repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
Calysto/calysto | calysto/ai/conx.py | Network.getLayerIndex | def getLayerIndex(self, layer):
"""
Given a reference to a layer, returns the index of that layer in
self.layers.
"""
for i in range(len(self.layers)):
if layer == self.layers[i]: # shallow cmp
return i
return -1 # not in list | python | def getLayerIndex(self, layer):
"""
Given a reference to a layer, returns the index of that layer in
self.layers.
"""
for i in range(len(self.layers)):
if layer == self.layers[i]: # shallow cmp
return i
return -1 # not in list | Given a reference to a layer, returns the index of that layer in
self.layers. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L911-L919 |
Calysto/calysto | calysto/ai/conx.py | Network.add | def add(self, layer, verbosity = 0, position = None):
"""
Adds a layer. Layer verbosity is optional (default 0).
"""
layer._verbosity = verbosity
layer._maxRandom = self._maxRandom
layer.minTarget = 0.0
layer.maxTarget = 1.0
layer.minActivation = 0.0
layer.maxActivation = 1.0
if position == None:
self.layers.append(layer)
else:
self.layers.insert(position, layer)
self.layersByName[layer.name] = layer | python | def add(self, layer, verbosity = 0, position = None):
"""
Adds a layer. Layer verbosity is optional (default 0).
"""
layer._verbosity = verbosity
layer._maxRandom = self._maxRandom
layer.minTarget = 0.0
layer.maxTarget = 1.0
layer.minActivation = 0.0
layer.maxActivation = 1.0
if position == None:
self.layers.append(layer)
else:
self.layers.insert(position, layer)
self.layersByName[layer.name] = layer | Adds a layer. Layer verbosity is optional (default 0). | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L927-L941 |
Calysto/calysto | calysto/ai/conx.py | Network.isConnected | def isConnected(self, fromName, toName):
""" Are these two layers connected this way? """
for c in self.connections:
if (c.fromLayer.name == fromName and
c.toLayer.name == toName):
return 1
return 0 | python | def isConnected(self, fromName, toName):
""" Are these two layers connected this way? """
for c in self.connections:
if (c.fromLayer.name == fromName and
c.toLayer.name == toName):
return 1
return 0 | Are these two layers connected this way? | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L942-L948 |
Calysto/calysto | calysto/ai/conx.py | Network.connect | def connect(self, *names):
"""
Connects a list of names, one to the next.
"""
fromName, toName, rest = names[0], names[1], names[2:]
self.connectAt(fromName, toName)
if len(rest) != 0:
self.connect(toName, *rest) | python | def connect(self, *names):
"""
Connects a list of names, one to the next.
"""
fromName, toName, rest = names[0], names[1], names[2:]
self.connectAt(fromName, toName)
if len(rest) != 0:
self.connect(toName, *rest) | Connects a list of names, one to the next. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L949-L956 |
Calysto/calysto | calysto/ai/conx.py | Network.connectAt | def connectAt(self, fromName, toName, position = None):
"""
Connects two layers by instantiating an instance of Connection
class. Allows a position number, indicating the ordering of
the connection.
"""
fromLayer = self.getLayer(fromName)
toLayer = self.getLayer(toName)
if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer):
raise NetworkError('Layers out of order.', (fromLayer.name, toLayer.name))
if (fromLayer.type == 'Output'):
fromLayer.type = 'Hidden'
fromLayer.patternReport = 0 # automatically turned off for hidden layers
if fromLayer.kind == 'Output':
fromLayer.kind = 'Hidden'
elif (fromLayer.type == 'Undefined'):
fromLayer.type = 'Input'
fromLayer.patternReport = 0 # automatically turned off for input layers
if fromLayer.kind == 'Undefined':
fromLayer.kind = 'Input'
if (toLayer.type == 'Input'):
raise NetworkError('Connections out of order', (fromLayer.name, toLayer.name))
elif (toLayer.type == 'Undefined'):
toLayer.type = 'Output'
toLayer.patternReport = 1 # automatically turned on for output layers
if toLayer.kind == 'Undefined':
toLayer.kind = 'Output'
if position == None:
self.connections.append(Connection(fromLayer, toLayer))
else:
self.connections.insert(position, Connection(fromLayer, toLayer)) | python | def connectAt(self, fromName, toName, position = None):
"""
Connects two layers by instantiating an instance of Connection
class. Allows a position number, indicating the ordering of
the connection.
"""
fromLayer = self.getLayer(fromName)
toLayer = self.getLayer(toName)
if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer):
raise NetworkError('Layers out of order.', (fromLayer.name, toLayer.name))
if (fromLayer.type == 'Output'):
fromLayer.type = 'Hidden'
fromLayer.patternReport = 0 # automatically turned off for hidden layers
if fromLayer.kind == 'Output':
fromLayer.kind = 'Hidden'
elif (fromLayer.type == 'Undefined'):
fromLayer.type = 'Input'
fromLayer.patternReport = 0 # automatically turned off for input layers
if fromLayer.kind == 'Undefined':
fromLayer.kind = 'Input'
if (toLayer.type == 'Input'):
raise NetworkError('Connections out of order', (fromLayer.name, toLayer.name))
elif (toLayer.type == 'Undefined'):
toLayer.type = 'Output'
toLayer.patternReport = 1 # automatically turned on for output layers
if toLayer.kind == 'Undefined':
toLayer.kind = 'Output'
if position == None:
self.connections.append(Connection(fromLayer, toLayer))
else:
self.connections.insert(position, Connection(fromLayer, toLayer)) | Connects two layers by instantiating an instance of Connection
class. Allows a position number, indicating the ordering of
the connection. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L957-L987 |
Calysto/calysto | calysto/ai/conx.py | Network.addLayers | def addLayers(self, *arg, **kw):
"""
Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden".
"""
netType = "serial"
if "type" in kw:
netType = kw["type"]
self.addLayer('input', arg[0])
hiddens = []
if len(arg) > 3:
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addLayer(name, arg[1])
hiddens.append(name)
elif len(arg) == 2:
pass
else:
raise AttributeError("not enough layers! need >= 2")
self.addLayer('output', arg[-1])
lastName = "input"
for name in hiddens:
if netType == "parallel":
self.connect('input', name)
self.connect(name, 'output')
else: # serial
self.connect(lastName, name)
lastName = name
if netType == "serial" or lastName == "input":
self.connect(lastName, "output") | python | def addLayers(self, *arg, **kw):
"""
Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden".
"""
netType = "serial"
if "type" in kw:
netType = kw["type"]
self.addLayer('input', arg[0])
hiddens = []
if len(arg) > 3:
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addLayer(name, arg[1])
hiddens.append(name)
elif len(arg) == 2:
pass
else:
raise AttributeError("not enough layers! need >= 2")
self.addLayer('output', arg[-1])
lastName = "input"
for name in hiddens:
if netType == "parallel":
self.connect('input', name)
self.connect(name, 'output')
else: # serial
self.connect(lastName, name)
lastName = name
if netType == "serial" or lastName == "input":
self.connect(lastName, "output") | Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden". | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L998-L1034 |
Calysto/calysto | calysto/ai/conx.py | Network.deleteLayerNode | def deleteLayerNode(self, layername, nodeNum):
"""
Removes a particular unit/node from a layer.
"""
# first, construct an array of all of the weights
# that won't be deleted:
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
if layer.name == layername and i == nodeNum:
pass # skip it
else:
gene.append(layer.weight[i])
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
if ((connection.fromLayer.name == layername and i == nodeNum) or
(connection.toLayer.name == layername and j == nodeNum)):
pass # skip weights from/to nodeNum
else:
gene.append(connection.weight[i][j])
# now, change the size (removes rightmost node):
self.changeLayerSize(layername, self[layername].size - 1)
# and put the good weights where they go:
self.unArrayify(gene) | python | def deleteLayerNode(self, layername, nodeNum):
"""
Removes a particular unit/node from a layer.
"""
# first, construct an array of all of the weights
# that won't be deleted:
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
if layer.name == layername and i == nodeNum:
pass # skip it
else:
gene.append(layer.weight[i])
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
if ((connection.fromLayer.name == layername and i == nodeNum) or
(connection.toLayer.name == layername and j == nodeNum)):
pass # skip weights from/to nodeNum
else:
gene.append(connection.weight[i][j])
# now, change the size (removes rightmost node):
self.changeLayerSize(layername, self[layername].size - 1)
# and put the good weights where they go:
self.unArrayify(gene) | Removes a particular unit/node from a layer. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1038-L1063 |
Calysto/calysto | calysto/ai/conx.py | Network.addLayerNode | def addLayerNode(self, layerName, bias = None, weights = {}):
"""
Adds a new node to a layer, and puts in new weights. Adds node on the end.
Weights will be random, unless specified.
bias = the new node's bias weight
weights = dict of {connectedLayerName: [weights], ...}
Example:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> net.addLayerNode("hidden", bias = -0.12, weights = {"input": [1, 0], "output": [0]})
"""
self.changeLayerSize(layerName, self[layerName].size + 1)
if bias != None:
self[layerName].weight[-1] = bias
for name in list(weights.keys()):
for c in self.connections:
if c.fromLayer.name == name and c.toLayer.name == layerName:
for i in range(self[name].size):
self[name, layerName].weight[i][-1] = weights[name][i]
elif c.toLayer.name == name and c.fromLayer.name == layerName:
for j in range(self[name].size):
self[layerName, name].weight[-1][j] = weights[name][j] | python | def addLayerNode(self, layerName, bias = None, weights = {}):
"""
Adds a new node to a layer, and puts in new weights. Adds node on the end.
Weights will be random, unless specified.
bias = the new node's bias weight
weights = dict of {connectedLayerName: [weights], ...}
Example:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> net.addLayerNode("hidden", bias = -0.12, weights = {"input": [1, 0], "output": [0]})
"""
self.changeLayerSize(layerName, self[layerName].size + 1)
if bias != None:
self[layerName].weight[-1] = bias
for name in list(weights.keys()):
for c in self.connections:
if c.fromLayer.name == name and c.toLayer.name == layerName:
for i in range(self[name].size):
self[name, layerName].weight[i][-1] = weights[name][i]
elif c.toLayer.name == name and c.fromLayer.name == layerName:
for j in range(self[name].size):
self[layerName, name].weight[-1][j] = weights[name][j] | Adds a new node to a layer, and puts in new weights. Adds node on the end.
Weights will be random, unless specified.
bias = the new node's bias weight
weights = dict of {connectedLayerName: [weights], ...}
Example:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> net.addLayerNode("hidden", bias = -0.12, weights = {"input": [1, 0], "output": [0]}) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1064-L1088 |
Calysto/calysto | calysto/ai/conx.py | Network.changeLayerSize | def changeLayerSize(self, layername, newsize):
"""
Changes layer size. Newsize must be greater than zero.
"""
# for all connection from to this layer, change matrix:
if self.sharedWeights:
raise AttributeError("shared weights broken")
for connection in self.connections:
if connection.fromLayer.name == layername:
connection.changeSize( newsize, connection.toLayer.size )
if connection.toLayer.name == layername:
connection.changeSize( connection.fromLayer.size, newsize )
# then, change the actual layer size:
self.getLayer(layername).changeSize(newsize) | python | def changeLayerSize(self, layername, newsize):
"""
Changes layer size. Newsize must be greater than zero.
"""
# for all connection from to this layer, change matrix:
if self.sharedWeights:
raise AttributeError("shared weights broken")
for connection in self.connections:
if connection.fromLayer.name == layername:
connection.changeSize( newsize, connection.toLayer.size )
if connection.toLayer.name == layername:
connection.changeSize( connection.fromLayer.size, newsize )
# then, change the actual layer size:
self.getLayer(layername).changeSize(newsize) | Changes layer size. Newsize must be greater than zero. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1089-L1102 |
Calysto/calysto | calysto/ai/conx.py | Network.initialize | def initialize(self):
"""
Initializes network by calling Connection.initialize() and
Layer.initialize(). self.count is set to zero.
"""
print("Initializing '%s' weights..." % self.name, end=" ", file=sys.stderr)
if self.sharedWeights:
raise AttributeError("shared weights broken")
self.count = 0
for connection in self.connections:
connection.initialize()
for layer in self.layers:
layer.initialize() | python | def initialize(self):
"""
Initializes network by calling Connection.initialize() and
Layer.initialize(). self.count is set to zero.
"""
print("Initializing '%s' weights..." % self.name, end=" ", file=sys.stderr)
if self.sharedWeights:
raise AttributeError("shared weights broken")
self.count = 0
for connection in self.connections:
connection.initialize()
for layer in self.layers:
layer.initialize() | Initializes network by calling Connection.initialize() and
Layer.initialize(). self.count is set to zero. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1110-L1122 |
Calysto/calysto | calysto/ai/conx.py | Network.putActivations | def putActivations(self, dict):
"""
Puts a dict of name: activations into their respective layers.
"""
for name in dict:
self.layersByName[name].copyActivations( dict[name] ) | python | def putActivations(self, dict):
"""
Puts a dict of name: activations into their respective layers.
"""
for name in dict:
self.layersByName[name].copyActivations( dict[name] ) | Puts a dict of name: activations into their respective layers. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1131-L1136 |
Calysto/calysto | calysto/ai/conx.py | Network.getActivationsDict | def getActivationsDict(self, nameList):
"""
Returns a dictionary of layer names that map to a list of activations.
"""
retval = {}
for name in nameList:
retval[name] = self.layersByName[name].getActivationsList()
return retval | python | def getActivationsDict(self, nameList):
"""
Returns a dictionary of layer names that map to a list of activations.
"""
retval = {}
for name in nameList:
retval[name] = self.layersByName[name].getActivationsList()
return retval | Returns a dictionary of layer names that map to a list of activations. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1137-L1144 |
Calysto/calysto | calysto/ai/conx.py | Network.setSeed | def setSeed(self, value):
"""
Sets the seed to value.
"""
self.seed = value
random.seed(self.seed)
if self.verbosity >= 0:
print("Conx using seed:", self.seed) | python | def setSeed(self, value):
"""
Sets the seed to value.
"""
self.seed = value
random.seed(self.seed)
if self.verbosity >= 0:
print("Conx using seed:", self.seed) | Sets the seed to value. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1218-L1225 |
Calysto/calysto | calysto/ai/conx.py | Network.getConnection | def getConnection(self, lfrom, lto):
"""
Returns the connection instance connecting the specified (string)
layer names.
"""
for connection in self.connections:
if connection.fromLayer.name == lfrom and \
connection.toLayer.name == lto:
return connection
raise NetworkError('Connection was not found.', (lfrom, lto)) | python | def getConnection(self, lfrom, lto):
"""
Returns the connection instance connecting the specified (string)
layer names.
"""
for connection in self.connections:
if connection.fromLayer.name == lfrom and \
connection.toLayer.name == lto:
return connection
raise NetworkError('Connection was not found.', (lfrom, lto)) | Returns the connection instance connecting the specified (string)
layer names. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1226-L1235 |
Calysto/calysto | calysto/ai/conx.py | Network.setVerbosity | def setVerbosity(self, value):
"""
Sets network self._verbosity and each layer._verbosity to value.
"""
self._verbosity = value
for layer in self.layers:
layer._verbosity = value | python | def setVerbosity(self, value):
"""
Sets network self._verbosity and each layer._verbosity to value.
"""
self._verbosity = value
for layer in self.layers:
layer._verbosity = value | Sets network self._verbosity and each layer._verbosity to value. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1236-L1242 |
Calysto/calysto | calysto/ai/conx.py | Network.setMaxRandom | def setMaxRandom(self, value):
"""
Sets the maxRandom Layer attribute for each layer to value.Specifies
the global range for randomly initialized values, [-max, max].
"""
self._maxRandom = value
for layer in self.layers:
layer._maxRandom = value | python | def setMaxRandom(self, value):
"""
Sets the maxRandom Layer attribute for each layer to value.Specifies
the global range for randomly initialized values, [-max, max].
"""
self._maxRandom = value
for layer in self.layers:
layer._maxRandom = value | Sets the maxRandom Layer attribute for each layer to value.Specifies
the global range for randomly initialized values, [-max, max]. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1276-L1283 |
Calysto/calysto | calysto/ai/conx.py | Network.getWeights | def getWeights(self, fromName, toName):
"""
Gets the weights of the connection between two layers (argument strings).
"""
for connection in self.connections:
if connection.fromLayer.name == fromName and \
connection.toLayer.name == toName:
return connection.weight
raise NetworkError('Connection was not found.', (fromName, toName)) | python | def getWeights(self, fromName, toName):
"""
Gets the weights of the connection between two layers (argument strings).
"""
for connection in self.connections:
if connection.fromLayer.name == fromName and \
connection.toLayer.name == toName:
return connection.weight
raise NetworkError('Connection was not found.', (fromName, toName)) | Gets the weights of the connection between two layers (argument strings). | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1284-L1292 |
Calysto/calysto | calysto/ai/conx.py | Network.setWeight | def setWeight(self, fromName, fromPos, toName, toPos, value):
"""
Sets the weight of the connection between two layers (argument strings).
"""
for connection in self.connections:
if connection.fromLayer.name == fromName and \
connection.toLayer.name == toName:
connection.weight[fromPos][toPos] = value
return value
raise NetworkError('Connection was not found.', (fromName, toName)) | python | def setWeight(self, fromName, fromPos, toName, toPos, value):
"""
Sets the weight of the connection between two layers (argument strings).
"""
for connection in self.connections:
if connection.fromLayer.name == fromName and \
connection.toLayer.name == toName:
connection.weight[fromPos][toPos] = value
return value
raise NetworkError('Connection was not found.', (fromName, toName)) | Sets the weight of the connection between two layers (argument strings). | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1293-L1302 |
Calysto/calysto | calysto/ai/conx.py | Network.setOrderedInputs | def setOrderedInputs(self, value):
"""
Sets self.orderedInputs to value. Specifies if inputs
should be ordered and if so orders the inputs.
"""
self.orderedInputs = value
if self.orderedInputs:
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | python | def setOrderedInputs(self, value):
"""
Sets self.orderedInputs to value. Specifies if inputs
should be ordered and if so orders the inputs.
"""
self.orderedInputs = value
if self.orderedInputs:
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | Sets self.orderedInputs to value. Specifies if inputs
should be ordered and if so orders the inputs. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1303-L1312 |
Calysto/calysto | calysto/ai/conx.py | Network.verifyArguments | def verifyArguments(self, arg):
"""
Verifies that arguments to setInputs and setTargets are appropriately formatted.
"""
for l in arg:
if not type(l) == list and \
not type(l) == type(Numeric.array([0.0])) and \
not type(l) == tuple and \
not type(l) == dict:
return 0
if type(l) == dict:
for i in l:
if not type(i) == str and i not in list(self.layers.keys()):
return 0
else:
for i in l:
if not type(i) == float and not type(i) == int:
return 0
return 1 | python | def verifyArguments(self, arg):
"""
Verifies that arguments to setInputs and setTargets are appropriately formatted.
"""
for l in arg:
if not type(l) == list and \
not type(l) == type(Numeric.array([0.0])) and \
not type(l) == tuple and \
not type(l) == dict:
return 0
if type(l) == dict:
for i in l:
if not type(i) == str and i not in list(self.layers.keys()):
return 0
else:
for i in l:
if not type(i) == float and not type(i) == int:
return 0
return 1 | Verifies that arguments to setInputs and setTargets are appropriately formatted. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1313-L1331 |
Calysto/calysto | calysto/ai/conx.py | Network.setInputs | def setInputs(self, inputs):
"""
Sets self.input to inputs. Load order is by default random. Use setOrderedInputs() to order inputs.
"""
if not self.verifyArguments(inputs) and not self.patterned:
raise NetworkError('setInputs() requires [[...],[...],...] or [{"layerName": [...]}, ...].', inputs)
self.inputs = inputs
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | python | def setInputs(self, inputs):
"""
Sets self.input to inputs. Load order is by default random. Use setOrderedInputs() to order inputs.
"""
if not self.verifyArguments(inputs) and not self.patterned:
raise NetworkError('setInputs() requires [[...],[...],...] or [{"layerName": [...]}, ...].', inputs)
self.inputs = inputs
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | Sets self.input to inputs. Load order is by default random. Use setOrderedInputs() to order inputs. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1332-L1341 |
Calysto/calysto | calysto/ai/conx.py | Network.setTargets | def setTargets(self, targets):
"""
Sets the targets.
"""
if not self.verifyArguments(targets) and not self.patterned:
raise NetworkError('setTargets() requires [[...],[...],...] or [{"layerName": [...]}, ...].', targets)
self.targets = targets | python | def setTargets(self, targets):
"""
Sets the targets.
"""
if not self.verifyArguments(targets) and not self.patterned:
raise NetworkError('setTargets() requires [[...],[...],...] or [{"layerName": [...]}, ...].', targets)
self.targets = targets | Sets the targets. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1348-L1354 |
Calysto/calysto | calysto/ai/conx.py | Network.setInputsAndTargets | def setInputsAndTargets(self, data1, data2=None):
"""
Network.setInputsAndTargets()
Sets the corpus of data for training. Can be in one of two formats:
Format 1: setInputsAndTargets([[input0, target0], [input1, target1]...])
Network.setInputsAndTargets([[[i00, i01, ...], [t00, t01, ...]],
[[i10, i11, ...], [t10, t11, ...]],
...])
Format 2: setInputsAndTargets([input0, input1, ...], [target0, target1, ...])
Network.setInputsAndTargets([[i00, i01, ...], [i10, i11, ...],...],
[[t00, t01, ...], [t10, t11, ...],...] )
"""
if data2 == None: # format #1
inputs = [x[0] for x in data1]
targets = [x[1] for x in data1]
else: # format 2
inputs = data1
targets = data2
self.setInputs(inputs)
self.setTargets(targets) | python | def setInputsAndTargets(self, data1, data2=None):
"""
Network.setInputsAndTargets()
Sets the corpus of data for training. Can be in one of two formats:
Format 1: setInputsAndTargets([[input0, target0], [input1, target1]...])
Network.setInputsAndTargets([[[i00, i01, ...], [t00, t01, ...]],
[[i10, i11, ...], [t10, t11, ...]],
...])
Format 2: setInputsAndTargets([input0, input1, ...], [target0, target1, ...])
Network.setInputsAndTargets([[i00, i01, ...], [i10, i11, ...],...],
[[t00, t01, ...], [t10, t11, ...],...] )
"""
if data2 == None: # format #1
inputs = [x[0] for x in data1]
targets = [x[1] for x in data1]
else: # format 2
inputs = data1
targets = data2
self.setInputs(inputs)
self.setTargets(targets) | Network.setInputsAndTargets()
Sets the corpus of data for training. Can be in one of two formats:
Format 1: setInputsAndTargets([[input0, target0], [input1, target1]...])
Network.setInputsAndTargets([[[i00, i01, ...], [t00, t01, ...]],
[[i10, i11, ...], [t10, t11, ...]],
...])
Format 2: setInputsAndTargets([input0, input1, ...], [target0, target1, ...])
Network.setInputsAndTargets([[i00, i01, ...], [i10, i11, ...],...],
[[t00, t01, ...], [t10, t11, ...],...] ) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1355-L1376 |
Calysto/calysto | calysto/ai/conx.py | Network.randomizeOrder | def randomizeOrder(self):
"""
Randomizes self.loadOrder, the order in which inputs set with
self.setInputs() are presented.
"""
flag = [0] * len(self.inputs)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
pos = int(random.random() * len(self.inputs))
while (flag[pos] == 1):
pos = int(random.random() * len(self.inputs))
flag[pos] = 1
self.loadOrder[pos] = i | python | def randomizeOrder(self):
"""
Randomizes self.loadOrder, the order in which inputs set with
self.setInputs() are presented.
"""
flag = [0] * len(self.inputs)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
pos = int(random.random() * len(self.inputs))
while (flag[pos] == 1):
pos = int(random.random() * len(self.inputs))
flag[pos] = 1
self.loadOrder[pos] = i | Randomizes self.loadOrder, the order in which inputs set with
self.setInputs() are presented. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1400-L1412 |
Calysto/calysto | calysto/ai/conx.py | Network.copyVector | def copyVector(self, vector1, vec2, start):
"""
Copies vec2 into vector1 being sure to replace patterns if
necessary. Use self.copyActivations() or self.copyTargets()
instead.
"""
vector2 = self.replacePatterns(vec2)
length = min(len(vector1), len(vector2))
if self.verbosity > 4:
print("Copying Vector: ", vector2[start:start+length])
p = 0
for i in range(start, start + length):
vector1[p] = vector2[i]
p += 1 | python | def copyVector(self, vector1, vec2, start):
"""
Copies vec2 into vector1 being sure to replace patterns if
necessary. Use self.copyActivations() or self.copyTargets()
instead.
"""
vector2 = self.replacePatterns(vec2)
length = min(len(vector1), len(vector2))
if self.verbosity > 4:
print("Copying Vector: ", vector2[start:start+length])
p = 0
for i in range(start, start + length):
vector1[p] = vector2[i]
p += 1 | Copies vec2 into vector1 being sure to replace patterns if
necessary. Use self.copyActivations() or self.copyTargets()
instead. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1414-L1427 |
Calysto/calysto | calysto/ai/conx.py | Network.copyActivations | def copyActivations(self, layer, vec, start = 0):
"""
Copies activations in vec to the specified layer, replacing
patterns if necessary.
"""
vector = self.replacePatterns(vec, layer.name)
if self.verbosity > 4:
print("Copying Activations: ", vector[start:start+layer.size])
layer.copyActivations(vector[start:start+layer.size]) | python | def copyActivations(self, layer, vec, start = 0):
"""
Copies activations in vec to the specified layer, replacing
patterns if necessary.
"""
vector = self.replacePatterns(vec, layer.name)
if self.verbosity > 4:
print("Copying Activations: ", vector[start:start+layer.size])
layer.copyActivations(vector[start:start+layer.size]) | Copies activations in vec to the specified layer, replacing
patterns if necessary. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1428-L1436 |
Calysto/calysto | calysto/ai/conx.py | Network.getDataCrossValidation | def getDataCrossValidation(self, pos):
"""
Returns the inputs/targets for a pattern pos, or assumes that
the layers are called input and output and uses the lists
in self.inputs and self.targets.
"""
set = {}
if type(self.inputs[pos]) == dict:
set.update(self.inputs[pos])
else:
set["input"] = self.inputs[pos]
if self.targets:
if type(self.targets[pos]) == dict:
set.update(self.targets[pos])
else:
set["output"] = self.targets[pos]
return set | python | def getDataCrossValidation(self, pos):
"""
Returns the inputs/targets for a pattern pos, or assumes that
the layers are called input and output and uses the lists
in self.inputs and self.targets.
"""
set = {}
if type(self.inputs[pos]) == dict:
set.update(self.inputs[pos])
else:
set["input"] = self.inputs[pos]
if self.targets:
if type(self.targets[pos]) == dict:
set.update(self.targets[pos])
else:
set["output"] = self.targets[pos]
return set | Returns the inputs/targets for a pattern pos, or assumes that
the layers are called input and output and uses the lists
in self.inputs and self.targets. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1446-L1462 |
Calysto/calysto | calysto/ai/conx.py | Network.getDataMap | def getDataMap(self, intype, pos, name, offset = 0):
"""
Hook defined to lookup a name, and get it from a vector.
Can be overloaded to get it from somewhere else.
"""
if intype == "input":
vector = self.inputs
elif intype == "target":
vector = self.targets
else:
raise AttributeError("invalid map type '%s'" % intype)
return vector[pos][offset:offset+self[name].size] | python | def getDataMap(self, intype, pos, name, offset = 0):
"""
Hook defined to lookup a name, and get it from a vector.
Can be overloaded to get it from somewhere else.
"""
if intype == "input":
vector = self.inputs
elif intype == "target":
vector = self.targets
else:
raise AttributeError("invalid map type '%s'" % intype)
return vector[pos][offset:offset+self[name].size] | Hook defined to lookup a name, and get it from a vector.
Can be overloaded to get it from somewhere else. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1463-L1474 |
Calysto/calysto | calysto/ai/conx.py | Network.getData | def getData(self, pos):
"""
Returns dictionary with input and target given pos.
"""
retval = {}
if pos >= len(self.inputs):
raise IndexError('getData() pattern beyond range.', pos)
if self.verbosity >= 1: print("Getting input", pos, "...")
if len(self.inputMap) == 0:
if type(self.inputs[pos]) == dict: # allow inputs to be a dict
retval.update(self.inputs[pos])
else:
retval[self.layers[0].name] = self.inputs[pos]
else: # mapInput set manually
for vals in self.inputMap:
(name, offset) = vals
retval[name] = self.getDataMap("input", pos, name, offset)
if self.verbosity > 1: print("Loading target", pos, "...")
if len(self.targets) == 0:
pass # ok, no targets
elif len(self.targetMap) == 0:
if type(self.targets[pos]) == dict: # allow targets to be a dict
retval.update(self.targets[pos])
else:
retval[self.layers[len(self.layers)-1].name] = self.targets[pos]
else: # set manually
for vals in self.targetMap:
(name, offset) = vals
retval[name] = self.getDataMap("target", pos, name, offset)
return retval | python | def getData(self, pos):
"""
Returns dictionary with input and target given pos.
"""
retval = {}
if pos >= len(self.inputs):
raise IndexError('getData() pattern beyond range.', pos)
if self.verbosity >= 1: print("Getting input", pos, "...")
if len(self.inputMap) == 0:
if type(self.inputs[pos]) == dict: # allow inputs to be a dict
retval.update(self.inputs[pos])
else:
retval[self.layers[0].name] = self.inputs[pos]
else: # mapInput set manually
for vals in self.inputMap:
(name, offset) = vals
retval[name] = self.getDataMap("input", pos, name, offset)
if self.verbosity > 1: print("Loading target", pos, "...")
if len(self.targets) == 0:
pass # ok, no targets
elif len(self.targetMap) == 0:
if type(self.targets[pos]) == dict: # allow targets to be a dict
retval.update(self.targets[pos])
else:
retval[self.layers[len(self.layers)-1].name] = self.targets[pos]
else: # set manually
for vals in self.targetMap:
(name, offset) = vals
retval[name] = self.getDataMap("target", pos, name, offset)
return retval | Returns dictionary with input and target given pos. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1475-L1504 |
Calysto/calysto | calysto/ai/conx.py | Network.verifyArchitecture | def verifyArchitecture(self):
"""
Check for orphaned layers or connections. Assure that network
architecture is feed-forward (no-cycles). Check connectivity. Check naming.
"""
if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0: return
# flags for layer type tests
hiddenInput = 1
hiddenOutput = 1
outputLayerFlag = 1
inputLayerFlag = 1
# must have layers and connections
if len(self.layers) == 0:
raise NetworkError('No network layers.', \
self.layers)
if len(self.connections) == 0:
raise NetworkError('No network connections.', \
self.connections)
# layers should not have the same name
for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len(self.layers))]:
if x == y:
pass # same layer so same name
else:
# different layers same name
if self.layers[x].name == self.layers[y].name:
raise NetworkError('Two layers have the same name.', (x,y))
# no multiple connections between layers
for x, y in [(x,y) for x in range(len(self.connections)) for y in range(len(self.connections))]:
if x == y:
pass # same connection
else:
# multiple connections between fromLayer and toLayer
if self.connections[x].fromLayer.name == self.connections[y].fromLayer.name and \
self.connections[x].toLayer.name == self.connections[y].toLayer.name:
raise NetworkError('Multiple connections between two layers.', \
(self.connections[x].fromLayer.name, \
self.connections[x].toLayer.name))
# layer type tests
for layer in self.layers:
# no undefined layers
if layer.type == 'Undefined':
raise NetworkError('There is an unconnected layer.', layer.name)
elif layer.type == 'Input':
for connection in self.connections:
# input layers must have outgoing connections
if connection.fromLayer.name == layer.name:
inputLayerFlag = 0
# input layers must have no incoming connections
if connection.toLayer.name == layer.name:
raise NetworkError('Layer has type \'Input\' and an incoming connection.', layer.name)
if inputLayerFlag:
raise NetworkError('Layer has type \'Input\' but no outgoing connections', layer.name)
elif layer.type == 'Output':
for connection in self.connections:
# output layers must have no outgoing connections`
if connection.fromLayer.name == layer.name:
raise NetworkError('Layer has type \'Output\' and an outgoing connections.',layer.name)
# output layers must have an incoming connection
if connection.toLayer.name == layer.name:
outputLayerFlag = 0
if outputLayerFlag:
raise NetworkError('Layer has type \'Output\' and no incoming connections.', layer.name)
elif layer.type == 'Hidden':
for connection in self.connections:
# hidden layers must have incoming and outgoing connections.
if connection.toLayer.name == layer.name:
hiddenInput = 0
if connection.fromLayer.name == layer.name:
hiddenOutput = 0
if hiddenInput or hiddenOutput:
raise NetworkError('Layer has type \'Hidden\' but does not have both input and output connections.',\
layer.name)
else:
raise LayerError('Unknown layer encountered in verifyArchitecture().', layer.name)
# network should not have unconnected sub networks
# every input layer should have a path to every output layer
for inLayer in self.layers:
if inLayer.type == 'Input':
for outLayer in self.layers:
if outLayer.type == 'Output':
if not self.path(inLayer, outLayer):
raise NetworkError('Network contains disconnected sub networks.', \
(inLayer.name, outLayer.name))
# network should not have directed cycles
for layer in self.layers:
if self.path(layer, layer):
raise NetworkError('Network contains a cycle.', layer.name) | python | def verifyArchitecture(self):
"""
Check for orphaned layers or connections. Assure that network
architecture is feed-forward (no-cycles). Check connectivity. Check naming.
"""
if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0: return
# flags for layer type tests
hiddenInput = 1
hiddenOutput = 1
outputLayerFlag = 1
inputLayerFlag = 1
# must have layers and connections
if len(self.layers) == 0:
raise NetworkError('No network layers.', \
self.layers)
if len(self.connections) == 0:
raise NetworkError('No network connections.', \
self.connections)
# layers should not have the same name
for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len(self.layers))]:
if x == y:
pass # same layer so same name
else:
# different layers same name
if self.layers[x].name == self.layers[y].name:
raise NetworkError('Two layers have the same name.', (x,y))
# no multiple connections between layers
for x, y in [(x,y) for x in range(len(self.connections)) for y in range(len(self.connections))]:
if x == y:
pass # same connection
else:
# multiple connections between fromLayer and toLayer
if self.connections[x].fromLayer.name == self.connections[y].fromLayer.name and \
self.connections[x].toLayer.name == self.connections[y].toLayer.name:
raise NetworkError('Multiple connections between two layers.', \
(self.connections[x].fromLayer.name, \
self.connections[x].toLayer.name))
# layer type tests
for layer in self.layers:
# no undefined layers
if layer.type == 'Undefined':
raise NetworkError('There is an unconnected layer.', layer.name)
elif layer.type == 'Input':
for connection in self.connections:
# input layers must have outgoing connections
if connection.fromLayer.name == layer.name:
inputLayerFlag = 0
# input layers must have no incoming connections
if connection.toLayer.name == layer.name:
raise NetworkError('Layer has type \'Input\' and an incoming connection.', layer.name)
if inputLayerFlag:
raise NetworkError('Layer has type \'Input\' but no outgoing connections', layer.name)
elif layer.type == 'Output':
for connection in self.connections:
# output layers must have no outgoing connections`
if connection.fromLayer.name == layer.name:
raise NetworkError('Layer has type \'Output\' and an outgoing connections.',layer.name)
# output layers must have an incoming connection
if connection.toLayer.name == layer.name:
outputLayerFlag = 0
if outputLayerFlag:
raise NetworkError('Layer has type \'Output\' and no incoming connections.', layer.name)
elif layer.type == 'Hidden':
for connection in self.connections:
# hidden layers must have incoming and outgoing connections.
if connection.toLayer.name == layer.name:
hiddenInput = 0
if connection.fromLayer.name == layer.name:
hiddenOutput = 0
if hiddenInput or hiddenOutput:
raise NetworkError('Layer has type \'Hidden\' but does not have both input and output connections.',\
layer.name)
else:
raise LayerError('Unknown layer encountered in verifyArchitecture().', layer.name)
# network should not have unconnected sub networks
# every input layer should have a path to every output layer
for inLayer in self.layers:
if inLayer.type == 'Input':
for outLayer in self.layers:
if outLayer.type == 'Output':
if not self.path(inLayer, outLayer):
raise NetworkError('Network contains disconnected sub networks.', \
(inLayer.name, outLayer.name))
# network should not have directed cycles
for layer in self.layers:
if self.path(layer, layer):
raise NetworkError('Network contains a cycle.', layer.name) | Check for orphaned layers or connections. Assure that network
architecture is feed-forward (no-cycles). Check connectivity. Check naming. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1507-L1593 |
Calysto/calysto | calysto/ai/conx.py | Network.verifyInputs | def verifyInputs(self):
"""
Used in propagate() to verify that the network input
activations have been set.
"""
for layer in self.layers:
if (layer.verify and
layer.type == 'Input' and
layer.kind != 'Context' and
layer.active and
not layer.activationSet):
raise LayerError("Inputs are not set and verifyInputs() was called on layer '%s'." % layer.name)
else:
layer.resetActivationFlag() | python | def verifyInputs(self):
"""
Used in propagate() to verify that the network input
activations have been set.
"""
for layer in self.layers:
if (layer.verify and
layer.type == 'Input' and
layer.kind != 'Context' and
layer.active and
not layer.activationSet):
raise LayerError("Inputs are not set and verifyInputs() was called on layer '%s'." % layer.name)
else:
layer.resetActivationFlag() | Used in propagate() to verify that the network input
activations have been set. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1594-L1607 |
Calysto/calysto | calysto/ai/conx.py | Network.verifyTargets | def verifyTargets(self):
"""
Used in backprop() to verify that the network targets have
been set.
"""
for layer in self.layers:
if layer.verify and layer.type == 'Output' and layer.active and not layer.targetSet:
raise LayerError('Targets are not set and verifyTargets() was called.',\
(layer.name, layer.type))
else:
layer.resetTargetFlag() | python | def verifyTargets(self):
"""
Used in backprop() to verify that the network targets have
been set.
"""
for layer in self.layers:
if layer.verify and layer.type == 'Output' and layer.active and not layer.targetSet:
raise LayerError('Targets are not set and verifyTargets() was called.',\
(layer.name, layer.type))
else:
layer.resetTargetFlag() | Used in backprop() to verify that the network targets have
been set. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1608-L1618 |
Calysto/calysto | calysto/ai/conx.py | Network.RMSError | def RMSError(self):
"""
Returns Root Mean Squared Error for all output layers in this network.
"""
tss = 0.0
size = 0
for layer in self.layers:
if layer.type == 'Output':
tss += layer.TSSError()
size += layer.size
return math.sqrt( tss / size ) | python | def RMSError(self):
"""
Returns Root Mean Squared Error for all output layers in this network.
"""
tss = 0.0
size = 0
for layer in self.layers:
if layer.type == 'Output':
tss += layer.TSSError()
size += layer.size
return math.sqrt( tss / size ) | Returns Root Mean Squared Error for all output layers in this network. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1627-L1637 |
Calysto/calysto | calysto/ai/conx.py | Network.train | def train(self, sweeps=None, cont=0):
"""
Trains the network on the dataset till a stopping condition is
met. This stopping condition can be a limiting epoch or a percentage correct requirement.
"""
# check architecture
self.complete = 0
self.verifyArchitecture()
tssErr = 0.0; rmsErr = 0.0; totalCorrect = 0; totalCount = 1; totalPCorrect = {}
if not cont: # starting afresh
self.resetFlags()
self.epoch = 0
self.reportStart()
self.resetCount = 1
self.epoch = 1
self.lastLowestTSSError = sys.maxsize # some maximum value (not all pythons have Infinity)
if sweeps != None:
self.resetEpoch = sweeps
else:
if sweeps != None:
self.resetEpoch = self.epoch + sweeps - 1
while self.doWhile(totalCount, totalCorrect):
(tssErr, totalCorrect, totalCount, totalPCorrect) = self.sweep()
self.complete = 1
if totalCount != 0:
rmsErr = math.sqrt(tssErr / totalCount)
else:
self.Print("Warning: sweep didn't do anything!")
if self.epoch % self.reportRate == 0:
self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
(tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect) = self.sweepCrossValidation()
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print("CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f" % \
(self.epoch, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr))
if self.autoSaveWeightsFile != None and tssCVErr < self.lastLowestTSSError:
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode = self.autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode = self.autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.lastAutoSaveNetworkFilename)
if totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and self.useCrossValidationToStop:
self.epoch += 1
break
if self.resetEpoch == self.epoch:
if self.resetCount == self.resetLimit:
self.Print("Reset limit reached; ending without reaching goal")
self.epoch += 1
self.complete = 0
break
self.resetCount += 1
self.Print("RESET! resetEpoch reached; starting over...")
self.initialize()
tssErr = 0.0; rmsErr = 0.0; self.epoch = 1; totalCorrect = 0; totalPCorrect = {}
continue
self.epoch += 1
if totalCount > 0:
self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
(tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect) = self.sweepCrossValidation()
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print("CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f" % \
(self.epoch-1, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr))
if self.autoSaveWeightsFile != None and tssCVErr < self.lastLowestTSSError:
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode = self.autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode = self.autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.lastAutoSaveNetworkFilename)
else:
print("Final: nothing done") | python | def train(self, sweeps=None, cont=0):
"""
Trains the network on the dataset till a stopping condition is
met. This stopping condition can be a limiting epoch or a percentage correct requirement.
"""
# check architecture
self.complete = 0
self.verifyArchitecture()
tssErr = 0.0; rmsErr = 0.0; totalCorrect = 0; totalCount = 1; totalPCorrect = {}
if not cont: # starting afresh
self.resetFlags()
self.epoch = 0
self.reportStart()
self.resetCount = 1
self.epoch = 1
self.lastLowestTSSError = sys.maxsize # some maximum value (not all pythons have Infinity)
if sweeps != None:
self.resetEpoch = sweeps
else:
if sweeps != None:
self.resetEpoch = self.epoch + sweeps - 1
while self.doWhile(totalCount, totalCorrect):
(tssErr, totalCorrect, totalCount, totalPCorrect) = self.sweep()
self.complete = 1
if totalCount != 0:
rmsErr = math.sqrt(tssErr / totalCount)
else:
self.Print("Warning: sweep didn't do anything!")
if self.epoch % self.reportRate == 0:
self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
(tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect) = self.sweepCrossValidation()
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print("CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f" % \
(self.epoch, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr))
if self.autoSaveWeightsFile != None and tssCVErr < self.lastLowestTSSError:
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode = self.autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode = self.autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.lastAutoSaveNetworkFilename)
if totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and self.useCrossValidationToStop:
self.epoch += 1
break
if self.resetEpoch == self.epoch:
if self.resetCount == self.resetLimit:
self.Print("Reset limit reached; ending without reaching goal")
self.epoch += 1
self.complete = 0
break
self.resetCount += 1
self.Print("RESET! resetEpoch reached; starting over...")
self.initialize()
tssErr = 0.0; rmsErr = 0.0; self.epoch = 1; totalCorrect = 0; totalPCorrect = {}
continue
self.epoch += 1
if totalCount > 0:
self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
(tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect) = self.sweepCrossValidation()
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print("CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f" % \
(self.epoch-1, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr))
if self.autoSaveWeightsFile != None and tssCVErr < self.lastLowestTSSError:
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode = self.autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode = self.autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.lastAutoSaveNetworkFilename)
else:
print("Final: nothing done") | Trains the network on the dataset till a stopping condition is
met. This stopping condition can be a limiting epoch or a percentage correct requirement. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1683-L1755 |
Calysto/calysto | calysto/ai/conx.py | Network.step | def step(self, **args):
"""
Network.step()
Does a single step. Calls propagate(), backprop(), and
change_weights() if learning is set.
Format for parameters: <layer name> = <activation/target list>
"""
if self.verbosity > 0:
print("Network.step() called with:", args)
# First, copy the values into either activations or targets:
retargs = self.preStep(**args)
if retargs: args = retargs # replace the args
# Propagate activation through network:
self.propagate(**args)
retargs = self.postPropagate(**args)
if retargs: args = retargs # replace the args
# Next, take care of any Auto-association, and copy
# activations to targets
for aa in self.association:
(inName, outName) = aa
inLayer = self.getLayer(inName)
if inLayer.type not in ['Input', "Hidden"]:
raise LayerError('Associated input layer not type \'Input\' or \'Hidden\'.', \
inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError('Associated output layer not type \'Output\'.', \
outLayer.type)
outLayer.copyTargets(inLayer.activation)
# Compute error, and back prop it:
retargs = self.preBackprop(**args)
if retargs: args = retargs # replace the args
(error, correct, total, pcorrect) = self.backprop(**args) # compute_error()
if self.verbosity > 2 or self.interactive:
self.display()
if self.interactive:
self.prompt()
retargs = self.postBackprop(**args)
if retargs: args = retargs # replace the args
# if learning is true, and need to update weights here:
if self.learning and not self.batch:
self.change_weights() # else change weights in sweep
retargs = self.postStep(**args)
if retargs: args = retargs # replace the args
self.reportPattern()
return (error, correct, total, pcorrect) | python | def step(self, **args):
"""
Network.step()
Does a single step. Calls propagate(), backprop(), and
change_weights() if learning is set.
Format for parameters: <layer name> = <activation/target list>
"""
if self.verbosity > 0:
print("Network.step() called with:", args)
# First, copy the values into either activations or targets:
retargs = self.preStep(**args)
if retargs: args = retargs # replace the args
# Propagate activation through network:
self.propagate(**args)
retargs = self.postPropagate(**args)
if retargs: args = retargs # replace the args
# Next, take care of any Auto-association, and copy
# activations to targets
for aa in self.association:
(inName, outName) = aa
inLayer = self.getLayer(inName)
if inLayer.type not in ['Input', "Hidden"]:
raise LayerError('Associated input layer not type \'Input\' or \'Hidden\'.', \
inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError('Associated output layer not type \'Output\'.', \
outLayer.type)
outLayer.copyTargets(inLayer.activation)
# Compute error, and back prop it:
retargs = self.preBackprop(**args)
if retargs: args = retargs # replace the args
(error, correct, total, pcorrect) = self.backprop(**args) # compute_error()
if self.verbosity > 2 or self.interactive:
self.display()
if self.interactive:
self.prompt()
retargs = self.postBackprop(**args)
if retargs: args = retargs # replace the args
# if learning is true, and need to update weights here:
if self.learning and not self.batch:
self.change_weights() # else change weights in sweep
retargs = self.postStep(**args)
if retargs: args = retargs # replace the args
self.reportPattern()
return (error, correct, total, pcorrect) | Network.step()
Does a single step. Calls propagate(), backprop(), and
change_weights() if learning is set.
Format for parameters: <layer name> = <activation/target list> | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1766-L1812 |
Calysto/calysto | calysto/ai/conx.py | Network.sweep | def sweep(self):
"""
Runs through entire dataset.
Returns TSS error, total correct, total count, pcorrect (a dict of layer data)
"""
self.preSweep()
if self.loadOrder == []:
raise NetworkError('No loadOrder for the inputs. Make sure inputs are properly set.', self.loadOrder)
if len(self.targets) != 0 and len(self.targets) != len(self.inputs):
raise NetworkError("Number of inputs does not equal number of targets (inputs=%d, targets=%d)" % (len(self.targets), len(self.inputs)))
if self.verbosity >= 1: print("Epoch #", self.epoch, "Cycle...")
if not self.orderedInputs:
self.randomizeOrder()
tssError = 0.0; totalCorrect = 0; totalCount = 0; totalPCorrect = {}
cnt = 0
if self.saveResults:
self.results = [(0,0,0) for x in self.loadOrder]
for i in self.loadOrder:
if self.verbosity >= 1 or self.interactive:
print("-----------------------------------Pattern #", self.loadOrder[i] + 1)
datum = self.getData(i) # creates a dictionary of input/targets from self.inputs, self.targets
if cnt < len(self.loadOrder) - 1:
self.currentSweepCount = cnt
else:
self.currentSweepCount = None
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **datum )
self._sweeping = 0
if self.saveResults:
self.results[i] = (error, correct, total, pcorrect)
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0:
print(" Step # %6d | TSS Error: %.4f | Correct: %.4f" % \
(cnt + 1, tssError, totalCorrect * 1.0 / totalCount))
if self.crossValidationSampleRate and self.epoch % self.crossValidationSampleRate == 0:
self.saveNetworkForCrossValidation(self.crossValidationSampleFile)
cnt += 1
if self.learning and self.batch:
self.change_weights() # batch mode, otherwise change weights in step
self.postSweep()
return (tssError, totalCorrect, totalCount, totalPCorrect) | python | def sweep(self):
"""
Runs through entire dataset.
Returns TSS error, total correct, total count, pcorrect (a dict of layer data)
"""
self.preSweep()
if self.loadOrder == []:
raise NetworkError('No loadOrder for the inputs. Make sure inputs are properly set.', self.loadOrder)
if len(self.targets) != 0 and len(self.targets) != len(self.inputs):
raise NetworkError("Number of inputs does not equal number of targets (inputs=%d, targets=%d)" % (len(self.targets), len(self.inputs)))
if self.verbosity >= 1: print("Epoch #", self.epoch, "Cycle...")
if not self.orderedInputs:
self.randomizeOrder()
tssError = 0.0; totalCorrect = 0; totalCount = 0; totalPCorrect = {}
cnt = 0
if self.saveResults:
self.results = [(0,0,0) for x in self.loadOrder]
for i in self.loadOrder:
if self.verbosity >= 1 or self.interactive:
print("-----------------------------------Pattern #", self.loadOrder[i] + 1)
datum = self.getData(i) # creates a dictionary of input/targets from self.inputs, self.targets
if cnt < len(self.loadOrder) - 1:
self.currentSweepCount = cnt
else:
self.currentSweepCount = None
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **datum )
self._sweeping = 0
if self.saveResults:
self.results[i] = (error, correct, total, pcorrect)
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0:
print(" Step # %6d | TSS Error: %.4f | Correct: %.4f" % \
(cnt + 1, tssError, totalCorrect * 1.0 / totalCount))
if self.crossValidationSampleRate and self.epoch % self.crossValidationSampleRate == 0:
self.saveNetworkForCrossValidation(self.crossValidationSampleFile)
cnt += 1
if self.learning and self.batch:
self.change_weights() # batch mode, otherwise change weights in step
self.postSweep()
return (tssError, totalCorrect, totalCount, totalPCorrect) | Runs through entire dataset.
Returns TSS error, total correct, total count, pcorrect (a dict of layer data) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1822-L1865 |
Calysto/calysto | calysto/ai/conx.py | Network.sweepCrossValidation | def sweepCrossValidation(self):
"""
sweepCrossValidation() will go through each of the crossvalidation input/targets.
The crossValidationCorpus is a list of dictionaries of input/targets
referenced by layername.
Example: ({"input": [0.0, 0.1], "output": [1.0]}, {"input": [0.5, 0.9], "output": [0.0]})
"""
# get learning value and then turn it off
oldLearning = self.learning
self.learning = 0
tssError = 0.0; totalCorrect = 0; totalCount = 0; totalPCorrect = {}
self._cv = True # in cross validation
if self.autoCrossValidation:
for i in range(len(self.inputs)):
set = self.getDataCrossValidation(i)
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **set )
self._sweeping = 0
if self.crossValidationReportLayers != []:
(error, correct, total, pcorrect) = self.getError( *self.crossValidationReportLayers )
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
else:
for set in self.crossValidationCorpus:
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **set )
self._sweeping = 0
if self.crossValidationReportLayers != []:
(error, correct, total, pcorrect) = self.getError( *self.crossValidationReportLayers )
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
self.learning = oldLearning
self._cv = False
return (tssError, totalCorrect, totalCount, totalPCorrect) | python | def sweepCrossValidation(self):
"""
sweepCrossValidation() will go through each of the crossvalidation input/targets.
The crossValidationCorpus is a list of dictionaries of input/targets
referenced by layername.
Example: ({"input": [0.0, 0.1], "output": [1.0]}, {"input": [0.5, 0.9], "output": [0.0]})
"""
# get learning value and then turn it off
oldLearning = self.learning
self.learning = 0
tssError = 0.0; totalCorrect = 0; totalCount = 0; totalPCorrect = {}
self._cv = True # in cross validation
if self.autoCrossValidation:
for i in range(len(self.inputs)):
set = self.getDataCrossValidation(i)
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **set )
self._sweeping = 0
if self.crossValidationReportLayers != []:
(error, correct, total, pcorrect) = self.getError( *self.crossValidationReportLayers )
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
else:
for set in self.crossValidationCorpus:
self._sweeping = 1
(error, correct, total, pcorrect) = self.step( **set )
self._sweeping = 0
if self.crossValidationReportLayers != []:
(error, correct, total, pcorrect) = self.getError( *self.crossValidationReportLayers )
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
self.learning = oldLearning
self._cv = False
return (tssError, totalCorrect, totalCount, totalPCorrect) | sweepCrossValidation() will go through each of the crossvalidation input/targets.
The crossValidationCorpus is a list of dictionaries of input/targets
referenced by layername.
Example: ({"input": [0.0, 0.1], "output": [1.0]}, {"input": [0.5, 0.9], "output": [0.0]}) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1866-L1903 |
Calysto/calysto | calysto/ai/conx.py | Network.numConnects | def numConnects(self, layerName):
""" Number of incoming weights, including bias. Assumes fully connected. """
count = 0
if self[layerName].active:
count += 1 # 1 = bias
for connection in self.connections:
if connection.active and connection.fromLayer.active and connection.toLayer.name == layerName:
count += connection.fromLayer.size
return count | python | def numConnects(self, layerName):
""" Number of incoming weights, including bias. Assumes fully connected. """
count = 0
if self[layerName].active:
count += 1 # 1 = bias
for connection in self.connections:
if connection.active and connection.fromLayer.active and connection.toLayer.name == layerName:
count += connection.fromLayer.size
return count | Number of incoming weights, including bias. Assumes fully connected. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1933-L1941 |
Calysto/calysto | calysto/ai/conx.py | Network.prop_from | def prop_from(self, startLayers):
"""
Start propagation from the layers in the list
startLayers. Make sure startLayers are initialized with the
desired activations. NO ERROR CHECKING.
"""
if self.verbosity > 2: print("Partially propagating network:")
# find all the layers involved in the propagation
propagateLayers = []
# propagateLayers should not include startLayers (no loops)
for startLayer in startLayers:
for layer in self.layers:
if self.path(startLayer, layer):
propagateLayers.append(layer)
for layer in propagateLayers:
if layer.active:
layer.netinput = (layer.weight).copy()
for layer in propagateLayers:
if layer.active:
for connection in self.connections:
if connection.active and connection.toLayer.name == layer.name:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in propagateLayers:
if layer.log and layer.active:
layer.writeLog(self) | python | def prop_from(self, startLayers):
"""
Start propagation from the layers in the list
startLayers. Make sure startLayers are initialized with the
desired activations. NO ERROR CHECKING.
"""
if self.verbosity > 2: print("Partially propagating network:")
# find all the layers involved in the propagation
propagateLayers = []
# propagateLayers should not include startLayers (no loops)
for startLayer in startLayers:
for layer in self.layers:
if self.path(startLayer, layer):
propagateLayers.append(layer)
for layer in propagateLayers:
if layer.active:
layer.netinput = (layer.weight).copy()
for layer in propagateLayers:
if layer.active:
for connection in self.connections:
if connection.active and connection.toLayer.name == layer.name:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in propagateLayers:
if layer.log and layer.active:
layer.writeLog(self) | Start propagation from the layers in the list
startLayers. Make sure startLayers are initialized with the
desired activations. NO ERROR CHECKING. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1944-L1972 |
Calysto/calysto | calysto/ai/conx.py | Network.propagate | def propagate(self, **args):
"""
Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [0, .5]))
1
"""
self.prePropagate(**args)
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Input':
if self[key].verify and not self[key].activationSet == 0:
raise AttributeError("attempt to set activations on input layer '%s' without reset" % key)
self.copyActivations(layer, args[key])
elif layer.kind == 'Context':
self.copyActivations(layer, args[key])
elif layer.kind == 'Output' and len(args[key]) == layer.size: # in case you expect propagate to handle the outputs
self.copyTargets(layer, args[key])
self.verifyInputs() # better have inputs set
if self.verbosity > 2: print("Propagate Network '" + self.name + "':")
# initialize netinput:
for layer in self.layers:
if layer.type != 'Input' and layer.active:
layer.netinput = (layer.weight).copy()
# for each connection, in order:
for layer in self.layers:
if layer.active:
for connection in self.connections:
if (connection.toLayer.name == layer.name
and connection.fromLayer.active
and connection.active):
a = connection.fromLayer.activation
w = connection.weight
m = Numeric.matrixmultiply(a, w)
ni = m + connection.toLayer.netinput
connection.toLayer.netinput = ni
#connection.toLayer.netinput = \
# (connection.toLayer.netinput +
# Numeric.matrixmultiply(connection.fromLayer.activation,
# connection.weight)) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1 # counts number of times propagate() is called
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == "Output":
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict | python | def propagate(self, **args):
"""
Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [0, .5]))
1
"""
self.prePropagate(**args)
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Input':
if self[key].verify and not self[key].activationSet == 0:
raise AttributeError("attempt to set activations on input layer '%s' without reset" % key)
self.copyActivations(layer, args[key])
elif layer.kind == 'Context':
self.copyActivations(layer, args[key])
elif layer.kind == 'Output' and len(args[key]) == layer.size: # in case you expect propagate to handle the outputs
self.copyTargets(layer, args[key])
self.verifyInputs() # better have inputs set
if self.verbosity > 2: print("Propagate Network '" + self.name + "':")
# initialize netinput:
for layer in self.layers:
if layer.type != 'Input' and layer.active:
layer.netinput = (layer.weight).copy()
# for each connection, in order:
for layer in self.layers:
if layer.active:
for connection in self.connections:
if (connection.toLayer.name == layer.name
and connection.fromLayer.active
and connection.active):
a = connection.fromLayer.activation
w = connection.weight
m = Numeric.matrixmultiply(a, w)
ni = m + connection.toLayer.netinput
connection.toLayer.netinput = ni
#connection.toLayer.netinput = \
# (connection.toLayer.netinput +
# Numeric.matrixmultiply(connection.fromLayer.activation,
# connection.weight)) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1 # counts number of times propagate() is called
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == "Output":
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict | Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [0, .5]))
1 | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L1973-L2039 |
Calysto/calysto | calysto/ai/conx.py | Network.propagateTo | def propagateTo(self, toLayer, **args):
"""
Propagates activation to a layer. Optionally, takes input layer names
as keywords, and their associated activations. Returns the toLayer's activation.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagateTo("output"))
1
>>> len(net.propagateTo("hidden"))
5
>>> len(net.propagateTo("hidden", input = [0, 0]))
5
"""
for layerName in args:
self[layerName].activationSet = 0 # force it to be ok
self[layerName].copyActivations(args[layerName])
# init toLayer:
self[toLayer].netinput = (self[toLayer].weight).copy()
# for each connection, in order:
for connection in self.connections:
if connection.active and connection.toLayer.name == toLayer and connection.fromLayer.active:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if self[toLayer].type != 'Input':
self[toLayer].activation = self.activationFunction(self[toLayer].netinput)
return self[toLayer].activation.copy() | python | def propagateTo(self, toLayer, **args):
"""
Propagates activation to a layer. Optionally, takes input layer names
as keywords, and their associated activations. Returns the toLayer's activation.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagateTo("output"))
1
>>> len(net.propagateTo("hidden"))
5
>>> len(net.propagateTo("hidden", input = [0, 0]))
5
"""
for layerName in args:
self[layerName].activationSet = 0 # force it to be ok
self[layerName].copyActivations(args[layerName])
# init toLayer:
self[toLayer].netinput = (self[toLayer].weight).copy()
# for each connection, in order:
for connection in self.connections:
if connection.active and connection.toLayer.name == toLayer and connection.fromLayer.active:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if self[toLayer].type != 'Input':
self[toLayer].activation = self.activationFunction(self[toLayer].netinput)
return self[toLayer].activation.copy() | Propagates activation to a layer. Optionally, takes input layer names
as keywords, and their associated activations. Returns the toLayer's activation.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagateTo("output"))
1
>>> len(net.propagateTo("hidden"))
5
>>> len(net.propagateTo("hidden", input = [0, 0]))
5 | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2040-L2070 |
Calysto/calysto | calysto/ai/conx.py | Network.propagateFrom | def propagateFrom(self, startLayer, **args):
"""
Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [1, .5]))
1
"""
for layerName in args:
self[layerName].copyActivations(args[layerName])
# initialize netinput:
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue # don't set this one
if not started: continue
if layer.type != 'Input' and layer.active:
layer.netinput = (layer.weight).copy()
# for each connection, in order:
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue # don't get inputs into this one
if not started: continue
if layer.active:
for connection in self.connections:
if connection.active and connection.toLayer.name == layer.name and connection.fromLayer.active:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1 # counts number of times propagate() is called
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == "Output":
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict | python | def propagateFrom(self, startLayer, **args):
"""
Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [1, .5]))
1
"""
for layerName in args:
self[layerName].copyActivations(args[layerName])
# initialize netinput:
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue # don't set this one
if not started: continue
if layer.type != 'Input' and layer.active:
layer.netinput = (layer.weight).copy()
# for each connection, in order:
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue # don't get inputs into this one
if not started: continue
if layer.active:
for connection in self.connections:
if connection.active and connection.toLayer.name == layer.name and connection.fromLayer.active:
connection.toLayer.netinput = connection.toLayer.netinput + \
Numeric.matrixmultiply(connection.fromLayer.activation,\
connection.weight) # propagate!
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1 # counts number of times propagate() is called
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == "Output":
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict | Propagates activation through the network. Optionally, takes input layer names
as keywords, and their associated activations. If input layer(s) are given, then
propagate() will return the output layer's activation. If there is more than
one output layer, then a dictionary is returned.
Examples:
>>> net = Network() # doctest: +ELLIPSIS
Conx using seed: ...
>>> net.addLayers(2, 5, 1)
>>> len(net.propagate(input = [1, .5]))
1 | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2071-L2124 |
Calysto/calysto | calysto/ai/conx.py | Network.activationFunctionASIG | def activationFunctionASIG(self, x):
"""
Determine the activation of a node based on that nodes net input.
"""
def act(v):
if v < -15.0: return 0.0
elif v > 15.0: return 1.0
else: return 1.0 / (1.0 + Numeric.exp(-v))
return Numeric.array(list(map(act, x)), 'f') | python | def activationFunctionASIG(self, x):
"""
Determine the activation of a node based on that nodes net input.
"""
def act(v):
if v < -15.0: return 0.0
elif v > 15.0: return 1.0
else: return 1.0 / (1.0 + Numeric.exp(-v))
return Numeric.array(list(map(act, x)), 'f') | Determine the activation of a node based on that nodes net input. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2128-L2136 |
Calysto/calysto | calysto/ai/conx.py | Network.actDerivASIG | def actDerivASIG(self, x):
"""
Only works on scalars.
"""
def act(v):
if v < -15.0: return 0.0
elif v > 15.0: return 1.0
else: return 1.0 / (1.0 + Numeric.exp(-v))
return (act(x) * (1.0 - act(x))) + self.sigmoid_prime_offset | python | def actDerivASIG(self, x):
"""
Only works on scalars.
"""
def act(v):
if v < -15.0: return 0.0
elif v > 15.0: return 1.0
else: return 1.0 / (1.0 + Numeric.exp(-v))
return (act(x) * (1.0 - act(x))) + self.sigmoid_prime_offset | Only works on scalars. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2143-L2151 |
Calysto/calysto | calysto/ai/conx.py | Network.useTanhActivationFunction | def useTanhActivationFunction(self):
"""
Change the network to use the hyperbolic tangent activation function for all layers.
Must be called after all layers have been added.
"""
self.activationFunction = self.activationFunctionTANH
self.ACTPRIME = self.ACTPRIMETANH
self.actDeriv = self.actDerivTANH
for layer in self:
layer.minTarget, layer.minActivation = -1.7159, -1.7159
layer.maxTarget, layer.maxActivation = 1.7159, 1.7159 | python | def useTanhActivationFunction(self):
"""
Change the network to use the hyperbolic tangent activation function for all layers.
Must be called after all layers have been added.
"""
self.activationFunction = self.activationFunctionTANH
self.ACTPRIME = self.ACTPRIMETANH
self.actDeriv = self.actDerivTANH
for layer in self:
layer.minTarget, layer.minActivation = -1.7159, -1.7159
layer.maxTarget, layer.maxActivation = 1.7159, 1.7159 | Change the network to use the hyperbolic tangent activation function for all layers.
Must be called after all layers have been added. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2186-L2196 |
Calysto/calysto | calysto/ai/conx.py | Network.useFahlmanActivationFunction | def useFahlmanActivationFunction(self):
"""
Change the network to use Fahlman's default activation function for all layers.
Must be called after all layers have been added.
"""
self.activationFunction = self.activationFunctionFahlman
self.ACTPRIME = self.ACTPRIME_Fahlman
self.actDeriv = self.actDerivFahlman
for layer in self:
layer.minTarget, layer.minActivation = -0.5, -0.5
layer.maxTarget, layer.maxActivation = 0.5, 0.5 | python | def useFahlmanActivationFunction(self):
"""
Change the network to use Fahlman's default activation function for all layers.
Must be called after all layers have been added.
"""
self.activationFunction = self.activationFunctionFahlman
self.ACTPRIME = self.ACTPRIME_Fahlman
self.actDeriv = self.actDerivFahlman
for layer in self:
layer.minTarget, layer.minActivation = -0.5, -0.5
layer.maxTarget, layer.maxActivation = 0.5, 0.5 | Change the network to use Fahlman's default activation function for all layers.
Must be called after all layers have been added. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2197-L2207 |
Calysto/calysto | calysto/ai/conx.py | Network.backprop | def backprop(self, **args):
"""
Computes error and wed for back propagation of error.
"""
retval = self.compute_error(**args)
if self.learning:
self.compute_wed()
return retval | python | def backprop(self, **args):
"""
Computes error and wed for back propagation of error.
"""
retval = self.compute_error(**args)
if self.learning:
self.compute_wed()
return retval | Computes error and wed for back propagation of error. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2213-L2220 |
Calysto/calysto | calysto/ai/conx.py | Network.deltaWeight | def deltaWeight(self, e, wed, m, dweightLast, wedLast, w, n):
"""
e - learning rate
wed - weight error delta vector (slope)
m - momentum
dweightLast - previous dweight vector (slope)
wedLast - only used in quickprop; last weight error delta vector
w - weight vector
n - fan-in, number of connections coming in (counts bias, too)
"""
#print "WEIGHT = ", w
shrinkFactor = self.mu / (1.0 + self.mu)
if self.splitEpsilon:
e /= float(n)
if self._quickprop:
nextStep = Numeric.zeros(len(dweightLast), 'f')
for i in range(len(dweightLast)):
s = wed[i]
d = dweightLast[i]
p = wedLast[i]
#print self.mu
#print "slopes[node] = %f QP w=%s d=%f s=%f p=%f eps=%f" % (s, w, d, s, p, e)
#print type(nextStep[i]), nextStep[i]
if (d > 0.0):
if (s > 0.0):
#print "CASE A1"
nextStep[i] = nextStep[i] + (e * s)
if (s >= (shrinkFactor * p)):
#print "CASE B1"
nextStep[i] = nextStep[i] + (self.mu * d)
else:
#print "CASE C1"
nextStep[i] = nextStep[i] + (d * s / (p - s))
elif (d < 0.0):
if (s < 0.0):
#print "CASE A2"
nextStep[i] = nextStep[i] + (e * s)
if (s <= (shrinkFactor * p)):
#print "CASE B2"
nextStep[i] = nextStep[i] + (self.mu * d)
else:
#print "CASE C2"
nextStep[i] = nextStep[i] + (d * s / (p - s))
else:
#print "CASE D"
nextStep[i] = nextStep[i] + (e * s + m * d)
## Last step was zero, so only use linear ##
newDweight = nextStep
#print "Next Step = ", nextStep[i]
else: # backprop
newDweight = e * wed + m * dweightLast # gradient descent
return newDweight | python | def deltaWeight(self, e, wed, m, dweightLast, wedLast, w, n):
"""
e - learning rate
wed - weight error delta vector (slope)
m - momentum
dweightLast - previous dweight vector (slope)
wedLast - only used in quickprop; last weight error delta vector
w - weight vector
n - fan-in, number of connections coming in (counts bias, too)
"""
#print "WEIGHT = ", w
shrinkFactor = self.mu / (1.0 + self.mu)
if self.splitEpsilon:
e /= float(n)
if self._quickprop:
nextStep = Numeric.zeros(len(dweightLast), 'f')
for i in range(len(dweightLast)):
s = wed[i]
d = dweightLast[i]
p = wedLast[i]
#print self.mu
#print "slopes[node] = %f QP w=%s d=%f s=%f p=%f eps=%f" % (s, w, d, s, p, e)
#print type(nextStep[i]), nextStep[i]
if (d > 0.0):
if (s > 0.0):
#print "CASE A1"
nextStep[i] = nextStep[i] + (e * s)
if (s >= (shrinkFactor * p)):
#print "CASE B1"
nextStep[i] = nextStep[i] + (self.mu * d)
else:
#print "CASE C1"
nextStep[i] = nextStep[i] + (d * s / (p - s))
elif (d < 0.0):
if (s < 0.0):
#print "CASE A2"
nextStep[i] = nextStep[i] + (e * s)
if (s <= (shrinkFactor * p)):
#print "CASE B2"
nextStep[i] = nextStep[i] + (self.mu * d)
else:
#print "CASE C2"
nextStep[i] = nextStep[i] + (d * s / (p - s))
else:
#print "CASE D"
nextStep[i] = nextStep[i] + (e * s + m * d)
## Last step was zero, so only use linear ##
newDweight = nextStep
#print "Next Step = ", nextStep[i]
else: # backprop
newDweight = e * wed + m * dweightLast # gradient descent
return newDweight | e - learning rate
wed - weight error delta vector (slope)
m - momentum
dweightLast - previous dweight vector (slope)
wedLast - only used in quickprop; last weight error delta vector
w - weight vector
n - fan-in, number of connections coming in (counts bias, too) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2221-L2272 |
Calysto/calysto | calysto/ai/conx.py | Network.change_weights | def change_weights(self):
"""
Changes the weights according to the error values calculated
during backprop(). Learning must be set.
"""
dw_count, dw_sum = 0, 0.0
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active and layer.type != 'Input':
if not layer.frozen:
if self._quickprop or self.splitEpsilon:
layer.dweight = self.deltaWeight(self.epsilon,
layer.wed,
self.momentum,
layer.dweight,
layer.wedLast,
layer.weight,
self.numConnects(layer.name))
else:
layer.dweight = self.epsilon * layer.wed + self.momentum * layer.dweight
layer.weight += layer.dweight
#print "layer.wed = ",layer.wed
#print "layer.weight = ",layer.weight," layer.dweight = ",layer.dweight
layer.wedLast = Numeric.array(layer.wed) # make copy
if self._quickprop:
layer.wed = layer.weight * self.decay # reset to last weight, with decay
else:
layer.wed = layer.wed * 0.0 # keep same numeric type, just zero it
dw_count += len(layer.dweight)
dw_sum += Numeric.add.reduce(abs(layer.dweight))
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connection in changeConnections:
if (connection.active
and connection.fromLayer.active
and connection.toLayer.active
and not connection.frozen):
toLayer = connection.toLayer
if self._quickprop or self.splitEpsilon:
# doing it one vector at a time, to match layer bias training (a quickprop abstraction)
for i in range(len(connection.dweight)):
Numeric.put(connection.dweight[i],
Numeric.arange(len(connection.dweight[i])),
self.deltaWeight(self.epsilon,
connection.wed[i],
self.momentum,
connection.dweight[i],
connection.wedLast[i],
connection.weight[i],
self.numConnects(connection.toLayer.name)))
else:
connection.dweight = self.epsilon * connection.wed + self.momentum * connection.dweight
connection.weight += connection.dweight
#print "connection.wed = ",connection.wed
#print "connection.weight = ",connection.weight," connection.dweight = ",connection.dweight
# reset values:
connection.wedLast = Numeric.array(connection.wed) # make copy
if self._quickprop:
connection.wed = connection.weight * self.decay
else:
connection.wed = connection.wed * 0.0 # keeps the same Numeric type, but makes it zero
# get some stats
dw_count += Numeric.multiply.reduce(connection.dweight.shape)
dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection.dweight)))
if self.verbosity >= 1:
print("WEIGHTS CHANGED")
if self.verbosity > 2:
self.display()
return (dw_count, dw_sum) | python | def change_weights(self):
"""
Changes the weights according to the error values calculated
during backprop(). Learning must be set.
"""
dw_count, dw_sum = 0, 0.0
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active and layer.type != 'Input':
if not layer.frozen:
if self._quickprop or self.splitEpsilon:
layer.dweight = self.deltaWeight(self.epsilon,
layer.wed,
self.momentum,
layer.dweight,
layer.wedLast,
layer.weight,
self.numConnects(layer.name))
else:
layer.dweight = self.epsilon * layer.wed + self.momentum * layer.dweight
layer.weight += layer.dweight
#print "layer.wed = ",layer.wed
#print "layer.weight = ",layer.weight," layer.dweight = ",layer.dweight
layer.wedLast = Numeric.array(layer.wed) # make copy
if self._quickprop:
layer.wed = layer.weight * self.decay # reset to last weight, with decay
else:
layer.wed = layer.wed * 0.0 # keep same numeric type, just zero it
dw_count += len(layer.dweight)
dw_sum += Numeric.add.reduce(abs(layer.dweight))
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connection in changeConnections:
if (connection.active
and connection.fromLayer.active
and connection.toLayer.active
and not connection.frozen):
toLayer = connection.toLayer
if self._quickprop or self.splitEpsilon:
# doing it one vector at a time, to match layer bias training (a quickprop abstraction)
for i in range(len(connection.dweight)):
Numeric.put(connection.dweight[i],
Numeric.arange(len(connection.dweight[i])),
self.deltaWeight(self.epsilon,
connection.wed[i],
self.momentum,
connection.dweight[i],
connection.wedLast[i],
connection.weight[i],
self.numConnects(connection.toLayer.name)))
else:
connection.dweight = self.epsilon * connection.wed + self.momentum * connection.dweight
connection.weight += connection.dweight
#print "connection.wed = ",connection.wed
#print "connection.weight = ",connection.weight," connection.dweight = ",connection.dweight
# reset values:
connection.wedLast = Numeric.array(connection.wed) # make copy
if self._quickprop:
connection.wed = connection.weight * self.decay
else:
connection.wed = connection.wed * 0.0 # keeps the same Numeric type, but makes it zero
# get some stats
dw_count += Numeric.multiply.reduce(connection.dweight.shape)
dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection.dweight)))
if self.verbosity >= 1:
print("WEIGHTS CHANGED")
if self.verbosity > 2:
self.display()
return (dw_count, dw_sum) | Changes the weights according to the error values calculated
during backprop(). Learning must be set. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2273-L2346 |
Calysto/calysto | calysto/ai/conx.py | Network.errorFunction | def errorFunction(self, t, a):
"""
Using a hyperbolic arctan on the error slightly exaggerates
the actual error non-linearly. Return t - a to just use the difference.
t - target vector
a - activation vector
"""
def difference(v):
if not self.hyperbolicError:
#if -0.1 < v < 0.1: return 0.0
#else:
return v
else:
if v < -0.9999999: return -17.0
elif v > 0.9999999: return 17.0
else: return math.log( (1.0 + v) / (1.0 - v) )
#else: return Numeric.arctanh(v) # half that above
return list(map(difference, t - a)) | python | def errorFunction(self, t, a):
"""
Using a hyperbolic arctan on the error slightly exaggerates
the actual error non-linearly. Return t - a to just use the difference.
t - target vector
a - activation vector
"""
def difference(v):
if not self.hyperbolicError:
#if -0.1 < v < 0.1: return 0.0
#else:
return v
else:
if v < -0.9999999: return -17.0
elif v > 0.9999999: return 17.0
else: return math.log( (1.0 + v) / (1.0 - v) )
#else: return Numeric.arctanh(v) # half that above
return list(map(difference, t - a)) | Using a hyperbolic arctan on the error slightly exaggerates
the actual error non-linearly. Return t - a to just use the difference.
t - target vector
a - activation vector | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2348-L2365 |
Calysto/calysto | calysto/ai/conx.py | Network.ce_init | def ce_init(self):
"""
Initializes error computation. Calculates error for output
layers and initializes hidden layer error to zero.
"""
retval = 0.0; correct = 0; totalCount = 0
for layer in self.layers:
if layer.active:
if layer.type == 'Output':
layer.error = self.errorFunction(layer.target, layer.activation)
totalCount += layer.size
retval += Numeric.add.reduce((layer.target - layer.activation) ** 2)
correct += Numeric.add.reduce(Numeric.fabs(layer.target - layer.activation) < self.tolerance)
elif (layer.type == 'Hidden'):
for i in range(layer.size): # do it this way so you don't break reference links
layer.error[i] = 0.0
return (retval, correct, totalCount) | python | def ce_init(self):
"""
Initializes error computation. Calculates error for output
layers and initializes hidden layer error to zero.
"""
retval = 0.0; correct = 0; totalCount = 0
for layer in self.layers:
if layer.active:
if layer.type == 'Output':
layer.error = self.errorFunction(layer.target, layer.activation)
totalCount += layer.size
retval += Numeric.add.reduce((layer.target - layer.activation) ** 2)
correct += Numeric.add.reduce(Numeric.fabs(layer.target - layer.activation) < self.tolerance)
elif (layer.type == 'Hidden'):
for i in range(layer.size): # do it this way so you don't break reference links
layer.error[i] = 0.0
return (retval, correct, totalCount) | Initializes error computation. Calculates error for output
layers and initializes hidden layer error to zero. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2367-L2383 |
Calysto/calysto | calysto/ai/conx.py | Network.compute_error | def compute_error(self, **args):
"""
Computes error for all non-output layers backwards through all
projections.
"""
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Output':
self.copyTargets(layer, args[key])
self.verifyTargets() # better have targets set
error, correct, total = self.ce_init()
pcorrect = {}
# go backwards through each proj but don't redo output errors!
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if connect.active and connect.toLayer.active and connect.fromLayer.active:
connect.toLayer.delta = (connect.toLayer.error *
(self.ACTPRIME(connect.toLayer.activation)))
connect.fromLayer.error = connect.fromLayer.error + \
Numeric.matrixmultiply(connect.weight, connect.toLayer.delta)
# now all errors are set on all layers!
pcorrect = self.getLayerErrors()
return (error, correct, total, pcorrect) | python | def compute_error(self, **args):
"""
Computes error for all non-output layers backwards through all
projections.
"""
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Output':
self.copyTargets(layer, args[key])
self.verifyTargets() # better have targets set
error, correct, total = self.ce_init()
pcorrect = {}
# go backwards through each proj but don't redo output errors!
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if connect.active and connect.toLayer.active and connect.fromLayer.active:
connect.toLayer.delta = (connect.toLayer.error *
(self.ACTPRIME(connect.toLayer.activation)))
connect.fromLayer.error = connect.fromLayer.error + \
Numeric.matrixmultiply(connect.weight, connect.toLayer.delta)
# now all errors are set on all layers!
pcorrect = self.getLayerErrors()
return (error, correct, total, pcorrect) | Computes error for all non-output layers backwards through all
projections. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2384-L2409 |
Calysto/calysto | calysto/ai/conx.py | Network.compute_wed | def compute_wed(self):
"""
Computes weight error derivative for all connections in
self.connections starting with the last connection.
"""
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if connect.active and connect.fromLayer.active and connect.toLayer.active:
connect.wed = connect.wed + Numeric.outerproduct(connect.fromLayer.activation,
connect.toLayer.delta)
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active:
layer.wed = layer.wed + layer.delta | python | def compute_wed(self):
"""
Computes weight error derivative for all connections in
self.connections starting with the last connection.
"""
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if connect.active and connect.fromLayer.active and connect.toLayer.active:
connect.wed = connect.wed + Numeric.outerproduct(connect.fromLayer.activation,
connect.toLayer.delta)
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active:
layer.wed = layer.wed + layer.delta | Computes weight error derivative for all connections in
self.connections starting with the last connection. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2438-L2457 |
Calysto/calysto | calysto/ai/conx.py | Network.toString | def toString(self):
"""
Returns the network layers as a string.
"""
output = ""
for layer in reverse(self.layers):
output += layer.toString()
return output | python | def toString(self):
"""
Returns the network layers as a string.
"""
output = ""
for layer in reverse(self.layers):
output += layer.toString()
return output | Returns the network layers as a string. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2469-L2476 |
Calysto/calysto | calysto/ai/conx.py | Network.display | def display(self):
"""
Displays the network to the screen.
"""
print("Display network '" + self.name + "':")
size = list(range(len(self.layers)))
size.reverse()
for i in size:
if self.layers[i].active:
self.layers[i].display()
if self.patterned and self.layers[i].type != 'Hidden':
targetWord, diff = self.getWord( self.layers[i].target, returnDiff = 1)
if self.layers[i].kind == 'Output':
if targetWord == None:
print("Target Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Target Pattern = '%s'; (exact)" % targetWord)
else:
print("Target Pattern = '%s'; Match difference = %f)" % (targetWord, diff))
actWord, diff = self.getWord( self.layers[i].activation, returnDiff = 1 )
if (self.layers[i].kind == 'Input' or self.layers[i].kind == 'Output'):
if actWord == None:
print("Matching Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Matching Pattern = '%s'; (exact)" % actWord)
else:
print("Matching Pattern = '%s'; Match difference = %f" % (actWord, diff))
if self.verbosity >= 1:
weights = list(range(len(self.connections)))
weights.reverse()
for j in weights:
if self.connections[j].toLayer.name == self.layers[i].name:
self.connections[j].display() | python | def display(self):
"""
Displays the network to the screen.
"""
print("Display network '" + self.name + "':")
size = list(range(len(self.layers)))
size.reverse()
for i in size:
if self.layers[i].active:
self.layers[i].display()
if self.patterned and self.layers[i].type != 'Hidden':
targetWord, diff = self.getWord( self.layers[i].target, returnDiff = 1)
if self.layers[i].kind == 'Output':
if targetWord == None:
print("Target Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Target Pattern = '%s'; (exact)" % targetWord)
else:
print("Target Pattern = '%s'; Match difference = %f)" % (targetWord, diff))
actWord, diff = self.getWord( self.layers[i].activation, returnDiff = 1 )
if (self.layers[i].kind == 'Input' or self.layers[i].kind == 'Output'):
if actWord == None:
print("Matching Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Matching Pattern = '%s'; (exact)" % actWord)
else:
print("Matching Pattern = '%s'; Match difference = %f" % (actWord, diff))
if self.verbosity >= 1:
weights = list(range(len(self.connections)))
weights.reverse()
for j in weights:
if self.connections[j].toLayer.name == self.layers[i].name:
self.connections[j].display() | Displays the network to the screen. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2544-L2578 |
Calysto/calysto | calysto/ai/conx.py | Network.arrayify | def arrayify(self):
"""
Returns an array of node bias values and connection weights
for use in a GA.
"""
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
gene.append( layer.weight[i] )
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
gene.append( connection.weight[i][j] )
return gene | python | def arrayify(self):
"""
Returns an array of node bias values and connection weights
for use in a GA.
"""
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
gene.append( layer.weight[i] )
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
gene.append( connection.weight[i][j] )
return gene | Returns an array of node bias values and connection weights
for use in a GA. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2581-L2595 |
Calysto/calysto | calysto/ai/conx.py | Network.unArrayify | def unArrayify(self, gene):
"""
Copies gene bias values and weights to network bias values and
weights.
"""
g = 0
# if gene is too small an IndexError will be thrown
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
layer.weight[i] = float( gene[g])
g += 1
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
connection.weight[i][j] = gene[g]
g += 1
# if gene is too long we may have a problem
if len(gene) > g:
raise IndexError('Argument to unArrayify is too long.', len(gene)) | python | def unArrayify(self, gene):
"""
Copies gene bias values and weights to network bias values and
weights.
"""
g = 0
# if gene is too small an IndexError will be thrown
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
layer.weight[i] = float( gene[g])
g += 1
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
connection.weight[i][j] = gene[g]
g += 1
# if gene is too long we may have a problem
if len(gene) > g:
raise IndexError('Argument to unArrayify is too long.', len(gene)) | Copies gene bias values and weights to network bias values and
weights. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2596-L2615 |
Calysto/calysto | calysto/ai/conx.py | Network.saveWeightsToFile | def saveWeightsToFile(self, filename, mode='pickle', counter=None):
"""
Deprecated. Use saveWeights instead.
"""
self.saveWeights(filename, mode, counter) | python | def saveWeightsToFile(self, filename, mode='pickle', counter=None):
"""
Deprecated. Use saveWeights instead.
"""
self.saveWeights(filename, mode, counter) | Deprecated. Use saveWeights instead. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2635-L2639 |
Calysto/calysto | calysto/ai/conx.py | Network.saveWeights | def saveWeights(self, filename, mode='pickle', counter=None):
"""
Saves weights to file in pickle, plain, or tlearn mode.
"""
# modes: pickle/conx, plain, tlearn
if "?" in filename: # replace ? pattern in filename with epoch number
import re
char = "?"
match = re.search(re.escape(char) + "+", filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0: # use a total epoch, if one:
num = self.totalEpoch
fstring = "%%0%dd" % len(match.group())
filename = filename[:match.start()] + \
fstring % self.epoch + \
filename[match.end():]
self.lastAutoSaveWeightsFilename = filename
if mode == 'pickle':
mylist = self.arrayify()
import pickle
fp = open(filename, "w")
pickle.dump(mylist, fp)
fp.close()
elif mode in ['plain', 'conx']:
fp = open(filename, "w")
fp.write("# Biases\n")
for layer in self.layers:
if layer.type != 'Input':
fp.write("# Layer: " + layer.name + "\n")
for i in range(layer.size):
fp.write("%f " % layer.weight[i] )
fp.write("\n")
fp.write("# Weights\n")
for connection in self.connections:
fp.write("# from " + connection.fromLayer.name + " to " +
connection.toLayer.name + "\n")
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write("%f " % connection.weight[i][j] )
fp.write("\n")
fp.close()
elif mode == 'tlearn':
fp = open(filename, "w")
fp.write("NETWORK CONFIGURED BY TLEARN\n")
fp.write("# weights after %d sweeps\n" % self.epoch)
fp.write("# WEIGHTS\n")
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.write("# TO NODE %d\n" % cnt)
fp.write("%f\n" % lto.weight[j] )
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name,lto.name)
for i in range(connection.fromLayer.size):
fp.write("%f\n" % connection.weight[i][j])
except NetworkError: # should return an exception here
for i in range(lfrom.size):
fp.write("%f\n" % 0.0)
cnt += 1
fp.close()
else:
raise ValueError('Unknown mode in saveWeights().', mode) | python | def saveWeights(self, filename, mode='pickle', counter=None):
"""
Saves weights to file in pickle, plain, or tlearn mode.
"""
# modes: pickle/conx, plain, tlearn
if "?" in filename: # replace ? pattern in filename with epoch number
import re
char = "?"
match = re.search(re.escape(char) + "+", filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0: # use a total epoch, if one:
num = self.totalEpoch
fstring = "%%0%dd" % len(match.group())
filename = filename[:match.start()] + \
fstring % self.epoch + \
filename[match.end():]
self.lastAutoSaveWeightsFilename = filename
if mode == 'pickle':
mylist = self.arrayify()
import pickle
fp = open(filename, "w")
pickle.dump(mylist, fp)
fp.close()
elif mode in ['plain', 'conx']:
fp = open(filename, "w")
fp.write("# Biases\n")
for layer in self.layers:
if layer.type != 'Input':
fp.write("# Layer: " + layer.name + "\n")
for i in range(layer.size):
fp.write("%f " % layer.weight[i] )
fp.write("\n")
fp.write("# Weights\n")
for connection in self.connections:
fp.write("# from " + connection.fromLayer.name + " to " +
connection.toLayer.name + "\n")
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write("%f " % connection.weight[i][j] )
fp.write("\n")
fp.close()
elif mode == 'tlearn':
fp = open(filename, "w")
fp.write("NETWORK CONFIGURED BY TLEARN\n")
fp.write("# weights after %d sweeps\n" % self.epoch)
fp.write("# WEIGHTS\n")
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.write("# TO NODE %d\n" % cnt)
fp.write("%f\n" % lto.weight[j] )
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name,lto.name)
for i in range(connection.fromLayer.size):
fp.write("%f\n" % connection.weight[i][j])
except NetworkError: # should return an exception here
for i in range(lfrom.size):
fp.write("%f\n" % 0.0)
cnt += 1
fp.close()
else:
raise ValueError('Unknown mode in saveWeights().', mode) | Saves weights to file in pickle, plain, or tlearn mode. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2641-L2707 |
Calysto/calysto | calysto/ai/conx.py | Network.loadWeights | def loadWeights(self, filename, mode='pickle'):
"""
Loads weights from a file in pickle, plain, or tlearn mode.
"""
# modes: pickle, plain/conx, tlearn
if mode == 'pickle':
import pickle
fp = open(filename, "r")
mylist = pickle.load(fp)
fp.close()
self.unArrayify(mylist)
elif mode in ['plain', 'conx']:
arr = []
fp = open(filename, "r")
lines = fp.readlines()
for line in lines:
line = line.strip()
if line == '' or line[0] == '#':
pass
else:
data = list(map( float, line.split()))
arr.extend( data )
self.unArrayify( arr )
fp.close()
elif mode == 'tlearn':
fp = open(filename, "r")
fp.readline() # NETWORK CONFIGURED BY
fp.readline() # # weights after %d sweeps
fp.readline() # # WEIGHTS
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.readline() # TO NODE %d
lto.weight[j] = float(fp.readline())
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name, lto.name)
for i in range(connection.fromLayer.size):
connection.weight[i][j] = float( fp.readline() )
except NetworkError:
for i in range(lfrom.size):
# 0.0
fp.readline()
cnt += 1
fp.close()
elif mode == 'nbench':
# reads weights and constructs network
fp = open(filename, "r")
line = fp.readline()
while line[:8] != "Ninputs:":
line = fp.readline()
itxt, inputs, ttxt, total, otxt, outputs = line.split()
inputs, total, outputs = int(inputs), int(total), int(outputs)
# cascor's total value is the bias + inputs + hiddens
hiddens = total - inputs - 1
# create the layers:
self.addLayer("input", inputs)
for i in range(hiddens):
self.addLayer("hidden%d" % i, 1)
self.addLayer("output", outputs)
# connect input to all hiddens, output:
for i in range(hiddens):
self.connect("input", "hidden%d" % i)
self.connect("input", "output")
# connect all hiddens to all later hiddens:
for i in range(hiddens - 1):
for j in range(i + 1, hiddens):
if j != i:
self.connect("hidden%d" % i, "hidden%d" % j )
# connect all hiddens to outputs:
for i in range(hiddens):
self.connect("hidden%d" % i, "output")
# now, let's set the weights:
for outcount in range(outputs):
while line[:9] != "# Output:":
line = fp.readline()
line = fp.readline() # $
line = fp.readline() # bias, input to output, hidden to output?
data = ""
while line and line[0] != "#":
data += " " + line.strip()
line = fp.readline()
weights = list(map(float, data.split()))
self["output"].weight[outcount] = weights[0] # bias
next = 1
for i in range(self["input"].size):
self["input", "output"].weight[i][outcount] = weights[next]
next += 1
for h in range(hiddens):
for i in range(self["hidden%d" % h].size): # normally just 1
self["hidden%d" % h, "output"].weight[i][outcount] = weights[next]
next += 1
# now, for each hidden "layer":
while line and line[0] != "$":
line = fp.readline()
line = fp.readline()
for hidcount in range(hiddens):
weights = []
while line and line[0] != "$" and line[0] != "#": # next line is a weight line
weights.extend( list(map(float, line.split()))) # bias, input to hidden, hidden to hidden?
line = fp.readline()
self[("hidden%d" % hidcount)].weight[0] = weights[0] # bias first
next = 1
for i in range(self["input"].size):
for j in range(self["hidden%d" % hidcount].size): # normally just 1
self["input", ("hidden%d" % hidcount)].weight[i][j] = weights[next]
next += 1
for h in range(hidcount): # all those hids leading up to this one
for i in range(self["hidden%d" % h].size): # normally just 1
for j in range(self["hidden%d" % hidcount].size): # normally just 1
self[("hidden%d" % h), ("hidden%d" % hidcount)].weight[i][j] = weights[next]
next += 1
line = fp.readline() # $
line = fp.readline() # beginning of weights
else:
raise ValueError('Unknown mode in loadWeights()', mode) | python | def loadWeights(self, filename, mode='pickle'):
"""
Loads weights from a file in pickle, plain, or tlearn mode.
"""
# modes: pickle, plain/conx, tlearn
if mode == 'pickle':
import pickle
fp = open(filename, "r")
mylist = pickle.load(fp)
fp.close()
self.unArrayify(mylist)
elif mode in ['plain', 'conx']:
arr = []
fp = open(filename, "r")
lines = fp.readlines()
for line in lines:
line = line.strip()
if line == '' or line[0] == '#':
pass
else:
data = list(map( float, line.split()))
arr.extend( data )
self.unArrayify( arr )
fp.close()
elif mode == 'tlearn':
fp = open(filename, "r")
fp.readline() # NETWORK CONFIGURED BY
fp.readline() # # weights after %d sweeps
fp.readline() # # WEIGHTS
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.readline() # TO NODE %d
lto.weight[j] = float(fp.readline())
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name, lto.name)
for i in range(connection.fromLayer.size):
connection.weight[i][j] = float( fp.readline() )
except NetworkError:
for i in range(lfrom.size):
# 0.0
fp.readline()
cnt += 1
fp.close()
elif mode == 'nbench':
# reads weights and constructs network
fp = open(filename, "r")
line = fp.readline()
while line[:8] != "Ninputs:":
line = fp.readline()
itxt, inputs, ttxt, total, otxt, outputs = line.split()
inputs, total, outputs = int(inputs), int(total), int(outputs)
# cascor's total value is the bias + inputs + hiddens
hiddens = total - inputs - 1
# create the layers:
self.addLayer("input", inputs)
for i in range(hiddens):
self.addLayer("hidden%d" % i, 1)
self.addLayer("output", outputs)
# connect input to all hiddens, output:
for i in range(hiddens):
self.connect("input", "hidden%d" % i)
self.connect("input", "output")
# connect all hiddens to all later hiddens:
for i in range(hiddens - 1):
for j in range(i + 1, hiddens):
if j != i:
self.connect("hidden%d" % i, "hidden%d" % j )
# connect all hiddens to outputs:
for i in range(hiddens):
self.connect("hidden%d" % i, "output")
# now, let's set the weights:
for outcount in range(outputs):
while line[:9] != "# Output:":
line = fp.readline()
line = fp.readline() # $
line = fp.readline() # bias, input to output, hidden to output?
data = ""
while line and line[0] != "#":
data += " " + line.strip()
line = fp.readline()
weights = list(map(float, data.split()))
self["output"].weight[outcount] = weights[0] # bias
next = 1
for i in range(self["input"].size):
self["input", "output"].weight[i][outcount] = weights[next]
next += 1
for h in range(hiddens):
for i in range(self["hidden%d" % h].size): # normally just 1
self["hidden%d" % h, "output"].weight[i][outcount] = weights[next]
next += 1
# now, for each hidden "layer":
while line and line[0] != "$":
line = fp.readline()
line = fp.readline()
for hidcount in range(hiddens):
weights = []
while line and line[0] != "$" and line[0] != "#": # next line is a weight line
weights.extend( list(map(float, line.split()))) # bias, input to hidden, hidden to hidden?
line = fp.readline()
self[("hidden%d" % hidcount)].weight[0] = weights[0] # bias first
next = 1
for i in range(self["input"].size):
for j in range(self["hidden%d" % hidcount].size): # normally just 1
self["input", ("hidden%d" % hidcount)].weight[i][j] = weights[next]
next += 1
for h in range(hidcount): # all those hids leading up to this one
for i in range(self["hidden%d" % h].size): # normally just 1
for j in range(self["hidden%d" % hidcount].size): # normally just 1
self[("hidden%d" % h), ("hidden%d" % hidcount)].weight[i][j] = weights[next]
next += 1
line = fp.readline() # $
line = fp.readline() # beginning of weights
else:
raise ValueError('Unknown mode in loadWeights()', mode) | Loads weights from a file in pickle, plain, or tlearn mode. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2715-L2831 |
Calysto/calysto | calysto/ai/conx.py | Network.saveNetwork | def saveNetwork(self, filename, makeWrapper = 1, mode = "pickle", counter = None):
"""
Saves network to file using pickle.
"""
self.saveNetworkToFile(filename, makeWrapper, mode, counter) | python | def saveNetwork(self, filename, makeWrapper = 1, mode = "pickle", counter = None):
"""
Saves network to file using pickle.
"""
self.saveNetworkToFile(filename, makeWrapper, mode, counter) | Saves network to file using pickle. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2833-L2837 |
Calysto/calysto | calysto/ai/conx.py | Network.saveNetworkToFile | def saveNetworkToFile(self, filename, makeWrapper = 1, mode = "pickle", counter = None):
"""
Deprecated.
"""
if "?" in filename: # replace ? pattern in filename with epoch number
import re
char = "?"
match = re.search(re.escape(char) + "+", filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0: # use a total epoch, if one:
num = self.totalEpoch
fstring = "%%0%dd" % len(match.group())
filename = filename[:match.start()] + \
fstring % num + \
filename[match.end():]
self.lastAutoSaveNetworkFilename = filename
if mode == "pickle":
# dump network via pickle:
import pickle
basename = filename.split('.')[0]
filename += ".pickle"
fp = open(filename, 'w')
pickle.dump(self, fp)
fp.close()
# make wrapper python file:
if makeWrapper:
fp = open(basename + ".py", "w")
fp.write("from pyrobot.brain.conx import *\n")
fp.write("import pickle\n")
fp.write("fp = open('%s', 'r')\n" % filename)
fp.write("network = pickle.load(fp)")
fp.close()
# give some help:
print("To load network:")
print(" %% python -i %s " % (basename + ".py"))
print(" >>> network.train() # for example")
print("--- OR ---")
print(" % python")
print(" >>> from pyrobot.brain.conx import *")
print(" >>> network = loadNetwork(%s)" % filename)
print(" >>> network.train() # for example")
elif mode in ["plain", "conx"]:
fp = open(filename, "w")
fp.write("network, %s\n" % (self.__class__.__name__))
for layer in self.layers:
fp.write("layer, %s, %s\n" % (layer.name, layer.size))
# biases:
for i in range(layer.size):
fp.write("%f " % layer.weight[i])
fp.write("\n")
for connection in self.connections:
fp.write("connection, %s, %s\n" %(connection.fromLayer.name, connection.toLayer.name))
# weights:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write("%f " % connection.weight[i][j])
fp.write("\n")
fp.close() | python | def saveNetworkToFile(self, filename, makeWrapper = 1, mode = "pickle", counter = None):
"""
Deprecated.
"""
if "?" in filename: # replace ? pattern in filename with epoch number
import re
char = "?"
match = re.search(re.escape(char) + "+", filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0: # use a total epoch, if one:
num = self.totalEpoch
fstring = "%%0%dd" % len(match.group())
filename = filename[:match.start()] + \
fstring % num + \
filename[match.end():]
self.lastAutoSaveNetworkFilename = filename
if mode == "pickle":
# dump network via pickle:
import pickle
basename = filename.split('.')[0]
filename += ".pickle"
fp = open(filename, 'w')
pickle.dump(self, fp)
fp.close()
# make wrapper python file:
if makeWrapper:
fp = open(basename + ".py", "w")
fp.write("from pyrobot.brain.conx import *\n")
fp.write("import pickle\n")
fp.write("fp = open('%s', 'r')\n" % filename)
fp.write("network = pickle.load(fp)")
fp.close()
# give some help:
print("To load network:")
print(" %% python -i %s " % (basename + ".py"))
print(" >>> network.train() # for example")
print("--- OR ---")
print(" % python")
print(" >>> from pyrobot.brain.conx import *")
print(" >>> network = loadNetwork(%s)" % filename)
print(" >>> network.train() # for example")
elif mode in ["plain", "conx"]:
fp = open(filename, "w")
fp.write("network, %s\n" % (self.__class__.__name__))
for layer in self.layers:
fp.write("layer, %s, %s\n" % (layer.name, layer.size))
# biases:
for i in range(layer.size):
fp.write("%f " % layer.weight[i])
fp.write("\n")
for connection in self.connections:
fp.write("connection, %s, %s\n" %(connection.fromLayer.name, connection.toLayer.name))
# weights:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write("%f " % connection.weight[i][j])
fp.write("\n")
fp.close() | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2839-L2899 |
Calysto/calysto | calysto/ai/conx.py | Network.loadVectors | def loadVectors(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1, patterned = 0):
"""
Load a set of vectors from a file. Takes a filename, list of cols
you want (or None for all), get every everyNrows (or 1 for no
skipping), and a delimeter.
"""
return self.loadVectorsFromFile(filename, cols, everyNrows,
delim, checkEven, patterned) | python | def loadVectors(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1, patterned = 0):
"""
Load a set of vectors from a file. Takes a filename, list of cols
you want (or None for all), get every everyNrows (or 1 for no
skipping), and a delimeter.
"""
return self.loadVectorsFromFile(filename, cols, everyNrows,
delim, checkEven, patterned) | Load a set of vectors from a file. Takes a filename, list of cols
you want (or None for all), get every everyNrows (or 1 for no
skipping), and a delimeter. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2901-L2909 |
Calysto/calysto | calysto/ai/conx.py | Network.loadVectorsFromFile | def loadVectorsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1, patterned = 0):
"""
Deprecated.
"""
fp = open(filename, "r")
line = fp.readline()
lineno = 0
lastLength = None
data = []
while line:
if lineno % everyNrows == 0:
if patterned:
linedata1 = [x for x in line.strip().split(delim)]
else:
linedata1 = [float(x) for x in line.strip().split(delim)]
else:
lineno += 1
line = fp.readline()
continue
if cols == None: # get em all
newdata = linedata1
else: # just get some cols
newdata = []
for i in cols:
newdata.append( linedata1[i] )
if lastLength == None or (not checkEven) or (checkEven and len(newdata) == lastLength):
data.append( newdata )
else:
raise ValueError("Data Format Error: line = %d, data = %s" % (lineno, newdata))
lastLength = len(newdata)
lineno += 1
line = fp.readline()
fp.close()
return data | python | def loadVectorsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1, patterned = 0):
"""
Deprecated.
"""
fp = open(filename, "r")
line = fp.readline()
lineno = 0
lastLength = None
data = []
while line:
if lineno % everyNrows == 0:
if patterned:
linedata1 = [x for x in line.strip().split(delim)]
else:
linedata1 = [float(x) for x in line.strip().split(delim)]
else:
lineno += 1
line = fp.readline()
continue
if cols == None: # get em all
newdata = linedata1
else: # just get some cols
newdata = []
for i in cols:
newdata.append( linedata1[i] )
if lastLength == None or (not checkEven) or (checkEven and len(newdata) == lastLength):
data.append( newdata )
else:
raise ValueError("Data Format Error: line = %d, data = %s" % (lineno, newdata))
lastLength = len(newdata)
lineno += 1
line = fp.readline()
fp.close()
return data | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2911-L2945 |
Calysto/calysto | calysto/ai/conx.py | Network.loadInputPatterns | def loadInputPatterns(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads inputs as patterns from file.
"""
self.loadInputPatternsFromFile(filename, cols, everyNrows,
delim, checkEven) | python | def loadInputPatterns(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads inputs as patterns from file.
"""
self.loadInputPatternsFromFile(filename, cols, everyNrows,
delim, checkEven) | Loads inputs as patterns from file. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2947-L2953 |
Calysto/calysto | calysto/ai/conx.py | Network.loadInputPatternsFromFile | def loadInputPatternsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Deprecated.
"""
self.inputs = self.loadVectors(filename, cols, everyNrows, delim, checkEven, patterned = 1)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | python | def loadInputPatternsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Deprecated.
"""
self.inputs = self.loadVectors(filename, cols, everyNrows, delim, checkEven, patterned = 1)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2955-L2963 |
Calysto/calysto | calysto/ai/conx.py | Network.loadInputs | def loadInputs(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads inputs from file. Patterning is lost.
"""
self.loadInputsFromFile(filename, cols, everyNrows,
delim, checkEven) | python | def loadInputs(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads inputs from file. Patterning is lost.
"""
self.loadInputsFromFile(filename, cols, everyNrows,
delim, checkEven) | Loads inputs from file. Patterning is lost. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2965-L2971 |
Calysto/calysto | calysto/ai/conx.py | Network.saveInputsToFile | def saveInputsToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for input in self.inputs:
vec = self.replacePatterns(input)
for item in vec:
fp.write("%f " % item)
fp.write("\n") | python | def saveInputsToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for input in self.inputs:
vec = self.replacePatterns(input)
for item in vec:
fp.write("%f " % item)
fp.write("\n") | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L2989-L2998 |
Calysto/calysto | calysto/ai/conx.py | Network.loadTargets | def loadTargets(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets from file.
"""
self.loadTargetsFromFile(filename, cols, everyNrows,
delim, checkEven) | python | def loadTargets(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets from file.
"""
self.loadTargetsFromFile(filename, cols, everyNrows,
delim, checkEven) | Loads targets from file. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3000-L3006 |
Calysto/calysto | calysto/ai/conx.py | Network.loadTargetsFromFile | def loadTargetsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets from file.
"""
self.targets = self.loadVectors(filename, cols, everyNrows,
delim, checkEven) | python | def loadTargetsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets from file.
"""
self.targets = self.loadVectors(filename, cols, everyNrows,
delim, checkEven) | Loads targets from file. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3008-L3014 |
Calysto/calysto | calysto/ai/conx.py | Network.loadTargetPatterns | def loadTargetPatterns(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets as patterns from file.
"""
self.loadTargetPatternssFromFile(filename, cols, everyNrows,
delim, checkEven) | python | def loadTargetPatterns(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Loads targets as patterns from file.
"""
self.loadTargetPatternssFromFile(filename, cols, everyNrows,
delim, checkEven) | Loads targets as patterns from file. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3016-L3022 |
Calysto/calysto | calysto/ai/conx.py | Network.loadTargetPatternsFromFile | def loadTargetPatternsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Deprecated.
"""
self.targets = self.loadVectors(filename, cols, everyNrows,
delim, checkEven, patterned=1) | python | def loadTargetPatternsFromFile(self, filename, cols = None, everyNrows = 1,
delim = ' ', checkEven = 1):
"""
Deprecated.
"""
self.targets = self.loadVectors(filename, cols, everyNrows,
delim, checkEven, patterned=1) | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3024-L3030 |
Calysto/calysto | calysto/ai/conx.py | Network.saveTargetsToFile | def saveTargetsToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for target in self.targets:
vec = self.replacePatterns(target)
for item in vec:
fp.write("%f " % item)
fp.write("\n") | python | def saveTargetsToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for target in self.targets:
vec = self.replacePatterns(target)
for item in vec:
fp.write("%f " % item)
fp.write("\n") | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3038-L3047 |
Calysto/calysto | calysto/ai/conx.py | Network.saveDataToFile | def saveDataToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for i in range(len(self.inputs)):
try:
vec = self.replacePatterns(self.inputs[i])
for item in vec:
fp.write("%f " % item)
except:
pass
try:
vec = self.replacePatterns(self.targets[i])
for item in vec:
fp.write("%f " % item)
except:
pass
fp.write("\n") | python | def saveDataToFile(self, filename):
"""
Deprecated.
"""
fp = open(filename, 'w')
for i in range(len(self.inputs)):
try:
vec = self.replacePatterns(self.inputs[i])
for item in vec:
fp.write("%f " % item)
except:
pass
try:
vec = self.replacePatterns(self.targets[i])
for item in vec:
fp.write("%f " % item)
except:
pass
fp.write("\n") | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3055-L3073 |
Calysto/calysto | calysto/ai/conx.py | Network.loadDataFromFile | def loadDataFromFile(self, filename, ocnt = -1):
"""
Deprecated.
"""
if ocnt == -1:
ocnt = int(self.layers[len(self.layers) - 1].size)
fp = open(filename, 'r')
line = fp.readline()
self.targets = []
self.inputs = []
while line:
data = list(map(float, line.split()))
cnt = len(data)
icnt = cnt - ocnt
self.inputs.append(self.patternVector(data[0:icnt]))
self.targets.append(self.patternVector(data[icnt:]))
line = fp.readline()
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | python | def loadDataFromFile(self, filename, ocnt = -1):
"""
Deprecated.
"""
if ocnt == -1:
ocnt = int(self.layers[len(self.layers) - 1].size)
fp = open(filename, 'r')
line = fp.readline()
self.targets = []
self.inputs = []
while line:
data = list(map(float, line.split()))
cnt = len(data)
icnt = cnt - ocnt
self.inputs.append(self.patternVector(data[0:icnt]))
self.targets.append(self.patternVector(data[icnt:]))
line = fp.readline()
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i | Deprecated. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3081-L3100 |
Calysto/calysto | calysto/ai/conx.py | Network.lookupPattern | def lookupPattern(self, name, layer):
""" See if there is a name/layer pattern combo, else return the name pattern. """
if (name, layer) in self.patterns:
return self.patterns[(name, layer)]
else:
return self.patterns[name] | python | def lookupPattern(self, name, layer):
""" See if there is a name/layer pattern combo, else return the name pattern. """
if (name, layer) in self.patterns:
return self.patterns[(name, layer)]
else:
return self.patterns[name] | See if there is a name/layer pattern combo, else return the name pattern. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3103-L3108 |
Calysto/calysto | calysto/ai/conx.py | Network.replacePatterns | def replacePatterns(self, vector, layer = None):
"""
Replaces patterned inputs or targets with activation vectors.
"""
if not self.patterned: return vector
if type(vector) == str:
return self.replacePatterns(self.lookupPattern(vector, layer), layer)
elif type(vector) != list:
return vector
# should be a vector if we made it here
vec = []
for v in vector:
if type(v) == str:
retval = self.replacePatterns(self.lookupPattern(v, layer), layer)
if type(retval) == list:
vec.extend( retval )
else:
vec.append( retval )
else:
vec.append( v )
return vec | python | def replacePatterns(self, vector, layer = None):
"""
Replaces patterned inputs or targets with activation vectors.
"""
if not self.patterned: return vector
if type(vector) == str:
return self.replacePatterns(self.lookupPattern(vector, layer), layer)
elif type(vector) != list:
return vector
# should be a vector if we made it here
vec = []
for v in vector:
if type(v) == str:
retval = self.replacePatterns(self.lookupPattern(v, layer), layer)
if type(retval) == list:
vec.extend( retval )
else:
vec.append( retval )
else:
vec.append( v )
return vec | Replaces patterned inputs or targets with activation vectors. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3109-L3129 |
Calysto/calysto | calysto/ai/conx.py | Network.patternVector | def patternVector(self, vector):
"""
Replaces vector with patterns. Used for loading inputs or
targets from a file and still preserving patterns.
"""
if not self.patterned: return vector
if type(vector) == int:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == float:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == str:
return vector
elif type(vector) == list:
if self.getWord(vector) != '':
return self.getWord(vector)
# should be a list
vec = []
for v in vector:
if self.getWord(v) != '':
retval = self.getWord(v)
vec.append( retval )
else:
retval = self.patternVector(v)
vec.append( retval )
return vec | python | def patternVector(self, vector):
"""
Replaces vector with patterns. Used for loading inputs or
targets from a file and still preserving patterns.
"""
if not self.patterned: return vector
if type(vector) == int:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == float:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == str:
return vector
elif type(vector) == list:
if self.getWord(vector) != '':
return self.getWord(vector)
# should be a list
vec = []
for v in vector:
if self.getWord(v) != '':
retval = self.getWord(v)
vec.append( retval )
else:
retval = self.patternVector(v)
vec.append( retval )
return vec | Replaces vector with patterns. Used for loading inputs or
targets from a file and still preserving patterns. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3130-L3160 |
Calysto/calysto | calysto/ai/conx.py | Network.getPattern | def getPattern(self, word):
"""
Returns the pattern with key word.
Example: net.getPattern("tom") => [0, 0, 0, 1]
"""
if word in self.patterns:
return self.patterns[word]
else:
raise ValueError('Unknown pattern in getPattern().', word) | python | def getPattern(self, word):
"""
Returns the pattern with key word.
Example: net.getPattern("tom") => [0, 0, 0, 1]
"""
if word in self.patterns:
return self.patterns[word]
else:
raise ValueError('Unknown pattern in getPattern().', word) | Returns the pattern with key word.
Example: net.getPattern("tom") => [0, 0, 0, 1] | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3172-L3182 |
Calysto/calysto | calysto/ai/conx.py | Network.getWord | def getWord(self, pattern, returnDiff = 0):
"""
Returns the word associated with pattern.
Example: net.getWord([0, 0, 0, 1]) => "tom"
This method now returns the closest pattern based on distance.
"""
minDist = 10000
closest = None
for w in self.patterns:
# There may be some patterns that are scalars; we don't search
# those in this function:
if type(self.patterns[w]) in [int, float, int]: continue
if len(self.patterns[w]) == len(pattern):
dist = reduce(operator.add, [(a - b) ** 2 for (a,b) in zip(self.patterns[w], pattern )])
if dist == 0.0:
if returnDiff:
return w, dist
else:
return w
if dist < minDist:
minDist = dist
closest = w
if returnDiff:
return closest, minDist
else:
return closest | python | def getWord(self, pattern, returnDiff = 0):
"""
Returns the word associated with pattern.
Example: net.getWord([0, 0, 0, 1]) => "tom"
This method now returns the closest pattern based on distance.
"""
minDist = 10000
closest = None
for w in self.patterns:
# There may be some patterns that are scalars; we don't search
# those in this function:
if type(self.patterns[w]) in [int, float, int]: continue
if len(self.patterns[w]) == len(pattern):
dist = reduce(operator.add, [(a - b) ** 2 for (a,b) in zip(self.patterns[w], pattern )])
if dist == 0.0:
if returnDiff:
return w, dist
else:
return w
if dist < minDist:
minDist = dist
closest = w
if returnDiff:
return closest, minDist
else:
return closest | Returns the word associated with pattern.
Example: net.getWord([0, 0, 0, 1]) => "tom"
This method now returns the closest pattern based on distance. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3183-L3210 |
Calysto/calysto | calysto/ai/conx.py | Network.addPattern | def addPattern(self, word, vector):
"""
Adds a pattern with key word.
Example: net.addPattern("tom", [0, 0, 0, 1])
"""
if word in self.patterns:
raise NetworkError('Pattern key already in use. Call delPattern to free key.', word)
else:
self.patterns[word] = vector | python | def addPattern(self, word, vector):
"""
Adds a pattern with key word.
Example: net.addPattern("tom", [0, 0, 0, 1])
"""
if word in self.patterns:
raise NetworkError('Pattern key already in use. Call delPattern to free key.', word)
else:
self.patterns[word] = vector | Adds a pattern with key word.
Example: net.addPattern("tom", [0, 0, 0, 1]) | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3221-L3231 |
Calysto/calysto | calysto/ai/conx.py | Network.compare | def compare(self, v1, v2):
"""
Compares two values. Returns 1 if all values are withing
self.tolerance of each other.
"""
try:
if len(v1) != len(v2): return 0
for x, y in zip(v1, v2):
if abs( x - y ) > self.tolerance:
return 0
return 1
except:
# some patterns may not be vectors
try:
if abs( v1 - v2 ) > self.tolerance:
return 0
else:
return 1
except:
return 0 | python | def compare(self, v1, v2):
"""
Compares two values. Returns 1 if all values are withing
self.tolerance of each other.
"""
try:
if len(v1) != len(v2): return 0
for x, y in zip(v1, v2):
if abs( x - y ) > self.tolerance:
return 0
return 1
except:
# some patterns may not be vectors
try:
if abs( v1 - v2 ) > self.tolerance:
return 0
else:
return 1
except:
return 0 | Compares two values. Returns 1 if all values are withing
self.tolerance of each other. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3241-L3260 |
Calysto/calysto | calysto/ai/conx.py | Network.shareWeights | def shareWeights(self, network, listOfLayerNamePairs = None):
"""
Share weights with another network. Connection
is broken after a randomize or change of size. Layers must have the same
names and sizes for shared connections in both networks.
Example: net.shareWeights(otherNet, [["hidden", "output"]])
This example will take the weights between the hidden and output layers
of otherNet and share them with net. Also, the bias values of
otherNet["output"] will be shared with net["output"].
If no list is given, will share all weights.
"""
if listOfLayerNamePairs == None:
listOfLayerNamePairs = []
for c in self.connections:
listOfLayerNamePairs.append( [c.fromLayer.name, c.toLayer.name] )
if self.verbosity > 1:
print("sharing weights:", self.name, listOfLayerNamePairs)
# first, check to see if this will work:
count = 0
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1].fromLayer.name == fromLayerName and \
self.connections[c1].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2].fromLayer.name == fromLayerName and \
network.connections[c2].toLayer.name == toLayerName:
if (self.connections[c1].fromLayer.size != network.connections[c2].fromLayer.size) or \
(self.connections[c1].toLayer.size != network.connections[c2].toLayer.size):
raise AttributeError("shareSomeWeights: layer sizes did not match")
count += 1
if count != len(listOfLayerNamePairs):
raise AttributeError("shareSomeWeights: layer names did not match")
# ok, now let's share!
self.sharedWeights = 1
network.sharedWeights = 1
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1].fromLayer.name == fromLayerName and \
self.connections[c1].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2].fromLayer.name == fromLayerName and \
network.connections[c2].toLayer.name == toLayerName:
self.connections[c1].weight = network.connections[c2].weight
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for l1 in range(len(self.layers)):
if self.layers[l1].name == toLayerName:
for l2 in range(len(network.layers)):
if network.layers[l2].name == toLayerName:
self.layers[l1].weight = network.layers[l2].weight | python | def shareWeights(self, network, listOfLayerNamePairs = None):
"""
Share weights with another network. Connection
is broken after a randomize or change of size. Layers must have the same
names and sizes for shared connections in both networks.
Example: net.shareWeights(otherNet, [["hidden", "output"]])
This example will take the weights between the hidden and output layers
of otherNet and share them with net. Also, the bias values of
otherNet["output"] will be shared with net["output"].
If no list is given, will share all weights.
"""
if listOfLayerNamePairs == None:
listOfLayerNamePairs = []
for c in self.connections:
listOfLayerNamePairs.append( [c.fromLayer.name, c.toLayer.name] )
if self.verbosity > 1:
print("sharing weights:", self.name, listOfLayerNamePairs)
# first, check to see if this will work:
count = 0
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1].fromLayer.name == fromLayerName and \
self.connections[c1].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2].fromLayer.name == fromLayerName and \
network.connections[c2].toLayer.name == toLayerName:
if (self.connections[c1].fromLayer.size != network.connections[c2].fromLayer.size) or \
(self.connections[c1].toLayer.size != network.connections[c2].toLayer.size):
raise AttributeError("shareSomeWeights: layer sizes did not match")
count += 1
if count != len(listOfLayerNamePairs):
raise AttributeError("shareSomeWeights: layer names did not match")
# ok, now let's share!
self.sharedWeights = 1
network.sharedWeights = 1
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1].fromLayer.name == fromLayerName and \
self.connections[c1].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2].fromLayer.name == fromLayerName and \
network.connections[c2].toLayer.name == toLayerName:
self.connections[c1].weight = network.connections[c2].weight
for (fromLayerName, toLayerName) in listOfLayerNamePairs:
for l1 in range(len(self.layers)):
if self.layers[l1].name == toLayerName:
for l2 in range(len(network.layers)):
if network.layers[l2].name == toLayerName:
self.layers[l1].weight = network.layers[l2].weight | Share weights with another network. Connection
is broken after a randomize or change of size. Layers must have the same
names and sizes for shared connections in both networks.
Example: net.shareWeights(otherNet, [["hidden", "output"]])
This example will take the weights between the hidden and output layers
of otherNet and share them with net. Also, the bias values of
otherNet["output"] will be shared with net["output"].
If no list is given, will share all weights. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3261-L3312 |
Calysto/calysto | calysto/ai/conx.py | BackpropNetwork.propagate | def propagate(self, *arg, **kw):
""" Propagates activation through the network."""
output = Network.propagate(self, *arg, **kw)
if self.interactive:
self.updateGraphics()
# IMPORTANT: convert results from numpy.floats to conventional floats
if type(output) == dict:
for layerName in output:
output[layerName] = [float(x) for x in output[layerName]]
return output
else:
return [float(x) for x in output] | python | def propagate(self, *arg, **kw):
""" Propagates activation through the network."""
output = Network.propagate(self, *arg, **kw)
if self.interactive:
self.updateGraphics()
# IMPORTANT: convert results from numpy.floats to conventional floats
if type(output) == dict:
for layerName in output:
output[layerName] = [float(x) for x in output[layerName]]
return output
else:
return [float(x) for x in output] | Propagates activation through the network. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4286-L4297 |
Calysto/calysto | calysto/ai/conx.py | BackpropNetwork.loadWeightsFromFile | def loadWeightsFromFile(self, filename, mode='pickle'):
"""
Deprecated. Use loadWeights instead.
"""
Network.loadWeights(self, filename, mode)
self.updateGraphics() | python | def loadWeightsFromFile(self, filename, mode='pickle'):
"""
Deprecated. Use loadWeights instead.
"""
Network.loadWeights(self, filename, mode)
self.updateGraphics() | Deprecated. Use loadWeights instead. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4304-L4309 |
Calysto/calysto | calysto/ai/conx.py | BackpropNetwork.display | def display(self):
"""Displays the network to the screen."""
size = list(range(len(self.layers)))
size.reverse()
for i in size:
layer = self.layers[i]
if layer.active:
print('%s layer (size %d)' % (layer.name, layer.size))
tlabel, olabel = '', ''
if (layer.type == 'Output'):
if self.countWrong:
tlabel = ' (%s)' % self.classify(layer.target.tolist())
olabel = ' (%s)' % self.classify(layer.activation.tolist())
if olabel == tlabel:
self.numRight += 1
else:
olabel += ' *** WRONG ***'
self.numWrong += 1
if self.actDisplay is not None:
self.actDisplay.showWrong()
print('Target : %s%s' % (pretty(layer.target, max=15), tlabel))
print('Activation: %s%s' % (pretty(layer.activation, max=15), olabel))
if self.patterned and layer.type != 'Hidden':
targetWord, diff = self.getWord( layer.target, returnDiff = 1)
if layer.kind == 'Output':
if targetWord == None:
print("Target Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Target Pattern = '%s'" % targetWord)
else:
print("Target Pattern = '%s'; difference = %f)" % (targetWord, diff))
actWord, diff = self.getWord( layer.activation, returnDiff = 1 )
if (layer.kind == 'Input' or layer.kind == 'Output'):
if actWord == None:
print("Matching Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Matching Pattern = '%s'" % actWord)
else:
print("Matching Pattern = '%s'; difference = %f" % (actWord, diff))
print("------------------------------------") | python | def display(self):
"""Displays the network to the screen."""
size = list(range(len(self.layers)))
size.reverse()
for i in size:
layer = self.layers[i]
if layer.active:
print('%s layer (size %d)' % (layer.name, layer.size))
tlabel, olabel = '', ''
if (layer.type == 'Output'):
if self.countWrong:
tlabel = ' (%s)' % self.classify(layer.target.tolist())
olabel = ' (%s)' % self.classify(layer.activation.tolist())
if olabel == tlabel:
self.numRight += 1
else:
olabel += ' *** WRONG ***'
self.numWrong += 1
if self.actDisplay is not None:
self.actDisplay.showWrong()
print('Target : %s%s' % (pretty(layer.target, max=15), tlabel))
print('Activation: %s%s' % (pretty(layer.activation, max=15), olabel))
if self.patterned and layer.type != 'Hidden':
targetWord, diff = self.getWord( layer.target, returnDiff = 1)
if layer.kind == 'Output':
if targetWord == None:
print("Target Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Target Pattern = '%s'" % targetWord)
else:
print("Target Pattern = '%s'; difference = %f)" % (targetWord, diff))
actWord, diff = self.getWord( layer.activation, returnDiff = 1 )
if (layer.kind == 'Input' or layer.kind == 'Output'):
if actWord == None:
print("Matching Pattern = %s" % "No match")
else:
if diff == 0.0:
print("Matching Pattern = '%s'" % actWord)
else:
print("Matching Pattern = '%s'; difference = %f" % (actWord, diff))
print("------------------------------------") | Displays the network to the screen. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4443-L4484 |
Calysto/calysto | calysto/ai/conx.py | SRN.setSequenceType | def setSequenceType(self, value):
"""
You must set this!
"""
if value == "ordered-continuous":
self.orderedInputs = 1
self.initContext = 0
elif value == "random-segmented":
self.orderedInputs = 0
self.initContext = 1
elif value == "random-continuous":
self.orderedInputs = 0
self.initContext = 0
elif value == "ordered-segmented":
self.orderedInputs = 1
self.initContext = 1
else:
raise AttributeError("invalid sequence type: '%s'" % value)
self.sequenceType = value | python | def setSequenceType(self, value):
"""
You must set this!
"""
if value == "ordered-continuous":
self.orderedInputs = 1
self.initContext = 0
elif value == "random-segmented":
self.orderedInputs = 0
self.initContext = 1
elif value == "random-continuous":
self.orderedInputs = 0
self.initContext = 0
elif value == "ordered-segmented":
self.orderedInputs = 1
self.initContext = 1
else:
raise AttributeError("invalid sequence type: '%s'" % value)
self.sequenceType = value | You must set this! | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4584-L4602 |
Calysto/calysto | calysto/ai/conx.py | SRN.addLayers | def addLayers(self, *arg, **kw):
"""
Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden".
"""
netType = "serial"
if "type" in kw:
netType = kw["type"]
self.addLayer('input', arg[0])
hiddens = []
contexts = []
if len(arg) > 3: # FIXME: add context for each
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
cname = 'context%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
self.addContextLayer(cname, hidc, name)
hiddens.append((cname, name))
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addContextLayer('context', arg[1], name)
self.addLayer(name, arg[1])
hiddens.append(name)
contexts.append(('context', name))
elif len(arg) == 2:
pass
else:
raise AttributeError("not enough layers! need >= 2")
self.addLayer('output', arg[-1])
# Connect contexts
for (fromName, toName) in contexts:
self.connect(fromName, toName)
lastName = "input"
for name in hiddens:
if netType == "parallel":
self.connect('input', name)
self.connect(name, 'output')
else: # serial
self.connect(lastName, name)
lastName = name
if netType == "serial" or lastName == "input":
self.connect(lastName, "output") | python | def addLayers(self, *arg, **kw):
"""
Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden".
"""
netType = "serial"
if "type" in kw:
netType = kw["type"]
self.addLayer('input', arg[0])
hiddens = []
contexts = []
if len(arg) > 3: # FIXME: add context for each
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
cname = 'context%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
self.addContextLayer(cname, hidc, name)
hiddens.append((cname, name))
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addContextLayer('context', arg[1], name)
self.addLayer(name, arg[1])
hiddens.append(name)
contexts.append(('context', name))
elif len(arg) == 2:
pass
else:
raise AttributeError("not enough layers! need >= 2")
self.addLayer('output', arg[-1])
# Connect contexts
for (fromName, toName) in contexts:
self.connect(fromName, toName)
lastName = "input"
for name in hiddens:
if netType == "parallel":
self.connect('input', name)
self.connect(name, 'output')
else: # serial
self.connect(lastName, name)
lastName = name
if netType == "serial" or lastName == "input":
self.connect(lastName, "output") | Creates an N layer network with 'input', 'hidden1', 'hidden2',...
and 'output' layers. Keyword type indicates "parallel" or
"serial". If only one hidden layer, it is called "hidden". | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4621-L4666 |
Calysto/calysto | calysto/ai/conx.py | SRN.addThreeLayers | def addThreeLayers(self, inc, hidc, outc):
"""
Creates a three level network with a context layer.
"""
self.addLayer('input', inc)
self.addContextLayer('context', hidc, 'hidden')
self.addLayer('hidden', hidc)
self.addLayer('output', outc)
self.connect('input', 'hidden')
self.connect('context', 'hidden')
self.connect('hidden', 'output') | python | def addThreeLayers(self, inc, hidc, outc):
"""
Creates a three level network with a context layer.
"""
self.addLayer('input', inc)
self.addContextLayer('context', hidc, 'hidden')
self.addLayer('hidden', hidc)
self.addLayer('output', outc)
self.connect('input', 'hidden')
self.connect('context', 'hidden')
self.connect('hidden', 'output') | Creates a three level network with a context layer. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4667-L4677 |
Calysto/calysto | calysto/ai/conx.py | SRN.addSRNLayers | def addSRNLayers(self, inc, hidc, outc):
"""
Wraps SRN.addThreeLayers() for compatibility.
"""
self.addThreeLayers(inc, hidc, outc) | python | def addSRNLayers(self, inc, hidc, outc):
"""
Wraps SRN.addThreeLayers() for compatibility.
"""
self.addThreeLayers(inc, hidc, outc) | Wraps SRN.addThreeLayers() for compatibility. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4678-L4682 |
Calysto/calysto | calysto/ai/conx.py | SRN.addContext | def addContext(self, layer, hiddenLayerName = 'hidden', verbosity = 0):
"""
Adds a context layer. Necessary to keep self.contextLayers dictionary up to date.
"""
# better not add context layer first if using sweep() without mapInput
SRN.add(self, layer, verbosity)
if hiddenLayerName in self.contextLayers:
raise KeyError('There is already a context layer associated with this hidden layer.', \
hiddenLayerName)
else:
self.contextLayers[hiddenLayerName] = layer
layer.kind = 'Context' | python | def addContext(self, layer, hiddenLayerName = 'hidden', verbosity = 0):
"""
Adds a context layer. Necessary to keep self.contextLayers dictionary up to date.
"""
# better not add context layer first if using sweep() without mapInput
SRN.add(self, layer, verbosity)
if hiddenLayerName in self.contextLayers:
raise KeyError('There is already a context layer associated with this hidden layer.', \
hiddenLayerName)
else:
self.contextLayers[hiddenLayerName] = layer
layer.kind = 'Context' | Adds a context layer. Necessary to keep self.contextLayers dictionary up to date. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4686-L4697 |
Calysto/calysto | calysto/ai/conx.py | SRN.copyHiddenToContext | def copyHiddenToContext(self):
"""
Uses key to identify the hidden layer associated with each
layer in the self.contextLayers dictionary.
"""
for item in list(self.contextLayers.items()):
if self.verbosity > 2: print('Hidden layer: ', self.getLayer(item[0]).activation)
if self.verbosity > 2: print('Context layer before copy: ', item[1].activation)
item[1].copyActivations(self.getLayer(item[0]).activation)
if self.verbosity > 2: print('Context layer after copy: ', item[1].activation) | python | def copyHiddenToContext(self):
"""
Uses key to identify the hidden layer associated with each
layer in the self.contextLayers dictionary.
"""
for item in list(self.contextLayers.items()):
if self.verbosity > 2: print('Hidden layer: ', self.getLayer(item[0]).activation)
if self.verbosity > 2: print('Context layer before copy: ', item[1].activation)
item[1].copyActivations(self.getLayer(item[0]).activation)
if self.verbosity > 2: print('Context layer after copy: ', item[1].activation) | Uses key to identify the hidden layer associated with each
layer in the self.contextLayers dictionary. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4700-L4709 |
Calysto/calysto | calysto/ai/conx.py | SRN.setContext | def setContext(self, value = .5):
"""
Clears the context layer by setting context layer to (default) value 0.5.
"""
for context in list(self.contextLayers.values()):
context.resetFlags() # hidden activations have already been copied in
context.setActivations(value) | python | def setContext(self, value = .5):
"""
Clears the context layer by setting context layer to (default) value 0.5.
"""
for context in list(self.contextLayers.values()):
context.resetFlags() # hidden activations have already been copied in
context.setActivations(value) | Clears the context layer by setting context layer to (default) value 0.5. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4710-L4716 |
Calysto/calysto | calysto/ai/conx.py | SRN.step | def step(self, **args):
"""
SRN.step()
Extends network step method by automatically copying hidden
layer activations to the context layer.
"""
if self.sequenceType == None:
raise AttributeError("""sequenceType not set! Use SRN.setSequenceType() """)
# take care of any params other than layer names:
# two ways to clear context:
# 1. force it to right now with arg initContext = 1:
if 'initContext' in args:
if args['initContext']:
self.setContext()
del args['initContext']
# 2. have initContext be true
elif self.initContext:
self.setContext()
# if initContext is off, then we assume user knows that,
# so we reset the flags on all context layers:
if self.initContext == 0:
for context in list(self.contextLayers.values()):
context.activationSet = 1
# replace all patterns
for key in args:
args[key] = self.replacePatterns( args[key], key )
# Get all of the input/output layer names:
inputBankNames = [layer.name for layer in self.layers if layer.kind == 'Input']
outputBankNames = [layer.name for layer in self.layers if layer.kind == 'Output']
inputBankSizes = [layer.size for layer in self.layers if layer.kind == 'Input']
inputBankTotalSize = sum(inputBankSizes)
inputArgSizes = [len(args[name]) for name in inputBankNames if name in args]
inputArgTotalSize = sum(inputArgSizes)
sequenceLength = inputArgTotalSize // inputBankTotalSize
learning = self.learning
totalRetvals = (0.0, 0, 0) # error, correct, total
totalPCorrect = {}
for step in range(sequenceLength):
if self.verbosity >= 1 or self.interactive:
print("-----------------------------------Step #", step + 1)
dict = {}
dict.update(args) # in case context, or others
# now, overwrite input and output, if necessary
for name in inputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if (offset + patternLength) >= len(args[name]):
# if this seq is too big, use last part:
dict[name] = args[name][-patternLength:]
else:
# else, go to the right spot in seq:
dict[name] = args[name][offset:offset+patternLength]
for name in outputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if (offset + patternLength) >= len(args[name]):
# if this seq is too big, use last part:
dict[name] = args[name][-patternLength:]
else:
# else, go to the right spot in seq:
dict[name] = args[name][offset:offset+patternLength]
# get info for predicition -------------------------
for p in self.prediction:
(inName, outName) = p
inLayer = self.getLayer(inName)
if not inLayer.type == 'Input':
raise LayerError('Prediction input layer not type \'Input\'.', inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError('Prediction output layer not type \'Output\'.', outLayer.type)
if step == sequenceLength - 1: # last one in sequence; what do we do?
start = 0 # wrap to next input vector
if not self._sweeping: # not in sweep, in step, no target
raise LayerError("Attempting to predict last item in sequence, but using step(). Use sweep() instead.")
else: # in a sweep, so get the next pattern if one:
if self.currentSweepCount == None: # last item in epoch, predict back to first pattern
# Train it to predict first pattern, first sequence item
pattern = self.getData(self.loadOrder[0])
for key in pattern:
pattern[key] = self.replacePatterns( pattern[key], key )
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start+patternLength]
#dict[outName] = pattern["input"][start:start+patternLength]
else:
pattern = self.getData(self.loadOrder[self.currentSweepCount+1])
for key in pattern:
pattern[key] = self.replacePatterns( pattern[key], key )
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start+patternLength]
#dict[outName] = pattern["input"][start:start+patternLength]
else: # in middle of sequence
start = (step + 1) * inLayer.size
dict[outName] = args[inName][start:start+patternLength]
# end predicition code -----------------------------
if step < sequenceLength - 1: # not the last one
if not self.learnDuringSequence:
self.learning = 0
retvals = self.networkStep(**dict)
self.learning = learning # in case we turned it off
totalRetvals = list(map(lambda x,y: x+y, totalRetvals[:3], retvals[:3]))
sumMerge(totalPCorrect, retvals[3])
totalRetvals.append( totalPCorrect)
return totalRetvals | python | def step(self, **args):
"""
SRN.step()
Extends network step method by automatically copying hidden
layer activations to the context layer.
"""
if self.sequenceType == None:
raise AttributeError("""sequenceType not set! Use SRN.setSequenceType() """)
# take care of any params other than layer names:
# two ways to clear context:
# 1. force it to right now with arg initContext = 1:
if 'initContext' in args:
if args['initContext']:
self.setContext()
del args['initContext']
# 2. have initContext be true
elif self.initContext:
self.setContext()
# if initContext is off, then we assume user knows that,
# so we reset the flags on all context layers:
if self.initContext == 0:
for context in list(self.contextLayers.values()):
context.activationSet = 1
# replace all patterns
for key in args:
args[key] = self.replacePatterns( args[key], key )
# Get all of the input/output layer names:
inputBankNames = [layer.name for layer in self.layers if layer.kind == 'Input']
outputBankNames = [layer.name for layer in self.layers if layer.kind == 'Output']
inputBankSizes = [layer.size for layer in self.layers if layer.kind == 'Input']
inputBankTotalSize = sum(inputBankSizes)
inputArgSizes = [len(args[name]) for name in inputBankNames if name in args]
inputArgTotalSize = sum(inputArgSizes)
sequenceLength = inputArgTotalSize // inputBankTotalSize
learning = self.learning
totalRetvals = (0.0, 0, 0) # error, correct, total
totalPCorrect = {}
for step in range(sequenceLength):
if self.verbosity >= 1 or self.interactive:
print("-----------------------------------Step #", step + 1)
dict = {}
dict.update(args) # in case context, or others
# now, overwrite input and output, if necessary
for name in inputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if (offset + patternLength) >= len(args[name]):
# if this seq is too big, use last part:
dict[name] = args[name][-patternLength:]
else:
# else, go to the right spot in seq:
dict[name] = args[name][offset:offset+patternLength]
for name in outputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if (offset + patternLength) >= len(args[name]):
# if this seq is too big, use last part:
dict[name] = args[name][-patternLength:]
else:
# else, go to the right spot in seq:
dict[name] = args[name][offset:offset+patternLength]
# get info for predicition -------------------------
for p in self.prediction:
(inName, outName) = p
inLayer = self.getLayer(inName)
if not inLayer.type == 'Input':
raise LayerError('Prediction input layer not type \'Input\'.', inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError('Prediction output layer not type \'Output\'.', outLayer.type)
if step == sequenceLength - 1: # last one in sequence; what do we do?
start = 0 # wrap to next input vector
if not self._sweeping: # not in sweep, in step, no target
raise LayerError("Attempting to predict last item in sequence, but using step(). Use sweep() instead.")
else: # in a sweep, so get the next pattern if one:
if self.currentSweepCount == None: # last item in epoch, predict back to first pattern
# Train it to predict first pattern, first sequence item
pattern = self.getData(self.loadOrder[0])
for key in pattern:
pattern[key] = self.replacePatterns( pattern[key], key )
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start+patternLength]
#dict[outName] = pattern["input"][start:start+patternLength]
else:
pattern = self.getData(self.loadOrder[self.currentSweepCount+1])
for key in pattern:
pattern[key] = self.replacePatterns( pattern[key], key )
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start+patternLength]
#dict[outName] = pattern["input"][start:start+patternLength]
else: # in middle of sequence
start = (step + 1) * inLayer.size
dict[outName] = args[inName][start:start+patternLength]
# end predicition code -----------------------------
if step < sequenceLength - 1: # not the last one
if not self.learnDuringSequence:
self.learning = 0
retvals = self.networkStep(**dict)
self.learning = learning # in case we turned it off
totalRetvals = list(map(lambda x,y: x+y, totalRetvals[:3], retvals[:3]))
sumMerge(totalPCorrect, retvals[3])
totalRetvals.append( totalPCorrect)
return totalRetvals | SRN.step()
Extends network step method by automatically copying hidden
layer activations to the context layer. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4722-L4828 |
Calysto/calysto | calysto/ai/conx.py | SRN.showPerformance | def showPerformance(self):
"""
SRN.showPerformance()
Clears the context layer(s) and then repeatedly cycles through
training patterns until the user decides to quit.
"""
if len(self.inputs) == 0:
print('no patterns to test')
return
self.setContext()
while True:
BackpropNetwork.showPerformance(self)
if self.quitFromSweep:
return | python | def showPerformance(self):
"""
SRN.showPerformance()
Clears the context layer(s) and then repeatedly cycles through
training patterns until the user decides to quit.
"""
if len(self.inputs) == 0:
print('no patterns to test')
return
self.setContext()
while True:
BackpropNetwork.showPerformance(self)
if self.quitFromSweep:
return | SRN.showPerformance()
Clears the context layer(s) and then repeatedly cycles through
training patterns until the user decides to quit. | https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4851-L4864 |
marshallward/f90nml | f90nml/tokenizer.py | Tokenizer.parse | def parse(self, line):
"""Tokenize a line of Fortran source."""
tokens = []
self.idx = -1 # Bogus value to ensure idx = 0 after first iteration
self.characters = iter(line)
self.update_chars()
while self.char != '\n':
# Update namelist group status
if self.char in ('&', '$'):
self.group_token = self.char
if self.group_token and (
(self.group_token, self.char) in (('&', '/'), ('$', '$'))):
self.group_token = False
word = ''
if self.char in self.whitespace:
while self.char in self.whitespace:
word += self.char
self.update_chars()
elif self.char in ('!', '#') or self.group_token is None:
# Abort the iteration and build the comment token
word = line[self.idx:-1]
self.char = '\n'
elif self.char in '"\'' or self.prior_delim:
word = self.parse_string()
elif self.char.isalpha():
word = self.parse_name(line)
elif self.char in ('+', '-'):
# Lookahead to check for IEEE value
self.characters, lookahead = itertools.tee(self.characters)
ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead))
if ieee_val.lower() in ('inf', 'infinity', 'nan'):
word = self.char + ieee_val
self.characters = lookahead
self.prior_char = ieee_val[-1]
self.char = next(lookahead, '\n')
else:
word = self.parse_numeric()
elif self.char.isdigit():
word = self.parse_numeric()
elif self.char == '.':
self.update_chars()
if self.char.isdigit():
frac = self.parse_numeric()
word = '.' + frac
else:
word = '.'
while self.char.isalpha():
word += self.char
self.update_chars()
if self.char == '.':
word += self.char
self.update_chars()
elif self.char in Tokenizer.punctuation:
word = self.char
self.update_chars()
else:
# This should never happen
raise ValueError
tokens.append(word)
return tokens | python | def parse(self, line):
"""Tokenize a line of Fortran source."""
tokens = []
self.idx = -1 # Bogus value to ensure idx = 0 after first iteration
self.characters = iter(line)
self.update_chars()
while self.char != '\n':
# Update namelist group status
if self.char in ('&', '$'):
self.group_token = self.char
if self.group_token and (
(self.group_token, self.char) in (('&', '/'), ('$', '$'))):
self.group_token = False
word = ''
if self.char in self.whitespace:
while self.char in self.whitespace:
word += self.char
self.update_chars()
elif self.char in ('!', '#') or self.group_token is None:
# Abort the iteration and build the comment token
word = line[self.idx:-1]
self.char = '\n'
elif self.char in '"\'' or self.prior_delim:
word = self.parse_string()
elif self.char.isalpha():
word = self.parse_name(line)
elif self.char in ('+', '-'):
# Lookahead to check for IEEE value
self.characters, lookahead = itertools.tee(self.characters)
ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead))
if ieee_val.lower() in ('inf', 'infinity', 'nan'):
word = self.char + ieee_val
self.characters = lookahead
self.prior_char = ieee_val[-1]
self.char = next(lookahead, '\n')
else:
word = self.parse_numeric()
elif self.char.isdigit():
word = self.parse_numeric()
elif self.char == '.':
self.update_chars()
if self.char.isdigit():
frac = self.parse_numeric()
word = '.' + frac
else:
word = '.'
while self.char.isalpha():
word += self.char
self.update_chars()
if self.char == '.':
word += self.char
self.update_chars()
elif self.char in Tokenizer.punctuation:
word = self.char
self.update_chars()
else:
# This should never happen
raise ValueError
tokens.append(word)
return tokens | Tokenize a line of Fortran source. | https://github.com/marshallward/f90nml/blob/4932cabc5221afc844ee6a5b4a05ceb8bd4a2711/f90nml/tokenizer.py#L32-L105 |
marshallward/f90nml | f90nml/tokenizer.py | Tokenizer.parse_name | def parse_name(self, line):
"""Tokenize a Fortran name, such as a variable or subroutine."""
end = self.idx
for char in line[self.idx:]:
if not char.isalnum() and char not in '\'"_':
break
end += 1
word = line[self.idx:end]
self.idx = end - 1
# Update iterator, minus first character which was already read
self.characters = itertools.islice(self.characters, len(word) - 1,
None)
self.update_chars()
return word | python | def parse_name(self, line):
"""Tokenize a Fortran name, such as a variable or subroutine."""
end = self.idx
for char in line[self.idx:]:
if not char.isalnum() and char not in '\'"_':
break
end += 1
word = line[self.idx:end]
self.idx = end - 1
# Update iterator, minus first character which was already read
self.characters = itertools.islice(self.characters, len(word) - 1,
None)
self.update_chars()
return word | Tokenize a Fortran name, such as a variable or subroutine. | https://github.com/marshallward/f90nml/blob/4932cabc5221afc844ee6a5b4a05ceb8bd4a2711/f90nml/tokenizer.py#L107-L123 |
marshallward/f90nml | f90nml/tokenizer.py | Tokenizer.parse_string | def parse_string(self):
"""Tokenize a Fortran string."""
word = ''
if self.prior_delim:
delim = self.prior_delim
self.prior_delim = None
else:
delim = self.char
word += self.char
self.update_chars()
while True:
if self.char == delim:
# Check for escaped delimiters
self.update_chars()
if self.char == delim:
word += 2 * delim
self.update_chars()
else:
word += delim
break
elif self.char == '\n':
self.prior_delim = delim
break
else:
word += self.char
self.update_chars()
return word | python | def parse_string(self):
"""Tokenize a Fortran string."""
word = ''
if self.prior_delim:
delim = self.prior_delim
self.prior_delim = None
else:
delim = self.char
word += self.char
self.update_chars()
while True:
if self.char == delim:
# Check for escaped delimiters
self.update_chars()
if self.char == delim:
word += 2 * delim
self.update_chars()
else:
word += delim
break
elif self.char == '\n':
self.prior_delim = delim
break
else:
word += self.char
self.update_chars()
return word | Tokenize a Fortran string. | https://github.com/marshallward/f90nml/blob/4932cabc5221afc844ee6a5b4a05ceb8bd4a2711/f90nml/tokenizer.py#L125-L154 |
marshallward/f90nml | f90nml/tokenizer.py | Tokenizer.parse_numeric | def parse_numeric(self):
"""Tokenize a Fortran numerical value."""
word = ''
frac = False
if self.char == '-':
word += self.char
self.update_chars()
while self.char.isdigit() or (self.char == '.' and not frac):
# Only allow one decimal point
if self.char == '.':
frac = True
word += self.char
self.update_chars()
# Check for float exponent
if self.char in 'eEdD':
word += self.char
self.update_chars()
if self.char in '+-':
word += self.char
self.update_chars()
while self.char.isdigit():
word += self.char
self.update_chars()
return word | python | def parse_numeric(self):
"""Tokenize a Fortran numerical value."""
word = ''
frac = False
if self.char == '-':
word += self.char
self.update_chars()
while self.char.isdigit() or (self.char == '.' and not frac):
# Only allow one decimal point
if self.char == '.':
frac = True
word += self.char
self.update_chars()
# Check for float exponent
if self.char in 'eEdD':
word += self.char
self.update_chars()
if self.char in '+-':
word += self.char
self.update_chars()
while self.char.isdigit():
word += self.char
self.update_chars()
return word | Tokenize a Fortran numerical value. | https://github.com/marshallward/f90nml/blob/4932cabc5221afc844ee6a5b4a05ceb8bd4a2711/f90nml/tokenizer.py#L156-L184 |
marshallward/f90nml | f90nml/tokenizer.py | Tokenizer.update_chars | def update_chars(self):
"""Update the current charters in the tokenizer."""
# NOTE: We spoof non-Unix files by returning '\n' on StopIteration
self.prior_char, self.char = self.char, next(self.characters, '\n')
self.idx += 1 | python | def update_chars(self):
"""Update the current charters in the tokenizer."""
# NOTE: We spoof non-Unix files by returning '\n' on StopIteration
self.prior_char, self.char = self.char, next(self.characters, '\n')
self.idx += 1 | Update the current charters in the tokenizer. | https://github.com/marshallward/f90nml/blob/4932cabc5221afc844ee6a5b4a05ceb8bd4a2711/f90nml/tokenizer.py#L186-L190 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.