repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
gagneurlab/concise | concise/utils/plot.py | add_letter_to_axis | def add_letter_to_axis(ax, let, col, x, y, height):
"""Add 'let' with position x,y and height height to matplotlib axis 'ax'.
"""
if len(let) == 2:
colors = [col, "white"]
elif len(let) == 1:
colors = [col]
else:
raise ValueError("3 or more Polygons are not supported")
for polygon, color in zip(let, colors):
new_polygon = affinity.scale(
polygon, yfact=height, origin=(0, 0, 0))
new_polygon = affinity.translate(
new_polygon, xoff=x, yoff=y)
patch = PolygonPatch(
new_polygon, edgecolor=color, facecolor=color)
ax.add_patch(patch)
return | python | def add_letter_to_axis(ax, let, col, x, y, height):
"""Add 'let' with position x,y and height height to matplotlib axis 'ax'.
"""
if len(let) == 2:
colors = [col, "white"]
elif len(let) == 1:
colors = [col]
else:
raise ValueError("3 or more Polygons are not supported")
for polygon, color in zip(let, colors):
new_polygon = affinity.scale(
polygon, yfact=height, origin=(0, 0, 0))
new_polygon = affinity.translate(
new_polygon, xoff=x, yoff=y)
patch = PolygonPatch(
new_polygon, edgecolor=color, facecolor=color)
ax.add_patch(patch)
return | Add 'let' with position x,y and height height to matplotlib axis 'ax'. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/plot.py#L174-L192 |
gagneurlab/concise | concise/utils/plot.py | seqlogo | def seqlogo(letter_heights, vocab="DNA", ax=None):
"""Make a logo plot
# Arguments
letter_heights: "motif length" x "vocabulary size" numpy array
Can also contain negative values.
vocab: str, Vocabulary name. Can be: DNA, RNA, AA, RNAStruct.
ax: matplotlib axis
"""
ax = ax or plt.gca()
assert letter_heights.shape[1] == len(VOCABS[vocab])
x_range = [1, letter_heights.shape[0]]
pos_heights = np.copy(letter_heights)
pos_heights[letter_heights < 0] = 0
neg_heights = np.copy(letter_heights)
neg_heights[letter_heights > 0] = 0
for x_pos, heights in enumerate(letter_heights):
letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys())))
y_pos_pos = 0.0
y_neg_pos = 0.0
for height, letter in letters_and_heights:
color = VOCABS[vocab][letter]
polygons = letter_polygons[letter]
if height > 0:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_pos_pos, height)
y_pos_pos += height
else:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_neg_pos, height)
y_neg_pos += height
# if add_hline:
# ax.axhline(color="black", linewidth=1)
ax.set_xlim(x_range[0] - 1, x_range[1] + 1)
ax.grid(False)
ax.set_xticks(list(range(*x_range)) + [x_range[-1]])
ax.set_aspect(aspect='auto', adjustable='box')
ax.autoscale_view() | python | def seqlogo(letter_heights, vocab="DNA", ax=None):
"""Make a logo plot
# Arguments
letter_heights: "motif length" x "vocabulary size" numpy array
Can also contain negative values.
vocab: str, Vocabulary name. Can be: DNA, RNA, AA, RNAStruct.
ax: matplotlib axis
"""
ax = ax or plt.gca()
assert letter_heights.shape[1] == len(VOCABS[vocab])
x_range = [1, letter_heights.shape[0]]
pos_heights = np.copy(letter_heights)
pos_heights[letter_heights < 0] = 0
neg_heights = np.copy(letter_heights)
neg_heights[letter_heights > 0] = 0
for x_pos, heights in enumerate(letter_heights):
letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys())))
y_pos_pos = 0.0
y_neg_pos = 0.0
for height, letter in letters_and_heights:
color = VOCABS[vocab][letter]
polygons = letter_polygons[letter]
if height > 0:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_pos_pos, height)
y_pos_pos += height
else:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_neg_pos, height)
y_neg_pos += height
# if add_hline:
# ax.axhline(color="black", linewidth=1)
ax.set_xlim(x_range[0] - 1, x_range[1] + 1)
ax.grid(False)
ax.set_xticks(list(range(*x_range)) + [x_range[-1]])
ax.set_aspect(aspect='auto', adjustable='box')
ax.autoscale_view() | Make a logo plot
# Arguments
letter_heights: "motif length" x "vocabulary size" numpy array
Can also contain negative values.
vocab: str, Vocabulary name. Can be: DNA, RNA, AA, RNAStruct.
ax: matplotlib axis | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/plot.py#L196-L234 |
gagneurlab/concise | concise/legacy/analyze.py | get_cv_accuracy | def get_cv_accuracy(res):
"""
Extract the cv accuracy from the model
"""
ac_list = [(accuracy["train_acc_final"],
accuracy["test_acc_final"]
)
for accuracy, weights in res]
ac = np.array(ac_list)
perf = {
"mean_train_acc": np.mean(ac[:, 0]),
"std_train_acc": np.std(ac[:, 0]),
"mean_test_acc": np.mean(ac[:, 1]),
"std_test_acc": np.std(ac[:, 1]),
}
return perf | python | def get_cv_accuracy(res):
"""
Extract the cv accuracy from the model
"""
ac_list = [(accuracy["train_acc_final"],
accuracy["test_acc_final"]
)
for accuracy, weights in res]
ac = np.array(ac_list)
perf = {
"mean_train_acc": np.mean(ac[:, 0]),
"std_train_acc": np.std(ac[:, 0]),
"mean_test_acc": np.mean(ac[:, 1]),
"std_test_acc": np.std(ac[:, 1]),
}
return perf | Extract the cv accuracy from the model | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/analyze.py#L9-L26 |
gagneurlab/concise | concise/preprocessing/sequence.py | one_hot2string | def one_hot2string(arr, vocab):
"""Convert a one-hot encoded array back to string
"""
tokens = one_hot2token(arr)
indexToLetter = _get_index_dict(vocab)
return [''.join([indexToLetter[x] for x in row]) for row in tokens] | python | def one_hot2string(arr, vocab):
"""Convert a one-hot encoded array back to string
"""
tokens = one_hot2token(arr)
indexToLetter = _get_index_dict(vocab)
return [''.join([indexToLetter[x] for x in row]) for row in tokens] | Convert a one-hot encoded array back to string | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L32-L38 |
gagneurlab/concise | concise/preprocessing/sequence.py | tokenize | def tokenize(seq, vocab, neutral_vocab=[]):
"""Convert sequence to integers
# Arguments
seq: Sequence to encode
vocab: Vocabulary to use
neutral_vocab: Neutral vocabulary -> assign those values to -1
# Returns
List of length `len(seq)` with integers from `-1` to `len(vocab) - 1`
"""
# Req: all vocabs have the same length
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
nchar = len(vocab[0])
for l in vocab + neutral_vocab:
assert len(l) == nchar
assert len(seq) % nchar == 0 # since we are using striding
vocab_dict = _get_vocab_dict(vocab)
for l in neutral_vocab:
vocab_dict[l] = -1
# current performance bottleneck
return [vocab_dict[seq[(i * nchar):((i + 1) * nchar)]] for i in range(len(seq) // nchar)] | python | def tokenize(seq, vocab, neutral_vocab=[]):
"""Convert sequence to integers
# Arguments
seq: Sequence to encode
vocab: Vocabulary to use
neutral_vocab: Neutral vocabulary -> assign those values to -1
# Returns
List of length `len(seq)` with integers from `-1` to `len(vocab) - 1`
"""
# Req: all vocabs have the same length
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
nchar = len(vocab[0])
for l in vocab + neutral_vocab:
assert len(l) == nchar
assert len(seq) % nchar == 0 # since we are using striding
vocab_dict = _get_vocab_dict(vocab)
for l in neutral_vocab:
vocab_dict[l] = -1
# current performance bottleneck
return [vocab_dict[seq[(i * nchar):((i + 1) * nchar)]] for i in range(len(seq) // nchar)] | Convert sequence to integers
# Arguments
seq: Sequence to encode
vocab: Vocabulary to use
neutral_vocab: Neutral vocabulary -> assign those values to -1
# Returns
List of length `len(seq)` with integers from `-1` to `len(vocab) - 1` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L41-L66 |
gagneurlab/concise | concise/preprocessing/sequence.py | token2one_hot | def token2one_hot(tvec, vocab_size):
"""
Note: everything out of the vucabulary is transformed into `np.zeros(vocab_size)`
"""
arr = np.zeros((len(tvec), vocab_size))
tvec_range = np.arange(len(tvec))
tvec = np.asarray(tvec)
arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1
return arr | python | def token2one_hot(tvec, vocab_size):
"""
Note: everything out of the vucabulary is transformed into `np.zeros(vocab_size)`
"""
arr = np.zeros((len(tvec), vocab_size))
tvec_range = np.arange(len(tvec))
tvec = np.asarray(tvec)
arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1
return arr | Note: everything out of the vucabulary is transformed into `np.zeros(vocab_size)` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L82-L91 |
gagneurlab/concise | concise/preprocessing/sequence.py | encodeSequence | def encodeSequence(seq_vec, vocab, neutral_vocab, maxlen=None,
seq_align="start", pad_value="N", encode_type="one_hot"):
"""Convert a list of genetic sequences into one-hot-encoded array.
# Arguments
seq_vec: list of strings (genetic sequences)
vocab: list of chars: List of "words" to use as the vocabulary. Can be strings of length>0,
but all need to have the same length. For DNA, this is: ["A", "C", "G", "T"].
neutral_vocab: list of chars: Values used to pad the sequence or represent unknown-values. For DNA, this is: ["N"].
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
encode_type: "one_hot" or "token". "token" represents each vocab element as a positive integer from 1 to len(vocab) + 1.
neutral_vocab is represented with 0.
# Returns
Array with shape for encode_type:
- "one_hot": `(len(seq_vec), maxlen, len(vocab))`
- "token": `(len(seq_vec), maxlen)`
If `maxlen=None`, it gets the value of the longest sequence length from `seq_vec`.
"""
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
if isinstance(seq_vec, str):
raise ValueError("seq_vec should be an iterable returning " +
"strings not a string itself")
assert len(vocab[0]) == len(pad_value)
assert pad_value in neutral_vocab
assert encode_type in ["one_hot", "token"]
seq_vec = pad_sequences(seq_vec, maxlen=maxlen,
align=seq_align, value=pad_value)
if encode_type == "one_hot":
arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len(vocab))
for i, seq in enumerate(seq_vec)]
elif encode_type == "token":
arr_list = [1 + np.array(tokenize(seq, vocab, neutral_vocab)) for seq in seq_vec]
# we add 1 to be compatible with keras: https://keras.io/layers/embeddings/
# indexes > 0, 0 = padding element
return np.stack(arr_list) | python | def encodeSequence(seq_vec, vocab, neutral_vocab, maxlen=None,
seq_align="start", pad_value="N", encode_type="one_hot"):
"""Convert a list of genetic sequences into one-hot-encoded array.
# Arguments
seq_vec: list of strings (genetic sequences)
vocab: list of chars: List of "words" to use as the vocabulary. Can be strings of length>0,
but all need to have the same length. For DNA, this is: ["A", "C", "G", "T"].
neutral_vocab: list of chars: Values used to pad the sequence or represent unknown-values. For DNA, this is: ["N"].
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
encode_type: "one_hot" or "token". "token" represents each vocab element as a positive integer from 1 to len(vocab) + 1.
neutral_vocab is represented with 0.
# Returns
Array with shape for encode_type:
- "one_hot": `(len(seq_vec), maxlen, len(vocab))`
- "token": `(len(seq_vec), maxlen)`
If `maxlen=None`, it gets the value of the longest sequence length from `seq_vec`.
"""
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
if isinstance(seq_vec, str):
raise ValueError("seq_vec should be an iterable returning " +
"strings not a string itself")
assert len(vocab[0]) == len(pad_value)
assert pad_value in neutral_vocab
assert encode_type in ["one_hot", "token"]
seq_vec = pad_sequences(seq_vec, maxlen=maxlen,
align=seq_align, value=pad_value)
if encode_type == "one_hot":
arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len(vocab))
for i, seq in enumerate(seq_vec)]
elif encode_type == "token":
arr_list = [1 + np.array(tokenize(seq, vocab, neutral_vocab)) for seq in seq_vec]
# we add 1 to be compatible with keras: https://keras.io/layers/embeddings/
# indexes > 0, 0 = padding element
return np.stack(arr_list) | Convert a list of genetic sequences into one-hot-encoded array.
# Arguments
seq_vec: list of strings (genetic sequences)
vocab: list of chars: List of "words" to use as the vocabulary. Can be strings of length>0,
but all need to have the same length. For DNA, this is: ["A", "C", "G", "T"].
neutral_vocab: list of chars: Values used to pad the sequence or represent unknown-values. For DNA, this is: ["N"].
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
encode_type: "one_hot" or "token". "token" represents each vocab element as a positive integer from 1 to len(vocab) + 1.
neutral_vocab is represented with 0.
# Returns
Array with shape for encode_type:
- "one_hot": `(len(seq_vec), maxlen, len(vocab))`
- "token": `(len(seq_vec), maxlen)`
If `maxlen=None`, it gets the value of the longest sequence length from `seq_vec`. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L94-L141 |
gagneurlab/concise | concise/preprocessing/sequence.py | encodeDNA | def encodeDNA(seq_vec, maxlen=None, seq_align="start"):
"""Convert the DNA sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: list of chars
List of sequences that can have different lengths
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
# Returns
3D numpy array of shape (len(seq_vec), trim_seq_len(or maximal sequence length if None), 4)
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> X_seq = encodeDNA(sequence_vec, seq_align="end", maxlen=8)
>>> X_seq.shape
(2, 8, 4)
>>> print(X_seq)
[[[0 0 0 1]
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[1 0 0 0]]
[[0 0 0 0]
[0 0 0 0]
[0 0 0 1]
[0 1 0 0]
[0 0 0 1]
[0 0 0 1]
[0 0 0 1]
[1 0 0 0]]]
```
"""
return encodeSequence(seq_vec,
vocab=DNA,
neutral_vocab="N",
maxlen=maxlen,
seq_align=seq_align,
pad_value="N",
encode_type="one_hot") | python | def encodeDNA(seq_vec, maxlen=None, seq_align="start"):
"""Convert the DNA sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: list of chars
List of sequences that can have different lengths
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
# Returns
3D numpy array of shape (len(seq_vec), trim_seq_len(or maximal sequence length if None), 4)
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> X_seq = encodeDNA(sequence_vec, seq_align="end", maxlen=8)
>>> X_seq.shape
(2, 8, 4)
>>> print(X_seq)
[[[0 0 0 1]
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[1 0 0 0]]
[[0 0 0 0]
[0 0 0 0]
[0 0 0 1]
[0 1 0 0]
[0 0 0 1]
[0 0 0 1]
[0 0 0 1]
[1 0 0 0]]]
```
"""
return encodeSequence(seq_vec,
vocab=DNA,
neutral_vocab="N",
maxlen=maxlen,
seq_align=seq_align,
pad_value="N",
encode_type="one_hot") | Convert the DNA sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: list of chars
List of sequences that can have different lengths
maxlen: int or None,
Should we trim (subset) the resulting sequence. If None don't trim.
Note that trims wrt the align parameter.
It should be smaller than the longest sequence.
seq_align: character; 'end' or 'start'
To which end should we align sequences?
# Returns
3D numpy array of shape (len(seq_vec), trim_seq_len(or maximal sequence length if None), 4)
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> X_seq = encodeDNA(sequence_vec, seq_align="end", maxlen=8)
>>> X_seq.shape
(2, 8, 4)
>>> print(X_seq)
[[[0 0 0 1]
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[1 0 0 0]]
[[0 0 0 0]
[0 0 0 0]
[0 0 0 1]
[0 1 0 0]
[0 0 0 1]
[0 0 0 1]
[0 0 0 1]
[1 0 0 0]]]
``` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L144-L196 |
gagneurlab/concise | concise/preprocessing/sequence.py | encodeRNA | def encodeRNA(seq_vec, maxlen=None, seq_align="start"):
"""Convert the RNA sequence into 1-hot-encoding numpy array as for encodeDNA
"""
return encodeSequence(seq_vec,
vocab=RNA,
neutral_vocab="N",
maxlen=maxlen,
seq_align=seq_align,
pad_value="N",
encode_type="one_hot") | python | def encodeRNA(seq_vec, maxlen=None, seq_align="start"):
"""Convert the RNA sequence into 1-hot-encoding numpy array as for encodeDNA
"""
return encodeSequence(seq_vec,
vocab=RNA,
neutral_vocab="N",
maxlen=maxlen,
seq_align=seq_align,
pad_value="N",
encode_type="one_hot") | Convert the RNA sequence into 1-hot-encoding numpy array as for encodeDNA | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L199-L208 |
gagneurlab/concise | concise/preprocessing/sequence.py | encodeCodon | def encodeCodon(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align="start", encode_type="one_hot"):
"""Convert the Codon sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/DNA sequences
ignore_stop_codons: boolean; if True, STOP_CODONS are omitted from one-hot encoding.
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen / 3, 61 if ignore_stop_codons else 64)`
"""
if ignore_stop_codons:
vocab = CODONS
neutral_vocab = STOP_CODONS + ["NNN"]
else:
vocab = CODONS + STOP_CODONS
neutral_vocab = ["NNN"]
# replace all U's with A's?
seq_vec = [str(seq).replace("U", "T") for seq in seq_vec]
return encodeSequence(seq_vec,
vocab=vocab,
neutral_vocab=neutral_vocab,
maxlen=maxlen,
seq_align=seq_align,
pad_value="NNN",
encode_type=encode_type) | python | def encodeCodon(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align="start", encode_type="one_hot"):
"""Convert the Codon sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/DNA sequences
ignore_stop_codons: boolean; if True, STOP_CODONS are omitted from one-hot encoding.
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen / 3, 61 if ignore_stop_codons else 64)`
"""
if ignore_stop_codons:
vocab = CODONS
neutral_vocab = STOP_CODONS + ["NNN"]
else:
vocab = CODONS + STOP_CODONS
neutral_vocab = ["NNN"]
# replace all U's with A's?
seq_vec = [str(seq).replace("U", "T") for seq in seq_vec]
return encodeSequence(seq_vec,
vocab=vocab,
neutral_vocab=neutral_vocab,
maxlen=maxlen,
seq_align=seq_align,
pad_value="NNN",
encode_type=encode_type) | Convert the Codon sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/DNA sequences
ignore_stop_codons: boolean; if True, STOP_CODONS are omitted from one-hot encoding.
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen / 3, 61 if ignore_stop_codons else 64)` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L211-L240 |
gagneurlab/concise | concise/preprocessing/sequence.py | encodeAA | def encodeAA(seq_vec, maxlen=None, seq_align="start", encode_type="one_hot"):
"""Convert the Amino-acid sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/amino-acid sequences
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen, 22)`
"""
return encodeSequence(seq_vec,
vocab=AMINO_ACIDS,
neutral_vocab="_",
maxlen=maxlen,
seq_align=seq_align,
pad_value="_",
encode_type=encode_type) | python | def encodeAA(seq_vec, maxlen=None, seq_align="start", encode_type="one_hot"):
"""Convert the Amino-acid sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/amino-acid sequences
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen, 22)`
"""
return encodeSequence(seq_vec,
vocab=AMINO_ACIDS,
neutral_vocab="_",
maxlen=maxlen,
seq_align=seq_align,
pad_value="_",
encode_type=encode_type) | Convert the Amino-acid sequence into 1-hot-encoding numpy array
# Arguments
seq_vec: List of strings/amino-acid sequences
maxlen: Maximum sequence length. See `pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `pad_sequences` for more detail
encode_type: can be `"one_hot"` or `token` for token encoding of codons (incremental integer ).
# Returns
numpy.ndarray of shape `(len(seq_vec), maxlen, 22)` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L243-L261 |
gagneurlab/concise | concise/preprocessing/sequence.py | pad_sequences | def pad_sequences(sequence_vec, maxlen=None, align="end", value="N"):
"""Pad and/or trim a list of sequences to have common length. Procedure:
1. Pad the sequence with N's or any other string or list element (`value`)
2. Subset the sequence
# Note
See also: https://keras.io/preprocessing/sequence/
Aplicable also for lists of characters
# Arguments
sequence_vec: list of chars or lists
List of sequences that can have various lengths
value: Neutral element to pad the sequence with. Can be `str` or `list`.
maxlen: int or None; Final lenght of sequences.
If None, maxlen is set to the longest sequence length.
align: character; 'start', 'end' or 'center'
To which end to align the sequences when triming/padding. See examples bellow.
# Returns
List of sequences of the same class as sequence_vec
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> pad_sequences(sequence_vec, 10, align="start", value="N")
['CTTACTCAGA', 'TCTTTANNNN']
>>> pad_sequences(sequence_vec, 10, align="end", value="N")
['CTTACTCAGA', 'NNNNTCTTTA']
>>> pad_sequences(sequence_vec, 4, align="center", value="N")
['ACTC', 'CTTT']
```
"""
# neutral element type checking
assert isinstance(value, list) or isinstance(value, str)
assert isinstance(value, type(sequence_vec[0]))
assert not isinstance(sequence_vec, str)
assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str)
max_seq_len = max([len(seq) for seq in sequence_vec])
if maxlen is None:
maxlen = max_seq_len
else:
maxlen = int(maxlen)
if max_seq_len < maxlen:
print("WARNING: Maximum sequence length (%s) is less than maxlen (%s)" % (max_seq_len, maxlen))
max_seq_len = maxlen
# check the case when len > 1
for seq in sequence_vec:
if not len(seq) % len(value) == 0:
raise ValueError("All sequences need to be dividable by len(value)")
if not maxlen % len(value) == 0:
raise ValueError("maxlen needs to be dividable by len(value)")
# pad and subset
def pad(seq, max_seq_len, value="N", align="end"):
seq_len = len(seq)
assert max_seq_len >= seq_len
if align is "end":
n_left = max_seq_len - seq_len
n_right = 0
elif align is "start":
n_right = max_seq_len - seq_len
n_left = 0
elif align is "center":
n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2
n_right = (max_seq_len - seq_len) // 2
else:
raise ValueError("align can be of: end, start or center")
# normalize for the length
n_left = n_left // len(value)
n_right = n_right // len(value)
return value * n_left + seq + value * n_right
def trim(seq, maxlen, align="end"):
seq_len = len(seq)
assert maxlen <= seq_len
if align is "end":
return seq[-maxlen:]
elif align is "start":
return seq[0:maxlen]
elif align is "center":
dl = seq_len - maxlen
n_left = dl // 2 + dl % 2
n_right = seq_len - dl // 2
return seq[n_left:n_right]
else:
raise ValueError("align can be of: end, start or center")
padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen),
value=value, align=align) for seq in sequence_vec]
padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in padded_sequence_vec]
return padded_sequence_vec | python | def pad_sequences(sequence_vec, maxlen=None, align="end", value="N"):
"""Pad and/or trim a list of sequences to have common length. Procedure:
1. Pad the sequence with N's or any other string or list element (`value`)
2. Subset the sequence
# Note
See also: https://keras.io/preprocessing/sequence/
Aplicable also for lists of characters
# Arguments
sequence_vec: list of chars or lists
List of sequences that can have various lengths
value: Neutral element to pad the sequence with. Can be `str` or `list`.
maxlen: int or None; Final lenght of sequences.
If None, maxlen is set to the longest sequence length.
align: character; 'start', 'end' or 'center'
To which end to align the sequences when triming/padding. See examples bellow.
# Returns
List of sequences of the same class as sequence_vec
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> pad_sequences(sequence_vec, 10, align="start", value="N")
['CTTACTCAGA', 'TCTTTANNNN']
>>> pad_sequences(sequence_vec, 10, align="end", value="N")
['CTTACTCAGA', 'NNNNTCTTTA']
>>> pad_sequences(sequence_vec, 4, align="center", value="N")
['ACTC', 'CTTT']
```
"""
# neutral element type checking
assert isinstance(value, list) or isinstance(value, str)
assert isinstance(value, type(sequence_vec[0]))
assert not isinstance(sequence_vec, str)
assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str)
max_seq_len = max([len(seq) for seq in sequence_vec])
if maxlen is None:
maxlen = max_seq_len
else:
maxlen = int(maxlen)
if max_seq_len < maxlen:
print("WARNING: Maximum sequence length (%s) is less than maxlen (%s)" % (max_seq_len, maxlen))
max_seq_len = maxlen
# check the case when len > 1
for seq in sequence_vec:
if not len(seq) % len(value) == 0:
raise ValueError("All sequences need to be dividable by len(value)")
if not maxlen % len(value) == 0:
raise ValueError("maxlen needs to be dividable by len(value)")
# pad and subset
def pad(seq, max_seq_len, value="N", align="end"):
seq_len = len(seq)
assert max_seq_len >= seq_len
if align is "end":
n_left = max_seq_len - seq_len
n_right = 0
elif align is "start":
n_right = max_seq_len - seq_len
n_left = 0
elif align is "center":
n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2
n_right = (max_seq_len - seq_len) // 2
else:
raise ValueError("align can be of: end, start or center")
# normalize for the length
n_left = n_left // len(value)
n_right = n_right // len(value)
return value * n_left + seq + value * n_right
def trim(seq, maxlen, align="end"):
seq_len = len(seq)
assert maxlen <= seq_len
if align is "end":
return seq[-maxlen:]
elif align is "start":
return seq[0:maxlen]
elif align is "center":
dl = seq_len - maxlen
n_left = dl // 2 + dl % 2
n_right = seq_len - dl // 2
return seq[n_left:n_right]
else:
raise ValueError("align can be of: end, start or center")
padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen),
value=value, align=align) for seq in sequence_vec]
padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in padded_sequence_vec]
return padded_sequence_vec | Pad and/or trim a list of sequences to have common length. Procedure:
1. Pad the sequence with N's or any other string or list element (`value`)
2. Subset the sequence
# Note
See also: https://keras.io/preprocessing/sequence/
Aplicable also for lists of characters
# Arguments
sequence_vec: list of chars or lists
List of sequences that can have various lengths
value: Neutral element to pad the sequence with. Can be `str` or `list`.
maxlen: int or None; Final lenght of sequences.
If None, maxlen is set to the longest sequence length.
align: character; 'start', 'end' or 'center'
To which end to align the sequences when triming/padding. See examples bellow.
# Returns
List of sequences of the same class as sequence_vec
# Example
```python
>>> sequence_vec = ['CTTACTCAGA', 'TCTTTA']
>>> pad_sequences(sequence_vec, 10, align="start", value="N")
['CTTACTCAGA', 'TCTTTANNNN']
>>> pad_sequences(sequence_vec, 10, align="end", value="N")
['CTTACTCAGA', 'NNNNTCTTTA']
>>> pad_sequences(sequence_vec, 4, align="center", value="N")
['ACTC', 'CTTT']
``` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/sequence.py#L264-L365 |
gagneurlab/concise | concise/utils/position.py | extract_landmarks | def extract_landmarks(gtf, landmarks=ALL_LANDMARKS):
"""Given an gene annotation GFF/GTF file,
# Arguments
gtf: File path or a loaded `pd.DataFrame` with columns:
seqname, feature, start, end, strand
landmarks: list or a dictionary of landmark extractors (function or name)
# Note
When landmark extractor names are used, they have to be implemented in
the module `concise.preprocessing.position`
# Returns
Dictionary of pd.DataFrames with landmark positions
(columns: seqname, position, strand)
"""
if isinstance(gtf, str):
_logger.info("Reading gtf file..")
gtf = read_gtf(gtf)
_logger.info("Done")
_logger.info("Running landmark extractors..")
# landmarks to a dictionary with a function
assert isinstance(landmarks, (list, tuple, set, dict))
if isinstance(landmarks, dict):
landmarks = {k: _get_fun(v) for k, v in landmarks.items()}
else:
landmarks = {_to_string(fn_str): _get_fun(fn_str)
for fn_str in landmarks}
r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()}
_logger.info("Done!")
return r | python | def extract_landmarks(gtf, landmarks=ALL_LANDMARKS):
"""Given an gene annotation GFF/GTF file,
# Arguments
gtf: File path or a loaded `pd.DataFrame` with columns:
seqname, feature, start, end, strand
landmarks: list or a dictionary of landmark extractors (function or name)
# Note
When landmark extractor names are used, they have to be implemented in
the module `concise.preprocessing.position`
# Returns
Dictionary of pd.DataFrames with landmark positions
(columns: seqname, position, strand)
"""
if isinstance(gtf, str):
_logger.info("Reading gtf file..")
gtf = read_gtf(gtf)
_logger.info("Done")
_logger.info("Running landmark extractors..")
# landmarks to a dictionary with a function
assert isinstance(landmarks, (list, tuple, set, dict))
if isinstance(landmarks, dict):
landmarks = {k: _get_fun(v) for k, v in landmarks.items()}
else:
landmarks = {_to_string(fn_str): _get_fun(fn_str)
for fn_str in landmarks}
r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()}
_logger.info("Done!")
return r | Given an gene annotation GFF/GTF file,
# Arguments
gtf: File path or a loaded `pd.DataFrame` with columns:
seqname, feature, start, end, strand
landmarks: list or a dictionary of landmark extractors (function or name)
# Note
When landmark extractor names are used, they have to be implemented in
the module `concise.preprocessing.position`
# Returns
Dictionary of pd.DataFrames with landmark positions
(columns: seqname, position, strand) | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/position.py#L16-L48 |
gagneurlab/concise | concise/utils/position.py | _validate_pos | def _validate_pos(df):
"""Validates the returned positional object
"""
assert isinstance(df, pd.DataFrame)
assert ["seqname", "position", "strand"] == df.columns.tolist()
assert df.position.dtype == np.dtype("int64")
assert df.strand.dtype == np.dtype("O")
assert df.seqname.dtype == np.dtype("O")
return df | python | def _validate_pos(df):
"""Validates the returned positional object
"""
assert isinstance(df, pd.DataFrame)
assert ["seqname", "position", "strand"] == df.columns.tolist()
assert df.position.dtype == np.dtype("int64")
assert df.strand.dtype == np.dtype("O")
assert df.seqname.dtype == np.dtype("O")
return df | Validates the returned positional object | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/position.py#L131-L139 |
gagneurlab/concise | concise/utils/tf_helper.py | huber_loss | def huber_loss(tensor, k=1, scope=None):
"""Define a huber loss https://en.wikipedia.org/wiki/Huber_loss
tensor: tensor to regularize.
k: value of k in the huber loss
scope: Optional scope for op_scope.
Huber loss:
f(x) = if |x| <= k:
0.5 * x^2
else:
k * |x| - 0.5 * k^2
Returns:
the L1 loss op.
"""
# assert k >= 0
with tf.name_scope(scope, 'L1Loss', [tensor]):
loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k,
0.5 * tf.square(tensor),
k * tf.abs(tensor) - 0.5 * k ^ 2)
)
return loss | python | def huber_loss(tensor, k=1, scope=None):
"""Define a huber loss https://en.wikipedia.org/wiki/Huber_loss
tensor: tensor to regularize.
k: value of k in the huber loss
scope: Optional scope for op_scope.
Huber loss:
f(x) = if |x| <= k:
0.5 * x^2
else:
k * |x| - 0.5 * k^2
Returns:
the L1 loss op.
"""
# assert k >= 0
with tf.name_scope(scope, 'L1Loss', [tensor]):
loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k,
0.5 * tf.square(tensor),
k * tf.abs(tensor) - 0.5 * k ^ 2)
)
return loss | Define a huber loss https://en.wikipedia.org/wiki/Huber_loss
tensor: tensor to regularize.
k: value of k in the huber loss
scope: Optional scope for op_scope.
Huber loss:
f(x) = if |x| <= k:
0.5 * x^2
else:
k * |x| - 0.5 * k^2
Returns:
the L1 loss op. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/tf_helper.py#L26-L47 |
gagneurlab/concise | concise/data/attract.py | get_metadata | def get_metadata():
"""
Get pandas.DataFrame with metadata about the Attract PWM's. Columns:
- PWM_id (id of the PWM - pass to get_pwm_list() for getting the pwm
- Gene_name
- Gene_id
- Mutated (if the target gene is mutated)
- Organism
- Motif (concsensus motif)
- Len (lenght of the motif)
- Experiment_description(when available)
- Database (Database from where the motifs were extracted PDB: Protein data bank, C: Cisbp-RNA, R:RBPDB, S: Spliceaid-F, AEDB:ASD)
- Pubmed (pubmed ID)
- Experiment (type of experiment; short description)
- Family (domain)
- Score (Qscore refer to the paper)
"""
dt = pd.read_table(ATTRACT_METADTA)
dt.rename(columns={"Matrix_id": "PWM_id"}, inplace=True)
# put to firt place
cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id']
# rename Matrix_id to PWM_id
return dt[cols] | python | def get_metadata():
"""
Get pandas.DataFrame with metadata about the Attract PWM's. Columns:
- PWM_id (id of the PWM - pass to get_pwm_list() for getting the pwm
- Gene_name
- Gene_id
- Mutated (if the target gene is mutated)
- Organism
- Motif (concsensus motif)
- Len (lenght of the motif)
- Experiment_description(when available)
- Database (Database from where the motifs were extracted PDB: Protein data bank, C: Cisbp-RNA, R:RBPDB, S: Spliceaid-F, AEDB:ASD)
- Pubmed (pubmed ID)
- Experiment (type of experiment; short description)
- Family (domain)
- Score (Qscore refer to the paper)
"""
dt = pd.read_table(ATTRACT_METADTA)
dt.rename(columns={"Matrix_id": "PWM_id"}, inplace=True)
# put to firt place
cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id']
# rename Matrix_id to PWM_id
return dt[cols] | Get pandas.DataFrame with metadata about the Attract PWM's. Columns:
- PWM_id (id of the PWM - pass to get_pwm_list() for getting the pwm
- Gene_name
- Gene_id
- Mutated (if the target gene is mutated)
- Organism
- Motif (concsensus motif)
- Len (lenght of the motif)
- Experiment_description(when available)
- Database (Database from where the motifs were extracted PDB: Protein data bank, C: Cisbp-RNA, R:RBPDB, S: Spliceaid-F, AEDB:ASD)
- Pubmed (pubmed ID)
- Experiment (type of experiment; short description)
- Family (domain)
- Score (Qscore refer to the paper) | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/data/attract.py#L11-L35 |
gagneurlab/concise | concise/data/attract.py | get_pwm_list | def get_pwm_list(pwm_id_list, pseudocountProb=0.0001):
"""Get a list of Attract PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances.
"""
l = load_motif_db(ATTRACT_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list]
return pwm_list | python | def get_pwm_list(pwm_id_list, pseudocountProb=0.0001):
"""Get a list of Attract PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances.
"""
l = load_motif_db(ATTRACT_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list]
return pwm_list | Get a list of Attract PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/data/attract.py#L38-L51 |
gagneurlab/concise | concise/losses.py | mask_loss | def mask_loss(loss, mask_value=MASK_VALUE):
"""Generates a new loss function that ignores values where `y_true == mask_value`.
# Arguments
loss: str; name of the keras loss function from `keras.losses`
mask_value: int; which values should be masked
# Returns
function; Masked version of the `loss`
# Example
```python
categorical_crossentropy_masked = mask_loss("categorical_crossentropy")
```
"""
loss_fn = kloss.deserialize(loss)
def masked_loss_fn(y_true, y_pred):
# currently not suppoerd with NA's:
# - there is no K.is_nan impolementation in keras.backend
# - https://github.com/fchollet/keras/issues/1628
mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
# we divide by the mean to correct for the number of done loss evaluations
return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask)
masked_loss_fn.__name__ = loss + "_masked"
return masked_loss_fn | python | def mask_loss(loss, mask_value=MASK_VALUE):
"""Generates a new loss function that ignores values where `y_true == mask_value`.
# Arguments
loss: str; name of the keras loss function from `keras.losses`
mask_value: int; which values should be masked
# Returns
function; Masked version of the `loss`
# Example
```python
categorical_crossentropy_masked = mask_loss("categorical_crossentropy")
```
"""
loss_fn = kloss.deserialize(loss)
def masked_loss_fn(y_true, y_pred):
# currently not suppoerd with NA's:
# - there is no K.is_nan impolementation in keras.backend
# - https://github.com/fchollet/keras/issues/1628
mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
# we divide by the mean to correct for the number of done loss evaluations
return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask)
masked_loss_fn.__name__ = loss + "_masked"
return masked_loss_fn | Generates a new loss function that ignores values where `y_true == mask_value`.
# Arguments
loss: str; name of the keras loss function from `keras.losses`
mask_value: int; which values should be masked
# Returns
function; Masked version of the `loss`
# Example
```python
categorical_crossentropy_masked = mask_loss("categorical_crossentropy")
``` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/losses.py#L9-L36 |
gagneurlab/concise | concise/effects/gradient.py | gradient_pred | def gradient_pred(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None):
"""Gradient-based (saliency) variant effect prediction
Based on the idea of [saliency maps](https://arxiv.org/pdf/1312.6034.pdf) the gradient-based prediction of
variant effects uses the `gradient` function of the Keras backend to estimate the importance of a variant
for a given output. This value is then multiplied by the input, as recommended by
[Shrikumar et al., 2017](https://arxiv.org/pdf/1605.01713.pdf).
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
# Returns
Dictionary with three different entries:
- ref: Gradient * input at the mutation position using the reference sequence.
Forward or reverse-complement sequence is chose based on sequence direction caused
the bigger absolute difference ('diff')
- alt: Gradient * input at the mutation position using the alternative sequence. Forward or
reverse-complement sequence is chose based on sequence direction caused the bigger
absolute difference ('diff')
- diff: 'alt' - 'ref'. Forward or reverse-complement sequence is chose based on sequence
direction caused the bigger absolute difference.
"""
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
for k in seqs:
if not isinstance(seqs[k], (list, tuple, np.ndarray)):
raise Exception("At the moment only models with list, tuple or np.ndarray inputs are supported.")
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
# Generate the necessary gradient functions
sal_funcs = __generate_direct_saliency_functions__(model, out_annotation_all_outputs, out_annotation)
# ANALOGOUS TO ISM:
# predict
preds = {}
for k in seqs:
preds[k] = {}
if "_rc" in k:
mutated_positions_here = get_seq_len(ref)[1] - 1 - mutation_positions
else:
mutated_positions_here = mutation_positions
for l in out_annotation:
preds[k][l] = predict_vals(input_data=seqs[k], apply_function=__get_direct_saliencies__,
score_func=sal_funcs[l], mutated_positions=mutated_positions_here, model = model)
diff_ret_dGrad = {}
pred_out = {"ref": {}, "alt": {}}
for k in preds["ref"]:
# TODO make list (and dict)-ready
diff_fwd = general_diff(preds["alt"][k]["dGrad"], preds["ref"][k]["dGrad"])
diff_rc = general_diff(preds["alt_rc"][k]["dGrad"], preds["ref_rc"][k]["dGrad"])
sel = general_sel(diff_fwd, diff_rc)
replace_by_sel(diff_fwd, diff_rc, sel)
diff_ret_dGrad[k] = diff_fwd
# Overwrite the fwd values with rc values if rc was selected
replace_by_sel(preds["ref"][k]["dGrad"], preds["ref_rc"][k]["dGrad"], sel)
replace_by_sel(preds["alt"][k]["dGrad"], preds["alt_rc"][k]["dGrad"], sel)
pred_out["ref"][k] = preds["ref"][k]["dGrad"]
pred_out["alt"][k] = preds["alt"][k]["dGrad"]
return {"diff": pd.DataFrame(diff_ret_dGrad),
"ref": pd.DataFrame(pred_out["ref"]),
"alt": pd.DataFrame(pred_out["alt"])} | python | def gradient_pred(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None):
"""Gradient-based (saliency) variant effect prediction
Based on the idea of [saliency maps](https://arxiv.org/pdf/1312.6034.pdf) the gradient-based prediction of
variant effects uses the `gradient` function of the Keras backend to estimate the importance of a variant
for a given output. This value is then multiplied by the input, as recommended by
[Shrikumar et al., 2017](https://arxiv.org/pdf/1605.01713.pdf).
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
# Returns
Dictionary with three different entries:
- ref: Gradient * input at the mutation position using the reference sequence.
Forward or reverse-complement sequence is chose based on sequence direction caused
the bigger absolute difference ('diff')
- alt: Gradient * input at the mutation position using the alternative sequence. Forward or
reverse-complement sequence is chose based on sequence direction caused the bigger
absolute difference ('diff')
- diff: 'alt' - 'ref'. Forward or reverse-complement sequence is chose based on sequence
direction caused the bigger absolute difference.
"""
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
for k in seqs:
if not isinstance(seqs[k], (list, tuple, np.ndarray)):
raise Exception("At the moment only models with list, tuple or np.ndarray inputs are supported.")
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
# Generate the necessary gradient functions
sal_funcs = __generate_direct_saliency_functions__(model, out_annotation_all_outputs, out_annotation)
# ANALOGOUS TO ISM:
# predict
preds = {}
for k in seqs:
preds[k] = {}
if "_rc" in k:
mutated_positions_here = get_seq_len(ref)[1] - 1 - mutation_positions
else:
mutated_positions_here = mutation_positions
for l in out_annotation:
preds[k][l] = predict_vals(input_data=seqs[k], apply_function=__get_direct_saliencies__,
score_func=sal_funcs[l], mutated_positions=mutated_positions_here, model = model)
diff_ret_dGrad = {}
pred_out = {"ref": {}, "alt": {}}
for k in preds["ref"]:
# TODO make list (and dict)-ready
diff_fwd = general_diff(preds["alt"][k]["dGrad"], preds["ref"][k]["dGrad"])
diff_rc = general_diff(preds["alt_rc"][k]["dGrad"], preds["ref_rc"][k]["dGrad"])
sel = general_sel(diff_fwd, diff_rc)
replace_by_sel(diff_fwd, diff_rc, sel)
diff_ret_dGrad[k] = diff_fwd
# Overwrite the fwd values with rc values if rc was selected
replace_by_sel(preds["ref"][k]["dGrad"], preds["ref_rc"][k]["dGrad"], sel)
replace_by_sel(preds["alt"][k]["dGrad"], preds["alt_rc"][k]["dGrad"], sel)
pred_out["ref"][k] = preds["ref"][k]["dGrad"]
pred_out["alt"][k] = preds["alt"][k]["dGrad"]
return {"diff": pd.DataFrame(diff_ret_dGrad),
"ref": pd.DataFrame(pred_out["ref"]),
"alt": pd.DataFrame(pred_out["alt"])} | Gradient-based (saliency) variant effect prediction
Based on the idea of [saliency maps](https://arxiv.org/pdf/1312.6034.pdf) the gradient-based prediction of
variant effects uses the `gradient` function of the Keras backend to estimate the importance of a variant
for a given output. This value is then multiplied by the input, as recommended by
[Shrikumar et al., 2017](https://arxiv.org/pdf/1605.01713.pdf).
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
# Returns
Dictionary with three different entries:
- ref: Gradient * input at the mutation position using the reference sequence.
Forward or reverse-complement sequence is chose based on sequence direction caused
the bigger absolute difference ('diff')
- alt: Gradient * input at the mutation position using the alternative sequence. Forward or
reverse-complement sequence is chose based on sequence direction caused the bigger
absolute difference ('diff')
- diff: 'alt' - 'ref'. Forward or reverse-complement sequence is chose based on sequence
direction caused the bigger absolute difference. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/effects/gradient.py#L230-L319 |
gagneurlab/concise | concise/data/hocomoco.py | get_pwm_list | def get_pwm_list(pwm_id_list, pseudocountProb=0.0001):
"""Get a list of HOCOMOCO PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances.
"""
l = load_motif_db(HOCOMOCO_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in pwm_id_list]
return pwm_list | python | def get_pwm_list(pwm_id_list, pseudocountProb=0.0001):
"""Get a list of HOCOMOCO PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances.
"""
l = load_motif_db(HOCOMOCO_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in pwm_id_list]
return pwm_list | Get a list of HOCOMOCO PWM's.
# Arguments
pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table
pseudocountProb: Added pseudocount probabilities to the PWM
# Returns
List of `concise.utils.pwm.PWM` instances. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/data/hocomoco.py#L43-L56 |
gagneurlab/concise | concise/legacy/concise.py | Concise.get_weights | def get_weights(self):
"""
Returns:
dict: Model's trained weights.
"""
if self.is_trained() is False:
# print("Model not fitted yet. Use object.fit() to fit the model.")
return None
var_res = self._var_res
weights = self._var_res_to_weights(var_res)
# save to the side
weights["final_bias_fit"] = weights["final_bias"]
weights["feature_weights_fit"] = weights["feature_weights"]
return weights | python | def get_weights(self):
"""
Returns:
dict: Model's trained weights.
"""
if self.is_trained() is False:
# print("Model not fitted yet. Use object.fit() to fit the model.")
return None
var_res = self._var_res
weights = self._var_res_to_weights(var_res)
# save to the side
weights["final_bias_fit"] = weights["final_bias"]
weights["feature_weights_fit"] = weights["feature_weights"]
return weights | Returns:
dict: Model's trained weights. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L412-L427 |
gagneurlab/concise | concise/legacy/concise.py | Concise._var_res_to_weights | def _var_res_to_weights(self, var_res):
"""
Get model weights
"""
# transform the weights into our form
motif_base_weights_raw = var_res["motif_base_weights"][0]
motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2)
# get weights
motif_weights = var_res["motif_weights"]
motif_bias = var_res["motif_bias"]
final_bias = var_res["final_bias"]
feature_weights = var_res["feature_weights"]
# get the GAM prediction:
spline_pred = None
spline_weights = None
if self._param["n_splines"] is not None:
spline_pred = self._splines["X_spline"].dot(var_res["spline_weights"])
if self._param["spline_exp"] is True:
spline_pred = np.exp(spline_pred)
else:
spline_pred = (spline_pred + 1)
spline_pred.reshape([-1])
spline_weights = var_res["spline_weights"]
weights = {"motif_base_weights": motif_base_weights,
"motif_weights": motif_weights,
"motif_bias": motif_bias,
"final_bias": final_bias,
"feature_weights": feature_weights,
"spline_pred": spline_pred,
"spline_weights": spline_weights
}
return weights | python | def _var_res_to_weights(self, var_res):
"""
Get model weights
"""
# transform the weights into our form
motif_base_weights_raw = var_res["motif_base_weights"][0]
motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2)
# get weights
motif_weights = var_res["motif_weights"]
motif_bias = var_res["motif_bias"]
final_bias = var_res["final_bias"]
feature_weights = var_res["feature_weights"]
# get the GAM prediction:
spline_pred = None
spline_weights = None
if self._param["n_splines"] is not None:
spline_pred = self._splines["X_spline"].dot(var_res["spline_weights"])
if self._param["spline_exp"] is True:
spline_pred = np.exp(spline_pred)
else:
spline_pred = (spline_pred + 1)
spline_pred.reshape([-1])
spline_weights = var_res["spline_weights"]
weights = {"motif_base_weights": motif_base_weights,
"motif_weights": motif_weights,
"motif_bias": motif_bias,
"final_bias": final_bias,
"feature_weights": feature_weights,
"spline_pred": spline_pred,
"spline_weights": spline_weights
}
return weights | Get model weights | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L436-L472 |
gagneurlab/concise | concise/legacy/concise.py | Concise._get_var_res | def _get_var_res(self, graph, var, other_var):
"""
Get the weights from our graph
"""
with tf.Session(graph=graph) as sess:
sess.run(other_var["init"])
# all_vars = tf.all_variables()
# print("All variable names")
# print([var.name for var in all_vars])
# print("All variable values")
# print(sess.run(all_vars))
var_res = self._get_var_res_sess(sess, var)
return var_res | python | def _get_var_res(self, graph, var, other_var):
"""
Get the weights from our graph
"""
with tf.Session(graph=graph) as sess:
sess.run(other_var["init"])
# all_vars = tf.all_variables()
# print("All variable names")
# print([var.name for var in all_vars])
# print("All variable values")
# print(sess.run(all_vars))
var_res = self._get_var_res_sess(sess, var)
return var_res | Get the weights from our graph | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L519-L532 |
gagneurlab/concise | concise/legacy/concise.py | Concise._convert_to_var | def _convert_to_var(self, graph, var_res):
"""
Create tf.Variables from a list of numpy arrays
var_res: dictionary of numpy arrays with the key names corresponding to var
"""
with graph.as_default():
var = {}
for key, value in var_res.items():
if value is not None:
var[key] = tf.Variable(value, name="tf_%s" % key)
else:
var[key] = None
return var | python | def _convert_to_var(self, graph, var_res):
"""
Create tf.Variables from a list of numpy arrays
var_res: dictionary of numpy arrays with the key names corresponding to var
"""
with graph.as_default():
var = {}
for key, value in var_res.items():
if value is not None:
var[key] = tf.Variable(value, name="tf_%s" % key)
else:
var[key] = None
return var | Create tf.Variables from a list of numpy arrays
var_res: dictionary of numpy arrays with the key names corresponding to var | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L534-L547 |
gagneurlab/concise | concise/legacy/concise.py | Concise.train | def train(self, X_feat, X_seq, y,
X_feat_valid=None, X_seq_valid=None, y_valid=None,
n_cores=3):
"""Train the CONCISE model
:py:attr:`X_feat`, :py:attr:`X_seq`, py:attr:`y` are preferrably returned by the :py:func:`concise.prepare_data` function.
Args:
X_feat: Numpy (float) array of shape :code:`(N, D)`. Feature design matrix storing :code:`N` training samples and :code:`D` features
X_seq: Numpy (float) array of shape :code:`(N, 1, N_seq, 4)`. It represents 1-hot encoding of the DNA/RNA sequence.(:code:`N`-seqeuences of length :code:`N_seq`)
y: Numpy (float) array of shape :code:`(N, 1)`. Response variable.
X_feat_valid: :py:attr:`X_feat` used for model validation.
X_seq_valid: :py:attr:`X_seq` used for model validation.
y: :py:attr:`y` used for model validation.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored.
"""
if X_feat_valid is None and X_seq_valid is None and y_valid is None:
X_feat_valid = X_feat
X_seq_valid = X_seq
y_valid = y
print("Using training samples also for validation ")
# insert one dimension - backcompatiblity
X_seq = np.expand_dims(X_seq, axis=1)
X_seq_valid = np.expand_dims(X_seq_valid, axis=1)
# TODO: implement the re-training feature
if self.is_trained() is True:
print("Model already fitted. Re-training feature not implemented yet")
return
# input check
assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0]
assert y.shape == (X_feat.shape[0], self._num_tasks)
# extract data specific parameters
self._param["seq_length"] = X_seq.shape[2]
self._param["n_add_features"] = X_feat.shape[1]
# more input check
if not self._param["seq_length"] == X_seq_valid.shape[2]:
raise Exception("sequence lengths don't match")
# setup splines
if self._param["n_splines"] is not None:
padd_loss = self._param["motif_length"] - 1 # how much shorter is our sequence, since we don't use padding
X_spline, S, _ = splines.get_gam_splines(start=0,
end=self._param["seq_length"] - padd_loss - 1, # -1 due to zero-indexing
n_bases=self._param["n_splines"],
spline_order=3,
add_intercept=False)
self._splines = {"X_spline": X_spline,
"S": S
}
# setup graph and variables
self._graph = tf.Graph()
self._var = self._get_var_initialization(self._graph, X_feat_train=X_feat, y_train=y)
self._other_var = self._build_graph(self._graph, self._var)
# TODO: save the intialized parameters
var_res_init = self._get_var_res(self._graph, self._var, self._other_var)
self.init_weights = self._var_res_to_weights(var_res=var_res_init)
# finally train the model
# - it saves the accuracy
if self._param["optimizer"] == "adam":
_train = self._train_adam
elif self._param["optimizer"] == "lbfgs":
_train = self._train_lbfgs
else:
raise Exception("Optimizer {} not implemented".format(self._param["optimizer"]))
self._var_res = _train(X_feat, X_seq, y,
X_feat_valid, X_seq_valid, y_valid,
graph=self._graph, var=self._var, other_var=self._other_var,
early_stop_patience=self._param["early_stop_patience"],
n_cores=n_cores)
self._model_fitted = True
# TODO: maybe:
# - add y_train_accuracy
# - y_train
return True | python | def train(self, X_feat, X_seq, y,
X_feat_valid=None, X_seq_valid=None, y_valid=None,
n_cores=3):
"""Train the CONCISE model
:py:attr:`X_feat`, :py:attr:`X_seq`, py:attr:`y` are preferrably returned by the :py:func:`concise.prepare_data` function.
Args:
X_feat: Numpy (float) array of shape :code:`(N, D)`. Feature design matrix storing :code:`N` training samples and :code:`D` features
X_seq: Numpy (float) array of shape :code:`(N, 1, N_seq, 4)`. It represents 1-hot encoding of the DNA/RNA sequence.(:code:`N`-seqeuences of length :code:`N_seq`)
y: Numpy (float) array of shape :code:`(N, 1)`. Response variable.
X_feat_valid: :py:attr:`X_feat` used for model validation.
X_seq_valid: :py:attr:`X_seq` used for model validation.
y: :py:attr:`y` used for model validation.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored.
"""
if X_feat_valid is None and X_seq_valid is None and y_valid is None:
X_feat_valid = X_feat
X_seq_valid = X_seq
y_valid = y
print("Using training samples also for validation ")
# insert one dimension - backcompatiblity
X_seq = np.expand_dims(X_seq, axis=1)
X_seq_valid = np.expand_dims(X_seq_valid, axis=1)
# TODO: implement the re-training feature
if self.is_trained() is True:
print("Model already fitted. Re-training feature not implemented yet")
return
# input check
assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0]
assert y.shape == (X_feat.shape[0], self._num_tasks)
# extract data specific parameters
self._param["seq_length"] = X_seq.shape[2]
self._param["n_add_features"] = X_feat.shape[1]
# more input check
if not self._param["seq_length"] == X_seq_valid.shape[2]:
raise Exception("sequence lengths don't match")
# setup splines
if self._param["n_splines"] is not None:
padd_loss = self._param["motif_length"] - 1 # how much shorter is our sequence, since we don't use padding
X_spline, S, _ = splines.get_gam_splines(start=0,
end=self._param["seq_length"] - padd_loss - 1, # -1 due to zero-indexing
n_bases=self._param["n_splines"],
spline_order=3,
add_intercept=False)
self._splines = {"X_spline": X_spline,
"S": S
}
# setup graph and variables
self._graph = tf.Graph()
self._var = self._get_var_initialization(self._graph, X_feat_train=X_feat, y_train=y)
self._other_var = self._build_graph(self._graph, self._var)
# TODO: save the intialized parameters
var_res_init = self._get_var_res(self._graph, self._var, self._other_var)
self.init_weights = self._var_res_to_weights(var_res=var_res_init)
# finally train the model
# - it saves the accuracy
if self._param["optimizer"] == "adam":
_train = self._train_adam
elif self._param["optimizer"] == "lbfgs":
_train = self._train_lbfgs
else:
raise Exception("Optimizer {} not implemented".format(self._param["optimizer"]))
self._var_res = _train(X_feat, X_seq, y,
X_feat_valid, X_seq_valid, y_valid,
graph=self._graph, var=self._var, other_var=self._other_var,
early_stop_patience=self._param["early_stop_patience"],
n_cores=n_cores)
self._model_fitted = True
# TODO: maybe:
# - add y_train_accuracy
# - y_train
return True | Train the CONCISE model
:py:attr:`X_feat`, :py:attr:`X_seq`, py:attr:`y` are preferrably returned by the :py:func:`concise.prepare_data` function.
Args:
X_feat: Numpy (float) array of shape :code:`(N, D)`. Feature design matrix storing :code:`N` training samples and :code:`D` features
X_seq: Numpy (float) array of shape :code:`(N, 1, N_seq, 4)`. It represents 1-hot encoding of the DNA/RNA sequence.(:code:`N`-seqeuences of length :code:`N_seq`)
y: Numpy (float) array of shape :code:`(N, 1)`. Response variable.
X_feat_valid: :py:attr:`X_feat` used for model validation.
X_seq_valid: :py:attr:`X_seq` used for model validation.
y: :py:attr:`y` used for model validation.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L554-L640 |
gagneurlab/concise | concise/legacy/concise.py | Concise._predict_in_session | def _predict_in_session(self, sess, other_var, X_feat, X_seq, variable="y_pred"):
"""
Predict y (or any other variable) from inside the tf session. Variable has to be in other_var
"""
# other_var["tf_X_seq"]: X_seq, tf_y: y,
feed_dict = {other_var["tf_X_feat"]: X_feat,
other_var["tf_X_seq"]: X_seq}
y_pred = sess.run(other_var[variable], feed_dict=feed_dict)
return y_pred | python | def _predict_in_session(self, sess, other_var, X_feat, X_seq, variable="y_pred"):
"""
Predict y (or any other variable) from inside the tf session. Variable has to be in other_var
"""
# other_var["tf_X_seq"]: X_seq, tf_y: y,
feed_dict = {other_var["tf_X_feat"]: X_feat,
other_var["tf_X_seq"]: X_seq}
y_pred = sess.run(other_var[variable], feed_dict=feed_dict)
return y_pred | Predict y (or any other variable) from inside the tf session. Variable has to be in other_var | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L642-L651 |
gagneurlab/concise | concise/legacy/concise.py | Concise._accuracy_in_session | def _accuracy_in_session(self, sess, other_var, X_feat, X_seq, y):
"""
Compute the accuracy from inside the tf session
"""
y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq)
return ce.mse(y_pred, y) | python | def _accuracy_in_session(self, sess, other_var, X_feat, X_seq, y):
"""
Compute the accuracy from inside the tf session
"""
y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq)
return ce.mse(y_pred, y) | Compute the accuracy from inside the tf session | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L653-L658 |
gagneurlab/concise | concise/legacy/concise.py | Concise._train_lbfgs | def _train_lbfgs(self, X_feat_train, X_seq_train, y_train,
X_feat_valid, X_seq_valid, y_valid,
graph, var, other_var,
early_stop_patience=None,
n_cores=3):
"""
Train the model actual model
Updates weights / variables, computes and returns the training and validation accuracy
"""
tic = time.time()
# take out the parameters for conveience
n_epochs = self._param["n_epochs"]
print_every = self._param["print_every"]
step_size = self._param["step_size"]
num_steps = n_epochs
print('Number of epochs:', n_epochs)
# print("Number of steps per epoch:", num_steps)
# print("Number of total steps:", num_steps * n_epochs)
# move into the graph and start the model
loss_history = []
train_acc_vec = []
valid_acc_vec = []
step_history = []
with tf.Session(graph=graph, config=tf.ConfigProto(
use_per_session_threads=True,
inter_op_parallelism_threads=n_cores,
intra_op_parallelism_threads=n_cores)) as sess:
sess.run(other_var["init"])
best_performance = None
best_performance_epoch = 0
for step in range(n_epochs):
# run the model (sess.run)
# compute the optimizer, loss and train_prediction in the graph
# save the last two as l and predictions
# put thet data into TF form:
feed_dict = {other_var["tf_X_seq"]: X_seq_train, other_var["tf_y"]: y_train,
other_var["tf_X_feat"]: X_feat_train,
other_var["tf_step_size"]: step_size}
# run the optimizer
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/opt/python/training/external_optimizer.py#L115
other_var["optimizer"].minimize(sess, feed_dict=feed_dict)
l = sess.run(other_var["loss"], feed_dict=feed_dict)
loss_history.append(l) # keep storing the full loss history
# sometimes print the actual training prediction (l)
if (step % print_every == 0):
train_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
# append the prediction accuracies
train_acc_vec.append(train_accuracy)
valid_acc_vec.append(valid_accuracy)
step_history.append(step / num_steps)
print('Step %4d: loss %f, train mse: %f, validation mse: %f' %
(step, l, train_accuracy, valid_accuracy))
# check if this is the best accuracy
if best_performance is None or valid_accuracy <= best_performance:
best_performance = valid_accuracy
best_performance_epoch = step
if early_stop_patience is not None and step > best_performance_epoch + early_stop_patience:
print("Early stopping. best_performance_epoch: %d, best_performance: %f" %
(best_performance_epoch, best_performance))
break
# get the test accuracies
train_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
print('Validation accuracy final: %f' % valid_accuracy_final)
# store the fitted weights
var_res = self._get_var_res_sess(sess, var)
# store also the quasi splines fit
if self._param["n_splines"] is not None:
self._splines["quasi_X"] = [self._predict_in_session(sess, other_var,
X_feat_train[i:(i + 1)],
X_seq_train[i:(i + 1)],
variable="spline_quasi_X")
for i in range(X_feat_train.shape[0])]
# transform into the appropriate form
self._splines["quasi_X"] = np.concatenate([x[0][np.newaxis] for x in self._splines["quasi_X"]])
accuracy = {
"loss_history": np.array(loss_history),
"step_history": np.array(step_history),
"train_acc_history": np.array(train_acc_vec),
"val_acc_history": np.array(valid_acc_vec),
"train_acc_final": train_accuracy_final,
"val_acc_final": valid_accuracy_final,
"best_val_acc": best_performance,
"best_val_acc_epoch": best_performance_epoch,
"test_acc_final": None, # test_accuracy_final,
"y_test": None, # y_test,
"y_test_prediction": None, # test_prediction.eval(),
"id_vec_test": None # id_vec_test
}
self._accuracy = accuracy
toc = time.time()
exec_time = toc - tic
self._exec_time = exec_time
print('That took %fs' % exec_time)
# weights = {"motif_base_weights": motif_base_weights,
# "motif_weights": motif_weights,
# "motif_bias": motif_bias,
# "final_bias": final_bias,
# "feature_weights": feature_weights,
# "spline_pred": spline_pred
# }
return var_res | python | def _train_lbfgs(self, X_feat_train, X_seq_train, y_train,
X_feat_valid, X_seq_valid, y_valid,
graph, var, other_var,
early_stop_patience=None,
n_cores=3):
"""
Train the model actual model
Updates weights / variables, computes and returns the training and validation accuracy
"""
tic = time.time()
# take out the parameters for conveience
n_epochs = self._param["n_epochs"]
print_every = self._param["print_every"]
step_size = self._param["step_size"]
num_steps = n_epochs
print('Number of epochs:', n_epochs)
# print("Number of steps per epoch:", num_steps)
# print("Number of total steps:", num_steps * n_epochs)
# move into the graph and start the model
loss_history = []
train_acc_vec = []
valid_acc_vec = []
step_history = []
with tf.Session(graph=graph, config=tf.ConfigProto(
use_per_session_threads=True,
inter_op_parallelism_threads=n_cores,
intra_op_parallelism_threads=n_cores)) as sess:
sess.run(other_var["init"])
best_performance = None
best_performance_epoch = 0
for step in range(n_epochs):
# run the model (sess.run)
# compute the optimizer, loss and train_prediction in the graph
# save the last two as l and predictions
# put thet data into TF form:
feed_dict = {other_var["tf_X_seq"]: X_seq_train, other_var["tf_y"]: y_train,
other_var["tf_X_feat"]: X_feat_train,
other_var["tf_step_size"]: step_size}
# run the optimizer
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/opt/python/training/external_optimizer.py#L115
other_var["optimizer"].minimize(sess, feed_dict=feed_dict)
l = sess.run(other_var["loss"], feed_dict=feed_dict)
loss_history.append(l) # keep storing the full loss history
# sometimes print the actual training prediction (l)
if (step % print_every == 0):
train_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
# append the prediction accuracies
train_acc_vec.append(train_accuracy)
valid_acc_vec.append(valid_accuracy)
step_history.append(step / num_steps)
print('Step %4d: loss %f, train mse: %f, validation mse: %f' %
(step, l, train_accuracy, valid_accuracy))
# check if this is the best accuracy
if best_performance is None or valid_accuracy <= best_performance:
best_performance = valid_accuracy
best_performance_epoch = step
if early_stop_patience is not None and step > best_performance_epoch + early_stop_patience:
print("Early stopping. best_performance_epoch: %d, best_performance: %f" %
(best_performance_epoch, best_performance))
break
# get the test accuracies
train_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
print('Validation accuracy final: %f' % valid_accuracy_final)
# store the fitted weights
var_res = self._get_var_res_sess(sess, var)
# store also the quasi splines fit
if self._param["n_splines"] is not None:
self._splines["quasi_X"] = [self._predict_in_session(sess, other_var,
X_feat_train[i:(i + 1)],
X_seq_train[i:(i + 1)],
variable="spline_quasi_X")
for i in range(X_feat_train.shape[0])]
# transform into the appropriate form
self._splines["quasi_X"] = np.concatenate([x[0][np.newaxis] for x in self._splines["quasi_X"]])
accuracy = {
"loss_history": np.array(loss_history),
"step_history": np.array(step_history),
"train_acc_history": np.array(train_acc_vec),
"val_acc_history": np.array(valid_acc_vec),
"train_acc_final": train_accuracy_final,
"val_acc_final": valid_accuracy_final,
"best_val_acc": best_performance,
"best_val_acc_epoch": best_performance_epoch,
"test_acc_final": None, # test_accuracy_final,
"y_test": None, # y_test,
"y_test_prediction": None, # test_prediction.eval(),
"id_vec_test": None # id_vec_test
}
self._accuracy = accuracy
toc = time.time()
exec_time = toc - tic
self._exec_time = exec_time
print('That took %fs' % exec_time)
# weights = {"motif_base_weights": motif_base_weights,
# "motif_weights": motif_weights,
# "motif_bias": motif_bias,
# "final_bias": final_bias,
# "feature_weights": feature_weights,
# "spline_pred": spline_pred
# }
return var_res | Train the model actual model
Updates weights / variables, computes and returns the training and validation accuracy | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L660-L782 |
gagneurlab/concise | concise/legacy/concise.py | Concise.predict | def predict(self, X_feat, X_seq):
"""
Predict the response variable :py:attr:`y` for new input data (:py:attr:`X_feat`, :py:attr:`X_seq`).
Args:
X_feat: Feature design matrix. Same format as :py:attr:`X_feat` in :py:meth:`train`
X_seq: Sequenc design matrix. Same format as :py:attr:`X_seq` in :py:meth:`train`
"""
# insert one dimension - backcompatiblity
X_seq = np.expand_dims(X_seq, axis=1)
return self._get_other_var(X_feat, X_seq, variable="y_pred") | python | def predict(self, X_feat, X_seq):
"""
Predict the response variable :py:attr:`y` for new input data (:py:attr:`X_feat`, :py:attr:`X_seq`).
Args:
X_feat: Feature design matrix. Same format as :py:attr:`X_feat` in :py:meth:`train`
X_seq: Sequenc design matrix. Same format as :py:attr:`X_seq` in :py:meth:`train`
"""
# insert one dimension - backcompatiblity
X_seq = np.expand_dims(X_seq, axis=1)
return self._get_other_var(X_feat, X_seq, variable="y_pred") | Predict the response variable :py:attr:`y` for new input data (:py:attr:`X_feat`, :py:attr:`X_seq`).
Args:
X_feat: Feature design matrix. Same format as :py:attr:`X_feat` in :py:meth:`train`
X_seq: Sequenc design matrix. Same format as :py:attr:`X_seq` in :py:meth:`train` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L922-L934 |
gagneurlab/concise | concise/legacy/concise.py | Concise._get_other_var | def _get_other_var(self, X_feat, X_seq, variable="y_pred"):
"""
Get the value of a variable from other_vars (from a tf-graph)
"""
if self.is_trained() is False:
print("Model not fitted yet. Use object.fit() to fit the model.")
return
# input check:
assert X_seq.shape[0] == X_feat.shape[0]
# TODO - check this
# sequence can be wider or thinner?
# assert self._param["seq_length"] == X_seq.shape[2]
assert self._param["n_add_features"] == X_feat.shape[1]
# setup graph and variables
graph = tf.Graph()
var = self._convert_to_var(graph, self._var_res)
other_var = self._build_graph(graph, var)
with tf.Session(graph=graph) as sess:
sess.run(other_var["init"])
# predict
y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable)
return y | python | def _get_other_var(self, X_feat, X_seq, variable="y_pred"):
"""
Get the value of a variable from other_vars (from a tf-graph)
"""
if self.is_trained() is False:
print("Model not fitted yet. Use object.fit() to fit the model.")
return
# input check:
assert X_seq.shape[0] == X_feat.shape[0]
# TODO - check this
# sequence can be wider or thinner?
# assert self._param["seq_length"] == X_seq.shape[2]
assert self._param["n_add_features"] == X_feat.shape[1]
# setup graph and variables
graph = tf.Graph()
var = self._convert_to_var(graph, self._var_res)
other_var = self._build_graph(graph, var)
with tf.Session(graph=graph) as sess:
sess.run(other_var["init"])
# predict
y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable)
return y | Get the value of a variable from other_vars (from a tf-graph) | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L936-L961 |
gagneurlab/concise | concise/legacy/concise.py | Concise.to_dict | def to_dict(self):
"""
Returns:
dict: Concise represented as a dictionary.
"""
final_res = {
"param": self._param,
"unused_param": self.unused_param,
"execution_time": self._exec_time,
"output": {"accuracy": self.get_accuracy(),
"weights": self.get_weights(),
"splines": self._splines
}
}
return final_res | python | def to_dict(self):
"""
Returns:
dict: Concise represented as a dictionary.
"""
final_res = {
"param": self._param,
"unused_param": self.unused_param,
"execution_time": self._exec_time,
"output": {"accuracy": self.get_accuracy(),
"weights": self.get_weights(),
"splines": self._splines
}
}
return final_res | Returns:
dict: Concise represented as a dictionary. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1003-L1017 |
gagneurlab/concise | concise/legacy/concise.py | Concise._set_var_res | def _set_var_res(self, weights):
"""
Transform the weights to var_res
"""
if weights is None:
return
# layer 1
motif_base_weights_raw = np.swapaxes(weights["motif_base_weights"], 2, 0)
motif_base_weights = motif_base_weights_raw[np.newaxis]
motif_bias = weights["motif_bias"]
feature_weights = weights["feature_weights"]
spline_weights = weights["spline_weights"]
# filter
motif_weights = weights["motif_weights"]
final_bias = weights["final_bias"]
var_res = {
"motif_base_weights": motif_base_weights,
"motif_bias": motif_bias,
"spline_weights": spline_weights,
"feature_weights": feature_weights,
"motif_weights": motif_weights,
"final_bias": final_bias
}
# cast everything to float32
var_res = {key: value.astype(np.float32) if value is not None else None for key, value in var_res.items()}
self._var_res = var_res | python | def _set_var_res(self, weights):
"""
Transform the weights to var_res
"""
if weights is None:
return
# layer 1
motif_base_weights_raw = np.swapaxes(weights["motif_base_weights"], 2, 0)
motif_base_weights = motif_base_weights_raw[np.newaxis]
motif_bias = weights["motif_bias"]
feature_weights = weights["feature_weights"]
spline_weights = weights["spline_weights"]
# filter
motif_weights = weights["motif_weights"]
final_bias = weights["final_bias"]
var_res = {
"motif_base_weights": motif_base_weights,
"motif_bias": motif_bias,
"spline_weights": spline_weights,
"feature_weights": feature_weights,
"motif_weights": motif_weights,
"final_bias": final_bias
}
# cast everything to float32
var_res = {key: value.astype(np.float32) if value is not None else None for key, value in var_res.items()}
self._var_res = var_res | Transform the weights to var_res | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1028-L1059 |
gagneurlab/concise | concise/legacy/concise.py | Concise.from_dict | def from_dict(cls, obj_dict):
"""
Load the object from a dictionary (produced with :py:func:`Concise.to_dict`)
Returns:
Concise: Loaded Concise object.
"""
# convert the output into a proper form
obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict["output"])
helper.dict_to_numpy_dict(obj_dict['output'])
if "trained_global_model" in obj_dict.keys():
raise Exception("Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.")
dc = Concise(**obj_dict["param"])
# touch the hidden arguments
dc._param = obj_dict["param"]
if obj_dict["output"]["weights"] is None:
dc._model_fitted = False
else:
dc._model_fitted = True
dc._exec_time = obj_dict["execution_time"]
dc.unused_param = obj_dict["unused_param"]
dc._accuracy = obj_dict["output"]["accuracy"]
dc._splines = obj_dict["output"]["splines"]
weights = obj_dict["output"]["weights"]
if weights is not None:
# fix the dimensionality of X_feat in case it was 0 dimensional
if weights["feature_weights"].shape == (0,):
weights["feature_weights"].shape = (0, obj_dict["param"]["num_tasks"])
dc._set_var_res(weights)
return dc | python | def from_dict(cls, obj_dict):
"""
Load the object from a dictionary (produced with :py:func:`Concise.to_dict`)
Returns:
Concise: Loaded Concise object.
"""
# convert the output into a proper form
obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict["output"])
helper.dict_to_numpy_dict(obj_dict['output'])
if "trained_global_model" in obj_dict.keys():
raise Exception("Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.")
dc = Concise(**obj_dict["param"])
# touch the hidden arguments
dc._param = obj_dict["param"]
if obj_dict["output"]["weights"] is None:
dc._model_fitted = False
else:
dc._model_fitted = True
dc._exec_time = obj_dict["execution_time"]
dc.unused_param = obj_dict["unused_param"]
dc._accuracy = obj_dict["output"]["accuracy"]
dc._splines = obj_dict["output"]["splines"]
weights = obj_dict["output"]["weights"]
if weights is not None:
# fix the dimensionality of X_feat in case it was 0 dimensional
if weights["feature_weights"].shape == (0,):
weights["feature_weights"].shape = (0, obj_dict["param"]["num_tasks"])
dc._set_var_res(weights)
return dc | Load the object from a dictionary (produced with :py:func:`Concise.to_dict`)
Returns:
Concise: Loaded Concise object. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1062-L1098 |
gagneurlab/concise | concise/legacy/concise.py | Concise.load | def load(cls, file_path):
"""
Load the object from a JSON file (saved with :py:func:`Concise.save`).
Returns:
Concise: Loaded Concise object.
"""
# convert back to numpy
data = helper.read_json(file_path)
return Concise.from_dict(data) | python | def load(cls, file_path):
"""
Load the object from a JSON file (saved with :py:func:`Concise.save`).
Returns:
Concise: Loaded Concise object.
"""
# convert back to numpy
data = helper.read_json(file_path)
return Concise.from_dict(data) | Load the object from a JSON file (saved with :py:func:`Concise.save`).
Returns:
Concise: Loaded Concise object. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1101-L1111 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV._get_folds | def _get_folds(n_rows, n_folds, use_stored):
"""
Get the used CV folds
"""
# n_folds = self._n_folds
# use_stored = self._use_stored_folds
# n_rows = self._n_rows
if use_stored is not None:
# path = '~/concise/data-offline/lw-pombe/cv_folds_5.json'
with open(os.path.expanduser(use_stored)) as json_file:
json_data = json.load(json_file)
# check if we have the same number of rows and folds:
if json_data['N_rows'] != n_rows:
raise Exception('N_rows from folds doesnt match the number of rows of X_seq, X_feat, y')
if json_data['N_folds'] != n_folds:
raise Exception('n_folds dont match', json_data['N_folds'], n_folds)
kf = [(np.array(train), np.array(test)) for (train, test) in json_data['folds']]
else:
kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1)))
# store in a list
i = 1
folds = []
for train, test in kf:
fold = "fold_" + str(i)
folds.append((fold, train, test))
i = i + 1
return folds | python | def _get_folds(n_rows, n_folds, use_stored):
"""
Get the used CV folds
"""
# n_folds = self._n_folds
# use_stored = self._use_stored_folds
# n_rows = self._n_rows
if use_stored is not None:
# path = '~/concise/data-offline/lw-pombe/cv_folds_5.json'
with open(os.path.expanduser(use_stored)) as json_file:
json_data = json.load(json_file)
# check if we have the same number of rows and folds:
if json_data['N_rows'] != n_rows:
raise Exception('N_rows from folds doesnt match the number of rows of X_seq, X_feat, y')
if json_data['N_folds'] != n_folds:
raise Exception('n_folds dont match', json_data['N_folds'], n_folds)
kf = [(np.array(train), np.array(test)) for (train, test) in json_data['folds']]
else:
kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1)))
# store in a list
i = 1
folds = []
for train, test in kf:
fold = "fold_" + str(i)
folds.append((fold, train, test))
i = i + 1
return folds | Get the used CV folds | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1149-L1180 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.train | def train(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds=None, n_cores=1,
train_global_model=False):
"""Train the Concise model in cross-validation.
Args:
X_feat: See :py:func:`concise.Concise.train`
X_seq: See :py:func:`concise.Concise.train`
y: See :py:func:`concise.Concise.train`
id_vec: List of character id's used to differentiate the trainig samples. Returned by :py:func:`concise.prepare_data`.
n_folds (int): Number of CV-folds to use.
use_stored_folds (chr or None): File path to a .json file containing the fold information (as returned by :py:func:`concise.ConciseCV.get_folds`). If None, the folds are generated.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored.
train_global_model (bool): In addition to training the model in cross-validation, should the global model be fitted (using all the samples from :code:`(X_feat, X_seq, y)`).
"""
# TODO: input check - dimensions
self._use_stored_folds = use_stored_folds
self._n_folds = n_folds
self._n_rows = X_feat.shape[0]
# TODO: - fix the get_cv_accuracy
# save:
# - each model
# - each model's performance
# - each model's predictions
# - globally:
# - mean perfomance
# - sd performance
# - predictions
self._kf = self._get_folds(self._n_rows, self._n_folds, self._use_stored_folds)
cv_obj = {}
if id_vec is None:
id_vec = np.arange(1, self._n_rows + 1)
best_val_acc_epoch_l = []
for fold, train, test in self._kf:
X_feat_train = X_feat[train]
X_seq_train = X_seq[train]
y_train = y[train]
X_feat_test = X_feat[test]
X_seq_test = X_seq[test]
y_test = y[test]
id_vec_test = id_vec[test]
print(fold, "/", n_folds)
# copy the object
dc = copy.deepcopy(self._concise_model)
dc.train(X_feat_train, X_seq_train, y_train,
X_feat_test, X_seq_test, y_test,
n_cores=n_cores
)
dc._test(X_feat_test, X_seq_test, y_test, id_vec_test)
cv_obj[fold] = dc
best_val_acc_epoch_l.append(dc.get_accuracy()["best_val_acc_epoch"])
self._cv_model = cv_obj
# additionaly train the global model
if train_global_model:
dc = copy.deepcopy(self._concise_model)
# overwrite n_epochs with the best average number of best epochs
dc._param["n_epochs"] = int(np.array(best_val_acc_epoch_l).mean())
print("tranining global model with n_epochs = " + str(dc._param["n_epochs"]))
dc.train(X_feat, X_seq, y,
n_cores=n_cores
)
dc._test(X_feat, X_seq, y, id_vec)
self._concise_global_model = dc | python | def train(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds=None, n_cores=1,
train_global_model=False):
"""Train the Concise model in cross-validation.
Args:
X_feat: See :py:func:`concise.Concise.train`
X_seq: See :py:func:`concise.Concise.train`
y: See :py:func:`concise.Concise.train`
id_vec: List of character id's used to differentiate the trainig samples. Returned by :py:func:`concise.prepare_data`.
n_folds (int): Number of CV-folds to use.
use_stored_folds (chr or None): File path to a .json file containing the fold information (as returned by :py:func:`concise.ConciseCV.get_folds`). If None, the folds are generated.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored.
train_global_model (bool): In addition to training the model in cross-validation, should the global model be fitted (using all the samples from :code:`(X_feat, X_seq, y)`).
"""
# TODO: input check - dimensions
self._use_stored_folds = use_stored_folds
self._n_folds = n_folds
self._n_rows = X_feat.shape[0]
# TODO: - fix the get_cv_accuracy
# save:
# - each model
# - each model's performance
# - each model's predictions
# - globally:
# - mean perfomance
# - sd performance
# - predictions
self._kf = self._get_folds(self._n_rows, self._n_folds, self._use_stored_folds)
cv_obj = {}
if id_vec is None:
id_vec = np.arange(1, self._n_rows + 1)
best_val_acc_epoch_l = []
for fold, train, test in self._kf:
X_feat_train = X_feat[train]
X_seq_train = X_seq[train]
y_train = y[train]
X_feat_test = X_feat[test]
X_seq_test = X_seq[test]
y_test = y[test]
id_vec_test = id_vec[test]
print(fold, "/", n_folds)
# copy the object
dc = copy.deepcopy(self._concise_model)
dc.train(X_feat_train, X_seq_train, y_train,
X_feat_test, X_seq_test, y_test,
n_cores=n_cores
)
dc._test(X_feat_test, X_seq_test, y_test, id_vec_test)
cv_obj[fold] = dc
best_val_acc_epoch_l.append(dc.get_accuracy()["best_val_acc_epoch"])
self._cv_model = cv_obj
# additionaly train the global model
if train_global_model:
dc = copy.deepcopy(self._concise_model)
# overwrite n_epochs with the best average number of best epochs
dc._param["n_epochs"] = int(np.array(best_val_acc_epoch_l).mean())
print("tranining global model with n_epochs = " + str(dc._param["n_epochs"]))
dc.train(X_feat, X_seq, y,
n_cores=n_cores
)
dc._test(X_feat, X_seq, y, id_vec)
self._concise_global_model = dc | Train the Concise model in cross-validation.
Args:
X_feat: See :py:func:`concise.Concise.train`
X_seq: See :py:func:`concise.Concise.train`
y: See :py:func:`concise.Concise.train`
id_vec: List of character id's used to differentiate the trainig samples. Returned by :py:func:`concise.prepare_data`.
n_folds (int): Number of CV-folds to use.
use_stored_folds (chr or None): File path to a .json file containing the fold information (as returned by :py:func:`concise.ConciseCV.get_folds`). If None, the folds are generated.
n_cores (int): Number of CPU cores used for training. If available, GPU is used for training and this argument is ignored.
train_global_model (bool): In addition to training the model in cross-validation, should the global model be fitted (using all the samples from :code:`(X_feat, X_seq, y)`). | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1193-L1265 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.get_CV_prediction | def get_CV_prediction(self):
"""
Returns:
np.ndarray: Predictions on the hold-out folds (unseen data, corresponds to :py:attr:`y`).
"""
# TODO: get it from the test_prediction ...
# test_id, prediction
# sort by test_id
predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks))
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
predict_vec[test, :] = acc["y_test_prediction"]
return predict_vec | python | def get_CV_prediction(self):
"""
Returns:
np.ndarray: Predictions on the hold-out folds (unseen data, corresponds to :py:attr:`y`).
"""
# TODO: get it from the test_prediction ...
# test_id, prediction
# sort by test_id
predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks))
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
predict_vec[test, :] = acc["y_test_prediction"]
return predict_vec | Returns:
np.ndarray: Predictions on the hold-out folds (unseen data, corresponds to :py:attr:`y`). | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1267-L1279 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.get_CV_accuracy | def get_CV_accuracy(self):
"""
Returns:
float: Prediction accuracy in CV.
"""
accuracy = {}
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
accuracy[fold] = acc["test_acc_final"]
return accuracy | python | def get_CV_accuracy(self):
"""
Returns:
float: Prediction accuracy in CV.
"""
accuracy = {}
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
accuracy[fold] = acc["test_acc_final"]
return accuracy | Returns:
float: Prediction accuracy in CV. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1281-L1290 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.to_dict | def to_dict(self):
"""
Returns:
dict: ConciseCV represented as a dictionary.
"""
param = {
"n_folds": self._n_folds,
"n_rows": self._n_rows,
"use_stored_folds": self._use_stored_folds
}
if self._concise_global_model is None:
trained_global_model = None
else:
trained_global_model = self._concise_global_model.to_dict()
obj_dict = {"param": param,
"folds": self._kf,
"init_model": self._concise_model.to_dict(),
"trained_global_model": trained_global_model,
"output": {fold: model.to_dict() for fold, model in self.get_CV_models().items()}
}
return obj_dict | python | def to_dict(self):
"""
Returns:
dict: ConciseCV represented as a dictionary.
"""
param = {
"n_folds": self._n_folds,
"n_rows": self._n_rows,
"use_stored_folds": self._use_stored_folds
}
if self._concise_global_model is None:
trained_global_model = None
else:
trained_global_model = self._concise_global_model.to_dict()
obj_dict = {"param": param,
"folds": self._kf,
"init_model": self._concise_model.to_dict(),
"trained_global_model": trained_global_model,
"output": {fold: model.to_dict() for fold, model in self.get_CV_models().items()}
}
return obj_dict | Returns:
dict: ConciseCV represented as a dictionary. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1306-L1328 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.from_dict | def from_dict(cls, obj_dict):
"""
Load the object from a dictionary (produced with :py:func:`ConciseCV.to_dict`)
Returns:
ConciseCV: Loaded ConciseCV object.
"""
default_model = Concise()
cvdc = ConciseCV(default_model)
cvdc._from_dict(obj_dict)
return cvdc | python | def from_dict(cls, obj_dict):
"""
Load the object from a dictionary (produced with :py:func:`ConciseCV.to_dict`)
Returns:
ConciseCV: Loaded ConciseCV object.
"""
default_model = Concise()
cvdc = ConciseCV(default_model)
cvdc._from_dict(obj_dict)
return cvdc | Load the object from a dictionary (produced with :py:func:`ConciseCV.to_dict`)
Returns:
ConciseCV: Loaded ConciseCV object. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1331-L1340 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV._from_dict | def _from_dict(self, obj_dict):
"""
Initialize a model from the dictionary
"""
self._n_folds = obj_dict["param"]["n_folds"]
self._n_rows = obj_dict["param"]["n_rows"]
self._use_stored_folds = obj_dict["param"]["use_stored_folds"]
self._concise_model = Concise.from_dict(obj_dict["init_model"])
if obj_dict["trained_global_model"] is None:
self._concise_global_model = None
else:
self._concise_global_model = Concise.from_dict(obj_dict["trained_global_model"])
self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train, test in obj_dict["folds"]]
self._cv_model = {fold: Concise.from_dict(model_dict) for fold, model_dict in obj_dict["output"].items()} | python | def _from_dict(self, obj_dict):
"""
Initialize a model from the dictionary
"""
self._n_folds = obj_dict["param"]["n_folds"]
self._n_rows = obj_dict["param"]["n_rows"]
self._use_stored_folds = obj_dict["param"]["use_stored_folds"]
self._concise_model = Concise.from_dict(obj_dict["init_model"])
if obj_dict["trained_global_model"] is None:
self._concise_global_model = None
else:
self._concise_global_model = Concise.from_dict(obj_dict["trained_global_model"])
self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train, test in obj_dict["folds"]]
self._cv_model = {fold: Concise.from_dict(model_dict) for fold, model_dict in obj_dict["output"].items()} | Initialize a model from the dictionary | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1342-L1358 |
gagneurlab/concise | concise/legacy/concise.py | ConciseCV.load | def load(cls, file_path):
"""
Load the object from a JSON file (saved with :py:func:`ConciseCV.save`)
Returns:
ConciseCV: Loaded ConciseCV object.
"""
data = helper.read_json(file_path)
return ConciseCV.from_dict(data) | python | def load(cls, file_path):
"""
Load the object from a JSON file (saved with :py:func:`ConciseCV.save`)
Returns:
ConciseCV: Loaded ConciseCV object.
"""
data = helper.read_json(file_path)
return ConciseCV.from_dict(data) | Load the object from a JSON file (saved with :py:func:`ConciseCV.save`)
Returns:
ConciseCV: Loaded ConciseCV object. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/legacy/concise.py#L1370-L1378 |
gagneurlab/concise | concise/utils/pwm.py | pwm_array2pssm_array | def pwm_array2pssm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND):
"""Convert pwm array to pssm array
"""
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return np.log(arr / b).astype(arr.dtype) | python | def pwm_array2pssm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND):
"""Convert pwm array to pssm array
"""
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return np.log(arr / b).astype(arr.dtype) | Convert pwm array to pssm array | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/pwm.py#L239-L244 |
gagneurlab/concise | concise/utils/pwm.py | pssm_array2pwm_array | def pssm_array2pwm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND):
"""Convert pssm array to pwm array
"""
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return (np.exp(arr) * b).astype(arr.dtype) | python | def pssm_array2pwm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND):
"""Convert pssm array to pwm array
"""
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return (np.exp(arr) * b).astype(arr.dtype) | Convert pssm array to pwm array | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/pwm.py#L247-L252 |
gagneurlab/concise | concise/utils/pwm.py | load_motif_db | def load_motif_db(filename, skipn_matrix=0):
"""Read the motif file in the following format
```
>motif_name
<skip n>0.1<delim>0.2<delim>0.5<delim>0.6
...
>motif_name2
....
```
Delim can be anything supported by np.loadtxt
# Arguments
filename: str, file path
skipn_matrix: integer, number of characters to skip when reading
the numeric matrix (for Encode = 2)
# Returns
Dictionary of numpy arrays
"""
# read-lines
if filename.endswith(".gz"):
f = gzip.open(filename, 'rt', encoding='utf-8')
else:
f = open(filename, 'r')
lines = f.readlines()
f.close()
motifs_dict = {}
motif_lines = ""
motif_name = None
def lines2matrix(lines):
return np.loadtxt(StringIO(lines))
for line in lines:
if line.startswith(">"):
if motif_lines:
# lines -> matrix
motifs_dict[motif_name] = lines2matrix(motif_lines)
motif_name = line[1:].strip()
motif_lines = ""
else:
motif_lines += line[skipn_matrix:]
if motif_lines and motif_name is not None:
motifs_dict[motif_name] = lines2matrix(motif_lines)
return motifs_dict | python | def load_motif_db(filename, skipn_matrix=0):
"""Read the motif file in the following format
```
>motif_name
<skip n>0.1<delim>0.2<delim>0.5<delim>0.6
...
>motif_name2
....
```
Delim can be anything supported by np.loadtxt
# Arguments
filename: str, file path
skipn_matrix: integer, number of characters to skip when reading
the numeric matrix (for Encode = 2)
# Returns
Dictionary of numpy arrays
"""
# read-lines
if filename.endswith(".gz"):
f = gzip.open(filename, 'rt', encoding='utf-8')
else:
f = open(filename, 'r')
lines = f.readlines()
f.close()
motifs_dict = {}
motif_lines = ""
motif_name = None
def lines2matrix(lines):
return np.loadtxt(StringIO(lines))
for line in lines:
if line.startswith(">"):
if motif_lines:
# lines -> matrix
motifs_dict[motif_name] = lines2matrix(motif_lines)
motif_name = line[1:].strip()
motif_lines = ""
else:
motif_lines += line[skipn_matrix:]
if motif_lines and motif_name is not None:
motifs_dict[motif_name] = lines2matrix(motif_lines)
return motifs_dict | Read the motif file in the following format
```
>motif_name
<skip n>0.1<delim>0.2<delim>0.5<delim>0.6
...
>motif_name2
....
```
Delim can be anything supported by np.loadtxt
# Arguments
filename: str, file path
skipn_matrix: integer, number of characters to skip when reading
the numeric matrix (for Encode = 2)
# Returns
Dictionary of numpy arrays | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/pwm.py#L255-L306 |
gagneurlab/concise | concise/effects/dropout.py | dropout_pred | def dropout_pred(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None, dropout_iterations=30):
"""Dropout-based variant effect prediction
This method is based on the ideas in [Gal et al.](https://arxiv.org/pdf/1506.02142.pdf) where dropout
layers are also actived in the model prediction phase in order to estimate model uncertainty. The
advantage of this method is that instead of a point estimate of the model output the distribution of
the model output is estimated.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
dropout_iterations: Number of prediction iterations to be performed in order to estimate the
output distribution. Values greater than 30 are recommended to get a reliable p-value.
# Returns
Dictionary with a set of measures of the model uncertainty in the variant position. The ones of interest are:
- do_{ref, alt}_mean: Mean of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_{ref, alt}_var: Variance of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_diff: 'do_alt_mean' - 'do_alt_mean', which is an estimate similar to ISM using diff_type "diff".
- do_pv: P-value of a paired t-test, comparing the predictions of ref with the ones of alt. Forward or
- reverse-complement sequences are chosen based on which pair has the lower p-value.
"""
prefix = "do"
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
# Instead of loading the model from a json file I will transfer the model architecture + weights in memory
model_config = model._updated_config()
alt_config = replace_dict_values(model_config, u"Dropout", u"BiDropout")
# Custom objects have to be added before correctly!
alt_model = keras.layers.deserialize(alt_config)
# Transfer weights and biases
alt_model.set_weights(model.get_weights())
# ANALOGOUS TO ISM:
# predict
preds = {}
for k in seqs:
preds[k] = pred_do(alt_model, seqs[k], output_filter_mask=output_filter_mask, dropout_iterations=dropout_iterations)
t, prob = ttest_ind(preds["ref"], preds["alt"], axis=0)
t_rc, prob_rc = ttest_ind(preds["ref_rc"], preds["alt_rc"], axis=0)
logit_prob = None
logit_prob_rc = None
pred_range = get_range(preds)
# In case the predictions are bound to [0,1] it might make sense to use logit on the data, as the model output
# could be probalilities
if np.all([(pred_range[k] >= 0) and (pred_range[k] <= 1) for k in pred_range]):
logit_preds = apply_over_single(preds, logit)
logit_prob = apply_over_double(logit_preds["ref"], logit_preds["alt"], apply_func=ttest_ind,
select_return_elm=1, axis=0)
logit_prob_rc = apply_over_double(logit_preds["ref_rc"], logit_preds["alt_rc"], apply_func=ttest_ind,
select_return_elm=1, axis=0)
# fwd and rc are independent here... so this can be done differently here...
sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int) # Select the LOWER p-value among fwd and rc
out_dict = {}
out_dict["%s_pv" % prefix] = pd.DataFrame(overwite_by(prob, prob_rc, sel), columns=out_annotation)
if logit_prob is not None:
logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int)
out_dict["%s_logit_pv" % prefix] = pd.DataFrame(overwite_by(logit_prob, logit_prob_rc, logit_sel), columns=out_annotation)
pred_means = {}
pred_vars = {}
pred_cvar2 = {}
for k in preds:
pred_means[k] = np.mean(preds[k], axis=0)
pred_vars[k] = np.var(preds[k], axis=0)
pred_cvar2[k] = pred_vars[k] / (pred_means[k] ** 2)
mean_cvar = np.sqrt((pred_cvar2["ref"] + pred_cvar2["alt"]) / 2)
mean_cvar_rc = np.sqrt((pred_cvar2["ref_rc"] + pred_cvar2["alt_rc"]) / 2)
mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel)
ref_mean = overwite_by(pred_means["ref"], pred_means["ref_rc"], sel)
alt_mean = overwite_by(pred_means["alt"], pred_means["alt_rc"], sel)
ref_var = overwite_by(pred_vars["ref"], pred_vars["ref_rc"], sel)
alt_var = overwite_by(pred_vars["alt"], pred_vars["alt_rc"], sel)
out_dict["%s_ref_mean" % prefix] = pd.DataFrame(ref_mean, columns=out_annotation)
out_dict["%s_alt_mean" % prefix] = pd.DataFrame(alt_mean, columns=out_annotation)
out_dict["%s_ref_var" % prefix] = pd.DataFrame(ref_var, columns=out_annotation)
out_dict["%s_alt_var" % prefix] = pd.DataFrame(alt_var, columns=out_annotation)
out_dict["%s_cvar" % prefix] = pd.DataFrame(mean_cvar, columns=out_annotation)
out_dict["%s_diff" % prefix] = out_dict["%s_alt_mean" % prefix] - out_dict["%s_ref_mean" % prefix]
return out_dict | python | def dropout_pred(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None, dropout_iterations=30):
"""Dropout-based variant effect prediction
This method is based on the ideas in [Gal et al.](https://arxiv.org/pdf/1506.02142.pdf) where dropout
layers are also actived in the model prediction phase in order to estimate model uncertainty. The
advantage of this method is that instead of a point estimate of the model output the distribution of
the model output is estimated.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
dropout_iterations: Number of prediction iterations to be performed in order to estimate the
output distribution. Values greater than 30 are recommended to get a reliable p-value.
# Returns
Dictionary with a set of measures of the model uncertainty in the variant position. The ones of interest are:
- do_{ref, alt}_mean: Mean of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_{ref, alt}_var: Variance of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_diff: 'do_alt_mean' - 'do_alt_mean', which is an estimate similar to ISM using diff_type "diff".
- do_pv: P-value of a paired t-test, comparing the predictions of ref with the ones of alt. Forward or
- reverse-complement sequences are chosen based on which pair has the lower p-value.
"""
prefix = "do"
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
# Instead of loading the model from a json file I will transfer the model architecture + weights in memory
model_config = model._updated_config()
alt_config = replace_dict_values(model_config, u"Dropout", u"BiDropout")
# Custom objects have to be added before correctly!
alt_model = keras.layers.deserialize(alt_config)
# Transfer weights and biases
alt_model.set_weights(model.get_weights())
# ANALOGOUS TO ISM:
# predict
preds = {}
for k in seqs:
preds[k] = pred_do(alt_model, seqs[k], output_filter_mask=output_filter_mask, dropout_iterations=dropout_iterations)
t, prob = ttest_ind(preds["ref"], preds["alt"], axis=0)
t_rc, prob_rc = ttest_ind(preds["ref_rc"], preds["alt_rc"], axis=0)
logit_prob = None
logit_prob_rc = None
pred_range = get_range(preds)
# In case the predictions are bound to [0,1] it might make sense to use logit on the data, as the model output
# could be probalilities
if np.all([(pred_range[k] >= 0) and (pred_range[k] <= 1) for k in pred_range]):
logit_preds = apply_over_single(preds, logit)
logit_prob = apply_over_double(logit_preds["ref"], logit_preds["alt"], apply_func=ttest_ind,
select_return_elm=1, axis=0)
logit_prob_rc = apply_over_double(logit_preds["ref_rc"], logit_preds["alt_rc"], apply_func=ttest_ind,
select_return_elm=1, axis=0)
# fwd and rc are independent here... so this can be done differently here...
sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int) # Select the LOWER p-value among fwd and rc
out_dict = {}
out_dict["%s_pv" % prefix] = pd.DataFrame(overwite_by(prob, prob_rc, sel), columns=out_annotation)
if logit_prob is not None:
logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int)
out_dict["%s_logit_pv" % prefix] = pd.DataFrame(overwite_by(logit_prob, logit_prob_rc, logit_sel), columns=out_annotation)
pred_means = {}
pred_vars = {}
pred_cvar2 = {}
for k in preds:
pred_means[k] = np.mean(preds[k], axis=0)
pred_vars[k] = np.var(preds[k], axis=0)
pred_cvar2[k] = pred_vars[k] / (pred_means[k] ** 2)
mean_cvar = np.sqrt((pred_cvar2["ref"] + pred_cvar2["alt"]) / 2)
mean_cvar_rc = np.sqrt((pred_cvar2["ref_rc"] + pred_cvar2["alt_rc"]) / 2)
mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel)
ref_mean = overwite_by(pred_means["ref"], pred_means["ref_rc"], sel)
alt_mean = overwite_by(pred_means["alt"], pred_means["alt_rc"], sel)
ref_var = overwite_by(pred_vars["ref"], pred_vars["ref_rc"], sel)
alt_var = overwite_by(pred_vars["alt"], pred_vars["alt_rc"], sel)
out_dict["%s_ref_mean" % prefix] = pd.DataFrame(ref_mean, columns=out_annotation)
out_dict["%s_alt_mean" % prefix] = pd.DataFrame(alt_mean, columns=out_annotation)
out_dict["%s_ref_var" % prefix] = pd.DataFrame(ref_var, columns=out_annotation)
out_dict["%s_alt_var" % prefix] = pd.DataFrame(alt_var, columns=out_annotation)
out_dict["%s_cvar" % prefix] = pd.DataFrame(mean_cvar, columns=out_annotation)
out_dict["%s_diff" % prefix] = out_dict["%s_alt_mean" % prefix] - out_dict["%s_ref_mean" % prefix]
return out_dict | Dropout-based variant effect prediction
This method is based on the ideas in [Gal et al.](https://arxiv.org/pdf/1506.02142.pdf) where dropout
layers are also actived in the model prediction phase in order to estimate model uncertainty. The
advantage of this method is that instead of a point estimate of the model output the distribution of
the model output is estimated.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
dropout_iterations: Number of prediction iterations to be performed in order to estimate the
output distribution. Values greater than 30 are recommended to get a reliable p-value.
# Returns
Dictionary with a set of measures of the model uncertainty in the variant position. The ones of interest are:
- do_{ref, alt}_mean: Mean of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_{ref, alt}_var: Variance of the model predictions given the respective input sequence and dropout.
- Forward or reverse-complement sequences are chosen as for 'do_pv'.
- do_diff: 'do_alt_mean' - 'do_alt_mean', which is an estimate similar to ISM using diff_type "diff".
- do_pv: P-value of a paired t-test, comparing the predictions of ref with the ones of alt. Forward or
- reverse-complement sequences are chosen based on which pair has the lower p-value. | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/effects/dropout.py#L164-L287 |
gagneurlab/concise | concise/utils/fasta.py | iter_fasta | def iter_fasta(file_path):
"""Returns an iterator over the fasta file
Given a fasta file. yield tuples of header, sequence
Code modified from Brent Pedersen's:
"Correct Way To Parse A Fasta File In Python"
# Example
```python
fasta = fasta_iter("hg19.fa")
for header, seq in fasta:
print(header)
```
"""
fh = open(file_path)
# ditch the boolean (x[0]) and just keep the header or sequence since
# we know they alternate.
faiter = (x[1] for x in groupby(fh, lambda line: line[0] == ">"))
for header in faiter:
# drop the ">"
headerStr = header.__next__()[1:].strip()
# join all sequence lines to one.
seq = "".join(s.strip() for s in faiter.__next__())
yield (headerStr, seq) | python | def iter_fasta(file_path):
"""Returns an iterator over the fasta file
Given a fasta file. yield tuples of header, sequence
Code modified from Brent Pedersen's:
"Correct Way To Parse A Fasta File In Python"
# Example
```python
fasta = fasta_iter("hg19.fa")
for header, seq in fasta:
print(header)
```
"""
fh = open(file_path)
# ditch the boolean (x[0]) and just keep the header or sequence since
# we know they alternate.
faiter = (x[1] for x in groupby(fh, lambda line: line[0] == ">"))
for header in faiter:
# drop the ">"
headerStr = header.__next__()[1:].strip()
# join all sequence lines to one.
seq = "".join(s.strip() for s in faiter.__next__())
yield (headerStr, seq) | Returns an iterator over the fasta file
Given a fasta file. yield tuples of header, sequence
Code modified from Brent Pedersen's:
"Correct Way To Parse A Fasta File In Python"
# Example
```python
fasta = fasta_iter("hg19.fa")
for header, seq in fasta:
print(header)
``` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/fasta.py#L11-L39 |
gagneurlab/concise | concise/utils/fasta.py | write_fasta | def write_fasta(file_path, seq_list, name_list=None):
"""Write a fasta file
# Arguments
file_path: file path
seq_list: List of strings
name_list: List of names corresponding to the sequences.
If not None, it should have the same length as `seq_list`
"""
if name_list is None:
name_list = [str(i) for i in range(len(seq_list))]
# needs to be dict or seq
with open(file_path, "w") as f:
for i in range(len(seq_list)):
f.write(">" + name_list[i] + "\n" + seq_list[i] + "\n") | python | def write_fasta(file_path, seq_list, name_list=None):
"""Write a fasta file
# Arguments
file_path: file path
seq_list: List of strings
name_list: List of names corresponding to the sequences.
If not None, it should have the same length as `seq_list`
"""
if name_list is None:
name_list = [str(i) for i in range(len(seq_list))]
# needs to be dict or seq
with open(file_path, "w") as f:
for i in range(len(seq_list)):
f.write(">" + name_list[i] + "\n" + seq_list[i] + "\n") | Write a fasta file
# Arguments
file_path: file path
seq_list: List of strings
name_list: List of names corresponding to the sequences.
If not None, it should have the same length as `seq_list` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/fasta.py#L42-L57 |
gagneurlab/concise | concise/preprocessing/structure.py | run_RNAplfold | def run_RNAplfold(input_fasta, tmpdir, W=240, L=160, U=1):
"""
Arguments:
W, Int: span - window length
L, Int, maxiumm span
U, Int, size of unpaired region
"""
profiles = RNAplfold_PROFILES_EXECUTE
for i, P in enumerate(profiles):
print("running {P}_RNAplfold... ({i}/{N})".format(P=P, i=i + 1, N=len(profiles)))
command = "{bin}/{P}_RNAplfold".format(bin=RNAplfold_BIN_DIR, P=P)
file_out = "{tmp}/{P}_profile.fa".format(tmp=tmpdir, P=P)
args = " -W {W} -L {L} -u {U} < {fa} > {file_out}".format(W=W, L=L, U=U, fa=input_fasta, file_out=file_out)
os.system(command + args)
# check if the file is empty
if os.path.getsize(file_out) == 0:
raise Exception("command wrote an empty file: {0}".format(file_out))
print("done!") | python | def run_RNAplfold(input_fasta, tmpdir, W=240, L=160, U=1):
"""
Arguments:
W, Int: span - window length
L, Int, maxiumm span
U, Int, size of unpaired region
"""
profiles = RNAplfold_PROFILES_EXECUTE
for i, P in enumerate(profiles):
print("running {P}_RNAplfold... ({i}/{N})".format(P=P, i=i + 1, N=len(profiles)))
command = "{bin}/{P}_RNAplfold".format(bin=RNAplfold_BIN_DIR, P=P)
file_out = "{tmp}/{P}_profile.fa".format(tmp=tmpdir, P=P)
args = " -W {W} -L {L} -u {U} < {fa} > {file_out}".format(W=W, L=L, U=U, fa=input_fasta, file_out=file_out)
os.system(command + args)
# check if the file is empty
if os.path.getsize(file_out) == 0:
raise Exception("command wrote an empty file: {0}".format(file_out))
print("done!") | Arguments:
W, Int: span - window length
L, Int, maxiumm span
U, Int, size of unpaired region | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/structure.py#L18-L39 |
gagneurlab/concise | concise/preprocessing/structure.py | read_RNAplfold | def read_RNAplfold(tmpdir, maxlen=None, seq_align="start", pad_with="E"):
"""
pad_with = with which 2ndary structure should we pad the sequence?
"""
assert pad_with in {"P", "H", "I", "M", "E"}
def read_profile(tmpdir, P):
return [values.strip().split("\t")
for seq_name, values in iter_fasta("{tmp}/{P}_profile.fa".format(tmp=tmpdir, P=P))]
def nelem(P, pad_width):
"""get the right neutral element
"""
return 1 if P is pad_with else 0
arr_hime = np.array([pad_sequences(read_profile(tmpdir, P),
value=[nelem(P, pad_with)],
align=seq_align,
maxlen=maxlen)
for P in RNAplfold_PROFILES_EXECUTE], dtype="float32")
# add the pairness column
arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis]
arr = np.concatenate((arr_p, arr_hime))
# reshape to: seq, seq_length, num_channels
arr = np.moveaxis(arr, 0, 2)
return arr | python | def read_RNAplfold(tmpdir, maxlen=None, seq_align="start", pad_with="E"):
"""
pad_with = with which 2ndary structure should we pad the sequence?
"""
assert pad_with in {"P", "H", "I", "M", "E"}
def read_profile(tmpdir, P):
return [values.strip().split("\t")
for seq_name, values in iter_fasta("{tmp}/{P}_profile.fa".format(tmp=tmpdir, P=P))]
def nelem(P, pad_width):
"""get the right neutral element
"""
return 1 if P is pad_with else 0
arr_hime = np.array([pad_sequences(read_profile(tmpdir, P),
value=[nelem(P, pad_with)],
align=seq_align,
maxlen=maxlen)
for P in RNAplfold_PROFILES_EXECUTE], dtype="float32")
# add the pairness column
arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis]
arr = np.concatenate((arr_p, arr_hime))
# reshape to: seq, seq_length, num_channels
arr = np.moveaxis(arr, 0, 2)
return arr | pad_with = with which 2ndary structure should we pad the sequence? | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/structure.py#L42-L69 |
gagneurlab/concise | concise/preprocessing/structure.py | encodeRNAStructure | def encodeRNAStructure(seq_vec, maxlen=None, seq_align="start",
W=240, L=160, U=1,
tmpdir="/tmp/RNAplfold/"):
"""Compute RNA secondary structure with RNAplfold implemented in
Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832).
# Note
Secondary structure is represented as the probability
to be in the following states:
- `["Pairedness", "Hairpin loop", "Internal loop", "Multi loop", "External region"]`
See Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832)
for more information.
# Arguments
seq_vec: list of DNA/RNA sequences
maxlen: Maximum sequence length. See `concise.preprocessing.pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `concise.preprocessing.pad_sequences` for more detail
W: Int; span - window length
L: Int; maxiumm span
U: Int; size of unpaired region
tmpdir: Where to store the intermediary files of RNAplfold.
# Note
Recommended parameters:
- for human, mouse use W, L, u : 240, 160, 1
- for fly, yeast use W, L, u : 80, 40, 1
# Returns
np.ndarray of shape `(len(seq_vec), maxlen, 5)`
"""
# extend the tmpdir with uuid string to allow for parallel execution
tmpdir = tmpdir + "/" + str(uuid4()) + "/"
if not isinstance(seq_vec, list):
seq_vec = seq_vec.tolist()
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
fasta_path = tmpdir + "/input.fasta"
write_fasta(fasta_path, seq_vec)
run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U)
# 1. split the fasta into pieces
# 2. run_RNAplfold for each of them
# 3. Read the results
return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with="E") | python | def encodeRNAStructure(seq_vec, maxlen=None, seq_align="start",
W=240, L=160, U=1,
tmpdir="/tmp/RNAplfold/"):
"""Compute RNA secondary structure with RNAplfold implemented in
Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832).
# Note
Secondary structure is represented as the probability
to be in the following states:
- `["Pairedness", "Hairpin loop", "Internal loop", "Multi loop", "External region"]`
See Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832)
for more information.
# Arguments
seq_vec: list of DNA/RNA sequences
maxlen: Maximum sequence length. See `concise.preprocessing.pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `concise.preprocessing.pad_sequences` for more detail
W: Int; span - window length
L: Int; maxiumm span
U: Int; size of unpaired region
tmpdir: Where to store the intermediary files of RNAplfold.
# Note
Recommended parameters:
- for human, mouse use W, L, u : 240, 160, 1
- for fly, yeast use W, L, u : 80, 40, 1
# Returns
np.ndarray of shape `(len(seq_vec), maxlen, 5)`
"""
# extend the tmpdir with uuid string to allow for parallel execution
tmpdir = tmpdir + "/" + str(uuid4()) + "/"
if not isinstance(seq_vec, list):
seq_vec = seq_vec.tolist()
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
fasta_path = tmpdir + "/input.fasta"
write_fasta(fasta_path, seq_vec)
run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U)
# 1. split the fasta into pieces
# 2. run_RNAplfold for each of them
# 3. Read the results
return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with="E") | Compute RNA secondary structure with RNAplfold implemented in
Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832).
# Note
Secondary structure is represented as the probability
to be in the following states:
- `["Pairedness", "Hairpin loop", "Internal loop", "Multi loop", "External region"]`
See Kazan et al 2010, [doi](https://doi.org/10.1371/journal.pcbi.1000832)
for more information.
# Arguments
seq_vec: list of DNA/RNA sequences
maxlen: Maximum sequence length. See `concise.preprocessing.pad_sequences` for more detail
seq_align: How to align the sequences of variable lengths. See `concise.preprocessing.pad_sequences` for more detail
W: Int; span - window length
L: Int; maxiumm span
U: Int; size of unpaired region
tmpdir: Where to store the intermediary files of RNAplfold.
# Note
Recommended parameters:
- for human, mouse use W, L, u : 240, 160, 1
- for fly, yeast use W, L, u : 80, 40, 1
# Returns
np.ndarray of shape `(len(seq_vec), maxlen, 5)` | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/structure.py#L92-L138 |
gagneurlab/concise | concise/effects/ism.py | ism | def ism(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None, diff_type="log_odds", rc_handling="maximum"):
"""In-silico mutagenesis
Using ISM in with diff_type 'log_odds' and rc_handling 'maximum' will produce predictions as used
in [DeepSEA](http://www.nature.com/nmeth/journal/v12/n10/full/nmeth.3547.html). ISM offers two ways to
calculate the difference between the outputs created by reference and alternative sequence and two
different methods to select whether to use the output generated from the forward or from the
reverse-complement sequences. To calculate "e-values" as mentioned in DeepSEA the same ISM prediction
has to be performed on a randomised set of 1 million 1000genomes, MAF-matched variants to get a
background of predicted effects of random SNPs.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
diff_type: "log_odds" or "diff". When set to 'log_odds' calculate scores based on log_odds, which assumes
the model output is a probability. When set to 'diff' the model output for 'ref' is subtracted
from 'alt'. Using 'log_odds' with outputs that are not in the range [0,1] nan will be returned.
rc_handling: "average" or "maximum". Either average over the predictions derived from forward and
reverse-complement predictions ('average') or pick the prediction with the bigger absolute
value ('maximum').
# Returns
Dictionary with the key `ism` which contains a pandas DataFrame containing the calculated values
for each (selected) model output and input sequence
"""
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
assert diff_type in ["log_odds", "diff"]
assert rc_handling in ["average", "maximum"]
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
preds = {}
for k in seqs:
# preds[k] = model.predict(seqs[k])
preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask])
if diff_type == "log_odds":
if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]):
warnings.warn("Using log_odds on model outputs that are not bound [0,1]")
diffs = np.log(preds["alt"] / (1 - preds["alt"])) - np.log(preds["ref"] / (1 - preds["ref"]))
diffs_rc = np.log(preds["alt_rc"] / (1 - preds["alt_rc"])) - np.log(preds["ref_rc"] / (1 - preds["ref_rc"]))
elif diff_type == "diff":
diffs = preds["alt"] - preds["ref"]
diffs_rc = preds["alt_rc"] - preds["ref_rc"]
if rc_handling == "average":
diffs = np.mean([diffs, diffs_rc], axis=0)
elif rc_handling == "maximum":
replace_filt = np.abs(diffs) < np.abs(diffs_rc)
diffs[replace_filt] = diffs_rc[replace_filt]
diffs = pd.DataFrame(diffs, columns=out_annotation)
return {"ism": diffs} | python | def ism(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs,
output_filter_mask=None, out_annotation=None, diff_type="log_odds", rc_handling="maximum"):
"""In-silico mutagenesis
Using ISM in with diff_type 'log_odds' and rc_handling 'maximum' will produce predictions as used
in [DeepSEA](http://www.nature.com/nmeth/journal/v12/n10/full/nmeth.3547.html). ISM offers two ways to
calculate the difference between the outputs created by reference and alternative sequence and two
different methods to select whether to use the output generated from the forward or from the
reverse-complement sequences. To calculate "e-values" as mentioned in DeepSEA the same ISM prediction
has to be performed on a randomised set of 1 million 1000genomes, MAF-matched variants to get a
background of predicted effects of random SNPs.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
diff_type: "log_odds" or "diff". When set to 'log_odds' calculate scores based on log_odds, which assumes
the model output is a probability. When set to 'diff' the model output for 'ref' is subtracted
from 'alt'. Using 'log_odds' with outputs that are not in the range [0,1] nan will be returned.
rc_handling: "average" or "maximum". Either average over the predictions derived from forward and
reverse-complement predictions ('average') or pick the prediction with the bigger absolute
value ('maximum').
# Returns
Dictionary with the key `ism` which contains a pandas DataFrame containing the calculated values
for each (selected) model output and input sequence
"""
seqs = {"ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc}
assert diff_type in ["log_odds", "diff"]
assert rc_handling in ["average", "maximum"]
assert np.all([np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs[k])) for k in seqs.keys() if k != "ref"])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
# determine which outputs should be selected
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(out_annotation_all_outputs, out_annotation))[0]
# make sure the labels are assigned correctly
out_annotation = out_annotation_all_outputs[output_filter_mask]
preds = {}
for k in seqs:
# preds[k] = model.predict(seqs[k])
preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask])
if diff_type == "log_odds":
if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]):
warnings.warn("Using log_odds on model outputs that are not bound [0,1]")
diffs = np.log(preds["alt"] / (1 - preds["alt"])) - np.log(preds["ref"] / (1 - preds["ref"]))
diffs_rc = np.log(preds["alt_rc"] / (1 - preds["alt_rc"])) - np.log(preds["ref_rc"] / (1 - preds["ref_rc"]))
elif diff_type == "diff":
diffs = preds["alt"] - preds["ref"]
diffs_rc = preds["alt_rc"] - preds["ref_rc"]
if rc_handling == "average":
diffs = np.mean([diffs, diffs_rc], axis=0)
elif rc_handling == "maximum":
replace_filt = np.abs(diffs) < np.abs(diffs_rc)
diffs[replace_filt] = diffs_rc[replace_filt]
diffs = pd.DataFrame(diffs, columns=out_annotation)
return {"ism": diffs} | In-silico mutagenesis
Using ISM in with diff_type 'log_odds' and rc_handling 'maximum' will produce predictions as used
in [DeepSEA](http://www.nature.com/nmeth/journal/v12/n10/full/nmeth.3547.html). ISM offers two ways to
calculate the difference between the outputs created by reference and alternative sequence and two
different methods to select whether to use the output generated from the forward or from the
reverse-complement sequences. To calculate "e-values" as mentioned in DeepSEA the same ISM prediction
has to be performed on a randomised set of 1 million 1000genomes, MAF-matched variants to get a
background of predicted effects of random SNPs.
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
output_filter_mask: Mask of boolean values indicating which model outputs should be used.
Use this or 'out_annotation'
out_annotation: List of outputs labels for which of the outputs (in case of a multi-task model) the
predictions should be calculated.
diff_type: "log_odds" or "diff". When set to 'log_odds' calculate scores based on log_odds, which assumes
the model output is a probability. When set to 'diff' the model output for 'ref' is subtracted
from 'alt'. Using 'log_odds' with outputs that are not in the range [0,1] nan will be returned.
rc_handling: "average" or "maximum". Either average over the predictions derived from forward and
reverse-complement predictions ('average') or pick the prediction with the bigger absolute
value ('maximum').
# Returns
Dictionary with the key `ism` which contains a pandas DataFrame containing the calculated values
for each (selected) model output and input sequence | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/effects/ism.py#L9-L84 |
gagneurlab/concise | concise/hyopt.py | _train_and_eval_single | def _train_and_eval_single(train, valid, model,
batch_size=32, epochs=300, use_weight=False,
callbacks=[], eval_best=False, add_eval_metrics={}):
"""Fit and evaluate a keras model
eval_best: if True, load the checkpointed model for evaluation
"""
def _format_keras_history(history):
"""nicely format keras history
"""
return {"params": history.params,
"loss": merge_dicts({"epoch": history.epoch}, history.history),
}
if use_weight:
sample_weight = train[2]
else:
sample_weight = None
# train the model
logger.info("Fit...")
history = History()
model.fit(train[0], train[1],
batch_size=batch_size,
validation_data=valid[:2],
epochs=epochs,
sample_weight=sample_weight,
verbose=2,
callbacks=[history] + callbacks)
# get history
hist = _format_keras_history(history)
# load and eval the best model
if eval_best:
mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]
assert len(mcp) == 1
model = load_model(mcp[0].filepath)
return eval_model(model, valid, add_eval_metrics), hist | python | def _train_and_eval_single(train, valid, model,
batch_size=32, epochs=300, use_weight=False,
callbacks=[], eval_best=False, add_eval_metrics={}):
"""Fit and evaluate a keras model
eval_best: if True, load the checkpointed model for evaluation
"""
def _format_keras_history(history):
"""nicely format keras history
"""
return {"params": history.params,
"loss": merge_dicts({"epoch": history.epoch}, history.history),
}
if use_weight:
sample_weight = train[2]
else:
sample_weight = None
# train the model
logger.info("Fit...")
history = History()
model.fit(train[0], train[1],
batch_size=batch_size,
validation_data=valid[:2],
epochs=epochs,
sample_weight=sample_weight,
verbose=2,
callbacks=[history] + callbacks)
# get history
hist = _format_keras_history(history)
# load and eval the best model
if eval_best:
mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]
assert len(mcp) == 1
model = load_model(mcp[0].filepath)
return eval_model(model, valid, add_eval_metrics), hist | Fit and evaluate a keras model
eval_best: if True, load the checkpointed model for evaluation | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L315-L351 |
gagneurlab/concise | concise/hyopt.py | eval_model | def eval_model(model, test, add_eval_metrics={}):
"""Evaluate model's performance on the test-set.
# Arguments
model: Keras model
test: test-dataset. Tuple of inputs `x` and target `y` - `(x, y)`.
add_eval_metrics: Additional evaluation metrics to use. Can be a dictionary or a list of functions
accepting arguments: `y_true`, `y_predicted`. Alternatively, you can provide names of functions from
the `concise.eval_metrics` module.
# Returns
dictionary with evaluation metrics
"""
# evaluate the model
logger.info("Evaluate...")
# - model_metrics
model_metrics_values = model.evaluate(test[0], test[1], verbose=0,
batch_size=test[1].shape[0])
# evaluation is done in a single pass to have more precise metics
model_metrics = dict(zip(_listify(model.metrics_names),
_listify(model_metrics_values)))
# - eval_metrics
y_true = test[1]
y_pred = model.predict(test[0], verbose=0)
eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()}
# handle the case where the two metrics names intersect
# - omit duplicates from eval_metrics
intersected_keys = set(model_metrics).intersection(set(eval_metrics))
if len(intersected_keys) > 0:
logger.warning("Some metric names intersect: {0}. Ignoring the add_eval_metrics ones".
format(intersected_keys))
eval_metrics = _delete_keys(eval_metrics, intersected_keys)
return merge_dicts(model_metrics, eval_metrics) | python | def eval_model(model, test, add_eval_metrics={}):
"""Evaluate model's performance on the test-set.
# Arguments
model: Keras model
test: test-dataset. Tuple of inputs `x` and target `y` - `(x, y)`.
add_eval_metrics: Additional evaluation metrics to use. Can be a dictionary or a list of functions
accepting arguments: `y_true`, `y_predicted`. Alternatively, you can provide names of functions from
the `concise.eval_metrics` module.
# Returns
dictionary with evaluation metrics
"""
# evaluate the model
logger.info("Evaluate...")
# - model_metrics
model_metrics_values = model.evaluate(test[0], test[1], verbose=0,
batch_size=test[1].shape[0])
# evaluation is done in a single pass to have more precise metics
model_metrics = dict(zip(_listify(model.metrics_names),
_listify(model_metrics_values)))
# - eval_metrics
y_true = test[1]
y_pred = model.predict(test[0], verbose=0)
eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()}
# handle the case where the two metrics names intersect
# - omit duplicates from eval_metrics
intersected_keys = set(model_metrics).intersection(set(eval_metrics))
if len(intersected_keys) > 0:
logger.warning("Some metric names intersect: {0}. Ignoring the add_eval_metrics ones".
format(intersected_keys))
eval_metrics = _delete_keys(eval_metrics, intersected_keys)
return merge_dicts(model_metrics, eval_metrics) | Evaluate model's performance on the test-set.
# Arguments
model: Keras model
test: test-dataset. Tuple of inputs `x` and target `y` - `(x, y)`.
add_eval_metrics: Additional evaluation metrics to use. Can be a dictionary or a list of functions
accepting arguments: `y_true`, `y_predicted`. Alternatively, you can provide names of functions from
the `concise.eval_metrics` module.
# Returns
dictionary with evaluation metrics | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L354-L389 |
gagneurlab/concise | concise/hyopt.py | get_model | def get_model(model_fn, train_data, param):
"""Feed model_fn with train_data and param
"""
model_param = merge_dicts({"train_data": train_data}, param["model"], param.get("shared", {}))
return model_fn(**model_param) | python | def get_model(model_fn, train_data, param):
"""Feed model_fn with train_data and param
"""
model_param = merge_dicts({"train_data": train_data}, param["model"], param.get("shared", {}))
return model_fn(**model_param) | Feed model_fn with train_data and param | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L392-L396 |
gagneurlab/concise | concise/hyopt.py | _delete_keys | def _delete_keys(dct, keys):
"""Returns a copy of dct without `keys` keys
"""
c = deepcopy(dct)
assert isinstance(keys, list)
for k in keys:
c.pop(k)
return c | python | def _delete_keys(dct, keys):
"""Returns a copy of dct without `keys` keys
"""
c = deepcopy(dct)
assert isinstance(keys, list)
for k in keys:
c.pop(k)
return c | Returns a copy of dct without `keys` keys | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L701-L708 |
gagneurlab/concise | concise/hyopt.py | _mean_dict | def _mean_dict(dict_list):
"""Compute the mean value across a list of dictionaries
"""
return {k: np.array([d[k] for d in dict_list]).mean()
for k in dict_list[0].keys()} | python | def _mean_dict(dict_list):
"""Compute the mean value across a list of dictionaries
"""
return {k: np.array([d[k] for d in dict_list]).mean()
for k in dict_list[0].keys()} | Compute the mean value across a list of dictionaries | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L711-L715 |
gagneurlab/concise | concise/hyopt.py | CMongoTrials.get_trial | def get_trial(self, tid):
"""Retrieve trial by tid
"""
lid = np.where(np.array(self.tids) == tid)[0][0]
return self.trials[lid] | python | def get_trial(self, tid):
"""Retrieve trial by tid
"""
lid = np.where(np.array(self.tids) == tid)[0][0]
return self.trials[lid] | Retrieve trial by tid | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L116-L120 |
gagneurlab/concise | concise/hyopt.py | CMongoTrials.count_by_state_unsynced | def count_by_state_unsynced(self, arg):
"""Extends the original object in order to inject checking
for stalled jobs and killing them if they are running for too long
"""
if self.kill_timeout is not None:
self.delete_running(self.kill_timeout)
return super(CMongoTrials, self).count_by_state_unsynced(arg) | python | def count_by_state_unsynced(self, arg):
"""Extends the original object in order to inject checking
for stalled jobs and killing them if they are running for too long
"""
if self.kill_timeout is not None:
self.delete_running(self.kill_timeout)
return super(CMongoTrials, self).count_by_state_unsynced(arg) | Extends the original object in order to inject checking
for stalled jobs and killing them if they are running for too long | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L166-L172 |
gagneurlab/concise | concise/hyopt.py | CMongoTrials.delete_running | def delete_running(self, timeout_last_refresh=0, dry_run=False):
"""Delete jobs stalled in the running state for too long
timeout_last_refresh, int: number of seconds
"""
running_all = self.handle.jobs_running()
running_timeout = [job for job in running_all
if coarse_utcnow() > job["refresh_time"] +
timedelta(seconds=timeout_last_refresh)]
if len(running_timeout) == 0:
# Nothing to stop
self.refresh_tids(None)
return None
if dry_run:
logger.warning("Dry run. Not removing anything.")
logger.info("Removing {0}/{1} running jobs. # all jobs: {2} ".
format(len(running_timeout), len(running_all), len(self)))
now = coarse_utcnow()
logger.info("Current utc time: {0}".format(now))
logger.info("Time horizont: {0}".format(now - timedelta(seconds=timeout_last_refresh)))
for job in running_timeout:
logger.info("Removing job: ")
pjob = job.to_dict()
del pjob["misc"] # ignore misc when printing
logger.info(pprint.pformat(pjob))
if not dry_run:
self.handle.delete(job)
logger.info("Job deleted")
self.refresh_tids(None) | python | def delete_running(self, timeout_last_refresh=0, dry_run=False):
"""Delete jobs stalled in the running state for too long
timeout_last_refresh, int: number of seconds
"""
running_all = self.handle.jobs_running()
running_timeout = [job for job in running_all
if coarse_utcnow() > job["refresh_time"] +
timedelta(seconds=timeout_last_refresh)]
if len(running_timeout) == 0:
# Nothing to stop
self.refresh_tids(None)
return None
if dry_run:
logger.warning("Dry run. Not removing anything.")
logger.info("Removing {0}/{1} running jobs. # all jobs: {2} ".
format(len(running_timeout), len(running_all), len(self)))
now = coarse_utcnow()
logger.info("Current utc time: {0}".format(now))
logger.info("Time horizont: {0}".format(now - timedelta(seconds=timeout_last_refresh)))
for job in running_timeout:
logger.info("Removing job: ")
pjob = job.to_dict()
del pjob["misc"] # ignore misc when printing
logger.info(pprint.pformat(pjob))
if not dry_run:
self.handle.delete(job)
logger.info("Job deleted")
self.refresh_tids(None) | Delete jobs stalled in the running state for too long
timeout_last_refresh, int: number of seconds | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L174-L205 |
gagneurlab/concise | concise/hyopt.py | CMongoTrials.train_history | def train_history(self, tid=None):
"""Get train history as pd.DataFrame
"""
def result2history(result):
if isinstance(result["history"], list):
return pd.concat([pd.DataFrame(hist["loss"]).assign(fold=i)
for i, hist in enumerate(result["history"])])
else:
return pd.DataFrame(result["history"]["loss"])
# use all
if tid is None:
tid = self.valid_tid()
res = [result2history(t["result"]).assign(tid=t["tid"]) for t in self.trials
if t["tid"] in _listify(tid)]
df = pd.concat(res)
# reorder columns
fold_name = ["fold"] if "fold" in df else []
df = _put_first(df, ["tid"] + fold_name + ["epoch"])
return df | python | def train_history(self, tid=None):
"""Get train history as pd.DataFrame
"""
def result2history(result):
if isinstance(result["history"], list):
return pd.concat([pd.DataFrame(hist["loss"]).assign(fold=i)
for i, hist in enumerate(result["history"])])
else:
return pd.DataFrame(result["history"]["loss"])
# use all
if tid is None:
tid = self.valid_tid()
res = [result2history(t["result"]).assign(tid=t["tid"]) for t in self.trials
if t["tid"] in _listify(tid)]
df = pd.concat(res)
# reorder columns
fold_name = ["fold"] if "fold" in df else []
df = _put_first(df, ["tid"] + fold_name + ["epoch"])
return df | Get train history as pd.DataFrame | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L216-L238 |
gagneurlab/concise | concise/hyopt.py | CMongoTrials.as_df | def as_df(self, ignore_vals=["history"], separator=".", verbose=True):
"""Return a pd.DataFrame view of the whole experiment
"""
def add_eval(res):
if "eval" not in res:
if isinstance(res["history"], list):
# take the average across all folds
eval_names = list(res["history"][0]["loss"].keys())
eval_metrics = np.array([[v[-1] for k, v in hist["loss"].items()]
for hist in res["history"]]).mean(axis=0).tolist()
res["eval"] = {eval_names[i]: eval_metrics[i] for i in range(len(eval_metrics))}
else:
res["eval"] = {k: v[-1] for k, v in res["history"]["loss"].items()}
return res
def add_n_epoch(df):
df_epoch = self.train_history().groupby("tid")["epoch"].max().reset_index()
df_epoch.rename(columns={"epoch": "n_epoch"}, inplace=True)
return pd.merge(df, df_epoch, on="tid", how="left")
results = self.get_ok_results(verbose=verbose)
rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for x in results]
df = pd.DataFrame.from_records(rp)
df = add_n_epoch(df)
first = ["tid", "loss", "status"]
return _put_first(df, first) | python | def as_df(self, ignore_vals=["history"], separator=".", verbose=True):
"""Return a pd.DataFrame view of the whole experiment
"""
def add_eval(res):
if "eval" not in res:
if isinstance(res["history"], list):
# take the average across all folds
eval_names = list(res["history"][0]["loss"].keys())
eval_metrics = np.array([[v[-1] for k, v in hist["loss"].items()]
for hist in res["history"]]).mean(axis=0).tolist()
res["eval"] = {eval_names[i]: eval_metrics[i] for i in range(len(eval_metrics))}
else:
res["eval"] = {k: v[-1] for k, v in res["history"]["loss"].items()}
return res
def add_n_epoch(df):
df_epoch = self.train_history().groupby("tid")["epoch"].max().reset_index()
df_epoch.rename(columns={"epoch": "n_epoch"}, inplace=True)
return pd.merge(df, df_epoch, on="tid", how="left")
results = self.get_ok_results(verbose=verbose)
rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for x in results]
df = pd.DataFrame.from_records(rp)
df = add_n_epoch(df)
first = ["tid", "loss", "status"]
return _put_first(df, first) | Return a pd.DataFrame view of the whole experiment | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/hyopt.py#L283-L311 |
gagneurlab/concise | concise/effects/snp_effects.py | effect_from_model | def effect_from_model(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions, out_annotation_all_outputs,
extra_args=None, **argv):
"""Convenience function to execute multiple effect predictions in one call
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
methods: A list of prediction functions to be executed, e.g.: from concise.effects.ism.ism. Using the same
function more often than once (even with different parameters) will overwrite the results of the
previous calculation of that function.
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
extra_args: None or a list of the same length as 'methods'. The elements of the list are dictionaries with
additional arguments that should be passed on to the respective functions in 'methods'. Arguments
defined here will overwrite arguments that are passed to all methods.
**argv: Additional arguments to be passed on to all methods, e.g,: out_annotation.
# Returns
Dictionary containing the results of the individual calculations, the keys are the
names of the executed functions
"""
assert isinstance(methods, list)
if isinstance(extra_args, list):
assert(len(extra_args) == len(methods))
else:
extra_args = [None] * len(methods)
main_args = {"model": model, "ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc,
"mutation_positions": mutation_positions,
"out_annotation_all_outputs": out_annotation_all_outputs}
pred_results = {}
for method, xargs in zip(methods, extra_args):
if xargs is not None:
if isinstance(xargs, dict):
for k in argv:
if k not in xargs:
xargs[k] = argv[k]
else:
xargs = argv
for k in main_args:
xargs[k] = main_args[k]
res = method(**xargs)
pred_results[method.__name__] = res
return pred_results | python | def effect_from_model(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions, out_annotation_all_outputs,
extra_args=None, **argv):
"""Convenience function to execute multiple effect predictions in one call
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
methods: A list of prediction functions to be executed, e.g.: from concise.effects.ism.ism. Using the same
function more often than once (even with different parameters) will overwrite the results of the
previous calculation of that function.
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
extra_args: None or a list of the same length as 'methods'. The elements of the list are dictionaries with
additional arguments that should be passed on to the respective functions in 'methods'. Arguments
defined here will overwrite arguments that are passed to all methods.
**argv: Additional arguments to be passed on to all methods, e.g,: out_annotation.
# Returns
Dictionary containing the results of the individual calculations, the keys are the
names of the executed functions
"""
assert isinstance(methods, list)
if isinstance(extra_args, list):
assert(len(extra_args) == len(methods))
else:
extra_args = [None] * len(methods)
main_args = {"model": model, "ref": ref, "ref_rc": ref_rc, "alt": alt, "alt_rc": alt_rc,
"mutation_positions": mutation_positions,
"out_annotation_all_outputs": out_annotation_all_outputs}
pred_results = {}
for method, xargs in zip(methods, extra_args):
if xargs is not None:
if isinstance(xargs, dict):
for k in argv:
if k not in xargs:
xargs[k] = argv[k]
else:
xargs = argv
for k in main_args:
xargs[k] = main_args[k]
res = method(**xargs)
pred_results[method.__name__] = res
return pred_results | Convenience function to execute multiple effect predictions in one call
# Arguments
model: Keras model
ref: Input sequence with the reference genotype in the mutation position
ref_rc: Reverse complement of the 'ref' argument
alt: Input sequence with the alternative genotype in the mutation position
alt_rc: Reverse complement of the 'alt' argument
methods: A list of prediction functions to be executed, e.g.: from concise.effects.ism.ism. Using the same
function more often than once (even with different parameters) will overwrite the results of the
previous calculation of that function.
mutation_positions: Position on which the mutation was placed in the forward sequences
out_annotation_all_outputs: Output labels of the model.
extra_args: None or a list of the same length as 'methods'. The elements of the list are dictionaries with
additional arguments that should be passed on to the respective functions in 'methods'. Arguments
defined here will overwrite arguments that are passed to all methods.
**argv: Additional arguments to be passed on to all methods, e.g,: out_annotation.
# Returns
Dictionary containing the results of the individual calculations, the keys are the
names of the executed functions | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/effects/snp_effects.py#L5-L53 |
bitshares/uptick | uptick/markets.py | trades | def trades(ctx, market, limit, start, stop):
""" List trades in a market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
t = [["time", "quote", "base", "price"]]
for trade in market.trades(limit, start=start, stop=stop):
t.append(
[
str(trade["time"]),
str(trade["quote"]),
str(trade["base"]),
"{:f} {}/{}".format(
trade["price"],
trade["base"]["asset"]["symbol"],
trade["quote"]["asset"]["symbol"],
),
]
)
print_table(t) | python | def trades(ctx, market, limit, start, stop):
""" List trades in a market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
t = [["time", "quote", "base", "price"]]
for trade in market.trades(limit, start=start, stop=stop):
t.append(
[
str(trade["time"]),
str(trade["quote"]),
str(trade["base"]),
"{:f} {}/{}".format(
trade["price"],
trade["base"]["asset"]["symbol"],
trade["quote"]["asset"]["symbol"],
),
]
)
print_table(t) | List trades in a market | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L31-L49 |
bitshares/uptick | uptick/markets.py | ticker | def ticker(ctx, market):
""" Show ticker of a market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
ticker = market.ticker()
t = [["key", "value"]]
for key in ticker:
t.append([key, str(ticker[key])])
print_table(t) | python | def ticker(ctx, market):
""" Show ticker of a market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
ticker = market.ticker()
t = [["key", "value"]]
for key in ticker:
t.append([key, str(ticker[key])])
print_table(t) | Show ticker of a market | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L56-L64 |
bitshares/uptick | uptick/markets.py | cancel | def cancel(ctx, orders, account):
""" Cancel one or multiple orders
"""
print_tx(ctx.bitshares.cancel(orders, account=account)) | python | def cancel(ctx, orders, account):
""" Cancel one or multiple orders
"""
print_tx(ctx.bitshares.cancel(orders, account=account)) | Cancel one or multiple orders | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L78-L81 |
bitshares/uptick | uptick/markets.py | orderbook | def orderbook(ctx, market):
""" Show the orderbook of a particular market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
orderbook = market.orderbook()
ta = {}
ta["bids"] = [["quote", "sum quote", "base", "sum base", "price"]]
cumsumquote = Amount(0, market["quote"])
cumsumbase = Amount(0, market["base"])
for order in orderbook["bids"]:
cumsumbase += order["base"]
cumsumquote += order["quote"]
ta["bids"].append(
[
str(order["quote"]),
str(cumsumquote),
str(order["base"]),
str(cumsumbase),
"{:f} {}/{}".format(
order["price"],
order["base"]["asset"]["symbol"],
order["quote"]["asset"]["symbol"],
),
]
)
ta["asks"] = [["price", "base", "sum base", "quote", "sum quote"]]
cumsumquote = Amount(0, market["quote"])
cumsumbase = Amount(0, market["base"])
for order in orderbook["asks"]:
cumsumbase += order["base"]
cumsumquote += order["quote"]
ta["asks"].append(
[
"{:f} {}/{}".format(
order["price"],
order["base"]["asset"]["symbol"],
order["quote"]["asset"]["symbol"],
),
str(order["base"]),
str(cumsumbase),
str(order["quote"]),
str(cumsumquote),
]
)
t = [["bids", "asks"]]
t.append([format_table(ta["bids"]), format_table(ta["asks"])])
print_table(t) | python | def orderbook(ctx, market):
""" Show the orderbook of a particular market
"""
market = Market(market, bitshares_instance=ctx.bitshares)
orderbook = market.orderbook()
ta = {}
ta["bids"] = [["quote", "sum quote", "base", "sum base", "price"]]
cumsumquote = Amount(0, market["quote"])
cumsumbase = Amount(0, market["base"])
for order in orderbook["bids"]:
cumsumbase += order["base"]
cumsumquote += order["quote"]
ta["bids"].append(
[
str(order["quote"]),
str(cumsumquote),
str(order["base"]),
str(cumsumbase),
"{:f} {}/{}".format(
order["price"],
order["base"]["asset"]["symbol"],
order["quote"]["asset"]["symbol"],
),
]
)
ta["asks"] = [["price", "base", "sum base", "quote", "sum quote"]]
cumsumquote = Amount(0, market["quote"])
cumsumbase = Amount(0, market["base"])
for order in orderbook["asks"]:
cumsumbase += order["base"]
cumsumquote += order["quote"]
ta["asks"].append(
[
"{:f} {}/{}".format(
order["price"],
order["base"]["asset"]["symbol"],
order["quote"]["asset"]["symbol"],
),
str(order["base"]),
str(cumsumbase),
str(order["quote"]),
str(cumsumquote),
]
)
t = [["bids", "asks"]]
t.append([format_table(ta["bids"]), format_table(ta["asks"])])
print_table(t) | Show the orderbook of a particular market | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L88-L135 |
bitshares/uptick | uptick/markets.py | buy | def buy(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account):
""" Buy a specific asset at a certain rate against a base asset
"""
amount = Amount(buy_amount, buy_asset)
price = Price(
price, base=sell_asset, quote=buy_asset, bitshares_instance=ctx.bitshares
)
print_tx(
price.market.buy(price, amount, account=account, expiration=order_expiration)
) | python | def buy(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account):
""" Buy a specific asset at a certain rate against a base asset
"""
amount = Amount(buy_amount, buy_asset)
price = Price(
price, base=sell_asset, quote=buy_asset, bitshares_instance=ctx.bitshares
)
print_tx(
price.market.buy(price, amount, account=account, expiration=order_expiration)
) | Buy a specific asset at a certain rate against a base asset | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L153-L162 |
bitshares/uptick | uptick/markets.py | openorders | def openorders(ctx, account):
""" List open orders of an account
"""
account = Account(
account or config["default_account"], bitshares_instance=ctx.bitshares
)
t = [["Price", "Quote", "Base", "ID"]]
for o in account.openorders:
t.append(
[
"{:f} {}/{}".format(
o["price"],
o["base"]["asset"]["symbol"],
o["quote"]["asset"]["symbol"],
),
str(o["quote"]),
str(o["base"]),
o["id"],
]
)
print_table(t) | python | def openorders(ctx, account):
""" List open orders of an account
"""
account = Account(
account or config["default_account"], bitshares_instance=ctx.bitshares
)
t = [["Price", "Quote", "Base", "ID"]]
for o in account.openorders:
t.append(
[
"{:f} {}/{}".format(
o["price"],
o["base"]["asset"]["symbol"],
o["quote"]["asset"]["symbol"],
),
str(o["quote"]),
str(o["base"]),
o["id"],
]
)
print_table(t) | List open orders of an account | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L196-L216 |
bitshares/uptick | uptick/markets.py | cancelall | def cancelall(ctx, market, account):
""" Cancel all orders of an account in a market
"""
market = Market(market)
ctx.bitshares.bundle = True
market.cancel([x["id"] for x in market.accountopenorders(account)], account=account)
print_tx(ctx.bitshares.txbuffer.broadcast()) | python | def cancelall(ctx, market, account):
""" Cancel all orders of an account in a market
"""
market = Market(market)
ctx.bitshares.bundle = True
market.cancel([x["id"] for x in market.accountopenorders(account)], account=account)
print_tx(ctx.bitshares.txbuffer.broadcast()) | Cancel all orders of an account in a market | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L225-L231 |
bitshares/uptick | uptick/markets.py | spread | def spread(ctx, market, side, min, max, num, total, order_expiration, account):
""" Place multiple orders
\b
:param str market: Market pair quote:base (e.g. USD:BTS)
:param str side: ``buy`` or ``sell`` quote
:param float min: minimum price to place order at
:param float max: maximum price to place order at
:param int num: Number of orders to place
:param float total: Total amount of quote to use for all orders
:param int order_expiration: Number of seconds until the order expires from the books
"""
from tqdm import tqdm
from numpy import linspace
market = Market(market)
ctx.bitshares.bundle = True
if min < max:
space = linspace(min, max, num)
else:
space = linspace(max, min, num)
func = getattr(market, side)
for p in tqdm(space):
func(p, total / float(num), account=account, expiration=order_expiration)
print_tx(ctx.bitshares.txbuffer.broadcast()) | python | def spread(ctx, market, side, min, max, num, total, order_expiration, account):
""" Place multiple orders
\b
:param str market: Market pair quote:base (e.g. USD:BTS)
:param str side: ``buy`` or ``sell`` quote
:param float min: minimum price to place order at
:param float max: maximum price to place order at
:param int num: Number of orders to place
:param float total: Total amount of quote to use for all orders
:param int order_expiration: Number of seconds until the order expires from the books
"""
from tqdm import tqdm
from numpy import linspace
market = Market(market)
ctx.bitshares.bundle = True
if min < max:
space = linspace(min, max, num)
else:
space = linspace(max, min, num)
func = getattr(market, side)
for p in tqdm(space):
func(p, total / float(num), account=account, expiration=order_expiration)
print_tx(ctx.bitshares.txbuffer.broadcast()) | Place multiple orders
\b
:param str market: Market pair quote:base (e.g. USD:BTS)
:param str side: ``buy`` or ``sell`` quote
:param float min: minimum price to place order at
:param float max: maximum price to place order at
:param int num: Number of orders to place
:param float total: Total amount of quote to use for all orders
:param int order_expiration: Number of seconds until the order expires from the books | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L246-L273 |
bitshares/uptick | uptick/markets.py | borrow | def borrow(ctx, amount, symbol, ratio, account):
""" Borrow a bitasset/market-pegged asset
"""
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(
dex.borrow(Amount(amount, symbol), collateral_ratio=ratio, account=account)
) | python | def borrow(ctx, amount, symbol, ratio, account):
""" Borrow a bitasset/market-pegged asset
"""
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(
dex.borrow(Amount(amount, symbol), collateral_ratio=ratio, account=account)
) | Borrow a bitasset/market-pegged asset | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L289-L297 |
bitshares/uptick | uptick/markets.py | updateratio | def updateratio(ctx, symbol, ratio, account):
""" Update the collateral ratio of a call positions
"""
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account)) | python | def updateratio(ctx, symbol, ratio, account):
""" Update the collateral ratio of a call positions
"""
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account)) | Update the collateral ratio of a call positions | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L312-L318 |
bitshares/uptick | uptick/markets.py | fundfeepool | def fundfeepool(ctx, symbol, amount, account):
""" Fund the fee pool of an asset
"""
print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account)) | python | def fundfeepool(ctx, symbol, amount, account):
""" Fund the fee pool of an asset
"""
print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account)) | Fund the fee pool of an asset | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L333-L336 |
bitshares/uptick | uptick/markets.py | bidcollateral | def bidcollateral(
ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount, account
):
""" Bid for collateral in the settlement fund
"""
print_tx(
ctx.bitshares.bid_collateral(
Amount(collateral_amount, collateral_symbol),
Amount(debt_amount, debt_symbol),
account=account,
)
) | python | def bidcollateral(
ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount, account
):
""" Bid for collateral in the settlement fund
"""
print_tx(
ctx.bitshares.bid_collateral(
Amount(collateral_amount, collateral_symbol),
Amount(debt_amount, debt_symbol),
account=account,
)
) | Bid for collateral in the settlement fund | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L353-L364 |
bitshares/uptick | uptick/markets.py | settle | def settle(ctx, symbol, amount, account):
""" Fund the fee pool of an asset
"""
print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=account)) | python | def settle(ctx, symbol, amount, account):
""" Fund the fee pool of an asset
"""
print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=account)) | Fund the fee pool of an asset | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/markets.py#L379-L382 |
bitshares/uptick | uptick/votes.py | votes | def votes(ctx, account, type):
""" List accounts vesting balances
"""
if not isinstance(type, (list, tuple)):
type = [type]
account = Account(account, full=True)
ret = {key: list() for key in Vote.types()}
for vote in account["votes"]:
t = Vote.vote_type_from_id(vote["id"])
ret[t].append(vote)
t = [["id", "url", "account"]]
for vote in ret["committee"]:
t.append(
[vote["id"], vote["url"], Account(vote["committee_member_account"])["name"]]
)
if "committee" in type:
t = [["id", "url", "account", "votes"]]
for vote in ret["committee"]:
t.append(
[
vote["id"],
vote["url"],
Account(vote["committee_member_account"])["name"],
str(Amount({"amount": vote["total_votes"], "asset_id": "1.3.0"})),
]
)
print_table(t)
if "witness" in type:
t = [
[
"id",
"account",
"url",
"votes",
"last_confirmed_block_num",
"total_missed",
"westing",
]
]
for vote in ret["witness"]:
t.append(
[
vote["id"],
Account(vote["witness_account"])["name"],
vote["url"],
str(Amount({"amount": vote["total_votes"], "asset_id": "1.3.0"})),
vote["last_confirmed_block_num"],
vote["total_missed"],
str(Vesting(vote.get("pay_vb")).claimable)
if vote.get("pay_vb")
else "",
]
)
print_table(t)
if "worker" in type:
t = [["id", "name/url", "daily_pay", "votes", "time", "account"]]
for vote in ret["worker"]:
votes = Amount({"amount": vote["total_votes_for"], "asset_id": "1.3.0"})
amount = Amount({"amount": vote["daily_pay"], "asset_id": "1.3.0"})
t.append(
[
vote["id"],
"{name}\n{url}".format(**vote),
str(amount),
str(votes),
"{work_begin_date}\n-\n{work_end_date}".format(**vote),
str(Account(vote["worker_account"])["name"]),
]
)
print_table(t) | python | def votes(ctx, account, type):
""" List accounts vesting balances
"""
if not isinstance(type, (list, tuple)):
type = [type]
account = Account(account, full=True)
ret = {key: list() for key in Vote.types()}
for vote in account["votes"]:
t = Vote.vote_type_from_id(vote["id"])
ret[t].append(vote)
t = [["id", "url", "account"]]
for vote in ret["committee"]:
t.append(
[vote["id"], vote["url"], Account(vote["committee_member_account"])["name"]]
)
if "committee" in type:
t = [["id", "url", "account", "votes"]]
for vote in ret["committee"]:
t.append(
[
vote["id"],
vote["url"],
Account(vote["committee_member_account"])["name"],
str(Amount({"amount": vote["total_votes"], "asset_id": "1.3.0"})),
]
)
print_table(t)
if "witness" in type:
t = [
[
"id",
"account",
"url",
"votes",
"last_confirmed_block_num",
"total_missed",
"westing",
]
]
for vote in ret["witness"]:
t.append(
[
vote["id"],
Account(vote["witness_account"])["name"],
vote["url"],
str(Amount({"amount": vote["total_votes"], "asset_id": "1.3.0"})),
vote["last_confirmed_block_num"],
vote["total_missed"],
str(Vesting(vote.get("pay_vb")).claimable)
if vote.get("pay_vb")
else "",
]
)
print_table(t)
if "worker" in type:
t = [["id", "name/url", "daily_pay", "votes", "time", "account"]]
for vote in ret["worker"]:
votes = Amount({"amount": vote["total_votes_for"], "asset_id": "1.3.0"})
amount = Amount({"amount": vote["daily_pay"], "asset_id": "1.3.0"})
t.append(
[
vote["id"],
"{name}\n{url}".format(**vote),
str(amount),
str(votes),
"{work_begin_date}\n-\n{work_end_date}".format(**vote),
str(Account(vote["worker_account"])["name"]),
]
)
print_table(t) | List accounts vesting balances | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/votes.py#L34-L107 |
bitshares/uptick | uptick/info.py | info | def info(ctx, objects):
""" Obtain all kinds of information
"""
if not objects:
t = [["Key", "Value"]]
info = ctx.bitshares.rpc.get_dynamic_global_properties()
for key in info:
t.append([key, info[key]])
print_table(t)
for obj in objects:
# Block
if re.match("^[0-9]*$", obj):
block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares)
t = [["Key", "Value"]]
for key in sorted(block):
value = block[key]
if key == "transactions":
value = format_tx(value)
t.append([key, value])
print_table(t)
# Object Id
elif re.match("^\d*\.\d*\.\d*$", obj):
data = ctx.bitshares.rpc.get_object(obj)
if data:
t = [["Key", "Value"]]
for key in sorted(data):
value = data[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("Object %s unknown" % obj, "warning")
# Asset
elif obj.upper() == obj and re.match("^[A-Z\.]*$", obj):
data = Asset(obj)
t = [["Key", "Value"]]
for key in sorted(data):
value = data[key]
if isinstance(value, dict):
value = format_tx(value)
t.append([key, value])
print_table(t)
# Public Key
elif re.match("^BTS.{48,55}$", obj):
account = ctx.bitshares.wallet.getAccountFromPublicKey(obj)
if account:
t = [["Account"]]
t.append([account])
print_table(t)
else:
print_message("Public Key not known: %s" % obj, "warning")
# Account name
elif re.match("^[a-zA-Z0-9\-\._]{2,64}$", obj):
account = Account(obj, full=True)
if account:
t = [["Key", "Value"]]
for key in sorted(account):
value = account[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("Account %s unknown" % obj, "warning")
elif ":" in obj:
vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0]
if vote:
t = [["Key", "Value"]]
for key in sorted(vote):
value = vote[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("voteid %s unknown" % obj, "warning")
else:
print_message("Couldn't identify object to read", "warning") | python | def info(ctx, objects):
""" Obtain all kinds of information
"""
if not objects:
t = [["Key", "Value"]]
info = ctx.bitshares.rpc.get_dynamic_global_properties()
for key in info:
t.append([key, info[key]])
print_table(t)
for obj in objects:
# Block
if re.match("^[0-9]*$", obj):
block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares)
t = [["Key", "Value"]]
for key in sorted(block):
value = block[key]
if key == "transactions":
value = format_tx(value)
t.append([key, value])
print_table(t)
# Object Id
elif re.match("^\d*\.\d*\.\d*$", obj):
data = ctx.bitshares.rpc.get_object(obj)
if data:
t = [["Key", "Value"]]
for key in sorted(data):
value = data[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("Object %s unknown" % obj, "warning")
# Asset
elif obj.upper() == obj and re.match("^[A-Z\.]*$", obj):
data = Asset(obj)
t = [["Key", "Value"]]
for key in sorted(data):
value = data[key]
if isinstance(value, dict):
value = format_tx(value)
t.append([key, value])
print_table(t)
# Public Key
elif re.match("^BTS.{48,55}$", obj):
account = ctx.bitshares.wallet.getAccountFromPublicKey(obj)
if account:
t = [["Account"]]
t.append([account])
print_table(t)
else:
print_message("Public Key not known: %s" % obj, "warning")
# Account name
elif re.match("^[a-zA-Z0-9\-\._]{2,64}$", obj):
account = Account(obj, full=True)
if account:
t = [["Key", "Value"]]
for key in sorted(account):
value = account[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("Account %s unknown" % obj, "warning")
elif ":" in obj:
vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0]
if vote:
t = [["Key", "Value"]]
for key in sorted(vote):
value = vote[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message("voteid %s unknown" % obj, "warning")
else:
print_message("Couldn't identify object to read", "warning") | Obtain all kinds of information | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/info.py#L19-L103 |
bitshares/uptick | uptick/info.py | fees | def fees(ctx, currency):
""" List fees
"""
from bitsharesbase.operationids import getOperationNameForId
from bitshares.market import Market
market = Market("%s:%s" % (currency, "BTS"))
ticker = market.ticker()
if "quoteSettlement_price" in ticker:
price = ticker.get("quoteSettlement_price")
else:
price = ticker.get("latest", 0)
price.invert()
chain = Blockchain(bitshares_instance=ctx.bitshares)
feesObj = chain.chainParameters().get("current_fees")
fees = feesObj["parameters"]
t = [["Operation", "Type", "Fee", currency]]
for fee in fees:
for f in fee[1]:
t.append(
[
highlight(getOperationNameForId(fee[0])),
detail(f),
detail(
str(Amount({"amount": fee[1].get(f, 0), "asset_id": "1.3.0"}))
),
detail(
str(
price
* Amount({"amount": fee[1].get(f, 0), "asset_id": "1.3.0"})
)
),
]
)
print_table(t) | python | def fees(ctx, currency):
""" List fees
"""
from bitsharesbase.operationids import getOperationNameForId
from bitshares.market import Market
market = Market("%s:%s" % (currency, "BTS"))
ticker = market.ticker()
if "quoteSettlement_price" in ticker:
price = ticker.get("quoteSettlement_price")
else:
price = ticker.get("latest", 0)
price.invert()
chain = Blockchain(bitshares_instance=ctx.bitshares)
feesObj = chain.chainParameters().get("current_fees")
fees = feesObj["parameters"]
t = [["Operation", "Type", "Fee", currency]]
for fee in fees:
for f in fee[1]:
t.append(
[
highlight(getOperationNameForId(fee[0])),
detail(f),
detail(
str(Amount({"amount": fee[1].get(f, 0), "asset_id": "1.3.0"}))
),
detail(
str(
price
* Amount({"amount": fee[1].get(f, 0), "asset_id": "1.3.0"})
)
),
]
)
print_table(t) | List fees | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/info.py#L110-L147 |
bitshares/uptick | uptick/htlc.py | create | def create(ctx, to, amount, symbol, secret, hash, account, expiration):
""" Create an HTLC contract
"""
ctx.blockchain.blocking = True
tx = ctx.blockchain.htlc_create(
Amount(amount, symbol),
to,
secret,
hash_type=hash,
expiration=expiration,
account=account,
)
tx.pop("trx", None)
print_tx(tx)
results = tx.get("operation_results", {})
if results:
htlc_id = results[0][1]
print("Your htlc_id is: {}".format(htlc_id)) | python | def create(ctx, to, amount, symbol, secret, hash, account, expiration):
""" Create an HTLC contract
"""
ctx.blockchain.blocking = True
tx = ctx.blockchain.htlc_create(
Amount(amount, symbol),
to,
secret,
hash_type=hash,
expiration=expiration,
account=account,
)
tx.pop("trx", None)
print_tx(tx)
results = tx.get("operation_results", {})
if results:
htlc_id = results[0][1]
print("Your htlc_id is: {}".format(htlc_id)) | Create an HTLC contract | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/htlc.py#L28-L45 |
bitshares/uptick | uptick/htlc.py | redeem | def redeem(ctx, htlc_id, secret, account):
""" Redeem an HTLC contract
"""
print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account)) | python | def redeem(ctx, htlc_id, secret, account):
""" Redeem an HTLC contract
"""
print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account)) | Redeem an HTLC contract | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/htlc.py#L57-L60 |
pasztorpisti/py-flags | src/flags.py | unique | def unique(flags_class):
""" A decorator for flags classes to forbid flag aliases. """
if not is_flags_class_final(flags_class):
raise TypeError('unique check can be applied only to flags classes that have members')
if not flags_class.__member_aliases__:
return flags_class
aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in flags_class.__member_aliases__.items())
raise ValueError('duplicate values found in %r: %s' % (flags_class, aliases)) | python | def unique(flags_class):
""" A decorator for flags classes to forbid flag aliases. """
if not is_flags_class_final(flags_class):
raise TypeError('unique check can be applied only to flags classes that have members')
if not flags_class.__member_aliases__:
return flags_class
aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in flags_class.__member_aliases__.items())
raise ValueError('duplicate values found in %r: %s' % (flags_class, aliases)) | A decorator for flags classes to forbid flag aliases. | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L26-L33 |
pasztorpisti/py-flags | src/flags.py | unique_bits | def unique_bits(flags_class):
""" A decorator for flags classes to forbid declaring flags with overlapping bits. """
flags_class = unique(flags_class)
other_bits = 0
for name, member in flags_class.__members_without_aliases__.items():
bits = int(member)
if other_bits & bits:
for other_name, other_member in flags_class.__members_without_aliases__.items():
if int(other_member) & bits:
raise ValueError("%r: '%s' and '%s' have overlapping bits" % (flags_class, other_name, name))
else:
other_bits |= bits | python | def unique_bits(flags_class):
""" A decorator for flags classes to forbid declaring flags with overlapping bits. """
flags_class = unique(flags_class)
other_bits = 0
for name, member in flags_class.__members_without_aliases__.items():
bits = int(member)
if other_bits & bits:
for other_name, other_member in flags_class.__members_without_aliases__.items():
if int(other_member) & bits:
raise ValueError("%r: '%s' and '%s' have overlapping bits" % (flags_class, other_name, name))
else:
other_bits |= bits | A decorator for flags classes to forbid declaring flags with overlapping bits. | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L36-L47 |
pasztorpisti/py-flags | src/flags.py | process_inline_members_definition | def process_inline_members_definition(members):
"""
:param members: this can be any of the following:
- a string containing a space and/or comma separated list of names: e.g.:
"item1 item2 item3" OR "item1,item2,item3" OR "item1, item2, item3"
- tuple/list/Set of strings (names)
- Mapping of (name, data) pairs
- any kind of iterable that yields (name, data) pairs
:return: An iterable of (name, data) pairs.
"""
if isinstance(members, str):
members = ((name, UNDEFINED) for name in members.replace(',', ' ').split())
elif isinstance(members, (tuple, list, collections.Set)):
if members and isinstance(next(iter(members)), str):
members = ((name, UNDEFINED) for name in members)
elif isinstance(members, collections.Mapping):
members = members.items()
return members | python | def process_inline_members_definition(members):
"""
:param members: this can be any of the following:
- a string containing a space and/or comma separated list of names: e.g.:
"item1 item2 item3" OR "item1,item2,item3" OR "item1, item2, item3"
- tuple/list/Set of strings (names)
- Mapping of (name, data) pairs
- any kind of iterable that yields (name, data) pairs
:return: An iterable of (name, data) pairs.
"""
if isinstance(members, str):
members = ((name, UNDEFINED) for name in members.replace(',', ' ').split())
elif isinstance(members, (tuple, list, collections.Set)):
if members and isinstance(next(iter(members)), str):
members = ((name, UNDEFINED) for name in members)
elif isinstance(members, collections.Mapping):
members = members.items()
return members | :param members: this can be any of the following:
- a string containing a space and/or comma separated list of names: e.g.:
"item1 item2 item3" OR "item1,item2,item3" OR "item1, item2, item3"
- tuple/list/Set of strings (names)
- Mapping of (name, data) pairs
- any kind of iterable that yields (name, data) pairs
:return: An iterable of (name, data) pairs. | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L95-L112 |
pasztorpisti/py-flags | src/flags.py | FlagsMeta.process_member_definitions | def process_member_definitions(cls, member_definitions):
"""
The incoming member_definitions contains the class attributes (with their values) that are
used to define the flag members. This method can do anything to the incoming list and has to
return a final set of flag definitions that assigns bits to the members. The returned member
definitions can be completely different or unrelated to the incoming ones.
:param member_definitions: A list of (name, data) tuples.
:return: An iterable of iterables yielding 3 items: name, bits, data
"""
members = []
auto_flags = []
all_bits = 0
for name, data in member_definitions:
bits, data = cls.flag_attribute_value_to_bits_and_data(name, data)
if bits is UNDEFINED:
auto_flags.append(len(members))
members.append((name, data))
elif is_valid_bits_value(bits):
all_bits |= bits
members.append((name, bits, data))
else:
raise TypeError("Expected an int value as the bits of flag '%s', received %r" % (name, bits))
# auto-assigning unused bits to members without custom defined bits
bit = 1
for index in auto_flags:
while bit & all_bits:
bit <<= 1
name, data = members[index]
members[index] = name, bit, data
bit <<= 1
return members | python | def process_member_definitions(cls, member_definitions):
"""
The incoming member_definitions contains the class attributes (with their values) that are
used to define the flag members. This method can do anything to the incoming list and has to
return a final set of flag definitions that assigns bits to the members. The returned member
definitions can be completely different or unrelated to the incoming ones.
:param member_definitions: A list of (name, data) tuples.
:return: An iterable of iterables yielding 3 items: name, bits, data
"""
members = []
auto_flags = []
all_bits = 0
for name, data in member_definitions:
bits, data = cls.flag_attribute_value_to_bits_and_data(name, data)
if bits is UNDEFINED:
auto_flags.append(len(members))
members.append((name, data))
elif is_valid_bits_value(bits):
all_bits |= bits
members.append((name, bits, data))
else:
raise TypeError("Expected an int value as the bits of flag '%s', received %r" % (name, bits))
# auto-assigning unused bits to members without custom defined bits
bit = 1
for index in auto_flags:
while bit & all_bits:
bit <<= 1
name, data = members[index]
members[index] = name, bit, data
bit <<= 1
return members | The incoming member_definitions contains the class attributes (with their values) that are
used to define the flag members. This method can do anything to the incoming list and has to
return a final set of flag definitions that assigns bits to the members. The returned member
definitions can be completely different or unrelated to the incoming ones.
:param member_definitions: A list of (name, data) tuples.
:return: An iterable of iterables yielding 3 items: name, bits, data | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L426-L458 |
pasztorpisti/py-flags | src/flags.py | Flags.from_simple_str | def from_simple_str(cls, s):
""" Accepts only the output of to_simple_str(). The output of __str__() is invalid as input. """
if not isinstance(s, str):
raise TypeError("Expected an str instance, received %r" % (s,))
return cls(cls.bits_from_simple_str(s)) | python | def from_simple_str(cls, s):
""" Accepts only the output of to_simple_str(). The output of __str__() is invalid as input. """
if not isinstance(s, str):
raise TypeError("Expected an str instance, received %r" % (s,))
return cls(cls.bits_from_simple_str(s)) | Accepts only the output of to_simple_str(). The output of __str__() is invalid as input. | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L663-L667 |
pasztorpisti/py-flags | src/flags.py | Flags.from_str | def from_str(cls, s):
""" Accepts both the output of to_simple_str() and __str__(). """
if not isinstance(s, str):
raise TypeError("Expected an str instance, received %r" % (s,))
return cls(cls.bits_from_str(s)) | python | def from_str(cls, s):
""" Accepts both the output of to_simple_str() and __str__(). """
if not isinstance(s, str):
raise TypeError("Expected an str instance, received %r" % (s,))
return cls(cls.bits_from_str(s)) | Accepts both the output of to_simple_str() and __str__(). | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L670-L674 |
pasztorpisti/py-flags | src/flags.py | Flags.bits_from_str | def bits_from_str(cls, s):
""" Converts the output of __str__ into an integer. """
try:
if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__):
return cls.bits_from_simple_str(s)
c = s[len(cls.__name__)]
if c == '(':
if not s.endswith(')'):
raise ValueError
return cls.bits_from_simple_str(s[len(cls.__name__)+1:-1])
elif c == '.':
member_name = s[len(cls.__name__)+1:]
return int(cls.__all_members__[member_name])
else:
raise ValueError
except ValueError as ex:
if ex.args:
raise
raise ValueError("%s.%s: invalid input: %r" % (cls.__name__, cls.bits_from_str.__name__, s))
except KeyError as ex:
raise ValueError("%s.%s: Invalid flag name '%s' in input: %r" % (cls.__name__, cls.bits_from_str.__name__,
ex.args[0], s)) | python | def bits_from_str(cls, s):
""" Converts the output of __str__ into an integer. """
try:
if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__):
return cls.bits_from_simple_str(s)
c = s[len(cls.__name__)]
if c == '(':
if not s.endswith(')'):
raise ValueError
return cls.bits_from_simple_str(s[len(cls.__name__)+1:-1])
elif c == '.':
member_name = s[len(cls.__name__)+1:]
return int(cls.__all_members__[member_name])
else:
raise ValueError
except ValueError as ex:
if ex.args:
raise
raise ValueError("%s.%s: invalid input: %r" % (cls.__name__, cls.bits_from_str.__name__, s))
except KeyError as ex:
raise ValueError("%s.%s: Invalid flag name '%s' in input: %r" % (cls.__name__, cls.bits_from_str.__name__,
ex.args[0], s)) | Converts the output of __str__ into an integer. | https://github.com/pasztorpisti/py-flags/blob/bc48adb5edd7340ea1a686622d7993b4bcf4bfc2/src/flags.py#L689-L710 |
bitshares/uptick | uptick/feed.py | newfeed | def newfeed(ctx, symbol, price, market, cer, mssr, mcr, account):
""" Publish a price feed!
Examples:
\b
uptick newfeed USD 0.01 USD/BTS
uptick newfeed USD 100 BTS/USD
Core Exchange Rate (CER)
\b
If no CER is provided, the cer will be the same as the settlement price
with a 5% premium (Only if the 'market' is against the core asset (e.g.
BTS)). The CER is always defined against the core asset (BTS). This
means that if the backing asset is not the core asset (BTS), then you must
specify your own cer as a float. The float `x` will be interpreted as
`x BTS/SYMBOL`.
"""
if cer:
cer = Price(cer, quote=symbol, base="1.3.0", bitshares_instance=ctx.bitshares)
print_tx(
ctx.bitshares.publish_price_feed(
symbol, Price(price, market), cer=cer, mssr=mssr, mcr=mcr, account=account
)
) | python | def newfeed(ctx, symbol, price, market, cer, mssr, mcr, account):
""" Publish a price feed!
Examples:
\b
uptick newfeed USD 0.01 USD/BTS
uptick newfeed USD 100 BTS/USD
Core Exchange Rate (CER)
\b
If no CER is provided, the cer will be the same as the settlement price
with a 5% premium (Only if the 'market' is against the core asset (e.g.
BTS)). The CER is always defined against the core asset (BTS). This
means that if the backing asset is not the core asset (BTS), then you must
specify your own cer as a float. The float `x` will be interpreted as
`x BTS/SYMBOL`.
"""
if cer:
cer = Price(cer, quote=symbol, base="1.3.0", bitshares_instance=ctx.bitshares)
print_tx(
ctx.bitshares.publish_price_feed(
symbol, Price(price, market), cer=cer, mssr=mssr, mcr=mcr, account=account
)
) | Publish a price feed!
Examples:
\b
uptick newfeed USD 0.01 USD/BTS
uptick newfeed USD 100 BTS/USD
Core Exchange Rate (CER)
\b
If no CER is provided, the cer will be the same as the settlement price
with a 5% premium (Only if the 'market' is against the core asset (e.g.
BTS)). The CER is always defined against the core asset (BTS). This
means that if the backing asset is not the core asset (BTS), then you must
specify your own cer as a float. The float `x` will be interpreted as
`x BTS/SYMBOL`. | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/feed.py#L42-L67 |
bitshares/uptick | uptick/feed.py | feeds | def feeds(ctx, assets, pricethreshold, maxage):
""" Price Feed Overview
"""
import builtins
witnesses = Witnesses(bitshares_instance=ctx.bitshares)
def test_price(p, ref):
if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0:
return click.style(str(p), fg="red")
elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0:
return click.style(str(p), fg="yellow")
else:
return click.style(str(p), fg="green")
def price_diff(p, ref):
d = (float(p) - float(ref)) / float(ref) * 100
if math.fabs(d) >= 5:
color = "red"
elif math.fabs(d) >= 2.5:
color = "yellow"
else:
color = "green"
return click.style("{:8.2f}%".format(d), fg=color)
def test_date(d):
t = d.replace(tzinfo=None)
now = datetime.utcnow()
if now < t + timedelta(minutes=maxage):
return click.style(str(t), fg="green")
if now < t + timedelta(minutes=maxage / 2.0):
return click.style(str(t), fg="yellow")
else:
return click.style(str(t), fg="red")
output = ""
for asset in tqdm(assets):
t = PrettyTable(
[
"Asset",
"Producer",
"Active Witness",
"Date",
"Settlement Price",
"Core Exchange Price",
"MCR",
"SSPR",
"delta",
]
)
t.align = "c"
t.align["Producer"] = "l"
asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares)
current_feed = asset.feed
feeds = asset.feeds
producingwitnesses = builtins.set()
witness_accounts = [x["witness_account"] for x in witnesses]
for feed in tqdm(feeds):
producingwitnesses.add(feed["producer"]["id"])
t.add_row(
[
asset["symbol"],
feed["producer"]["name"],
click.style(
"X" if feed["producer"]["id"] in witness_accounts else "",
bold=True,
),
test_date(feed["date"]),
test_price(
feed["settlement_price"], current_feed["settlement_price"]
),
test_price(
feed["core_exchange_rate"], current_feed["core_exchange_rate"]
),
feed["maintenance_collateral_ratio"] / 10,
feed["maximum_short_squeeze_ratio"] / 10,
price_diff(
feed["core_exchange_rate"], current_feed["core_exchange_rate"]
),
]
)
for missing in builtins.set(witness_accounts).difference(producingwitnesses):
witness = Witness(missing)
t.add_row(
[
click.style(asset["symbol"], bg="red"),
click.style(witness.account["name"], bg="red"),
click.style(
"X" if feed["producer"]["id"] in witness_accounts else "",
bold=True,
),
click.style(str(datetime(1970, 1, 1))),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
]
)
output += t.get_string(sortby="Date", reversesort=True)
output += "\n"
click.echo(output) | python | def feeds(ctx, assets, pricethreshold, maxage):
""" Price Feed Overview
"""
import builtins
witnesses = Witnesses(bitshares_instance=ctx.bitshares)
def test_price(p, ref):
if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0:
return click.style(str(p), fg="red")
elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0:
return click.style(str(p), fg="yellow")
else:
return click.style(str(p), fg="green")
def price_diff(p, ref):
d = (float(p) - float(ref)) / float(ref) * 100
if math.fabs(d) >= 5:
color = "red"
elif math.fabs(d) >= 2.5:
color = "yellow"
else:
color = "green"
return click.style("{:8.2f}%".format(d), fg=color)
def test_date(d):
t = d.replace(tzinfo=None)
now = datetime.utcnow()
if now < t + timedelta(minutes=maxage):
return click.style(str(t), fg="green")
if now < t + timedelta(minutes=maxage / 2.0):
return click.style(str(t), fg="yellow")
else:
return click.style(str(t), fg="red")
output = ""
for asset in tqdm(assets):
t = PrettyTable(
[
"Asset",
"Producer",
"Active Witness",
"Date",
"Settlement Price",
"Core Exchange Price",
"MCR",
"SSPR",
"delta",
]
)
t.align = "c"
t.align["Producer"] = "l"
asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares)
current_feed = asset.feed
feeds = asset.feeds
producingwitnesses = builtins.set()
witness_accounts = [x["witness_account"] for x in witnesses]
for feed in tqdm(feeds):
producingwitnesses.add(feed["producer"]["id"])
t.add_row(
[
asset["symbol"],
feed["producer"]["name"],
click.style(
"X" if feed["producer"]["id"] in witness_accounts else "",
bold=True,
),
test_date(feed["date"]),
test_price(
feed["settlement_price"], current_feed["settlement_price"]
),
test_price(
feed["core_exchange_rate"], current_feed["core_exchange_rate"]
),
feed["maintenance_collateral_ratio"] / 10,
feed["maximum_short_squeeze_ratio"] / 10,
price_diff(
feed["core_exchange_rate"], current_feed["core_exchange_rate"]
),
]
)
for missing in builtins.set(witness_accounts).difference(producingwitnesses):
witness = Witness(missing)
t.add_row(
[
click.style(asset["symbol"], bg="red"),
click.style(witness.account["name"], bg="red"),
click.style(
"X" if feed["producer"]["id"] in witness_accounts else "",
bold=True,
),
click.style(str(datetime(1970, 1, 1))),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
click.style("missing", bg="red"),
]
)
output += t.get_string(sortby="Date", reversesort=True)
output += "\n"
click.echo(output) | Price Feed Overview | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/feed.py#L78-L179 |
bitshares/uptick | uptick/ui.py | print_table | def print_table(*args, **kwargs):
"""
if csv:
import csv
t = csv.writer(sys.stdout, delimiter=";")
t.writerow(header)
else:
t = PrettyTable(header)
t.align = "r"
t.align["details"] = "l"
"""
t = format_table(*args, **kwargs)
click.echo(t) | python | def print_table(*args, **kwargs):
"""
if csv:
import csv
t = csv.writer(sys.stdout, delimiter=";")
t.writerow(header)
else:
t = PrettyTable(header)
t.align = "r"
t.align["details"] = "l"
"""
t = format_table(*args, **kwargs)
click.echo(t) | if csv:
import csv
t = csv.writer(sys.stdout, delimiter=";")
t.writerow(header)
else:
t = PrettyTable(header)
t.align = "r"
t.align["details"] = "l" | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/ui.py#L125-L137 |
bitshares/uptick | uptick/rpc.py | rpc | def rpc(ctx, call, arguments, api):
""" Construct RPC call directly
\b
You can specify which API to send the call to:
uptick rpc --api assets
You can also specify lists using
uptick rpc get_objects "['2.0.0', '2.1.0']"
"""
try:
data = list(eval(d) for d in arguments)
except:
data = arguments
ret = getattr(ctx.bitshares.rpc, call)(*data, api=api)
print_dict(ret) | python | def rpc(ctx, call, arguments, api):
""" Construct RPC call directly
\b
You can specify which API to send the call to:
uptick rpc --api assets
You can also specify lists using
uptick rpc get_objects "['2.0.0', '2.1.0']"
"""
try:
data = list(eval(d) for d in arguments)
except:
data = arguments
ret = getattr(ctx.bitshares.rpc, call)(*data, api=api)
print_dict(ret) | Construct RPC call directly
\b
You can specify which API to send the call to:
uptick rpc --api assets
You can also specify lists using
uptick rpc get_objects "['2.0.0', '2.1.0']" | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/rpc.py#L16-L33 |
bitshares/uptick | uptick/committee.py | approvecommittee | def approvecommittee(ctx, members, account):
""" Approve committee member(s)
"""
print_tx(ctx.bitshares.approvecommittee(members, account=account)) | python | def approvecommittee(ctx, members, account):
""" Approve committee member(s)
"""
print_tx(ctx.bitshares.approvecommittee(members, account=account)) | Approve committee member(s) | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/committee.py#L18-L21 |
bitshares/uptick | uptick/committee.py | disapprovecommittee | def disapprovecommittee(ctx, members, account):
""" Disapprove committee member(s)
"""
print_tx(ctx.bitshares.disapprovecommittee(members, account=account)) | python | def disapprovecommittee(ctx, members, account):
""" Disapprove committee member(s)
"""
print_tx(ctx.bitshares.disapprovecommittee(members, account=account)) | Disapprove committee member(s) | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/committee.py#L35-L38 |
bitshares/uptick | uptick/committee.py | createcommittee | def createcommittee(ctx, url, account):
""" Setup a committee account for your account
"""
print_tx(ctx.bitshares.create_committee_member(url, account=account)) | python | def createcommittee(ctx, url, account):
""" Setup a committee account for your account
"""
print_tx(ctx.bitshares.create_committee_member(url, account=account)) | Setup a committee account for your account | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/committee.py#L52-L55 |
bitshares/uptick | uptick/cli.py | set | def set(ctx, key, value):
""" Set configuration parameters
"""
if key == "default_account" and value[0] == "@":
value = value[1:]
ctx.bitshares.config[key] = value | python | def set(ctx, key, value):
""" Set configuration parameters
"""
if key == "default_account" and value[0] == "@":
value = value[1:]
ctx.bitshares.config[key] = value | Set configuration parameters | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/cli.py#L40-L45 |
bitshares/uptick | uptick/cli.py | configuration | def configuration(ctx):
""" Show configuration variables
"""
t = [["Key", "Value"]]
for key in ctx.bitshares.config:
t.append([key, ctx.bitshares.config[key]])
print_table(t) | python | def configuration(ctx):
""" Show configuration variables
"""
t = [["Key", "Value"]]
for key in ctx.bitshares.config:
t.append([key, ctx.bitshares.config[key]])
print_table(t) | Show configuration variables | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/cli.py#L51-L57 |
bitshares/uptick | uptick/cli.py | sign | def sign(ctx, filename):
""" Sign a json-formatted transaction
"""
if filename:
tx = filename.read()
else:
tx = sys.stdin.read()
tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares)
tx.appendMissingSignatures()
tx.sign()
print_tx(tx.json()) | python | def sign(ctx, filename):
""" Sign a json-formatted transaction
"""
if filename:
tx = filename.read()
else:
tx = sys.stdin.read()
tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares)
tx.appendMissingSignatures()
tx.sign()
print_tx(tx.json()) | Sign a json-formatted transaction | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/cli.py#L65-L75 |
bitshares/uptick | uptick/cli.py | randomwif | def randomwif(prefix, num):
""" Obtain a random private/public key pair
"""
from bitsharesbase.account import PrivateKey
t = [["wif", "pubkey"]]
for n in range(0, num):
wif = PrivateKey()
t.append([str(wif), format(wif.pubkey, prefix)])
print_table(t) | python | def randomwif(prefix, num):
""" Obtain a random private/public key pair
"""
from bitsharesbase.account import PrivateKey
t = [["wif", "pubkey"]]
for n in range(0, num):
wif = PrivateKey()
t.append([str(wif), format(wif.pubkey, prefix)])
print_table(t) | Obtain a random private/public key pair | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/cli.py#L97-L106 |
bitshares/uptick | uptick/witness.py | approvewitness | def approvewitness(ctx, witnesses, account):
""" Approve witness(es)
"""
print_tx(ctx.bitshares.approvewitness(witnesses, account=account)) | python | def approvewitness(ctx, witnesses, account):
""" Approve witness(es)
"""
print_tx(ctx.bitshares.approvewitness(witnesses, account=account)) | Approve witness(es) | https://github.com/bitshares/uptick/blob/66c102200fdbf96cef4fd55cc69d00e690f62001/uptick/witness.py#L20-L23 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.