repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
neptune-ml/steppy
steppy/base.py
Step.persist_upstream_diagram
def persist_upstream_diagram(self, filepath): """Creates upstream steps diagram and persists it to disk as png file. Pydot graph is created and persisted to disk as png file under the filepath directory. Args: filepath (str): filepath to which the png with steps visualization should be persisted """ assert isinstance(filepath, str),\ 'Step {} error, filepath must be str. Got {} instead'.format(self.name, type(filepath)) persist_as_png(self.upstream_structure, filepath)
python
def persist_upstream_diagram(self, filepath): """Creates upstream steps diagram and persists it to disk as png file. Pydot graph is created and persisted to disk as png file under the filepath directory. Args: filepath (str): filepath to which the png with steps visualization should be persisted """ assert isinstance(filepath, str),\ 'Step {} error, filepath must be str. Got {} instead'.format(self.name, type(filepath)) persist_as_png(self.upstream_structure, filepath)
Creates upstream steps diagram and persists it to disk as png file. Pydot graph is created and persisted to disk as png file under the filepath directory. Args: filepath (str): filepath to which the png with steps visualization should be persisted
https://github.com/neptune-ml/steppy/blob/856b95f1f5189e1d2ca122b891bc670adac9692b/steppy/base.py#L513-L524
neptune-ml/steppy
steppy/base.py
BaseTransformer.fit_transform
def fit_transform(self, *args, **kwargs): """Performs fit followed by transform. This method simply combines fit and transform. Args: args: positional arguments (can be anything) kwargs: keyword arguments (can be anything) Returns: dict: output """ self.fit(*args, **kwargs) return self.transform(*args, **kwargs)
python
def fit_transform(self, *args, **kwargs): """Performs fit followed by transform. This method simply combines fit and transform. Args: args: positional arguments (can be anything) kwargs: keyword arguments (can be anything) Returns: dict: output """ self.fit(*args, **kwargs) return self.transform(*args, **kwargs)
Performs fit followed by transform. This method simply combines fit and transform. Args: args: positional arguments (can be anything) kwargs: keyword arguments (can be anything) Returns: dict: output
https://github.com/neptune-ml/steppy/blob/856b95f1f5189e1d2ca122b891bc670adac9692b/steppy/base.py#L773-L786
dveselov/python-yandex-translate
yandex_translate/__init__.py
YandexTranslate.url
def url(self, endpoint): """ Returns full URL for specified API endpoint >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> translate.url("langs") 'https://translate.yandex.net/api/v1.5/tr.json/getLangs' >>> translate.url("detect") 'https://translate.yandex.net/api/v1.5/tr.json/detect' >>> translate.url("translate") 'https://translate.yandex.net/api/v1.5/tr.json/translate' """ return self.api_url.format(version=self.api_version, endpoint=self.api_endpoints[endpoint])
python
def url(self, endpoint): """ Returns full URL for specified API endpoint >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> translate.url("langs") 'https://translate.yandex.net/api/v1.5/tr.json/getLangs' >>> translate.url("detect") 'https://translate.yandex.net/api/v1.5/tr.json/detect' >>> translate.url("translate") 'https://translate.yandex.net/api/v1.5/tr.json/translate' """ return self.api_url.format(version=self.api_version, endpoint=self.api_endpoints[endpoint])
Returns full URL for specified API endpoint >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> translate.url("langs") 'https://translate.yandex.net/api/v1.5/tr.json/getLangs' >>> translate.url("detect") 'https://translate.yandex.net/api/v1.5/tr.json/detect' >>> translate.url("translate") 'https://translate.yandex.net/api/v1.5/tr.json/translate'
https://github.com/dveselov/python-yandex-translate/blob/f26e624f683f10b4e7bf630b40d97241d82d5b01/yandex_translate/__init__.py#L47-L59
dveselov/python-yandex-translate
yandex_translate/__init__.py
YandexTranslate.directions
def directions(self, proxies=None): """ Returns list with translate directions >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> directions = translate.directions >>> len(directions) > 0 True """ try: response = requests.get(self.url("langs"), params={"key": self.api_key}, proxies=proxies) except requests.exceptions.ConnectionError: raise YandexTranslateException(self.error_codes[503]) else: response = response.json() status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) return response.get("dirs")
python
def directions(self, proxies=None): """ Returns list with translate directions >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> directions = translate.directions >>> len(directions) > 0 True """ try: response = requests.get(self.url("langs"), params={"key": self.api_key}, proxies=proxies) except requests.exceptions.ConnectionError: raise YandexTranslateException(self.error_codes[503]) else: response = response.json() status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) return response.get("dirs")
Returns list with translate directions >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> directions = translate.directions >>> len(directions) > 0 True
https://github.com/dveselov/python-yandex-translate/blob/f26e624f683f10b4e7bf630b40d97241d82d5b01/yandex_translate/__init__.py#L62-L79
dveselov/python-yandex-translate
yandex_translate/__init__.py
YandexTranslate.detect
def detect(self, text, proxies=None, format="plain"): """ Specifies language of text >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.detect(text="Hello world!") >>> result == "en" True """ data = { "text": text, "format": format, "key": self.api_key, } try: response = requests.post(self.url("detect"), data=data, proxies=proxies) except ConnectionError: raise YandexTranslateException(self.error_codes[503]) except ValueError: raise YandexTranslateException(response) else: response = response.json() language = response.get("lang", None) status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) elif not language: raise YandexTranslateException(501) return language
python
def detect(self, text, proxies=None, format="plain"): """ Specifies language of text >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.detect(text="Hello world!") >>> result == "en" True """ data = { "text": text, "format": format, "key": self.api_key, } try: response = requests.post(self.url("detect"), data=data, proxies=proxies) except ConnectionError: raise YandexTranslateException(self.error_codes[503]) except ValueError: raise YandexTranslateException(response) else: response = response.json() language = response.get("lang", None) status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) elif not language: raise YandexTranslateException(501) return language
Specifies language of text >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.detect(text="Hello world!") >>> result == "en" True
https://github.com/dveselov/python-yandex-translate/blob/f26e624f683f10b4e7bf630b40d97241d82d5b01/yandex_translate/__init__.py#L92-L119
dveselov/python-yandex-translate
yandex_translate/__init__.py
YandexTranslate.translate
def translate(self, text, lang, proxies=None, format="plain"): """ Translates text to passed language >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.translate(lang="ru", text="Hello, world!") >>> result["code"] == 200 True >>> result["lang"] == "en-ru" True """ data = { "text": text, "format": format, "lang": lang, "key": self.api_key } try: response = requests.post(self.url("translate"), data=data, proxies=proxies) except ConnectionError: raise YandexTranslateException(503) else: response = response.json() status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) return response
python
def translate(self, text, lang, proxies=None, format="plain"): """ Translates text to passed language >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.translate(lang="ru", text="Hello, world!") >>> result["code"] == 200 True >>> result["lang"] == "en-ru" True """ data = { "text": text, "format": format, "lang": lang, "key": self.api_key } try: response = requests.post(self.url("translate"), data=data, proxies=proxies) except ConnectionError: raise YandexTranslateException(503) else: response = response.json() status_code = response.get("code", 200) if status_code != 200: raise YandexTranslateException(status_code) return response
Translates text to passed language >>> translate = YandexTranslate("trnsl.1.1.20130421T140201Z.323e508a33e9d84b.f1e0d9ca9bcd0a00b0ef71d82e6cf4158183d09e") >>> result = translate.translate(lang="ru", text="Hello, world!") >>> result["code"] == 200 True >>> result["lang"] == "en-ru" True
https://github.com/dveselov/python-yandex-translate/blob/f26e624f683f10b4e7bf630b40d97241d82d5b01/yandex_translate/__init__.py#L121-L146
lepture/otpauth
otpauth.py
generate_hotp
def generate_hotp(secret, counter=4): """Generate a HOTP code. :param secret: A secret token for the authentication. :param counter: HOTP is a counter based algorithm. """ # https://tools.ietf.org/html/rfc4226 msg = struct.pack('>Q', counter) digest = hmac.new(to_bytes(secret), msg, hashlib.sha1).digest() ob = digest[19] if PY2: ob = ord(ob) pos = ob & 15 base = struct.unpack('>I', digest[pos:pos + 4])[0] & 0x7fffffff token = base % 1000000 return token
python
def generate_hotp(secret, counter=4): """Generate a HOTP code. :param secret: A secret token for the authentication. :param counter: HOTP is a counter based algorithm. """ # https://tools.ietf.org/html/rfc4226 msg = struct.pack('>Q', counter) digest = hmac.new(to_bytes(secret), msg, hashlib.sha1).digest() ob = digest[19] if PY2: ob = ord(ob) pos = ob & 15 base = struct.unpack('>I', digest[pos:pos + 4])[0] & 0x7fffffff token = base % 1000000 return token
Generate a HOTP code. :param secret: A secret token for the authentication. :param counter: HOTP is a counter based algorithm.
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L143-L160
lepture/otpauth
otpauth.py
generate_totp
def generate_totp(secret, period=30, timestamp=None): """Generate a TOTP code. A TOTP code is an extension of HOTP algorithm. :param secret: A secret token for the authentication. :param period: A period that a TOTP code is valid in seconds :param timestamp: Current time stamp. """ if timestamp is None: timestamp = time.time() counter = int(timestamp) // period return generate_hotp(secret, counter)
python
def generate_totp(secret, period=30, timestamp=None): """Generate a TOTP code. A TOTP code is an extension of HOTP algorithm. :param secret: A secret token for the authentication. :param period: A period that a TOTP code is valid in seconds :param timestamp: Current time stamp. """ if timestamp is None: timestamp = time.time() counter = int(timestamp) // period return generate_hotp(secret, counter)
Generate a TOTP code. A TOTP code is an extension of HOTP algorithm. :param secret: A secret token for the authentication. :param period: A period that a TOTP code is valid in seconds :param timestamp: Current time stamp.
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L163-L175
lepture/otpauth
otpauth.py
OtpAuth.valid_hotp
def valid_hotp(self, code, last=0, trials=100): """Valid a HOTP code. :param code: A number that is less than 6 characters. :param last: Guess HOTP code from last + 1 range. :param trials: Guest HOTP code end at last + trials + 1. """ if not valid_code(code): return False code = bytes(int(code)) for i in range(last + 1, last + trials + 1): if compare_digest(bytes(self.hotp(counter=i)), code): return i return False
python
def valid_hotp(self, code, last=0, trials=100): """Valid a HOTP code. :param code: A number that is less than 6 characters. :param last: Guess HOTP code from last + 1 range. :param trials: Guest HOTP code end at last + trials + 1. """ if not valid_code(code): return False code = bytes(int(code)) for i in range(last + 1, last + trials + 1): if compare_digest(bytes(self.hotp(counter=i)), code): return i return False
Valid a HOTP code. :param code: A number that is less than 6 characters. :param last: Guess HOTP code from last + 1 range. :param trials: Guest HOTP code end at last + trials + 1.
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L67-L81
lepture/otpauth
otpauth.py
OtpAuth.valid_totp
def valid_totp(self, code, period=30, timestamp=None): """Valid a TOTP code. :param code: A number that is less than 6 characters. :param period: A period that a TOTP code is valid in seconds :param timestamp: Validate TOTP at this given timestamp """ if not valid_code(code): return False return compare_digest( bytes(self.totp(period, timestamp)), bytes(int(code)) )
python
def valid_totp(self, code, period=30, timestamp=None): """Valid a TOTP code. :param code: A number that is less than 6 characters. :param period: A period that a TOTP code is valid in seconds :param timestamp: Validate TOTP at this given timestamp """ if not valid_code(code): return False return compare_digest( bytes(self.totp(period, timestamp)), bytes(int(code)) )
Valid a TOTP code. :param code: A number that is less than 6 characters. :param period: A period that a TOTP code is valid in seconds :param timestamp: Validate TOTP at this given timestamp
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L83-L95
lepture/otpauth
otpauth.py
OtpAuth.to_uri
def to_uri(self, type, label, issuer, counter=None): """Generate the otpauth protocal string. :param type: Algorithm type, hotp or totp. :param label: Label of the identifier. :param issuer: The company, the organization or something else. :param counter: Counter of the HOTP algorithm. """ type = type.lower() if type not in ('hotp', 'totp'): raise ValueError('type must be hotp or totp') if type == 'hotp' and not counter: raise ValueError('HOTP type authentication need counter') # https://code.google.com/p/google-authenticator/wiki/KeyUriFormat url = ('otpauth://%(type)s/%(label)s?secret=%(secret)s' '&issuer=%(issuer)s') dct = dict( type=type, label=label, issuer=issuer, secret=self.encoded_secret, counter=counter ) ret = url % dct if type == 'hotp': ret = '%s&counter=%s' % (ret, counter) return ret
python
def to_uri(self, type, label, issuer, counter=None): """Generate the otpauth protocal string. :param type: Algorithm type, hotp or totp. :param label: Label of the identifier. :param issuer: The company, the organization or something else. :param counter: Counter of the HOTP algorithm. """ type = type.lower() if type not in ('hotp', 'totp'): raise ValueError('type must be hotp or totp') if type == 'hotp' and not counter: raise ValueError('HOTP type authentication need counter') # https://code.google.com/p/google-authenticator/wiki/KeyUriFormat url = ('otpauth://%(type)s/%(label)s?secret=%(secret)s' '&issuer=%(issuer)s') dct = dict( type=type, label=label, issuer=issuer, secret=self.encoded_secret, counter=counter ) ret = url % dct if type == 'hotp': ret = '%s&counter=%s' % (ret, counter) return ret
Generate the otpauth protocal string. :param type: Algorithm type, hotp or totp. :param label: Label of the identifier. :param issuer: The company, the organization or something else. :param counter: Counter of the HOTP algorithm.
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L105-L131
lepture/otpauth
otpauth.py
OtpAuth.to_google
def to_google(self, type, label, issuer, counter=None): """Generate the otpauth protocal string for Google Authenticator. .. deprecated:: 0.2.0 Use :func:`to_uri` instead. """ warnings.warn('deprecated, use to_uri instead', DeprecationWarning) return self.to_uri(type, label, issuer, counter)
python
def to_google(self, type, label, issuer, counter=None): """Generate the otpauth protocal string for Google Authenticator. .. deprecated:: 0.2.0 Use :func:`to_uri` instead. """ warnings.warn('deprecated, use to_uri instead', DeprecationWarning) return self.to_uri(type, label, issuer, counter)
Generate the otpauth protocal string for Google Authenticator. .. deprecated:: 0.2.0 Use :func:`to_uri` instead.
https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L133-L140
nap/jaro-winkler-distance
pyjarowinkler/distance.py
get_jaro_distance
def get_jaro_distance(first, second, winkler=True, winkler_ajustment=True, scaling=0.1): """ :param first: word to calculate distance for :param second: word to calculate distance with :param winkler: same as winkler_ajustment :param winkler_ajustment: add an adjustment factor to the Jaro of the distance :param scaling: scaling factor for the Winkler adjustment :return: Jaro distance adjusted (or not) """ if not first or not second: raise JaroDistanceException("Cannot calculate distance from NoneType ({0}, {1})".format( first.__class__.__name__, second.__class__.__name__)) jaro = _score(first, second) cl = min(len(_get_prefix(first, second)), 4) if all([winkler, winkler_ajustment]): # 0.1 as scaling factor return round((jaro + (scaling * cl * (1.0 - jaro))) * 100.0) / 100.0 return jaro
python
def get_jaro_distance(first, second, winkler=True, winkler_ajustment=True, scaling=0.1): """ :param first: word to calculate distance for :param second: word to calculate distance with :param winkler: same as winkler_ajustment :param winkler_ajustment: add an adjustment factor to the Jaro of the distance :param scaling: scaling factor for the Winkler adjustment :return: Jaro distance adjusted (or not) """ if not first or not second: raise JaroDistanceException("Cannot calculate distance from NoneType ({0}, {1})".format( first.__class__.__name__, second.__class__.__name__)) jaro = _score(first, second) cl = min(len(_get_prefix(first, second)), 4) if all([winkler, winkler_ajustment]): # 0.1 as scaling factor return round((jaro + (scaling * cl * (1.0 - jaro))) * 100.0) / 100.0 return jaro
:param first: word to calculate distance for :param second: word to calculate distance with :param winkler: same as winkler_ajustment :param winkler_ajustment: add an adjustment factor to the Jaro of the distance :param scaling: scaling factor for the Winkler adjustment :return: Jaro distance adjusted (or not)
https://github.com/nap/jaro-winkler-distance/blob/835bede1913232a8255c9e18533c430989c55bde/pyjarowinkler/distance.py#L18-L38
carlospalol/money
money/exchange.py
ExchangeRates.install
def install(self, backend='money.exchange.SimpleBackend'): """Install an exchange rates backend using a python path string""" # RADAR: Python2 if isinstance(backend, money.six.string_types): path, name = backend.rsplit('.', 1) module = importlib.import_module(path) backend = getattr(module, name)() elif isinstance(backend, type): backend = backend() if not isinstance(backend, BackendBase): raise TypeError("backend '{}' is not a subclass of " "money.xrates.BackendBase".format(backend)) self._backend = backend
python
def install(self, backend='money.exchange.SimpleBackend'): """Install an exchange rates backend using a python path string""" # RADAR: Python2 if isinstance(backend, money.six.string_types): path, name = backend.rsplit('.', 1) module = importlib.import_module(path) backend = getattr(module, name)() elif isinstance(backend, type): backend = backend() if not isinstance(backend, BackendBase): raise TypeError("backend '{}' is not a subclass of " "money.xrates.BackendBase".format(backend)) self._backend = backend
Install an exchange rates backend using a python path string
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/exchange.py#L81-L93
carlospalol/money
money/exchange.py
ExchangeRates.rate
def rate(self, currency): """Return quotation between the base and another currency""" if not self._backend: raise ExchangeBackendNotInstalled() return self._backend.rate(currency)
python
def rate(self, currency): """Return quotation between the base and another currency""" if not self._backend: raise ExchangeBackendNotInstalled() return self._backend.rate(currency)
Return quotation between the base and another currency
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/exchange.py#L113-L117
carlospalol/money
money/exchange.py
ExchangeRates.quotation
def quotation(self, origin, target): """Return quotation between two currencies (origin, target)""" if not self._backend: raise ExchangeBackendNotInstalled() return self._backend.quotation(origin, target)
python
def quotation(self, origin, target): """Return quotation between two currencies (origin, target)""" if not self._backend: raise ExchangeBackendNotInstalled() return self._backend.quotation(origin, target)
Return quotation between two currencies (origin, target)
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/exchange.py#L119-L123
anntzer/mplcursors
lib/mplcursors/_pick_info.py
_register_scatter
def _register_scatter(): """ Patch `PathCollection` and `scatter` to register their return values. This registration allows us to distinguish `PathCollection`s created by `Axes.scatter`, which should use point-like picking, from others, which should use path-like picking. The former is more common, so we store the latter instead; this also lets us guess the type better if this module is imported late. """ @functools.wraps(PathCollection.__init__) def __init__(self, *args, **kwargs): _nonscatter_pathcollections.add(self) return __init__.__wrapped__(self, *args, **kwargs) PathCollection.__init__ = __init__ @functools.wraps(Axes.scatter) def scatter(*args, **kwargs): paths = scatter.__wrapped__(*args, **kwargs) with suppress(KeyError): _nonscatter_pathcollections.remove(paths) return paths Axes.scatter = scatter
python
def _register_scatter(): """ Patch `PathCollection` and `scatter` to register their return values. This registration allows us to distinguish `PathCollection`s created by `Axes.scatter`, which should use point-like picking, from others, which should use path-like picking. The former is more common, so we store the latter instead; this also lets us guess the type better if this module is imported late. """ @functools.wraps(PathCollection.__init__) def __init__(self, *args, **kwargs): _nonscatter_pathcollections.add(self) return __init__.__wrapped__(self, *args, **kwargs) PathCollection.__init__ = __init__ @functools.wraps(Axes.scatter) def scatter(*args, **kwargs): paths = scatter.__wrapped__(*args, **kwargs) with suppress(KeyError): _nonscatter_pathcollections.remove(paths) return paths Axes.scatter = scatter
Patch `PathCollection` and `scatter` to register their return values. This registration allows us to distinguish `PathCollection`s created by `Axes.scatter`, which should use point-like picking, from others, which should use path-like picking. The former is more common, so we store the latter instead; this also lets us guess the type better if this module is imported late.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_pick_info.py#L37-L60
anntzer/mplcursors
lib/mplcursors/_pick_info.py
_compute_projection_pick
def _compute_projection_pick(artist, path, xy): """ Project *xy* on *path* to obtain a `Selection` for *artist*. *path* is first transformed to screen coordinates using the artist transform, and the target of the returned `Selection` is transformed back to data coordinates using the artist *axes* inverse transform. The `Selection` `index` is returned as a float. This function returns ``None`` for degenerate inputs. The caller is responsible for converting the index to the proper class if needed. """ transform = artist.get_transform().frozen() tpath = (path.cleaned(transform) if transform.is_affine # `cleaned` only handles affine transforms. else transform.transform_path(path).cleaned()) # `cleaned` should return a path where the first element is `MOVETO`, the # following are `LINETO` or `CLOSEPOLY`, and the last one is `STOP`, i.e. # codes = path.codes # assert (codes[0], codes[-1]) == (path.MOVETO, path.STOP) # assert np.in1d(codes[1:-1], [path.LINETO, path.CLOSEPOLY]).all() vertices = tpath.vertices[:-1] codes = tpath.codes[:-1] vertices[codes == tpath.CLOSEPOLY] = vertices[0] # Unit vectors for each segment. us = vertices[1:] - vertices[:-1] ls = np.hypot(*us.T) with np.errstate(invalid="ignore"): # Results in 0/0 for repeated consecutive points. us /= ls[:, None] # Vectors from each vertex to the event (overwritten below). vs = xy - vertices[:-1] # Clipped dot products -- `einsum` cannot be done in place, `clip` can. # `clip` can trigger invalid comparisons if there are nan points. with np.errstate(invalid="ignore"): dot = np.clip(np.einsum("ij,ij->i", vs, us), 0, ls, out=vs[:, 0]) # Projections. projs = vertices[:-1] + dot[:, None] * us ds = np.hypot(*(xy - projs).T, out=vs[:, 1]) try: argmin = np.nanargmin(ds) dmin = ds[argmin] except (ValueError, IndexError): # See above re: exceptions caught. return else: target = AttrArray( artist.axes.transData.inverted().transform_point(projs[argmin])) target.index = ( (argmin + dot[argmin] / ls[argmin]) / (path._interpolation_steps / tpath._interpolation_steps)) return Selection(artist, target, dmin, None, None)
python
def _compute_projection_pick(artist, path, xy): """ Project *xy* on *path* to obtain a `Selection` for *artist*. *path* is first transformed to screen coordinates using the artist transform, and the target of the returned `Selection` is transformed back to data coordinates using the artist *axes* inverse transform. The `Selection` `index` is returned as a float. This function returns ``None`` for degenerate inputs. The caller is responsible for converting the index to the proper class if needed. """ transform = artist.get_transform().frozen() tpath = (path.cleaned(transform) if transform.is_affine # `cleaned` only handles affine transforms. else transform.transform_path(path).cleaned()) # `cleaned` should return a path where the first element is `MOVETO`, the # following are `LINETO` or `CLOSEPOLY`, and the last one is `STOP`, i.e. # codes = path.codes # assert (codes[0], codes[-1]) == (path.MOVETO, path.STOP) # assert np.in1d(codes[1:-1], [path.LINETO, path.CLOSEPOLY]).all() vertices = tpath.vertices[:-1] codes = tpath.codes[:-1] vertices[codes == tpath.CLOSEPOLY] = vertices[0] # Unit vectors for each segment. us = vertices[1:] - vertices[:-1] ls = np.hypot(*us.T) with np.errstate(invalid="ignore"): # Results in 0/0 for repeated consecutive points. us /= ls[:, None] # Vectors from each vertex to the event (overwritten below). vs = xy - vertices[:-1] # Clipped dot products -- `einsum` cannot be done in place, `clip` can. # `clip` can trigger invalid comparisons if there are nan points. with np.errstate(invalid="ignore"): dot = np.clip(np.einsum("ij,ij->i", vs, us), 0, ls, out=vs[:, 0]) # Projections. projs = vertices[:-1] + dot[:, None] * us ds = np.hypot(*(xy - projs).T, out=vs[:, 1]) try: argmin = np.nanargmin(ds) dmin = ds[argmin] except (ValueError, IndexError): # See above re: exceptions caught. return else: target = AttrArray( artist.axes.transData.inverted().transform_point(projs[argmin])) target.index = ( (argmin + dot[argmin] / ls[argmin]) / (path._interpolation_steps / tpath._interpolation_steps)) return Selection(artist, target, dmin, None, None)
Project *xy* on *path* to obtain a `Selection` for *artist*. *path* is first transformed to screen coordinates using the artist transform, and the target of the returned `Selection` is transformed back to data coordinates using the artist *axes* inverse transform. The `Selection` `index` is returned as a float. This function returns ``None`` for degenerate inputs. The caller is responsible for converting the index to the proper class if needed.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_pick_info.py#L201-L252
anntzer/mplcursors
lib/mplcursors/_pick_info.py
_untransform
def _untransform(orig_xy, screen_xy, ax): """ Return data coordinates to place an annotation at screen coordinates *screen_xy* in axes *ax*. *orig_xy* are the "original" coordinates as stored by the artist; they are transformed to *screen_xy* by whatever transform the artist uses. If the artist uses ``ax.transData``, just return *orig_xy*; else, apply ``ax.transData.inverse()`` to *screen_xy*. (The first case is more accurate than always applying ``ax.transData.inverse()``.) """ tr_xy = ax.transData.transform(orig_xy) return ( orig_xy if ((tr_xy == screen_xy) | np.isnan(tr_xy) & np.isnan(screen_xy)).all() else ax.transData.inverted().transform(screen_xy))
python
def _untransform(orig_xy, screen_xy, ax): """ Return data coordinates to place an annotation at screen coordinates *screen_xy* in axes *ax*. *orig_xy* are the "original" coordinates as stored by the artist; they are transformed to *screen_xy* by whatever transform the artist uses. If the artist uses ``ax.transData``, just return *orig_xy*; else, apply ``ax.transData.inverse()`` to *screen_xy*. (The first case is more accurate than always applying ``ax.transData.inverse()``.) """ tr_xy = ax.transData.transform(orig_xy) return ( orig_xy if ((tr_xy == screen_xy) | np.isnan(tr_xy) & np.isnan(screen_xy)).all() else ax.transData.inverted().transform(screen_xy))
Return data coordinates to place an annotation at screen coordinates *screen_xy* in axes *ax*. *orig_xy* are the "original" coordinates as stored by the artist; they are transformed to *screen_xy* by whatever transform the artist uses. If the artist uses ``ax.transData``, just return *orig_xy*; else, apply ``ax.transData.inverse()`` to *screen_xy*. (The first case is more accurate than always applying ``ax.transData.inverse()``.)
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_pick_info.py#L255-L270
anntzer/mplcursors
lib/mplcursors/_pick_info.py
_call_with_selection
def _call_with_selection(func): """Decorator that passes a `Selection` built from the non-kwonly args.""" wrapped_kwonly_params = [ param for param in inspect.signature(func).parameters.values() if param.kind == param.KEYWORD_ONLY] sel_sig = inspect.signature(Selection) default_sel_sig = sel_sig.replace( parameters=[param.replace(default=None) if param.default is param.empty else param for param in sel_sig.parameters.values()]) @functools.wraps(func) def wrapper(*args, **kwargs): extra_kw = {param.name: kwargs.pop(param.name) for param in wrapped_kwonly_params if param.name in kwargs} ba = default_sel_sig.bind(*args, **kwargs) # apply_defaults ba.arguments = ChainMap( ba.arguments, {name: param.default for name, param in default_sel_sig.parameters.items() if param.default is not param.empty}) sel = Selection(*ba.args, **ba.kwargs) return func(sel, **extra_kw) wrapper.__signature__ = Signature( list(sel_sig.parameters.values()) + wrapped_kwonly_params) return wrapper
python
def _call_with_selection(func): """Decorator that passes a `Selection` built from the non-kwonly args.""" wrapped_kwonly_params = [ param for param in inspect.signature(func).parameters.values() if param.kind == param.KEYWORD_ONLY] sel_sig = inspect.signature(Selection) default_sel_sig = sel_sig.replace( parameters=[param.replace(default=None) if param.default is param.empty else param for param in sel_sig.parameters.values()]) @functools.wraps(func) def wrapper(*args, **kwargs): extra_kw = {param.name: kwargs.pop(param.name) for param in wrapped_kwonly_params if param.name in kwargs} ba = default_sel_sig.bind(*args, **kwargs) # apply_defaults ba.arguments = ChainMap( ba.arguments, {name: param.default for name, param in default_sel_sig.parameters.items() if param.default is not param.empty}) sel = Selection(*ba.args, **ba.kwargs) return func(sel, **extra_kw) wrapper.__signature__ = Signature( list(sel_sig.parameters.values()) + wrapped_kwonly_params) return wrapper
Decorator that passes a `Selection` built from the non-kwonly args.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_pick_info.py#L481-L508
anntzer/mplcursors
lib/mplcursors/_pick_info.py
_set_valid_props
def _set_valid_props(artist, kwargs): """Set valid properties for the artist, dropping the others.""" artist.set(**{k: kwargs[k] for k in kwargs if hasattr(artist, "set_" + k)}) return artist
python
def _set_valid_props(artist, kwargs): """Set valid properties for the artist, dropping the others.""" artist.set(**{k: kwargs[k] for k in kwargs if hasattr(artist, "set_" + k)}) return artist
Set valid properties for the artist, dropping the others.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_pick_info.py#L765-L768
carlospalol/money
money/money.py
Money.to
def to(self, currency): """Return equivalent money object in another currency""" if currency == self._currency: return self rate = xrates.quotation(self._currency, currency) if rate is None: raise ExchangeRateNotFound(xrates.backend_name, self._currency, currency) amount = self._amount * rate return self.__class__(amount, currency)
python
def to(self, currency): """Return equivalent money object in another currency""" if currency == self._currency: return self rate = xrates.quotation(self._currency, currency) if rate is None: raise ExchangeRateNotFound(xrates.backend_name, self._currency, currency) amount = self._amount * rate return self.__class__(amount, currency)
Return equivalent money object in another currency
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/money.py#L245-L254
carlospalol/money
money/money.py
Money.format
def format(self, locale=LC_NUMERIC, pattern=None, currency_digits=True, format_type='standard'): """ Return a locale-aware, currency-formatted string. This method emulates babel.numbers.format_currency(). A specific locale identifier (language[_territory]) can be passed, otherwise the system's default locale will be used. A custom formatting pattern of the form "¤#,##0.00;(¤#,##0.00)" (positive[;negative]) can also be passed, otherwise it will be determined from the locale and the CLDR (Unicode Common Locale Data Repository) included with Babel. >>> m = Money('1234.567', 'EUR') >>> m.format() # assuming the system's locale is 'en_US' €1,234.57 >>> m.format('de_DE') # German formatting 1.234,57 € >>> m.format('de', '#,##0 ¤') # German formatting (short), no cents 1.235 € >>> m.format(pattern='#,##0.00 ¤¤¤') # Default locale, full name 1,235.57 euro Learn more about this formatting syntaxis at: http://www.unicode.org/reports/tr35/tr35-numbers.html """ if BABEL_AVAILABLE: if BABEL_VERSION < StrictVersion('2.2'): raise Exception('Babel {} is unsupported. ' 'Please upgrade to 2.2 or higher.'.format(BABEL_VERSION)) return babel.numbers.format_currency( self._amount, self._currency, format=pattern, locale=locale, currency_digits=currency_digits, format_type=format_type) else: raise NotImplementedError("formatting requires Babel " "(https://pypi.python.org/pypi/Babel)")
python
def format(self, locale=LC_NUMERIC, pattern=None, currency_digits=True, format_type='standard'): """ Return a locale-aware, currency-formatted string. This method emulates babel.numbers.format_currency(). A specific locale identifier (language[_territory]) can be passed, otherwise the system's default locale will be used. A custom formatting pattern of the form "¤#,##0.00;(¤#,##0.00)" (positive[;negative]) can also be passed, otherwise it will be determined from the locale and the CLDR (Unicode Common Locale Data Repository) included with Babel. >>> m = Money('1234.567', 'EUR') >>> m.format() # assuming the system's locale is 'en_US' €1,234.57 >>> m.format('de_DE') # German formatting 1.234,57 € >>> m.format('de', '#,##0 ¤') # German formatting (short), no cents 1.235 € >>> m.format(pattern='#,##0.00 ¤¤¤') # Default locale, full name 1,235.57 euro Learn more about this formatting syntaxis at: http://www.unicode.org/reports/tr35/tr35-numbers.html """ if BABEL_AVAILABLE: if BABEL_VERSION < StrictVersion('2.2'): raise Exception('Babel {} is unsupported. ' 'Please upgrade to 2.2 or higher.'.format(BABEL_VERSION)) return babel.numbers.format_currency( self._amount, self._currency, format=pattern, locale=locale, currency_digits=currency_digits, format_type=format_type) else: raise NotImplementedError("formatting requires Babel " "(https://pypi.python.org/pypi/Babel)")
Return a locale-aware, currency-formatted string. This method emulates babel.numbers.format_currency(). A specific locale identifier (language[_territory]) can be passed, otherwise the system's default locale will be used. A custom formatting pattern of the form "¤#,##0.00;(¤#,##0.00)" (positive[;negative]) can also be passed, otherwise it will be determined from the locale and the CLDR (Unicode Common Locale Data Repository) included with Babel. >>> m = Money('1234.567', 'EUR') >>> m.format() # assuming the system's locale is 'en_US' €1,234.57 >>> m.format('de_DE') # German formatting 1.234,57 € >>> m.format('de', '#,##0 ¤') # German formatting (short), no cents 1.235 € >>> m.format(pattern='#,##0.00 ¤¤¤') # Default locale, full name 1,235.57 euro Learn more about this formatting syntaxis at: http://www.unicode.org/reports/tr35/tr35-numbers.html
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/money.py#L256-L292
carlospalol/money
money/money.py
Money.loads
def loads(cls, s): """Parse from a string representation (repr)""" try: currency, amount = s.strip().split(' ') return cls(amount, currency) except ValueError as err: # RADAR: Python2 money.six.raise_from(ValueError("failed to parse string " " '{}': {}".format(s, err)), None)
python
def loads(cls, s): """Parse from a string representation (repr)""" try: currency, amount = s.strip().split(' ') return cls(amount, currency) except ValueError as err: # RADAR: Python2 money.six.raise_from(ValueError("failed to parse string " " '{}': {}".format(s, err)), None)
Parse from a string representation (repr)
https://github.com/carlospalol/money/blob/1e51f651f93edd62c16eb3d7aa034fec03096046/money/money.py#L295-L303
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
_get_rounded_intersection_area
def _get_rounded_intersection_area(bbox_1, bbox_2): """Compute the intersection area between two bboxes rounded to 8 digits.""" # The rounding allows sorting areas without floating point issues. bbox = bbox_1.intersection(bbox_1, bbox_2) return round(bbox.width * bbox.height, 8) if bbox else 0
python
def _get_rounded_intersection_area(bbox_1, bbox_2): """Compute the intersection area between two bboxes rounded to 8 digits.""" # The rounding allows sorting areas without floating point issues. bbox = bbox_1.intersection(bbox_1, bbox_2) return round(bbox.width * bbox.height, 8) if bbox else 0
Compute the intersection area between two bboxes rounded to 8 digits.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L66-L70
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
_iter_axes_subartists
def _iter_axes_subartists(ax): r"""Yield all child `Artist`\s (*not* `Container`\s) of *ax*.""" yield from ax.collections yield from ax.images yield from ax.lines yield from ax.patches yield from ax.texts
python
def _iter_axes_subartists(ax): r"""Yield all child `Artist`\s (*not* `Container`\s) of *ax*.""" yield from ax.collections yield from ax.images yield from ax.lines yield from ax.patches yield from ax.texts
r"""Yield all child `Artist`\s (*not* `Container`\s) of *ax*.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L73-L79
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
_is_alive
def _is_alive(artist): """Check whether *artist* is still present on its parent axes.""" return bool(artist and artist.axes and (artist.container in artist.axes.containers if isinstance(artist, _pick_info.ContainerArtist) else artist in _iter_axes_subartists(artist.axes)))
python
def _is_alive(artist): """Check whether *artist* is still present on its parent axes.""" return bool(artist and artist.axes and (artist.container in artist.axes.containers if isinstance(artist, _pick_info.ContainerArtist) else artist in _iter_axes_subartists(artist.axes)))
Check whether *artist* is still present on its parent axes.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L82-L88
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
_reassigned_axes_event
def _reassigned_axes_event(event, ax): """Reassign *event* to *ax*.""" event = copy.copy(event) event.xdata, event.ydata = ( ax.transData.inverted().transform_point((event.x, event.y))) return event
python
def _reassigned_axes_event(event, ax): """Reassign *event* to *ax*.""" event = copy.copy(event) event.xdata, event.ydata = ( ax.transData.inverted().transform_point((event.x, event.y))) return event
Reassign *event* to *ax*.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L91-L96
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
cursor
def cursor(pickables=None, **kwargs): """ Create a `Cursor` for a list of artists, containers, and axes. Parameters ---------- pickables : Optional[List[Union[Artist, Container, Axes, Figure]]] All artists and containers in the list or on any of the axes or figures passed in the list are selectable by the constructed `Cursor`. Defaults to all artists and containers on any of the figures that :mod:`~matplotlib.pyplot` is tracking. Note that the latter will only work when relying on pyplot, not when figures are directly instantiated (e.g., when manually embedding Matplotlib in a GUI toolkit). **kwargs Keyword arguments are passed to the `Cursor` constructor. """ if pickables is None: # Do not import pyplot ourselves to avoid forcing the backend. plt = sys.modules.get("matplotlib.pyplot") pickables = [ plt.figure(num) for num in plt.get_fignums()] if plt else [] elif (isinstance(pickables, Container) or not isinstance(pickables, Iterable)): pickables = [pickables] def iter_unpack_figures(pickables): for entry in pickables: if isinstance(entry, Figure): yield from entry.axes else: yield entry def iter_unpack_axes(pickables): for entry in pickables: if isinstance(entry, Axes): yield from _iter_axes_subartists(entry) containers.extend(entry.containers) elif isinstance(entry, Container): containers.append(entry) else: yield entry containers = [] artists = list(iter_unpack_axes(iter_unpack_figures(pickables))) for container in containers: contained = list(filter(None, container.get_children())) for artist in contained: with suppress(ValueError): artists.remove(artist) if contained: artists.append(_pick_info.ContainerArtist(container)) return Cursor(artists, **kwargs)
python
def cursor(pickables=None, **kwargs): """ Create a `Cursor` for a list of artists, containers, and axes. Parameters ---------- pickables : Optional[List[Union[Artist, Container, Axes, Figure]]] All artists and containers in the list or on any of the axes or figures passed in the list are selectable by the constructed `Cursor`. Defaults to all artists and containers on any of the figures that :mod:`~matplotlib.pyplot` is tracking. Note that the latter will only work when relying on pyplot, not when figures are directly instantiated (e.g., when manually embedding Matplotlib in a GUI toolkit). **kwargs Keyword arguments are passed to the `Cursor` constructor. """ if pickables is None: # Do not import pyplot ourselves to avoid forcing the backend. plt = sys.modules.get("matplotlib.pyplot") pickables = [ plt.figure(num) for num in plt.get_fignums()] if plt else [] elif (isinstance(pickables, Container) or not isinstance(pickables, Iterable)): pickables = [pickables] def iter_unpack_figures(pickables): for entry in pickables: if isinstance(entry, Figure): yield from entry.axes else: yield entry def iter_unpack_axes(pickables): for entry in pickables: if isinstance(entry, Axes): yield from _iter_axes_subartists(entry) containers.extend(entry.containers) elif isinstance(entry, Container): containers.append(entry) else: yield entry containers = [] artists = list(iter_unpack_axes(iter_unpack_figures(pickables))) for container in containers: contained = list(filter(None, container.get_children())) for artist in contained: with suppress(ValueError): artists.remove(artist) if contained: artists.append(_pick_info.ContainerArtist(container)) return Cursor(artists, **kwargs)
Create a `Cursor` for a list of artists, containers, and axes. Parameters ---------- pickables : Optional[List[Union[Artist, Container, Axes, Figure]]] All artists and containers in the list or on any of the axes or figures passed in the list are selectable by the constructed `Cursor`. Defaults to all artists and containers on any of the figures that :mod:`~matplotlib.pyplot` is tracking. Note that the latter will only work when relying on pyplot, not when figures are directly instantiated (e.g., when manually embedding Matplotlib in a GUI toolkit). **kwargs Keyword arguments are passed to the `Cursor` constructor.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L546-L601
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.selections
def selections(self): r"""The tuple of current `Selection`\s.""" for sel in self._selections: if sel.annotation.axes is None: raise RuntimeError("Annotation unexpectedly removed; " "use 'cursor.remove_selection' instead") return tuple(self._selections)
python
def selections(self): r"""The tuple of current `Selection`\s.""" for sel in self._selections: if sel.annotation.axes is None: raise RuntimeError("Annotation unexpectedly removed; " "use 'cursor.remove_selection' instead") return tuple(self._selections)
r"""The tuple of current `Selection`\s.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L259-L265
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.add_selection
def add_selection(self, pi): """ Create an annotation for a `Selection` and register it. Returns a new `Selection`, that has been registered by the `Cursor`, with the added annotation set in the :attr:`annotation` field and, if applicable, the highlighting artist in the :attr:`extras` field. Emits the ``"add"`` event with the new `Selection` as argument. When the event is emitted, the position of the annotation is temporarily set to ``(nan, nan)``; if this position is not explicitly set by a callback, then a suitable position will be automatically computed. Likewise, if the text alignment is not explicitly set but the position is, then a suitable alignment will be automatically computed. """ # pi: "pick_info", i.e. an incomplete selection. # Pre-fetch the figure and axes, as callbacks may actually unset them. figure = pi.artist.figure axes = pi.artist.axes if axes.get_renderer_cache() is None: figure.canvas.draw() # Needed by draw_artist below anyways. renderer = pi.artist.axes.get_renderer_cache() ann = pi.artist.axes.annotate( _pick_info.get_ann_text(*pi), xy=pi.target, xytext=(np.nan, np.nan), ha=_MarkedStr("center"), va=_MarkedStr("center"), visible=self.visible, **self.annotation_kwargs) ann.draggable(use_blit=not self._multiple) extras = [] if self._highlight: hl = self.add_highlight(*pi) if hl: extras.append(hl) sel = pi._replace(annotation=ann, extras=extras) self._selections.append(sel) for cb in self._callbacks["add"]: cb(sel) # Check that `ann.axes` is still set, as callbacks may have removed the # annotation. if ann.axes and ann.xyann == (np.nan, np.nan): fig_bbox = figure.get_window_extent() ax_bbox = axes.get_window_extent() overlaps = [] for idx, annotation_position in enumerate( self.annotation_positions): ann.set(**annotation_position) # Work around matplotlib/matplotlib#7614: position update is # missing. ann.update_positions(renderer) bbox = ann.get_window_extent(renderer) overlaps.append( (_get_rounded_intersection_area(fig_bbox, bbox), _get_rounded_intersection_area(ax_bbox, bbox), # Avoid needlessly jumping around by breaking ties using # the last used position as default. idx == self._last_auto_position)) auto_position = max(range(len(overlaps)), key=overlaps.__getitem__) ann.set(**self.annotation_positions[auto_position]) self._last_auto_position = auto_position else: if isinstance(ann.get_ha(), _MarkedStr): ann.set_ha({-1: "right", 0: "center", 1: "left"}[ np.sign(np.nan_to_num(ann.xyann[0]))]) if isinstance(ann.get_va(), _MarkedStr): ann.set_va({-1: "top", 0: "center", 1: "bottom"}[ np.sign(np.nan_to_num(ann.xyann[1]))]) if (extras or len(self.selections) > 1 and not self._multiple or not figure.canvas.supports_blit): # Either: # - there may be more things to draw, or # - annotation removal will make a full redraw necessary, or # - blitting is not (yet) supported. figure.canvas.draw_idle() elif ann.axes: # Fast path, only needed if the annotation has not been immediately # removed. figure.draw_artist(ann) # Explicit argument needed on MacOSX backend. figure.canvas.blit(figure.bbox) # Removal comes after addition so that the fast blitting path works. if not self._multiple: for sel in self.selections[:-1]: self.remove_selection(sel) return sel
python
def add_selection(self, pi): """ Create an annotation for a `Selection` and register it. Returns a new `Selection`, that has been registered by the `Cursor`, with the added annotation set in the :attr:`annotation` field and, if applicable, the highlighting artist in the :attr:`extras` field. Emits the ``"add"`` event with the new `Selection` as argument. When the event is emitted, the position of the annotation is temporarily set to ``(nan, nan)``; if this position is not explicitly set by a callback, then a suitable position will be automatically computed. Likewise, if the text alignment is not explicitly set but the position is, then a suitable alignment will be automatically computed. """ # pi: "pick_info", i.e. an incomplete selection. # Pre-fetch the figure and axes, as callbacks may actually unset them. figure = pi.artist.figure axes = pi.artist.axes if axes.get_renderer_cache() is None: figure.canvas.draw() # Needed by draw_artist below anyways. renderer = pi.artist.axes.get_renderer_cache() ann = pi.artist.axes.annotate( _pick_info.get_ann_text(*pi), xy=pi.target, xytext=(np.nan, np.nan), ha=_MarkedStr("center"), va=_MarkedStr("center"), visible=self.visible, **self.annotation_kwargs) ann.draggable(use_blit=not self._multiple) extras = [] if self._highlight: hl = self.add_highlight(*pi) if hl: extras.append(hl) sel = pi._replace(annotation=ann, extras=extras) self._selections.append(sel) for cb in self._callbacks["add"]: cb(sel) # Check that `ann.axes` is still set, as callbacks may have removed the # annotation. if ann.axes and ann.xyann == (np.nan, np.nan): fig_bbox = figure.get_window_extent() ax_bbox = axes.get_window_extent() overlaps = [] for idx, annotation_position in enumerate( self.annotation_positions): ann.set(**annotation_position) # Work around matplotlib/matplotlib#7614: position update is # missing. ann.update_positions(renderer) bbox = ann.get_window_extent(renderer) overlaps.append( (_get_rounded_intersection_area(fig_bbox, bbox), _get_rounded_intersection_area(ax_bbox, bbox), # Avoid needlessly jumping around by breaking ties using # the last used position as default. idx == self._last_auto_position)) auto_position = max(range(len(overlaps)), key=overlaps.__getitem__) ann.set(**self.annotation_positions[auto_position]) self._last_auto_position = auto_position else: if isinstance(ann.get_ha(), _MarkedStr): ann.set_ha({-1: "right", 0: "center", 1: "left"}[ np.sign(np.nan_to_num(ann.xyann[0]))]) if isinstance(ann.get_va(), _MarkedStr): ann.set_va({-1: "top", 0: "center", 1: "bottom"}[ np.sign(np.nan_to_num(ann.xyann[1]))]) if (extras or len(self.selections) > 1 and not self._multiple or not figure.canvas.supports_blit): # Either: # - there may be more things to draw, or # - annotation removal will make a full redraw necessary, or # - blitting is not (yet) supported. figure.canvas.draw_idle() elif ann.axes: # Fast path, only needed if the annotation has not been immediately # removed. figure.draw_artist(ann) # Explicit argument needed on MacOSX backend. figure.canvas.blit(figure.bbox) # Removal comes after addition so that the fast blitting path works. if not self._multiple: for sel in self.selections[:-1]: self.remove_selection(sel) return sel
Create an annotation for a `Selection` and register it. Returns a new `Selection`, that has been registered by the `Cursor`, with the added annotation set in the :attr:`annotation` field and, if applicable, the highlighting artist in the :attr:`extras` field. Emits the ``"add"`` event with the new `Selection` as argument. When the event is emitted, the position of the annotation is temporarily set to ``(nan, nan)``; if this position is not explicitly set by a callback, then a suitable position will be automatically computed. Likewise, if the text alignment is not explicitly set but the position is, then a suitable alignment will be automatically computed.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L284-L372
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.add_highlight
def add_highlight(self, artist, *args, **kwargs): """ Create, add, and return a highlighting artist. This method is should be called with an "unpacked" `Selection`, possibly with some fields set to None. It is up to the caller to register the artist with the proper `Selection` (by calling ``sel.extras.append`` on the result of this method) in order to ensure cleanup upon deselection. """ hl = _pick_info.make_highlight( artist, *args, **ChainMap({"highlight_kwargs": self.highlight_kwargs}, kwargs)) if hl: artist.axes.add_artist(hl) return hl
python
def add_highlight(self, artist, *args, **kwargs): """ Create, add, and return a highlighting artist. This method is should be called with an "unpacked" `Selection`, possibly with some fields set to None. It is up to the caller to register the artist with the proper `Selection` (by calling ``sel.extras.append`` on the result of this method) in order to ensure cleanup upon deselection. """ hl = _pick_info.make_highlight( artist, *args, **ChainMap({"highlight_kwargs": self.highlight_kwargs}, kwargs)) if hl: artist.axes.add_artist(hl) return hl
Create, add, and return a highlighting artist. This method is should be called with an "unpacked" `Selection`, possibly with some fields set to None. It is up to the caller to register the artist with the proper `Selection` (by calling ``sel.extras.append`` on the result of this method) in order to ensure cleanup upon deselection.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L374-L390
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.connect
def connect(self, event, func=None): """ Connect a callback to a `Cursor` event; return the callback. Two events can be connected to: - callbacks connected to the ``"add"`` event are called when a `Selection` is added, with that selection as only argument; - callbacks connected to the ``"remove"`` event are called when a `Selection` is removed, with that selection as only argument. This method can also be used as a decorator:: @cursor.connect("add") def on_add(sel): ... Examples of callbacks:: # Change the annotation text and alignment: lambda sel: sel.annotation.set( text=sel.artist.get_label(), # or use e.g. sel.target.index ha="center", va="bottom") # Make label non-draggable: lambda sel: sel.draggable(False) """ if event not in self._callbacks: raise ValueError("{!r} is not a valid cursor event".format(event)) if func is None: return partial(self.connect, event) self._callbacks[event].append(func) return func
python
def connect(self, event, func=None): """ Connect a callback to a `Cursor` event; return the callback. Two events can be connected to: - callbacks connected to the ``"add"`` event are called when a `Selection` is added, with that selection as only argument; - callbacks connected to the ``"remove"`` event are called when a `Selection` is removed, with that selection as only argument. This method can also be used as a decorator:: @cursor.connect("add") def on_add(sel): ... Examples of callbacks:: # Change the annotation text and alignment: lambda sel: sel.annotation.set( text=sel.artist.get_label(), # or use e.g. sel.target.index ha="center", va="bottom") # Make label non-draggable: lambda sel: sel.draggable(False) """ if event not in self._callbacks: raise ValueError("{!r} is not a valid cursor event".format(event)) if func is None: return partial(self.connect, event) self._callbacks[event].append(func) return func
Connect a callback to a `Cursor` event; return the callback. Two events can be connected to: - callbacks connected to the ``"add"`` event are called when a `Selection` is added, with that selection as only argument; - callbacks connected to the ``"remove"`` event are called when a `Selection` is removed, with that selection as only argument. This method can also be used as a decorator:: @cursor.connect("add") def on_add(sel): ... Examples of callbacks:: # Change the annotation text and alignment: lambda sel: sel.annotation.set( text=sel.artist.get_label(), # or use e.g. sel.target.index ha="center", va="bottom") # Make label non-draggable: lambda sel: sel.draggable(False)
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L392-L424
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.disconnect
def disconnect(self, event, cb): """ Disconnect a previously connected callback. If a callback is connected multiple times, only one connection is removed. """ try: self._callbacks[event].remove(cb) except KeyError: raise ValueError("{!r} is not a valid cursor event".format(event)) except ValueError: raise ValueError("Callback {} is not registered".format(event))
python
def disconnect(self, event, cb): """ Disconnect a previously connected callback. If a callback is connected multiple times, only one connection is removed. """ try: self._callbacks[event].remove(cb) except KeyError: raise ValueError("{!r} is not a valid cursor event".format(event)) except ValueError: raise ValueError("Callback {} is not registered".format(event))
Disconnect a previously connected callback. If a callback is connected multiple times, only one connection is removed.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L426-L438
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.remove
def remove(self): """ Remove a cursor. Remove all `Selection`\\s, disconnect all callbacks, and allow the cursor to be garbage collected. """ for disconnectors in self._disconnectors: disconnectors() for sel in self.selections: self.remove_selection(sel) for s in type(self)._keep_alive.values(): with suppress(KeyError): s.remove(self)
python
def remove(self): """ Remove a cursor. Remove all `Selection`\\s, disconnect all callbacks, and allow the cursor to be garbage collected. """ for disconnectors in self._disconnectors: disconnectors() for sel in self.selections: self.remove_selection(sel) for s in type(self)._keep_alive.values(): with suppress(KeyError): s.remove(self)
Remove a cursor. Remove all `Selection`\\s, disconnect all callbacks, and allow the cursor to be garbage collected.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L440-L453
anntzer/mplcursors
lib/mplcursors/_mplcursors.py
Cursor.remove_selection
def remove_selection(self, sel): """Remove a `Selection`.""" self._selections.remove(sel) # <artist>.figure will be unset so we save them first. figures = {artist.figure for artist in [sel.annotation] + sel.extras} # ValueError is raised if the artist has already been removed. with suppress(ValueError): sel.annotation.remove() for artist in sel.extras: with suppress(ValueError): artist.remove() for cb in self._callbacks["remove"]: cb(sel) for figure in figures: figure.canvas.draw_idle()
python
def remove_selection(self, sel): """Remove a `Selection`.""" self._selections.remove(sel) # <artist>.figure will be unset so we save them first. figures = {artist.figure for artist in [sel.annotation] + sel.extras} # ValueError is raised if the artist has already been removed. with suppress(ValueError): sel.annotation.remove() for artist in sel.extras: with suppress(ValueError): artist.remove() for cb in self._callbacks["remove"]: cb(sel) for figure in figures: figure.canvas.draw_idle()
Remove a `Selection`.
https://github.com/anntzer/mplcursors/blob/a4bce17a978162b5a1837cc419114c910e7992f9/lib/mplcursors/_mplcursors.py#L529-L543
mozilla/jupyter-notebook-gist
src/jupyter_notebook_gist/handlers.py
extract_code_from_args
def extract_code_from_args(args): """ Extracts the access code from the arguments dictionary (given back from github) """ if args is None: raise_error("Couldn't extract GitHub authentication code " "from response") # TODO: Is there a case where the length of the error will be < 0? error = args.get("error_description", None) if error is not None: if len(error) >= 0: raise_github_error(error) else: raise_error("Something went wrong") access_code = args.get("code", None) # access_code is supposed to be a list with 1 thing in it if not isinstance(access_code, list) or access_code[0] is None or \ len(access_code) != 1 or len(access_code[0]) <= 0: raise_error("Couldn't extract GitHub authentication code from " "response") # If we get here, everything was good - no errors access_code = access_code[0].decode('ascii') return access_code
python
def extract_code_from_args(args): """ Extracts the access code from the arguments dictionary (given back from github) """ if args is None: raise_error("Couldn't extract GitHub authentication code " "from response") # TODO: Is there a case where the length of the error will be < 0? error = args.get("error_description", None) if error is not None: if len(error) >= 0: raise_github_error(error) else: raise_error("Something went wrong") access_code = args.get("code", None) # access_code is supposed to be a list with 1 thing in it if not isinstance(access_code, list) or access_code[0] is None or \ len(access_code) != 1 or len(access_code[0]) <= 0: raise_error("Couldn't extract GitHub authentication code from " "response") # If we get here, everything was good - no errors access_code = access_code[0].decode('ascii') return access_code
Extracts the access code from the arguments dictionary (given back from github)
https://github.com/mozilla/jupyter-notebook-gist/blob/dae052f0998fa80dff515345cd516b586eff8e43/src/jupyter_notebook_gist/handlers.py#L163-L191
mozilla/jupyter-notebook-gist
src/jupyter_notebook_gist/handlers.py
BaseHandler.request_access_token
def request_access_token(self, access_code): "Request access token from GitHub" token_response = request_session.post( "https://github.com/login/oauth/access_token", data={ "client_id": self.oauth_client_id, "client_secret": self.oauth_client_secret, "code": access_code }, headers={"Accept": "application/json"}, ) return helper_request_access_token(token_response.json())
python
def request_access_token(self, access_code): "Request access token from GitHub" token_response = request_session.post( "https://github.com/login/oauth/access_token", data={ "client_id": self.oauth_client_id, "client_secret": self.oauth_client_secret, "code": access_code }, headers={"Accept": "application/json"}, ) return helper_request_access_token(token_response.json())
Request access token from GitHub
https://github.com/mozilla/jupyter-notebook-gist/blob/dae052f0998fa80dff515345cd516b586eff8e43/src/jupyter_notebook_gist/handlers.py#L39-L50
rdobson/python-hwinfo
hwinfo/util/__init__.py
combine_dicts
def combine_dicts(recs): """Combine a list of recs, appending values to matching keys""" if not recs: return None if len(recs) == 1: return recs.pop() new_rec = {} for rec in recs: for k, v in rec.iteritems(): if k in new_rec: new_rec[k] = "%s, %s" % (new_rec[k], v) else: new_rec[k] = v return new_rec
python
def combine_dicts(recs): """Combine a list of recs, appending values to matching keys""" if not recs: return None if len(recs) == 1: return recs.pop() new_rec = {} for rec in recs: for k, v in rec.iteritems(): if k in new_rec: new_rec[k] = "%s, %s" % (new_rec[k], v) else: new_rec[k] = v return new_rec
Combine a list of recs, appending values to matching keys
https://github.com/rdobson/python-hwinfo/blob/ba93a112dac6863396a053636ea87df027daa5de/hwinfo/util/__init__.py#L5-L20
rdobson/python-hwinfo
hwinfo/tools/inspector.py
combine_recs
def combine_recs(rec_list, key): """Use a common key to combine a list of recs""" final_recs = {} for rec in rec_list: rec_key = rec[key] if rec_key in final_recs: for k, v in rec.iteritems(): if k in final_recs[rec_key] and final_recs[rec_key][k] != v: raise Exception("Mis-match for key '%s'" % k) final_recs[rec_key][k] = v else: final_recs[rec_key] = rec return final_recs.values()
python
def combine_recs(rec_list, key): """Use a common key to combine a list of recs""" final_recs = {} for rec in rec_list: rec_key = rec[key] if rec_key in final_recs: for k, v in rec.iteritems(): if k in final_recs[rec_key] and final_recs[rec_key][k] != v: raise Exception("Mis-match for key '%s'" % k) final_recs[rec_key][k] = v else: final_recs[rec_key] = rec return final_recs.values()
Use a common key to combine a list of recs
https://github.com/rdobson/python-hwinfo/blob/ba93a112dac6863396a053636ea87df027daa5de/hwinfo/tools/inspector.py#L195-L207
rdobson/python-hwinfo
hwinfo/tools/inspector.py
main
def main(): """Entry Point""" parser = ArgumentParser(prog="hwinfo") filter_choices = ['bios', 'nic', 'storage', 'gpu', 'cpu'] parser.add_argument("-f", "--filter", choices=filter_choices, help="Query a specific class.") parser.add_argument("-m", "--machine", default='localhost', help="Remote host address.") parser.add_argument("-u", "--username", help="Username for remote host.") parser.add_argument("-p", "--password", help="Password for remote host.") parser.add_argument("-l", "--logs", help="Path to the directory with the logfiles.") parser.add_argument("-e", "--export", action="store_true", help="Export result in JSON format.") args = parser.parse_args() validate_args(args) if args.logs: if ".tar" in args.logs: host = HostFromTarball(args.logs) else: host = HostFromLogs(args.logs) else: host = Host(args.machine, args.username, args.password) options = [] if args.filter: filter_args = args.filter.split(',') for arg in filter_args: options.append(arg.strip()) else: options = filter_choices if args.export: print export_system_info(host, options) else: print system_info(host, options)
python
def main(): """Entry Point""" parser = ArgumentParser(prog="hwinfo") filter_choices = ['bios', 'nic', 'storage', 'gpu', 'cpu'] parser.add_argument("-f", "--filter", choices=filter_choices, help="Query a specific class.") parser.add_argument("-m", "--machine", default='localhost', help="Remote host address.") parser.add_argument("-u", "--username", help="Username for remote host.") parser.add_argument("-p", "--password", help="Password for remote host.") parser.add_argument("-l", "--logs", help="Path to the directory with the logfiles.") parser.add_argument("-e", "--export", action="store_true", help="Export result in JSON format.") args = parser.parse_args() validate_args(args) if args.logs: if ".tar" in args.logs: host = HostFromTarball(args.logs) else: host = HostFromLogs(args.logs) else: host = Host(args.machine, args.username, args.password) options = [] if args.filter: filter_args = args.filter.split(',') for arg in filter_args: options.append(arg.strip()) else: options = filter_choices if args.export: print export_system_info(host, options) else: print system_info(host, options)
Entry Point
https://github.com/rdobson/python-hwinfo/blob/ba93a112dac6863396a053636ea87df027daa5de/hwinfo/tools/inspector.py#L398-L434
rdobson/python-hwinfo
hwinfo/tools/inspector.py
HostFromTarball._load_from_file
def _load_from_file(self, filename): """Find filename in tar, and load it""" if filename in self.fdata: return self.fdata[filename] else: filepath = find_in_tarball(self.tarloc, filename) return read_from_tarball(self.tarloc, filepath)
python
def _load_from_file(self, filename): """Find filename in tar, and load it""" if filename in self.fdata: return self.fdata[filename] else: filepath = find_in_tarball(self.tarloc, filename) return read_from_tarball(self.tarloc, filepath)
Find filename in tar, and load it
https://github.com/rdobson/python-hwinfo/blob/ba93a112dac6863396a053636ea87df027daa5de/hwinfo/tools/inspector.py#L272-L278
LuminosoInsight/langcodes
langcodes/tag_parser.py
parse_tag
def parse_tag(tag): """ Parse the syntax of a language tag, without looking up anything in the registry, yet. Returns a list of (type, value) tuples indicating what information will need to be looked up. """ tag = normalize_characters(tag) if tag in EXCEPTIONS: return [('grandfathered', tag)] else: # The first subtag is always either the language code, or 'x' to mark # the entire tag as private-use. Other subtags are distinguished # by their length and format, but the language code is distinguished # entirely by the fact that it is required to come first. subtags = tag.split('-') if subtags[0] == 'x': if len(subtags) == 1: raise LanguageTagError("'x' is not a language tag on its own") else: # the entire language tag is private use, but we know that, # whatever it is, it fills the "language" slot return [('language', tag)] elif len(subtags[0]) >= 2: return [('language', subtags[0])] + parse_subtags(subtags[1:]) else: subtag_error(subtags[0], 'a language code')
python
def parse_tag(tag): """ Parse the syntax of a language tag, without looking up anything in the registry, yet. Returns a list of (type, value) tuples indicating what information will need to be looked up. """ tag = normalize_characters(tag) if tag in EXCEPTIONS: return [('grandfathered', tag)] else: # The first subtag is always either the language code, or 'x' to mark # the entire tag as private-use. Other subtags are distinguished # by their length and format, but the language code is distinguished # entirely by the fact that it is required to come first. subtags = tag.split('-') if subtags[0] == 'x': if len(subtags) == 1: raise LanguageTagError("'x' is not a language tag on its own") else: # the entire language tag is private use, but we know that, # whatever it is, it fills the "language" slot return [('language', tag)] elif len(subtags[0]) >= 2: return [('language', subtags[0])] + parse_subtags(subtags[1:]) else: subtag_error(subtags[0], 'a language code')
Parse the syntax of a language tag, without looking up anything in the registry, yet. Returns a list of (type, value) tuples indicating what information will need to be looked up.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/tag_parser.py#L105-L130
LuminosoInsight/langcodes
langcodes/tag_parser.py
parse_subtags
def parse_subtags(subtags, expect=EXTLANG): """ Parse everything that comes after the language tag: scripts, regions, variants, and assorted extensions. """ # We parse the parts of a language code recursively: each step of # language code parsing handles one component of the code, recurses # to handle the rest of the code, and adds what it found onto the # list of things that were in the rest of the code. # # This could just as well have been iterative, but the loops would have # been convoluted. # # So here's the base case. if not subtags: return [] # There's a subtag that comes next. We need to find out what it is. # # The primary thing that distinguishes different types of subtags is # length, but the subtags also come in a specified order. The 'expect' # parameter keeps track of where we are in that order. expect=REGION, # for example, means we're expecting a region code, or anything later # (because everything but the language is optional). subtag = subtags[0] tag_length = len(subtag) # In the usual case, our goal is to recognize what kind of tag this is, # and set it in 'tagtype' -- as an integer, so we can compare where it # should go in order. You can see the enumerated list of tagtypes above, # where the SUBTAG_TYPES global is defined. tagtype = None if tag_length == 0 or tag_length > 8: # Unless you're inside a private use tag or something -- in which case, # you're not in this function at the moment -- every component needs to # be between 1 and 8 characters. subtag_error(subtag, '1-8 characters') elif tag_length == 1: # A one-character subtag introduces an extension, which can itself have # sub-subtags, so we dispatch to a different function at this point. # # We don't need to check anything about the order, because extensions # necessarily come last. return parse_extension(subtags) elif tag_length == 2: if subtag.isalpha(): # Two-letter alphabetic subtags are regions. These are the only # two-character subtags after the language. tagtype = REGION elif tag_length == 3: if subtag.isalpha(): # Three-letter alphabetic subtags are 'extended languages'. # It's allowed for there to be up to three of them in a row, so we # need another function to enforce that. Before we dispatch to that # function, though, we need to check whether we're in the right # place in order. if expect <= EXTLANG: return parse_extlang(subtags) else: order_error(subtag, EXTLANG, expect) elif subtag.isdigit(): # Three-digit subtags are broad regions, such as Latin America # (419). tagtype = REGION elif tag_length == 4: if subtag.isalpha(): # Four-letter alphabetic subtags are scripts. tagtype = SCRIPT elif subtag[0].isdigit(): # Four-character subtags that start with a digit are variants. tagtype = VARIANT else: # Tags of length 5-8 are variants. tagtype = VARIANT # That's the end of the big elif block for figuring out what kind of # subtag we have based on its length. Now we should do something with that # kind of subtag. if tagtype is None: # We haven't recognized a type of tag. This subtag just doesn't fit the # standard. subtag_error(subtag) elif tagtype < expect: # We got a tag type that was supposed to appear earlier in the order. order_error(subtag, tagtype, expect) else: # We've recognized a subtag of a particular type. If it's a region or # script, we expect the next subtag to be a strictly later type, because # there can be at most one region and one script. Otherwise, we expect # the next subtag to be the type we got or later. if tagtype in (SCRIPT, REGION): expect = tagtype + 1 else: expect = tagtype # Get the name of this subtag type instead of its integer value. typename = SUBTAG_TYPES[tagtype] # Some subtags are conventionally written with capitalization. Apply # those conventions. if tagtype == SCRIPT: subtag = subtag.title() elif tagtype == REGION: subtag = subtag.upper() # Recurse on the remaining subtags. return [(typename, subtag)] + parse_subtags(subtags[1:], expect)
python
def parse_subtags(subtags, expect=EXTLANG): """ Parse everything that comes after the language tag: scripts, regions, variants, and assorted extensions. """ # We parse the parts of a language code recursively: each step of # language code parsing handles one component of the code, recurses # to handle the rest of the code, and adds what it found onto the # list of things that were in the rest of the code. # # This could just as well have been iterative, but the loops would have # been convoluted. # # So here's the base case. if not subtags: return [] # There's a subtag that comes next. We need to find out what it is. # # The primary thing that distinguishes different types of subtags is # length, but the subtags also come in a specified order. The 'expect' # parameter keeps track of where we are in that order. expect=REGION, # for example, means we're expecting a region code, or anything later # (because everything but the language is optional). subtag = subtags[0] tag_length = len(subtag) # In the usual case, our goal is to recognize what kind of tag this is, # and set it in 'tagtype' -- as an integer, so we can compare where it # should go in order. You can see the enumerated list of tagtypes above, # where the SUBTAG_TYPES global is defined. tagtype = None if tag_length == 0 or tag_length > 8: # Unless you're inside a private use tag or something -- in which case, # you're not in this function at the moment -- every component needs to # be between 1 and 8 characters. subtag_error(subtag, '1-8 characters') elif tag_length == 1: # A one-character subtag introduces an extension, which can itself have # sub-subtags, so we dispatch to a different function at this point. # # We don't need to check anything about the order, because extensions # necessarily come last. return parse_extension(subtags) elif tag_length == 2: if subtag.isalpha(): # Two-letter alphabetic subtags are regions. These are the only # two-character subtags after the language. tagtype = REGION elif tag_length == 3: if subtag.isalpha(): # Three-letter alphabetic subtags are 'extended languages'. # It's allowed for there to be up to three of them in a row, so we # need another function to enforce that. Before we dispatch to that # function, though, we need to check whether we're in the right # place in order. if expect <= EXTLANG: return parse_extlang(subtags) else: order_error(subtag, EXTLANG, expect) elif subtag.isdigit(): # Three-digit subtags are broad regions, such as Latin America # (419). tagtype = REGION elif tag_length == 4: if subtag.isalpha(): # Four-letter alphabetic subtags are scripts. tagtype = SCRIPT elif subtag[0].isdigit(): # Four-character subtags that start with a digit are variants. tagtype = VARIANT else: # Tags of length 5-8 are variants. tagtype = VARIANT # That's the end of the big elif block for figuring out what kind of # subtag we have based on its length. Now we should do something with that # kind of subtag. if tagtype is None: # We haven't recognized a type of tag. This subtag just doesn't fit the # standard. subtag_error(subtag) elif tagtype < expect: # We got a tag type that was supposed to appear earlier in the order. order_error(subtag, tagtype, expect) else: # We've recognized a subtag of a particular type. If it's a region or # script, we expect the next subtag to be a strictly later type, because # there can be at most one region and one script. Otherwise, we expect # the next subtag to be the type we got or later. if tagtype in (SCRIPT, REGION): expect = tagtype + 1 else: expect = tagtype # Get the name of this subtag type instead of its integer value. typename = SUBTAG_TYPES[tagtype] # Some subtags are conventionally written with capitalization. Apply # those conventions. if tagtype == SCRIPT: subtag = subtag.title() elif tagtype == REGION: subtag = subtag.upper() # Recurse on the remaining subtags. return [(typename, subtag)] + parse_subtags(subtags[1:], expect)
Parse everything that comes after the language tag: scripts, regions, variants, and assorted extensions.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/tag_parser.py#L133-L249
LuminosoInsight/langcodes
langcodes/tag_parser.py
parse_extlang
def parse_extlang(subtags): """ Parse an 'extended language' tag, which consists of 1 to 3 three-letter language codes. Extended languages are used for distinguishing dialects/sublanguages (depending on your view) of macrolanguages such as Arabic, Bahasa Malay, and Chinese. It's supposed to also be acceptable to just use the sublanguage as the primary language code, and your code should know what's a macrolanguage of what. For example, 'zh-yue' and 'yue' are the same language (Cantonese), and differ only in whether they explicitly spell out that Cantonese is a kind of Chinese. """ index = 0 parsed = [] while index < len(subtags) and len(subtags[index]) == 3 and index < 3: parsed.append(('extlang', subtags[index])) index += 1 return parsed + parse_subtags(subtags[index:], SCRIPT)
python
def parse_extlang(subtags): """ Parse an 'extended language' tag, which consists of 1 to 3 three-letter language codes. Extended languages are used for distinguishing dialects/sublanguages (depending on your view) of macrolanguages such as Arabic, Bahasa Malay, and Chinese. It's supposed to also be acceptable to just use the sublanguage as the primary language code, and your code should know what's a macrolanguage of what. For example, 'zh-yue' and 'yue' are the same language (Cantonese), and differ only in whether they explicitly spell out that Cantonese is a kind of Chinese. """ index = 0 parsed = [] while index < len(subtags) and len(subtags[index]) == 3 and index < 3: parsed.append(('extlang', subtags[index])) index += 1 return parsed + parse_subtags(subtags[index:], SCRIPT)
Parse an 'extended language' tag, which consists of 1 to 3 three-letter language codes. Extended languages are used for distinguishing dialects/sublanguages (depending on your view) of macrolanguages such as Arabic, Bahasa Malay, and Chinese. It's supposed to also be acceptable to just use the sublanguage as the primary language code, and your code should know what's a macrolanguage of what. For example, 'zh-yue' and 'yue' are the same language (Cantonese), and differ only in whether they explicitly spell out that Cantonese is a kind of Chinese.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/tag_parser.py#L252-L272
LuminosoInsight/langcodes
langcodes/tag_parser.py
parse_extension
def parse_extension(subtags): """ An extension tag consists of a 'singleton' -- a one-character subtag -- followed by other subtags. Extension tags are in the BCP 47 syntax, but their meaning is outside the scope of the standard. For example, there's the u- extension, which is used for setting Unicode properties in some context I'm not aware of. If the singleton is 'x', it's a private use extension, and consumes the rest of the tag. Otherwise, it stops at the next singleton. """ subtag = subtags[0] if len(subtags) == 1: raise LanguageTagError( "The subtag %r must be followed by something" % subtag ) if subtag == 'x': # Private use. Everything after this is arbitrary codes that we # can't look up. return [('private', '-'.join(subtags))] else: # Look for the next singleton, if there is one. boundary = 1 while boundary < len(subtags) and len(subtags[boundary]) != 1: boundary += 1 # We've parsed a complete extension subtag. Return to the main # parse_subtags function, but expect to find nothing but more # extensions at this point. return ([('extension', '-'.join(subtags[:boundary]))] + parse_subtags(subtags[boundary:], EXTENSION))
python
def parse_extension(subtags): """ An extension tag consists of a 'singleton' -- a one-character subtag -- followed by other subtags. Extension tags are in the BCP 47 syntax, but their meaning is outside the scope of the standard. For example, there's the u- extension, which is used for setting Unicode properties in some context I'm not aware of. If the singleton is 'x', it's a private use extension, and consumes the rest of the tag. Otherwise, it stops at the next singleton. """ subtag = subtags[0] if len(subtags) == 1: raise LanguageTagError( "The subtag %r must be followed by something" % subtag ) if subtag == 'x': # Private use. Everything after this is arbitrary codes that we # can't look up. return [('private', '-'.join(subtags))] else: # Look for the next singleton, if there is one. boundary = 1 while boundary < len(subtags) and len(subtags[boundary]) != 1: boundary += 1 # We've parsed a complete extension subtag. Return to the main # parse_subtags function, but expect to find nothing but more # extensions at this point. return ([('extension', '-'.join(subtags[:boundary]))] + parse_subtags(subtags[boundary:], EXTENSION))
An extension tag consists of a 'singleton' -- a one-character subtag -- followed by other subtags. Extension tags are in the BCP 47 syntax, but their meaning is outside the scope of the standard. For example, there's the u- extension, which is used for setting Unicode properties in some context I'm not aware of. If the singleton is 'x', it's a private use extension, and consumes the rest of the tag. Otherwise, it stops at the next singleton.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/tag_parser.py#L275-L308
LuminosoInsight/langcodes
langcodes/tag_parser.py
order_error
def order_error(subtag, got, expected): """ Output an error indicating that tags were out of order. """ options = SUBTAG_TYPES[expected:] if len(options) == 1: expect_str = options[0] elif len(options) == 2: expect_str = '%s or %s' % (options[0], options[1]) else: expect_str = '%s, or %s' % (', '.join(options[:-1]), options[-1]) got_str = SUBTAG_TYPES[got] raise LanguageTagError("This %s subtag, %r, is out of place. " "Expected %s." % (got_str, subtag, expect_str))
python
def order_error(subtag, got, expected): """ Output an error indicating that tags were out of order. """ options = SUBTAG_TYPES[expected:] if len(options) == 1: expect_str = options[0] elif len(options) == 2: expect_str = '%s or %s' % (options[0], options[1]) else: expect_str = '%s, or %s' % (', '.join(options[:-1]), options[-1]) got_str = SUBTAG_TYPES[got] raise LanguageTagError("This %s subtag, %r, is out of place. " "Expected %s." % (got_str, subtag, expect_str))
Output an error indicating that tags were out of order.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/tag_parser.py#L315-L328
LuminosoInsight/langcodes
langcodes/__init__.py
standardize_tag
def standardize_tag(tag: {str, Language}, macro: bool=False) -> str: """ Standardize a language tag: - Replace deprecated values with their updated versions (if those exist) - Remove script tags that are redundant with the language - If *macro* is True, use a macrolanguage to represent the most common standardized language within that macrolanguage. For example, 'cmn' (Mandarin) becomes 'zh' (Chinese), and 'arb' (Modern Standard Arabic) becomes 'ar' (Arabic). - Format the result according to the conventions of BCP 47 Macrolanguage replacement is not required by BCP 47, but it is required by the Unicode CLDR. >>> standardize_tag('en_US') 'en-US' >>> standardize_tag('en-Latn') 'en' >>> standardize_tag('en-uk') 'en-GB' >>> standardize_tag('eng') 'en' >>> standardize_tag('arb-Arab', macro=True) 'ar' >>> standardize_tag('sh-QU') 'sr-Latn-EU' >>> standardize_tag('sgn-US') 'ase' >>> standardize_tag('zh-cmn-hans-cn') 'cmn-Hans-CN' >>> standardize_tag('zh-cmn-hans-cn', macro=True) 'zh-Hans-CN' >>> standardize_tag('zsm', macro=True) 'ms' >>> standardize_tag('ja-latn-hepburn') 'ja-Latn-hepburn' >>> standardize_tag('spa-latn-mx') 'es-MX' If the tag can't be parsed according to BCP 47, this will raise a LanguageTagError (a subclass of ValueError): >>> standardize_tag('spa-mx-latn') Traceback (most recent call last): ... langcodes.tag_parser.LanguageTagError: This script subtag, 'latn', is out of place. Expected variant, extension, or end of string. """ langdata = Language.get(tag, normalize=True) if macro: langdata = langdata.prefer_macrolanguage() return langdata.simplify_script().to_tag()
python
def standardize_tag(tag: {str, Language}, macro: bool=False) -> str: """ Standardize a language tag: - Replace deprecated values with their updated versions (if those exist) - Remove script tags that are redundant with the language - If *macro* is True, use a macrolanguage to represent the most common standardized language within that macrolanguage. For example, 'cmn' (Mandarin) becomes 'zh' (Chinese), and 'arb' (Modern Standard Arabic) becomes 'ar' (Arabic). - Format the result according to the conventions of BCP 47 Macrolanguage replacement is not required by BCP 47, but it is required by the Unicode CLDR. >>> standardize_tag('en_US') 'en-US' >>> standardize_tag('en-Latn') 'en' >>> standardize_tag('en-uk') 'en-GB' >>> standardize_tag('eng') 'en' >>> standardize_tag('arb-Arab', macro=True) 'ar' >>> standardize_tag('sh-QU') 'sr-Latn-EU' >>> standardize_tag('sgn-US') 'ase' >>> standardize_tag('zh-cmn-hans-cn') 'cmn-Hans-CN' >>> standardize_tag('zh-cmn-hans-cn', macro=True) 'zh-Hans-CN' >>> standardize_tag('zsm', macro=True) 'ms' >>> standardize_tag('ja-latn-hepburn') 'ja-Latn-hepburn' >>> standardize_tag('spa-latn-mx') 'es-MX' If the tag can't be parsed according to BCP 47, this will raise a LanguageTagError (a subclass of ValueError): >>> standardize_tag('spa-mx-latn') Traceback (most recent call last): ... langcodes.tag_parser.LanguageTagError: This script subtag, 'latn', is out of place. Expected variant, extension, or end of string. """ langdata = Language.get(tag, normalize=True) if macro: langdata = langdata.prefer_macrolanguage() return langdata.simplify_script().to_tag()
Standardize a language tag: - Replace deprecated values with their updated versions (if those exist) - Remove script tags that are redundant with the language - If *macro* is True, use a macrolanguage to represent the most common standardized language within that macrolanguage. For example, 'cmn' (Mandarin) becomes 'zh' (Chinese), and 'arb' (Modern Standard Arabic) becomes 'ar' (Arabic). - Format the result according to the conventions of BCP 47 Macrolanguage replacement is not required by BCP 47, but it is required by the Unicode CLDR. >>> standardize_tag('en_US') 'en-US' >>> standardize_tag('en-Latn') 'en' >>> standardize_tag('en-uk') 'en-GB' >>> standardize_tag('eng') 'en' >>> standardize_tag('arb-Arab', macro=True) 'ar' >>> standardize_tag('sh-QU') 'sr-Latn-EU' >>> standardize_tag('sgn-US') 'ase' >>> standardize_tag('zh-cmn-hans-cn') 'cmn-Hans-CN' >>> standardize_tag('zh-cmn-hans-cn', macro=True) 'zh-Hans-CN' >>> standardize_tag('zsm', macro=True) 'ms' >>> standardize_tag('ja-latn-hepburn') 'ja-Latn-hepburn' >>> standardize_tag('spa-latn-mx') 'es-MX' If the tag can't be parsed according to BCP 47, this will raise a LanguageTagError (a subclass of ValueError): >>> standardize_tag('spa-mx-latn') Traceback (most recent call last): ... langcodes.tag_parser.LanguageTagError: This script subtag, 'latn', is out of place. Expected variant, extension, or end of string.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L955-L1018
LuminosoInsight/langcodes
langcodes/__init__.py
tag_match_score
def tag_match_score(desired: {str, Language}, supported: {str, Language}) -> int: """ Return a number from 0 to 100 indicating the strength of match between the language the user desires, D, and a supported language, S. Higher numbers are better. A reasonable cutoff for not messing with your users is to only accept scores of 75 or more. A score of 100 means the languages are the same, possibly after normalizing and filling in likely values. >>> tag_match_score('en', 'en') 100 >>> tag_match_score('en', 'en-US') 100 >>> tag_match_score('zh-Hant', 'zh-TW') 100 >>> tag_match_score('ru-Cyrl', 'ru') 100 >>> # Serbo-Croatian is a politically contentious idea, but in practice >>> # it's considered equivalent to Serbian in Latin characters. >>> tag_match_score('sh', 'sr-Latn') 100 A score of 92 to 97 indicates a regional difference. >>> tag_match_score('zh-HK', 'zh-MO') # Chinese is similar in Hong Kong and Macao 97 >>> tag_match_score('en-AU', 'en-GB') # Australian English is similar to British English 96 >>> tag_match_score('en-IN', 'en-GB') # Indian English is also similar to British English 96 >>> tag_match_score('es-PR', 'es-419') # Peruvian Spanish is Latin American Spanish 96 >>> tag_match_score('en-US', 'en-GB') # American and British English are somewhat different 94 >>> tag_match_score('es-MX', 'es-ES') # Mexican Spanish is different from Spanish Spanish 92 >>> # Serbian has two scripts, and people might prefer one but understand both >>> tag_match_score('sr-Latn', 'sr-Cyrl') 95 >>> # European Portuguese is different from the most common form (Brazilian Portuguese) >>> tag_match_score('pt', 'pt-PT') 92 A score of 86 to 90 indicates that people who use the desired language are demographically likely to understand the supported language, even if the languages themselves are unrelated. There are many languages that have a one-way connection of this kind to English or French. >>> tag_match_score('ta', 'en') # Tamil to English 86 >>> tag_match_score('mg', 'fr') # Malagasy to French 86 Sometimes it's more straightforward than that: people who use the desired language are demographically likely to understand the supported language because it's demographically relevant and highly related. >>> tag_match_score('af', 'nl') # Afrikaans to Dutch 86 >>> tag_match_score('ms', 'id') # Malay to Indonesian 86 >>> tag_match_score('nn', 'nb') # Nynorsk to Norwegian Bokmål 90 >>> tag_match_score('nb', 'da') # Norwegian Bokmål to Danish 88 A score of 80 to 85 indicates a particularly contentious difference in script, where people who understand one script can learn the other but probably won't be happy with it. This specifically applies to Chinese. >>> tag_match_score('zh-Hans', 'zh-Hant') 85 >>> tag_match_score('zh-CN', 'zh-HK') 85 >>> tag_match_score('zh-CN', 'zh-TW') 85 >>> tag_match_score('zh-Hant', 'zh-Hans') 81 >>> tag_match_score('zh-TW', 'zh-CN') 81 When the supported script is a different one than desired, this is usually a major difference with score of 60 or less. >>> tag_match_score('ja', 'ja-Latn-US-hepburn') 56 >>> # You can read the Shavian script, right? >>> tag_match_score('en', 'en-Shaw') 56 When there is no indication the supported language will be understood, the score will be 20 or less, to a minimum of 0. >>> tag_match_score('es', 'fr') # Spanish and French are different. 16 >>> tag_match_score('en', 'ta') # English speakers generally do not know Tamil. 0 CLDR doesn't take into account which languages are considered part of a common 'macrolanguage'. We have this data, so we can use it in matching. If two languages have no other rule that would allow them to match, but share a macrolanguage, they'll get a match score of 20 less than what they would get if the language matched. >>> tag_match_score('arz', 'ar') # Egyptian Arabic to Standard Arabic 80 >>> tag_match_score('arz', 'ary') # Egyptian Arabic to Moroccan Arabic 76 Here's an example that has script, region, and language differences, but a macrolanguage in common. Written Chinese is usually presumed to be Mandarin Chinese, but colloquial Cantonese can be written as well. When it is, it probably has region, script, and language differences from the usual mainland Chinese. But it is still part of the 'Chinese' macrolanguage, so there is more similarity than, say, comparing Mandarin to Hindi. >>> tag_match_score('yue', 'zh') 36 Comparing Swiss German ('gsw') to standardized German ('de') shows how these scores can be asymmetrical. Swiss German speakers will understand German, so the score in that direction is 92. Most German speakers find Swiss German unintelligible, and CLDR in fact assigns this a score of 16. This seems a little bit extreme, but the asymmetry is certainly there. And if your text is tagged as 'gsw', it must be that way for a reason. >>> tag_match_score('gsw', 'de') 92 >>> tag_match_score('de', 'gsw') 16 """ desired_ld = Language.get(desired) supported_ld = Language.get(supported) return desired_ld.match_score(supported_ld)
python
def tag_match_score(desired: {str, Language}, supported: {str, Language}) -> int: """ Return a number from 0 to 100 indicating the strength of match between the language the user desires, D, and a supported language, S. Higher numbers are better. A reasonable cutoff for not messing with your users is to only accept scores of 75 or more. A score of 100 means the languages are the same, possibly after normalizing and filling in likely values. >>> tag_match_score('en', 'en') 100 >>> tag_match_score('en', 'en-US') 100 >>> tag_match_score('zh-Hant', 'zh-TW') 100 >>> tag_match_score('ru-Cyrl', 'ru') 100 >>> # Serbo-Croatian is a politically contentious idea, but in practice >>> # it's considered equivalent to Serbian in Latin characters. >>> tag_match_score('sh', 'sr-Latn') 100 A score of 92 to 97 indicates a regional difference. >>> tag_match_score('zh-HK', 'zh-MO') # Chinese is similar in Hong Kong and Macao 97 >>> tag_match_score('en-AU', 'en-GB') # Australian English is similar to British English 96 >>> tag_match_score('en-IN', 'en-GB') # Indian English is also similar to British English 96 >>> tag_match_score('es-PR', 'es-419') # Peruvian Spanish is Latin American Spanish 96 >>> tag_match_score('en-US', 'en-GB') # American and British English are somewhat different 94 >>> tag_match_score('es-MX', 'es-ES') # Mexican Spanish is different from Spanish Spanish 92 >>> # Serbian has two scripts, and people might prefer one but understand both >>> tag_match_score('sr-Latn', 'sr-Cyrl') 95 >>> # European Portuguese is different from the most common form (Brazilian Portuguese) >>> tag_match_score('pt', 'pt-PT') 92 A score of 86 to 90 indicates that people who use the desired language are demographically likely to understand the supported language, even if the languages themselves are unrelated. There are many languages that have a one-way connection of this kind to English or French. >>> tag_match_score('ta', 'en') # Tamil to English 86 >>> tag_match_score('mg', 'fr') # Malagasy to French 86 Sometimes it's more straightforward than that: people who use the desired language are demographically likely to understand the supported language because it's demographically relevant and highly related. >>> tag_match_score('af', 'nl') # Afrikaans to Dutch 86 >>> tag_match_score('ms', 'id') # Malay to Indonesian 86 >>> tag_match_score('nn', 'nb') # Nynorsk to Norwegian Bokmål 90 >>> tag_match_score('nb', 'da') # Norwegian Bokmål to Danish 88 A score of 80 to 85 indicates a particularly contentious difference in script, where people who understand one script can learn the other but probably won't be happy with it. This specifically applies to Chinese. >>> tag_match_score('zh-Hans', 'zh-Hant') 85 >>> tag_match_score('zh-CN', 'zh-HK') 85 >>> tag_match_score('zh-CN', 'zh-TW') 85 >>> tag_match_score('zh-Hant', 'zh-Hans') 81 >>> tag_match_score('zh-TW', 'zh-CN') 81 When the supported script is a different one than desired, this is usually a major difference with score of 60 or less. >>> tag_match_score('ja', 'ja-Latn-US-hepburn') 56 >>> # You can read the Shavian script, right? >>> tag_match_score('en', 'en-Shaw') 56 When there is no indication the supported language will be understood, the score will be 20 or less, to a minimum of 0. >>> tag_match_score('es', 'fr') # Spanish and French are different. 16 >>> tag_match_score('en', 'ta') # English speakers generally do not know Tamil. 0 CLDR doesn't take into account which languages are considered part of a common 'macrolanguage'. We have this data, so we can use it in matching. If two languages have no other rule that would allow them to match, but share a macrolanguage, they'll get a match score of 20 less than what they would get if the language matched. >>> tag_match_score('arz', 'ar') # Egyptian Arabic to Standard Arabic 80 >>> tag_match_score('arz', 'ary') # Egyptian Arabic to Moroccan Arabic 76 Here's an example that has script, region, and language differences, but a macrolanguage in common. Written Chinese is usually presumed to be Mandarin Chinese, but colloquial Cantonese can be written as well. When it is, it probably has region, script, and language differences from the usual mainland Chinese. But it is still part of the 'Chinese' macrolanguage, so there is more similarity than, say, comparing Mandarin to Hindi. >>> tag_match_score('yue', 'zh') 36 Comparing Swiss German ('gsw') to standardized German ('de') shows how these scores can be asymmetrical. Swiss German speakers will understand German, so the score in that direction is 92. Most German speakers find Swiss German unintelligible, and CLDR in fact assigns this a score of 16. This seems a little bit extreme, but the asymmetry is certainly there. And if your text is tagged as 'gsw', it must be that way for a reason. >>> tag_match_score('gsw', 'de') 92 >>> tag_match_score('de', 'gsw') 16 """ desired_ld = Language.get(desired) supported_ld = Language.get(supported) return desired_ld.match_score(supported_ld)
Return a number from 0 to 100 indicating the strength of match between the language the user desires, D, and a supported language, S. Higher numbers are better. A reasonable cutoff for not messing with your users is to only accept scores of 75 or more. A score of 100 means the languages are the same, possibly after normalizing and filling in likely values. >>> tag_match_score('en', 'en') 100 >>> tag_match_score('en', 'en-US') 100 >>> tag_match_score('zh-Hant', 'zh-TW') 100 >>> tag_match_score('ru-Cyrl', 'ru') 100 >>> # Serbo-Croatian is a politically contentious idea, but in practice >>> # it's considered equivalent to Serbian in Latin characters. >>> tag_match_score('sh', 'sr-Latn') 100 A score of 92 to 97 indicates a regional difference. >>> tag_match_score('zh-HK', 'zh-MO') # Chinese is similar in Hong Kong and Macao 97 >>> tag_match_score('en-AU', 'en-GB') # Australian English is similar to British English 96 >>> tag_match_score('en-IN', 'en-GB') # Indian English is also similar to British English 96 >>> tag_match_score('es-PR', 'es-419') # Peruvian Spanish is Latin American Spanish 96 >>> tag_match_score('en-US', 'en-GB') # American and British English are somewhat different 94 >>> tag_match_score('es-MX', 'es-ES') # Mexican Spanish is different from Spanish Spanish 92 >>> # Serbian has two scripts, and people might prefer one but understand both >>> tag_match_score('sr-Latn', 'sr-Cyrl') 95 >>> # European Portuguese is different from the most common form (Brazilian Portuguese) >>> tag_match_score('pt', 'pt-PT') 92 A score of 86 to 90 indicates that people who use the desired language are demographically likely to understand the supported language, even if the languages themselves are unrelated. There are many languages that have a one-way connection of this kind to English or French. >>> tag_match_score('ta', 'en') # Tamil to English 86 >>> tag_match_score('mg', 'fr') # Malagasy to French 86 Sometimes it's more straightforward than that: people who use the desired language are demographically likely to understand the supported language because it's demographically relevant and highly related. >>> tag_match_score('af', 'nl') # Afrikaans to Dutch 86 >>> tag_match_score('ms', 'id') # Malay to Indonesian 86 >>> tag_match_score('nn', 'nb') # Nynorsk to Norwegian Bokmål 90 >>> tag_match_score('nb', 'da') # Norwegian Bokmål to Danish 88 A score of 80 to 85 indicates a particularly contentious difference in script, where people who understand one script can learn the other but probably won't be happy with it. This specifically applies to Chinese. >>> tag_match_score('zh-Hans', 'zh-Hant') 85 >>> tag_match_score('zh-CN', 'zh-HK') 85 >>> tag_match_score('zh-CN', 'zh-TW') 85 >>> tag_match_score('zh-Hant', 'zh-Hans') 81 >>> tag_match_score('zh-TW', 'zh-CN') 81 When the supported script is a different one than desired, this is usually a major difference with score of 60 or less. >>> tag_match_score('ja', 'ja-Latn-US-hepburn') 56 >>> # You can read the Shavian script, right? >>> tag_match_score('en', 'en-Shaw') 56 When there is no indication the supported language will be understood, the score will be 20 or less, to a minimum of 0. >>> tag_match_score('es', 'fr') # Spanish and French are different. 16 >>> tag_match_score('en', 'ta') # English speakers generally do not know Tamil. 0 CLDR doesn't take into account which languages are considered part of a common 'macrolanguage'. We have this data, so we can use it in matching. If two languages have no other rule that would allow them to match, but share a macrolanguage, they'll get a match score of 20 less than what they would get if the language matched. >>> tag_match_score('arz', 'ar') # Egyptian Arabic to Standard Arabic 80 >>> tag_match_score('arz', 'ary') # Egyptian Arabic to Moroccan Arabic 76 Here's an example that has script, region, and language differences, but a macrolanguage in common. Written Chinese is usually presumed to be Mandarin Chinese, but colloquial Cantonese can be written as well. When it is, it probably has region, script, and language differences from the usual mainland Chinese. But it is still part of the 'Chinese' macrolanguage, so there is more similarity than, say, comparing Mandarin to Hindi. >>> tag_match_score('yue', 'zh') 36 Comparing Swiss German ('gsw') to standardized German ('de') shows how these scores can be asymmetrical. Swiss German speakers will understand German, so the score in that direction is 92. Most German speakers find Swiss German unintelligible, and CLDR in fact assigns this a score of 16. This seems a little bit extreme, but the asymmetry is certainly there. And if your text is tagged as 'gsw', it must be that way for a reason. >>> tag_match_score('gsw', 'de') 92 >>> tag_match_score('de', 'gsw') 16
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L1021-L1159
LuminosoInsight/langcodes
langcodes/__init__.py
best_match
def best_match(desired_language: {str, Language}, supported_languages: list, min_score: int=75) -> (str, int): """ You have software that supports any of the `supported_languages`. You want to use `desired_language`. This function lets you choose the right language, even if there isn't an exact match. Returns: - The best-matching language code, which will be one of the `supported_languages` or 'und' - The score of the match, from 0 to 100 `min_score` sets the minimum match score. If all languages match with a lower score than that, the result will be 'und' with a score of 0. When there is a tie for the best matching language, the first one in the tie will be used. Setting `min_score` lower will enable more things to match, at the cost of possibly mis-handling data or upsetting users. Read the documentation for :func:`tag_match_score` to understand what the numbers mean. >>> best_match('fr', ['de', 'en', 'fr']) ('fr', 100) >>> best_match('sh', ['hr', 'bs', 'sr-Latn', 'sr-Cyrl']) ('sr-Latn', 100) >>> best_match('zh-CN', ['zh-Hant', 'zh-Hans', 'gan', 'nan']) ('zh-Hans', 100) >>> best_match('zh-CN', ['cmn-Hant', 'cmn-Hans', 'gan', 'nan']) ('cmn-Hans', 100) >>> best_match('pt', ['pt-BR', 'pt-PT']) ('pt-BR', 100) >>> best_match('en-AU', ['en-GB', 'en-US']) ('en-GB', 96) >>> best_match('es-MX', ['es-ES', 'es-419', 'en-US']) ('es-419', 96) >>> best_match('es-MX', ['es-PU', 'es-AR', 'es-PY']) ('es-PU', 95) >>> best_match('es-MX', ['es-AR', 'es-PU', 'es-PY']) ('es-AR', 95) >>> best_match('zsm', ['id', 'mhp']) ('id', 86) >>> best_match('eu', ['el', 'en', 'es']) ('es', 90) >>> best_match('eu', ['el', 'en', 'es'], min_score=92) ('und', 0) """ # Quickly return if the desired language is directly supported if desired_language in supported_languages: return desired_language, 100 # Reduce the desired language to a standard form that could also match desired_language = standardize_tag(desired_language) if desired_language in supported_languages: return desired_language, 100 match_scores = [ (supported, tag_match_score(desired_language, supported)) for supported in supported_languages ] match_scores = [ (supported, score) for (supported, score) in match_scores if score >= min_score ] + [('und', 0)] match_scores.sort(key=lambda item: -item[1]) return match_scores[0]
python
def best_match(desired_language: {str, Language}, supported_languages: list, min_score: int=75) -> (str, int): """ You have software that supports any of the `supported_languages`. You want to use `desired_language`. This function lets you choose the right language, even if there isn't an exact match. Returns: - The best-matching language code, which will be one of the `supported_languages` or 'und' - The score of the match, from 0 to 100 `min_score` sets the minimum match score. If all languages match with a lower score than that, the result will be 'und' with a score of 0. When there is a tie for the best matching language, the first one in the tie will be used. Setting `min_score` lower will enable more things to match, at the cost of possibly mis-handling data or upsetting users. Read the documentation for :func:`tag_match_score` to understand what the numbers mean. >>> best_match('fr', ['de', 'en', 'fr']) ('fr', 100) >>> best_match('sh', ['hr', 'bs', 'sr-Latn', 'sr-Cyrl']) ('sr-Latn', 100) >>> best_match('zh-CN', ['zh-Hant', 'zh-Hans', 'gan', 'nan']) ('zh-Hans', 100) >>> best_match('zh-CN', ['cmn-Hant', 'cmn-Hans', 'gan', 'nan']) ('cmn-Hans', 100) >>> best_match('pt', ['pt-BR', 'pt-PT']) ('pt-BR', 100) >>> best_match('en-AU', ['en-GB', 'en-US']) ('en-GB', 96) >>> best_match('es-MX', ['es-ES', 'es-419', 'en-US']) ('es-419', 96) >>> best_match('es-MX', ['es-PU', 'es-AR', 'es-PY']) ('es-PU', 95) >>> best_match('es-MX', ['es-AR', 'es-PU', 'es-PY']) ('es-AR', 95) >>> best_match('zsm', ['id', 'mhp']) ('id', 86) >>> best_match('eu', ['el', 'en', 'es']) ('es', 90) >>> best_match('eu', ['el', 'en', 'es'], min_score=92) ('und', 0) """ # Quickly return if the desired language is directly supported if desired_language in supported_languages: return desired_language, 100 # Reduce the desired language to a standard form that could also match desired_language = standardize_tag(desired_language) if desired_language in supported_languages: return desired_language, 100 match_scores = [ (supported, tag_match_score(desired_language, supported)) for supported in supported_languages ] match_scores = [ (supported, score) for (supported, score) in match_scores if score >= min_score ] + [('und', 0)] match_scores.sort(key=lambda item: -item[1]) return match_scores[0]
You have software that supports any of the `supported_languages`. You want to use `desired_language`. This function lets you choose the right language, even if there isn't an exact match. Returns: - The best-matching language code, which will be one of the `supported_languages` or 'und' - The score of the match, from 0 to 100 `min_score` sets the minimum match score. If all languages match with a lower score than that, the result will be 'und' with a score of 0. When there is a tie for the best matching language, the first one in the tie will be used. Setting `min_score` lower will enable more things to match, at the cost of possibly mis-handling data or upsetting users. Read the documentation for :func:`tag_match_score` to understand what the numbers mean. >>> best_match('fr', ['de', 'en', 'fr']) ('fr', 100) >>> best_match('sh', ['hr', 'bs', 'sr-Latn', 'sr-Cyrl']) ('sr-Latn', 100) >>> best_match('zh-CN', ['zh-Hant', 'zh-Hans', 'gan', 'nan']) ('zh-Hans', 100) >>> best_match('zh-CN', ['cmn-Hant', 'cmn-Hans', 'gan', 'nan']) ('cmn-Hans', 100) >>> best_match('pt', ['pt-BR', 'pt-PT']) ('pt-BR', 100) >>> best_match('en-AU', ['en-GB', 'en-US']) ('en-GB', 96) >>> best_match('es-MX', ['es-ES', 'es-419', 'en-US']) ('es-419', 96) >>> best_match('es-MX', ['es-PU', 'es-AR', 'es-PY']) ('es-PU', 95) >>> best_match('es-MX', ['es-AR', 'es-PU', 'es-PY']) ('es-AR', 95) >>> best_match('zsm', ['id', 'mhp']) ('id', 86) >>> best_match('eu', ['el', 'en', 'es']) ('es', 90) >>> best_match('eu', ['el', 'en', 'es'], min_score=92) ('und', 0)
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L1162-L1229
LuminosoInsight/langcodes
langcodes/__init__.py
Language.make
def make(cls, language=None, extlangs=None, script=None, region=None, variants=None, extensions=None, private=None): """ Create a Language object by giving any subset of its attributes. If this value has been created before, return the existing value. """ values = (language, tuple(extlangs or ()), script, region, tuple(variants or ()), tuple(extensions or ()), private) if values in cls._INSTANCES: return cls._INSTANCES[values] instance = cls( language=language, extlangs=extlangs, script=script, region=region, variants=variants, extensions=extensions, private=private ) cls._INSTANCES[values] = instance return instance
python
def make(cls, language=None, extlangs=None, script=None, region=None, variants=None, extensions=None, private=None): """ Create a Language object by giving any subset of its attributes. If this value has been created before, return the existing value. """ values = (language, tuple(extlangs or ()), script, region, tuple(variants or ()), tuple(extensions or ()), private) if values in cls._INSTANCES: return cls._INSTANCES[values] instance = cls( language=language, extlangs=extlangs, script=script, region=region, variants=variants, extensions=extensions, private=private ) cls._INSTANCES[values] = instance return instance
Create a Language object by giving any subset of its attributes. If this value has been created before, return the existing value.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L104-L122
LuminosoInsight/langcodes
langcodes/__init__.py
Language.get
def get(tag: {str, 'Language'}, normalize=True) -> 'Language': """ Create a Language object from a language tag string. If normalize=True, non-standard or overlong tags will be replaced as they're interpreted. This is recommended. Here are several examples of language codes, which are also test cases. Most language codes are straightforward, but these examples will get pretty obscure toward the end. >>> Language.get('en-US') Language.make(language='en', region='US') >>> Language.get('zh-Hant') Language.make(language='zh', script='Hant') >>> Language.get('und') Language.make() This function is idempotent, in case you already have a Language object: >>> Language.get(Language.get('en-us')) Language.make(language='en', region='US') The non-code 'root' is sometimes used to represent the lack of any language information, similar to 'und'. >>> Language.get('root') Language.make() By default, getting a Language object will automatically convert deprecated tags: >>> Language.get('iw') Language.make(language='he') >>> Language.get('in') Language.make(language='id') One type of deprecated tag that should be replaced is for sign languages, which used to all be coded as regional variants of a fictitious global sign language called 'sgn'. Of course, there is no global sign language, so sign languages now have their own language codes. >>> Language.get('sgn-US') Language.make(language='ase') >>> Language.get('sgn-US', normalize=False) Language.make(language='sgn', region='US') 'en-gb-oed' is a tag that's grandfathered into the standard because it has been used to mean "spell-check this with Oxford English Dictionary spelling", but that tag has the wrong shape. We interpret this as the new standardized tag 'en-gb-oxendict', unless asked not to normalize. >>> Language.get('en-gb-oed') Language.make(language='en', region='GB', variants=['oxendict']) >>> Language.get('en-gb-oed', normalize=False) Language.make(language='en-gb-oed') 'zh-min-nan' is another oddly-formed tag, used to represent the Southern Min language, which includes Taiwanese as a regional form. It now has its own language code. >>> Language.get('zh-min-nan') Language.make(language='nan') There's not much we can do with the vague tag 'zh-min': >>> Language.get('zh-min') Language.make(language='zh-min') Occasionally Wiktionary will use 'extlang' tags in strange ways, such as using the tag 'und-ibe' for some unspecified Iberian language. >>> Language.get('und-ibe') Language.make(extlangs=['ibe']) Here's an example of replacing multiple deprecated tags. The language tag 'sh' (Serbo-Croatian) ended up being politically problematic, and different standards took different steps to address this. The IANA made it into a macrolanguage that contains 'sr', 'hr', and 'bs'. Unicode further decided that it's a legacy tag that should be interpreted as 'sr-Latn', which the language matching rules say is mutually intelligible with all those languages. We complicate the example by adding on the region tag 'QU', an old provisional tag for the European Union, which is now standardized as 'EU'. >>> Language.get('sh-QU') Language.make(language='sr', script='Latn', region='EU') """ if isinstance(tag, Language): if not normalize: # shortcut: we have the tag already return tag # We might need to normalize this tag. Convert it back into a # string tag, to cover all the edge cases of normalization in a # way that we've already solved. tag = tag.to_tag() if (tag, normalize) in Language._PARSE_CACHE: return Language._PARSE_CACHE[tag, normalize] data = {} # if the complete tag appears as something to normalize, do the # normalization right away. Smash case when checking, because the # case normalization that comes from parse_tag() hasn't been applied # yet. tag_lower = tag.lower() if normalize and tag_lower in LANGUAGE_REPLACEMENTS: tag = LANGUAGE_REPLACEMENTS[tag_lower] components = parse_tag(tag) for typ, value in components: if typ == 'extlang' and normalize and 'language' in data: # smash extlangs when possible minitag = '%s-%s' % (data['language'], value) norm = LANGUAGE_REPLACEMENTS.get(minitag.lower()) if norm is not None: data.update( Language.get(norm, normalize).to_dict() ) else: data.setdefault('extlangs', []).append(value) elif typ in {'extlang', 'variant', 'extension'}: data.setdefault(typ + 's', []).append(value) elif typ == 'language': if value == 'und': pass elif normalize: replacement = LANGUAGE_REPLACEMENTS.get(value.lower()) if replacement is not None: # parse the replacement if necessary -- this helps with # Serbian and Moldovan data.update( Language.get(replacement, normalize).to_dict() ) else: data['language'] = value else: data['language'] = value elif typ == 'region': if normalize: data['region'] = REGION_REPLACEMENTS.get(value.lower(), value) else: data['region'] = value elif typ == 'grandfathered': # If we got here, we got a grandfathered tag but we were asked # not to normalize it, or the CLDR data doesn't know how to # normalize it. The best we can do is set the entire tag as the # language. data['language'] = value else: data[typ] = value result = Language.make(**data) Language._PARSE_CACHE[tag, normalize] = result return result
python
def get(tag: {str, 'Language'}, normalize=True) -> 'Language': """ Create a Language object from a language tag string. If normalize=True, non-standard or overlong tags will be replaced as they're interpreted. This is recommended. Here are several examples of language codes, which are also test cases. Most language codes are straightforward, but these examples will get pretty obscure toward the end. >>> Language.get('en-US') Language.make(language='en', region='US') >>> Language.get('zh-Hant') Language.make(language='zh', script='Hant') >>> Language.get('und') Language.make() This function is idempotent, in case you already have a Language object: >>> Language.get(Language.get('en-us')) Language.make(language='en', region='US') The non-code 'root' is sometimes used to represent the lack of any language information, similar to 'und'. >>> Language.get('root') Language.make() By default, getting a Language object will automatically convert deprecated tags: >>> Language.get('iw') Language.make(language='he') >>> Language.get('in') Language.make(language='id') One type of deprecated tag that should be replaced is for sign languages, which used to all be coded as regional variants of a fictitious global sign language called 'sgn'. Of course, there is no global sign language, so sign languages now have their own language codes. >>> Language.get('sgn-US') Language.make(language='ase') >>> Language.get('sgn-US', normalize=False) Language.make(language='sgn', region='US') 'en-gb-oed' is a tag that's grandfathered into the standard because it has been used to mean "spell-check this with Oxford English Dictionary spelling", but that tag has the wrong shape. We interpret this as the new standardized tag 'en-gb-oxendict', unless asked not to normalize. >>> Language.get('en-gb-oed') Language.make(language='en', region='GB', variants=['oxendict']) >>> Language.get('en-gb-oed', normalize=False) Language.make(language='en-gb-oed') 'zh-min-nan' is another oddly-formed tag, used to represent the Southern Min language, which includes Taiwanese as a regional form. It now has its own language code. >>> Language.get('zh-min-nan') Language.make(language='nan') There's not much we can do with the vague tag 'zh-min': >>> Language.get('zh-min') Language.make(language='zh-min') Occasionally Wiktionary will use 'extlang' tags in strange ways, such as using the tag 'und-ibe' for some unspecified Iberian language. >>> Language.get('und-ibe') Language.make(extlangs=['ibe']) Here's an example of replacing multiple deprecated tags. The language tag 'sh' (Serbo-Croatian) ended up being politically problematic, and different standards took different steps to address this. The IANA made it into a macrolanguage that contains 'sr', 'hr', and 'bs'. Unicode further decided that it's a legacy tag that should be interpreted as 'sr-Latn', which the language matching rules say is mutually intelligible with all those languages. We complicate the example by adding on the region tag 'QU', an old provisional tag for the European Union, which is now standardized as 'EU'. >>> Language.get('sh-QU') Language.make(language='sr', script='Latn', region='EU') """ if isinstance(tag, Language): if not normalize: # shortcut: we have the tag already return tag # We might need to normalize this tag. Convert it back into a # string tag, to cover all the edge cases of normalization in a # way that we've already solved. tag = tag.to_tag() if (tag, normalize) in Language._PARSE_CACHE: return Language._PARSE_CACHE[tag, normalize] data = {} # if the complete tag appears as something to normalize, do the # normalization right away. Smash case when checking, because the # case normalization that comes from parse_tag() hasn't been applied # yet. tag_lower = tag.lower() if normalize and tag_lower in LANGUAGE_REPLACEMENTS: tag = LANGUAGE_REPLACEMENTS[tag_lower] components = parse_tag(tag) for typ, value in components: if typ == 'extlang' and normalize and 'language' in data: # smash extlangs when possible minitag = '%s-%s' % (data['language'], value) norm = LANGUAGE_REPLACEMENTS.get(minitag.lower()) if norm is not None: data.update( Language.get(norm, normalize).to_dict() ) else: data.setdefault('extlangs', []).append(value) elif typ in {'extlang', 'variant', 'extension'}: data.setdefault(typ + 's', []).append(value) elif typ == 'language': if value == 'und': pass elif normalize: replacement = LANGUAGE_REPLACEMENTS.get(value.lower()) if replacement is not None: # parse the replacement if necessary -- this helps with # Serbian and Moldovan data.update( Language.get(replacement, normalize).to_dict() ) else: data['language'] = value else: data['language'] = value elif typ == 'region': if normalize: data['region'] = REGION_REPLACEMENTS.get(value.lower(), value) else: data['region'] = value elif typ == 'grandfathered': # If we got here, we got a grandfathered tag but we were asked # not to normalize it, or the CLDR data doesn't know how to # normalize it. The best we can do is set the entire tag as the # language. data['language'] = value else: data[typ] = value result = Language.make(**data) Language._PARSE_CACHE[tag, normalize] = result return result
Create a Language object from a language tag string. If normalize=True, non-standard or overlong tags will be replaced as they're interpreted. This is recommended. Here are several examples of language codes, which are also test cases. Most language codes are straightforward, but these examples will get pretty obscure toward the end. >>> Language.get('en-US') Language.make(language='en', region='US') >>> Language.get('zh-Hant') Language.make(language='zh', script='Hant') >>> Language.get('und') Language.make() This function is idempotent, in case you already have a Language object: >>> Language.get(Language.get('en-us')) Language.make(language='en', region='US') The non-code 'root' is sometimes used to represent the lack of any language information, similar to 'und'. >>> Language.get('root') Language.make() By default, getting a Language object will automatically convert deprecated tags: >>> Language.get('iw') Language.make(language='he') >>> Language.get('in') Language.make(language='id') One type of deprecated tag that should be replaced is for sign languages, which used to all be coded as regional variants of a fictitious global sign language called 'sgn'. Of course, there is no global sign language, so sign languages now have their own language codes. >>> Language.get('sgn-US') Language.make(language='ase') >>> Language.get('sgn-US', normalize=False) Language.make(language='sgn', region='US') 'en-gb-oed' is a tag that's grandfathered into the standard because it has been used to mean "spell-check this with Oxford English Dictionary spelling", but that tag has the wrong shape. We interpret this as the new standardized tag 'en-gb-oxendict', unless asked not to normalize. >>> Language.get('en-gb-oed') Language.make(language='en', region='GB', variants=['oxendict']) >>> Language.get('en-gb-oed', normalize=False) Language.make(language='en-gb-oed') 'zh-min-nan' is another oddly-formed tag, used to represent the Southern Min language, which includes Taiwanese as a regional form. It now has its own language code. >>> Language.get('zh-min-nan') Language.make(language='nan') There's not much we can do with the vague tag 'zh-min': >>> Language.get('zh-min') Language.make(language='zh-min') Occasionally Wiktionary will use 'extlang' tags in strange ways, such as using the tag 'und-ibe' for some unspecified Iberian language. >>> Language.get('und-ibe') Language.make(extlangs=['ibe']) Here's an example of replacing multiple deprecated tags. The language tag 'sh' (Serbo-Croatian) ended up being politically problematic, and different standards took different steps to address this. The IANA made it into a macrolanguage that contains 'sr', 'hr', and 'bs'. Unicode further decided that it's a legacy tag that should be interpreted as 'sr-Latn', which the language matching rules say is mutually intelligible with all those languages. We complicate the example by adding on the region tag 'QU', an old provisional tag for the European Union, which is now standardized as 'EU'. >>> Language.get('sh-QU') Language.make(language='sr', script='Latn', region='EU')
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L125-L290
LuminosoInsight/langcodes
langcodes/__init__.py
Language.to_tag
def to_tag(self) -> str: """ Convert a Language back to a standard language tag, as a string. This is also the str() representation of a Language object. >>> Language.make(language='en', region='GB').to_tag() 'en-GB' >>> Language.make(language='yue', script='Hant', region='HK').to_tag() 'yue-Hant-HK' >>> Language.make(script='Arab').to_tag() 'und-Arab' >>> str(Language.make(region='IN')) 'und-IN' """ if self._str_tag is not None: return self._str_tag subtags = ['und'] if self.language: subtags[0] = self.language if self.extlangs: for extlang in sorted(self.extlangs): subtags.append(extlang) if self.script: subtags.append(self.script) if self.region: subtags.append(self.region) if self.variants: for variant in sorted(self.variants): subtags.append(variant) if self.extensions: for ext in self.extensions: subtags.append(ext) if self.private: subtags.append(self.private) self._str_tag = '-'.join(subtags) return self._str_tag
python
def to_tag(self) -> str: """ Convert a Language back to a standard language tag, as a string. This is also the str() representation of a Language object. >>> Language.make(language='en', region='GB').to_tag() 'en-GB' >>> Language.make(language='yue', script='Hant', region='HK').to_tag() 'yue-Hant-HK' >>> Language.make(script='Arab').to_tag() 'und-Arab' >>> str(Language.make(region='IN')) 'und-IN' """ if self._str_tag is not None: return self._str_tag subtags = ['und'] if self.language: subtags[0] = self.language if self.extlangs: for extlang in sorted(self.extlangs): subtags.append(extlang) if self.script: subtags.append(self.script) if self.region: subtags.append(self.region) if self.variants: for variant in sorted(self.variants): subtags.append(variant) if self.extensions: for ext in self.extensions: subtags.append(ext) if self.private: subtags.append(self.private) self._str_tag = '-'.join(subtags) return self._str_tag
Convert a Language back to a standard language tag, as a string. This is also the str() representation of a Language object. >>> Language.make(language='en', region='GB').to_tag() 'en-GB' >>> Language.make(language='yue', script='Hant', region='HK').to_tag() 'yue-Hant-HK' >>> Language.make(script='Arab').to_tag() 'und-Arab' >>> str(Language.make(region='IN')) 'und-IN'
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L292-L330
LuminosoInsight/langcodes
langcodes/__init__.py
Language.simplify_script
def simplify_script(self) -> 'Language': """ Remove the script from some parsed language data, if the script is redundant with the language. >>> Language.make(language='en', script='Latn').simplify_script() Language.make(language='en') >>> Language.make(language='yi', script='Latn').simplify_script() Language.make(language='yi', script='Latn') >>> Language.make(language='yi', script='Hebr').simplify_script() Language.make(language='yi') """ if self._simplified is not None: return self._simplified if self.language and self.script: if DEFAULT_SCRIPTS.get(self.language) == self.script: result = self.update_dict({'script': None}) self._simplified = result return self._simplified self._simplified = self return self._simplified
python
def simplify_script(self) -> 'Language': """ Remove the script from some parsed language data, if the script is redundant with the language. >>> Language.make(language='en', script='Latn').simplify_script() Language.make(language='en') >>> Language.make(language='yi', script='Latn').simplify_script() Language.make(language='yi', script='Latn') >>> Language.make(language='yi', script='Hebr').simplify_script() Language.make(language='yi') """ if self._simplified is not None: return self._simplified if self.language and self.script: if DEFAULT_SCRIPTS.get(self.language) == self.script: result = self.update_dict({'script': None}) self._simplified = result return self._simplified self._simplified = self return self._simplified
Remove the script from some parsed language data, if the script is redundant with the language. >>> Language.make(language='en', script='Latn').simplify_script() Language.make(language='en') >>> Language.make(language='yi', script='Latn').simplify_script() Language.make(language='yi', script='Latn') >>> Language.make(language='yi', script='Hebr').simplify_script() Language.make(language='yi')
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L332-L356
LuminosoInsight/langcodes
langcodes/__init__.py
Language.assume_script
def assume_script(self) -> 'Language': """ Fill in the script if it's missing, and if it can be assumed from the language subtag. This is the opposite of `simplify_script`. >>> Language.make(language='en').assume_script() Language.make(language='en', script='Latn') >>> Language.make(language='yi').assume_script() Language.make(language='yi', script='Hebr') >>> Language.make(language='yi', script='Latn').assume_script() Language.make(language='yi', script='Latn') This fills in nothing when the script cannot be assumed -- such as when the language has multiple scripts, or it has no standard orthography: >>> Language.make(language='sr').assume_script() Language.make(language='sr') >>> Language.make(language='eee').assume_script() Language.make(language='eee') It also dosn't fill anything in when the language is unspecified. >>> Language.make(region='US').assume_script() Language.make(region='US') """ if self._assumed is not None: return self._assumed if self.language and not self.script: try: self._assumed = self.update_dict({'script': DEFAULT_SCRIPTS[self.language]}) except KeyError: self._assumed = self else: self._assumed = self return self._assumed
python
def assume_script(self) -> 'Language': """ Fill in the script if it's missing, and if it can be assumed from the language subtag. This is the opposite of `simplify_script`. >>> Language.make(language='en').assume_script() Language.make(language='en', script='Latn') >>> Language.make(language='yi').assume_script() Language.make(language='yi', script='Hebr') >>> Language.make(language='yi', script='Latn').assume_script() Language.make(language='yi', script='Latn') This fills in nothing when the script cannot be assumed -- such as when the language has multiple scripts, or it has no standard orthography: >>> Language.make(language='sr').assume_script() Language.make(language='sr') >>> Language.make(language='eee').assume_script() Language.make(language='eee') It also dosn't fill anything in when the language is unspecified. >>> Language.make(region='US').assume_script() Language.make(region='US') """ if self._assumed is not None: return self._assumed if self.language and not self.script: try: self._assumed = self.update_dict({'script': DEFAULT_SCRIPTS[self.language]}) except KeyError: self._assumed = self else: self._assumed = self return self._assumed
Fill in the script if it's missing, and if it can be assumed from the language subtag. This is the opposite of `simplify_script`. >>> Language.make(language='en').assume_script() Language.make(language='en', script='Latn') >>> Language.make(language='yi').assume_script() Language.make(language='yi', script='Hebr') >>> Language.make(language='yi', script='Latn').assume_script() Language.make(language='yi', script='Latn') This fills in nothing when the script cannot be assumed -- such as when the language has multiple scripts, or it has no standard orthography: >>> Language.make(language='sr').assume_script() Language.make(language='sr') >>> Language.make(language='eee').assume_script() Language.make(language='eee') It also dosn't fill anything in when the language is unspecified. >>> Language.make(region='US').assume_script() Language.make(region='US')
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L358-L395
LuminosoInsight/langcodes
langcodes/__init__.py
Language.prefer_macrolanguage
def prefer_macrolanguage(self) -> 'Language': """ BCP 47 doesn't specify what to do with macrolanguages and the languages they contain. The Unicode CLDR, on the other hand, says that when a macrolanguage has a dominant standardized language, the macrolanguage code should be used for that language. For example, Mandarin Chinese is 'zh', not 'cmn', according to Unicode, and Malay is 'ms', not 'zsm'. This isn't a rule you'd want to follow in all cases -- for example, you may want to be able to specifically say that 'ms' (the Malay macrolanguage) contains both 'zsm' (Standard Malay) and 'id' (Indonesian). But applying this rule helps when interoperating with the Unicode CLDR. So, applying `prefer_macrolanguage` to a Language object will return a new object, replacing the language with the macrolanguage if it is the dominant language within that macrolanguage. It will leave non-dominant languages that have macrolanguages alone. >>> Language.get('arb').prefer_macrolanguage() Language.make(language='ar') >>> Language.get('cmn-Hant').prefer_macrolanguage() Language.make(language='zh', script='Hant') >>> Language.get('yue-Hant').prefer_macrolanguage() Language.make(language='yue', script='Hant') """ if self._macrolanguage is not None: return self._macrolanguage language = self.language or 'und' if language in NORMALIZED_MACROLANGUAGES: self._macrolanguage = self.update_dict({ 'language': NORMALIZED_MACROLANGUAGES[language] }) else: self._macrolanguage = self return self._macrolanguage
python
def prefer_macrolanguage(self) -> 'Language': """ BCP 47 doesn't specify what to do with macrolanguages and the languages they contain. The Unicode CLDR, on the other hand, says that when a macrolanguage has a dominant standardized language, the macrolanguage code should be used for that language. For example, Mandarin Chinese is 'zh', not 'cmn', according to Unicode, and Malay is 'ms', not 'zsm'. This isn't a rule you'd want to follow in all cases -- for example, you may want to be able to specifically say that 'ms' (the Malay macrolanguage) contains both 'zsm' (Standard Malay) and 'id' (Indonesian). But applying this rule helps when interoperating with the Unicode CLDR. So, applying `prefer_macrolanguage` to a Language object will return a new object, replacing the language with the macrolanguage if it is the dominant language within that macrolanguage. It will leave non-dominant languages that have macrolanguages alone. >>> Language.get('arb').prefer_macrolanguage() Language.make(language='ar') >>> Language.get('cmn-Hant').prefer_macrolanguage() Language.make(language='zh', script='Hant') >>> Language.get('yue-Hant').prefer_macrolanguage() Language.make(language='yue', script='Hant') """ if self._macrolanguage is not None: return self._macrolanguage language = self.language or 'und' if language in NORMALIZED_MACROLANGUAGES: self._macrolanguage = self.update_dict({ 'language': NORMALIZED_MACROLANGUAGES[language] }) else: self._macrolanguage = self return self._macrolanguage
BCP 47 doesn't specify what to do with macrolanguages and the languages they contain. The Unicode CLDR, on the other hand, says that when a macrolanguage has a dominant standardized language, the macrolanguage code should be used for that language. For example, Mandarin Chinese is 'zh', not 'cmn', according to Unicode, and Malay is 'ms', not 'zsm'. This isn't a rule you'd want to follow in all cases -- for example, you may want to be able to specifically say that 'ms' (the Malay macrolanguage) contains both 'zsm' (Standard Malay) and 'id' (Indonesian). But applying this rule helps when interoperating with the Unicode CLDR. So, applying `prefer_macrolanguage` to a Language object will return a new object, replacing the language with the macrolanguage if it is the dominant language within that macrolanguage. It will leave non-dominant languages that have macrolanguages alone. >>> Language.get('arb').prefer_macrolanguage() Language.make(language='ar') >>> Language.get('cmn-Hant').prefer_macrolanguage() Language.make(language='zh', script='Hant') >>> Language.get('yue-Hant').prefer_macrolanguage() Language.make(language='yue', script='Hant')
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L397-L433
LuminosoInsight/langcodes
langcodes/__init__.py
Language.broaden
def broaden(self) -> 'List[Language]': """ Iterate through increasingly general versions of this parsed language tag. This isn't actually that useful for matching two arbitrary language tags against each other, but it is useful for matching them against a known standardized form, such as in the CLDR data. The list of broader versions to try appears in UTR 35, section 4.3, "Likely Subtags". >>> for langdata in Language.get('nn-Latn-NO-x-thingy').broaden(): ... print(langdata) nn-Latn-NO-x-thingy nn-Latn-NO nn-NO nn-Latn nn und-Latn und """ if self._broader is not None: return self._broader self._broader = [self] seen = set(self.to_tag()) for keyset in self.BROADER_KEYSETS: filtered = self._filter_attributes(keyset) tag = filtered.to_tag() if tag not in seen: self._broader.append(filtered) seen.add(tag) return self._broader
python
def broaden(self) -> 'List[Language]': """ Iterate through increasingly general versions of this parsed language tag. This isn't actually that useful for matching two arbitrary language tags against each other, but it is useful for matching them against a known standardized form, such as in the CLDR data. The list of broader versions to try appears in UTR 35, section 4.3, "Likely Subtags". >>> for langdata in Language.get('nn-Latn-NO-x-thingy').broaden(): ... print(langdata) nn-Latn-NO-x-thingy nn-Latn-NO nn-NO nn-Latn nn und-Latn und """ if self._broader is not None: return self._broader self._broader = [self] seen = set(self.to_tag()) for keyset in self.BROADER_KEYSETS: filtered = self._filter_attributes(keyset) tag = filtered.to_tag() if tag not in seen: self._broader.append(filtered) seen.add(tag) return self._broader
Iterate through increasingly general versions of this parsed language tag. This isn't actually that useful for matching two arbitrary language tags against each other, but it is useful for matching them against a known standardized form, such as in the CLDR data. The list of broader versions to try appears in UTR 35, section 4.3, "Likely Subtags". >>> for langdata in Language.get('nn-Latn-NO-x-thingy').broaden(): ... print(langdata) nn-Latn-NO-x-thingy nn-Latn-NO nn-NO nn-Latn nn und-Latn und
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L435-L466
LuminosoInsight/langcodes
langcodes/__init__.py
Language.maximize
def maximize(self) -> 'Language': """ The Unicode CLDR contains a "likelySubtags" data file, which can guess reasonable values for fields that are missing from a language tag. This is particularly useful for comparing, for example, "zh-Hant" and "zh-TW", two common language tags that say approximately the same thing via rather different information. (Using traditional Han characters is not the same as being in Taiwan, but each implies that the other is likely.) These implications are provided in the CLDR supplemental data, and are based on the likelihood of people using the language to transmit information on the Internet. (This is why the overall default is English, not Chinese.) >>> str(Language.get('zh-Hant').maximize()) 'zh-Hant-TW' >>> str(Language.get('zh-TW').maximize()) 'zh-Hant-TW' >>> str(Language.get('ja').maximize()) 'ja-Jpan-JP' >>> str(Language.get('pt').maximize()) 'pt-Latn-BR' >>> str(Language.get('und-Arab').maximize()) 'ar-Arab-EG' >>> str(Language.get('und-CH').maximize()) 'de-Latn-CH' >>> str(Language.make().maximize()) # 'MURICA. 'en-Latn-US' >>> str(Language.get('und-ibe').maximize()) 'en-ibe-Latn-US' """ if self._filled is not None: return self._filled for broader in self.broaden(): tag = broader.to_tag() if tag in LIKELY_SUBTAGS: result = Language.get(LIKELY_SUBTAGS[tag], normalize=False) result = result.update(self) self._filled = result return result raise RuntimeError( "Couldn't fill in likely values. This represents a problem with " "the LIKELY_SUBTAGS data." )
python
def maximize(self) -> 'Language': """ The Unicode CLDR contains a "likelySubtags" data file, which can guess reasonable values for fields that are missing from a language tag. This is particularly useful for comparing, for example, "zh-Hant" and "zh-TW", two common language tags that say approximately the same thing via rather different information. (Using traditional Han characters is not the same as being in Taiwan, but each implies that the other is likely.) These implications are provided in the CLDR supplemental data, and are based on the likelihood of people using the language to transmit information on the Internet. (This is why the overall default is English, not Chinese.) >>> str(Language.get('zh-Hant').maximize()) 'zh-Hant-TW' >>> str(Language.get('zh-TW').maximize()) 'zh-Hant-TW' >>> str(Language.get('ja').maximize()) 'ja-Jpan-JP' >>> str(Language.get('pt').maximize()) 'pt-Latn-BR' >>> str(Language.get('und-Arab').maximize()) 'ar-Arab-EG' >>> str(Language.get('und-CH').maximize()) 'de-Latn-CH' >>> str(Language.make().maximize()) # 'MURICA. 'en-Latn-US' >>> str(Language.get('und-ibe').maximize()) 'en-ibe-Latn-US' """ if self._filled is not None: return self._filled for broader in self.broaden(): tag = broader.to_tag() if tag in LIKELY_SUBTAGS: result = Language.get(LIKELY_SUBTAGS[tag], normalize=False) result = result.update(self) self._filled = result return result raise RuntimeError( "Couldn't fill in likely values. This represents a problem with " "the LIKELY_SUBTAGS data." )
The Unicode CLDR contains a "likelySubtags" data file, which can guess reasonable values for fields that are missing from a language tag. This is particularly useful for comparing, for example, "zh-Hant" and "zh-TW", two common language tags that say approximately the same thing via rather different information. (Using traditional Han characters is not the same as being in Taiwan, but each implies that the other is likely.) These implications are provided in the CLDR supplemental data, and are based on the likelihood of people using the language to transmit information on the Internet. (This is why the overall default is English, not Chinese.) >>> str(Language.get('zh-Hant').maximize()) 'zh-Hant-TW' >>> str(Language.get('zh-TW').maximize()) 'zh-Hant-TW' >>> str(Language.get('ja').maximize()) 'ja-Jpan-JP' >>> str(Language.get('pt').maximize()) 'pt-Latn-BR' >>> str(Language.get('und-Arab').maximize()) 'ar-Arab-EG' >>> str(Language.get('und-CH').maximize()) 'de-Latn-CH' >>> str(Language.make().maximize()) # 'MURICA. 'en-Latn-US' >>> str(Language.get('und-ibe').maximize()) 'en-ibe-Latn-US'
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L477-L524
LuminosoInsight/langcodes
langcodes/__init__.py
Language.match_score
def match_score(self, supported: 'Language') -> int: """ Suppose that `self` is the language that the user desires, and `supported` is a language that is actually supported. This method returns a number from 0 to 100 indicating how similar the supported language is (higher numbers are better). This is not a symmetric relation. The algorithm here is described (badly) in a Unicode technical report at http://unicode.org/reports/tr35/#LanguageMatching. If you find these results bothersome, take it up with Unicode, unless it's particular tweaks we implemented such as macrolanguage matching. See :func:`tag_match_score` for a function that works on strings, instead of requiring you to instantiate Language objects first. Further documentation and examples appear with that function. """ if supported == self: return 100 desired_complete = self.prefer_macrolanguage().maximize() supported_complete = supported.prefer_macrolanguage().maximize() desired_triple = (desired_complete.language, desired_complete.script, desired_complete.region) supported_triple = (supported_complete.language, supported_complete.script, supported_complete.region) return 100 - raw_distance(desired_triple, supported_triple)
python
def match_score(self, supported: 'Language') -> int: """ Suppose that `self` is the language that the user desires, and `supported` is a language that is actually supported. This method returns a number from 0 to 100 indicating how similar the supported language is (higher numbers are better). This is not a symmetric relation. The algorithm here is described (badly) in a Unicode technical report at http://unicode.org/reports/tr35/#LanguageMatching. If you find these results bothersome, take it up with Unicode, unless it's particular tweaks we implemented such as macrolanguage matching. See :func:`tag_match_score` for a function that works on strings, instead of requiring you to instantiate Language objects first. Further documentation and examples appear with that function. """ if supported == self: return 100 desired_complete = self.prefer_macrolanguage().maximize() supported_complete = supported.prefer_macrolanguage().maximize() desired_triple = (desired_complete.language, desired_complete.script, desired_complete.region) supported_triple = (supported_complete.language, supported_complete.script, supported_complete.region) return 100 - raw_distance(desired_triple, supported_triple)
Suppose that `self` is the language that the user desires, and `supported` is a language that is actually supported. This method returns a number from 0 to 100 indicating how similar the supported language is (higher numbers are better). This is not a symmetric relation. The algorithm here is described (badly) in a Unicode technical report at http://unicode.org/reports/tr35/#LanguageMatching. If you find these results bothersome, take it up with Unicode, unless it's particular tweaks we implemented such as macrolanguage matching. See :func:`tag_match_score` for a function that works on strings, instead of requiring you to instantiate Language objects first. Further documentation and examples appear with that function.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L529-L555
LuminosoInsight/langcodes
langcodes/__init__.py
Language.language_name
def language_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Give the name of the language (not the entire tag, just the language part) in a natural language. The target language can be given as a string or another Language object. By default, things are named in English: >>> Language.get('fr').language_name() 'French' >>> Language.get('el').language_name() 'Greek' But you can ask for language names in numerous other languages: >>> Language.get('fr').language_name('fr') 'français' >>> Language.get('el').language_name('fr') 'grec' Why does everyone get Slovak and Slovenian confused? Let's ask them. >>> Language.get('sl').language_name('sl') 'slovenščina' >>> Language.get('sk').language_name('sk') 'slovenčina' >>> Language.get('sl').language_name('sk') 'slovinčina' >>> Language.get('sk').language_name('sl') 'slovaščina' """ return self._get_name('language', language, min_score)
python
def language_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Give the name of the language (not the entire tag, just the language part) in a natural language. The target language can be given as a string or another Language object. By default, things are named in English: >>> Language.get('fr').language_name() 'French' >>> Language.get('el').language_name() 'Greek' But you can ask for language names in numerous other languages: >>> Language.get('fr').language_name('fr') 'français' >>> Language.get('el').language_name('fr') 'grec' Why does everyone get Slovak and Slovenian confused? Let's ask them. >>> Language.get('sl').language_name('sl') 'slovenščina' >>> Language.get('sk').language_name('sk') 'slovenčina' >>> Language.get('sl').language_name('sk') 'slovinčina' >>> Language.get('sk').language_name('sl') 'slovaščina' """ return self._get_name('language', language, min_score)
Give the name of the language (not the entire tag, just the language part) in a natural language. The target language can be given as a string or another Language object. By default, things are named in English: >>> Language.get('fr').language_name() 'French' >>> Language.get('el').language_name() 'Greek' But you can ask for language names in numerous other languages: >>> Language.get('fr').language_name('fr') 'français' >>> Language.get('el').language_name('fr') 'grec' Why does everyone get Slovak and Slovenian confused? Let's ask them. >>> Language.get('sl').language_name('sl') 'slovenščina' >>> Language.get('sk').language_name('sk') 'slovenčina' >>> Language.get('sl').language_name('sk') 'slovinčina' >>> Language.get('sk').language_name('sl') 'slovaščina'
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L578-L609
LuminosoInsight/langcodes
langcodes/__init__.py
Language.autonym
def autonym(self, min_score: int=95) -> str: """ Give the name of this language *in* this language. >>> Language.get('fr').autonym() 'français' >>> Language.get('es').autonym() 'español' >>> Language.get('ja').autonym() '日本語' This doesn't give the name of the region or script, but in some cases the language can name itself in multiple scripts: >>> Language.get('sr-Latn').autonym() 'srpski' >>> Language.get('sr-Cyrl').autonym() 'српски' >>> Language.get('pa').autonym() 'ਪੰਜਾਬੀ' >>> Language.get('pa-Arab').autonym() 'پنجابی' This only works for language codes that CLDR has locale data for. You can't ask for the autonym of 'ja-Latn' and get 'nihongo'. """ return self.language_name(language=self, min_score=min_score)
python
def autonym(self, min_score: int=95) -> str: """ Give the name of this language *in* this language. >>> Language.get('fr').autonym() 'français' >>> Language.get('es').autonym() 'español' >>> Language.get('ja').autonym() '日本語' This doesn't give the name of the region or script, but in some cases the language can name itself in multiple scripts: >>> Language.get('sr-Latn').autonym() 'srpski' >>> Language.get('sr-Cyrl').autonym() 'српски' >>> Language.get('pa').autonym() 'ਪੰਜਾਬੀ' >>> Language.get('pa-Arab').autonym() 'پنجابی' This only works for language codes that CLDR has locale data for. You can't ask for the autonym of 'ja-Latn' and get 'nihongo'. """ return self.language_name(language=self, min_score=min_score)
Give the name of this language *in* this language. >>> Language.get('fr').autonym() 'français' >>> Language.get('es').autonym() 'español' >>> Language.get('ja').autonym() '日本語' This doesn't give the name of the region or script, but in some cases the language can name itself in multiple scripts: >>> Language.get('sr-Latn').autonym() 'srpski' >>> Language.get('sr-Cyrl').autonym() 'српски' >>> Language.get('pa').autonym() 'ਪੰਜਾਬੀ' >>> Language.get('pa-Arab').autonym() 'پنجابی' This only works for language codes that CLDR has locale data for. You can't ask for the autonym of 'ja-Latn' and get 'nihongo'.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L611-L637
LuminosoInsight/langcodes
langcodes/__init__.py
Language.script_name
def script_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Describe the script part of the language tag in a natural language. """ return self._get_name('script', language, min_score)
python
def script_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Describe the script part of the language tag in a natural language. """ return self._get_name('script', language, min_score)
Describe the script part of the language tag in a natural language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L639-L643
LuminosoInsight/langcodes
langcodes/__init__.py
Language.region_name
def region_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Describe the region part of the language tag in a natural language. """ return self._get_name('region', language, min_score)
python
def region_name(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> str: """ Describe the region part of the language tag in a natural language. """ return self._get_name('region', language, min_score)
Describe the region part of the language tag in a natural language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L645-L649
LuminosoInsight/langcodes
langcodes/__init__.py
Language.variant_names
def variant_names(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> list: """ Describe each of the variant parts of the language tag in a natural language. """ names = [] for variant in self.variants: var_names = code_to_names('variant', variant) names.append(self._best_name(var_names, language, min_score)) return names
python
def variant_names(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> list: """ Describe each of the variant parts of the language tag in a natural language. """ names = [] for variant in self.variants: var_names = code_to_names('variant', variant) names.append(self._best_name(var_names, language, min_score)) return names
Describe each of the variant parts of the language tag in a natural language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L651-L660
LuminosoInsight/langcodes
langcodes/__init__.py
Language.describe
def describe(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> dict: """ Return a dictionary that describes a given language tag in a specified natural language. See `language_name` and related methods for more specific versions of this. The desired `language` will in fact be matched against the available options using the matching technique that this module provides. We can illustrate many aspects of this by asking for a description of Shavian script (a script devised by author George Bernard Shaw), and where you might find it, in various languages. >>> from pprint import pprint >>> shaw = Language.make(script='Shaw').maximize() >>> pprint(shaw.describe('en')) {'language': 'English', 'region': 'United Kingdom', 'script': 'Shavian'} >>> pprint(shaw.describe('fr')) {'language': 'anglais', 'region': 'Royaume-Uni', 'script': 'shavien'} >>> pprint(shaw.describe('es')) {'language': 'inglés', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('pt')) {'language': 'inglês', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('uk')) {'language': 'англійська', 'region': 'Велика Британія', 'script': 'шоу'} >>> pprint(shaw.describe('arb')) {'language': 'الإنجليزية', 'region': 'المملكة المتحدة', 'script': 'الشواني'} >>> pprint(shaw.describe('th')) {'language': 'อังกฤษ', 'region': 'สหราชอาณาจักร', 'script': 'ซอเวียน'} >>> pprint(shaw.describe('zh-Hans')) {'language': '英语', 'region': '英国', 'script': '萧伯纳式文'} >>> pprint(shaw.describe('zh-Hant')) {'language': '英文', 'region': '英國', 'script': '簫柏納字符'} >>> pprint(shaw.describe('ja')) {'language': '英語', 'region': 'イギリス', 'script': 'ショー文字'} When we don't have a localization for the language, we fall back on 'und', which just shows the language codes. >>> pprint(shaw.describe('lol')) {'language': 'en', 'region': 'GB', 'script': 'Shaw'} Wait, is that a real language? >>> pprint(Language.get('lol').maximize().describe()) {'language': 'Mongo', 'region': 'Congo - Kinshasa', 'script': 'Latin'} """ names = {} if self.language: names['language'] = self.language_name(language, min_score) if self.script: names['script'] = self.script_name(language, min_score) if self.region: names['region'] = self.region_name(language, min_score) if self.variants: names['variants'] = self.variant_names(language, min_score) return names
python
def describe(self, language=DEFAULT_LANGUAGE, min_score: int=75) -> dict: """ Return a dictionary that describes a given language tag in a specified natural language. See `language_name` and related methods for more specific versions of this. The desired `language` will in fact be matched against the available options using the matching technique that this module provides. We can illustrate many aspects of this by asking for a description of Shavian script (a script devised by author George Bernard Shaw), and where you might find it, in various languages. >>> from pprint import pprint >>> shaw = Language.make(script='Shaw').maximize() >>> pprint(shaw.describe('en')) {'language': 'English', 'region': 'United Kingdom', 'script': 'Shavian'} >>> pprint(shaw.describe('fr')) {'language': 'anglais', 'region': 'Royaume-Uni', 'script': 'shavien'} >>> pprint(shaw.describe('es')) {'language': 'inglés', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('pt')) {'language': 'inglês', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('uk')) {'language': 'англійська', 'region': 'Велика Британія', 'script': 'шоу'} >>> pprint(shaw.describe('arb')) {'language': 'الإنجليزية', 'region': 'المملكة المتحدة', 'script': 'الشواني'} >>> pprint(shaw.describe('th')) {'language': 'อังกฤษ', 'region': 'สหราชอาณาจักร', 'script': 'ซอเวียน'} >>> pprint(shaw.describe('zh-Hans')) {'language': '英语', 'region': '英国', 'script': '萧伯纳式文'} >>> pprint(shaw.describe('zh-Hant')) {'language': '英文', 'region': '英國', 'script': '簫柏納字符'} >>> pprint(shaw.describe('ja')) {'language': '英語', 'region': 'イギリス', 'script': 'ショー文字'} When we don't have a localization for the language, we fall back on 'und', which just shows the language codes. >>> pprint(shaw.describe('lol')) {'language': 'en', 'region': 'GB', 'script': 'Shaw'} Wait, is that a real language? >>> pprint(Language.get('lol').maximize().describe()) {'language': 'Mongo', 'region': 'Congo - Kinshasa', 'script': 'Latin'} """ names = {} if self.language: names['language'] = self.language_name(language, min_score) if self.script: names['script'] = self.script_name(language, min_score) if self.region: names['region'] = self.region_name(language, min_score) if self.variants: names['variants'] = self.variant_names(language, min_score) return names
Return a dictionary that describes a given language tag in a specified natural language. See `language_name` and related methods for more specific versions of this. The desired `language` will in fact be matched against the available options using the matching technique that this module provides. We can illustrate many aspects of this by asking for a description of Shavian script (a script devised by author George Bernard Shaw), and where you might find it, in various languages. >>> from pprint import pprint >>> shaw = Language.make(script='Shaw').maximize() >>> pprint(shaw.describe('en')) {'language': 'English', 'region': 'United Kingdom', 'script': 'Shavian'} >>> pprint(shaw.describe('fr')) {'language': 'anglais', 'region': 'Royaume-Uni', 'script': 'shavien'} >>> pprint(shaw.describe('es')) {'language': 'inglés', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('pt')) {'language': 'inglês', 'region': 'Reino Unido', 'script': 'shaviano'} >>> pprint(shaw.describe('uk')) {'language': 'англійська', 'region': 'Велика Британія', 'script': 'шоу'} >>> pprint(shaw.describe('arb')) {'language': 'الإنجليزية', 'region': 'المملكة المتحدة', 'script': 'الشواني'} >>> pprint(shaw.describe('th')) {'language': 'อังกฤษ', 'region': 'สหราชอาณาจักร', 'script': 'ซอเวียน'} >>> pprint(shaw.describe('zh-Hans')) {'language': '英语', 'region': '英国', 'script': '萧伯纳式文'} >>> pprint(shaw.describe('zh-Hant')) {'language': '英文', 'region': '英國', 'script': '簫柏納字符'} >>> pprint(shaw.describe('ja')) {'language': '英語', 'region': 'イギリス', 'script': 'ショー文字'} When we don't have a localization for the language, we fall back on 'und', which just shows the language codes. >>> pprint(shaw.describe('lol')) {'language': 'en', 'region': 'GB', 'script': 'Shaw'} Wait, is that a real language? >>> pprint(Language.get('lol').maximize().describe()) {'language': 'Mongo', 'region': 'Congo - Kinshasa', 'script': 'Latin'}
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L662-L727
LuminosoInsight/langcodes
langcodes/__init__.py
Language.find_name
def find_name(tagtype: str, name: str, language: {str, 'Language', None}=None): """ Find the subtag of a particular `tagtype` that has the given `name`. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language. In a previous version, we thought we were going to deprecate the `language` parameter, as there weren't significant cases of conflicts in names of things between languages. Well, we got more data, and conflicts in names are everywhere. Specifying the language that the name should be in is still not required, but it will help to make sure that names can be round-tripped. >>> Language.find_name('language', 'francés') Language.make(language='fr') >>> Language.find_name('region', 'United Kingdom') Language.make(region='GB') >>> Language.find_name('script', 'Arabic') Language.make(script='Arab') >>> Language.find_name('language', 'norsk bokmål') Language.make(language='nb') >>> Language.find_name('language', 'norsk') Language.make(language='no') >>> Language.find_name('language', 'norsk', 'en') Traceback (most recent call last): ... LookupError: Can't find any language named 'norsk' >>> Language.find_name('language', 'norsk', 'no') Language.make(language='no') >>> Language.find_name('language', 'malayo', 'en') Language.make(language='mbp') >>> Language.find_name('language', 'malayo', 'es') Language.make(language='ms') Some langauge names resolve to more than a language. For example, the name 'Brazilian Portuguese' resolves to a language and a region, and 'Simplified Chinese' resolves to a language and a script. In these cases, a Language object with multiple subtags will be returned. >>> Language.find_name('language', 'Brazilian Portuguese', 'en') Language.make(language='pt', region='BR') >>> Language.find_name('language', 'Simplified Chinese', 'en') Language.make(language='zh', script='Hans') A small amount of fuzzy matching is supported: if the name can be shortened to match a single language name, you get that language. This allows, for example, "Hakka dialect" to match "Hakka". >>> Language.find_name('language', 'Hakka dialect') Language.make(language='hak') """ # No matter what form of language we got, normalize it to a single # language subtag if isinstance(language, Language): language = language.language elif isinstance(language, str): language = get(language).language if language is None: language = 'und' code = name_to_code(tagtype, name, language) if code is None: raise LookupError("Can't find any %s named %r" % (tagtype, name)) if '-' in code: return Language.get(code) else: data = {tagtype: code} return Language.make(**data)
python
def find_name(tagtype: str, name: str, language: {str, 'Language', None}=None): """ Find the subtag of a particular `tagtype` that has the given `name`. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language. In a previous version, we thought we were going to deprecate the `language` parameter, as there weren't significant cases of conflicts in names of things between languages. Well, we got more data, and conflicts in names are everywhere. Specifying the language that the name should be in is still not required, but it will help to make sure that names can be round-tripped. >>> Language.find_name('language', 'francés') Language.make(language='fr') >>> Language.find_name('region', 'United Kingdom') Language.make(region='GB') >>> Language.find_name('script', 'Arabic') Language.make(script='Arab') >>> Language.find_name('language', 'norsk bokmål') Language.make(language='nb') >>> Language.find_name('language', 'norsk') Language.make(language='no') >>> Language.find_name('language', 'norsk', 'en') Traceback (most recent call last): ... LookupError: Can't find any language named 'norsk' >>> Language.find_name('language', 'norsk', 'no') Language.make(language='no') >>> Language.find_name('language', 'malayo', 'en') Language.make(language='mbp') >>> Language.find_name('language', 'malayo', 'es') Language.make(language='ms') Some langauge names resolve to more than a language. For example, the name 'Brazilian Portuguese' resolves to a language and a region, and 'Simplified Chinese' resolves to a language and a script. In these cases, a Language object with multiple subtags will be returned. >>> Language.find_name('language', 'Brazilian Portuguese', 'en') Language.make(language='pt', region='BR') >>> Language.find_name('language', 'Simplified Chinese', 'en') Language.make(language='zh', script='Hans') A small amount of fuzzy matching is supported: if the name can be shortened to match a single language name, you get that language. This allows, for example, "Hakka dialect" to match "Hakka". >>> Language.find_name('language', 'Hakka dialect') Language.make(language='hak') """ # No matter what form of language we got, normalize it to a single # language subtag if isinstance(language, Language): language = language.language elif isinstance(language, str): language = get(language).language if language is None: language = 'und' code = name_to_code(tagtype, name, language) if code is None: raise LookupError("Can't find any %s named %r" % (tagtype, name)) if '-' in code: return Language.get(code) else: data = {tagtype: code} return Language.make(**data)
Find the subtag of a particular `tagtype` that has the given `name`. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language. In a previous version, we thought we were going to deprecate the `language` parameter, as there weren't significant cases of conflicts in names of things between languages. Well, we got more data, and conflicts in names are everywhere. Specifying the language that the name should be in is still not required, but it will help to make sure that names can be round-tripped. >>> Language.find_name('language', 'francés') Language.make(language='fr') >>> Language.find_name('region', 'United Kingdom') Language.make(region='GB') >>> Language.find_name('script', 'Arabic') Language.make(script='Arab') >>> Language.find_name('language', 'norsk bokmål') Language.make(language='nb') >>> Language.find_name('language', 'norsk') Language.make(language='no') >>> Language.find_name('language', 'norsk', 'en') Traceback (most recent call last): ... LookupError: Can't find any language named 'norsk' >>> Language.find_name('language', 'norsk', 'no') Language.make(language='no') >>> Language.find_name('language', 'malayo', 'en') Language.make(language='mbp') >>> Language.find_name('language', 'malayo', 'es') Language.make(language='ms') Some langauge names resolve to more than a language. For example, the name 'Brazilian Portuguese' resolves to a language and a region, and 'Simplified Chinese' resolves to a language and a script. In these cases, a Language object with multiple subtags will be returned. >>> Language.find_name('language', 'Brazilian Portuguese', 'en') Language.make(language='pt', region='BR') >>> Language.find_name('language', 'Simplified Chinese', 'en') Language.make(language='zh', script='Hans') A small amount of fuzzy matching is supported: if the name can be shortened to match a single language name, you get that language. This allows, for example, "Hakka dialect" to match "Hakka". >>> Language.find_name('language', 'Hakka dialect') Language.make(language='hak')
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L730-L817
LuminosoInsight/langcodes
langcodes/__init__.py
Language.to_dict
def to_dict(self): """ Get a dictionary of the attributes of this Language object, which can be useful for constructing a similar object. """ if self._dict is not None: return self._dict result = {} for key in self.ATTRIBUTES: value = getattr(self, key) if value: result[key] = value self._dict = result return result
python
def to_dict(self): """ Get a dictionary of the attributes of this Language object, which can be useful for constructing a similar object. """ if self._dict is not None: return self._dict result = {} for key in self.ATTRIBUTES: value = getattr(self, key) if value: result[key] = value self._dict = result return result
Get a dictionary of the attributes of this Language object, which can be useful for constructing a similar object.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L845-L859
LuminosoInsight/langcodes
langcodes/__init__.py
Language.update
def update(self, other: 'Language') -> 'Language': """ Update this Language with the fields of another Language. """ return Language.make( language=other.language or self.language, extlangs=other.extlangs or self.extlangs, script=other.script or self.script, region=other.region or self.region, variants=other.variants or self.variants, extensions=other.extensions or self.extensions, private=other.private or self.private )
python
def update(self, other: 'Language') -> 'Language': """ Update this Language with the fields of another Language. """ return Language.make( language=other.language or self.language, extlangs=other.extlangs or self.extlangs, script=other.script or self.script, region=other.region or self.region, variants=other.variants or self.variants, extensions=other.extensions or self.extensions, private=other.private or self.private )
Update this Language with the fields of another Language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L861-L873
LuminosoInsight/langcodes
langcodes/__init__.py
Language.update_dict
def update_dict(self, newdata: dict) -> 'Language': """ Update the attributes of this Language from a dictionary. """ return Language.make( language=newdata.get('language', self.language), extlangs=newdata.get('extlangs', self.extlangs), script=newdata.get('script', self.script), region=newdata.get('region', self.region), variants=newdata.get('variants', self.variants), extensions=newdata.get('extensions', self.extensions), private=newdata.get('private', self.private) )
python
def update_dict(self, newdata: dict) -> 'Language': """ Update the attributes of this Language from a dictionary. """ return Language.make( language=newdata.get('language', self.language), extlangs=newdata.get('extlangs', self.extlangs), script=newdata.get('script', self.script), region=newdata.get('region', self.region), variants=newdata.get('variants', self.variants), extensions=newdata.get('extensions', self.extensions), private=newdata.get('private', self.private) )
Update the attributes of this Language from a dictionary.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L875-L887
LuminosoInsight/langcodes
langcodes/__init__.py
Language._filter_keys
def _filter_keys(d: dict, keys: set) -> dict: """ Select a subset of keys from a dictionary. """ return {key: d[key] for key in keys if key in d}
python
def _filter_keys(d: dict, keys: set) -> dict: """ Select a subset of keys from a dictionary. """ return {key: d[key] for key in keys if key in d}
Select a subset of keys from a dictionary.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L890-L894
LuminosoInsight/langcodes
langcodes/__init__.py
Language._filter_attributes
def _filter_attributes(self, keyset): """ Return a copy of this object with a subset of its attributes set. """ filtered = self._filter_keys(self.to_dict(), keyset) return Language.make(**filtered)
python
def _filter_attributes(self, keyset): """ Return a copy of this object with a subset of its attributes set. """ filtered = self._filter_keys(self.to_dict(), keyset) return Language.make(**filtered)
Return a copy of this object with a subset of its attributes set.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L896-L901
LuminosoInsight/langcodes
langcodes/__init__.py
Language._searchable_form
def _searchable_form(self) -> 'Language': """ Convert a parsed language tag so that the information it contains is in the best form for looking up information in the CLDR. """ if self._searchable is not None: return self._searchable self._searchable = self._filter_attributes( {'language', 'script', 'region'} ).simplify_script().prefer_macrolanguage() return self._searchable
python
def _searchable_form(self) -> 'Language': """ Convert a parsed language tag so that the information it contains is in the best form for looking up information in the CLDR. """ if self._searchable is not None: return self._searchable self._searchable = self._filter_attributes( {'language', 'script', 'region'} ).simplify_script().prefer_macrolanguage() return self._searchable
Convert a parsed language tag so that the information it contains is in the best form for looking up information in the CLDR.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/__init__.py#L903-L914
LuminosoInsight/langcodes
langcodes/build_data.py
resolve_name
def resolve_name(key, vals, debug=False): """ Given a name, and a number of possible values it could resolve to, find the single value it should resolve to, in the following way: - Apply the priority order - If names with the highest priority all agree, use that name - If there is disagreement that can be resolved by AMBIGUOUS_PREFERENCES, use that - Otherwise, don't resolve the name (and possibly show a debugging message when building the data) """ max_priority = max([val[2] for val in vals]) val_count = Counter([val[1] for val in vals if val[2] == max_priority]) if len(val_count) == 1: unanimous = val_count.most_common(1) return unanimous[0][0] for pkey in val_count: if pkey in AMBIGUOUS_PREFERENCES: others = set(val_count) others.remove(pkey) if others == others & AMBIGUOUS_PREFERENCES[pkey]: if debug: print("Resolved: {} -> {}".format(key, pkey)) return pkey # In debug mode, show which languages vote for which name if debug and max_priority >= 0: votes = defaultdict(list) for voter, val, prio in vals: if prio == max_priority: votes[val].append(voter) print("{}:".format(key)) for val, voters in sorted(votes.items()): print("\t{}: {}".format(val, ' '.join(voters))) # Don't use names that remain ambiguous return None
python
def resolve_name(key, vals, debug=False): """ Given a name, and a number of possible values it could resolve to, find the single value it should resolve to, in the following way: - Apply the priority order - If names with the highest priority all agree, use that name - If there is disagreement that can be resolved by AMBIGUOUS_PREFERENCES, use that - Otherwise, don't resolve the name (and possibly show a debugging message when building the data) """ max_priority = max([val[2] for val in vals]) val_count = Counter([val[1] for val in vals if val[2] == max_priority]) if len(val_count) == 1: unanimous = val_count.most_common(1) return unanimous[0][0] for pkey in val_count: if pkey in AMBIGUOUS_PREFERENCES: others = set(val_count) others.remove(pkey) if others == others & AMBIGUOUS_PREFERENCES[pkey]: if debug: print("Resolved: {} -> {}".format(key, pkey)) return pkey # In debug mode, show which languages vote for which name if debug and max_priority >= 0: votes = defaultdict(list) for voter, val, prio in vals: if prio == max_priority: votes[val].append(voter) print("{}:".format(key)) for val, voters in sorted(votes.items()): print("\t{}: {}".format(val, ' '.join(voters))) # Don't use names that remain ambiguous return None
Given a name, and a number of possible values it could resolve to, find the single value it should resolve to, in the following way: - Apply the priority order - If names with the highest priority all agree, use that name - If there is disagreement that can be resolved by AMBIGUOUS_PREFERENCES, use that - Otherwise, don't resolve the name (and possibly show a debugging message when building the data)
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/build_data.py#L141-L180
LuminosoInsight/langcodes
langcodes/build_data.py
read_cldr_names
def read_cldr_names(path, language, category): """ Read CLDR's names for things in a particular language. """ filename = data_filename('{}/{}/{}.json'.format(path, language, category)) fulldata = json.load(open(filename, encoding='utf-8')) data = fulldata['main'][language]['localeDisplayNames'][category] return data
python
def read_cldr_names(path, language, category): """ Read CLDR's names for things in a particular language. """ filename = data_filename('{}/{}/{}.json'.format(path, language, category)) fulldata = json.load(open(filename, encoding='utf-8')) data = fulldata['main'][language]['localeDisplayNames'][category] return data
Read CLDR's names for things in a particular language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/build_data.py#L192-L199
LuminosoInsight/langcodes
langcodes/registry_parser.py
parse_file
def parse_file(file): """ Take an open file containing the IANA subtag registry, and yield a dictionary of information for each subtag it describes. """ lines = [] for line in file: line = line.rstrip('\n') if line == '%%': # This is a separator between items. Parse the data we've # collected and yield the result. yield from parse_item(lines) lines.clear() elif line.startswith(' '): # This is a continuation line. Concatenate it to the previous # line, including one of the spaces. lines[-1] += line[1:] else: lines.append(line) yield from parse_item(lines)
python
def parse_file(file): """ Take an open file containing the IANA subtag registry, and yield a dictionary of information for each subtag it describes. """ lines = [] for line in file: line = line.rstrip('\n') if line == '%%': # This is a separator between items. Parse the data we've # collected and yield the result. yield from parse_item(lines) lines.clear() elif line.startswith(' '): # This is a continuation line. Concatenate it to the previous # line, including one of the spaces. lines[-1] += line[1:] else: lines.append(line) yield from parse_item(lines)
Take an open file containing the IANA subtag registry, and yield a dictionary of information for each subtag it describes.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/registry_parser.py#L6-L25
LuminosoInsight/langcodes
langcodes/registry_parser.py
parse_item
def parse_item(lines): """ Given the lines that form a subtag entry (after joining wrapped lines back together), parse the data they contain. Returns a generator that yields once if there was any data there (and an empty generator if this was just the header). """ info = {} for line in lines: key, value = line.split(': ', 1) if key in LIST_KEYS: info.setdefault(key, []).append(value) else: assert key not in info info[key] = value if 'Subtag' in info or 'Tag' in info: yield info
python
def parse_item(lines): """ Given the lines that form a subtag entry (after joining wrapped lines back together), parse the data they contain. Returns a generator that yields once if there was any data there (and an empty generator if this was just the header). """ info = {} for line in lines: key, value = line.split(': ', 1) if key in LIST_KEYS: info.setdefault(key, []).append(value) else: assert key not in info info[key] = value if 'Subtag' in info or 'Tag' in info: yield info
Given the lines that form a subtag entry (after joining wrapped lines back together), parse the data they contain. Returns a generator that yields once if there was any data there (and an empty generator if this was just the header).
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/registry_parser.py#L28-L46
LuminosoInsight/langcodes
langcodes/distance.py
_make_simple_distances
def _make_simple_distances(): """ This is a translation of the non-wildcard rules in http://www.unicode.org/cldr/charts/29/supplemental/language_matching.html. It defines a few functions to make the chart easy to mindlessly transcribe, instead of having to parse it out of idiosyncratic XML or HTML, which actually seems harder. """ distances = {} def sym(desired, supported, strength): "Define a symmetric distance between languages." desired_t = tuple(desired.split('-')) supported_t = tuple(supported.split('-')) distances[desired_t, supported_t] = strength distances[supported_t, desired_t] = strength def one(desired, supported, strength): "Define a one-way distance between languages." desired_t = tuple(desired.split('-')) supported_t = tuple(supported.split('-')) distances[desired_t, supported_t] = strength def ok(desired, supported): "Define the most common type of link: a one-way distance of 10." one(desired, supported, 10) sym('no', 'nb', 1) sym('hr', 'bs', 4) sym('sh', 'bs', 4) sym('sr', 'bs', 4) sym('sh', 'hr', 4) sym('sr', 'hr', 4) sym('sh', 'sr', 4) sym('ssy', 'aa', 4) one('gsw', 'de', 4) one('lb', 'de', 4) sym('da', 'no', 8) sym('da', 'nb', 8) ok('ab', 'ru') ok('ach', 'en') ok('af', 'nl') ok('ak', 'en') ok('ay', 'es') ok('az', 'ru') ok('az-Latn', 'ru-Cyrl') ok('be', 'ru') ok('bem', 'en') ok('bh', 'hi') ok('bn', 'en') ok('bn-Beng', 'en-Latn') ok('br', 'fr') ok('ceb', 'fil') ok('chr', 'en') ok('ckb', 'ar') ok('co', 'fr') ok('crs', 'fr') ok('cy', 'en') ok('ee', 'en') ok('eo', 'en') ok('et', 'fi') ok('eu', 'es') ok('fo', 'da') ok('fy', 'nl') ok('ga', 'en') ok('gaa', 'en') ok('gd', 'en') ok('gl', 'es') ok('gn', 'es') ok('gu', 'hi') ok('ha', 'en') ok('haw', 'en') ok('ht', 'fr') ok('hy', 'ru') ok('hy-Armn', 'ru-Cyrl') ok('ia', 'en') ok('ig', 'en') ok('is', 'en') ok('jv', 'id') ok('ka-Geor', 'en-Latn') ok('ka', 'en') ok('kg', 'fr') ok('kk', 'ru') ok('km', 'en') ok('km-Khmr', 'en-Latn') ok('kn', 'en') ok('kn-Knda', 'en-Latn') ok('kri', 'en') ok('ku', 'tr') ok('ky', 'ru') ok('la', 'it') ok('lg', 'en') ok('ln', 'fr') ok('lo', 'en') ok('lo-Laoo', 'en-Latn') ok('loz', 'en') ok('lua', 'fr') ok('mfe', 'en') ok('mg', 'fr') ok('mi', 'en') ok('mk', 'bg') ok('ml', 'en') ok('ml-Mlym', 'en-Latn') ok('mn', 'ru') ok('mr', 'hi') ok('ms', 'id') ok('mt', 'en') ok('my', 'en') ok('my-Mymr', 'en-Latn') ok('ne', 'en') ok('ne-Deva', 'en-Latn') sym('nn', 'nb', 10) ok('nn', 'no') ok('nso', 'en') ok('ny', 'en') ok('nyn', 'en') ok('oc', 'fr') ok('om', 'en') ok('or', 'en') ok('or-Orya', 'en-Latn') ok('pa', 'en') ok('pa-Guru', 'en-Latn') ok('pcm', 'en') ok('ps', 'en') ok('ps-Arab', 'en-Latn') ok('qu', 'es') ok('rm', 'de') ok('rn', 'en') ok('rw', 'fr') ok('sa', 'hi') ok('sd', 'en') ok('sd-Arab', 'en-Latn') ok('si', 'en') ok('si-Sinh', 'en-Latn') ok('sn', 'en') ok('so', 'en') ok('sq', 'en') ok('st', 'en') ok('su', 'id') ok('sw', 'en') ok('ta', 'en') ok('ta-Taml', 'en-Latn') ok('te', 'en') ok('te-Telu', 'en-Latn') ok('tg', 'ru') ok('ti', 'en') ok('ti-Ethi', 'en-Latn') ok('tk', 'ru') ok('tk-Latn', 'ru-Cyrl') ok('tlh', 'en') ok('tn', 'en') ok('to', 'en') ok('tt', 'ru') ok('tum', 'en') ok('ug', 'zh') ok('ur', 'en') ok('ur-Arab', 'en-Latn') ok('uz', 'ru') ok('uz-Latn', 'ru-Cyrl') ok('wo', 'fr') ok('xh', 'en') ok('yi', 'en') ok('yi-Hebr', 'en-Latn') ok('yo', 'en') ok('zu', 'en') sym('sr-Latn', 'sr-Cyrl', 5) one('zh-Hans', 'zh-Hant', 15) one('zh-Hant', 'zh-Hans', 19) sym('zh-Hant-HK', 'zh-Hant-MO', 3) return distances
python
def _make_simple_distances(): """ This is a translation of the non-wildcard rules in http://www.unicode.org/cldr/charts/29/supplemental/language_matching.html. It defines a few functions to make the chart easy to mindlessly transcribe, instead of having to parse it out of idiosyncratic XML or HTML, which actually seems harder. """ distances = {} def sym(desired, supported, strength): "Define a symmetric distance between languages." desired_t = tuple(desired.split('-')) supported_t = tuple(supported.split('-')) distances[desired_t, supported_t] = strength distances[supported_t, desired_t] = strength def one(desired, supported, strength): "Define a one-way distance between languages." desired_t = tuple(desired.split('-')) supported_t = tuple(supported.split('-')) distances[desired_t, supported_t] = strength def ok(desired, supported): "Define the most common type of link: a one-way distance of 10." one(desired, supported, 10) sym('no', 'nb', 1) sym('hr', 'bs', 4) sym('sh', 'bs', 4) sym('sr', 'bs', 4) sym('sh', 'hr', 4) sym('sr', 'hr', 4) sym('sh', 'sr', 4) sym('ssy', 'aa', 4) one('gsw', 'de', 4) one('lb', 'de', 4) sym('da', 'no', 8) sym('da', 'nb', 8) ok('ab', 'ru') ok('ach', 'en') ok('af', 'nl') ok('ak', 'en') ok('ay', 'es') ok('az', 'ru') ok('az-Latn', 'ru-Cyrl') ok('be', 'ru') ok('bem', 'en') ok('bh', 'hi') ok('bn', 'en') ok('bn-Beng', 'en-Latn') ok('br', 'fr') ok('ceb', 'fil') ok('chr', 'en') ok('ckb', 'ar') ok('co', 'fr') ok('crs', 'fr') ok('cy', 'en') ok('ee', 'en') ok('eo', 'en') ok('et', 'fi') ok('eu', 'es') ok('fo', 'da') ok('fy', 'nl') ok('ga', 'en') ok('gaa', 'en') ok('gd', 'en') ok('gl', 'es') ok('gn', 'es') ok('gu', 'hi') ok('ha', 'en') ok('haw', 'en') ok('ht', 'fr') ok('hy', 'ru') ok('hy-Armn', 'ru-Cyrl') ok('ia', 'en') ok('ig', 'en') ok('is', 'en') ok('jv', 'id') ok('ka-Geor', 'en-Latn') ok('ka', 'en') ok('kg', 'fr') ok('kk', 'ru') ok('km', 'en') ok('km-Khmr', 'en-Latn') ok('kn', 'en') ok('kn-Knda', 'en-Latn') ok('kri', 'en') ok('ku', 'tr') ok('ky', 'ru') ok('la', 'it') ok('lg', 'en') ok('ln', 'fr') ok('lo', 'en') ok('lo-Laoo', 'en-Latn') ok('loz', 'en') ok('lua', 'fr') ok('mfe', 'en') ok('mg', 'fr') ok('mi', 'en') ok('mk', 'bg') ok('ml', 'en') ok('ml-Mlym', 'en-Latn') ok('mn', 'ru') ok('mr', 'hi') ok('ms', 'id') ok('mt', 'en') ok('my', 'en') ok('my-Mymr', 'en-Latn') ok('ne', 'en') ok('ne-Deva', 'en-Latn') sym('nn', 'nb', 10) ok('nn', 'no') ok('nso', 'en') ok('ny', 'en') ok('nyn', 'en') ok('oc', 'fr') ok('om', 'en') ok('or', 'en') ok('or-Orya', 'en-Latn') ok('pa', 'en') ok('pa-Guru', 'en-Latn') ok('pcm', 'en') ok('ps', 'en') ok('ps-Arab', 'en-Latn') ok('qu', 'es') ok('rm', 'de') ok('rn', 'en') ok('rw', 'fr') ok('sa', 'hi') ok('sd', 'en') ok('sd-Arab', 'en-Latn') ok('si', 'en') ok('si-Sinh', 'en-Latn') ok('sn', 'en') ok('so', 'en') ok('sq', 'en') ok('st', 'en') ok('su', 'id') ok('sw', 'en') ok('ta', 'en') ok('ta-Taml', 'en-Latn') ok('te', 'en') ok('te-Telu', 'en-Latn') ok('tg', 'ru') ok('ti', 'en') ok('ti-Ethi', 'en-Latn') ok('tk', 'ru') ok('tk-Latn', 'ru-Cyrl') ok('tlh', 'en') ok('tn', 'en') ok('to', 'en') ok('tt', 'ru') ok('tum', 'en') ok('ug', 'zh') ok('ur', 'en') ok('ur-Arab', 'en-Latn') ok('uz', 'ru') ok('uz-Latn', 'ru-Cyrl') ok('wo', 'fr') ok('xh', 'en') ok('yi', 'en') ok('yi-Hebr', 'en-Latn') ok('yo', 'en') ok('zu', 'en') sym('sr-Latn', 'sr-Cyrl', 5) one('zh-Hans', 'zh-Hant', 15) one('zh-Hant', 'zh-Hans', 19) sym('zh-Hant-HK', 'zh-Hant-MO', 3) return distances
This is a translation of the non-wildcard rules in http://www.unicode.org/cldr/charts/29/supplemental/language_matching.html. It defines a few functions to make the chart easy to mindlessly transcribe, instead of having to parse it out of idiosyncratic XML or HTML, which actually seems harder.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/distance.py#L12-L182
LuminosoInsight/langcodes
langcodes/names.py
normalize_name
def normalize_name(name): """ When looking up a language-code component by name, we would rather ignore distinctions of case and certain punctuation. "Chinese (Traditional)" should be matched by "Chinese Traditional" and "chinese traditional". """ name = name.casefold() name = name.replace("’", "'") name = name.replace("-", " ") name = name.replace("(", "") name = name.replace(")", "") name = name.replace(",", "") return name.strip()
python
def normalize_name(name): """ When looking up a language-code component by name, we would rather ignore distinctions of case and certain punctuation. "Chinese (Traditional)" should be matched by "Chinese Traditional" and "chinese traditional". """ name = name.casefold() name = name.replace("’", "'") name = name.replace("-", " ") name = name.replace("(", "") name = name.replace(")", "") name = name.replace(",", "") return name.strip()
When looking up a language-code component by name, we would rather ignore distinctions of case and certain punctuation. "Chinese (Traditional)" should be matched by "Chinese Traditional" and "chinese traditional".
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/names.py#L12-L24
LuminosoInsight/langcodes
langcodes/names.py
load_trie
def load_trie(filename): """ Load a BytesTrie from the marisa_trie on-disk format. """ trie = marisa_trie.BytesTrie() # marisa_trie raises warnings that make no sense. Ignore them. with warnings.catch_warnings(): warnings.simplefilter("ignore") trie.load(filename) return trie
python
def load_trie(filename): """ Load a BytesTrie from the marisa_trie on-disk format. """ trie = marisa_trie.BytesTrie() # marisa_trie raises warnings that make no sense. Ignore them. with warnings.catch_warnings(): warnings.simplefilter("ignore") trie.load(filename) return trie
Load a BytesTrie from the marisa_trie on-disk format.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/names.py#L27-L36
LuminosoInsight/langcodes
langcodes/names.py
name_to_code
def name_to_code(category, name, language: str='und'): """ Get a language, script, or region by its name in some language. The language here must be a string representing a language subtag only. The `Language.find` method can handle other representations of a language and normalize them to this form. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". A small amount of fuzzy matching is supported: if the name can be shortened or lengthened to match a single language name, you get that language. This allows, for example, "Hakka Chinese" to match "Hakka". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language. """ assert '/' not in language, "Language codes cannot contain slashes" assert '-' not in language, "This code should be reduced to a language subtag only" trie_name = '{}/name_to_{}'.format(language, category) if trie_name not in TRIES: TRIES[trie_name] = load_trie(data_filename('trie/{}.marisa'.format(trie_name))) trie = TRIES[trie_name] lookup = normalize_name(name) if lookup in trie: return get_trie_value(trie, lookup) else: # Is this a language plus extra junk? Maybe it has "...isch", "... language", # or "... Chinese" attached to it, for example. prefixes = trie.prefixes(lookup) if prefixes and len(prefixes[-1]) >= 4: return get_trie_value(trie, prefixes[-1]) else: return None
python
def name_to_code(category, name, language: str='und'): """ Get a language, script, or region by its name in some language. The language here must be a string representing a language subtag only. The `Language.find` method can handle other representations of a language and normalize them to this form. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". A small amount of fuzzy matching is supported: if the name can be shortened or lengthened to match a single language name, you get that language. This allows, for example, "Hakka Chinese" to match "Hakka". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language. """ assert '/' not in language, "Language codes cannot contain slashes" assert '-' not in language, "This code should be reduced to a language subtag only" trie_name = '{}/name_to_{}'.format(language, category) if trie_name not in TRIES: TRIES[trie_name] = load_trie(data_filename('trie/{}.marisa'.format(trie_name))) trie = TRIES[trie_name] lookup = normalize_name(name) if lookup in trie: return get_trie_value(trie, lookup) else: # Is this a language plus extra junk? Maybe it has "...isch", "... language", # or "... Chinese" attached to it, for example. prefixes = trie.prefixes(lookup) if prefixes and len(prefixes[-1]) >= 4: return get_trie_value(trie, prefixes[-1]) else: return None
Get a language, script, or region by its name in some language. The language here must be a string representing a language subtag only. The `Language.find` method can handle other representations of a language and normalize them to this form. The default language, "und", will allow matching names in any language, so you can get the code 'fr' by looking up "French", "Français", or "francés". A small amount of fuzzy matching is supported: if the name can be shortened or lengthened to match a single language name, you get that language. This allows, for example, "Hakka Chinese" to match "Hakka". Occasionally, names are ambiguous in a way that can be resolved by specifying what name the language is supposed to be in. For example, there is a language named 'Malayo' in English, but it's different from the language named 'Malayo' in Spanish (which is Malay). Specifying the language will look up the name in a trie that is only in that language.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/names.py#L47-L86
LuminosoInsight/langcodes
langcodes/names.py
code_to_names
def code_to_names(category, code): """ Given the code for a language, script, or region, get a dictionary of its names in various languages. """ trie_name = '{}_to_name'.format(category) if trie_name not in TRIES: TRIES[trie_name] = load_trie(data_filename('trie/{}.marisa'.format(trie_name))) trie = TRIES[trie_name] lookup = code.lower() + '@' possible_keys = trie.keys(lookup) names = {} for key in possible_keys: target_language = key.split('@')[1] names[target_language] = get_trie_value(trie, key) return names
python
def code_to_names(category, code): """ Given the code for a language, script, or region, get a dictionary of its names in various languages. """ trie_name = '{}_to_name'.format(category) if trie_name not in TRIES: TRIES[trie_name] = load_trie(data_filename('trie/{}.marisa'.format(trie_name))) trie = TRIES[trie_name] lookup = code.lower() + '@' possible_keys = trie.keys(lookup) names = {} for key in possible_keys: target_language = key.split('@')[1] names[target_language] = get_trie_value(trie, key) return names
Given the code for a language, script, or region, get a dictionary of its names in various languages.
https://github.com/LuminosoInsight/langcodes/blob/0cedf9ca257ebf7250de5d3a63ec33a7d198db58/langcodes/names.py#L89-L105
Ezhil-Language-Foundation/open-tamil
tamil/txt2unicode/unicode2encode.py
unicode2encode
def unicode2encode(text, charmap): ''' charmap : dictionary which has both encode as key, unicode as value ''' if isinstance(text, (list, tuple)): unitxt = '' for line in text: for val,key in charmap.items(): if key in line: line = line.replace(key, val) # end of if val in text: unitxt += line # end of for line in text: return unitxt elif isinstance(text, str): for val,key in charmap.items(): if key in text: text = text.replace(key, val) return text
python
def unicode2encode(text, charmap): ''' charmap : dictionary which has both encode as key, unicode as value ''' if isinstance(text, (list, tuple)): unitxt = '' for line in text: for val,key in charmap.items(): if key in line: line = line.replace(key, val) # end of if val in text: unitxt += line # end of for line in text: return unitxt elif isinstance(text, str): for val,key in charmap.items(): if key in text: text = text.replace(key, val) return text
charmap : dictionary which has both encode as key, unicode as value
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/txt2unicode/unicode2encode.py#L47-L65
Ezhil-Language-Foundation/open-tamil
tamil/txt2unicode/unicode2encode.py
unicode2auto
def unicode2auto(unicode_text, encode_text): """ This function will convert unicode (first argument) text into other encodes by auto find the encode (from available encodes) by using sample encode text in second argument of this function. unicode_text : Pass unicode string which has to convert into other encode. encode_text : Pass sample encode string to identify suitable encode for it. This function tries to identify encode in available encodings. If it finds, then it will convert unicode_text into encode string. Author : Arulalan.T 08.08.2014 """ _all_unique_encodes_, _all_common_encodes_ = _get_unique_common_encodes() # get unique word which falls under any one of available encodes from # user passed text lines unique_chars = _get_unique_ch(encode_text, _all_common_encodes_) # count common encode chars clen = len(_all_common_encodes_) msg = "Sorry, couldn't find encode :-(\n" msg += 'Need more words to find unique encode out side of %d ' % clen msg += 'common compound characters' if not unique_chars: print(msg) return '' # end of if not unique_chars: for encode_name, encode_keys in _all_unique_encodes_: if not len(encode_keys): continue for ch in encode_keys: # check either encode char is presnent in word if ch in unique_chars: # found encode print(("Found encode : ", encode_name)) encode = _all_encodes_[encode_name] return unicode2encode(unicode_text, encode) # end of if ch in unique_chars: # end of ifor ch in encode_keys: else: print(msg) return ''
python
def unicode2auto(unicode_text, encode_text): """ This function will convert unicode (first argument) text into other encodes by auto find the encode (from available encodes) by using sample encode text in second argument of this function. unicode_text : Pass unicode string which has to convert into other encode. encode_text : Pass sample encode string to identify suitable encode for it. This function tries to identify encode in available encodings. If it finds, then it will convert unicode_text into encode string. Author : Arulalan.T 08.08.2014 """ _all_unique_encodes_, _all_common_encodes_ = _get_unique_common_encodes() # get unique word which falls under any one of available encodes from # user passed text lines unique_chars = _get_unique_ch(encode_text, _all_common_encodes_) # count common encode chars clen = len(_all_common_encodes_) msg = "Sorry, couldn't find encode :-(\n" msg += 'Need more words to find unique encode out side of %d ' % clen msg += 'common compound characters' if not unique_chars: print(msg) return '' # end of if not unique_chars: for encode_name, encode_keys in _all_unique_encodes_: if not len(encode_keys): continue for ch in encode_keys: # check either encode char is presnent in word if ch in unique_chars: # found encode print(("Found encode : ", encode_name)) encode = _all_encodes_[encode_name] return unicode2encode(unicode_text, encode) # end of if ch in unique_chars: # end of ifor ch in encode_keys: else: print(msg) return ''
This function will convert unicode (first argument) text into other encodes by auto find the encode (from available encodes) by using sample encode text in second argument of this function. unicode_text : Pass unicode string which has to convert into other encode. encode_text : Pass sample encode string to identify suitable encode for it. This function tries to identify encode in available encodings. If it finds, then it will convert unicode_text into encode string. Author : Arulalan.T 08.08.2014
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/txt2unicode/unicode2encode.py#L151-L196
Ezhil-Language-Foundation/open-tamil
examples/tamilmorse/huffman.py
print_huffman_code_cwl
def print_huffman_code_cwl(code,p,v): """ code - code dictionary with symbol -> code map, p, v is probability map """ cwl = 0.0 for k,_v in code.items(): print(u"%s -> %s"%(k,_v)) cwl += p[v.index(k)]*len(_v) print(u"cwl = %g"%cwl) return cwl,code.values()
python
def print_huffman_code_cwl(code,p,v): """ code - code dictionary with symbol -> code map, p, v is probability map """ cwl = 0.0 for k,_v in code.items(): print(u"%s -> %s"%(k,_v)) cwl += p[v.index(k)]*len(_v) print(u"cwl = %g"%cwl) return cwl,code.values()
code - code dictionary with symbol -> code map, p, v is probability map
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/examples/tamilmorse/huffman.py#L77-L84
Ezhil-Language-Foundation/open-tamil
ngram/Distance.py
edit_distance
def edit_distance(wordA,wordB): """" Implements Daegmar-Levenshtein edit distance algorithm: Ref: https://en.wikipedia.org/wiki/Edit_distance Ref: https://en.wikipedia.org/wiki/Levenshtein_distance""" if not type(wordA) is list: lettersA = tamil.utf8.get_letters(wordA) else: lettersA = wordA if not type(wordB) is list: lettersB = tamil.utf8.get_letters(wordB) else: lettersB = wordB n_A = len(lettersA) n_B = len(lettersB) dist_AB = [[0 for i in range(0,n_B+1)] for i in range(0,(n_A+1))] # Target prefix reached by insertion for j in range(1,n_B+1): dist_AB[0][j] = j for i in range(1,n_A+1): dist_AB[i][0] = i for j in range(1,n_B+1): for i in range(1,n_A+1): if (lettersA[i-1] == lettersB[j-1]): new_dist = dist_AB[i-1][j-1] else: new_dist = min( [dist_AB[i-1][j]+1, dist_AB[i][j-1]+1, dist_AB[i-1][j-1]+1] ) #del, ins, or sub dist_AB[i][j] = new_dist return dist_AB[-1][-1]
python
def edit_distance(wordA,wordB): """" Implements Daegmar-Levenshtein edit distance algorithm: Ref: https://en.wikipedia.org/wiki/Edit_distance Ref: https://en.wikipedia.org/wiki/Levenshtein_distance""" if not type(wordA) is list: lettersA = tamil.utf8.get_letters(wordA) else: lettersA = wordA if not type(wordB) is list: lettersB = tamil.utf8.get_letters(wordB) else: lettersB = wordB n_A = len(lettersA) n_B = len(lettersB) dist_AB = [[0 for i in range(0,n_B+1)] for i in range(0,(n_A+1))] # Target prefix reached by insertion for j in range(1,n_B+1): dist_AB[0][j] = j for i in range(1,n_A+1): dist_AB[i][0] = i for j in range(1,n_B+1): for i in range(1,n_A+1): if (lettersA[i-1] == lettersB[j-1]): new_dist = dist_AB[i-1][j-1] else: new_dist = min( [dist_AB[i-1][j]+1, dist_AB[i][j-1]+1, dist_AB[i-1][j-1]+1] ) #del, ins, or sub dist_AB[i][j] = new_dist return dist_AB[-1][-1]
Implements Daegmar-Levenshtein edit distance algorithm: Ref: https://en.wikipedia.org/wiki/Edit_distance Ref: https://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/ngram/Distance.py#L10-L38
Ezhil-Language-Foundation/open-tamil
ngram/Distance.py
Dice_coeff
def Dice_coeff(wordA,wordB): """ # Calculate edit-distance - Implements the Dice coefficent # Ref: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient # distance should be between 0 - 1.0. can be used as a similarity match """ if not type(wordA) is list: lettersA = tamil.utf8.get_letters(wordA) else: lettersA = wordA if not type(wordB) is list: lettersB = tamil.utf8.get_letters(wordB) else: lettersB = wordB n_A = len(lettersA) n_B = len(lettersB) # OK only if unique - set(lettersA).intersection(set(lettersB)) n_AB = len( list( filter( lambda cmnL: cmnL in lettersB, lettersA) ) ) return (2.0*n_AB)/(n_A+n_B)
python
def Dice_coeff(wordA,wordB): """ # Calculate edit-distance - Implements the Dice coefficent # Ref: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient # distance should be between 0 - 1.0. can be used as a similarity match """ if not type(wordA) is list: lettersA = tamil.utf8.get_letters(wordA) else: lettersA = wordA if not type(wordB) is list: lettersB = tamil.utf8.get_letters(wordB) else: lettersB = wordB n_A = len(lettersA) n_B = len(lettersB) # OK only if unique - set(lettersA).intersection(set(lettersB)) n_AB = len( list( filter( lambda cmnL: cmnL in lettersB, lettersA) ) ) return (2.0*n_AB)/(n_A+n_B)
# Calculate edit-distance - Implements the Dice coefficent # Ref: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient # distance should be between 0 - 1.0. can be used as a similarity match
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/ngram/Distance.py#L43-L62
Ezhil-Language-Foundation/open-tamil
spell/spell.py
OttruSplit.generate_splits
def generate_splits(self): """ யாரிகழ்ந்து = [['ய்', 'ஆரிகழ்ந்து'], ['யார்', 'இகழ்ந்து'], ['யாரிக்', 'அழ்ந்து'], ['யாரிகழ்ந்த்', 'உ']] """ L = len(self.letters)-1 for idx,letter in enumerate(self.letters): if not( letter in tamil.utf8.grantha_uyirmei_letters): continue muthal = idx == 0 and u"" or u"".join(self.letters[0:idx]) meethi = idx == L and u"" or u"".join(self.letters[idx+1:]) mei,uyir = tamil.utf8.splitMeiUyir(letter) muthal = muthal + mei meethi = uyir + meethi self.results.append([muthal,meethi]) return len(self.results) > 0
python
def generate_splits(self): """ யாரிகழ்ந்து = [['ய்', 'ஆரிகழ்ந்து'], ['யார்', 'இகழ்ந்து'], ['யாரிக்', 'அழ்ந்து'], ['யாரிகழ்ந்த்', 'உ']] """ L = len(self.letters)-1 for idx,letter in enumerate(self.letters): if not( letter in tamil.utf8.grantha_uyirmei_letters): continue muthal = idx == 0 and u"" or u"".join(self.letters[0:idx]) meethi = idx == L and u"" or u"".join(self.letters[idx+1:]) mei,uyir = tamil.utf8.splitMeiUyir(letter) muthal = muthal + mei meethi = uyir + meethi self.results.append([muthal,meethi]) return len(self.results) > 0
யாரிகழ்ந்து = [['ய்', 'ஆரிகழ்ந்து'], ['யார்', 'இகழ்ந்து'], ['யாரிக்', 'அழ்ந்து'], ['யாரிகழ்ந்த்', 'உ']]
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/spell/spell.py#L78-L96
Ezhil-Language-Foundation/open-tamil
solthiruthi/typographical.py
oridam_generate_patterns
def oridam_generate_patterns(word_in,cm,ed=1,level=0,pos=0,candidates=None): """ ed = 1 by default, pos - internal variable for algorithm """ alternates = cm.get(word_in[pos],[]) if not candidates: candidates = [] assert ed <= len(word_in), 'edit distance has to be comparable to word size [ins/del not explored]' if (pos >len(word_in)) or ed == 0: return candidates pfx = '' sfx = '' curr_candidates = [] for p in range(0,pos): pfx = pfx + word_in[p] for p in range(pos+1,len(word_in)): sfx = sfx + word_in[p] for alt in alternates: word_alt = pfx + alt + sfx if not (word_alt in candidates): candidates.append( word_alt ) curr_candidates.append( word_alt ) for n_pos in range(pos,len(word_in)): # already what we have ' candidates ' of this round are edit-distance 1 for word in curr_candidates: oridam_generate_patterns(word,cm,ed-1,level+1,n_pos,candidates) if level == 0: #candidates.append(word_in) for n_pos in range(pos,len(word_in)): oridam_generate_patterns(word_in,cm,ed, level+1,n_pos,candidates) return candidates
python
def oridam_generate_patterns(word_in,cm,ed=1,level=0,pos=0,candidates=None): """ ed = 1 by default, pos - internal variable for algorithm """ alternates = cm.get(word_in[pos],[]) if not candidates: candidates = [] assert ed <= len(word_in), 'edit distance has to be comparable to word size [ins/del not explored]' if (pos >len(word_in)) or ed == 0: return candidates pfx = '' sfx = '' curr_candidates = [] for p in range(0,pos): pfx = pfx + word_in[p] for p in range(pos+1,len(word_in)): sfx = sfx + word_in[p] for alt in alternates: word_alt = pfx + alt + sfx if not (word_alt in candidates): candidates.append( word_alt ) curr_candidates.append( word_alt ) for n_pos in range(pos,len(word_in)): # already what we have ' candidates ' of this round are edit-distance 1 for word in curr_candidates: oridam_generate_patterns(word,cm,ed-1,level+1,n_pos,candidates) if level == 0: #candidates.append(word_in) for n_pos in range(pos,len(word_in)): oridam_generate_patterns(word_in,cm,ed, level+1,n_pos,candidates) return candidates
ed = 1 by default, pos - internal variable for algorithm
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/solthiruthi/typographical.py#L20-L48
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
to_unicode_repr
def to_unicode_repr( _letter ): """ helpful in situations where browser/app may recognize Unicode encoding in the \u0b8e type syntax but not actual unicode glyph/code-point""" # Python 2-3 compatible return u"u'"+ u"".join( [ u"\\u%04x"%ord(l) for l in _letter ] ) + u"'"
python
def to_unicode_repr( _letter ): """ helpful in situations where browser/app may recognize Unicode encoding in the \u0b8e type syntax but not actual unicode glyph/code-point""" # Python 2-3 compatible return u"u'"+ u"".join( [ u"\\u%04x"%ord(l) for l in _letter ] ) + u"'"
helpful in situations where browser/app may recognize Unicode encoding in the \u0b8e type syntax but not actual unicode glyph/code-point
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L33-L37
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
uyirmei_constructed
def uyirmei_constructed( mei_idx, uyir_idx): """ construct uyirmei letter give mei index and uyir index """ idx,idy = mei_idx,uyir_idx assert ( idy >= 0 and idy < uyir_len() ) assert ( idx >= 0 and idx < 6+mei_len() ) return grantha_agaram_letters[mei_idx]+accent_symbols[uyir_idx]
python
def uyirmei_constructed( mei_idx, uyir_idx): """ construct uyirmei letter give mei index and uyir index """ idx,idy = mei_idx,uyir_idx assert ( idy >= 0 and idy < uyir_len() ) assert ( idx >= 0 and idx < 6+mei_len() ) return grantha_agaram_letters[mei_idx]+accent_symbols[uyir_idx]
construct uyirmei letter give mei index and uyir index
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L265-L270
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
has_english
def has_english( word_in ): """ return True if word_in has any English letters in the string""" return not all_tamil(word_in) and len(word_in) > 0 and any([l in word_in for l in string.ascii_letters])
python
def has_english( word_in ): """ return True if word_in has any English letters in the string""" return not all_tamil(word_in) and len(word_in) > 0 and any([l in word_in for l in string.ascii_letters])
return True if word_in has any English letters in the string
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L305-L307
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
all_tamil
def all_tamil( word_in ): """ predicate checks if all letters of the input word are Tamil letters """ if isinstance(word_in,list): word = word_in else: word = get_letters( word_in ) return all( [(letter in tamil_letters) for letter in word] )
python
def all_tamil( word_in ): """ predicate checks if all letters of the input word are Tamil letters """ if isinstance(word_in,list): word = word_in else: word = get_letters( word_in ) return all( [(letter in tamil_letters) for letter in word] )
predicate checks if all letters of the input word are Tamil letters
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L309-L315
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
reverse_word
def reverse_word( word ): """ reverse a Tamil word according to letters not unicode-points """ op = get_letters( word ) op.reverse() return u"".join(op)
python
def reverse_word( word ): """ reverse a Tamil word according to letters not unicode-points """ op = get_letters( word ) op.reverse() return u"".join(op)
reverse a Tamil word according to letters not unicode-points
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L337-L341
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
get_letters
def get_letters( word ): """ splits the word into a character-list of tamil/english characters present in the stream """ ta_letters = list() not_empty = False WLEN,idx = len(word),0 while (idx < WLEN): c = word[idx] #print(idx,hex(ord(c)),len(ta_letters)) if c in uyir_letter_set or c == ayudha_letter: ta_letters.append(c) not_empty = True elif c in grantha_agaram_set: ta_letters.append(c) not_empty = True elif c in accent_symbol_set: if not not_empty: # odd situation ta_letters.append(c) not_empty = True else: #print("Merge/accent") ta_letters[-1] += c else: if ord(c) < 256 or not (is_tamil_unicode(c)): ta_letters.append( c ) else: if not_empty: #print("Merge/??") ta_letters[-1]+= c else: ta_letters.append(c) not_empty = True idx = idx + 1 return ta_letters
python
def get_letters( word ): """ splits the word into a character-list of tamil/english characters present in the stream """ ta_letters = list() not_empty = False WLEN,idx = len(word),0 while (idx < WLEN): c = word[idx] #print(idx,hex(ord(c)),len(ta_letters)) if c in uyir_letter_set or c == ayudha_letter: ta_letters.append(c) not_empty = True elif c in grantha_agaram_set: ta_letters.append(c) not_empty = True elif c in accent_symbol_set: if not not_empty: # odd situation ta_letters.append(c) not_empty = True else: #print("Merge/accent") ta_letters[-1] += c else: if ord(c) < 256 or not (is_tamil_unicode(c)): ta_letters.append( c ) else: if not_empty: #print("Merge/??") ta_letters[-1]+= c else: ta_letters.append(c) not_empty = True idx = idx + 1 return ta_letters
splits the word into a character-list of tamil/english characters present in the stream
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L389-L423
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
get_letters_iterable
def get_letters_iterable( word ): """ splits the word into a character-list of tamil/english characters present in the stream """ WLEN,idx = len(word),0 while (idx < WLEN): c = word[idx] #print(idx,hex(ord(c)),len(ta_letters)) if c in uyir_letter_set or c == ayudha_letter: idx = idx + 1 yield c elif c in grantha_agaram_set: if idx + 1 < WLEN and word[idx+1] in all_symbol_set: c2 = word[idx+1] idx = idx + 2 yield (c + c2) else: idx = idx + 1 yield c else: idx = idx + 1 yield c return
python
def get_letters_iterable( word ): """ splits the word into a character-list of tamil/english characters present in the stream """ WLEN,idx = len(word),0 while (idx < WLEN): c = word[idx] #print(idx,hex(ord(c)),len(ta_letters)) if c in uyir_letter_set or c == ayudha_letter: idx = idx + 1 yield c elif c in grantha_agaram_set: if idx + 1 < WLEN and word[idx+1] in all_symbol_set: c2 = word[idx+1] idx = idx + 2 yield (c + c2) else: idx = idx + 1 yield c else: idx = idx + 1 yield c return
splits the word into a character-list of tamil/english characters present in the stream
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L431-L453
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
get_words_iterable
def get_words_iterable( letters, tamil_only=False ): """ given a list of UTF-8 letters section them into words, grouping them at spaces """ # correct algorithm for get-tamil-words buf = [] for idx,let in enumerate(letters): if not let.isspace(): if istamil(let) or (not tamil_only): buf.append( let ) else: if len(buf) > 0: yield u"".join( buf ) buf = [] if len(buf) > 0: yield u"".join(buf)
python
def get_words_iterable( letters, tamil_only=False ): """ given a list of UTF-8 letters section them into words, grouping them at spaces """ # correct algorithm for get-tamil-words buf = [] for idx,let in enumerate(letters): if not let.isspace(): if istamil(let) or (not tamil_only): buf.append( let ) else: if len(buf) > 0: yield u"".join( buf ) buf = [] if len(buf) > 0: yield u"".join(buf)
given a list of UTF-8 letters section them into words, grouping them at spaces
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L499-L513
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
get_tamil_words
def get_tamil_words( letters ): """ reverse a Tamil word according to letters, not unicode-points """ if not isinstance(letters,list): raise Exception("metehod needs to be used with list generated from 'tamil.utf8.get_letters(...)'") return [word for word in get_words_iterable( letters, tamil_only = True )]
python
def get_tamil_words( letters ): """ reverse a Tamil word according to letters, not unicode-points """ if not isinstance(letters,list): raise Exception("metehod needs to be used with list generated from 'tamil.utf8.get_letters(...)'") return [word for word in get_words_iterable( letters, tamil_only = True )]
reverse a Tamil word according to letters, not unicode-points
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L515-L519
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
compare_words_lexicographic
def compare_words_lexicographic( word_a, word_b ): """ compare words in Tamil lexicographic order """ # sanity check for words to be all Tamil if ( not all_tamil(word_a) ) or (not all_tamil(word_b)) : #print("## ") #print(word_a) #print(word_b) #print("Both operands need to be Tamil words") pass La = len(word_a) Lb = len(word_b) all_TA_letters = u"".join(tamil_letters) for itr in range(0,min(La,Lb)): pos1 = all_TA_letters.find( word_a[itr] ) pos2 = all_TA_letters.find( word_b[itr] ) if pos1 != pos2 : #print not( pos1 > pos2), pos1, pos2 return cmp(pos1, pos2) # result depends on if La is shorter than Lb, or 0 if La == Lb i.e. cmp return cmp(La,Lb)
python
def compare_words_lexicographic( word_a, word_b ): """ compare words in Tamil lexicographic order """ # sanity check for words to be all Tamil if ( not all_tamil(word_a) ) or (not all_tamil(word_b)) : #print("## ") #print(word_a) #print(word_b) #print("Both operands need to be Tamil words") pass La = len(word_a) Lb = len(word_b) all_TA_letters = u"".join(tamil_letters) for itr in range(0,min(La,Lb)): pos1 = all_TA_letters.find( word_a[itr] ) pos2 = all_TA_letters.find( word_b[itr] ) if pos1 != pos2 : #print not( pos1 > pos2), pos1, pos2 return cmp(pos1, pos2) # result depends on if La is shorter than Lb, or 0 if La == Lb i.e. cmp return cmp(La,Lb)
compare words in Tamil lexicographic order
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L531-L552
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
word_intersection
def word_intersection( word_a, word_b ): """ return a list of tuples where word_a, word_b intersect """ positions = [] word_a_letters = get_letters( word_a ) word_b_letters = get_letters( word_b ) for idx,wa in enumerate(word_a_letters): for idy,wb in enumerate(word_b_letters): if ( wa == wb ): positions.append( (idx, idy) ) return positions
python
def word_intersection( word_a, word_b ): """ return a list of tuples where word_a, word_b intersect """ positions = [] word_a_letters = get_letters( word_a ) word_b_letters = get_letters( word_b ) for idx,wa in enumerate(word_a_letters): for idy,wb in enumerate(word_b_letters): if ( wa == wb ): positions.append( (idx, idy) ) return positions
return a list of tuples where word_a, word_b intersect
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L558-L567
Ezhil-Language-Foundation/open-tamil
tamil/utf8.py
splitMeiUyir
def splitMeiUyir(uyirmei_char): """ This function split uyirmei compound character into mei + uyir characters and returns in tuple. Input : It must be unicode tamil char. Written By : Arulalan.T Date : 22.09.2014 """ if not isinstance(uyirmei_char, PYTHON3 and str or unicode): raise ValueError("Passed input letter '%s' must be unicode, \ not just string" % uyirmei_char) if uyirmei_char in mei_letters or uyirmei_char in uyir_letters or uyirmei_char in ayudha_letter: return uyirmei_char if uyirmei_char not in grantha_uyirmei_letters: if not is_normalized( uyirmei_char ): norm_char = unicode_normalize(uyirmei_char) rval = splitMeiUyir( norm_char ) return rval raise ValueError("Passed input letter '%s' is not tamil letter" % uyirmei_char) idx = grantha_uyirmei_letters.index(uyirmei_char) uyiridx = idx % 12 meiidx = int((idx - uyiridx)/ 12) return (grantha_mei_letters[meiidx], uyir_letters[uyiridx])
python
def splitMeiUyir(uyirmei_char): """ This function split uyirmei compound character into mei + uyir characters and returns in tuple. Input : It must be unicode tamil char. Written By : Arulalan.T Date : 22.09.2014 """ if not isinstance(uyirmei_char, PYTHON3 and str or unicode): raise ValueError("Passed input letter '%s' must be unicode, \ not just string" % uyirmei_char) if uyirmei_char in mei_letters or uyirmei_char in uyir_letters or uyirmei_char in ayudha_letter: return uyirmei_char if uyirmei_char not in grantha_uyirmei_letters: if not is_normalized( uyirmei_char ): norm_char = unicode_normalize(uyirmei_char) rval = splitMeiUyir( norm_char ) return rval raise ValueError("Passed input letter '%s' is not tamil letter" % uyirmei_char) idx = grantha_uyirmei_letters.index(uyirmei_char) uyiridx = idx % 12 meiidx = int((idx - uyiridx)/ 12) return (grantha_mei_letters[meiidx], uyir_letters[uyiridx])
This function split uyirmei compound character into mei + uyir characters and returns in tuple. Input : It must be unicode tamil char. Written By : Arulalan.T Date : 22.09.2014
https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L590-L619