task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#OxygenBasic
|
OxygenBasic
|
'==========
Class Queue
'==========
'FIRST IN FIRST OUT
bstring buf 'buffer to hold queue content
int bg 'buffer base offset
int i 'indexer
int le 'length of buffer
method constructor()
====================
buf=""
le=0
bg=0
i=0
end method
method destructor()
===================
del buf
le=0
bg=0
i=0
end method
method Encodelength(int ls)
===========================
int p at (i+strptr buf)
p=ls
i+=sizeof int
end method
method push(string s)
=====================
int ls=len s
if i+ls+8>le then
buf+=nuls 8000+ls*2 'extend buf
le=len buf
end if
EncodeLength ls 'length of input s
mid buf,i+1,s 'append input s
i+=ls
end method
method popLength() as int
=========================
if bg>=i then return -1 'buffer empty
int p at (bg+strptr buf)
bg+=sizeof int
return p
end method
method pop(string *s) as int
============================
int ls=popLength
if ls<0 then s="" : return ls 'empty buffer
s=mid buf,bg+1,ls
bg+=ls
'cleanup buffer
if bg>1e6 then
buf=mid buf,bg+1
le=len buf
i-=bg 'shrink buf
bg=0
end if
end method
method clear()
==============
buf=""
le=0
bg=0
i=0
end method
end class 'Queue
'====
'DEMO
'====
new Queue fifo
string s
'
fifo.push "HumptyDumpty"
fifo.push "Sat on a wall"
'
int er
do
er=fifo.pop s
if er then print "(buffer empty)" : exit do
print s
loop
del fifo
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#PureBasic
|
PureBasic
|
Structure Quaternion
a.f
b.f
c.f
d.f
EndStructure
Procedure.f QNorm(*x.Quaternion)
ProcedureReturn Sqr(Pow(*x\a, 2) + Pow(*x\b, 2) + Pow(*x\c, 2) + Pow(*x\d, 2))
EndProcedure
;If supplied, the result is returned in the quaternion structure *res,
;otherwise a new quaternion is created. A pointer to the result is returned.
Procedure QNeg(*x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = -*x\a
*res\b = -*x\b
*res\c = -*x\c
*res\d = -*x\d
EndIf
ProcedureReturn *res
EndProcedure
Procedure QConj(*x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = *x\a
*res\b = -*x\b
*res\c = -*x\c
*res\d = -*x\d
EndIf
ProcedureReturn *res
EndProcedure
Procedure QAddReal(r.f, *x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = *x\a + r
*res\b = *x\b
*res\c = *x\c
*res\d = *x\d
EndIf
ProcedureReturn *res
EndProcedure
Procedure QAddQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = *x\a + *y\a
*res\b = *x\b + *y\b
*res\c = *x\c + *y\c
*res\d = *x\d + *y\d
EndIf
ProcedureReturn *res
EndProcedure
Procedure QMulReal_and_Quaternion(r.f, *x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = *x\a * r
*res\b = *x\b * r
*res\c = *x\c * r
*res\d = *x\d * r
EndIf
ProcedureReturn *res
EndProcedure
Procedure QMulQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf
If *res
*res\a = *x\a * *y\a - *x\b * *y\b - *x\c * *y\c - *x\d * *y\d
*res\b = *x\a * *y\b + *x\b * *y\a + *x\c * *y\d - *x\d * *y\c
*res\c = *x\a * *y\c - *x\b * *y\d + *x\c * *y\a + *x\d * *y\b
*res\d = *x\a * *y\d + *x\b * *y\c - *x\c * *y\b + *x\d * *y\a
EndIf
ProcedureReturn *res
EndProcedure
Procedure Q_areEqual(*x.Quaternion, *y.Quaternion)
If (*x\a <> *y\a) Or (*x\b <> *y\b) Or (*x\c <> *y\c) Or (*x\d <> *y\d)
ProcedureReturn 0 ;false
EndIf
ProcedureReturn 1 ;true
EndProcedure
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Go
|
Go
|
package main
import "fmt"
func main() {
a := "package main\n\nimport \"fmt\"\n\nfunc main() {\n\ta := %q\n\tfmt.Printf(a, a)\n}\n"
fmt.Printf(a, a)
}
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#PowerShell
|
PowerShell
|
function range-extraction($arr) {
if($arr.Count -gt 2) {
$a, $b, $c, $arr = $arr
$d = $e = $c
if((($a + 1) -eq $b) -and (($b + 1) -eq $c)) {
$test = $true
while($arr -and $test) {
$d = $e
$e, $arr = $arr
$test = ($d+1) -eq $e
}
if($test){"$a-$e"}
elseif((-not $arr) -and $test){"$a-$d"}
elseif(-not $arr){"$a-$d,$e"}
else{"$a-$d," + (range-extraction (@($e)+$arr))}
}
elseif(($b + 1) -eq $c) {"$a," + (range-extraction (@($b, $c)+$arr))}
else {"$a,$b," + (range-extraction (@($c)+$arr))}
} else {
switch($arr.Count) {
0 {""}
1 {"$arr"}
2 {"$($arr[0]),$($arr[1])"}
}
}
}
range-extraction @(0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39)
|
http://rosettacode.org/wiki/Read_a_file_line_by_line
|
Read a file line by line
|
Read a file one line at a time,
as opposed to reading the entire file at once.
Related tasks
Read a file character by character
Input loop.
|
#XPL0
|
XPL0
|
int C;
[repeat repeat C:= ChIn(1); \repeat until end-of-line
ChOut(0, C);
until C < $20; \CR, LF, or EOF
until C = \EOF\ $1A; \repeat until end-of-file
]
|
http://rosettacode.org/wiki/Read_a_file_line_by_line
|
Read a file line by line
|
Read a file one line at a time,
as opposed to reading the entire file at once.
Related tasks
Read a file character by character
Input loop.
|
#zkl
|
zkl
|
foreach line in (File("foo.zkl")){print(line)}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Symsyn
|
Symsyn
|
| reverse string
c : 'abcdefghijklmnopqrstuvwxyz'
d : ' '
c []
i
#c j
- j
if i < j
c.i d 1
c.j c.i 1
d c.j
- j
+ i
goif
endif
c []
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Oz
|
Oz
|
declare
fun {NewQueue}
Stream
WritePort = {Port.new Stream}
ReadPos = {NewCell Stream}
in
WritePort#ReadPos
end
proc {Push WritePort#_ Value}
{Port.send WritePort Value}
end
fun {Empty _#ReadPos}
%% the queue is empty if the value at the current
%% read position is not determined
{Not {IsDet @ReadPos}}
end
fun {Pop _#ReadPos}
%% blocks if empty
case @ReadPos of X|Xr then
ReadPos := Xr
X
end
end
Q = {NewQueue}
in
{Show {Empty Q}}
{Push Q 42}
{Show {Empty Q}}
{Show {Pop Q}}
{Show {Empty Q}}
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Python
|
Python
|
from collections import namedtuple
import math
class Q(namedtuple('Quaternion', 'real, i, j, k')):
'Quaternion type: Q(real=0.0, i=0.0, j=0.0, k=0.0)'
__slots__ = ()
def __new__(_cls, real=0.0, i=0.0, j=0.0, k=0.0):
'Defaults all parts of quaternion to zero'
return super().__new__(_cls, float(real), float(i), float(j), float(k))
def conjugate(self):
return Q(self.real, -self.i, -self.j, -self.k)
def _norm2(self):
return sum( x*x for x in self)
def norm(self):
return math.sqrt(self._norm2())
def reciprocal(self):
n2 = self._norm2()
return Q(*(x / n2 for x in self.conjugate()))
def __str__(self):
'Shorter form of Quaternion as string'
return 'Q(%g, %g, %g, %g)' % self
def __neg__(self):
return Q(-self.real, -self.i, -self.j, -self.k)
def __add__(self, other):
if type(other) == Q:
return Q( *(s+o for s,o in zip(self, other)) )
try:
f = float(other)
except:
return NotImplemented
return Q(self.real + f, self.i, self.j, self.k)
def __radd__(self, other):
return Q.__add__(self, other)
def __mul__(self, other):
if type(other) == Q:
a1,b1,c1,d1 = self
a2,b2,c2,d2 = other
return Q(
a1*a2 - b1*b2 - c1*c2 - d1*d2,
a1*b2 + b1*a2 + c1*d2 - d1*c2,
a1*c2 - b1*d2 + c1*a2 + d1*b2,
a1*d2 + b1*c2 - c1*b2 + d1*a2 )
try:
f = float(other)
except:
return NotImplemented
return Q(self.real * f, self.i * f, self.j * f, self.k * f)
def __rmul__(self, other):
return Q.__mul__(self, other)
def __truediv__(self, other):
if type(other) == Q:
return self.__mul__(other.reciprocal())
try:
f = float(other)
except:
return NotImplemented
return Q(self.real / f, self.i / f, self.j / f, self.k / f)
def __rtruediv__(self, other):
return other * self.reciprocal()
__div__, __rdiv__ = __truediv__, __rtruediv__
Quaternion = Q
q = Q(1, 2, 3, 4)
q1 = Q(2, 3, 4, 5)
q2 = Q(3, 4, 5, 6)
r = 7
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Groovy
|
Groovy
|
s="s=%s;printf s,s.inspect()";printf s,s.inspect()
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Prolog
|
Prolog
|
range_extract :-
L = [0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39] ,
writeln(L),
pack_Range(L, LP),
maplist(study_Range, R, LP),
extract_Range(LA, R),
atom_chars(A, LA),
writeln(A).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% extract_Range(?In, ?Out)
% In : '-6,-3--1,3-5,7-11,14,15,17-20' =>
% Out : [-6], [-3--1], [3-5],[7-11], [14],[15], [17-20]
%
extract_Range([], []).
extract_Range(X , [Range | Y1]) :-
get_Range(X, U-U, Range, X1),
extract_Range(X1, Y1).
get_Range([], Range-[], Range, []).
get_Range([','|B], Range-[], Range, B) :- !.
get_Range([A | B], EC, Range, R) :-
append_dl(EC, [A | U]-U, NEC),
get_Range(B, NEC, Range, R).
append_dl(X-Y, Y-Z, X-Z).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% study Range(?In, ?Out)
% In : [-6]
% Out : [-6,-6]
%
% In : [-3--1]
% Out : [-3, -1]
%
study_Range(Range1, [Deb, Deb]) :-
catch(number_chars(Deb, Range1), Deb, false).
study_Range(Range1, [Deb, Fin]) :-
append(A, ['-'|B], Range1),
A \= [],
number_chars(Deb, A),
number_chars(Fin, B).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
:- use_module(library(clpfd)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Pack Range(?In, ?Out)
% In : -6,
% Out : [-6]
%
% In : -3, -2,-1
% Out : [-3,-1]
%
pack_Range([],[]).
pack_Range([X|Rest],[[X | V]|Packed]):-
run(X,Rest, [X|V], RRest),
pack_Range(RRest,Packed).
run(Fin,[Other|RRest], [Deb, Fin],[Other|RRest]):-
Fin #\= Deb,
Fin #\= Deb + 1,
Other #\= Fin+1.
run(Fin,[],[_Var, Fin],[]).
run(Var,[Var1|LRest],[Deb, Fin], RRest):-
Fin #\= Deb,
Fin #\= Deb + 1,
Var1 #= Var + 1,
run(Var1,LRest,[Deb, Fin], RRest).
run(Val,[Other|RRest], [Val, Val],[Other|RRest]).
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Tailspin
|
Tailspin
|
templates reverse
'$:[ $... ] -> $(last..first:-1)...;' !
end reverse
'asdf' -> reverse -> !OUT::write
'
' -> !OUT::write
'as⃝df̅' -> reverse -> !OUT::write
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Pascal
|
Pascal
|
program fifo(input, output);
type
pNode = ^tNode;
tNode = record
value: integer;
next: pNode;
end;
tFifo = record
first, last: pNode;
end;
procedure initFifo(var fifo: tFifo);
begin
fifo.first := nil;
fifo.last := nil
end;
procedure pushFifo(var fifo: tFifo; value: integer);
var
node: pNode;
begin
new(node);
node^.value := value;
node^.next := nil;
if fifo.first = nil
then
fifo.first := node
else
fifo.last^.next := node;
fifo.last := node
end;
function popFifo(var fifo: tFifo; var value: integer): boolean;
var
node: pNode;
begin
if fifo.first = nil
then
popFifo := false
else
begin
node := fifo.first;
fifo.first := fifo.first^.next;
value := node^.value;
dispose(node);
popFifo := true
end
end;
procedure testFifo;
var
fifo: tFifo;
procedure testpop(expectEmpty: boolean; expectedValue: integer);
var
i: integer;
begin
if popFifo(fifo, i)
then
if expectEmpty
then
writeln('Error! Expected empty, got ', i, '.')
else
if i = expectedValue
then
writeln('Ok, got ', i, '.')
else
writeln('Error! Expected ', expectedValue, ', got ', i, '.')
else
if expectEmpty
then
writeln('Ok, fifo is empty.')
else
writeln('Error! Expected ', expectedValue, ', found fifo empty.')
end;
begin
initFifo(fifo);
pushFifo(fifo, 2);
pushFifo(fifo, 3);
pushFifo(fifo, 5);
testpop(false, 2);
pushFifo(fifo, 7);
testpop(false, 3);
testpop(false, 5);
pushFifo(fifo, 11);
testpop(false, 7);
testpop(false, 11);
pushFifo(fifo, 13);
testpop(false, 13);
testpop(true, 0);
pushFifo(fifo, 17);
testpop(false, 17);
testpop(true, 0)
end;
begin
writeln('Testing fifo implementation ...');
testFifo;
writeln('Testing finished.')
end.
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#R
|
R
|
library(quaternions)
q <- Q(1, 2, 3, 4)
q1 <- Q(2, 3, 4, 5)
q2 <- Q(3, 4, 5, 6)
r <- 7.0
display <- function(x){
e <- deparse(substitute(x))
res <- if(class(x) == "Q") paste(x$r, "+", x$i, "i+", x$j, "j+", x$k, "k", sep = "") else x
cat(noquote(paste(c(e, " = ", res, "\n"), collapse="")))
invisible(res)
}
display(norm(q))
display(-q)
display(Conj(q))
display(r + q)
display(q1 + q2)
display(r*q)
display(q*r)
if(display(q1*q2) == display(q2*q1)) cat("q1*q2 == q2*q1\n") else cat("q1*q2 != q2*q1\n")
## norm(q) = 5.47722557505166
## -q = -1+-2i+-3j+-4k
## Conj(q) = 1+-2i+-3j+-4k
## r + q = 8+2i+3j+4k
## q1 + q2 = 5+7i+9j+11k
## r * q = 7+14i+21j+28k
## q * r = 7+14i+21j+28k
## q1 * q2 = -56+16i+24j+26k
## q2 * q1 = -56+18i+20j+28k
## q1*q2 != q2*q1
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#GW-BASIC
|
GW-BASIC
|
10 LIST
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Hare
|
Hare
|
use fmt;
const src: str = "use fmt;
const src: str = {0}{1}{0};
export fn main() void = {{fmt::printfln(src, '{0}', src)!;}};";
export fn main() void = {fmt::printfln(src, '"', src)!;};
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#PureBasic
|
PureBasic
|
DataSection
Data.i 33 ;count of elements to be read
Data.i 0, 1, 2, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
Data.i 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39
EndDataSection
NewList values()
;setup list
Define elementCount, i
Read.i elementCount
For i = 1 To elementCount
AddElement(values()): Read.i values()
Next
Procedure.s rangeExtract(List values())
Protected listSize = ListSize(values()) - 1
Protected rangeMarker, rangeStart, rangeIncrement, retraceSteps, rangeSize, endOfRange, output.s, sub.s
ForEach values()
rangeStart = values():
sub = Str(rangeStart)
If NextElement(values())
retraceSteps = 1
rangeIncrement = values() - rangeStart
If rangeIncrement = 1 Or rangeIncrement = -1
;found start of possible range
If ListIndex(values()) <> listSize
retraceSteps = 2
rangeSize = 2
endOfRange = #False
rangeMarker = values()
While NextElement(values())
If values() - rangeMarker <> rangeIncrement
endOfRange = #True
Break
EndIf
rangeSize + 1
rangeMarker = values()
Wend
If rangeSize > 2
sub = Str(rangeStart) + "-" + Str(rangeMarker)
If Not endOfRange
retraceSteps = 0 ;at end of list
Else
retraceSteps = 1
EndIf
EndIf
EndIf
EndIf
;return to the value before look-aheads
While retraceSteps > 0
PreviousElement(values()): retraceSteps - 1
Wend
EndIf
output + sub + ","
Next
ProcedureReturn RTrim(output, ",")
EndProcedure
If OpenConsole()
PrintN(rangeExtract(values()))
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Tcl
|
Tcl
|
package require Tcl 8.5
string reverse asdf
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Perl
|
Perl
|
use Carp;
sub mypush (\@@) {my($list,@things)=@_; push @$list, @things}
sub mypop (\@) {my($list)=@_; @$list or croak "Empty"; shift @$list }
sub empty (@) {not @_}
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Racket
|
Racket
|
#lang racket
(struct quaternion (a b c d)
#:transparent)
(define-match-expander quaternion:
(λ (stx)
(syntax-case stx ()
[(_ a b c d)
#'(or (quaternion a b c d)
(and a (app (λ(_) 0) b) (app (λ(_) 0) c) (app (λ(_) 0) d)))])))
(define (norm q)
(match q
[(quaternion: a b c d)
(sqrt (+ (sqr a) (sqr b) (sqr c) (sqr d)))]))
(define (negate q)
(match q
[(quaternion: a b c d)
(quaternion (- a) (- b) (- c) (- d))]))
(define (conjugate q)
(match q
[(quaternion: a b c d)
(quaternion a (- b) (- c) (- d))]))
(define (add q1 q2 . q-rest)
(let ((ans (match* (q1 q2)
[((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2))
(quaternion (+ a1 a2) (+ b1 b2) (+ c1 c2) (+ d1 d2))])))
(if (empty? q-rest)
ans
(apply add (cons ans q-rest)))))
(define (multiply q1 q2 . q-rest)
(let ((ans (match* (q1 q2)
[((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2))
(quaternion (- (* a1 a2) (* b1 b2) (* c1 c2) (* d1 d2))
(+ (* a1 b2) (* b1 a2) (* c1 d2) (- (* d1 c2)))
(+ (* a1 c2) (- (* b1 d2)) (* c1 a2) (* d1 b2))
(+ (* a1 d2) (* b1 c2) (- (* c1 b2)) (* d1 a2)))])))
(if (empty? q-rest)
ans
(apply multiply (cons ans q-rest)))))
;; Tests
(module+ main
(define i (quaternion 0 1 0 0))
(define j (quaternion 0 0 1 0))
(define k (quaternion 0 0 0 1))
(displayln (multiply i j k))
(newline)
(define q (quaternion 1 2 3 4))
(define q1 (quaternion 2 3 4 5))
(define q2 (quaternion 3 4 5 6))
(define r 7)
(for ([quat (list q q1 q2)])
(displayln quat)
(displayln (norm quat))
(displayln (negate quat))
(displayln (conjugate quat))
(newline))
(add r q)
(add q1 q2)
(multiply r q)
(newline)
(multiply q1 q2)
(multiply q2 q1)
(equal? (multiply q1 q2)
(multiply q2 q1)))
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Haskell
|
Haskell
|
let q s = putStrLn (s ++ show s) in q "let q s = putStrLn (s ++ show s) in q "
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Python
|
Python
|
def range_extract(lst):
'Yield 2-tuple ranges or 1-tuple single elements from list of increasing ints'
lenlst = len(lst)
i = 0
while i< lenlst:
low = lst[i]
while i <lenlst-1 and lst[i]+1 == lst[i+1]: i +=1
hi = lst[i]
if hi - low >= 2:
yield (low, hi)
elif hi - low == 1:
yield (low,)
yield (hi,)
else:
yield (low,)
i += 1
def printr(ranges):
print( ','.join( (('%i-%i' % r) if len(r) == 2 else '%i' % r)
for r in ranges ) )
if __name__ == '__main__':
for lst in [[-8, -7, -6, -3, -2, -1, 0, 1, 3, 4, 5, 7,
8, 9, 10, 11, 14, 15, 17, 18, 19, 20],
[0, 1, 2, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39]]:
#print(list(range_extract(lst)))
printr(range_extract(lst))
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#TI-83_BASIC
|
TI-83 BASIC
|
:Str1
:For(I,1,length(Ans)-1
:sub(Ans,2I,1)+Ans
:End
:sub(Ans,1,I→Str1
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Phix
|
Phix
|
with javascript_semantics
sequence queue = {}
procedure push_item(object what)
queue = append(queue,what)
end procedure
function pop_item()
object what = queue[1]
queue = queue[2..$]
return what
end function
function empty()
return length(queue)=0
end function
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Raku
|
Raku
|
class Quaternion {
has Real ( $.r, $.i, $.j, $.k );
multi method new ( Real $r, Real $i, Real $j, Real $k ) {
self.bless: :$r, :$i, :$j, :$k;
}
multi qu(*@r) is export { Quaternion.new: |@r }
sub postfix:<j>(Real $x) is export { qu 0, 0, $x, 0 }
sub postfix:<k>(Real $x) is export { qu 0, 0, 0, $x }
method Str () { "$.r + {$.i}i + {$.j}j + {$.k}k" }
method reals () { $.r, $.i, $.j, $.k }
method conj () { qu $.r, -$.i, -$.j, -$.k }
method norm () { sqrt [+] self.reals X** 2 }
multi infix:<eqv> ( Quaternion $a, Quaternion $b ) is export { $a.reals eqv $b.reals }
multi infix:<+> ( Quaternion $a, Real $b ) is export { qu $b+$a.r, $a.i, $a.j, $a.k }
multi infix:<+> ( Real $a, Quaternion $b ) is export { qu $a+$b.r, $b.i, $b.j, $b.k }
multi infix:<+> ( Quaternion $a, Complex $b ) is export { qu $b.re + $a.r, $b.im + $a.i, $a.j, $a.k }
multi infix:<+> ( Complex $a, Quaternion $b ) is export { qu $a.re + $b.r, $a.im + $b.i, $b.j, $b.k }
multi infix:<+> ( Quaternion $a, Quaternion $b ) is export { qu $a.reals Z+ $b.reals }
multi prefix:<-> ( Quaternion $a ) is export { qu $a.reals X* -1 }
multi infix:<*> ( Quaternion $a, Real $b ) is export { qu $a.reals X* $b }
multi infix:<*> ( Real $a, Quaternion $b ) is export { qu $b.reals X* $a }
multi infix:<*> ( Quaternion $a, Complex $b ) is export { $a * qu $b.reals, 0, 0 }
multi infix:<*> ( Complex $a, Quaternion $b ) is export { $b R* qu $a.reals, 0, 0 }
multi infix:<*> ( Quaternion $a, Quaternion $b ) is export {
my @a_rijk = $a.reals;
my ( $r, $i, $j, $k ) = $b.reals;
return qu [+]( @a_rijk Z* $r, -$i, -$j, -$k ), # real
[+]( @a_rijk Z* $i, $r, $k, -$j ), # i
[+]( @a_rijk Z* $j, -$k, $r, $i ), # j
[+]( @a_rijk Z* $k, $j, -$i, $r ); # k
}
}
import Quaternion;
my $q = 1 + 2i + 3j + 4k;
my $q1 = 2 + 3i + 4j + 5k;
my $q2 = 3 + 4i + 5j + 6k;
my $r = 7;
say "1) q norm = {$q.norm}";
say "2) -q = {-$q}";
say "3) q conj = {$q.conj}";
say "4) q + r = {$q + $r}";
say "5) q1 + q2 = {$q1 + $q2}";
say "6) q * r = {$q * $r}";
say "7) q1 * q2 = {$q1 * $q2}";
say "8) q1q2 { $q1 * $q2 eqv $q2 * $q1 ?? '==' !! '!=' } q2q1";
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Hoon
|
Hoon
|
!: :- %say |= [^ [~ ~]] =+ ^= s ((list ,@tas) ~['!: :- %say |= [^ [~ ~]] =+ ^= s ((list ,@tas) ~[' 'x' ']) :- %noun (,tape (turn s |=(a=@tas ?:(=(a %x) (crip `(list ,@tas)`(turn s |=(b=@tas =+([s=?:(=(b %x) " " "") m=(trip ~~~27.)] (crip :(welp s m (trip b) m s)))))) a))))']) :- %noun (,tape (turn s |=(a=@tas ?:(=(a %x) (crip `(list ,@tas)`(turn s |=(b=@tas =+([s=?:(=(b %x) " " "") m=(trip ~~~27.)] (crip :(welp s m (trip b) m s)))))) a))))
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Qi
|
Qi
|
(define make-range
Start Start -> ["," Start]
Start End -> ["," Start "," End] where (= End (+ Start 1))
Start End -> ["," Start "-" End])
(define range-extract-0
Start End [] -> (make-range Start End)
Start End [A|As] -> (range-extract-0 Start A As) where (= (+ 1 End) A)
Start End [A|As] -> (append (make-range Start End) (range-extract-0 A A As)))
(define range-extract
[A |As] -> (FORMAT NIL "~{~a~}" (tail (range-extract-0 A A As))))
(range-extract [ 0 1 2 4 6 7 8 11 12 14
15 16 17 18 19 20 21 22 23 24
25 27 28 29 30 31 32 33 35 36
37 38 39])
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#TMG
|
TMG
|
prog: parse(str);
str: smark any(!<<>>) scopy str/done = { 1 2 };
done: ;
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Phixmonti
|
Phixmonti
|
include ..\Utilitys.pmt
def push /# l i -- l&i #/
0 put
enddef
def empty? /# l -- flag #/
len 0 ==
enddef
def pop /# l -- l-1 #/
empty? if
"Empty"
else
head swap tail nip swap
endif
enddef
( ) /# empty queue #/
1 push 2 push 3 push
pop ? pop ? pop ? pop ?
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Red
|
Red
|
quaternion: context [
quaternion!: make typeset! [block! hash! vector!]
multiply: function [q [integer! float! quaternion!] p [integer! float! quaternion!]][
case [
number? q [collect [forall p [keep p/1 * q]]]
number? p [collect [forall q [keep q/1 * p]]]
'else [
reduce [
(q/1 * p/1) - (q/2 * p/2) - (q/3 * p/3) - (q/4 * p/4)
(q/1 * p/2) + (q/2 * p/1) + (q/3 * p/4) - (q/4 * p/3)
(q/1 * p/3) + (q/3 * p/1) + (q/4 * p/2) - (q/2 * p/4)
(q/1 * p/4) + (q/4 * p/1) + (q/2 * p/3) - (q/3 * p/2)
]
]
]
]
add: func [q [integer! float! quaternion!] p [integer! float! quaternion!]][
case [
number? q [head change copy p p/1 + q]
number? p [head change copy q q/1 + p]
'else [collect [forall q [keep q/1 + p/(index? q)]]]
]
]
negate: func [q [quaternion!]][collect [forall q [keep 0 - q/1]]]
conjugate: func [q [quaternion!]][collect [keep q/1 q: next q forall q [keep 0 - q/1]]]
norm: func [q [quaternion!]][sqrt first multiply q conjugate copy q]
normalize: function [q [quaternion!]][n: norm q collect [forall q [keep q/1 / n]]]
inverse: func [q [quaternion!]][(conjugate q) / ((norm q) ** 2)]
]
set [q q1 q2 r] [[1 2 3 4] [2 3 4 5] [3 4 5 6] 7]
print [{
1. The norm of a quaternion:
`quaternion/norm q` =>} quaternion/norm q {
2. The negative of a quaternion:
`quaternion/negate q` =>} mold quaternion/negate q {
3. The conjugate of a quaternion:
<code>quaternion/conjugate q</code> =>} mold quaternion/conjugate q {
4. Addition of a real number `r` and a quaternion `q`:
`quaternion/add r q` =>} mold quaternion/add r q {
`quaternion/add q r` =>} mold quaternion/add q r {
5. Addition of two quaternions:
`quaternion/add q1 q2` =>} mold quaternion/add q1 q2 {
6. Multiplication of a real number and a quaternion:
`quaternion/multiply q r` =>} mold quaternion/multiply q r {
`quaternion/multiply r q` =>} mold quaternion/multiply r q {
7. Multiplication of two quaternions `q1` and `q2` is given by:
`quaternion/multiply q1 q2` =>} mold quaternion/multiply q1 q2 {
8. Show that, for the two quaternions `q1` and `q2`:
`equal? quaternion/multiply q1 q2 mold quaternion/multiply q2 q1` =>}
equal? quaternion/multiply q1 q2 quaternion/multiply q2 q1]
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#HQ9.2B
|
HQ9+
|
Q
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#R
|
R
|
extract.range = function(v) {
r <- c(1, which(diff(v) != 1) + 1, length(v) + 1)
paste0(collapse=",",
v[head(r, -1)],
ifelse(diff(r) == 1,
"",
paste0(ifelse(diff(r) == 2, ",", "-"),
v[r[-1] - 1])))
}
print(extract.range(c(
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20)))
print(extract.range(c(
0, 1, 2, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39)))
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Tosh
|
Tosh
|
when flag clicked
ask "Say something..." and wait
set i to (length of answer)
set inv to ""
repeat until i = 0
set inv to (join (inv) (letter (i) of answer))
change i by -1
end
say inv
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PHP
|
PHP
|
class Fifo {
private $data = array();
public function push($element){
array_push($this->data, $element);
}
public function pop(){
if ($this->isEmpty()){
throw new Exception('Attempt to pop from an empty queue');
}
return array_shift($this->data);
}
//Alias functions
public function enqueue($element) { $this->push($element); }
public function dequeue() { return $this->pop(); }
//Note: PHP prevents a method name of 'empty'
public function isEmpty(){
return empty($this->data);
}
}
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#REXX
|
REXX
|
/*REXX program performs some operations on quaternion type numbers and displays results*/
q = 1 2 3 4 ; q1 = 2 3 4 5
r = 7 ; q2 = 3 4 5 6
call qShow q , 'q'
call qShow q1 , 'q1'
call qShow q2 , 'q2'
call qShow r , 'r'
call qShow qNorm(q) , 'norm q' , "task 1:"
call qShow qNeg(q) , 'negative q' , "task 2:"
call qShow qConj(q) , 'conjugate q' , "task 3:"
call qShow qAdd( r, q ) , 'addition r+q' , "task 4:"
call qShow qAdd(q1, q2 ) , 'addition q1+q2' , "task 5:"
call qShow qMul( q, r ) , 'multiplication q*r' , "task 6:"
call qShow qMul(q1, q2 ) , 'multiplication q1*q2' , "task 7:"
call qShow qMul(q2, q1 ) , 'multiplication q2*q1' , "task 8:"
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
qConj: procedure; parse arg x; call qXY; return x.1 (-x.2) (-x.3) (-x.4)
qNeg: procedure; parse arg x; call qXY; return -x.1 (-x.2) (-x.3) (-x.4)
qNorm: procedure; parse arg x; call qXY; return sqrt(x.1**2 +x.2**2 +x.3**2 +x.4**2)
qAdd: procedure; parse arg x,y; call qXY 2; return x.1+y.1 x.2+y.2 x.3+y.3 x.4+y.4
/*──────────────────────────────────────────────────────────────────────────────────────*/
qMul: procedure; parse arg x,y; call qXY y
return x.1*y.1 -x.2*y.2 -x.3*y.3 -x.4*y.4 x.1*y.2 +x.2*y.1 +x.3*y.4 -x.4*y.3 ,
x.1*y.3 -x.2*y.4 +x.3*y.1 +x.4*y.2 x.1*y.4 +x.2*y.3 -x.3*y.2 +x.4*y.1
/*──────────────────────────────────────────────────────────────────────────────────────*/
qShow: procedure; parse arg x; call qXY; $=
do m=1 for 4; _= x.m; if _==0 then iterate; if _>=0 then _= '+'_
if m\==1 then _= _ || substr('∙ijk', m, 1); $= strip($ || _, , "+")
end /*m*/
say left(arg(3), 9) right(arg(2), 20) ' ──► ' $; return $
/*──────────────────────────────────────────────────────────────────────────────────────*/
qXY: do n=1 for 4; x.n= word( word(x, n) 0, 1)/1; end /*n*/
if arg()==1 then do m=1 for 4; y.m= word( word(y, m) 0, 1)/1; end /*m*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d= digits(); i=; m.=9; h=d+6
numeric digits; numeric form; if x<0 then parse value -x 'i' with x i
parse value format(x, 2, 1, , 0) 'E0' with g "E" _ .; g= g *.5'e'_ % 2
do j=0 while h>9; m.j=h; h= h % 2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g= (g + x/g)* .5; end /*k*/
numeric digits d; return (g/1)i /*make complex if X<0 */
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#HTML
|
HTML
|
<!DOCTYPE html>
<html>
<head>
<title>HTML/CSS Quine</title>
<style type="text/css">
* { font: 10pt monospace; }
head, style { display: block; }
style { white-space: pre; }
style:before {
content:
"\3C""!DOCTYPE html\3E"
"\A\3Chtml\3E\A"
"\3Chead\3E\A"
"\9\3Ctitle\3E""HTML/CSS Quine""\3C/title\3E\A"
"\9\3Cstyle type=\22text/css\22\3E";
}
style:after {
content:
"\3C/style\3E\A"
"\3C/head\3E\A"
"\3C""body\3E\3C/body\3E\A"
"\3C/html\3E";
}
</style>
</head>
<body></body>
</html>
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Racket
|
Racket
|
#lang racket
(define (list->ranges xs)
(define (R lo hi)
(if (= lo hi) (~a lo) (~a lo (if (= 1 (- hi lo)) "," "-") hi)))
(let loop ([xs xs] [lo #f] [hi #f] [r '()])
(cond [(null? xs) (string-join (reverse (if lo (cons (R lo hi) r) r)) ",")]
[(not hi) (loop (cdr xs) (car xs) (car xs) r)]
[(= 1 (- (car xs) hi)) (loop (cdr xs) lo (car xs) r)]
[else (loop xs #f #f (cons (R lo hi) r))])))
(list->ranges '(0 1 2 4 6 7 8 11 12 14 15 16 17 18 19 20 21 22 23
24 25 27 28 29 30 31 32 33 35 36 37 38 39))
;; -> "0-2,4,6-8,11,12,14-25,27-33,35-39"
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Transd
|
Transd
|
#lang transd
MainModule : {
_start: (lambda (with s "as⃝df̅"
(textout (reverse s))
// reversing user input
(textout "\nPlease, enter a string: ")
(textout "Input: " (reverse (read s)))
))
}
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Picat
|
Picat
|
go =>
println("Test 1"),
queue_test1,
nl.
empty(Q) => Q = [].
push(Queue, Value) = Q2 =>
Q2 = [Value] ++ Queue.
pop(Q,_) = _, Q==[] ; var(Q) =>
throw $error(empty_queue,pop,'Q'=Q).
pop(Queue,Q2) = Queue.last() =>
Q2 = [Queue[I] : I in 1..Queue.len-1].
queue_test1 =>
% create an empty queue
println("Start test 2"),
empty(Q0),
printf("Create queue %w%n%n", Q0),
% add numbers 1 and 2
println("Add numbers 1 and 2 : "),
Q1 = Q0.push(1),
Q2 = Q1.push(2),
% display queue
printf("Q2: %w\n\n", Q2),
% pop element
V = Q2.pop(Q3),
% display results
printf("Pop : Value: %w Queue: %w\n\n", V, Q3),
% test the queue
print("Test of the queue: "),
( Q3.empty() -> println("Queue empty"); println("Queue not empty") ),
nl,
% pop the elements
print("Pop the queue : "),
V1 = Q3.pop(Q4),
printf("Value %w Queue : %w%n%n", V1, Q4),
println("Pop empty queue:"),
catch(_V = Q4.pop(_Q5),Exception,println(Exception)),
nl,
println("\nEnd of tests.").
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Ruby
|
Ruby
|
class Quaternion
def initialize(*parts)
raise ArgumentError, "wrong number of arguments (#{parts.size} for 4)" unless parts.size == 4
raise ArgumentError, "invalid value of quaternion parts #{parts}" unless parts.all? {|x| x.is_a?(Numeric)}
@parts = parts
end
def to_a; @parts; end
def to_s; "Quaternion#{@parts.to_s}" end
alias inspect to_s
def complex_parts; [Complex(*to_a[0..1]), Complex(*to_a[2..3])]; end
def real; @parts.first; end
def imag; @parts[1..3]; end
def conj; Quaternion.new(real, *imag.map(&:-@)); end
def norm; Math.sqrt(to_a.reduce(0){|sum,e| sum + e**2}) end # In Rails: Math.sqrt(to_a.sum { e**2 })
def ==(other)
case other
when Quaternion; to_a == other.to_a
when Numeric; to_a == [other, 0, 0, 0]
else false
end
end
def -@; Quaternion.new(*to_a.map(&:-@)); end
def -(other); self + -other; end
def +(other)
case other
when Numeric
Quaternion.new(real + other, *imag)
when Quaternion
Quaternion.new(*to_a.zip(other.to_a).map { |x,y| x + y }) # In Rails: zip(other).map(&:sum)
end
end
def *(other)
case other
when Numeric
Quaternion.new(*to_a.map { |x| x * other })
when Quaternion
# Multiplication of quaternions in C x C space. See "Cayley-Dickson construction".
a, b, c, d = *complex_parts, *other.complex_parts
x, y = a*c - d.conj*b, a*d + b*c.conj
Quaternion.new(x.real, x.imag, y.real, y.imag)
end
end
# Coerce is called by Ruby to return a compatible type/receiver when the called method/operation does not accept a Quaternion
def coerce(other)
case other
when Numeric then [Scalar.new(other), self]
else raise TypeError, "#{other.class} can't be coerced into #{self.class}"
end
end
class Scalar
def initialize(val); @val = val; end
def +(other); other + @val; end
def *(other); other * @val; end
def -(other); Quaternion.new(@val, 0, 0, 0) - other; end
end
end
if __FILE__ == $0
q = Quaternion.new(1,2,3,4)
q1 = Quaternion.new(2,3,4,5)
q2 = Quaternion.new(3,4,5,6)
r = 7
expressions = ["q", "q1", "q2",
"q.norm", "-q", "q.conj", "q + r", "r + q","q1 + q2", "q2 + q1",
"q * r", "r * q", "q1 * q2", "q2 * q1", "(q1 * q2 != q2 * q1)",
"q - r", "r - q"]
expressions.each do |exp|
puts "%20s = %s" % [exp, eval(exp)]
end
end
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Huginn
|
Huginn
|
#! /bin/sh
exec huginn --no-argv -E "${0}"
#! huginn
main() {
c = "#! /bin/sh{1}~"
"exec huginn --no-argv -E {3}${{0}}{3}{1}#! huginn{1}{1}~"
"main() {{{1}{2}c = {3}{0}{3};{1}{2}print({1}~"
"{2}{2}copy( c ).replace( {3}{5}{3}, {3}{3} )~"
".format({1}{2}{2}{2}c.replace( {3}{5}{3}, ~"
"{3}{5}{4}{3}{4}n{4}t{4}t{4}{3}{3} ), ~"
"{3}{4}n{3}, {3}{4}t{3}, {3}{4}{3}{3}, {3}{4}{4}{3}, ~"
"{3}{5}{3}{1}{2}{2}){1}{2});{1}}}{1}{1}";
print(
copy( c ).replace( "~", "" ).format(
c.replace( "~", "~\"\n\t\t\"" ), "\n", "\t", "\"", "\\", "~"
)
);
}
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Raku
|
Raku
|
sub range-extraction (*@ints) {
my $prev = NaN;
my @ranges;
for @ints -> $int {
if $int == $prev + 1 {
@ranges[*-1].push: $int;
}
else {
@ranges.push: [$int];
}
$prev = $int;
}
join ',', @ranges.map: -> @r { @r > 2 ?? "@r[0]-@r[*-1]" !! @r }
}
say range-extraction
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20;
say range-extraction
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39;
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Turing
|
Turing
|
function reverse (s : string) : string
var rs := ""
for i : 0 .. length (s) - 1
rs := rs + s (length (s) - i)
end for
result rs
end reverse
put reverse ("iterative example")
put reverse (reverse ("iterative example"))
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PicoLisp
|
PicoLisp
|
(off Queue) # Clear Queue
(fifo 'Queue 1) # Store number '1'
(fifo 'Queue 'abc) # an internal symbol 'abc'
(fifo 'Queue "abc") # a transient symbol "abc"
(fifo 'Queue '(a b c)) # and a list (a b c)
Queue # Show the queue
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Rust
|
Rust
|
use std::fmt::{Display, Error, Formatter};
use std::ops::{Add, Mul, Neg};
#[derive(Clone,Copy,Debug)]
struct Quaternion {
a: f64,
b: f64,
c: f64,
d: f64
}
impl Quaternion {
pub fn new(a: f64, b: f64, c: f64, d: f64) -> Quaternion {
Quaternion {
a: a,
b: b,
c: c,
d: d
}
}
pub fn norm(&self) -> f64 {
(self.a.powi(2) + self.b.powi(2) + self.c.powi(2) + self.d.powi(2)).sqrt()
}
pub fn conjugate(&self) -> Quaternion {
Quaternion {
a: self.a,
b: -self.b,
c: -self.c,
d: -self.d
}
}
}
impl Add for Quaternion {
type Output = Quaternion;
#[inline]
fn add(self, other: Quaternion) -> Self::Output {
Quaternion {
a: self.a + other.a,
b: self.b + other.b,
c: self.c + other.c,
d: self.d + other.d
}
}
}
impl Add<f64> for Quaternion {
type Output = Quaternion;
#[inline]
fn add(self, other: f64) -> Self::Output {
Quaternion {
a: self.a + other,
b: self.b,
c: self.c,
d: self.d
}
}
}
impl Add<Quaternion> for f64 {
type Output = Quaternion;
#[inline]
fn add(self, other: Quaternion) -> Self::Output {
Quaternion {
a: other.a + self,
b: other.b,
c: other.c,
d: other.d
}
}
}
impl Display for Quaternion {
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
write!(f, "({} + {}i + {}j + {}k)", self.a, self.b, self.c, self.d)
}
}
impl Mul for Quaternion {
type Output = Quaternion;
#[inline]
fn mul(self, rhs: Quaternion) -> Self::Output {
Quaternion {
a: self.a * rhs.a - self.b * rhs.b - self.c * rhs.c - self.d * rhs.d,
b: self.a * rhs.b + self.b * rhs.a + self.c * rhs.d - self.d * rhs.c,
c: self.a * rhs.c - self.b * rhs.d + self.c * rhs.a + self.d * rhs.b,
d: self.a * rhs.d + self.b * rhs.c - self.c * rhs.b + self.d * rhs.a,
}
}
}
impl Mul<f64> for Quaternion {
type Output = Quaternion;
#[inline]
fn mul(self, other: f64) -> Self::Output {
Quaternion {
a: self.a * other,
b: self.b * other,
c: self.c * other,
d: self.d * other
}
}
}
impl Mul<Quaternion> for f64 {
type Output = Quaternion;
#[inline]
fn mul(self, other: Quaternion) -> Self::Output {
Quaternion {
a: other.a * self,
b: other.b * self,
c: other.c * self,
d: other.d * self
}
}
}
impl Neg for Quaternion {
type Output = Quaternion;
#[inline]
fn neg(self) -> Self::Output {
Quaternion {
a: -self.a,
b: -self.b,
c: -self.c,
d: -self.d
}
}
}
fn main() {
let q0 = Quaternion { a: 1., b: 2., c: 3., d: 4. };
let q1 = Quaternion::new(2., 3., 4., 5.);
let q2 = Quaternion::new(3., 4., 5., 6.);
let r: f64 = 7.;
println!("q0 = {}", q0);
println!("q1 = {}", q1);
println!("q2 = {}", q2);
println!("r = {}", r);
println!();
println!("-q0 = {}", -q0);
println!("conjugate of q0 = {}", q0.conjugate());
println!();
println!("r + q0 = {}", r + q0);
println!("q0 + r = {}", q0 + r);
println!();
println!("r * q0 = {}", r * q0);
println!("q0 * r = {}", q0 * r);
println!();
println!("q0 + q1 = {}", q0 + q1);
println!("q0 * q1 = {}", q0 * q1);
println!();
println!("q0 * (conjugate of q0) = {}", q0 * q0.conjugate());
println!();
println!(" q0 + q1 * q2 = {}", q0 + q1 * q2);
println!("(q0 + q1) * q2 = {}", (q0 + q1) * q2);
println!();
println!(" q0 * q1 * q2 = {}", q0 *q1 * q2);
println!("(q0 * q1) * q2 = {}", (q0 * q1) * q2);
println!(" q0 * (q1 * q2) = {}", q0 * (q1 * q2));
println!();
println!("normal of q0 = {}", q0.norm());
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Icon_and_Unicon
|
Icon and Unicon
|
procedure main();x:="write(\"procedure main();x:=\",image(x));write(x);end"
write("procedure main();x:=",image(x));write(x);end
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#REXX
|
REXX
|
/*REXX program creates a range extraction from a list of numbers (can be negative.) */
old=0 1 2 4 6 7 8 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 35 36 37 38 39
#= words(old) /*number of integers in the number list*/
new= /*the new list, possibly with ranges. */
do j=1 to #; z= word(old, j) /*obtain Jth number in the old list. */
inc= 1; new= new','z /*append " " to " new " */
do k=j+1 to #; y= word(old, k) /*get the Kth number in the number list*/
if y\==z+inc then leave /*is this number not > previous by inc?*/
inc= inc + 1; g= y /*increase the range, assign G (good).*/
end /*k*/
if k-1=j | g=z+1 then iterate /*Is the range=0│1? Then keep truckin'*/
new= new'-'g; j= k - 1 /*indicate a range of #s; change index*/
end /*j*/
/*stick a fork in it, we're all done. */
new= substr(new, 2) /*elide the leading comma in the range.*/
say 'old:' old; say 'new:' new /*show the old and new range of numbers*/
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#TUSCRIPT
|
TUSCRIPT
|
$$ MODE TUSCRIPT
SET input="was it really a big fat cat i saw"
SET reversetext=TURN (input)
PRINT "before: ",input
PRINT "after: ",reversetext
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PL.2FI
|
PL/I
|
/* To push a node onto the end of the queue. */
push: procedure (tail);
declare tail handle (node), t handle (node);
t = new(:node:);
get (t => value);
if tail ^= bind(:null, node:) then
tail => link = t;
/* If the queue was non-empty, points the tail of the queue */
/* to the new node. */
tail = t; /* Point "tail" at the end of the queue. */
tail => link = bind(:node, null:);
end push;
/* To pop a node from the head of the queue. */
pop: procedure (head, val);
declare head handle (node), val fixed binary;
if head = bind(:node, null:) then signal error;
val = head => value;
head = head => pointer; /* pops the top node. */
if head = bind(:node, null:) then tail = head;
/* (If the queue is now empty, make tail null also.) */
end pop;
/* Queue status: the EMPTY function, returns true for empty queue. */
empty: procedure (h) returns (bit(1));
declare h handle (Node);
return (h = bind(:Node, null:) );
end empty;
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Scala
|
Scala
|
case class Quaternion(re: Double = 0.0, i: Double = 0.0, j: Double = 0.0, k: Double = 0.0) {
lazy val im = (i, j, k)
private lazy val norm2 = re*re + i*i + j*j + k*k
lazy val norm = math.sqrt(norm2)
def negative = Quaternion(-re, -i, -j, -k)
def conjugate = Quaternion(re, -i, -j, -k)
def reciprocal = Quaternion(re/norm2, -i/norm2, -j/norm2, -k/norm2)
def +(q: Quaternion) = Quaternion(re+q.re, i+q.i, j+q.j, k+q.k)
def -(q: Quaternion) = Quaternion(re-q.re, i-q.i, j-q.j, k-q.k)
def *(q: Quaternion) = Quaternion(
re*q.re - i*q.i - j*q.j - k*q.k,
re*q.i + i*q.re + j*q.k - k*q.j,
re*q.j - i*q.k + j*q.re + k*q.i,
re*q.k + i*q.j - j*q.i + k*q.re
)
def /(q: Quaternion) = this * q.reciprocal
def unary_- = negative
def unary_~ = conjugate
override def toString = "Q(%.2f, %.2fi, %.2fj, %.2fk)".formatLocal(java.util.Locale.ENGLISH, re, i, j, k)
}
object Quaternion {
import scala.language.implicitConversions
import Numeric.Implicits._
implicit def number2Quaternion[T:Numeric](n: T) = Quaternion(n.toDouble)
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Inform_7
|
Inform 7
|
R is a room. To quit: (- quit; -). When play begins: say entry 1 in Q; say Q in brace notation; quit. Q is a list of text variable. Q is {"R is a room. To quit: (- quit; -). When play begins: say entry 1 in Q; say Q in brace notation; quit. Q is a list of text variable. Q is "}
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Ring
|
Ring
|
# Project : Range extraction
int = "0,1,2,4,6,7,8,11,12,14,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,32,33,35,36,37,38,39"
int = str2list(substr(int, ",", nl))
sumint = []
intnew = 1
for n=1 to len(int)
flag = 0
nr = 0
intnew = 0
for m=n to len(int)-1
if int[m] = int[m+1] - 1
intnew = m+1
flag = 1
nr = nr + 1
else
exit
ok
next
if flag = 1 and nr > 1
if intnew != 0
add(sumint, [n,intnew])
n = m
ok
else
add(sumint, [n,""])
ok
next
showarray(sumint)
func showarray(vect)
see "["
svect = ""
for n = 1 to len(vect)
if vect[n][2] != ""
svect = svect +"" + int[vect[n][1]] + "-" + int[vect[n][2]] + ", "
else
svect = svect +"" + int[vect[n][1]] + ", "
ok
next
svect = left(svect, len(svect) - 2)
see svect
see "]" + nl
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#UNIX_Shell
|
UNIX Shell
|
#!/bin/bash
str=abcde
for((i=${#str}-1;i>=0;i--)); do rev="$rev${str:$i:1}"; done
echo $rev
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PostScript
|
PostScript
|
% our queue is just [] and empty? is already defined.
/push {exch tadd}.
/pop {uncons exch}.
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Seed7
|
Seed7
|
$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
# Define the quaternion number data type.
const type: quaternion is new object struct
var float: a is 0.0;
var float: b is 0.0;
var float: c is 0.0;
var float: d is 0.0;
end struct;
# Create a quaternion number from its real and imaginary parts.
const func quaternion: quaternion
(in float: a, in float: b, in float: c, in float: d) is func
result
var quaternion: aQuaternion is quaternion.value;
begin
aQuaternion.a := a;
aQuaternion.b := b;
aQuaternion.c := c;
aQuaternion.d := d;
end func;
# Helper function for str().
const func string: signed (in float: number, in string: part) is func
result
var string: stri is str(number) & part;
begin
if number > 0.0 then
stri := "+" & stri;
elsif number = 0.0 then
stri := "";
end if;
end func;
# Convert a quaternion number to a string.
const func string: str (in quaternion: number) is func
result
var string: stri is "";
begin
if number.a <> 0.0 then
stri &:= str(number.a);
end if;
stri &:= signed(number.b, "i");
stri &:= signed(number.c, "j");
stri &:= signed(number.d, "k");
end func;
# Compute the norm of a quaternion number.
const func float: norm (in quaternion: number) is func
result
var float: qnorm is 0.0;
begin
qnorm := sqrt(
number.a ** 2.0 + number.b ** 2.0 +
number.c ** 2.0 + number.d ** 2.0
);
end func;
# Compute the negative of a quaternion number.
const func quaternion: - (in quaternion: number) is func
result
var quaternion: negatedNumber is quaternion.value;
begin
negatedNumber.a := -number.a;
negatedNumber.b := -number.b;
negatedNumber.c := -number.c;
negatedNumber.d := -number.d;
end func;
# Compute the conjugate of a quaternion number.
const func quaternion: conjugate (in quaternion: number) is func
result
var quaternion: conjugateNumber is quaternion.value;
begin
conjugateNumber.a := number.a;
conjugateNumber.b := -number.b;
conjugateNumber.c := -number.c;
conjugateNumber.d := -number.d;
end func;
# Add a float to a quaternion number.
const func quaternion: (in quaternion: number) + (in float: real) is func
result
var quaternion: sum is quaternion.value;
begin
sum.a := number.a + real;
sum.b := number.b;
sum.c := number.c;
sum.d := number.d;
end func;
# Add a quaternion number to a float.
const func quaternion: (in float: real) + (in quaternion: number) is
return number + real;
# Add two quaternion numbers.
const func quaternion: (in quaternion: number1) + (in quaternion: number2) is func
result
var quaternion: sum is quaternion.value;
begin
sum.a := number1.a + number2.a;
sum.b := number1.b + number2.b;
sum.c := number1.c + number2.c;
sum.d := number1.d + number2.d;
end func;
# Multiply a float and a quaternion number.
const func quaternion: (in float: real) * (in quaternion: number) is func
result
var quaternion: product is quaternion.value;
begin
product.a := number.a * real;
product.b := number.b * real;
product.c := number.c * real;
product.d := number.d * real;
end func;
# Multiply a quaternion number and a float.
const func quaternion: (in quaternion: number) * (in float: real) is
return real * number;
# Multiply two quaternion numbers.
const func quaternion: (in quaternion: x) * (in quaternion: y) is func
result
var quaternion: product is quaternion.value;
begin
product.a := x.a * y.a - x.b * y.b - x.c * y.c - x.d * y.d;
product.b := x.a * y.b + x.b * y.a + x.c * y.d - x.d * y.c;
product.c := x.a * y.c - x.b * y.d + x.c * y.a + x.d * y.b;
product.d := x.a * y.d + x.b * y.c - x.c * y.b + x.d * y.a;
end func;
# Allow quaternions to be written using write(), writeln() etc.
enable_output(quaternion);
# Demonstrate quaternion numbers.
const proc: main is func
local
const quaternion: q is quaternion(1.0, 2.0, 3.0, 4.0);
const quaternion: q1 is quaternion(2.0, 3.0, 4.0, 5.0);
const quaternion: q2 is quaternion(3.0, 4.0, 5.0, 6.0);
const float: r is 7.0;
begin
writeln(" q = " <& q);
writeln("q1 = " <& q1);
writeln("q2 = " <& q2);
writeln(" r = " <& r <& "\n");
writeln("norm(q) = " <& norm(q));
writeln("-q = " <& -q);
writeln("conjugate(q) = " <& conjugate(q));
writeln("q + r = " <& q + r);
writeln("r + q = " <& r + q);
writeln("q1 + q2 = " <& q1 + q2);
writeln("q2 + q1 = " <& q2 + q1);
writeln("q * r = " <& q * r);
writeln("r * q = " <& r * q);
writeln("q1 * q2 = " <& q1 * q2);
writeln("q2 * q1 = " <& q2 * q1);
end func;
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#INTERCAL
|
INTERCAL
|
thisMessage print
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Ruby
|
Ruby
|
def range_extract(l)
# pad the list with a big value, so that the last loop iteration will
# append something to the range
sorted, range = l.sort.concat([Float::MAX]), []
canidate_number = sorted.first
# enumerate over the sorted list in pairs of current number and next by index
sorted.each_cons(2) do |current_number, next_number|
# if there is a gap between the current element and its next by index
if current_number.succ < next_number
# if current element is our first or our next by index
if canidate_number == current_number
# put the first element or next by index into our range as a string
range << canidate_number.to_s
else
# if current element is not the same as the first or next
# add [first or next, first or next equals current add , else -, current]
seperator = canidate_number.succ == current_number ? "," : "-"
range << "%d%s%d" % [canidate_number, seperator, current_number]
end
# make the first element the next element
canidate_number = next_number
end
end
range.join(',')
end
lst = [
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
]
p rng = range_extract(lst)
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Unlambda
|
Unlambda
|
``@c`d``s`|k`@c
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PowerShell
|
PowerShell
|
$Q = New-Object System.Collections.Queue
$Q.Enqueue( 1 )
$Q.Enqueue( 2 )
$Q.Enqueue( 3 )
$Q.Dequeue()
$Q.Dequeue()
$Q.Count -eq 0
$Q.Dequeue()
$Q.Count -eq 0
try
{ $Q.Dequeue() }
catch [System.InvalidOperationException]
{ If ( $_.Exception.Message -eq 'Queue empty.' ) { 'Caught error' } }
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Sidef
|
Sidef
|
class Quaternion(r, i, j, k) {
func qu(*r) { Quaternion(r...) }
method to_s { "#{r} + #{i}i + #{j}j + #{k}k" }
method reals { [r, i, j, k] }
method conj { qu(r, -i, -j, -k) }
method norm { self.reals.map { _*_ }.sum.sqrt }
method ==(Quaternion b) { self.reals == b.reals }
method +(Number b) { qu(b+r, i, j, k) }
method +(Quaternion b) { qu((self.reals ~Z+ b.reals)...) }
method neg { qu(self.reals.map{ .neg }...) }
method *(Number b) { qu((self.reals»*»b)...) }
method *(Quaternion b) {
var (r,i,j,k) = b.reals...
qu(sum(self.reals ~Z* [r, -i, -j, -k]),
sum(self.reals ~Z* [i, r, k, -j]),
sum(self.reals ~Z* [j, -k, r, i]),
sum(self.reals ~Z* [k, j, -i, r]))
}
}
var q = Quaternion(1, 2, 3, 4)
var q1 = Quaternion(2, 3, 4, 5)
var q2 = Quaternion(3, 4, 5, 6)
var r = 7
say "1) q norm = #{q.norm}"
say "2) -q = #{-q}"
say "3) q conj = #{q.conj}"
say "4) q + r = #{q + r}"
say "5) q1 + q2 = #{q1 + q2}"
say "6) q * r = #{q * r}"
say "7) q1 * q2 = #{q1 * q2}"
say "8) q1q2 #{ q1*q2 == q2*q1 ? '==' : '!=' } q2q1"
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Io
|
Io
|
thisMessage print
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Rust
|
Rust
|
use std::ops::Add;
struct RangeFinder<'a, T: 'a> {
index: usize,
length: usize,
arr: &'a [T],
}
impl<'a, T> Iterator for RangeFinder<'a, T> where T: PartialEq + Add<i8, Output=T> + Copy {
type Item = (T, Option<T>);
fn next(&mut self) -> Option<Self::Item> {
if self.index == self.length {
return None;
}
let lo = self.index;
while self.index < self.length - 1 && self.arr[self.index + 1] == self.arr[self.index] + 1 {
self.index += 1
}
let hi = self.index;
self.index += 1;
if hi - lo > 1 {
Some((self.arr[lo], Some(self.arr[hi])))
} else {
if hi - lo == 1 {
self.index -= 1
}
Some((self.arr[lo], None))
}
}
}
impl<'a, T> RangeFinder<'a, T> {
fn new(a: &'a [T]) -> Self {
RangeFinder {
index: 0,
arr: a,
length: a.len(),
}
}
}
fn main() {
let input_numbers : &[i8] = &[0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39];
for (i, (lo, hi)) in RangeFinder::new(&input_numbers).enumerate() {
if i > 0 {print!(",")}
print!("{}", lo);
if hi.is_some() {print!("-{}", hi.unwrap())}
}
println!("");
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Ursala
|
Ursala
|
#import std
#cast %s
example = ~&x 'asdf'
verbose_example = reverse 'asdf'
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Prolog
|
Prolog
|
empty(U-V) :-
unify_with_occurs_check(U, V).
push(Queue, Value, NewQueue) :-
append_dl(Queue, [Value|X]-X, NewQueue).
% when queue is empty pop fails.
pop([X|V]-U, X, V-U) :-
\+empty([X|V]-U).
append_dl(X-Y, Y-Z, X-Z).
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Swift
|
Swift
|
import Foundation
struct Quaternion {
var a, b, c, d: Double
static let i = Quaternion(a: 0, b: 1, c: 0, d: 0)
static let j = Quaternion(a: 0, b: 0, c: 1, d: 0)
static let k = Quaternion(a: 0, b: 0, c: 0, d: 1)
}
extension Quaternion: Equatable {
static func ==(lhs: Quaternion, rhs: Quaternion) -> Bool {
return (lhs.a, lhs.b, lhs.c, lhs.d) == (rhs.a, rhs.b, rhs.c, rhs.d)
}
}
extension Quaternion: ExpressibleByIntegerLiteral {
init(integerLiteral: Double) {
a = integerLiteral
b = 0
c = 0
d = 0
}
}
extension Quaternion: Numeric {
var magnitude: Double {
return norm
}
init?<T>(exactly: T) { // stub to satisfy protocol requirements
return nil
}
public static func + (lhs: Quaternion, rhs: Quaternion) -> Quaternion {
return Quaternion(
a: lhs.a + rhs.a,
b: lhs.b + rhs.b,
c: lhs.c + rhs.c,
d: lhs.d + rhs.d
)
}
public static func - (lhs: Quaternion, rhs: Quaternion) -> Quaternion {
return Quaternion(
a: lhs.a - rhs.a,
b: lhs.b - rhs.b,
c: lhs.c - rhs.c,
d: lhs.d - rhs.d
)
}
public static func * (lhs: Quaternion, rhs: Quaternion) -> Quaternion {
return Quaternion(
a: lhs.a*rhs.a - lhs.b*rhs.b - lhs.c*rhs.c - lhs.d*rhs.d,
b: lhs.a*rhs.b + lhs.b*rhs.a + lhs.c*rhs.d - lhs.d*rhs.c,
c: lhs.a*rhs.c - lhs.b*rhs.d + lhs.c*rhs.a + lhs.d*rhs.b,
d: lhs.a*rhs.d + lhs.b*rhs.c - lhs.c*rhs.b + lhs.d*rhs.a
)
}
public static func += (lhs: inout Quaternion, rhs: Quaternion) {
lhs = Quaternion(
a: lhs.a + rhs.a,
b: lhs.b + rhs.b,
c: lhs.c + rhs.c,
d: lhs.d + rhs.d
)
}
public static func -= (lhs: inout Quaternion, rhs: Quaternion) {
lhs = Quaternion(
a: lhs.a - rhs.a,
b: lhs.b - rhs.b,
c: lhs.c - rhs.c,
d: lhs.d - rhs.d
)
}
public static func *= (lhs: inout Quaternion, rhs: Quaternion) {
lhs = Quaternion(
a: lhs.a*rhs.a - lhs.b*rhs.b - lhs.c*rhs.c - lhs.d*rhs.d,
b: lhs.a*rhs.b + lhs.b*rhs.a + lhs.c*rhs.d - lhs.d*rhs.c,
c: lhs.a*rhs.c - lhs.b*rhs.d + lhs.c*rhs.a + lhs.d*rhs.b,
d: lhs.a*rhs.d + lhs.b*rhs.c - lhs.c*rhs.b + lhs.d*rhs.a
)
}
}
extension Quaternion: CustomStringConvertible {
var description: String {
let formatter = NumberFormatter()
formatter.positivePrefix = "+"
let f: (Double) -> String = { formatter.string(from: $0 as NSNumber)! }
return [f(a), f(b), "i", f(c), "j", f(d), "k"].joined()
}
}
extension Quaternion {
var norm: Double {
return sqrt(a*a + b*b + c*c + d*d)
}
var conjugate: Quaternion {
return Quaternion(a: a, b: -b, c: -c, d: -d)
}
public static func + (lhs: Double, rhs: Quaternion) -> Quaternion {
var result = rhs
result.a += lhs
return result
}
public static func + (lhs: Quaternion, rhs: Double) -> Quaternion {
var result = lhs
result.a += rhs
return result
}
public static func * (lhs: Double, rhs: Quaternion) -> Quaternion {
return Quaternion(a: lhs*rhs.a, b: lhs*rhs.b, c: lhs*rhs.c, d: lhs*rhs.d)
}
public static func * (lhs: Quaternion, rhs: Double) -> Quaternion {
return Quaternion(a: lhs.a*rhs, b: lhs.b*rhs, c: lhs.c*rhs, d: lhs.d*rhs)
}
public static prefix func - (x: Quaternion) -> Quaternion {
return Quaternion(a: -x.a, b: -x.b, c: -x.c, d: -x.d)
}
}
let q: Quaternion = 1 + 2 * .i + 3 * .j + 4 * .k // 1+2i+3j+4k
let q1: Quaternion = 2 + 3 * .i + 4 * .j + 5 * .k // 2+3i+4j+5k
let q2: Quaternion = 3 + 4 * .i + 5 * .j + 6 * .k // 3+4i+5j+6k
let r: Double = 7
print("""
q = \(q)
q1 = \(q1)
q2 = \(q2)
r = \(r)
-q = \(-q)
‖q‖ = \(q.norm)
conjugate of q = \(q.conjugate)
r + q = q + r = \(r+q) = \(q+r)
q₁ + q₂ = \(q1 + q2) = \(q2 + q1)
qr = rq = \(q*r) = \(r*q)
q₁q₂ = \(q1 * q2)
q₂q₁ = \(q2 * q1)
q₁q₂ ≠ q₂q₁ is \(q1*q2 != q2*q1)
""")
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#J
|
J
| |
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Java
|
Java
|
(function(){print("("+arguments.callee.toString().replace(/\s/g,'')+")()");})()
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Scala
|
Scala
|
object Range {
def spanRange(ls:List[Int])={
var last=ls.head
ls span {x => val b=x<=last+1; last=x; b}
}
def toRangeList(ls:List[Int]):List[List[Int]]=ls match {
case Nil => List()
case _ => spanRange(ls) match {
case (range, Nil) => List(range)
case (range, rest) => range :: toRangeList(rest)
}
}
def toRangeString(ls:List[List[Int]])=ls map {r=>
if(r.size<3) r mkString ","
else r.head + "-" + r.last
} mkString ","
def main(args: Array[String]): Unit = {
var l=List(0, 1, 2, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39)
println(toRangeString(toRangeList(l)))
}
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Vala
|
Vala
|
int main (string[] args) {
if (args.length < 2) {
stdout.printf ("Please, input a string.\n");
return 0;
}
var str = new StringBuilder ();
for (var i = 1; i < args.length; i++) {
str.append (args[i] + " ");
}
stdout.printf ("%s\n", str.str.strip ().reverse ());
return 0;
}
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#PureBasic
|
PureBasic
|
NewList MyStack()
Procedure Push(n)
Shared MyStack()
LastElement(MyStack())
AddElement(MyStack())
MyStack()=n
EndProcedure
Procedure Pop()
Shared MyStack()
Protected n
If FirstElement(MyStack()) ; e.g. Stack not empty
n=MyStack()
DeleteElement(MyStack(),1)
Else
Debug "Pop(), out of range. Error at line "+str(#PB_Compiler_Line)
EndIf
ProcedureReturn n
EndProcedure
Procedure Empty()
Shared MyStack()
If ListSize(MyStack())=0
ProcedureReturn #True
EndIf
ProcedureReturn #False
EndProcedure
;---- Example of implementation ----
Push(3)
Push(1)
Push(4)
While Not Empty()
Debug Pop()
Wend
;---- Now an extra Pop(), e.g. one to many ----
Debug Pop()
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Tcl
|
Tcl
|
package require TclOO
# Support class that provides C++-like RAII lifetimes
oo::class create RAII-support {
constructor {} {
upvar 1 { end } end
lappend end [self]
trace add variable end unset [namespace code {my destroy}]
}
destructor {
catch {
upvar 1 { end } end
trace remove variable end unset [namespace code {my destroy}]
}
}
method return {{level 1}} {
incr level
upvar 1 { end } end
upvar $level { end } parent
trace remove variable end unset [namespace code {my destroy}]
lappend parent [self]
trace add variable parent unset [namespace code {my destroy}]
return -level $level [self]
}
}
# Class of quaternions
oo::class create Q {
superclass RAII-support
variable R I J K
constructor {{real 0} {i 0} {j 0} {k 0}} {
next
namespace import ::tcl::mathfunc::* ::tcl::mathop::*
variable R [double $real] I [double $i] J [double $j] K [double $k]
}
self method return args {
[my new {*}$args] return 2
}
method p {} {
return "Q($R,$I,$J,$K)"
}
method values {} {
list $R $I $J $K
}
method Norm {} {
+ [* $R $R] [* $I $I] [* $J $J] [* $K $K]
}
method conjugate {} {
Q return $R [- $I] [- $J] [- $K]
}
method norm {} {
sqrt [my Norm]
}
method unit {} {
set n [my norm]
Q return [/ $R $n] [/ $I $n] [/ $J $n] [/ $K $n]
}
method reciprocal {} {
set n2 [my Norm]
Q return [/ $R $n2] [/ $I $n2] [/ $J $n2] [/ $K $n2]
}
method - {{q ""}} {
if {[llength [info level 0]] == 2} {
Q return [- $R] [- $I] [- $J] [- $K]
}
[my + [$q -]] return
}
method + q {
if {[info object isa object $q]} {
lassign [$q values] real i j k
Q return [+ $R $real] [+ $I $i] [+ $J $j] [+ $K $k]
}
Q return [+ $R [double $q]] $I $J $K
}
method * q {
if {[info object isa object $q]} {
lassign [my values] a1 b1 c1 d1
lassign [$q values] a2 b2 c2 d2
Q return [expr {$a1*$a2 - $b1*$b2 - $c1*$c2 - $d1*$d2}] \
[expr {$a1*$b2 + $b1*$a2 + $c1*$d2 - $d1*$c2}] \
[expr {$a1*$c2 - $b1*$d2 + $c1*$a2 + $d1*$b2}] \
[expr {$a1*$d2 + $b1*$c2 - $c1*$b2 + $d1*$a2}]
}
set f [double $q]
Q return [* $R $f] [* $I $f] [* $J $f] [* $K $f]
}
method == q {
expr {
[info object isa object $q]
&& [info object isa typeof $q [self class]]
&& [my values] eq [$q values]
}
}
export - + * ==
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#JavaScript
|
JavaScript
|
(function(){print("("+arguments.callee.toString().replace(/\s/g,'')+")()");})()
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Scheme
|
Scheme
|
(define (make-range start end)
(cond ((= start end)
`("," ,start))
((= end (+ start 1))
`("," ,start "," ,end))
(else
`("," ,start "-" ,end))))
(define (range-extract-0 start end a)
(cond ((null? a)
(make-range start end))
((= (+ 1 end) (car a))
(range-extract-0 start (car a) (cdr a)))
(else
(append (make-range start end)
(range-extract-0 (car a) (car a) (cdr a))))))
(define (range-extract a)
(apply string-append (map (lambda (x)
(if (number? x)
(number->string x)
x))
(cdr (range-extract-0 (car a) (car a) (cdr a))))))
(range-extract '( 0 1 2 4 6 7 8 11 12 14
15 16 17 18 19 20 21 22 23 24
25 27 28 29 30 31 32 33 35 36
37 38 39))
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#VBA
|
VBA
|
Public Function Reverse(aString as String) as String
' returns the reversed string
dim L as integer 'length of string
dim newString as string
newString = ""
L = len(aString)
for i = L to 1 step -1
newString = newString & mid$(aString, i, 1)
next
Reverse = newString
End Function
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Python
|
Python
|
class FIFO(object):
def __init__(self, *args):
self.contents = list(args)
def __call__(self):
return self.pop()
def __len__(self):
return len(self.contents)
def pop(self):
return self.contents.pop(0)
def push(self, item):
self.contents.append(item)
def extend(self,*itemlist):
self.contents += itemlist
def empty(self):
return bool(self.contents)
def __iter__(self):
return self
def next(self):
if self.empty():
raise StopIteration
return self.pop()
if __name__ == "__main__":
# Sample usage:
f = FIFO()
f.push(3)
f.push(2)
f.push(1)
while not f.empty():
print f.pop(),
# >>> 3 2 1
# Another simple example gives the same results:
f = FIFO(3,2,1)
while not f.empty():
print f(),
# Another using the default "truth" value of the object
# (implicitly calls on the length() of the object after
# checking for a __nonzero__ method
f = FIFO(3,2,1)
while f:
print f(),
# Yet another, using more Pythonic iteration:
f = FIFO(3,2,1)
for i in f:
print i,
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#VBA
|
VBA
|
Option Base 1
Private Function norm(q As Variant) As Double
norm = Sqr(WorksheetFunction.SumSq(q))
End Function
Private Function negative(q) As Variant
Dim res(4) As Double
For i = 1 To 4
res(i) = -q(i)
Next i
negative = res
End Function
Private Function conj(q As Variant) As Variant
Dim res(4) As Double
res(1) = q(1)
For i = 2 To 4
res(i) = -q(i)
Next i
conj = res
End Function
Private Function addr(r As Double, q As Variant) As Variant
Dim res As Variant
res = q
res(1) = r + q(1)
addr = res
End Function
Private Function add(q1 As Variant, q2 As Variant) As Variant
add = WorksheetFunction.MMult(Array(1, 1), Array(q1, q2))
End Function
Private Function multr(r As Double, q As Variant) As Variant
multr = WorksheetFunction.MMult(r, q)
End Function
Private Function mult(q1 As Variant, q2 As Variant)
Dim res(4) As Double
res(1) = q1(1) * q2(1) - q1(2) * q2(2) - q1(3) * q2(3) - q1(4) * q2(4)
res(2) = q1(1) * q2(2) + q1(2) * q2(1) + q1(3) * q2(4) - q1(4) * q2(3)
res(3) = q1(1) * q2(3) - q1(2) * q2(4) + q1(3) * q2(1) + q1(4) * q2(2)
res(4) = q1(1) * q2(4) + q1(2) * q2(3) - q1(3) * q2(2) + q1(4) * q2(1)
mult = res
End Function
Private Sub quats(q As Variant)
Debug.Print q(1); IIf(q(2) < 0, " - " & Abs(q(2)), " + " & q(2));
Debug.Print IIf(q(3) < 0, "i - " & Abs(q(3)), "i + " & q(3));
Debug.Print IIf(q(4) < 0, "j - " & Abs(q(4)), "j + " & q(4)); "k"
End Sub
Public Sub quaternions()
q = [{ 1, 2, 3, 4}]
q1 = [{2, 3, 4, 5}]
q2 = [{3, 4, 5, 6}]
Dim r_ As Double
r_ = 7#
Debug.Print "q = ";: quats q
Debug.Print "q1 = ";: quats q1
Debug.Print "q2 = ";: quats q2
Debug.Print "r = "; r_
Debug.Print "norm(q) = "; norm(q)
Debug.Print "negative(q) = ";: quats negative(q)
Debug.Print "conjugate(q) = ";: quats conj(q)
Debug.Print "r + q = ";: quats addr(r_, q)
Debug.Print "q1 + q2 = ";: quats add(q1, q2)
Debug.Print "q * r = ";: quats multr(r_, q)
Debug.Print "q1 * q2 = ";: quats mult(q1, q2)
Debug.Print "q2 * q1 = ";: quats mult(q2, q1)
End Sub
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Joy
|
Joy
|
"dup put putchars 10 putch." dup put putchars 10 putch.
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Jsish
|
Jsish
|
var code='var q=String.fromCharCode(39);puts("var code="+q+code+q+";eval(code)")';eval(code)
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Seed7
|
Seed7
|
$ include "seed7_05.s7i";
const func string: rangeExtraction (in array integer: numbers) is func
result
var string: rangeStri is "";
local
var integer: index is 1;
var integer: index2 is 1;
begin
while index <= length(numbers) do
while index2 <= pred(length(numbers)) and numbers[succ(index2)] = succ(numbers[index2]) do
incr(index2);
end while;
if succ(index) < index2 then
rangeStri &:= "," <& numbers[index] <& "-" <& numbers[index2];
else
while index <= index2 do
rangeStri &:= "," <& numbers[index];
incr(index);
end while;
end if;
incr(index2);
index := index2;
end while;
rangeStri := rangeStri[2 ..];
end func;
const proc: main is func
begin
writeln(rangeExtraction([] (0, 1, 2, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39)));
end func;
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#VBScript
|
VBScript
|
WScript.Echo StrReverse("asdf")
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Quackery
|
Quackery
|
[ [] ] is queue ( --> [ )
[ [] = ] is empty? ( [ --> b )
[ nested join ] is push ( [ x --> [ )
[ dup empty? if
[ $ "Queue unexpectedly empty."
fail ]
behead ] is pop ( [ --> [ x )
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#R
|
R
|
empty <- function() length(l) == 0
push <- function(x)
{
l <<- c(l, list(x))
print(l)
invisible()
}
pop <- function()
{
if(empty()) stop("can't pop from an empty list")
l[[1]] <<- NULL
print(l)
invisible()
}
l <- list()
empty()
# [1] TRUE
push(3)
# [[1]]
# [1] 3
push("abc")
# [[1]]
# [1] 3
# [[2]]
# [1] "abc"
push(matrix(1:6, nrow=2))
# [[1]]
# [1] 3
# [[2]]
# [1] "abc"
# [[3]]
# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6
empty()
# [1] FALSE
pop()
# [[1]]
# [1] 3
# [[2]]
# [1] "abc"
pop()
# [[1]]
# [1] 3
pop()
# list()
pop()
# Error in pop() : can't pop from an empty list
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Option Compare Binary
Option Explicit On
Option Infer On
Option Strict On
Structure Quaternion
Implements IEquatable(Of Quaternion), IStructuralEquatable
Public ReadOnly A, B, C, D As Double
Public Sub New(a As Double, b As Double, c As Double, d As Double)
Me.A = a
Me.B = b
Me.C = c
Me.D = d
End Sub
Public ReadOnly Property Norm As Double
Get
Return Math.Sqrt((Me.A ^ 2) + (Me.B ^ 2) + (Me.C ^ 2) + (Me.D ^ 2))
End Get
End Property
Public ReadOnly Property Conjugate As Quaternion
Get
Return New Quaternion(Me.A, -Me.B, -Me.C, -Me.D)
End Get
End Property
Public Overrides Function Equals(obj As Object) As Boolean
If TypeOf obj IsNot Quaternion Then Return False
Return Me.Equals(DirectCast(obj, Quaternion))
End Function
Public Overloads Function Equals(other As Quaternion) As Boolean Implements IEquatable(Of Quaternion).Equals
Return other = Me
End Function
Public Overloads Function Equals(other As Object, comparer As IEqualityComparer) As Boolean Implements IStructuralEquatable.Equals
If TypeOf other IsNot Quaternion Then Return False
Dim q = DirectCast(other, Quaternion)
Return comparer.Equals(Me.A, q.A) AndAlso
comparer.Equals(Me.B, q.B) AndAlso
comparer.Equals(Me.C, q.C) AndAlso
comparer.Equals(Me.D, q.D)
End Function
Public Overrides Function GetHashCode() As Integer
Return HashCode.Combine(Me.A, Me.B, Me.C, Me.D)
End Function
Public Overloads Function GetHashCode(comparer As IEqualityComparer) As Integer Implements IStructuralEquatable.GetHashCode
Return HashCode.Combine(
comparer.GetHashCode(Me.A),
comparer.GetHashCode(Me.B),
comparer.GetHashCode(Me.C),
comparer.GetHashCode(Me.D))
End Function
Public Overrides Function ToString() As String
Return $"Q({Me.A}, {Me.B}, {Me.C}, {Me.D})"
End Function
#Region "Operators"
Public Shared Operator =(left As Quaternion, right As Quaternion) As Boolean
Return left.A = right.A AndAlso
left.B = right.B AndAlso
left.C = right.C AndAlso
left.D = right.D
End Operator
Public Shared Operator <>(left As Quaternion, right As Quaternion) As Boolean
Return Not left = right
End Operator
Public Shared Operator +(q1 As Quaternion, q2 As Quaternion) As Quaternion
Return New Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D)
End Operator
Public Shared Operator -(q As Quaternion) As Quaternion
Return New Quaternion(-q.A, -q.B, -q.C, -q.D)
End Operator
Public Shared Operator *(q1 As Quaternion, q2 As Quaternion) As Quaternion
Return New Quaternion(
(q1.A * q2.A) - (q1.B * q2.B) - (q1.C * q2.C) - (q1.D * q2.D),
(q1.A * q2.B) + (q1.B * q2.A) + (q1.C * q2.D) - (q1.D * q2.C),
(q1.A * q2.C) - (q1.B * q2.D) + (q1.C * q2.A) + (q1.D * q2.B),
(q1.A * q2.D) + (q1.B * q2.C) - (q1.C * q2.B) + (q1.D * q2.A))
End Operator
Public Shared Widening Operator CType(d As Double) As Quaternion
Return New Quaternion(d, 0, 0, 0)
End Operator
#End Region
End Structure
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Julia
|
Julia
|
x="println(\"x=\$(repr(x))\\n\$x\")"
println("x=$(repr(x))\n$x")
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#SNOBOL4
|
SNOBOL4
|
* # Absolute value
define('abs(n)') :(abs_end)
abs abs = ~(abs = lt(n,0) -n) n :(return)
abs_end
define('rangext(str)d1,d2') :(rangext_end)
rangext num = ('+' | '-' | '') span('0123456789')
rxt1 str ',' span(' ') = ' ' :s(rxt1)
rxt2 str num . d1 ' ' num . d2 =
+ d1 ('~,' ? *eq(abs(d2 - d1),1) '~' | ',') d2 :s(rxt2)
rxt3 str ('~' | '-') num '~' = '-' :s(rxt3)
rxt4 str '~' = ',' :s(rxt4)
rangext = str :(return)
rangext_end
* # Test and display
test = '0, 1, 2, 4, 6, 7, 8, 11, 12, 14, '
+ '15, 16, 17, 18, 19, 20, 21, 22, 23, 24, '
+ '25, 27, 28, 29, 30, 31, 32, 33, 35, 36, '
+ '37, 38, 39'
output = rangext(test)
end
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Vedit_macro_language
|
Vedit macro language
|
Reg_Empty(10)
for (BOL; !At_EOL; Char) {
Reg_Copy_Block(10, CP, CP+1, INSERT)
}
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Racket
|
Racket
|
#lang racket
(define (make-queue) (mcons #f #f))
(define (push! q x)
(define new (mcons x #f))
(if (mcar q) (set-mcdr! (mcdr q) new) (set-mcar! q new))
(set-mcdr! q new))
(define (pop! q)
(define old (mcar q))
(cond [(eq? old (mcdr q)) (set-mcar! q #f) (set-mcdr! q #f)]
[else (set-mcar! q (mcdr old))])
(mcar old))
(define (empty? q)
(not (mcar q)))
(define Q (make-queue))
(empty? Q) ; -> #t
(push! Q 'x)
(empty? Q) ; -> #f
(for ([x 3]) (push! Q x))
(pop! Q) ; -> 'x
(list (pop! Q) (pop! Q) (pop! Q)) ; -> '(0 1 2)
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#Wren
|
Wren
|
class Quaternion {
construct new(a, b, c, d ) {
_a = a
_b = b
_c = c
_d = d
}
a { _a }
b { _b }
c { _c }
d { _d }
norm { (a*a + b*b + c*c + d*d).sqrt }
- { Quaternion.new(-a, -b, -c, -d) }
conj { Quaternion.new(a, -b, -c, -d) }
+ (q) {
if (q is Num) return Quaternion.new(a + q, b, c, d)
return Quaternion.new(a + q.a, b + q.b, c + q.c, d + q.d)
}
* (q) {
if (q is Num) return Quaternion.new(a * q, b * q, c * q, d * q)
return Quaternion.new(a*q.a - b*q.b - c*q.c - d*q.d,
a*q.b + b*q.a + c*q.d - d*q.c,
a*q.c - b*q.d + c*q.a + d*q.b,
a*q.d + b*q.c - c*q.b + d*q.a)
}
== (q) { a == q.a && b == q.b && c == q.c && d == q.d }
!= (q) { !(this == q) }
toString { "(%(a), %(b), %(c), %(d))" }
static realAdd(r, q) { q + r }
static realMul(r, q) { q * r }
}
var q = Quaternion.new(1, 2, 3, 4)
var q1 = Quaternion.new(2, 3, 4, 5)
var q2 = Quaternion.new(3, 4, 5, 6)
var q3 = q1 * q2
var q4 = q2 * q1
var r = 7
System.print("q = %(q)")
System.print("q1 = %(q1)")
System.print("q2 = %(q2)")
System.print("r = %(r)")
System.print("norm(q) = %(q.norm)")
System.print("-q = %(-q)")
System.print("conj(q) = %(q.conj)")
System.print("r + q = %(Quaternion.realAdd(r, q))")
System.print("q + r = %(q + r))")
System.print("q1 + q2 = %(q1 + q2)")
System.print("q2 + q1 = %(q2 + q1)")
System.print("rq = %(Quaternion.realMul(r, q))")
System.print("qr = %(q * r)")
System.print("q1q2 = %(q3)")
System.print("q2q1 = %(q4)")
System.print("q1q2 ≠ q2q1 = %(q3 != q4)")
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Kotlin
|
Kotlin
|
// version 1.1.2
const val F = """// version 1.1.2
const val F = %c%c%c%s%c%c%c
fun main(args: Array<String>) {
System.out.printf(F, 34, 34, 34, F, 34, 34, 34)
}
"""
fun main(args: Array<String>) {
System.out.printf(F, 34, 34, 34, F, 34, 34, 34)
}
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Swift
|
Swift
|
import Darwin
func ranges(from ints:[Int]) -> [(Int, Int)] {
var range : (Int, Int)?
var ranges = [(Int, Int)]()
for this in ints {
if let (start, end) = range {
if this == end + 1 {
range = (start, this)
}
else {
ranges.append(range!)
range = (this, this)
}
}
else { range = (this, this) }
}
ranges.append(range!)
return ranges
}
func description(from ranges:[(Int, Int)]) -> String {
var desc = ""
for (start, end) in ranges {
desc += desc.isEmpty ? "" : ","
if start == end {
desc += "\(start)"
}
else if end == start + 1 {
desc += "\(start),\(end)"
}
else {
desc += "\(start)-\(end)"
}
}
return desc
}
let ex = [-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20]
let longer = [0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39]
print(description(from: ranges(from: ex)))
print(description(from: ranges(from: longer)))
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Visual_Basic
|
Visual Basic
|
Debug.Print VBA.StrReverse("Visual Basic")
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#Raku
|
Raku
|
role FIFO {
method enqueue ( *@values ) { # Add values to queue, returns the number of values added.
self.push: @values;
return @values.elems;
}
method dequeue ( ) { # Remove and return the first value from the queue.
# Return Nil if queue is empty.
return self.elems ?? self.shift !! Nil;
}
method is-empty ( ) { # Check to see if queue is empty. Returns Boolean value.
return self.elems == 0;
}
}
# Example usage:
my @queue does FIFO;
say @queue.is-empty; # -> Bool::True
for <A B C> -> $i { say @queue.enqueue: $i } # 1 \n 1 \n 1
say @queue.enqueue: Any; # -> 1
say @queue.enqueue: 7, 8; # -> 2
say @queue.is-empty; # -> Bool::False
say @queue.dequeue; # -> A
say @queue.elems; # -> 4
say @queue.dequeue; # -> B
say @queue.is-empty; # -> Bool::False
say @queue.enqueue('OHAI!'); # -> 1
say @queue.dequeue until @queue.is-empty; # -> C \n Any() \n [7 8] \n OHAI!
say @queue.is-empty; # -> Bool::True
say @queue.dequeue; # ->
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#XPL0
|
XPL0
|
proc QPrint(Q); \Display quaternion
real Q;
[RlOut(0, Q(0)); Text(0, " + "); RlOut(0, Q(1)); Text(0, "i + ");
RlOut(0, Q(2)); Text(0, "j + "); RlOut(0, Q(3)); Text(0, "k");
CrLf(0);
];
func real QNorm(Q); \Return norm of a quaternion
real Q;
return sqrt( Q(0)*Q(0) + Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3) );
func real QNeg(Q, R); \Return negative of a quaternion: Q:= -R
real Q, R;
[Q(0):= -R(0); Q(1):= -R(1); Q(2):= -R(2); Q(3):= -R(3);
return Q;
];
func real QConj(Q, R); \Return conjugate of a quaternion: Q:= conj R
real Q, R;
[Q(0):= R(0); Q(1):= -R(1); Q(2):= -R(2); Q(3):= -R(3);
return Q;
];
func real QRAdd(Q, R, Real); \Return quaternion plus real: Q:= R + Real
real Q, R, Real;
[Q(0):= R(0) + Real; Q(1):= R(1); Q(2):= R(2); Q(3):= R(3);
return Q;
];
func real QAdd(Q, R, S); \Return quaternion sum: Q:= R + S
real Q, R, S;
[Q(0):= R(0) + S(0); Q(1):= R(1) + S(1); Q(2):= R(2) + S(2); Q(3):= R(3) + S(3);
return Q;
];
func real QRMul(Q, R, Real); \Return quaternion times real: Q:= R + Real
real Q, R, Real;
[Q(0):= R(0) * Real; Q(1):= R(1) * Real; Q(2):= R(2) * Real; Q(3):= R(3) * Real;
return Q;
];
func real QMul(Q, R, S); \Return quaternion product: Q:= R * S
real Q, R, S;
[Q(0):= R(0)*S(0) - R(1)*S(1) - R(2)*S(2) - R(3)*S(3);
Q(1):= R(0)*S(1) + R(1)*S(0) + R(2)*S(3) - R(3)*S(2);
Q(2):= R(0)*S(2) - R(1)*S(3) + R(2)*S(0) + R(3)*S(1);
Q(3):= R(0)*S(3) + R(1)*S(2) - R(2)*S(1) + R(3)*S(0);
return Q;
];
real Q, Q1, Q2, R, Q0(4),;
[Q:= [1.0, 2.0, 3.0, 4.0];
Q1:= [2.0, 3.0, 4.0, 5.0];
Q2:= [3.0, 4.0, 5.0, 6.0];
R:= 7.0;
Format(3, 1);
Text(0, "q = "); QPrint(Q);
Text(0, "q1 = "); QPrint(Q1);
Text(0, "q2 = "); QPrint(Q2);
Text(0, "norm(q) = "); RlOut(0, QNorm(Q)); CrLf(0);
Text(0, "-q = "); QPrint(QNeg(Q0, Q));
Text(0, "conj(q) = "); QPrint(QConj(Q0, Q));
Text(0, "r + q = "); QPrint(QRAdd(Q0, Q, R));
Text(0, "q1 + q2 = "); QPrint(QAdd (Q0, Q1, Q2));
Text(0, "r * q = "); QPrint(QRMul(Q0, Q, R));
Text(0, "q1 * q2 = "); QPrint(QMul (Q0, Q1, Q2));
Text(0, "q2 * q1 = "); QPrint(QMul (Q0, Q2, Q1));
]
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Lambdatalk
|
Lambdatalk
|
{{lambda {:x} :x} '{lambda {:x} :x}}
-> {lambda {:x} :x}
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Tailspin
|
Tailspin
|
templates extract
data start <"1">, end <"1"> local
templates out
when <{start: <=$.end>}> do '$.start;' !
when <{end: <=$.start+1>}> do '$.start;,$.end;' !
otherwise '$.start;-$.end;' !
end out
@: {start: $(1), end: $(1)};
[ $(2..last)... -> #, $@ -> out ] -> '$...;' !
when <[email protected]+1> do @.end: $;
otherwise $@ -> out !
',' !
@: {start: $, end: $};
end extract
[0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39] -> extract -> !OUT::write
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
#Const REDIRECTOUT = True
Module Program
Const OUTPATH = "out.txt"
ReadOnly TestCases As String() = {"asdf", "as⃝df̅", "Les Misérables"}
' SIMPLE VERSION
Function Reverse(s As String) As String
Dim t = s.ToCharArray()
Array.Reverse(t)
Return New String(t)
End Function
' EXTRA CREDIT VERSION
Function ReverseElements(s As String) As String
' In .NET, a text element is series of code units that is displayed as one character, and so reversing the text
' elements of the string correctly handles combining character sequences and surrogate pairs.
Dim elements = Globalization.StringInfo.GetTextElementEnumerator(s)
Return String.Concat(AsEnumerable(elements).OfType(Of String).Reverse())
End Function
' Wraps an IEnumerator, allowing it to be used as an IEnumerable.
Iterator Function AsEnumerable(enumerator As IEnumerator) As IEnumerable
Do While enumerator.MoveNext()
Yield enumerator.Current
Loop
End Function
Sub Main()
Const INDENT = " "
#If REDIRECTOUT Then
Const OUTPATH = "out.txt"
Using s = IO.File.Open(OUTPATH, IO.FileMode.Create),
sw As New IO.StreamWriter(s)
Console.SetOut(sw)
#Else
Try
Console.OutputEncoding = Text.Encoding.ASCII
Console.OutputEncoding = Text.Encoding.UTF8
Console.OutputEncoding = Text.Encoding.Unicode
Catch ex As Exception
Console.WriteLine("Failed to set console encoding to Unicode." & vbLf)
End Try
#End If
For Each c In TestCases
Console.WriteLine(c)
Console.WriteLine(INDENT & "SIMPLE: " & Reverse(c))
Console.WriteLine(INDENT & "ELEMENTS: " & ReverseElements(c))
Console.WriteLine()
Next
#If REDIRECTOUT Then
End Using
#End If
End Sub
End Module
|
http://rosettacode.org/wiki/Queue/Definition
|
Queue/Definition
|
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task
Implement a FIFO queue.
Elements are added at one side and popped from the other in the order of insertion.
Operations:
push (aka enqueue) - add element
pop (aka dequeue) - pop first element
empty - return truth value when empty
Errors:
handle the error of trying to pop from an empty queue (behavior depends on the language and platform)
See
Queue/Usage for the built-in FIFO or queue of your language or standard library.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
|
#REBOL
|
REBOL
|
rebol [
Title: "FIFO"
URL: http://rosettacode.org/wiki/FIFO
]
; Define fifo class:
fifo: make object! [
queue: copy []
push: func [x][append queue x]
pop: func [/local x][ ; Make 'x' local so it won't pollute global namespace.
if empty [return none]
x: first queue remove queue x]
empty: does [empty? queue]
]
; Create and populate a FIFO:
q: make fifo []
q/push 'a
q/push 2
q/push USD$12.34 ; Did I mention that REBOL has 'money!' datatype?
q/push [Athos Porthos Aramis] ; List elements pushed on one by one.
q/push [[Huey Dewey Lewey]] ; This list is preserved as a list.
; Dump it out, with narrative:
print rejoin ["Queue is " either q/empty [""]["not "] "empty."]
while [not q/empty][print [" " q/pop]]
print rejoin ["Queue is " either q/empty [""]["not "] "empty."]
print ["Trying to pop an empty queue yields:" q/pop]
|
http://rosettacode.org/wiki/Quaternion_type
|
Quaternion type
|
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
i∙i = j∙j = k∙k = i∙j∙k = -1, or more simply,
ii = jj = kk = ijk = -1.
The order of multiplication is important, as, in general, for two quaternions:
q1 and q2: q1q2 ≠ q2q1.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Task
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
The norm of a quaternion:
=
a
2
+
b
2
+
c
2
+
d
2
{\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}
The negative of a quaternion:
= (-a, -b, -c, -d)
The conjugate of a quaternion:
= ( a, -b, -c, -d)
Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
Show that, for the two quaternions q1 and q2:
q1q2 ≠ q2q1
If a language has built-in support for quaternions, then use it.
C.f.
Vector products
On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
|
#zkl
|
zkl
|
class Quat{
fcn init(real=0,i1=0,i2=0,i3=0){
var [const] vector= // Quat(r,i,j,k) or Quat( (r,i,j,k) )
(if(List.isType(real)) real else vm.arglist).apply("toFloat");
var r,i,j,k; r,i,j,k=vector; // duplicate data for ease of coding
var [const] // properties: This is one way to do it
norm2=vector.apply("pow",2).sum(0.0), // Norm squared
abs=norm2.sqrt(), // Norm
arg=(r/abs()).acos(), // Theta !!!this may be incorrect...
;
}
fcn toString { String("[",vector.concat(","),"]") }
var [const proxy] // properties that need calculation (or are recursive)
conj =fcn{ Quat(r,-i,-j,-k) }, // Conjugate
recip =fcn{ n2:=norm2; Quat(r/n2,-i/n2,-j/n2,-k/n2) },// Reciprocal
pureim =fcn{ Quat(0, i, j, k) }, // Pure imagery
versor =fcn{ self / abs; }, // Unit versor
iversor=fcn{ pureim / pureim.abs; }, // Unit versor of imagery part
;
fcn __opEQ(z) { r == z.r and i == z.i and j == z.j and k == z.k }
fcn __opNEQ(z){ (not (self==z)) }
fcn __opNegate{ Quat(-r, -i, -j, -k) }
fcn __opAdd(z){
if (Quat.isInstanceOf(z)) Quat(vector.zipWith('+,z.vector));
else Quat(r+z,i,j,k);
}
fcn __opSub(z){
if (Quat.isInstanceOf(z)) Quat(vector.zipWith('-,z.vector));
else Quat(r-z,vector.xplode(1)); // same as above
}
fcn __opMul(z){
if (Quat.isInstanceOf(z)){
Quat(r*z.r - i*z.i - j*z.j - k*z.k,
r*z.i + i*z.r + j*z.k - k*z.j,
r*z.j - i*z.k + j*z.r + k*z.i,
r*z.k + i*z.j - j*z.i + k*z.r);
}
else Quat(vector.apply('*(z)));
}
fcn __opDiv(z){
if (Quat.isInstanceOf(z)) self*z.recip;
else Quat(r/z,i/z,j/z,k/z);
}
fcn pow(r){ exp(r*iversor*arg)*abs.pow(r) } // Power function
fcn log{ iversor*(r / abs).acos() + abs.log() }
fcn exp{ // e^q
inorm:=pureim.abs;
(iversor*inorm.sin() + inorm.cos()) * r.exp();
}
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Lasso
|
Lasso
|
var(a=(:10,39,118,97,114,40,97,61,40,58,39,10,36,97,45,62,106,111,105,110,40,39,44,39,41,10,39,41,41,39,10,118,97,114,40,98,61,98,121,116,101,115,41,10,36,97,45,62,102,111,114,101,97,99,104,32,61,62,32,123,32,36,98,45,62,105,109,112,111,114,116,56,98,105,116,115,40,35,49,41,32,125,10,36,98,45,62,97,115,83,116,114,105,110,103))
'var(a=(:'
$a->join(',')
'))'
var(b=bytes)
$a->foreach => { $b->import8bits(#1) }
$b->asString
|
http://rosettacode.org/wiki/Range_extraction
|
Range extraction
|
A format for expressing an ordered list of integers is to use a comma separated list of either
individual integers
Or a range of integers denoted by the starting integer separated from the end integer in the range by a dash, '-'. (The range includes all integers in the interval including both endpoints)
The range syntax is to be used only for, and for every range that expands to more than two values.
Example
The list of integers:
-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20
Is accurately expressed by the range expression:
-6,-3-1,3-5,7-11,14,15,17-20
(And vice-versa).
Task
Create a function that takes a list of integers in increasing order and returns a correctly formatted string in the range format.
Use the function to compute and print the range formatted version of the following ordered list of integers. (The correct answer is: 0-2,4,6-8,11,12,14-25,27-33,35-39).
0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39
Show the output of your program.
Related task
Range expansion
|
#Tcl
|
Tcl
|
proc rangeExtract list {
set result [lindex $list 0]
set first [set last [lindex $list 0]]
foreach term [lrange $list 1 end] {
if {$term == $last+1} {
set last $term
continue
}
if {$last > $first} {
append result [expr {$last == $first+1 ? "," : "-"}] $last
}
append result "," $term
set first [set last $term]
}
if {$last == $first+1} {
append result "," $last
} elseif {$last > $first} {
append result "-" $last
}
return $result
}
# Commas already removed so it is a natural Tcl list
puts [rangeExtract {
0 1 2 4 6 7 8 11 12 14
15 16 17 18 19 20 21 22 23 24
25 27 28 29 30 31 32 33 35 36
37 38 39
}]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.