, False, False # read in data model 2.5 measurements file data2, filetype = magic_read(full_name) # convert list of dicts to 3.0 NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map) # write 3.0 output to file ofile = os.path.join(output_dir, 'measurements.txt') magic_write(ofile, NewMeas, 'measurements') upgraded = [] if os.path.exists(ofile): print("-I- 3.0 format measurements file was successfully created: {}".format(ofile)) upgraded.append("measurements.txt") else: print("-W- 3.0 format measurements file could not be created") # no_upgrade = [] if not meas_only: # try to convert specimens, samples, sites, & locations for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']: mapping = convert[dtype] res = convert_and_combine_2_to_3( dtype, mapping, input_dir, output_dir, data_model) if res: upgraded.append(res) # try to upgrade criteria file if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')): crit_file = convert_criteria_file_2_to_3(input_dir=input_dir, output_dir=output_dir, data_model=data_model)[0] if crit_file: upgraded.append(crit_file) else: no_upgrade.append("pmag_criteria.txt") # create list of all un-upgradeable files for fname in os.listdir(input_dir): if fname in ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt']: continue elif 'rmag' in fname: no_upgrade.append(fname) elif fname in ['pmag_results.txt', 'er_synthetics.txt', 'er_images.txt', 'er_plots.txt']: no_upgrade.append(fname) return NewMeas, upgraded, no_upgrade
Convert 2.0 measurements file into 3.0 measurements file. Merge and convert specimen, sample, site, and location data. Also translates criteria data. Parameters ---------- meas_name : name of measurement file (do not include full path, default is "magic_measurements.txt") input_dir : name of input directory (default is ".") output_dir : name of output directory (default is ".") meas_only : boolean, convert only measurement data (default is False) data_model : data_model3.DataModel object (default is None) Returns --------- NewMeas : 3.0 measurements data (output of pmag.convert_items) upgraded : list of files successfully upgraded to 3.0 no_upgrade: list of 2.5 files not upgraded to 3.0
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L425-L499
PmagPy/PmagPy
pmagpy/pmag.py
convert_and_combine_2_to_3
def convert_and_combine_2_to_3(dtype, map_dict, input_dir=".", output_dir=".", data_model=None): """ Read in er_*.txt file and pmag_*.txt file in working directory. Combine the data, then translate headers from 2.5 --> 3.0. Last, write out the data in 3.0. Parameters ---------- dtype : string for input type (specimens, samples, sites, etc.) map_dict : dictionary with format {header2_format: header3_format, ...} (from mapping.map_magic module) input_dir : input directory, default "." output_dir : output directory, default "." data_model : data_model3.DataModel object, default None Returns --------- output_file_name with 3.0 format data (or None if translation failed) """ # read in er_ data & make DataFrame er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype)) er_data, er_dtype = magic_read(er_file) if len(er_data): er_df = pd.DataFrame(er_data) if dtype == 'ages': pass # remove records with blank ages #er_data = get_dictitem(er_data, 'age', '', "F") #er_df = pd.DataFrame(er_data) else: er_df.index = er_df['er_{}_name'.format(dtype[:-1])] else: er_df = pd.DataFrame() # if dtype == 'ages': full_df = er_df else: # read in pmag_ data & make DataFrame pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype)) pmag_data, pmag_dtype = magic_read(pmag_file) if len(pmag_data): pmag_df = pd.DataFrame(pmag_data) pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])] else: pmag_df = pd.DataFrame() # combine the two Dataframes full_df = pd.concat([er_df, pmag_df], sort=True) # sort the DataFrame so that all records from one item are together full_df.sort_index(inplace=True) # fix the column names to be 3.0 full_df.rename(columns=map_dict, inplace=True) # create a MagicDataFrame object, providing the dataframe and the data type new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model) # write out the data to file if len(new_df.df): new_df.write_magic_file(dir_path=output_dir) return dtype + ".txt" else: print("-I- No {} data found.".format(dtype)) return None
python
def convert_and_combine_2_to_3(dtype, map_dict, input_dir=".", output_dir=".", data_model=None): """ Read in er_*.txt file and pmag_*.txt file in working directory. Combine the data, then translate headers from 2.5 --> 3.0. Last, write out the data in 3.0. Parameters ---------- dtype : string for input type (specimens, samples, sites, etc.) map_dict : dictionary with format {header2_format: header3_format, ...} (from mapping.map_magic module) input_dir : input directory, default "." output_dir : output directory, default "." data_model : data_model3.DataModel object, default None Returns --------- output_file_name with 3.0 format data (or None if translation failed) """ # read in er_ data & make DataFrame er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype)) er_data, er_dtype = magic_read(er_file) if len(er_data): er_df = pd.DataFrame(er_data) if dtype == 'ages': pass # remove records with blank ages #er_data = get_dictitem(er_data, 'age', '', "F") #er_df = pd.DataFrame(er_data) else: er_df.index = er_df['er_{}_name'.format(dtype[:-1])] else: er_df = pd.DataFrame() # if dtype == 'ages': full_df = er_df else: # read in pmag_ data & make DataFrame pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype)) pmag_data, pmag_dtype = magic_read(pmag_file) if len(pmag_data): pmag_df = pd.DataFrame(pmag_data) pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])] else: pmag_df = pd.DataFrame() # combine the two Dataframes full_df = pd.concat([er_df, pmag_df], sort=True) # sort the DataFrame so that all records from one item are together full_df.sort_index(inplace=True) # fix the column names to be 3.0 full_df.rename(columns=map_dict, inplace=True) # create a MagicDataFrame object, providing the dataframe and the data type new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model) # write out the data to file if len(new_df.df): new_df.write_magic_file(dir_path=output_dir) return dtype + ".txt" else: print("-I- No {} data found.".format(dtype)) return None
Read in er_*.txt file and pmag_*.txt file in working directory. Combine the data, then translate headers from 2.5 --> 3.0. Last, write out the data in 3.0. Parameters ---------- dtype : string for input type (specimens, samples, sites, etc.) map_dict : dictionary with format {header2_format: header3_format, ...} (from mapping.map_magic module) input_dir : input directory, default "." output_dir : output directory, default "." data_model : data_model3.DataModel object, default None Returns --------- output_file_name with 3.0 format data (or None if translation failed)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L502-L561
PmagPy/PmagPy
pmagpy/pmag.py
convert_criteria_file_2_to_3
def convert_criteria_file_2_to_3(fname="pmag_criteria.txt", input_dir=".", output_dir=".", data_model=None): """ Convert a criteria file from 2.5 to 3.0 format and write it out to file Parameters ---------- fname : string of filename (default "pmag_criteria.txt") input_dir : string of input directory (default ".") output_dir : string of output directory (default ".") data_model : data_model.DataModel object (default None) Returns --------- outfile : string output criteria filename, or False crit_container : cb.MagicDataFrame with 3.0 criteria table """ # get criteria from infile fname = os.path.join(input_dir, fname) if not os.path.exists(fname): return False, None orig_crit, warnings = read_criteria_from_file(fname, initialize_acceptance_criteria(), data_model=2, return_warnings=True) converted_crit = {} # get data model including criteria map if not data_model: from . import data_model3 as dm3 DM = dm3.DataModel() else: DM = data_model crit_map = DM.crit_map # drop all empty mappings stripped_crit_map = crit_map.dropna(axis='rows') # go through criteria and get 3.0 name and criterion_operation for crit in orig_crit: if orig_crit[crit]['value'] in [-999, '-999', -999.]: continue if crit in stripped_crit_map.index: criterion_operation = stripped_crit_map.loc[crit]['criteria_map']['criterion_operation'] table_col = stripped_crit_map.loc[crit]['criteria_map']['table_column'] orig_crit[crit]['criterion_operation'] = criterion_operation converted_crit[table_col] = orig_crit[crit] else: print('-W- Could not convert {} to 3.0, skipping'.format(crit)) # switch axes converted_df = pd.DataFrame(converted_crit).transpose() # name the index converted_df.index.name = "table_column" # rename columns to 3.0 values # 'category' --> criterion (uses defaults from initalize_default_criteria) # 'pmag_criteria_code' --> criterion (uses what's actually in the translated file) converted_df.rename(columns={'pmag_criteria_code': 'criterion', 'er_citation_names': 'citations', 'criteria_definition': 'description', 'value': 'criterion_value'}, inplace=True) # drop unused columns valid_cols = DM.dm['criteria'].index drop_cols = set(converted_df.columns) - set(valid_cols) converted_df.drop(drop_cols, axis='columns', inplace=True) # move 'table_column' from being the index to being a column converted_df['table_column'] = converted_df.index crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df) crit_container.write_magic_file(dir_path=output_dir) return "criteria.txt", crit_container
python
def convert_criteria_file_2_to_3(fname="pmag_criteria.txt", input_dir=".", output_dir=".", data_model=None): """ Convert a criteria file from 2.5 to 3.0 format and write it out to file Parameters ---------- fname : string of filename (default "pmag_criteria.txt") input_dir : string of input directory (default ".") output_dir : string of output directory (default ".") data_model : data_model.DataModel object (default None) Returns --------- outfile : string output criteria filename, or False crit_container : cb.MagicDataFrame with 3.0 criteria table """ # get criteria from infile fname = os.path.join(input_dir, fname) if not os.path.exists(fname): return False, None orig_crit, warnings = read_criteria_from_file(fname, initialize_acceptance_criteria(), data_model=2, return_warnings=True) converted_crit = {} # get data model including criteria map if not data_model: from . import data_model3 as dm3 DM = dm3.DataModel() else: DM = data_model crit_map = DM.crit_map # drop all empty mappings stripped_crit_map = crit_map.dropna(axis='rows') # go through criteria and get 3.0 name and criterion_operation for crit in orig_crit: if orig_crit[crit]['value'] in [-999, '-999', -999.]: continue if crit in stripped_crit_map.index: criterion_operation = stripped_crit_map.loc[crit]['criteria_map']['criterion_operation'] table_col = stripped_crit_map.loc[crit]['criteria_map']['table_column'] orig_crit[crit]['criterion_operation'] = criterion_operation converted_crit[table_col] = orig_crit[crit] else: print('-W- Could not convert {} to 3.0, skipping'.format(crit)) # switch axes converted_df = pd.DataFrame(converted_crit).transpose() # name the index converted_df.index.name = "table_column" # rename columns to 3.0 values # 'category' --> criterion (uses defaults from initalize_default_criteria) # 'pmag_criteria_code' --> criterion (uses what's actually in the translated file) converted_df.rename(columns={'pmag_criteria_code': 'criterion', 'er_citation_names': 'citations', 'criteria_definition': 'description', 'value': 'criterion_value'}, inplace=True) # drop unused columns valid_cols = DM.dm['criteria'].index drop_cols = set(converted_df.columns) - set(valid_cols) converted_df.drop(drop_cols, axis='columns', inplace=True) # move 'table_column' from being the index to being a column converted_df['table_column'] = converted_df.index crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df) crit_container.write_magic_file(dir_path=output_dir) return "criteria.txt", crit_container
Convert a criteria file from 2.5 to 3.0 format and write it out to file Parameters ---------- fname : string of filename (default "pmag_criteria.txt") input_dir : string of input directory (default ".") output_dir : string of output directory (default ".") data_model : data_model.DataModel object (default None) Returns --------- outfile : string output criteria filename, or False crit_container : cb.MagicDataFrame with 3.0 criteria table
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L564-L626
PmagPy/PmagPy
pmagpy/pmag.py
orient
def orient(mag_azimuth, field_dip, or_con): """ uses specified orientation convention to convert user supplied orientations to laboratory azimuth and plunge """ or_con = str(or_con) if mag_azimuth == -999: return "", "" if or_con == "1": # lab_mag_az=mag_az; sample_dip = -dip return mag_azimuth, -field_dip if or_con == "2": return mag_azimuth - 90., -field_dip if or_con == "3": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth, 90. - field_dip if or_con == "4": # lab_mag_az=mag_az; sample_dip = dip return mag_azimuth, field_dip if or_con == "5": # lab_mag_az=mag_az; sample_dip = dip-90. return mag_azimuth, field_dip - 90. if or_con == "6": # lab_mag_az=mag_az-90.; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip if or_con == "7": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip print("Error in orientation convention")
python
def orient(mag_azimuth, field_dip, or_con): """ uses specified orientation convention to convert user supplied orientations to laboratory azimuth and plunge """ or_con = str(or_con) if mag_azimuth == -999: return "", "" if or_con == "1": # lab_mag_az=mag_az; sample_dip = -dip return mag_azimuth, -field_dip if or_con == "2": return mag_azimuth - 90., -field_dip if or_con == "3": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth, 90. - field_dip if or_con == "4": # lab_mag_az=mag_az; sample_dip = dip return mag_azimuth, field_dip if or_con == "5": # lab_mag_az=mag_az; sample_dip = dip-90. return mag_azimuth, field_dip - 90. if or_con == "6": # lab_mag_az=mag_az-90.; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip if or_con == "7": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip print("Error in orientation convention")
uses specified orientation convention to convert user supplied orientations to laboratory azimuth and plunge
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L918-L940
PmagPy/PmagPy
pmagpy/pmag.py
get_Sb
def get_Sb(data): """ returns vgp scatter for data set """ Sb, N = 0., 0. for rec in data: delta = 90. - abs(rec['vgp_lat']) if rec['average_k'] != 0: k = rec['average_k'] L = rec['average_lat'] * np.pi / 180. # latitude in radians Nsi = rec['average_nn'] K = old_div(k, (2. * (1. + 3. * np.sin(L)**2) / (5. - 3. * np.sin(L)**2))) Sw = old_div(81., np.sqrt(K)) else: Sw, Nsi = 0, 1. Sb += delta**2. - old_div((Sw**2), Nsi) N += 1. return np.sqrt(old_div(Sb, float(N - 1.)))
python
def get_Sb(data): """ returns vgp scatter for data set """ Sb, N = 0., 0. for rec in data: delta = 90. - abs(rec['vgp_lat']) if rec['average_k'] != 0: k = rec['average_k'] L = rec['average_lat'] * np.pi / 180. # latitude in radians Nsi = rec['average_nn'] K = old_div(k, (2. * (1. + 3. * np.sin(L)**2) / (5. - 3. * np.sin(L)**2))) Sw = old_div(81., np.sqrt(K)) else: Sw, Nsi = 0, 1. Sb += delta**2. - old_div((Sw**2), Nsi) N += 1. return np.sqrt(old_div(Sb, float(N - 1.)))
returns vgp scatter for data set
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L943-L961
PmagPy/PmagPy
pmagpy/pmag.py
get_sb_df
def get_sb_df(df, mm97=False): """ Calculates Sf for a dataframe with VGP Lat., and optional Fisher's k, site latitude and N information can be used to correct for within site scatter (McElhinny & McFadden, 1997) Parameters _________ df : Pandas Dataframe with columns REQUIRED: vgp_lat : VGP latitude ONLY REQUIRED for MM97 correction: dir_k : Fisher kappa estimate dir_n : number of specimens (samples) per site lat : latitude of the site mm97 : if True, will do the correction for within site scatter Returns: _______ Sf : Sf """ df['delta'] = 90.-df.vgp_lat Sp2 = np.sum(df.delta**2)/(df.shape[0]-1) if 'dir_k' in df.columns and mm97: ks = df.dir_k Ns = df.dir_n Ls = np.radians(df.lat) A95s = 140./np.sqrt(ks*Ns) Sw2_n = 0.335*(A95s**2)*(2.*(1.+3.*np.sin(Ls)**2) / (5.-3.*np.sin(Ls)**2)) return np.sqrt(Sp2-Sw2_n.mean()) else: return np.sqrt(Sp2)
python
def get_sb_df(df, mm97=False): """ Calculates Sf for a dataframe with VGP Lat., and optional Fisher's k, site latitude and N information can be used to correct for within site scatter (McElhinny & McFadden, 1997) Parameters _________ df : Pandas Dataframe with columns REQUIRED: vgp_lat : VGP latitude ONLY REQUIRED for MM97 correction: dir_k : Fisher kappa estimate dir_n : number of specimens (samples) per site lat : latitude of the site mm97 : if True, will do the correction for within site scatter Returns: _______ Sf : Sf """ df['delta'] = 90.-df.vgp_lat Sp2 = np.sum(df.delta**2)/(df.shape[0]-1) if 'dir_k' in df.columns and mm97: ks = df.dir_k Ns = df.dir_n Ls = np.radians(df.lat) A95s = 140./np.sqrt(ks*Ns) Sw2_n = 0.335*(A95s**2)*(2.*(1.+3.*np.sin(Ls)**2) / (5.-3.*np.sin(Ls)**2)) return np.sqrt(Sp2-Sw2_n.mean()) else: return np.sqrt(Sp2)
Calculates Sf for a dataframe with VGP Lat., and optional Fisher's k, site latitude and N information can be used to correct for within site scatter (McElhinny & McFadden, 1997) Parameters _________ df : Pandas Dataframe with columns REQUIRED: vgp_lat : VGP latitude ONLY REQUIRED for MM97 correction: dir_k : Fisher kappa estimate dir_n : number of specimens (samples) per site lat : latitude of the site mm97 : if True, will do the correction for within site scatter Returns: _______ Sf : Sf
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L964-L994
PmagPy/PmagPy
pmagpy/pmag.py
grade
def grade(PmagRec, ACCEPT, type, data_model=2.5): """ Finds the 'grade' (pass/fail; A/F) of a record (specimen,sample,site) given the acceptance criteria """ GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines', 'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n', 'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k', 'average_r', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume', 'site_magn_mass', 'site_r'] # these statistics must be exceede to pass, all others must be less than (except specimen_scat, which must be true) ISTRUE = ['specimen_scat'] kill = [] # criteria that kill the record sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc', 'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma', 'average_int_sigma_perc'] sigmas = [] accept = {} if type == 'specimen_int': USEKEYS = ['specimen_q', 'measurement_step_min', 'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_int_n', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'specimen_scat', 'specimen_drats', 'specimen_int_mad', 'specimen_int_dang', 'specimen_md', 'specimen_b_beta', 'specimen_w', 'specimen_gmax'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'specimen_dir': USEKEYS = ['measurement_step_min', 'measurement_step_max', 'specimen_mad', 'specimen_n', 'specimen_magn_moment', 'specimen_magn_volume'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_int': USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_dir': USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_int': USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_dir': USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines', 'site_n_planes', 'site_r'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] for key in list(ACCEPT.keys()): if ACCEPT[key] != "" and key in USEKEYS: if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key] == 'True': # this is because Excel always capitalizes True to TRUE and # python doesn't recognize that as a boolean. never mind ACCEPT[key] = '1' elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False': ACCEPT[key] = '0' elif eval(ACCEPT[key]) == 0: ACCEPT[key] = "" accept[key] = ACCEPT[key] for key in sigma_types: if key in USEKEYS and key in list(accept.keys()) and key in list(PmagRec.keys()): sigmas.append(key) if len(sigmas) > 1: if PmagRec[sigmas[0]] == "" or PmagRec[sigmas[1]] == "": kill.append(sigmas[0]) kill.append(sigmas[1]) elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval(PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]): kill.append(sigmas[0]) kill.append(sigmas[1]) elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()): if PmagRec[sigmas[0]] > accept[sigmas[0]]: kill.append(sigmas[0]) for key in list(accept.keys()): if accept[key] != "": if key not in list(PmagRec.keys()) or PmagRec[key] == '': kill.append(key) elif key not in sigma_types: if key in ISTRUE: # boolean must be true if PmagRec[key] != '1': kill.append(key) if key in GREATERTHAN: if eval(str(PmagRec[key])) < eval(str(accept[key])): kill.append(key) else: if eval(str(PmagRec[key])) > eval(str(accept[key])): kill.append(key) return kill
python
def grade(PmagRec, ACCEPT, type, data_model=2.5): """ Finds the 'grade' (pass/fail; A/F) of a record (specimen,sample,site) given the acceptance criteria """ GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines', 'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n', 'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k', 'average_r', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume', 'site_magn_mass', 'site_r'] # these statistics must be exceede to pass, all others must be less than (except specimen_scat, which must be true) ISTRUE = ['specimen_scat'] kill = [] # criteria that kill the record sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc', 'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma', 'average_int_sigma_perc'] sigmas = [] accept = {} if type == 'specimen_int': USEKEYS = ['specimen_q', 'measurement_step_min', 'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_int_n', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'specimen_scat', 'specimen_drats', 'specimen_int_mad', 'specimen_int_dang', 'specimen_md', 'specimen_b_beta', 'specimen_w', 'specimen_gmax'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'specimen_dir': USEKEYS = ['measurement_step_min', 'measurement_step_max', 'specimen_mad', 'specimen_n', 'specimen_magn_moment', 'specimen_magn_volume'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_int': USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_dir': USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_int': USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_dir': USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines', 'site_n_planes', 'site_r'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] for key in list(ACCEPT.keys()): if ACCEPT[key] != "" and key in USEKEYS: if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key] == 'True': # this is because Excel always capitalizes True to TRUE and # python doesn't recognize that as a boolean. never mind ACCEPT[key] = '1' elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False': ACCEPT[key] = '0' elif eval(ACCEPT[key]) == 0: ACCEPT[key] = "" accept[key] = ACCEPT[key] for key in sigma_types: if key in USEKEYS and key in list(accept.keys()) and key in list(PmagRec.keys()): sigmas.append(key) if len(sigmas) > 1: if PmagRec[sigmas[0]] == "" or PmagRec[sigmas[1]] == "": kill.append(sigmas[0]) kill.append(sigmas[1]) elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval(PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]): kill.append(sigmas[0]) kill.append(sigmas[1]) elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()): if PmagRec[sigmas[0]] > accept[sigmas[0]]: kill.append(sigmas[0]) for key in list(accept.keys()): if accept[key] != "": if key not in list(PmagRec.keys()) or PmagRec[key] == '': kill.append(key) elif key not in sigma_types: if key in ISTRUE: # boolean must be true if PmagRec[key] != '1': kill.append(key) if key in GREATERTHAN: if eval(str(PmagRec[key])) < eval(str(accept[key])): kill.append(key) else: if eval(str(PmagRec[key])) > eval(str(accept[key])): kill.append(key) return kill
Finds the 'grade' (pass/fail; A/F) of a record (specimen,sample,site) given the acceptance criteria
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1031-L1110
PmagPy/PmagPy
pmagpy/pmag.py
flip
def flip(di_block, combine=False): """ determines 'normal' direction along the principle eigenvector, then flips the antipodes of the reverse mode to the antipode Parameters ___________ di_block : nested list of directions Return D1 : normal mode D2 : flipped reverse mode as two DI blocks combine : if True return combined D1, D2, nested D,I pairs """ ppars = doprinc(di_block) # get principle direction if combine: D3 = [] D1, D2 = [], [] for rec in di_block: ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if ang > 90.: d, i = (rec[0] - 180.) % 360., -rec[1] D2.append([d, i]) if combine: D3.append([d, i]) else: D1.append([rec[0], rec[1]]) if combine: D3.append([rec[0], rec[1]]) if combine: return D3 else: return D1, D2
python
def flip(di_block, combine=False): """ determines 'normal' direction along the principle eigenvector, then flips the antipodes of the reverse mode to the antipode Parameters ___________ di_block : nested list of directions Return D1 : normal mode D2 : flipped reverse mode as two DI blocks combine : if True return combined D1, D2, nested D,I pairs """ ppars = doprinc(di_block) # get principle direction if combine: D3 = [] D1, D2 = [], [] for rec in di_block: ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if ang > 90.: d, i = (rec[0] - 180.) % 360., -rec[1] D2.append([d, i]) if combine: D3.append([d, i]) else: D1.append([rec[0], rec[1]]) if combine: D3.append([rec[0], rec[1]]) if combine: return D3 else: return D1, D2
determines 'normal' direction along the principle eigenvector, then flips the antipodes of the reverse mode to the antipode Parameters ___________ di_block : nested list of directions Return D1 : normal mode D2 : flipped reverse mode as two DI blocks combine : if True return combined D1, D2, nested D,I pairs
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1115-L1146
PmagPy/PmagPy
pmagpy/pmag.py
dia_vgp
def dia_vgp(*args): # new function interface by J.Holmes, SIO, 6/1/2011 """ Converts directional data (declination, inclination, alpha95) at a given location (Site latitude, Site longitude) to pole position (pole longitude, pole latitude, dp, dm) Parameters ---------- Takes input as (Dec, Inc, a95, Site latitude, Site longitude) Input can be as individual values (5 parameters) or as a list of lists: [[Dec, Inc, a95, lat, lon],[Dec, Inc, a95, lat, lon]] Returns ---------- if input is individual values for one pole the return is: pole longitude, pole latitude, dp, dm if input is list of lists the return is: list of pole longitudes, list of pole latitude, list of dp, list of dm """ # test whether arguments are one 2-D list or 5 floats if len(args) == 1: # args comes in as a tuple of multi-dim lists. largs = list(args).pop() # scrap the tuple. # reorganize the lists so that we get columns of data in each var. (decs, dips, a95s, slats, slongs) = list(zip(*largs)) else: # When args > 1, we are receiving five floats. This usually happens when the invoking script is # executed in interactive mode. (decs, dips, a95s, slats, slongs) = (args) # We send all incoming data to numpy in an array form. Even if it means a # 1x1 matrix. That's OKAY. Really. (dec, dip, a95, slat, slong) = (np.array(decs), np.array(dips), np.array(a95s), np.array(slats), np.array(slongs)) # package columns into arrays rad = old_div(np.pi, 180.) # convert to radians dec, dip, a95, slat, slong = dec * rad, dip * \ rad, a95 * rad, slat * rad, slong * rad p = np.arctan2(2.0, np.tan(dip)) plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) * np.cos(dec)) beta = old_div((np.sin(p) * np.sin(dec)), np.cos(plat)) # ------------------------------------------------------------------------- # The deal with "boolmask": # We needed a quick way to assign matrix values based on a logic decision, in this case setting boundaries # on out-of-bounds conditions. Creating a matrix of boolean values the size of the original matrix and using # it to "mask" the assignment solves this problem nicely. The downside to this is that Numpy complains if you # attempt to mask a non-matrix, so we have to check for array type and do a normal assignment if the type is # scalar. These checks are made before calculating for the rest of the function. # ------------------------------------------------------------------------- boolmask = beta > 1. # create a mask of boolean values if isinstance(beta, np.ndarray): beta[boolmask] = 1. # assigns 1 only to elements that mask TRUE. # Numpy gets upset if you try our masking trick with a scalar or a 0-D # matrix. else: if boolmask: beta = 1. boolmask = beta < -1. if isinstance(beta, np.ndarray): beta[boolmask] = -1. # assigns -1 only to elements that mask TRUE. else: if boolmask: beta = -1. beta = np.arcsin(beta) plong = slong + np.pi - beta if (np.cos(p) > np.sin(slat) * np.sin(plat)).any(): boolmask = (np.cos(p) > (np.sin(slat) * np.sin(plat))) if isinstance(plong, np.ndarray): plong[boolmask] = (slong + beta)[boolmask] else: if boolmask: plong = slong + beta boolmask = (plong < 0) if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] + 2 * np.pi else: if boolmask: plong = plong + 2 * np.pi boolmask = (plong > 2 * np.pi) if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] - 2 * np.pi else: if boolmask: plong = plong - 2 * np.pi dm = np.rad2deg(a95 * (old_div(np.sin(p), np.cos(dip)))) dp = np.rad2deg(a95 * (old_div((1 + 3 * (np.cos(p)**2)), 2))) plat = np.rad2deg(plat) plong = np.rad2deg(plong) return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()
python
def dia_vgp(*args): # new function interface by J.Holmes, SIO, 6/1/2011 """ Converts directional data (declination, inclination, alpha95) at a given location (Site latitude, Site longitude) to pole position (pole longitude, pole latitude, dp, dm) Parameters ---------- Takes input as (Dec, Inc, a95, Site latitude, Site longitude) Input can be as individual values (5 parameters) or as a list of lists: [[Dec, Inc, a95, lat, lon],[Dec, Inc, a95, lat, lon]] Returns ---------- if input is individual values for one pole the return is: pole longitude, pole latitude, dp, dm if input is list of lists the return is: list of pole longitudes, list of pole latitude, list of dp, list of dm """ # test whether arguments are one 2-D list or 5 floats if len(args) == 1: # args comes in as a tuple of multi-dim lists. largs = list(args).pop() # scrap the tuple. # reorganize the lists so that we get columns of data in each var. (decs, dips, a95s, slats, slongs) = list(zip(*largs)) else: # When args > 1, we are receiving five floats. This usually happens when the invoking script is # executed in interactive mode. (decs, dips, a95s, slats, slongs) = (args) # We send all incoming data to numpy in an array form. Even if it means a # 1x1 matrix. That's OKAY. Really. (dec, dip, a95, slat, slong) = (np.array(decs), np.array(dips), np.array(a95s), np.array(slats), np.array(slongs)) # package columns into arrays rad = old_div(np.pi, 180.) # convert to radians dec, dip, a95, slat, slong = dec * rad, dip * \ rad, a95 * rad, slat * rad, slong * rad p = np.arctan2(2.0, np.tan(dip)) plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) * np.cos(dec)) beta = old_div((np.sin(p) * np.sin(dec)), np.cos(plat)) # ------------------------------------------------------------------------- # The deal with "boolmask": # We needed a quick way to assign matrix values based on a logic decision, in this case setting boundaries # on out-of-bounds conditions. Creating a matrix of boolean values the size of the original matrix and using # it to "mask" the assignment solves this problem nicely. The downside to this is that Numpy complains if you # attempt to mask a non-matrix, so we have to check for array type and do a normal assignment if the type is # scalar. These checks are made before calculating for the rest of the function. # ------------------------------------------------------------------------- boolmask = beta > 1. # create a mask of boolean values if isinstance(beta, np.ndarray): beta[boolmask] = 1. # assigns 1 only to elements that mask TRUE. # Numpy gets upset if you try our masking trick with a scalar or a 0-D # matrix. else: if boolmask: beta = 1. boolmask = beta < -1. if isinstance(beta, np.ndarray): beta[boolmask] = -1. # assigns -1 only to elements that mask TRUE. else: if boolmask: beta = -1. beta = np.arcsin(beta) plong = slong + np.pi - beta if (np.cos(p) > np.sin(slat) * np.sin(plat)).any(): boolmask = (np.cos(p) > (np.sin(slat) * np.sin(plat))) if isinstance(plong, np.ndarray): plong[boolmask] = (slong + beta)[boolmask] else: if boolmask: plong = slong + beta boolmask = (plong < 0) if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] + 2 * np.pi else: if boolmask: plong = plong + 2 * np.pi boolmask = (plong > 2 * np.pi) if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] - 2 * np.pi else: if boolmask: plong = plong - 2 * np.pi dm = np.rad2deg(a95 * (old_div(np.sin(p), np.cos(dip)))) dp = np.rad2deg(a95 * (old_div((1 + 3 * (np.cos(p)**2)), 2))) plat = np.rad2deg(plat) plong = np.rad2deg(plong) return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()
Converts directional data (declination, inclination, alpha95) at a given location (Site latitude, Site longitude) to pole position (pole longitude, pole latitude, dp, dm) Parameters ---------- Takes input as (Dec, Inc, a95, Site latitude, Site longitude) Input can be as individual values (5 parameters) or as a list of lists: [[Dec, Inc, a95, lat, lon],[Dec, Inc, a95, lat, lon]] Returns ---------- if input is individual values for one pole the return is: pole longitude, pole latitude, dp, dm if input is list of lists the return is: list of pole longitudes, list of pole latitude, list of dp, list of dm
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1150-L1245
PmagPy/PmagPy
pmagpy/pmag.py
int_pars
def int_pars(x, y, vds, **kwargs): """ calculates York regression and Coe parameters (with Tauxe Fvds) """ # first do linear regression a la York # do Data Model 3 way: if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: n_key = 'int_n_measurements' b_key = 'int_b' sigma_key = 'int_b_sigma' f_key = 'int_f' fvds_key = 'int_fvds' g_key = 'int_g' q_key = 'int_q' b_beta_key = 'int_b_beta' else: # version 2 n_key = 'specimen_int_n' b_key = 'specimen_b' sigma_key = 'specimen_b_sigma' f_key = 'specimen_f' fvds_key = 'specimen_fvds' g_key = 'specimen_g' q_key = 'specimen_q' b_beta_key = 'specimen_b_beta' xx, yer, xer, xyer, yy, xsum, ysum, xy = 0., 0., 0., 0., 0., 0., 0., 0. xprime, yprime = [], [] pars = {} pars[n_key] = len(x) n = float(len(x)) if n <= 2: print("shouldn't be here at all!") return pars, 1 for i in range(len(x)): xx += x[i]**2. yy += y[i]**2. xy += x[i] * y[i] xsum += x[i] ysum += y[i] xsig = np.sqrt(old_div((xx - (old_div(xsum**2., n))), (n - 1.))) ysig = np.sqrt(old_div((yy - (old_div(ysum**2., n))), (n - 1.))) sum = 0 for i in range(int(n)): yer += (y[i] - old_div(ysum, n))**2. xer += (x[i] - old_div(xsum, n))**2. xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n)) slop = -np.sqrt(old_div(yer, xer)) pars[b_key] = slop s1 = 2. * yer - 2. * slop * xyer s2 = (n - 2.) * xer sigma = np.sqrt(old_div(s1, s2)) pars[sigma_key] = sigma s = old_div((xy - (xsum * ysum / n)), (xx - old_div((xsum**2.), n))) r = old_div((s * xsig), ysig) pars["specimen_rsc"] = r**2. ytot = abs(old_div(ysum, n) - slop * xsum / n) for i in range(int(n)): xprime.append(old_div((slop * x[i] + y[i] - ytot), (2. * slop))) yprime.append((old_div((slop * x[i] + y[i] - ytot), 2.)) + ytot) sumdy, dy = 0, [] dyt = abs(yprime[0] - yprime[int(n) - 1]) for i in range((int(n) - 1)): dy.append(abs(yprime[i + 1] - yprime[i])) sumdy += dy[i]**2. f = old_div(dyt, ytot) pars[f_key] = f pars["specimen_ytot"] = ytot ff = old_div(dyt, vds) pars[fvds_key] = ff ddy = (old_div(1., dyt)) * sumdy g = 1. - old_div(ddy, dyt) pars[g_key] = g q = abs(slop) * f * g / sigma pars[q_key] = q pars[b_beta_key] = old_div(-sigma, slop) return pars, 0
python
def int_pars(x, y, vds, **kwargs): """ calculates York regression and Coe parameters (with Tauxe Fvds) """ # first do linear regression a la York # do Data Model 3 way: if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: n_key = 'int_n_measurements' b_key = 'int_b' sigma_key = 'int_b_sigma' f_key = 'int_f' fvds_key = 'int_fvds' g_key = 'int_g' q_key = 'int_q' b_beta_key = 'int_b_beta' else: # version 2 n_key = 'specimen_int_n' b_key = 'specimen_b' sigma_key = 'specimen_b_sigma' f_key = 'specimen_f' fvds_key = 'specimen_fvds' g_key = 'specimen_g' q_key = 'specimen_q' b_beta_key = 'specimen_b_beta' xx, yer, xer, xyer, yy, xsum, ysum, xy = 0., 0., 0., 0., 0., 0., 0., 0. xprime, yprime = [], [] pars = {} pars[n_key] = len(x) n = float(len(x)) if n <= 2: print("shouldn't be here at all!") return pars, 1 for i in range(len(x)): xx += x[i]**2. yy += y[i]**2. xy += x[i] * y[i] xsum += x[i] ysum += y[i] xsig = np.sqrt(old_div((xx - (old_div(xsum**2., n))), (n - 1.))) ysig = np.sqrt(old_div((yy - (old_div(ysum**2., n))), (n - 1.))) sum = 0 for i in range(int(n)): yer += (y[i] - old_div(ysum, n))**2. xer += (x[i] - old_div(xsum, n))**2. xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n)) slop = -np.sqrt(old_div(yer, xer)) pars[b_key] = slop s1 = 2. * yer - 2. * slop * xyer s2 = (n - 2.) * xer sigma = np.sqrt(old_div(s1, s2)) pars[sigma_key] = sigma s = old_div((xy - (xsum * ysum / n)), (xx - old_div((xsum**2.), n))) r = old_div((s * xsig), ysig) pars["specimen_rsc"] = r**2. ytot = abs(old_div(ysum, n) - slop * xsum / n) for i in range(int(n)): xprime.append(old_div((slop * x[i] + y[i] - ytot), (2. * slop))) yprime.append((old_div((slop * x[i] + y[i] - ytot), 2.)) + ytot) sumdy, dy = 0, [] dyt = abs(yprime[0] - yprime[int(n) - 1]) for i in range((int(n) - 1)): dy.append(abs(yprime[i + 1] - yprime[i])) sumdy += dy[i]**2. f = old_div(dyt, ytot) pars[f_key] = f pars["specimen_ytot"] = ytot ff = old_div(dyt, vds) pars[fvds_key] = ff ddy = (old_div(1., dyt)) * sumdy g = 1. - old_div(ddy, dyt) pars[g_key] = g q = abs(slop) * f * g / sigma pars[q_key] = q pars[b_beta_key] = old_div(-sigma, slop) return pars, 0
calculates York regression and Coe parameters (with Tauxe Fvds)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1248-L1324
PmagPy/PmagPy
pmagpy/pmag.py
dovds
def dovds(data): """ calculates vector difference sum for demagnetization data """ vds, X = 0, [] for rec in data: X.append(dir2cart(rec)) for k in range(len(X) - 1): xdif = X[k + 1][0] - X[k][0] ydif = X[k + 1][1] - X[k][1] zdif = X[k + 1][2] - X[k][2] vds += np.sqrt(xdif**2 + ydif**2 + zdif**2) vds += np.sqrt(X[-1][0]**2 + X[-1][1]**2 + X[-1][2]**2) return vds
python
def dovds(data): """ calculates vector difference sum for demagnetization data """ vds, X = 0, [] for rec in data: X.append(dir2cart(rec)) for k in range(len(X) - 1): xdif = X[k + 1][0] - X[k][0] ydif = X[k + 1][1] - X[k][1] zdif = X[k + 1][2] - X[k][2] vds += np.sqrt(xdif**2 + ydif**2 + zdif**2) vds += np.sqrt(X[-1][0]**2 + X[-1][1]**2 + X[-1][2]**2) return vds
calculates vector difference sum for demagnetization data
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1327-L1340
PmagPy/PmagPy
pmagpy/pmag.py
vspec_magic
def vspec_magic(data): """ Takes average vector of replicate measurements """ vdata, Dirdata, step_meth = [], [], "" if len(data) == 0: return vdata treat_init = ["treatment_temp", "treatment_temp_decay_rate", "treatment_temp_dc_on", "treatment_temp_dc_off", "treatment_ac_field", "treatment_ac_field_decay_rate", "treatment_ac_field_dc_on", "treatment_ac_field_dc_off", "treatment_dc_field", "treatment_dc_field_decay_rate", "treatment_dc_field_ac_on", "treatment_dc_field_ac_off", "treatment_dc_field_phi", "treatment_dc_field_theta"] treats = [] # # find keys that are used # for key in treat_init: if key in list(data[0].keys()): treats.append(key) # get a list of keys stop = {} stop["er_specimen_name"] = "stop" for key in treats: stop[key] = "" # tells program when to quit and go home data.append(stop) # # set initial states # DataState0, newstate = {}, 0 for key in treats: DataState0[key] = data[0][key] # set beginning treatment k, R = 1, 0 for i in range(k, len(data)): FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0 for key in treats: # check if anything changed DataStateCurr[key] = data[i][key] if DataStateCurr[key].strip() != DataState0[key].strip(): newstate = 1 # something changed if newstate == 1: if i == k: # sample is unique vdata.append(data[i - 1]) else: # measurement is not unique # print "averaging: records " ,k,i for l in range(k - 1, i): if 'orientation' in data[l]['measurement_description']: data[l]['measurement_description'] = "" Dirdata.append([float(data[l]['measurement_dec']), float( data[l]['measurement_inc']), float(data[l]['measurement_magn_moment'])]) FDirdata.append( [float(data[l]['measurement_dec']), float(data[l]['measurement_inc'])]) dir, R = vector_mean(Dirdata) Fpars = fisher_mean(FDirdata) vrec = data[i - 1] vrec['measurement_dec'] = '%7.1f' % (dir[0]) vrec['measurement_inc'] = '%7.1f' % (dir[1]) vrec['measurement_magn_moment'] = '%8.3e' % ( old_div(R, (i - k + 1))) vrec['measurement_csd'] = '%7.1f' % (Fpars['csd']) vrec['measurement_positions'] = '%7.1f' % (Fpars['n']) vrec['measurement_description'] = 'average of multiple measurements' if "magic_method_codes" in list(vrec.keys()): meths = vrec["magic_method_codes"].strip().split(":") if "DE-VM" not in meths: meths.append("DE-VM") methods = "" for meth in meths: methods = methods + meth + ":" vrec["magic_method_codes"] = methods[:-1] else: vrec["magic_method_codes"] = "DE-VM" vdata.append(vrec) # reset state to new one for key in treats: DataState0[key] = data[i][key] # set beginning treatment k = i + 1 if data[i]["er_specimen_name"] == "stop": del data[-1] # get rid of dummy stop sign return vdata, treats
python
def vspec_magic(data): """ Takes average vector of replicate measurements """ vdata, Dirdata, step_meth = [], [], "" if len(data) == 0: return vdata treat_init = ["treatment_temp", "treatment_temp_decay_rate", "treatment_temp_dc_on", "treatment_temp_dc_off", "treatment_ac_field", "treatment_ac_field_decay_rate", "treatment_ac_field_dc_on", "treatment_ac_field_dc_off", "treatment_dc_field", "treatment_dc_field_decay_rate", "treatment_dc_field_ac_on", "treatment_dc_field_ac_off", "treatment_dc_field_phi", "treatment_dc_field_theta"] treats = [] # # find keys that are used # for key in treat_init: if key in list(data[0].keys()): treats.append(key) # get a list of keys stop = {} stop["er_specimen_name"] = "stop" for key in treats: stop[key] = "" # tells program when to quit and go home data.append(stop) # # set initial states # DataState0, newstate = {}, 0 for key in treats: DataState0[key] = data[0][key] # set beginning treatment k, R = 1, 0 for i in range(k, len(data)): FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0 for key in treats: # check if anything changed DataStateCurr[key] = data[i][key] if DataStateCurr[key].strip() != DataState0[key].strip(): newstate = 1 # something changed if newstate == 1: if i == k: # sample is unique vdata.append(data[i - 1]) else: # measurement is not unique # print "averaging: records " ,k,i for l in range(k - 1, i): if 'orientation' in data[l]['measurement_description']: data[l]['measurement_description'] = "" Dirdata.append([float(data[l]['measurement_dec']), float( data[l]['measurement_inc']), float(data[l]['measurement_magn_moment'])]) FDirdata.append( [float(data[l]['measurement_dec']), float(data[l]['measurement_inc'])]) dir, R = vector_mean(Dirdata) Fpars = fisher_mean(FDirdata) vrec = data[i - 1] vrec['measurement_dec'] = '%7.1f' % (dir[0]) vrec['measurement_inc'] = '%7.1f' % (dir[1]) vrec['measurement_magn_moment'] = '%8.3e' % ( old_div(R, (i - k + 1))) vrec['measurement_csd'] = '%7.1f' % (Fpars['csd']) vrec['measurement_positions'] = '%7.1f' % (Fpars['n']) vrec['measurement_description'] = 'average of multiple measurements' if "magic_method_codes" in list(vrec.keys()): meths = vrec["magic_method_codes"].strip().split(":") if "DE-VM" not in meths: meths.append("DE-VM") methods = "" for meth in meths: methods = methods + meth + ":" vrec["magic_method_codes"] = methods[:-1] else: vrec["magic_method_codes"] = "DE-VM" vdata.append(vrec) # reset state to new one for key in treats: DataState0[key] = data[i][key] # set beginning treatment k = i + 1 if data[i]["er_specimen_name"] == "stop": del data[-1] # get rid of dummy stop sign return vdata, treats
Takes average vector of replicate measurements
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1343-L1416
PmagPy/PmagPy
pmagpy/pmag.py
get_specs
def get_specs(data): """ Takes a magic format file and returns a list of unique specimen names """ # sort the specimen names speclist = [] for rec in data: try: spec = rec["er_specimen_name"] except KeyError as e: spec = rec["specimen"] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
python
def get_specs(data): """ Takes a magic format file and returns a list of unique specimen names """ # sort the specimen names speclist = [] for rec in data: try: spec = rec["er_specimen_name"] except KeyError as e: spec = rec["specimen"] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
Takes a magic format file and returns a list of unique specimen names
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1496-L1510
PmagPy/PmagPy
pmagpy/pmag.py
vector_mean
def vector_mean(data): """ calculates the vector mean of a given set of vectors Parameters __________ data : nested array of [dec,inc,intensity] Returns _______ dir : array of [dec, inc, 1] R : resultant vector length """ Xbar = np.zeros((3)) X = dir2cart(data).transpose() for i in range(3): Xbar[i] = X[i].sum() R = np.sqrt(Xbar[0]**2+Xbar[1]**2+Xbar[2]**2) Xbar = Xbar/R dir = cart2dir(Xbar) return dir, R
python
def vector_mean(data): """ calculates the vector mean of a given set of vectors Parameters __________ data : nested array of [dec,inc,intensity] Returns _______ dir : array of [dec, inc, 1] R : resultant vector length """ Xbar = np.zeros((3)) X = dir2cart(data).transpose() for i in range(3): Xbar[i] = X[i].sum() R = np.sqrt(Xbar[0]**2+Xbar[1]**2+Xbar[2]**2) Xbar = Xbar/R dir = cart2dir(Xbar) return dir, R
calculates the vector mean of a given set of vectors Parameters __________ data : nested array of [dec,inc,intensity] Returns _______ dir : array of [dec, inc, 1] R : resultant vector length
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1513-L1533
PmagPy/PmagPy
pmagpy/pmag.py
mark_dmag_rec
def mark_dmag_rec(s, ind, data): """ Edits demagnetization data to mark "bad" points with measurement_flag """ datablock = [] for rec in data: if rec['er_specimen_name'] == s: meths = rec['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(rec) dmagrec = datablock[ind] for k in range(len(data)): meths = data[k]['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: if data[k]['er_specimen_name'] == s: if data[k]['treatment_temp'] == dmagrec['treatment_temp'] and data[k]['treatment_ac_field'] == dmagrec['treatment_ac_field']: if data[k]['measurement_dec'] == dmagrec['measurement_dec'] and data[k]['measurement_inc'] == dmagrec['measurement_inc'] and data[k]['measurement_magn_moment'] == dmagrec['measurement_magn_moment']: if data[k]['measurement_flag'] == 'g': flag = 'b' else: flag = 'g' data[k]['measurement_flag'] = flag break return data
python
def mark_dmag_rec(s, ind, data): """ Edits demagnetization data to mark "bad" points with measurement_flag """ datablock = [] for rec in data: if rec['er_specimen_name'] == s: meths = rec['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(rec) dmagrec = datablock[ind] for k in range(len(data)): meths = data[k]['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: if data[k]['er_specimen_name'] == s: if data[k]['treatment_temp'] == dmagrec['treatment_temp'] and data[k]['treatment_ac_field'] == dmagrec['treatment_ac_field']: if data[k]['measurement_dec'] == dmagrec['measurement_dec'] and data[k]['measurement_inc'] == dmagrec['measurement_inc'] and data[k]['measurement_magn_moment'] == dmagrec['measurement_magn_moment']: if data[k]['measurement_flag'] == 'g': flag = 'b' else: flag = 'g' data[k]['measurement_flag'] = flag break return data
Edits demagnetization data to mark "bad" points with measurement_flag
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1536-L1559
PmagPy/PmagPy
pmagpy/pmag.py
find_dmag_rec
def find_dmag_rec(s, data, **kwargs): """ Returns demagnetization data for specimen s from the data. Excludes other kinds of experiments and "bad" measurements Parameters __________ s : specimen name data : DataFrame with measurement data **kwargs : version : if not 3, assume data model = 2.5 Returns ________ datablock : nested list of data for zijderveld plotting [[tr, dec, inc, int, ZI, flag],...] tr : treatment step dec : declination inc : inclination int : intensity ZI : whether zero-field first or infield-first step flag : g or b , default is set to 'g' units : list of units found ['T','K','J'] for tesla, kelvin or joules """ if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: # convert dataframe to list of dictionaries data = data.to_dict('records') spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc' flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field' meth_key = 'method_codes' power_key, time_key = 'treat_mw_power', 'treat_mw_time' Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude'] # just look in the intensity column inst_key = 'instrument_codes' else: spec_key, dec_key, inc_key = 'er_specimen_name', 'measurement_dec', 'measurement_inc' flag_key = 'measurement_flag' flag_key, temp_key, ac_key = 'measurement_flag', 'treatment_temp', 'treatment_ac_field' meth_key = 'magic_method_codes' power_key, time_key = 'treatment_mw_power', 'treatment_mw_time' Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] inst_key = 'magic_instrument_codes' EX = ["LP-AN-ARM", "LP-AN-TRM", "LP-ARM-AFD", "LP-ARM2-AFD", "LP-TRM-AFD", "LP-TRM", "LP-TRM-TD", "LP-X"] # list of excluded lab protocols INC = ["LT-NO", "LT-AF-Z", "LT-T-Z", "LT-M-Z", "LP-PI-TRM-IZ", "LP-PI-M-IZ"] datablock, tr = [], "" therm_flag, af_flag, mw_flag = 0, 0, 0 units = [] spec_meas = get_dictitem(data, spec_key, s, 'T') for rec in spec_meas: if flag_key not in list(rec.keys()): rec[flag_key] = 'g' skip = 1 tr = "" meths = rec[meth_key].split(":") methods = [] for m in meths: methods.append(m.strip()) # get rid of the stupid spaces! for meth in methods: if meth.strip() in INC: skip = 0 for meth in EX: if meth in methods: skip = 1 if skip == 0: if "LT-NO" in methods: tr = float(rec[temp_key]) if "LT-AF-Z" in methods: af_flag = 1 try: tr = float(rec[ac_key]) except (KeyError, ValueError): tr = 0 if "T" not in units: units.append("T") if "LT-T-Z" in methods: therm_flag = 1 tr = float(rec[temp_key]) if "K" not in units: units.append("K") if "LT-M-Z" in methods: mw_flag = 1 tr = float(rec[power_key]) * float(rec[time_key]) if "J" not in units: units.append("J") # looking for in-field first thellier or microwave data - # otherwise, just ignore this if "LP-PI-TRM-IZ" in methods or "LP-PI-M-IZ" in methods: ZI = 0 else: ZI = 1 if tr != "": dec, inc, int = "", "", "" if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key], False): dec = float(rec[dec_key]) if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key], False): inc = float(rec[inc_key]) for key in Mkeys: if key in list(rec.keys()) and cb.not_null(rec[key], False): int = float(rec[key]) if inst_key not in list(rec.keys()): rec[inst_key] = '' datablock.append( [tr, dec, inc, int, ZI, rec[flag_key], rec[inst_key]]) if therm_flag == 1: for k in range(len(datablock)): if datablock[k][0] == 0.: datablock[k][0] = 273. if af_flag == 1: for k in range(len(datablock)): if datablock[k][0] >= 273 and datablock[k][0] <= 323: datablock[k][0] = 0. meas_units = "" if len(units) > 0: for u in units: meas_units = meas_units + u + ":" meas_units = meas_units[:-1] return datablock, meas_units
python
def find_dmag_rec(s, data, **kwargs): """ Returns demagnetization data for specimen s from the data. Excludes other kinds of experiments and "bad" measurements Parameters __________ s : specimen name data : DataFrame with measurement data **kwargs : version : if not 3, assume data model = 2.5 Returns ________ datablock : nested list of data for zijderveld plotting [[tr, dec, inc, int, ZI, flag],...] tr : treatment step dec : declination inc : inclination int : intensity ZI : whether zero-field first or infield-first step flag : g or b , default is set to 'g' units : list of units found ['T','K','J'] for tesla, kelvin or joules """ if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: # convert dataframe to list of dictionaries data = data.to_dict('records') spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc' flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field' meth_key = 'method_codes' power_key, time_key = 'treat_mw_power', 'treat_mw_time' Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude'] # just look in the intensity column inst_key = 'instrument_codes' else: spec_key, dec_key, inc_key = 'er_specimen_name', 'measurement_dec', 'measurement_inc' flag_key = 'measurement_flag' flag_key, temp_key, ac_key = 'measurement_flag', 'treatment_temp', 'treatment_ac_field' meth_key = 'magic_method_codes' power_key, time_key = 'treatment_mw_power', 'treatment_mw_time' Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] inst_key = 'magic_instrument_codes' EX = ["LP-AN-ARM", "LP-AN-TRM", "LP-ARM-AFD", "LP-ARM2-AFD", "LP-TRM-AFD", "LP-TRM", "LP-TRM-TD", "LP-X"] # list of excluded lab protocols INC = ["LT-NO", "LT-AF-Z", "LT-T-Z", "LT-M-Z", "LP-PI-TRM-IZ", "LP-PI-M-IZ"] datablock, tr = [], "" therm_flag, af_flag, mw_flag = 0, 0, 0 units = [] spec_meas = get_dictitem(data, spec_key, s, 'T') for rec in spec_meas: if flag_key not in list(rec.keys()): rec[flag_key] = 'g' skip = 1 tr = "" meths = rec[meth_key].split(":") methods = [] for m in meths: methods.append(m.strip()) # get rid of the stupid spaces! for meth in methods: if meth.strip() in INC: skip = 0 for meth in EX: if meth in methods: skip = 1 if skip == 0: if "LT-NO" in methods: tr = float(rec[temp_key]) if "LT-AF-Z" in methods: af_flag = 1 try: tr = float(rec[ac_key]) except (KeyError, ValueError): tr = 0 if "T" not in units: units.append("T") if "LT-T-Z" in methods: therm_flag = 1 tr = float(rec[temp_key]) if "K" not in units: units.append("K") if "LT-M-Z" in methods: mw_flag = 1 tr = float(rec[power_key]) * float(rec[time_key]) if "J" not in units: units.append("J") # looking for in-field first thellier or microwave data - # otherwise, just ignore this if "LP-PI-TRM-IZ" in methods or "LP-PI-M-IZ" in methods: ZI = 0 else: ZI = 1 if tr != "": dec, inc, int = "", "", "" if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key], False): dec = float(rec[dec_key]) if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key], False): inc = float(rec[inc_key]) for key in Mkeys: if key in list(rec.keys()) and cb.not_null(rec[key], False): int = float(rec[key]) if inst_key not in list(rec.keys()): rec[inst_key] = '' datablock.append( [tr, dec, inc, int, ZI, rec[flag_key], rec[inst_key]]) if therm_flag == 1: for k in range(len(datablock)): if datablock[k][0] == 0.: datablock[k][0] = 273. if af_flag == 1: for k in range(len(datablock)): if datablock[k][0] >= 273 and datablock[k][0] <= 323: datablock[k][0] = 0. meas_units = "" if len(units) > 0: for u in units: meas_units = meas_units + u + ":" meas_units = meas_units[:-1] return datablock, meas_units
Returns demagnetization data for specimen s from the data. Excludes other kinds of experiments and "bad" measurements Parameters __________ s : specimen name data : DataFrame with measurement data **kwargs : version : if not 3, assume data model = 2.5 Returns ________ datablock : nested list of data for zijderveld plotting [[tr, dec, inc, int, ZI, flag],...] tr : treatment step dec : declination inc : inclination int : intensity ZI : whether zero-field first or infield-first step flag : g or b , default is set to 'g' units : list of units found ['T','K','J'] for tesla, kelvin or joules
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1567-L1686
PmagPy/PmagPy
pmagpy/pmag.py
open_file
def open_file(infile, verbose=True): """ Open file and return a list of the file's lines. Try to use utf-8 encoding, and if that fails use Latin-1. Parameters ---------- infile : str full path to file Returns ---------- data: list all lines in the file """ try: with codecs.open(infile, "r", "utf-8") as f: lines = list(f.readlines()) # file might not exist except FileNotFoundError: if verbose: print( '-W- You are trying to open a file: {} that does not exist'.format(infile)) return [] # encoding might be wrong except UnicodeDecodeError: try: with codecs.open(infile, "r", "Latin-1") as f: print( '-I- Using less strict decoding for {}, output may have formatting errors'.format(infile)) lines = list(f.readlines()) # if file exists, and encoding is correct, who knows what the problem is except Exception as ex: print("-W- ", type(ex), ex) return [] except Exception as ex: print("-W- ", type(ex), ex) return [] # don't leave a blank line at the end i = 0 while i < 10: if not len(lines[-1].strip("\n").strip("\t")): lines = lines[:-1] i += 1 else: i = 10 return lines
python
def open_file(infile, verbose=True): """ Open file and return a list of the file's lines. Try to use utf-8 encoding, and if that fails use Latin-1. Parameters ---------- infile : str full path to file Returns ---------- data: list all lines in the file """ try: with codecs.open(infile, "r", "utf-8") as f: lines = list(f.readlines()) # file might not exist except FileNotFoundError: if verbose: print( '-W- You are trying to open a file: {} that does not exist'.format(infile)) return [] # encoding might be wrong except UnicodeDecodeError: try: with codecs.open(infile, "r", "Latin-1") as f: print( '-I- Using less strict decoding for {}, output may have formatting errors'.format(infile)) lines = list(f.readlines()) # if file exists, and encoding is correct, who knows what the problem is except Exception as ex: print("-W- ", type(ex), ex) return [] except Exception as ex: print("-W- ", type(ex), ex) return [] # don't leave a blank line at the end i = 0 while i < 10: if not len(lines[-1].strip("\n").strip("\t")): lines = lines[:-1] i += 1 else: i = 10 return lines
Open file and return a list of the file's lines. Try to use utf-8 encoding, and if that fails use Latin-1. Parameters ---------- infile : str full path to file Returns ---------- data: list all lines in the file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1689-L1735
PmagPy/PmagPy
pmagpy/pmag.py
magic_read
def magic_read(infile, data=None, return_keys=False, verbose=False): """ Reads a Magic template file, returns data in a list of dictionaries. Parameters ___________ Required: infile : the MagIC formatted tab delimited data file first line contains 'tab' in the first column and the data file type in the second (e.g., measurements, specimen, sample, etc.) Optional: data : data read in with, e.g., file.readlines() Returns _______ list of dictionaries, file type """ if infile: if not os.path.exists(infile): if return_keys: return [], 'empty_file', [] return [], 'empty_file' hold, magic_data, magic_record, magic_keys = [], [], {}, [] if data: lines = list(data) elif (not data) and (not infile): if return_keys: return [], 'empty_file', [] return [], 'empty_file' else: # if the file doesn't exist, end here if not os.path.exists(infile): if return_keys: return [], 'bad_file', [] return [], 'bad_file' # use custom pmagpy open_file lines = open_file(infile, verbose=verbose) if not lines: if return_keys: return [], 'bad_file', [] return [], 'bad_file' d_line = lines[0][:-1].strip('\n').strip('\r').strip('\t') if not d_line: if return_keys: return [], 'empty_file', [] return [], 'empty_file' if d_line[0] == "s" or d_line[1] == "s": delim = 'space' elif d_line[0] == "t" or d_line[1] == "t": delim = 'tab' else: print('-W- error reading {}. Check that this is a MagIC-format file'.format(infile)) if return_keys: return [], 'bad_file', [] return [], 'bad_file' if delim == 'space': file_type = d_line.split()[1] if delim == 'tab': file_type = d_line.split('\t')[1] if file_type == 'delimited': if delim == 'space': file_type = d_line.split()[2] if delim == 'tab': file_type = d_line.split('\t')[2] line = lines[1].strip('\n').strip('\r') if delim == 'space': line = line.split() # lines[1][:-1].split() if delim == 'tab': line = line.split('\t') # lines[1][:-1].split('\t') for key in line: magic_keys.append(key) lines = lines[2:] if len(lines) < 1: if return_keys: return [], 'empty_file', [] return [], 'empty_file' for line in lines[:-1]: line.replace('\n', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line[:-1].split('\t') hold.append(rec) line = lines[-1].replace('\n', '').replace('\r', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line.split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) > len(rec): # pad rec with empty strings if needed for i in range(len(magic_keys) - len(rec)): rec.append('') if len(magic_keys) != len(rec): # ignores this warning when reading the dividers in an upload.txt # composite file if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]: print("Warning: Uneven record lengths detected in {}: ".format(infile)) print('keys:', magic_keys) print('record:', rec) # modified by Ron Shaar: # add a health check: # if len(magic_keys) > len(rec): take rec # if len(magic_keys) < len(rec): take magic_keys # original code: for k in range(len(rec)): # channged to: for k in range(min(len(magic_keys),len(rec))): for k in range(min(len(magic_keys), len(rec))): magic_record[magic_keys[k]] = rec[k].strip('\n').strip('\r') magic_data.append(magic_record) magictype = file_type.lower().split("_") Types = ['er', 'magic', 'pmag', 'rmag'] if magictype in Types: file_type = file_type.lower() if return_keys: return magic_data, file_type, magic_keys return magic_data, file_type
python
def magic_read(infile, data=None, return_keys=False, verbose=False): """ Reads a Magic template file, returns data in a list of dictionaries. Parameters ___________ Required: infile : the MagIC formatted tab delimited data file first line contains 'tab' in the first column and the data file type in the second (e.g., measurements, specimen, sample, etc.) Optional: data : data read in with, e.g., file.readlines() Returns _______ list of dictionaries, file type """ if infile: if not os.path.exists(infile): if return_keys: return [], 'empty_file', [] return [], 'empty_file' hold, magic_data, magic_record, magic_keys = [], [], {}, [] if data: lines = list(data) elif (not data) and (not infile): if return_keys: return [], 'empty_file', [] return [], 'empty_file' else: # if the file doesn't exist, end here if not os.path.exists(infile): if return_keys: return [], 'bad_file', [] return [], 'bad_file' # use custom pmagpy open_file lines = open_file(infile, verbose=verbose) if not lines: if return_keys: return [], 'bad_file', [] return [], 'bad_file' d_line = lines[0][:-1].strip('\n').strip('\r').strip('\t') if not d_line: if return_keys: return [], 'empty_file', [] return [], 'empty_file' if d_line[0] == "s" or d_line[1] == "s": delim = 'space' elif d_line[0] == "t" or d_line[1] == "t": delim = 'tab' else: print('-W- error reading {}. Check that this is a MagIC-format file'.format(infile)) if return_keys: return [], 'bad_file', [] return [], 'bad_file' if delim == 'space': file_type = d_line.split()[1] if delim == 'tab': file_type = d_line.split('\t')[1] if file_type == 'delimited': if delim == 'space': file_type = d_line.split()[2] if delim == 'tab': file_type = d_line.split('\t')[2] line = lines[1].strip('\n').strip('\r') if delim == 'space': line = line.split() # lines[1][:-1].split() if delim == 'tab': line = line.split('\t') # lines[1][:-1].split('\t') for key in line: magic_keys.append(key) lines = lines[2:] if len(lines) < 1: if return_keys: return [], 'empty_file', [] return [], 'empty_file' for line in lines[:-1]: line.replace('\n', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line[:-1].split('\t') hold.append(rec) line = lines[-1].replace('\n', '').replace('\r', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line.split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) > len(rec): # pad rec with empty strings if needed for i in range(len(magic_keys) - len(rec)): rec.append('') if len(magic_keys) != len(rec): # ignores this warning when reading the dividers in an upload.txt # composite file if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]: print("Warning: Uneven record lengths detected in {}: ".format(infile)) print('keys:', magic_keys) print('record:', rec) # modified by Ron Shaar: # add a health check: # if len(magic_keys) > len(rec): take rec # if len(magic_keys) < len(rec): take magic_keys # original code: for k in range(len(rec)): # channged to: for k in range(min(len(magic_keys),len(rec))): for k in range(min(len(magic_keys), len(rec))): magic_record[magic_keys[k]] = rec[k].strip('\n').strip('\r') magic_data.append(magic_record) magictype = file_type.lower().split("_") Types = ['er', 'magic', 'pmag', 'rmag'] if magictype in Types: file_type = file_type.lower() if return_keys: return magic_data, file_type, magic_keys return magic_data, file_type
Reads a Magic template file, returns data in a list of dictionaries. Parameters ___________ Required: infile : the MagIC formatted tab delimited data file first line contains 'tab' in the first column and the data file type in the second (e.g., measurements, specimen, sample, etc.) Optional: data : data read in with, e.g., file.readlines() Returns _______ list of dictionaries, file type
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1738-L1853
PmagPy/PmagPy
pmagpy/pmag.py
magic_read_dict
def magic_read_dict(path, data=None, sort_by_this_name=None, return_keys=False): """ Read a magic-formatted tab-delimited file and return a dictionary of dictionaries, with this format: {'Z35.5a': {'specimen_weight': '1.000e-03', 'er_citation_names': 'This study', 'specimen_volume': '', 'er_location_name': '', 'er_site_name': 'Z35.', 'er_sample_name': 'Z35.5', 'specimen_class': '', 'er_specimen_name': 'Z35.5a', 'specimen_lithology': '', 'specimen_type': ''}, ....} return data, file_type, and keys (if return_keys is true) """ DATA = {} #fin = open(path, 'r') #first_line = fin.readline() lines = open_file(path) if not lines: if return_keys: return {}, 'empty_file', None else: return {}, 'empty_file' first_line = lines.pop(0) if first_line[0] == "s" or first_line[1] == "s": delim = ' ' elif first_line[0] == "t" or first_line[1] == "t": delim = '\t' else: print('-W- error reading ', path) if return_keys: return {}, 'bad_file', None else: return {}, 'bad_file' file_type = first_line.strip('\n').strip('\r').split(delim)[1] item_type = file_type #item_type = file_type.split('_')[1][:-1] if sort_by_this_name: pass elif item_type == 'age': sort_by_this_name = "by_line_number" else: sort_by_this_name = item_type line = lines.pop(0) header = line.strip('\n').strip('\r').split(delim) counter = 0 for line in lines: tmp_data = {} tmp_line = line.strip('\n').strip('\r').split(delim) for i in range(len(header)): if i < len(tmp_line): tmp_data[header[i]] = tmp_line[i].strip() else: tmp_data[header[i]] = "" if sort_by_this_name == "by_line_number": DATA[counter] = tmp_data counter += 1 else: if tmp_data[sort_by_this_name] != "": DATA[tmp_data[sort_by_this_name]] = tmp_data if return_keys: return DATA, file_type, header else: return DATA, file_type
python
def magic_read_dict(path, data=None, sort_by_this_name=None, return_keys=False): """ Read a magic-formatted tab-delimited file and return a dictionary of dictionaries, with this format: {'Z35.5a': {'specimen_weight': '1.000e-03', 'er_citation_names': 'This study', 'specimen_volume': '', 'er_location_name': '', 'er_site_name': 'Z35.', 'er_sample_name': 'Z35.5', 'specimen_class': '', 'er_specimen_name': 'Z35.5a', 'specimen_lithology': '', 'specimen_type': ''}, ....} return data, file_type, and keys (if return_keys is true) """ DATA = {} #fin = open(path, 'r') #first_line = fin.readline() lines = open_file(path) if not lines: if return_keys: return {}, 'empty_file', None else: return {}, 'empty_file' first_line = lines.pop(0) if first_line[0] == "s" or first_line[1] == "s": delim = ' ' elif first_line[0] == "t" or first_line[1] == "t": delim = '\t' else: print('-W- error reading ', path) if return_keys: return {}, 'bad_file', None else: return {}, 'bad_file' file_type = first_line.strip('\n').strip('\r').split(delim)[1] item_type = file_type #item_type = file_type.split('_')[1][:-1] if sort_by_this_name: pass elif item_type == 'age': sort_by_this_name = "by_line_number" else: sort_by_this_name = item_type line = lines.pop(0) header = line.strip('\n').strip('\r').split(delim) counter = 0 for line in lines: tmp_data = {} tmp_line = line.strip('\n').strip('\r').split(delim) for i in range(len(header)): if i < len(tmp_line): tmp_data[header[i]] = tmp_line[i].strip() else: tmp_data[header[i]] = "" if sort_by_this_name == "by_line_number": DATA[counter] = tmp_data counter += 1 else: if tmp_data[sort_by_this_name] != "": DATA[tmp_data[sort_by_this_name]] = tmp_data if return_keys: return DATA, file_type, header else: return DATA, file_type
Read a magic-formatted tab-delimited file and return a dictionary of dictionaries, with this format: {'Z35.5a': {'specimen_weight': '1.000e-03', 'er_citation_names': 'This study', 'specimen_volume': '', 'er_location_name': '', 'er_site_name': 'Z35.', 'er_sample_name': 'Z35.5', 'specimen_class': '', 'er_specimen_name': 'Z35.5a', 'specimen_lithology': '', 'specimen_type': ''}, ....} return data, file_type, and keys (if return_keys is true)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1856-L1914
PmagPy/PmagPy
pmagpy/pmag.py
sort_magic_data
def sort_magic_data(magic_data, sort_name): ''' Sort magic_data by header (like er_specimen_name for example) ''' magic_data_sorted = {} for rec in magic_data: name = rec[sort_name] if name not in list(magic_data_sorted.keys()): magic_data_sorted[name] = [] magic_data_sorted[name].append(rec) return magic_data_sorted
python
def sort_magic_data(magic_data, sort_name): ''' Sort magic_data by header (like er_specimen_name for example) ''' magic_data_sorted = {} for rec in magic_data: name = rec[sort_name] if name not in list(magic_data_sorted.keys()): magic_data_sorted[name] = [] magic_data_sorted[name].append(rec) return magic_data_sorted
Sort magic_data by header (like er_specimen_name for example)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1917-L1927
PmagPy/PmagPy
pmagpy/pmag.py
upload_read
def upload_read(infile, table): """ Reads a table from a MagIC upload (or downloaded) txt file, puts data in a list of dictionaries """ delim = 'tab' hold, magic_data, magic_record, magic_keys = [], [], {}, [] f = open(infile, "r") # # look for right table # line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] if delim == 'tab': line = f.readline()[:-1].split('\t') else: f.close() print("only tab delimitted files are supported now") return while file_type != table: while line[0][0:5] in f.readlines() != ">>>>>": pass line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] ine = f.readline()[:-1].split('\t') while line[0][0:5] in f.readlines() != ">>>>>": for key in line: magic_keys.append(key) for line in f.readlines(): rec = line[:-1].split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) != len(rec): print("Uneven record lengths detected: ", rec) input("Return to continue.... ") for k in range(len(magic_keys)): magic_record[magic_keys[k]] = rec[k] magic_data.append(magic_record) f.close() return magic_data
python
def upload_read(infile, table): """ Reads a table from a MagIC upload (or downloaded) txt file, puts data in a list of dictionaries """ delim = 'tab' hold, magic_data, magic_record, magic_keys = [], [], {}, [] f = open(infile, "r") # # look for right table # line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] if delim == 'tab': line = f.readline()[:-1].split('\t') else: f.close() print("only tab delimitted files are supported now") return while file_type != table: while line[0][0:5] in f.readlines() != ">>>>>": pass line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] ine = f.readline()[:-1].split('\t') while line[0][0:5] in f.readlines() != ">>>>>": for key in line: magic_keys.append(key) for line in f.readlines(): rec = line[:-1].split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) != len(rec): print("Uneven record lengths detected: ", rec) input("Return to continue.... ") for k in range(len(magic_keys)): magic_record[magic_keys[k]] = rec[k] magic_data.append(magic_record) f.close() return magic_data
Reads a table from a MagIC upload (or downloaded) txt file, puts data in a list of dictionaries
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1930-L1974
PmagPy/PmagPy
pmagpy/pmag.py
putout
def putout(ofile, keylist, Rec): """ writes out a magic format record to ofile """ pmag_out = open(ofile, 'a') outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except: print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
python
def putout(ofile, keylist, Rec): """ writes out a magic format record to ofile """ pmag_out = open(ofile, 'a') outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except: print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
writes out a magic format record to ofile
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1977-L1991
PmagPy/PmagPy
pmagpy/pmag.py
first_rec
def first_rec(ofile, Rec, file_type): """ opens the file ofile as a magic template file with headers as the keys to Rec """ keylist = [] opened = False # sometimes Windows needs a little extra time to open a file # or else it throws an error while not opened: try: pmag_out = open(ofile, 'w') opened = True except IOError: time.sleep(1) outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" for key in list(Rec.keys()): keystring = keystring + '\t' + key.strip() keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
python
def first_rec(ofile, Rec, file_type): """ opens the file ofile as a magic template file with headers as the keys to Rec """ keylist = [] opened = False # sometimes Windows needs a little extra time to open a file # or else it throws an error while not opened: try: pmag_out = open(ofile, 'w') opened = True except IOError: time.sleep(1) outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" for key in list(Rec.keys()): keystring = keystring + '\t' + key.strip() keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
opens the file ofile as a magic template file with headers as the keys to Rec
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L1994-L2017
PmagPy/PmagPy
pmagpy/pmag.py
magic_write_old
def magic_write_old(ofile, Recs, file_type): """ writes out a magic format list of dictionaries to ofile Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Effects : writes a MagIC formatted file from Recs """ if len(Recs) < 1: print ('nothing to write') return pmag_out = open(ofile, 'w') outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key].strip()) except: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'er_specimen_names' in list(Rec.keys()): print(Rec['er_specimen_names']) print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
python
def magic_write_old(ofile, Recs, file_type): """ writes out a magic format list of dictionaries to ofile Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Effects : writes a MagIC formatted file from Recs """ if len(Recs) < 1: print ('nothing to write') return pmag_out = open(ofile, 'w') outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key].strip()) except: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'er_specimen_names' in list(Rec.keys()): print(Rec['er_specimen_names']) print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
writes out a magic format list of dictionaries to ofile Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Effects : writes a MagIC formatted file from Recs
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2020-L2062
PmagPy/PmagPy
pmagpy/pmag.py
magic_write
def magic_write(ofile, Recs, file_type): """ Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Return : [True,False] : True if successful ofile : same as input Effects : writes a MagIC formatted file from Recs """ if len(Recs) < 1: print('No records to write to file {}'.format(ofile)) return False, "" if os.path.split(ofile)[0] != "" and not os.path.isdir(os.path.split(ofile)[0]): os.mkdir(os.path.split(ofile)[0]) pmag_out = open(ofile, 'w+', errors="backslashreplace") outstring = "tab \t" + file_type outstring = outstring.strip("\n").strip( "\r") + "\n" # make sure it's clean for Windows pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except KeyError: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'specimen' in list(Rec.keys()): print(Rec['specimen']) elif 'er_specimen_names' in list(Rec.keys()): print('specimen names:', Rec['er_specimen_names']) print("No data for %s" % key) # just skip it: outstring = outstring + "\t" # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close() print(len(Recs), ' records written to file ', ofile) return True, ofile
python
def magic_write(ofile, Recs, file_type): """ Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Return : [True,False] : True if successful ofile : same as input Effects : writes a MagIC formatted file from Recs """ if len(Recs) < 1: print('No records to write to file {}'.format(ofile)) return False, "" if os.path.split(ofile)[0] != "" and not os.path.isdir(os.path.split(ofile)[0]): os.mkdir(os.path.split(ofile)[0]) pmag_out = open(ofile, 'w+', errors="backslashreplace") outstring = "tab \t" + file_type outstring = outstring.strip("\n").strip( "\r") + "\n" # make sure it's clean for Windows pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except KeyError: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'specimen' in list(Rec.keys()): print(Rec['specimen']) elif 'er_specimen_names' in list(Rec.keys()): print('specimen names:', Rec['er_specimen_names']) print("No data for %s" % key) # just skip it: outstring = outstring + "\t" # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close() print(len(Recs), ' records written to file ', ofile) return True, ofile
Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Return : [True,False] : True if successful ofile : same as input Effects : writes a MagIC formatted file from Recs
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2065-L2120
PmagPy/PmagPy
pmagpy/pmag.py
dotilt
def dotilt(dec, inc, bed_az, bed_dip): """ Does a tilt correction on a direction (dec,inc) using bedding dip direction and bedding dip. Parameters ---------- dec : declination directions in degrees inc : inclination direction in degrees bed_az : bedding dip direction bed_dip : bedding dip Returns ------- dec,inc : a tuple of rotated dec, inc values Examples ------- >>> pmag.dotilt(91.2,43.1,90.0,20.0) (90.952568837153436, 23.103411670066617) """ rad = old_div(np.pi, 180.) # converts from degrees to radians X = dir2cart([dec, inc, 1.]) # get cartesian coordinates of dec,inc # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: Dir = cart2dir([xc, yc, -zc]) # return declination, inclination of rotated direction return Dir[0], Dir[1]
python
def dotilt(dec, inc, bed_az, bed_dip): """ Does a tilt correction on a direction (dec,inc) using bedding dip direction and bedding dip. Parameters ---------- dec : declination directions in degrees inc : inclination direction in degrees bed_az : bedding dip direction bed_dip : bedding dip Returns ------- dec,inc : a tuple of rotated dec, inc values Examples ------- >>> pmag.dotilt(91.2,43.1,90.0,20.0) (90.952568837153436, 23.103411670066617) """ rad = old_div(np.pi, 180.) # converts from degrees to radians X = dir2cart([dec, inc, 1.]) # get cartesian coordinates of dec,inc # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: Dir = cart2dir([xc, yc, -zc]) # return declination, inclination of rotated direction return Dir[0], Dir[1]
Does a tilt correction on a direction (dec,inc) using bedding dip direction and bedding dip. Parameters ---------- dec : declination directions in degrees inc : inclination direction in degrees bed_az : bedding dip direction bed_dip : bedding dip Returns ------- dec,inc : a tuple of rotated dec, inc values Examples ------- >>> pmag.dotilt(91.2,43.1,90.0,20.0) (90.952568837153436, 23.103411670066617)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2123-L2158
PmagPy/PmagPy
pmagpy/pmag.py
dotilt_V
def dotilt_V(indat): """ Does a tilt correction on an array with rows of dec,inc bedding dip direction and dip. Parameters ---------- input : declination, inclination, bedding dip direction and bedding dip nested array of [[dec1, inc1, bed_az1, bed_dip1],[dec2,inc2,bed_az2,bed_dip2]...] Returns ------- dec,inc : arrays of rotated declination, inclination """ indat = indat.transpose() # unpack input array into separate arrays dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3] rad = old_div(np.pi, 180.) # convert to radians Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: cart = np.array([xc, yc, -zc]).transpose() Dir = cart2dir(cart).transpose() # return declination, inclination arrays of rotated direction return Dir[0], Dir[1]
python
def dotilt_V(indat): """ Does a tilt correction on an array with rows of dec,inc bedding dip direction and dip. Parameters ---------- input : declination, inclination, bedding dip direction and bedding dip nested array of [[dec1, inc1, bed_az1, bed_dip1],[dec2,inc2,bed_az2,bed_dip2]...] Returns ------- dec,inc : arrays of rotated declination, inclination """ indat = indat.transpose() # unpack input array into separate arrays dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3] rad = old_div(np.pi, 180.) # convert to radians Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: cart = np.array([xc, yc, -zc]).transpose() Dir = cart2dir(cart).transpose() # return declination, inclination arrays of rotated direction return Dir[0], Dir[1]
Does a tilt correction on an array with rows of dec,inc bedding dip direction and dip. Parameters ---------- input : declination, inclination, bedding dip direction and bedding dip nested array of [[dec1, inc1, bed_az1, bed_dip1],[dec2,inc2,bed_az2,bed_dip2]...] Returns ------- dec,inc : arrays of rotated declination, inclination
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2161-L2195
PmagPy/PmagPy
pmagpy/pmag.py
dogeo
def dogeo(dec, inc, az, pl): """ Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- dec : declination in specimen coordinates inc : inclination in specimen coordinates Returns ------- rotated_direction : tuple of declination, inclination in geographic coordinates Examples -------- >>> pmag.dogeo(0.0,90.0,0.0,45.5) (180.0, 44.5) """ A1, A2, A3 = [], [], [] # set up lists for rotation vector # put dec inc in direction list and set length to unity Dir = [dec, inc, 1.] X = dir2cart(Dir) # get cartesian coordinates # # set up rotation matrix # A1 = dir2cart([az, pl, 1.]) A2 = dir2cart([az + 90., 0, 1.]) A3 = dir2cart([az - 180., 90. - pl, 1.]) # # do rotation # xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] # # transform back to dec,inc # Dir_geo = cart2dir([xp, yp, zp]) return Dir_geo[0], Dir_geo[1]
python
def dogeo(dec, inc, az, pl): """ Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- dec : declination in specimen coordinates inc : inclination in specimen coordinates Returns ------- rotated_direction : tuple of declination, inclination in geographic coordinates Examples -------- >>> pmag.dogeo(0.0,90.0,0.0,45.5) (180.0, 44.5) """ A1, A2, A3 = [], [], [] # set up lists for rotation vector # put dec inc in direction list and set length to unity Dir = [dec, inc, 1.] X = dir2cart(Dir) # get cartesian coordinates # # set up rotation matrix # A1 = dir2cart([az, pl, 1.]) A2 = dir2cart([az + 90., 0, 1.]) A3 = dir2cart([az - 180., 90. - pl, 1.]) # # do rotation # xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] # # transform back to dec,inc # Dir_geo = cart2dir([xp, yp, zp]) return Dir_geo[0], Dir_geo[1]
Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- dec : declination in specimen coordinates inc : inclination in specimen coordinates Returns ------- rotated_direction : tuple of declination, inclination in geographic coordinates Examples -------- >>> pmag.dogeo(0.0,90.0,0.0,45.5) (180.0, 44.5)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2198-L2237
PmagPy/PmagPy
pmagpy/pmag.py
dogeo_V
def dogeo_V(indat): """ Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- indat: nested list of [dec, inc, az, pl] data Returns ------- rotated_directions : arrays of Declinations and Inclinations """ indat = indat.transpose() # unpack input array into separate arrays dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3] Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose() A2 = dir2cart( np.array([az + 90., np.zeros(N), np.ones(N)]).transpose()).transpose() A3 = dir2cart( np.array([az - 180., 90. - pl, np.ones(N)]).transpose()).transpose() # do rotation # xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] cart = np.array([xp, yp, zp]).transpose() # # transform back to dec,inc # Dir_geo = cart2dir(cart).transpose() # send back declination and inclination arrays return Dir_geo[0], Dir_geo[1]
python
def dogeo_V(indat): """ Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- indat: nested list of [dec, inc, az, pl] data Returns ------- rotated_directions : arrays of Declinations and Inclinations """ indat = indat.transpose() # unpack input array into separate arrays dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3] Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose() A2 = dir2cart( np.array([az + 90., np.zeros(N), np.ones(N)]).transpose()).transpose() A3 = dir2cart( np.array([az - 180., 90. - pl, np.ones(N)]).transpose()).transpose() # do rotation # xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] cart = np.array([xp, yp, zp]).transpose() # # transform back to dec,inc # Dir_geo = cart2dir(cart).transpose() # send back declination and inclination arrays return Dir_geo[0], Dir_geo[1]
Rotates declination and inclination into geographic coordinates using the azimuth and plunge of the X direction (lab arrow) of a specimen. Parameters ---------- indat: nested list of [dec, inc, az, pl] data Returns ------- rotated_directions : arrays of Declinations and Inclinations
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2240-L2278
PmagPy/PmagPy
pmagpy/pmag.py
dodirot
def dodirot(D, I, Dbar, Ibar): """ Rotate a direction (declination, inclination) by the difference between dec=0 and inc = 90 and the provided desired mean direction Parameters ---------- D : declination to be rotated I : inclination to be rotated Dbar : declination of desired mean Ibar : inclination of desired mean Returns ---------- drot, irot : rotated declination and inclination """ d, irot = dogeo(D, I, Dbar, 90. - Ibar) drot = d - 180. if drot < 360.: drot = drot + 360. if drot > 360.: drot = drot - 360. return drot, irot
python
def dodirot(D, I, Dbar, Ibar): """ Rotate a direction (declination, inclination) by the difference between dec=0 and inc = 90 and the provided desired mean direction Parameters ---------- D : declination to be rotated I : inclination to be rotated Dbar : declination of desired mean Ibar : inclination of desired mean Returns ---------- drot, irot : rotated declination and inclination """ d, irot = dogeo(D, I, Dbar, 90. - Ibar) drot = d - 180. if drot < 360.: drot = drot + 360. if drot > 360.: drot = drot - 360. return drot, irot
Rotate a direction (declination, inclination) by the difference between dec=0 and inc = 90 and the provided desired mean direction Parameters ---------- D : declination to be rotated I : inclination to be rotated Dbar : declination of desired mean Ibar : inclination of desired mean Returns ---------- drot, irot : rotated declination and inclination
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2281-L2303
PmagPy/PmagPy
pmagpy/pmag.py
dodirot_V
def dodirot_V(di_block, Dbar, Ibar): """ Rotate an array of dec/inc pairs to coordinate system with Dec,Inc as 0,90 Parameters ___________________ di_block : array of [[Dec1,Inc1],[Dec2,Inc2],....] Dbar : declination of desired center Ibar : inclination of desired center Returns __________ array of rotated decs and incs: [[rot_Dec1,rot_Inc1],[rot_Dec2,rot_Inc2],....] """ N = di_block.shape[0] DipDir, Dip = np.ones(N, dtype=np.float).transpose( )*(Dbar-180.), np.ones(N, dtype=np.float).transpose()*(90.-Ibar) di_block = di_block.transpose() data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose() drot, irot = dotilt_V(data) drot = (drot-180.) % 360. # return np.column_stack((drot, irot))
python
def dodirot_V(di_block, Dbar, Ibar): """ Rotate an array of dec/inc pairs to coordinate system with Dec,Inc as 0,90 Parameters ___________________ di_block : array of [[Dec1,Inc1],[Dec2,Inc2],....] Dbar : declination of desired center Ibar : inclination of desired center Returns __________ array of rotated decs and incs: [[rot_Dec1,rot_Inc1],[rot_Dec2,rot_Inc2],....] """ N = di_block.shape[0] DipDir, Dip = np.ones(N, dtype=np.float).transpose( )*(Dbar-180.), np.ones(N, dtype=np.float).transpose()*(90.-Ibar) di_block = di_block.transpose() data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose() drot, irot = dotilt_V(data) drot = (drot-180.) % 360. # return np.column_stack((drot, irot))
Rotate an array of dec/inc pairs to coordinate system with Dec,Inc as 0,90 Parameters ___________________ di_block : array of [[Dec1,Inc1],[Dec2,Inc2],....] Dbar : declination of desired center Ibar : inclination of desired center Returns __________ array of rotated decs and incs: [[rot_Dec1,rot_Inc1],[rot_Dec2,rot_Inc2],....]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2306-L2327
PmagPy/PmagPy
pmagpy/pmag.py
find_samp_rec
def find_samp_rec(s, data, az_type): """ find the orientation info for samp s """ datablock, or_error, bed_error = [], 0, 0 orient = {} orient["sample_dip"] = "" orient["sample_azimuth"] = "" orient['sample_description'] = "" for rec in data: if rec["er_sample_name"].lower() == s.lower(): if 'sample_orientation_flag' in list(rec.keys()) and rec['sample_orientation_flag'] == 'b': orient['sample_orientation_flag'] = 'b' return orient if "magic_method_codes" in list(rec.keys()) and az_type != "0": methods = rec["magic_method_codes"].replace(" ", "").split(":") if az_type in methods and "sample_azimuth" in list(rec.keys()) and rec["sample_azimuth"] != "": orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()) and rec["sample_dip"] != "": orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()) and rec["sample_bed_dip_direction"] != "": orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()) and rec["sample_bed_dip"] != "": orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) else: if "sample_azimuth" in list(rec.keys()): orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()): orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()): orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()): orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) if 'sample_description' in list(rec.keys()): orient['sample_description'] = rec['sample_description'] if orient["sample_azimuth"] != "": break return orient
python
def find_samp_rec(s, data, az_type): """ find the orientation info for samp s """ datablock, or_error, bed_error = [], 0, 0 orient = {} orient["sample_dip"] = "" orient["sample_azimuth"] = "" orient['sample_description'] = "" for rec in data: if rec["er_sample_name"].lower() == s.lower(): if 'sample_orientation_flag' in list(rec.keys()) and rec['sample_orientation_flag'] == 'b': orient['sample_orientation_flag'] = 'b' return orient if "magic_method_codes" in list(rec.keys()) and az_type != "0": methods = rec["magic_method_codes"].replace(" ", "").split(":") if az_type in methods and "sample_azimuth" in list(rec.keys()) and rec["sample_azimuth"] != "": orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()) and rec["sample_dip"] != "": orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()) and rec["sample_bed_dip_direction"] != "": orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()) and rec["sample_bed_dip"] != "": orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) else: if "sample_azimuth" in list(rec.keys()): orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()): orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()): orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()): orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) if 'sample_description' in list(rec.keys()): orient['sample_description'] = rec['sample_description'] if orient["sample_azimuth"] != "": break return orient
find the orientation info for samp s
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2330-L2369