task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#LFE
|
LFE
|
> (lists:reverse "asdf")
"fdsa"
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#VBA
|
VBA
|
Public Function RepeatStr(aString As String, aNumber As Integer) As String
Dim bString As String, i As Integer
bString = ""
For i = 1 To aNumber
bString = bString & aString
Next i
RepeatStr = bString
End Function
Debug.Print RepeatStr("ha", 5)
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#VBScript
|
VBScript
|
' VBScript has a String() function that can repeat a character a given number of times
' but this only works with single characters (or the 1st char of a string):
WScript.Echo String(10, "123") ' Displays "1111111111"
' To repeat a string of chars, you can use either of the following "hacks"...
WScript.Echo Replace(Space(10), " ", "Ha")
WScript.Echo Replace(String(10, "X"), "X", "Ha")
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Batch_File
|
Batch File
|
@echo off
for /f "skip=6 tokens=*" %%i in (file.txt) do (
set line7=%%i
goto break
)
:break
echo Line 7 is: %line7%
pause>nul
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#BBC_BASIC
|
BBC BASIC
|
filepath$ = @lib$ + "..\licence.txt"
requiredline% = 7
file% = OPENIN(filepath$)
IF file%=0 ERROR 100, "File could not be opened"
FOR i% = 1 TO requiredline%
IF EOF#file% ERROR 100, "File contains too few lines"
INPUT #file%, text$
NEXT
CLOSE #file%
IF ASCtext$=10 text$ = MID$(text$,2)
PRINT text$
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Red
|
Red
|
>> items: [1 "a" "c" 1 3 4 5 "c" 3 4 5]
>> unique items
== [1 "a" "c" 3 4 5]
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#REXX
|
REXX
|
/*REXX program removes any duplicate elements (items) that are in a list (using a hash).*/
$= '2 3 5 7 11 13 17 19 cats 222 -100.2 +11 1.1 +7 7. 7 5 5 3 2 0 4.4 2' /*item list.*/
say 'original list:' $
say right( words($), 17, '─') 'words in the original list.'
z=; @.= /*initialize the NEW list & index list.*/
do j=1 for words($); y= word($, j) /*process the words (items) in the list*/
if @.y=='' then z= z y; @.y= . /*Not duplicated? Add to Z list,@ array*/
end /*j*/
say
say 'modified list:' space(z) /*stick a fork in it, we're all done. */
say right( words(z), 17, '─') 'words in the modified list.'
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#QBasic
|
QBasic
|
f = FREEFILE
filename$ = "file.txt"
OPEN filename$ FOR BINARY AS #f
WHILE NOT EOF(f)
char$ = STR$(LOF(f))
GET #f, , char$
PRINT char$;
WEND
CLOSE #f
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Racket
|
Racket
|
#lang racket
; This file contains utf-8 charachters: λ, α, γ ...
(for ([c (in-port read-char (open-input-file "read-file.rkt"))])
(display c))
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#JavaScript
|
JavaScript
|
function millis() { // Gets current time in milliseconds.
return (new Date()).getTime();
}
/* Executes function 'func' n times, returns array of execution times. */
function benchmark(n, func, args) {
var times = [];
for (var i=0; i<n; i++) {
var m = millis();
func.apply(func, args);
times.push(millis() - m);
}
return times;
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Liberty_BASIC
|
Liberty BASIC
|
input$ ="abcdefgABCDEFG012345"
print input$
print ReversedStr$( input$)
end
function ReversedStr$(in$)
for i =len(in$) to 1 step -1
ReversedStr$ =ReversedStr$ +mid$( in$, i, 1)
next i
end function
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Vedit_macro_language
|
Vedit macro language
|
Ins_Text("ha", COUNT, 5)
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Visual_Basic
|
Visual Basic
|
Public Function StrRepeat(s As String, n As Integer) As String
Dim r As String, i As Integer
r = ""
For i = 1 To n
r = r & s
Next i
StrRepeat = r
End Function
Debug.Print StrRepeat("ha", 5)
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#C
|
C
|
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <err.h>
/* following code assumes all file operations succeed. In practice,
* return codes from open, close, fstat, mmap, munmap all need to be
* checked for error.
*/
int read_file_line(const char *path, int line_no)
{
struct stat s;
char *buf;
off_t start = -1, end = -1;
size_t i;
int ln, fd, ret = 1;
if (line_no == 1) start = 0;
else if (line_no < 1){
warn("line_no too small");
return 0; /* line_no starts at 1; less is error */
}
line_no--; /* back to zero based, easier */
fd = open(path, O_RDONLY);
fstat(fd, &s);
/* Map the whole file. If the file is huge (up to GBs), OS will swap
* pages in and out, and because search for lines goes sequentially
* and never accesses more than one page at a time, penalty is low.
* If the file is HUGE, such that OS can't find an address space to map
* it, we got a real problem. In practice one would repeatedly map small
* chunks, say 1MB at a time, and find the offsets of the line along the
* way. Although, if file is really so huge, the line itself can't be
* guaranteed small enough to be "stored in memory", so there.
*/
buf = mmap(0, s.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
/* optional; if the file is large, tell OS to read ahead */
madvise(buf, s.st_size, MADV_SEQUENTIAL);
for (i = ln = 0; i < s.st_size && ln <= line_no; i++) {
if (buf[i] != '\n') continue;
if (++ln == line_no) start = i + 1;
else if (ln == line_no + 1) end = i + 1;
}
if (start >= s.st_size || start < 0) {
warn("file does not have line %d", line_no + 1);
ret = 0;
} else {
/* do something with the line here, like
write(STDOUT_FILENO, buf + start, end - start);
or copy it out, or something
*/
}
munmap(buf, s.st_size);
close(fd);
return ret;
}
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Ring
|
Ring
|
list = ["Now", "is", "the", "time", "for", "all", "good", "men", "to", "come", "to", "the", "aid", "of", "the", "party."]
for i = 1 to len(list)
for j = i + 1 to len(list)
if list[i] = list[j] del(list, j) j-- ok
next
next
for n = 1 to len(list)
see list[n] + " "
next
see nl
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Ruby
|
Ruby
|
ary = [1,1,2,1,'redundant',[1,2,3],[1,2,3],'redundant']
p ary.uniq # => [1, 2, "redundant", [1, 2, 3]]
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Raku
|
Raku
|
.say while defined $_ = $*IN.getc;
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#REXX
|
REXX
|
/*REXX program reads and displays a file char by char, returning 'EOF' when done. */
parse arg iFID . /*iFID: is the fileID to be read. */
/* [↓] show the file's contents. */
if iFID\=='' then do j=1 until x=='EOF' /*J count's the file's characters. */
x=getchar(iFID); y= /*get a character or an 'EOF'. */
if x>>' ' then y=x /*display X if presentable. */
say right(j, 12) 'character, (hex,char)' c2x(x) y
end /*j*/ /* [↑] only display X if not low hex*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
getchar: procedure; parse arg z; if chars(z)==0 then return 'EOF'; return charin(z)
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Jsish
|
Jsish
|
#!/usr/bin/env jsish
"use strict";
/* Rate counter, timer access, in Jsish */
/* System time in milliseconds */
var runs = 0, newMs;
function countJobsIsTheJob() { runs += 1; }
var milliSeconds = strptime();
while ((newMs = strptime()) < (milliSeconds + 1000)) { countJobsIsTheJob(); }
puts(runs, 'runs in', newMs - milliSeconds, 'ms');
/* Builtin times test(callback, runs), result in microseconds */
function sleeper() { sleep(10); }
var timer;
for (var i = 1; i < 4; i++) {
timer = times(sleeper, 100);
puts(timer, 'μs to sleep 10 ms, 100 times');
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Lingo
|
Lingo
|
on reverse (str)
res = ""
repeat with i = str.length down to 1
put str.char[i] after res
end repeat
return res
end
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Debug.Print(Replace(Space(5), " ", "Ha"))
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Visual_FoxPro
|
Visual FoxPro
|
? REPLICATE("HO", 3)
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#C.23
|
C#
|
using System;
using System.IO;
namespace GetLine
{
internal class Program
{
private static void Main(string[] args)
{
Console.WriteLine(GetLine(args[0], uint.Parse(args[1])));
}
private static string GetLine(string path, uint line)
{
using (var reader = new StreamReader(path))
{
try
{
for (uint i = 0; i <= line; i++)
{
if (reader.EndOfStream)
return string.Format("There {1} less than {0} line{2} in the file.", line,
((line == 1) ? "is" : "are"), ((line == 1) ? "" : "s"));
if (i == line)
return reader.ReadLine();
reader.ReadLine();
}
}
catch (IOException ex)
{
return ex.Message;
}
catch (OutOfMemoryException ex)
{
return ex.Message;
}
}
throw new Exception("Something bad happened.");
}
}
}
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Run_BASIC
|
Run BASIC
|
a$ = "2 3 5 7 11 13 17 19 cats 222 -100.2 +11 1.1 +7 7. 7 5 5 3 2 0 4.4 2"
for i = 1 to len(a$)
a1$ = word$(a$,i)
if a1$ = "" then exit for
for i1 = 1 to len(b$)
if a1$ = word$(b$,i1) then [nextWord]
next i1
b$ = b$ + a1$ + " "
[nextWord]
next i
print "Dups:";a$
print "No Dups:";b$
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Ring
|
Ring
|
fp = fopen("C:\Ring\ReadMe.txt","r")
r = fgetc(fp)
while isstring(r)
r = fgetc(fp)
see r
end
fclose(fp)
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Ruby
|
Ruby
|
File.open('input.txt', 'r:utf-8') do |f|
f.each_char{|c| p c}
end
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Julia
|
Julia
|
dosomething() = sleep(abs(randn()))
function runNsecondsworthofjobs(N)
times = Vector{Float64}()
totaltime = 0
runcount = 0
while totaltime < N
t = @elapsed(dosomething())
push!(times, t)
totaltime += t
runcount += 1
end
println("Ran job $runcount times, for total time of $totaltime seconds.")
println("Average time per run was $(sum(times)/length(times)) seconds.")
println("Individual times of the jobs in seconds were:")
for t in times
println(" $t")
end
end
runNsecondsworthofjobs(5)
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Kotlin
|
Kotlin
|
// version 1.1.3
typealias Func<T> = (T) -> T
fun cube(n: Int) = n * n * n
fun <T> benchmark(n: Int, func: Func<T>, arg: T): LongArray {
val times = LongArray(n)
for (i in 0 until n) {
val m = System.nanoTime()
func(arg)
times[i] = System.nanoTime() - m
}
return times
}
fun main(args: Array<String>) {
println("\nTimings (nanoseconds) : ")
for (time in benchmark(10, ::cube, 5)) println(time)
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#LiveCode
|
LiveCode
|
function reverseString S
repeat with i = length(S) down to 1
put char i of S after R
end repeat
return R
end reverseString
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Vlang
|
Vlang
|
// Repeat a string, in V
// Tectonics: v run repeat-a-string.v
module main
import strings
// starts here
pub fn main() {
// A strings module function to repeat strings
println(strings.repeat_string("ha", 5))
// Another strings module function to repeat a byte
// This indexes the string to get the first byte of the rune array
println(strings.repeat("*"[0], 5))
}
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Wart
|
Wart
|
def (s * n) :case (string? s)
with outstring
repeat n
pr s
("ha" * 5)
=> "hahahahaha"
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#C.2B.2B
|
C++
|
#include <string>
#include <fstream>
#include <iostream>
int main( ) {
std::cout << "Which file do you want to look at ?\n" ;
std::string input ;
std::getline( std::cin , input ) ;
std::ifstream infile( input.c_str( ) , std::ios::in ) ;
std::string file( input ) ;
std::cout << "Which file line do you want to see ? ( Give a number > 0 ) ?\n" ;
std::getline( std::cin , input ) ;
int linenumber = std::stoi( input ) ;
int lines_read = 0 ;
std::string line ;
if ( infile.is_open( ) ) {
while ( infile ) {
getline( infile , line ) ;
lines_read++ ;
if ( lines_read == linenumber ) {
std::cout << line << std::endl ;
break ;
}
}
infile.close( ) ;
if ( lines_read < linenumber )
std::cout << "No " << linenumber << " lines in " << file << " !\n" ;
return 0 ;
}
else {
std::cerr << "Could not find file " << file << " !\n" ;
return 1 ;
}
}
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Rust
|
Rust
|
use std::collections::HashSet;
use std::hash::Hash;
fn remove_duplicate_elements_hashing<T: Hash + Eq>(elements: &mut Vec<T>) {
let set: HashSet<_> = elements.drain(..).collect();
elements.extend(set.into_iter());
}
fn remove_duplicate_elements_sorting<T: Ord>(elements: &mut Vec<T>) {
elements.sort_unstable(); // order does not matter
elements.dedup();
}
fn main() {
let mut sample_elements = vec![0, 0, 1, 1, 2, 3, 2];
println!("Before removal of duplicates : {:?}", sample_elements);
remove_duplicate_elements_sorting(&mut sample_elements);
println!("After removal of duplicates : {:?}", sample_elements);
}
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Run_BASIC
|
Run BASIC
|
open file.txt" for binary as #f
numChars = 1 ' specify number of characters to read
a$ = input$(#f,numChars) ' read number of characters specified
b$ = input$(#f,1) ' read one character
close #f
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Rust
|
Rust
|
use std::{
convert::TryFrom,
fmt::{Debug, Display, Formatter},
io::Read,
};
pub struct ReadUtf8<I: Iterator> {
source: std::iter::Peekable<I>,
}
impl<R: Read> From<R> for ReadUtf8<std::io::Bytes<R>> {
fn from(source: R) -> Self {
ReadUtf8 {
source: source.bytes().peekable(),
}
}
}
impl<I, E> Iterator for ReadUtf8<I>
where
I: Iterator<Item = Result<u8, E>>,
{
type Item = Result<char, Error<E>>;
fn next(&mut self) -> Option<Self::Item> {
self.source.next().map(|next| match next {
Ok(lead) => self.complete_char(lead),
Err(e) => Err(Error::SourceError(e)),
})
}
}
impl<I, E> ReadUtf8<I>
where
I: Iterator<Item = Result<u8, E>>,
{
fn continuation(&mut self) -> Result<u32, Error<E>> {
if let Some(Ok(byte)) = self.source.peek() {
let byte = *byte;
return if byte & 0b1100_0000 == 0b1000_0000 {
self.source.next();
Ok((byte & 0b0011_1111) as u32)
} else {
Err(Error::InvalidByte(byte))
};
}
match self.source.next() {
None => Err(Error::InputTruncated),
Some(Err(e)) => Err(Error::SourceError(e)),
Some(Ok(_)) => unreachable!(),
}
}
fn complete_char(&mut self, lead: u8) -> Result<char, Error<E>> {
let a = lead as u32; // Let's name the bytes in the sequence
let result = if a & 0b1000_0000 == 0 {
Ok(a)
} else if lead & 0b1110_0000 == 0b1100_0000 {
let b = self.continuation()?;
Ok((a & 0b0001_1111) << 6 | b)
} else if a & 0b1111_0000 == 0b1110_0000 {
let b = self.continuation()?;
let c = self.continuation()?;
Ok((a & 0b0000_1111) << 12 | b << 6 | c)
} else if a & 0b1111_1000 == 0b1111_0000 {
let b = self.continuation()?;
let c = self.continuation()?;
let d = self.continuation()?;
Ok((a & 0b0000_0111) << 18 | b << 12 | c << 6 | d)
} else {
Err(Error::InvalidByte(lead))
};
Ok(char::try_from(result?).unwrap())
}
}
#[derive(Debug, Clone)]
pub enum Error<E> {
InvalidByte(u8),
InputTruncated,
SourceError(E),
}
impl<E: Display> Display for Error<E> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
Self::InvalidByte(b) => write!(f, "invalid byte 0x{:x}", b),
Self::InputTruncated => write!(f, "character truncated"),
Self::SourceError(e) => e.fmt(f),
}
}
}
fn main() -> std::io::Result<()> {
for (index, value) in ReadUtf8::from(std::fs::File::open("test.txt")?).enumerate() {
match value {
Ok(c) => print!("{}", c),
Err(e) => {
print!("\u{fffd}");
eprintln!("offset {}: {}", index, e);
}
}
}
Ok(())
}
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Liberty_BASIC
|
Liberty BASIC
|
Print "Rate counter"
print "Precision: system clock, ms ";
t0=time$("ms")
while time$("ms")=t0 'busy loop till click ticks
wend
print time$("ms")-t0
print
Print "Run jobs N times, report every time"
Print "After that, report average time"
N=10
t00=time$("ms")
for i = 1 to 10
scan
t0=time$("ms")
'any code we want to measure goes here
res = testFunc()
'end of measured code
t1=time$("ms")
ElapsedTime = t1-t0
print "Job #";i;" Elapsed time, ms ";ElapsedTime, 1000/ElapsedTime; " ticks per second"
next
print "---------------------------------"
print "Average time, ms, is ";(t1-t00)/N, 1000/((t1-t00)/N); " ticks per second"
print
print "Run jobs for not less then N seconds (if time up, it'll finish last job)"
print "After that, report average time"
NSec=5
i = 0
t00=time$("ms")
while time$("ms")<t00+NSec*1000
scan
i = i+1
t0=time$("ms")
'any code we want to measure goes here
res = testFunc()
'end of measured code
t1=time$("ms")
ElapsedTime = t1-t0
print "Job #";i;" Elapsed time, ms ";ElapsedTime, 1000/ElapsedTime; " ticks per second"
wend
print "---------------------------------"
print "Average time, ms, is ";(t1-t00)/i, 1000/((t1-t00)/i); " ticks per second"
end
function testFunc()
s=0
for i = 1 to 30000
s=s+sin(i)/30000
next
testFunc = s
end function
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#LLVM
|
LLVM
|
; This is not strictly LLVM, as it uses the C library function "printf".
; LLVM does not provide a way to print values, so the alternative would be
; to just load the string into memory, and that would be boring.
; Additional comments have been inserted, as well as changes made from the output produced by clang such as putting more meaningful labels for the jumps
$"main.printf" = comdat any
@main.str = private unnamed_addr constant [12 x i8] c"Hello world\00", align 1
@"main.printf" = linkonce_odr unnamed_addr constant [4 x i8] c"%s\0A\00", comdat, align 1
define void @reverse(i64, i8*) {
%3 = alloca i8*, align 8 ; allocate str (local)
%4 = alloca i64, align 8 ; allocate len (local)
%5 = alloca i64, align 8 ; allocate i
%6 = alloca i64, align 8 ; allocate j
%7 = alloca i8, align 1 ; allocate t
store i8* %1, i8** %3, align 8 ; set str (local) to the parameter str
store i64 %0, i64* %4, align 8 ; set len (local) to the paremeter len
store i64 0, i64* %5, align 8 ; i = 0
%8 = load i64, i64* %4, align 8 ; load len
%9 = sub i64 %8, 1 ; decrement len
store i64 %9, i64* %6, align 8 ; j =
br label %loop
loop:
%10 = load i64, i64* %5, align 8 ; load i
%11 = load i64, i64* %6, align 8 ; load j
%12 = icmp ult i64 %10, %11 ; i < j
br i1 %12, label %loop_body, label %exit
loop_body:
%13 = load i8*, i8** %3, align 8 ; load str
%14 = load i64, i64* %5, align 8 ; load i
%15 = getelementptr inbounds i8, i8* %13, i64 %14 ; address of str[i]
%16 = load i8, i8* %15, align 1 ; load str[i]
store i8 %16, i8* %7, align 1 ; t = str[i]
%17 = load i64, i64* %6, align 8 ; load j
%18 = getelementptr inbounds i8, i8* %13, i64 %17 ; address of str[j]
%19 = load i8, i8* %18, align 1 ; load str[j]
%20 = getelementptr inbounds i8, i8* %13, i64 %14 ; address of str[i]
store i8 %19, i8* %20, align 1 ; str[i] = str[j]
%21 = load i8, i8* %7, align 1 ; load t
%22 = getelementptr inbounds i8, i8* %13, i64 %17 ; address of str[j]
store i8 %21, i8* %22, align 1 ; str[j] = t
;-- loop increment
%23 = load i64, i64* %5, align 8 ; load i
%24 = add i64 %23, 1 ; increment i
store i64 %24, i64* %5, align 8 ; store i
%25 = load i64, i64* %6, align 8 ; load j
%26 = add i64 %25, -1 ; decrement j
store i64 %26, i64* %6, align 8 ; store j
br label %loop
exit:
ret void
}
define i32 @main() {
;-- char str[]
%1 = alloca [12 x i8], align 1
;-- memcpy(str, "Hello world")
%2 = bitcast [12 x i8]* %1 to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %2, i8* getelementptr inbounds ([12 x i8], [12 x i8]* @main.str, i32 0, i32 0), i64 12, i32 1, i1 false)
;-- printf("%s\n", str)
%3 = getelementptr inbounds [12 x i8], [12 x i8]* %1, i32 0, i32 0
%4 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @"main.printf", i32 0, i32 0), i8* %3)
;-- %7 = strlen(str)
%5 = getelementptr inbounds [12 x i8], [12 x i8]* %1, i32 0, i32 0
%6 = call i64 @strlen(i8* %5)
;-- reverse(%6, str)
call void @reverse(i64 %6, i8* %5)
;-- printf("%s\n", str)
%7 = getelementptr inbounds [12 x i8], [12 x i8]* %1, i32 0, i32 0
%8 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @"main.printf", i32 0, i32 0), i8* %7)
;-- end of main
ret i32 0
}
;--- The declaration for the external C printf function.
declare i32 @printf(i8*, ...)
; Function Attrs: argmemonly nounwind
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture writeonly, i8* nocapture readonly, i64, i32, i1)
declare i64 @strlen(i8*)
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Wortel
|
Wortel
|
@join "" @rep 5 "ha" ; returns "hahahahaha"
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Wren
|
Wren
|
System.print("ha" * 5)
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Clojure
|
Clojure
|
(defn read-nth-line
"Read line-number from the given text file. The first line has the number 1."
[file line-number]
(with-open [rdr (clojure.java.io/reader file)]
(nth (line-seq rdr) (dec line-number))))
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Scala
|
Scala
|
val list = List(1,2,3,4,2,3,4,99)
val l2 = list.distinct
// l2: scala.List[scala.Int] = List(1,2,3,4,99)
val arr = Array(1,2,3,4,2,3,4,99)
val arr2 = arr.distinct
// arr2: Array[Int] = Array(1, 2, 3, 4, 99)
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Seed7
|
Seed7
|
$ include "seed7_05.s7i";
include "utf8.s7i";
const proc: main is func
local
var file: inFile is STD_NULL;
var char: ch is ' ';
begin
OUT := STD_UTF8_OUT;
inFile := openUtf8("readAFileCharacterByCharacterUtf8.in", "r");
if inFile <> STD_NULL then
while hasNext(inFile) do
ch := getc(inFile);
writeln("got character " <& ch <& " [U+" <& ord(ch) radix 16 <& "]");
end while;
close(inFile);
end if;
end func;
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Sidef
|
Sidef
|
var file = File('input.txt') # the input file contains: "aă€⼥"
var fh = file.open_r # equivalent with: file.open('<:utf8')
fh.each_char { |char|
printf("got character #{char} [U+%04x]\n", char.ord)
}
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
jobRateCounted[fn_,Y_Integer]:=First[AbsoluteTiming[Do[fn,{Y}]]/Y;
SetAttributes[jobRateCounted,HoldFirst]
jobRatePeriod[fn_,time_]:=Block[{n=0},TimeConstrained[While[True,fn;n++]];n/time];
SetAttributes[jobRatePeriod,HoldFirst]
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Nim
|
Nim
|
import sugar, std/monotimes, times
type Func[T] = (T) -> T
func cube(n: int): int = n * n * n
proc benchmark[T](n: int; f: Func[T]; arg: T): seq[Duration] =
result.setLen(n)
for i in 0..<n:
let m = getMonoTime()
discard f(arg)
result[i] = getMonoTime() - m
echo "Timings (nanoseconds):"
for time in benchmark(10, cube, 5):
echo time.inNanoseconds
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Logo
|
Logo
|
print reverse "cat ; tac
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#XPL0
|
XPL0
|
cod T=12; int I; for I gets 1,5 do T(0,"ha")
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Yorick
|
Yorick
|
array("ha", 5)(sum)
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Common_Lisp
|
Common Lisp
|
(defun read-nth-line (file n &aux (line-number 0))
"Read the nth line from a text file. The first line has the number 1"
(assert (> n 0) (n))
(with-open-file (stream file)
(loop for line = (read-line stream nil nil)
if (and (null line) (< line-number n))
do (error "file ~a is too short, just ~a, not ~a lines long"
file line-number n)
do (incf line-number)
if (and line (= line-number n))
do (return line))))
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Scheme
|
Scheme
|
(define (remove-duplicates l)
(cond ((null? l)
'())
((member (car l) (cdr l))
(remove-duplicates (cdr l)))
(else
(cons (car l) (remove-duplicates (cdr l))))))
(remove-duplicates '(1 2 1 3 2 4 5))
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Smalltalk
|
Smalltalk
|
|utfStream|
utfStream := 'input' asFilename readStream asUTF8EncodedStream.
[utfStream atEnd] whileFalse:[
Transcript showCR:'got char ',utfStream next.
].
utfStream close.
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Tcl
|
Tcl
|
set ch [read $channel 1]
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#OxygenBasic
|
OxygenBasic
|
'========
'TIME API
'========
'http://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx
extern lib "kernel32.dll"
type SYSTEMTIME
WORD wYear
WORD wMonth
WORD wDayOfWeek
WORD wDay
WORD wHour
WORD wMinute
WORD wSecond
WORD wMilliseconds
end type
void GetSystemTime(SYSTEMTIME*t)
void GetLocalTime(SYSTEMTIME*t)
void QueryPerformanceCounter(quad*c)
void QueryPerformanceFrequency(quad*freq)
void Sleep(sys millisecods)
end extern
String WeekDay[7]={"Sunday","Monday","Tuesday","Wednesday",
"Thursday","Friday","Saturday"}
String MonthName[12]={"January","February","March","April","May","June",
"July","August","September","October","November","December"}
'==============
Class Jobrecord
'==============
has SYSTEMTIME stt
has SYSTEMTIME fin
quad countA
quad CountB
quad freq
sys serial
method pad(string s) as string
method=s
if len(method)<2 then method="0"+method
end method
method ShowDateTime(sys a,f) as string
SYSTEMTIME *t
if a then
@t=@fin
else
@t=@stt
end if
'
String month=pad(str t.wMonth)
String day=pad(str t.wDay)
if f=0 then
return "" t.wYear "-" month "-" day " "+
pad(t.wHour) ":" pad(t.wMinute) ":" pad(t.wSecond) ":" t.wMilliSeconds
elseif f=1
return WeekDay[t.wDayOfWeek+1 and 7 ] " " +
MonthName[t.wMonth and 31] " " day " " t.wYear
end if
end method
method Start()
QueryPerformanceCounter countA
QueryPerformanceFrequency freq
serial++
GetLocalTime stt
end method
method Finish()
GetLocalTime fin
QueryPerformanceCounter countB
end method
method ShowDuration() as string
return str((countB-countA)/freq,6) 'seconds with microsecond resolution
end method
method report() as string
string tab=chr(9), cr=chr(13)+chr(10)
method="Job:" tab serial cr +
"Duration:" tab ShowDuration() cr +
"Start: " tab ShowDateTime(0,0) cr +
"Finish:" tab ShowDateTime(1,0) cr +
ShowDateTime(1,1) cr
end method
end class
'#recordof JobRecord
'====
'TEST
'====
JobRecord JR
JR.start
sleep 100 'JOB!
JR.finish
print JR.Report
'putfile "s.txt",JR.Report
'
'Job: 1
'Duration: 0.099026
'Start: 2012-07-01 00:52:36:874
'Finish: 2012-07-01 00:52:36:974
'Sunday July 01 2012
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Lua
|
Lua
|
theString = theString:reverse()
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Z80_Assembly
|
Z80 Assembly
|
PrintChar equ &BB5A ;Amstrad CPC BIOS call, prints the ascii code in the accumulator to the screen.
org &8000
ld b,5 ; repeat 5 times
loop:
call PrintImmediate
byte "ha",0
djnz loop
ret ; return to basic
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
PrintImmediate:
pop hl ; get the return address into HL, it's the start of the embedded string.
call PrintString
; inc hl ; if your strings are null-terminated you can omit this, since a 0 equals the "NOP" instruction
jp (hl) ; acts as a ret, returning execution to the instruction just after the embedded string.
PrintString:
ld a,(hl) ; read in a character from the string
or a ; if your strings are null-terminated you can use this as a shortcut, otherwise use the compare instruction
ret z ; exit once the terminator is reached.
call PrintChar ; BIOS call, all regs are preserved.
inc hl ; next char
jr PrintString ; back to start.
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#D
|
D
|
void main() {
import std.stdio, std.file, std.string;
auto file_lines = readText("input.txt").splitLines();
//file_lines becomes an array of strings, each line is one element
writeln((file_lines.length > 6) ? file_lines[6] : "line not found");
}
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Seed7
|
Seed7
|
$ include "seed7_05.s7i";
const proc: main is func
local
const array integer: data is [] (1, 3, 2, 9, 1, 2, 3, 8, 8, 1, 0, 2);
var set of integer: dataSet is (set of integer).value;
var integer: number is 0;
begin
for number range data do
incl(dataSet, number);
end for;
writeln(dataSet);
end func;
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#Wren
|
Wren
|
import "io" for File
File.open("input.txt") { |file|
var offset = 0
var char = "" // stores each byte read till we have a complete UTF encoded character
while(true) {
var b = file.readBytes(1, offset)
if (b == "") return // end of stream
char = char + b
if (char.codePoints[0] >= 0) { // a UTF encoded character is complete
System.write(char) // print it
char = "" // reset store
}
offset = offset + 1
}
}
|
http://rosettacode.org/wiki/Read_a_file_character_by_character/UTF8
|
Read a file character by character/UTF8
|
Task
Read a file one character at a time, as opposed to reading the entire file at once.
The solution may be implemented as a procedure, which returns the next character in the file on each consecutive call (returning EOF when the end of the file is reached).
The procedure should support the reading of files containing UTF8 encoded wide characters, returning whole characters for each consecutive read.
Related task
Read a file line by line
|
#zkl
|
zkl
|
fcn readUTF8c(chr,s=""){ // transform UTF-8 character stream
s+=chr;
try{ s.len(8); return(s) }
catch{ if(s.len()>6) throw(__exception) } // 6 bytes max for UTF-8
return(Void.Again,s); // call me again with s & another character
}
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#PARI.2FGP
|
PARI/GP
|
a=0;
b=0;
for(n=1,20000000,
a=a+gettime();
if(a>60000,print(b);a=0;b=0);
'''code to test'''
b=b+1;
a=a+gettime();
if(a>60000,print(b);a=0;b=0)
)
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#M2000_Interpreter
|
M2000 Interpreter
|
Module ReverseString {
a$="as⃝df̅"
Print Len(a$), len.disp(a$)
Let i=1, j=Len(a$)
z$=String$(" ",j)
j++
do {
k$=mid$(a$, i, 1)
if i<len(a$) then {
while len.disp(k$+mid$(a$, i+1,1)) =len.disp(k$) {
k$+=mid$(a$, i+1,1)
i++
if i>len(a$) then exit
j--
}
j--
insert j, len(k$) Z$=K$
} else j-- :Insert j,1 z$=k$
if i>=len(a$) then exit
i++
} Always
Print len(z$), len.disp(z$)
Print z$="f̅ds⃝a"
Print z$
}
ReverseString
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#zig
|
zig
|
const laugh = "ha" ** 5;
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Delphi
|
Delphi
|
program Read_a_specific_line_from_a_file;
{$APPTYPE CONSOLE}
uses
System.SysUtils;
function ReadLine(position: Cardinal; FileName: TFileName): string;
begin
Result := '';
if not FileExists(FileName) then
raise Exception.Create('Error: File does not exist.');
var F: TextFile;
var line: string;
AssignFile(F, FileName);
Reset(F);
for var _ := 1 to position do
begin
if Eof(F) then
begin
CloseFile(F);
raise Exception.Create(Format('Error: The file "%s" is too short. Cannot read line %d',
[FileName, position]));
end;
Readln(F, line);
end;
CloseFile(F);
Result := line;
end;
begin
Writeln(ReadLine(7, 'test'));
Readln;
end.
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#SETL
|
SETL
|
items := [0,7,6,6,4,9,7,1,2,3,2];
print(unique(items));
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Perl
|
Perl
|
use Benchmark;
timethese COUNT,{ 'Job1' => &job1, 'Job2' => &job2 };
sub job1
{
...job1 code...
}
sub job2
{
...job2 code...
}
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#M4
|
M4
|
define(`invert',`ifelse(len(`$1'),0,,`invert(substr(`$1',1))'`'substr(`$1',0,1))')
|
http://rosettacode.org/wiki/Repeat_a_string
|
Repeat a string
|
Take a string and repeat it some number of times.
Example: repeat("ha", 5) => "hahahahaha"
If there is a simpler/more efficient way to repeat a single “character” (i.e. creating a string filled with a certain character), you might want to show that as well (i.e. repeat-char("*", 5) => "*****").
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#zkl
|
zkl
|
"ha" * 5 # --> "hahahahaha"
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Elixir
|
Elixir
|
defmodule LineReader do
def get_line(filename, line) do
File.stream!(filename)
|> Stream.with_index
|> Stream.filter(fn {_value, index} -> index == line-1 end)
|> Enum.at(0)
|> print_line
end
defp print_line({value, _line_number}), do: String.trim(value)
defp print_line(_), do: {:error, "Invalid Line"}
end
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#SETL4
|
SETL4
|
set = new('set')
* Add all the elements of the array to the set.
add(set,array)
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Phix
|
Phix
|
procedure task_to_measure()
sleep(0.1)
end procedure
printf(1,"method 1: calculate reciprocal of elapsed time:\n")
for trial=1 to 3 do
atom t=time()
task_to_measure()
t = time()-t
string r = iff(t?sprintf("%g",1/t):"inf")
printf(1,"rate = %s per second\n",{r})
end for
printf(1,"method 2: count completed tasks in one second:\n")
for trial=1 to 3 do
integer runs=0
atom finish=time()+1
while true do
task_to_measure()
if time()>=finish then exit end if
runs += 1
end while
printf(1,"rate = %d per second\n",runs)
end for
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Maclisp
|
Maclisp
|
(readlist (reverse (explode "my-string")))
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Erlang
|
Erlang
|
-module( read_a_specific_line ).
-export( [from_file/2, task/0] ).
from_file( File, N ) -> line_nr( N, read_a_file_line_by_line:into_list(File) ).
task() ->
Lines = read_a_file_line_by_line:into_list( "read_a_specific_line.erl" ),
Line_7 = line_nr( 7, Lines ),
Line_7.
line_nr( N, Lines ) ->
try
case lists:nth( N, Lines )
of "\n" -> erlang:exit( empty_line )
; Line -> Line
end
catch
_Type:Error0 ->
Error = line_nr_error( Error0 ),
io:fwrite( "Error: ~p~n", [Error] ),
erlang:exit( Error )
end.
line_nr_error( function_clause ) -> too_few_lines_in_file;
line_nr_error( Error ) -> Error.
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Sidef
|
Sidef
|
var ary = [1,1,2,1,'redundant',[1,2,3],[1,2,3],'redundant'];
say ary.uniq.dump;
say ary.last_uniq.dump;
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Phixmonti
|
Phixmonti
|
100000 var iterations
2 4 2 tolist
for
msec var a
iterations
for
over 2 power + drop
endfor
msec a - var dif
"take " print dif print " secs" print
" or " print iterations dif / print " sums per second" print nl
endfor
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Maple
|
Maple
|
> StringTools:-Reverse( "foo" );
"oof"
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#F.23
|
F#
|
open System
open System.IO
[<EntryPoint>]
let main args =
let n = Int32.Parse(args.[1]) - 1
use r = new StreamReader(args.[0])
let lines = Seq.unfold (
fun (reader : StreamReader) ->
if (reader.EndOfStream) then None
else Some(reader.ReadLine(), reader)) r
let line = Seq.nth n lines // Seq.nth throws an ArgumentException,
// if not not enough lines available
Console.WriteLine(line)
0
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Slate
|
Slate
|
[|:s| #(1 2 3 4 1 2 3 4) >> s] writingAs: Set.
"==> {"Set traitsWindow" 1. 2. 3. 4}"
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#PicoLisp
|
PicoLisp
|
(prin "Hit a key ... ")
(key)
(prinl)
(let Usec (usec)
(prin "Hit another key ... ")
(key)
(prinl)
(prinl "This took " (format (- (usec) Usec) 6) " seconds") )
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
StringReverse["asdf"]
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Factor
|
Factor
|
USING: continuations fry io io.encodings.utf8 io.files kernel
math ;
IN: rosetta-code.nth-line
: nth-line ( path encoding n -- str/f )
[ f ] 3dip '[
[ _ [ drop readln [ return ] unless* ] times ]
with-return
] with-file-reader ;
: nth-line-demo ( -- )
"input.txt" utf8 7 nth-line [ "line not found" ] unless*
print ;
MAIN: nth-line-demo
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Smalltalk
|
Smalltalk
|
"Example of creating a collection"
|a|
a := #( 1 1 2 'hello' 'world' #symbol #another 2 'hello' #symbol ).
a asSet.
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#PowerShell
|
PowerShell
|
[datetime]$start = Get-Date
[int]$count = 3
[timespan[]]$times = for ($i = 0; $i -lt $count; $i++)
{
Measure-Command {0..999999 | Out-Null}
}
[datetime]$end = Get-Date
$rate = [PSCustomObject]@{
StartTime = $start
EndTime = $end
Duration = ($end - $start).TotalSeconds
TimesRun = $count
AverageRunTime = ($times.TotalSeconds | Measure-Object -Average).Average
}
$rate | Format-List
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#MATLAB
|
MATLAB
|
>> fliplr(['She told me that she spoke English and I said great. '...
'Grabbed her hand out the club and I said let''s skate.'])
ans =
.etaks s'tel dias I dna bulc eht tuo dnah reh debbarG .taerg dias I dna hsilgnE ekops ehs taht em dlot ehS
|
http://rosettacode.org/wiki/Ray-casting_algorithm
|
Ray-casting algorithm
|
This page uses content from Wikipedia. The original article was at Point_in_polygon. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Given a point and a polygon, check if the point is inside or outside the polygon using the ray-casting algorithm.
A pseudocode can be simply:
count ← 0
foreach side in polygon:
if ray_intersects_segment(P,side) then
count ← count + 1
if is_odd(count) then
return inside
else
return outside
Where the function ray_intersects_segment return true if the horizontal ray starting from the point P intersects the side (segment), false otherwise.
An intuitive explanation of why it works is that every time we cross
a border, we change "country" (inside-outside, or outside-inside), but
the last "country" we land on is surely outside (since the inside of the polygon is finite, while the ray continues towards infinity). So, if we crossed an odd number of borders we were surely inside, otherwise we were outside; we can follow the ray backward to see it better: starting from outside, only an odd number of crossing can give an inside: outside-inside, outside-inside-outside-inside, and so on (the - represents the crossing of a border).
So the main part of the algorithm is how we determine if a ray intersects a segment. The following text explain one of the possible ways.
Looking at the image on the right, we can easily be convinced of the fact that rays starting from points in the hatched area (like P1 and P2) surely do not intersect the segment AB. We also can easily see that rays starting from points in the greenish area surely intersect the segment AB (like point P3).
So the problematic points are those inside the white area (the box delimited by the points A and B), like P4.
Let us take into account a segment AB (the point A having y coordinate always smaller than B's y coordinate, i.e. point A is always below point B) and a point P. Let us use the cumbersome notation PAX to denote the angle between segment AP and AX, where X is always a point on the horizontal line passing by A with x coordinate bigger than the maximum between the x coordinate of A and the x coordinate of B. As explained graphically by the figures on the right, if PAX is greater than the angle BAX, then the ray starting from P intersects the segment AB. (In the images, the ray starting from PA does not intersect the segment, while the ray starting from PB in the second picture, intersects the segment).
Points on the boundary or "on" a vertex are someway special and through this approach we do not obtain coherent results. They could be treated apart, but it is not necessary to do so.
An algorithm for the previous speech could be (if P is a point, Px is its x coordinate):
ray_intersects_segment:
P : the point from which the ray starts
A : the end-point of the segment with the smallest y coordinate
(A must be "below" B)
B : the end-point of the segment with the greatest y coordinate
(B must be "above" A)
if Py = Ay or Py = By then
Py ← Py + ε
end if
if Py < Ay or Py > By then
return false
else if Px >= max(Ax, Bx) then
return false
else
if Px < min(Ax, Bx) then
return true
else
if Ax ≠ Bx then
m_red ← (By - Ay)/(Bx - Ax)
else
m_red ← ∞
end if
if Ax ≠ Px then
m_blue ← (Py - Ay)/(Px - Ax)
else
m_blue ← ∞
end if
if m_blue ≥ m_red then
return true
else
return false
end if
end if
end if
(To avoid the "ray on vertex" problem, the point is moved upward of a small quantity ε.)
|
#11l
|
11l
|
T Pt
Float x, y
F (x, y)
.x = x
.y = y
F String()
R ‘Pt(x=#., y=#.)’.format(.x, .y)
T Edge
Pt a, b
F (a, b)
.a = a
.b = b
F String()
R ‘Edge(a=#., b=#.)’.format(.a, .b)
T Poly
String name
[Edge] edges
F (name, edges)
.name = name
.edges = edges
V _eps = 0.00001
V _huge = 1e+100
V _tiny = 1e-100
F rayintersectseg(=p, edge)
V a = edge.a
V b = edge.b
I a.y > b.y
swap(&a, &b)
I p.y == a.y | p.y == b.y
p = Pt(p.x, p.y + :_eps)
V intersect = 0B
I (p.y > b.y | p.y < a.y) | (p.x > max(a.x, b.x))
R 0B
I p.x < min(a.x, b.x)
intersect = 1B
E
Float m_red, m_blue
I abs(a.x - b.x) > :_tiny
m_red = (b.y - a.y) / Float(b.x - a.x)
E
m_red = :_huge
I abs(a.x - p.x) > :_tiny
m_blue = (p.y - a.y) / Float(p.x - a.x)
E
m_blue = :_huge
intersect = m_blue >= m_red
R intersect
F ispointinside(p, poly)
R sum(poly.edges.map(edge -> Int(rayintersectseg(@p, edge)))) % 2 == 1
F polypp(poly)
print("\n Polygon(name='#.', edges=(".format(poly.name))
print(‘ ’(poly.edges.map(e -> String(e)).join(",\n ")"\n ))"))
V polys = [
Poly(name' ‘square’, edges' [Edge(Pt(0, 0), Pt(10, 0)), Edge(Pt(10, 0), Pt(10, 10)), Edge(Pt(10, 10), Pt(0, 10)), Edge(Pt(0, 10), Pt(0, 0))]),
Poly(name' ‘square_hole’, edges' [Edge(Pt(0, 0), Pt(10, 0)), Edge(Pt(10, 0), Pt(10, 10)), Edge(Pt(10, 10), Pt(0, 10)), Edge(Pt(0, 10), Pt(0, 0)), Edge(Pt(2.5, 2.5), Pt(7.5, 2.5)), Edge(Pt(7.5, 2.5), Pt(7.5, 7.5)), Edge(Pt(7.5, 7.5), Pt(2.5, 7.5)), Edge(Pt(2.5, 7.5), Pt(2.5, 2.5))]),
Poly(name' ‘strange’, edges' [Edge(Pt(0, 0), Pt(2.5, 2.5)), Edge(Pt(2.5, 2.5), Pt(0, 10)), Edge(Pt(0, 10), Pt(2.5, 7.5)), Edge(Pt(2.5, 7.5), Pt(7.5, 7.5)), Edge(Pt(7.5, 7.5), Pt(10, 10)), Edge(Pt(10, 10), Pt(10, 0)), Edge(Pt(10, 0), Pt(2.5, 2.5))]),
Poly(name' ‘exagon’, edges' [Edge(Pt(3, 0), Pt(7, 0)), Edge(Pt(7, 0), Pt(10, 5)), Edge(Pt(10, 5), Pt(7, 10)), Edge(Pt(7, 10), Pt(3, 10)), Edge(Pt(3, 10), Pt(0, 5)), Edge(Pt(0, 5), Pt(3, 0))])]
V testpoints = [Pt(5, 5), Pt(5, 8),
Pt(-10, 5), Pt(0, 5),
Pt(10, 5), Pt(8, 5),
Pt(10, 10)]
print("\n TESTING WHETHER POINTS ARE WITHIN POLYGONS")
L(poly) polys
polypp(poly)
print(‘ ’testpoints[0.<3].map(p -> ‘#.: #.’.format(p, I ispointinside(p, @poly) {‘True’} E ‘False’)).join("\t"))
print(‘ ’testpoints[3.<6].map(p -> ‘#.: #.’.format(p, I ispointinside(p, @poly) {‘True’} E ‘False’)).join("\t"))
print(‘ ’testpoints[6.. ].map(p -> ‘#.: #.’.format(p, I ispointinside(p, @poly) {‘True’} E ‘False’)).join("\t"))
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Fortran
|
Fortran
|
MODULE SAMPLER !To sample a record from a file. SAM00100
CONTAINS SAM00200
CHARACTER*20 FUNCTION GETREC(N,F,IS) !Returns a status. SAM00300
Careful. Some compilers get confused over the function name's usage. SAM00400
INTEGER N !The desired record number. SAM00500
INTEGER F !Of this file. SAM00600
CHARACTER*(*) IS !Stashed here. SAM00700
INTEGER I,L !Assistants. SAM00800
IS = "" !Clear previous content, even if null...SAM00900
IF (N.LE.0) THEN !Start on errors. SAM01000
WRITE (GETREC,1) "!No record",N !Could never be found. SAM01100
1 FORMAT (A,1X,I0) !Message, number. SAM01200
ELSE IF (F.LE.0) THEN !Obviously wrong? SAM01300
WRITE (GETREC,1) "!No unit number",F!Positive is valid. SAM01400
ELSE IF (LEN(IS).LE.0) THEN !Space awaits? SAM01500
WRITE (GETREC,1) "!String size",LEN(IS) !Nope. SAM01600
ELSE !Otherwise, there is hope. SAM01700
REWIND (F) !Clarify the file position. SAM01800
DO I = 1,N - 1 !Grind up to the desired record. SAM01900
READ (F,2,END=3) !Ignoring any content. SAM02000
END DO !Are we there yet? SAM02100
READ (F,2,END = 3) L,IS(1:MIN(L,LEN(IS))) !At last. SAM02200
2 FORMAT (Q,A) !Q = characters yet unread. SAM02300
IF (L.LT.LEN(IS)) IS(L + 1:) = "" !Clear the tail. SAM02400
IF (L.GT.LEN(IS)) THEN !Now for more silliness.SAM02500
WRITE (GETREC,1) "+Length",L !Too long to fit in IS. SAM02600
ELSE IF (L.LE.0) THEN !A zero-length record SAM02700
WRITE (GETREC,1) "+Null" !Is not the same SAM02800
ELSE IF (IS.EQ."") THEN !As a record SAM02900
WRITE (GETREC,1) "+Blank",L !Containing spaces. SAM03000
ELSE !But otherwise, SAM03100
WRITE (GETREC,1) " Length",L !Note the leading space.SAM03200
END IF !Righto, we've decided. SAM03300
END IF !And, no more options. SAM03400
RETURN !So, done. SAM03500
3 WRITE (GETREC,1) "!End on read",I !An alternative ending. SAM03600
END FUNCTION GETREC !That was interesting. SAM03700
END MODULE SAMPLER !Just a sample of possibility. SAM03800
SAM03900
PROGRAM POKE POK00100
USE SAMPLER POK00200
INTEGER ENUFF !Some sizes. POK00300
PARAMETER (ENUFF = 666) !Sufficient? POK00400
CHARACTER*(ENUFF) STUFF !Lots of memory these days. POK00500
CHARACTER*20 RESULT POK00600
INTEGER MSG,F !I/O unit numbers. POK00700
MSG = 6 !Standard output. POK00800
F = 10 !Chooose a unit number. POK00900
WRITE (MSG,*) " To select record 7 from a disc file." POK01000
POK01100
WRITE (MSG,*) "As a FORMATTED file." POK01200
OPEN (F,FILE="FileSlurpN.for",STATUS="OLD",ACTION="READ") POK01300
RESULT = GETREC(7,F,STUFF) POK01400
WRITE (MSG,1) "Result",RESULT POK01500
WRITE (MSG,1) "Record",STUFF POK01600
1 FORMAT (A,":",A) POK01700
POK01800
CLOSE (F) POK01900
WRITE (MSG,*) "As a random-access unformatted file." POK02000
OPEN (F,FILE="FileSlurpN.for",STATUS="OLD",ACTION="READ", POK02100
1 ACCESS="DIRECT",FORM="UNFORMATTED",RECL=82) !Not 80! POK02200
STUFF = "Cleared." POK02300
READ (F,REC = 7,ERR = 666) STUFF(1:80) POK02400
WRITE (MSG,1) "Record",STUFF(1:80) POK02500
STOP POK02600
666 WRITE (MSG,*) "Can't get the record!" POK02700
END !That was easy. POK02800
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Sparkling
|
Sparkling
|
function undupe(arr) {
var t = {};
foreach(arr, function(key, val) {
t[val] = true;
});
var r = {};
foreach(t, function(key) {
r[sizeof r] = key;
});
return r;
}
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#SQL
|
SQL
|
/*
This code is an implementation of "Remove duplicate elements" in SQL ORACLE 19c
p_in_str -- input string
p_delimiter -- delimeter
*/
WITH
FUNCTION remove_duplicate_elements(p_in_str IN varchar2, p_delimiter IN varchar2 DEFAULT ',') RETURN varchar2 IS
v_in_str varchar2(32767) := REPLACE(p_in_str,p_delimiter,',');
v_res varchar2(32767);
BEGIN
--
EXECUTE immediate 'select listagg(distinct cv,:p_delimiter) from (select (column_value).getstringval() cv from xmltable(:v_in_str))'
INTO v_res USING p_delimiter, v_in_str;
--
RETURN v_res;
--
END;
--Test
SELECT remove_duplicate_elements('1, 2, 3, "a", "b", "c", 2, 3, 4, "b", "c", "d"') AS res FROM dual
UNION ALL
SELECT remove_duplicate_elements('3 9 1 10 3 7 6 5 2 7 4 7 4 2 2 2 2 8 2 10 4 9 2 4 9 3 4 3 4 7',' ') AS res FROM dual
;
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#PureBasic
|
PureBasic
|
Procedure.d TimesPSec(Reset=#False)
Static starttime, cnt
Protected Result.d, dt
If Reset
starttime=ElapsedMilliseconds(): cnt=0
Else
cnt+1
dt=(ElapsedMilliseconds()-starttime)
If dt
Result=cnt/(ElapsedMilliseconds()-starttime)
EndIf
EndIf
ProcedureReturn Result*1000
EndProcedure
If OpenWindow(0,#PB_Ignore,#PB_Ignore,220,110,"",#PB_Window_SystemMenu)
Define Event, r.d, GadgetNumber
ButtonGadget(0,10, 5,200,35,"Click me!")
ButtonGadget(1,10,70,100,35,"Reset")
TextGadget (2,10,45,200,25,"")
TimesPSec(1)
Repeat
Event=WaitWindowEvent()
If Event=#PB_Event_Gadget
GadgetNumber =EventGadget()
If GadgetNumber=0
r=TimesPSec()
SetGadgetText(2,"You are clicking at "+StrD(r,5)+" Hz.")
ElseIf GadgetNumber=1
TimesPSec(1)
SetGadgetText(2,"Counter zeroed.")
EndIf
EndIf
Until Event=#PB_Event_CloseWindow
EndIf
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Maxima
|
Maxima
|
sreverse("abcdef"); /* "fedcba" */
sreverse("rats live on no evil star"); /* not a bug :o) */
|
http://rosettacode.org/wiki/Ray-casting_algorithm
|
Ray-casting algorithm
|
This page uses content from Wikipedia. The original article was at Point_in_polygon. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Given a point and a polygon, check if the point is inside or outside the polygon using the ray-casting algorithm.
A pseudocode can be simply:
count ← 0
foreach side in polygon:
if ray_intersects_segment(P,side) then
count ← count + 1
if is_odd(count) then
return inside
else
return outside
Where the function ray_intersects_segment return true if the horizontal ray starting from the point P intersects the side (segment), false otherwise.
An intuitive explanation of why it works is that every time we cross
a border, we change "country" (inside-outside, or outside-inside), but
the last "country" we land on is surely outside (since the inside of the polygon is finite, while the ray continues towards infinity). So, if we crossed an odd number of borders we were surely inside, otherwise we were outside; we can follow the ray backward to see it better: starting from outside, only an odd number of crossing can give an inside: outside-inside, outside-inside-outside-inside, and so on (the - represents the crossing of a border).
So the main part of the algorithm is how we determine if a ray intersects a segment. The following text explain one of the possible ways.
Looking at the image on the right, we can easily be convinced of the fact that rays starting from points in the hatched area (like P1 and P2) surely do not intersect the segment AB. We also can easily see that rays starting from points in the greenish area surely intersect the segment AB (like point P3).
So the problematic points are those inside the white area (the box delimited by the points A and B), like P4.
Let us take into account a segment AB (the point A having y coordinate always smaller than B's y coordinate, i.e. point A is always below point B) and a point P. Let us use the cumbersome notation PAX to denote the angle between segment AP and AX, where X is always a point on the horizontal line passing by A with x coordinate bigger than the maximum between the x coordinate of A and the x coordinate of B. As explained graphically by the figures on the right, if PAX is greater than the angle BAX, then the ray starting from P intersects the segment AB. (In the images, the ray starting from PA does not intersect the segment, while the ray starting from PB in the second picture, intersects the segment).
Points on the boundary or "on" a vertex are someway special and through this approach we do not obtain coherent results. They could be treated apart, but it is not necessary to do so.
An algorithm for the previous speech could be (if P is a point, Px is its x coordinate):
ray_intersects_segment:
P : the point from which the ray starts
A : the end-point of the segment with the smallest y coordinate
(A must be "below" B)
B : the end-point of the segment with the greatest y coordinate
(B must be "above" A)
if Py = Ay or Py = By then
Py ← Py + ε
end if
if Py < Ay or Py > By then
return false
else if Px >= max(Ax, Bx) then
return false
else
if Px < min(Ax, Bx) then
return true
else
if Ax ≠ Bx then
m_red ← (By - Ay)/(Bx - Ax)
else
m_red ← ∞
end if
if Ax ≠ Px then
m_blue ← (Py - Ay)/(Px - Ax)
else
m_blue ← ∞
end if
if m_blue ≥ m_red then
return true
else
return false
end if
end if
end if
(To avoid the "ray on vertex" problem, the point is moved upward of a small quantity ε.)
|
#Ada
|
Ada
|
package Polygons is
type Point is record
X, Y : Float;
end record;
type Point_List is array (Positive range <>) of Point;
subtype Segment is Point_List (1 .. 2);
type Polygon is array (Positive range <>) of Segment;
function Create_Polygon (List : Point_List) return Polygon;
function Is_Inside (Who : Point; Where : Polygon) return Boolean;
end Polygons;
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#FreeBASIC
|
FreeBASIC
|
' FB 1.05.0 Win64
Open "input.txt" For Input As #1
Dim line_ As String
Dim count As Integer = 0
While Not Eof(1)
Line Input #1, line_ '' read each line
count += 1
If count = 7 Then
line_ = Trim(line_, Any !" \t") '' remove any leading or trailing spaces or tabs
If line_ = "" Then
Print "The 7th line is empty"
Else
Print "The 7th line is : "; line_
End If
Exit While
End If
Wend
If count < 7 Then
Print "There are only"; count; " lines in the file"
End If
Close #1
Print
Print "Press any key to quit"
Sleep
|
http://rosettacode.org/wiki/Ranking_methods
|
Ranking methods
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
The numerical rank of competitors in a competition shows if one is better than, equal to, or worse than another based on their results in a competition.
The numerical rank of a competitor can be assigned in several different ways.
Task
The following scores are accrued for all competitors of a competition (in best-first order):
44 Solomon
42 Jason
42 Errol
41 Garry
41 Bernard
41 Barry
39 Stephen
For each of the following ranking methods, create a function/method/procedure/subroutine... that applies the ranking method to an ordered list of scores with scorers:
Standard. (Ties share what would have been their first ordinal number).
Modified. (Ties share what would have been their last ordinal number).
Dense. (Ties share the next available integer).
Ordinal. ((Competitors take the next available integer. Ties are not treated otherwise).
Fractional. (Ties share the mean of what would have been their ordinal numbers).
See the wikipedia article for a fuller description.
Show here, on this page, the ranking of the test scores under each of the numbered ranking methods.
|
#11l
|
11l
|
F mc_rank([(Int, String)] iterable)
‘Modified competition ranking’
[(Float, (Int, String))] r
V lastresult = -1
[(Int, String)] fifo
L(item) iterable
I item[0] == lastresult
fifo [+]= item
E
V n = L.index
L !fifo.empty
r.append((n, fifo.pop(0)))
lastresult = item[0]
fifo [+]= item
L !fifo.empty
r.append((iterable.len, fifo.pop(0)))
R r
F sc_rank([(Int, String)] iterable)
‘Standard competition ranking’
[(Float, (Int, String))] r
V lastresult = -1
V lastrank = -1
L(item) iterable
I item[0] == lastresult
r.append((lastrank, item))
E
V n = L.index + 1
r.append((n, item))
lastresult = item[0]
lastrank = n
R r
F d_rank([(Int, String)] iterable)
‘Dense ranking’
[(Float, (Int, String))] r
V lastresult = -1
V lastrank = 0
L(item) iterable
I item[0] == lastresult
r.append((lastrank, item))
E
lastresult = item[0]
lastrank++
r.append((lastrank, item))
R r
F o_rank([(Int, String)] iterable)
‘Ordinal ranking’
R enumerate(iterable, 1).map((i, item) -> ((Float(i), item)))
F f_rank([(Int, String)] iterable)
‘Fractional ranking’
[(Float, (Int, String))] r
V last = -1
[(Int, (Int, String))] fifo
L(item) iterable
I item[0] != last
I !fifo.empty
V mean = Float(sum(fifo.map(f -> f[0]))) / fifo.len
L !fifo.empty
r.append((mean, fifo.pop(0)[1]))
last = item[0]
fifo.append((L.index + 1, item))
I !fifo.empty
V mean = sum(fifo.map(f -> f[0])) / fifo.len
L !fifo.empty
r.append((mean, fifo.pop(0)[1]))
R r
V scores = [(44, ‘Solomon’),
(42, ‘Jason’),
(42, ‘Errol’),
(41, ‘Garry’),
(41, ‘Bernard’),
(41, ‘Barry’),
(39, ‘Stephen’)]
print("\nScores to be ranked (best first):")
L(n, s) scores
print(‘ #2 #.’.format(n, s))
L(ranker, ranking_method) [(sc_rank, ‘Standard competition ranking’),
(mc_rank, ‘Modified competition ranking’),
(d_rank, ‘Dense ranking’),
(o_rank, ‘Ordinal ranking’),
(f_rank, ‘Fractional ranking’)]
print("\n#.:".format(ranking_method))
L(rank, score) ranker(scores)
print(‘ #3, (#., #.)’.format(rank, score[0], score[1]))
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Stata
|
Stata
|
. clear all
. input x y
1 1
1 1
1 2
2 1
2 2
1 1
2 1
2 1
1 2
2 2
end
. duplicates drop x y, force
. list
+-------+
| x y |
|-------|
1. | 1 1 |
2. | 1 2 |
3. | 2 1 |
4. | 2 2 |
+-------+
|
http://rosettacode.org/wiki/Remove_duplicate_elements
|
Remove duplicate elements
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an Array, derive a sequence of elements in which all duplicates are removed.
There are basically three approaches seen here:
Put the elements into a hash table which does not allow duplicates. The complexity is O(n) on average, and O(n2) worst case. This approach requires a hash function for your type (which is compatible with equality), either built-in to your language, or provided by the user.
Sort the elements and remove consecutive duplicate elements. The complexity of the best sorting algorithms is O(n log n). This approach requires that your type be "comparable", i.e., have an ordering. Putting the elements into a self-balancing binary search tree is a special case of sorting.
Go through the list, and for each element, check the rest of the list to see if it appears again, and discard it if it does. The complexity is O(n2). The up-shot is that this always works on any type (provided that you can test for equality).
|
#Swift
|
Swift
|
println(Array(Set([3,2,1,2,3,4])))
|
http://rosettacode.org/wiki/Rate_counter
|
Rate counter
|
Of interest is the code that performs the actual measurements. Any other code (such as job implementation or dispatching) that is required to demonstrate the rate tracking is helpful, but not the focus.
Multiple approaches are allowed (even preferable), so long as they can accomplish these goals:
Run N seconds worth of jobs and/or Y jobs.
Report at least three distinct times.
Be aware of the precision and accuracy limitations of your timing mechanisms, and document them if you can.
See also: System time, Time a function
|
#Python
|
Python
|
import subprocess
import time
class Tlogger(object):
def __init__(self):
self.counts = 0
self.tottime = 0.0
self.laststart = 0.0
self.lastreport = time.time()
def logstart(self):
self.laststart = time.time()
def logend(self):
self.counts +=1
self.tottime += (time.time()-self.laststart)
if (time.time()-self.lastreport)>5.0: # report once every 5 seconds
self.report()
def report(self):
if ( self.counts > 4*self.tottime):
print "Subtask execution rate: %f times/second"% (self.counts/self.tottime);
else:
print "Average execution time: %f seconds"%(self.tottime/self.counts);
self.lastreport = time.time()
def taskTimer( n, subproc_args ):
logger = Tlogger()
for x in range(n):
logger.logstart()
p = subprocess.Popen(subproc_args)
p.wait()
logger.logend()
logger.report()
import timeit
import sys
def main( ):
# for accurate timing of code segments
s = """j = [4*n for n in range(50)]"""
timer = timeit.Timer(s)
rzlts = timer.repeat(5, 5000)
for t in rzlts:
print "Time for 5000 executions of statement = ",t
# subprocess execution timing
print "#times:",sys.argv[1]
print "Command:",sys.argv[2:]
print ""
for k in range(3):
taskTimer( int(sys.argv[1]), sys.argv[2:])
main()
|
http://rosettacode.org/wiki/Reverse_a_string
|
Reverse a string
|
Task
Take a string and reverse it.
For example, "asdf" becomes "fdsa".
Extra credit
Preserve Unicode combining characters.
For example, "as⃝df̅" becomes "f̅ds⃝a", not "̅fd⃝sa".
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#MAXScript
|
MAXScript
|
fn reverseString s =
(
local reversed = ""
for i in s.count to 1 by -1 do reversed += s[i]
reversed
)
|
http://rosettacode.org/wiki/Ray-casting_algorithm
|
Ray-casting algorithm
|
This page uses content from Wikipedia. The original article was at Point_in_polygon. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Given a point and a polygon, check if the point is inside or outside the polygon using the ray-casting algorithm.
A pseudocode can be simply:
count ← 0
foreach side in polygon:
if ray_intersects_segment(P,side) then
count ← count + 1
if is_odd(count) then
return inside
else
return outside
Where the function ray_intersects_segment return true if the horizontal ray starting from the point P intersects the side (segment), false otherwise.
An intuitive explanation of why it works is that every time we cross
a border, we change "country" (inside-outside, or outside-inside), but
the last "country" we land on is surely outside (since the inside of the polygon is finite, while the ray continues towards infinity). So, if we crossed an odd number of borders we were surely inside, otherwise we were outside; we can follow the ray backward to see it better: starting from outside, only an odd number of crossing can give an inside: outside-inside, outside-inside-outside-inside, and so on (the - represents the crossing of a border).
So the main part of the algorithm is how we determine if a ray intersects a segment. The following text explain one of the possible ways.
Looking at the image on the right, we can easily be convinced of the fact that rays starting from points in the hatched area (like P1 and P2) surely do not intersect the segment AB. We also can easily see that rays starting from points in the greenish area surely intersect the segment AB (like point P3).
So the problematic points are those inside the white area (the box delimited by the points A and B), like P4.
Let us take into account a segment AB (the point A having y coordinate always smaller than B's y coordinate, i.e. point A is always below point B) and a point P. Let us use the cumbersome notation PAX to denote the angle between segment AP and AX, where X is always a point on the horizontal line passing by A with x coordinate bigger than the maximum between the x coordinate of A and the x coordinate of B. As explained graphically by the figures on the right, if PAX is greater than the angle BAX, then the ray starting from P intersects the segment AB. (In the images, the ray starting from PA does not intersect the segment, while the ray starting from PB in the second picture, intersects the segment).
Points on the boundary or "on" a vertex are someway special and through this approach we do not obtain coherent results. They could be treated apart, but it is not necessary to do so.
An algorithm for the previous speech could be (if P is a point, Px is its x coordinate):
ray_intersects_segment:
P : the point from which the ray starts
A : the end-point of the segment with the smallest y coordinate
(A must be "below" B)
B : the end-point of the segment with the greatest y coordinate
(B must be "above" A)
if Py = Ay or Py = By then
Py ← Py + ε
end if
if Py < Ay or Py > By then
return false
else if Px >= max(Ax, Bx) then
return false
else
if Px < min(Ax, Bx) then
return true
else
if Ax ≠ Bx then
m_red ← (By - Ay)/(Bx - Ax)
else
m_red ← ∞
end if
if Ax ≠ Px then
m_blue ← (Py - Ay)/(Px - Ax)
else
m_blue ← ∞
end if
if m_blue ≥ m_red then
return true
else
return false
end if
end if
end if
(To avoid the "ray on vertex" problem, the point is moved upward of a small quantity ε.)
|
#ANSI_Standard_BASIC
|
ANSI Standard BASIC
|
1000 PUBLIC NUMERIC x,y
1010 LET x=1
1020 LET y=2
1030 !
1040 DEF isLeft2(L(,),p()) = -SGN( (L(1,x)-L(2,x))*(p(y)-L(2,y)) - (p(x)-L(2,x))*(L(1,y)-L(2,y)))
1050 !
1060 FUNCTION inpolygon(p1(,),p2())
1070 LET k=UBOUND(p1,1)+1
1080 DIM send (1 TO 2,2)
1090 LET wn=0
1100 FOR n=1 TO UBOUND(p1,1)
1110 LET index=MOD(n, k)
1120 LET nextindex=MOD(n+1, k)
1130 IF nextindex=0 THEN LET nextindex=1
1140 LET send(1,x)=p1(index,x)
1150 LET send(2,x)=p1(nextindex,x)
1160 LET send(1,y)=p1(index,y)
1170 LET send(2,y)=p1(nextindex,y)
1180 IF p1(index,y)<=p2(y) THEN
1190 IF p1(nextindex,y)>p2(y) THEN
1200 IF isleft2(send,p2)>=0 THEN !'=
1210 LET wn=wn+1
1220 END IF
1230 END IF
1240 ELSE
1250 IF p1(nextindex,y)<=p2(y) THEN
1260 IF isleft2(send,p2)<=0 THEN !'=
1270 LET wn=wn-1
1280 END IF
1290 END IF
1300 END IF
1310 NEXT n
1320 LET inpolygon = wn
1330 END FUNCTION
1340 !
1350 DIM type(1 TO 2)
1360 !
1370 DIM square(4,2)
1380 MAT READ square
1390 DATA 0,0,10,0,10,10,0,10
1400 !
1410 DIM hole(4,2)
1420 MAT READ hole
1430 DATA 2.5,2.5,7.5,2.5,7.5,7.5,2.5,7.5
1440 !
1450 DIM strange(8,2)
1460 MAT READ strange
1470 DATA 0,0,2.5,2.5,0,10,2.5,7.5,7.5,7.5,10,10,10,0,2.5,2.5
1480 !
1490 DIM exagon(6,2)
1500 MAT READ exagon
1510 DATA 3,0,7,0,10,5,7,10,3,10,0,5
1520 !
1530 ! printouts
1540 FOR z=1 TO 4
1550 SELECT CASE z
1560 CASE 1
1570 PRINT "squared"
1580 PRINT "(5,5) ";TAB(12);
1590 MAT READ type
1600 DATA 5,5
1610 IF inpolygon(square,type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1620 MAT READ type
1630 DATA 5,8
1640 PRINT "(5,8) ";TAB(12);
1650 IF inpolygon(square,type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1660 PRINT "(-10,5) ";TAB(12);
1670 MAT READ type
1680 DATA -10,5
1690 IF inpolygon(square,type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1700 Print "(0,5) ";Tab(12);
1710 MAT READ type
1720 DATA 0,5
1730 IF inpolygon(square,type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1740 Print "(10,5) ";Tab(12);
1750 MAT READ type
1760 DATA 10,5
1770 IF inpolygon(square,type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1780 PRINT "(8,5) ";TAB(12);
1790 MAT READ type
1800 DATA 8,5
1810 IF inpolygon(square,Type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1820 PRINT "(10,10) ";TAB(12);
1830 MAT READ type
1840 DATA 10,10
1850 IF inpolygon(square,Type) <> 0 THEN PRINT "in" ELSE PRINT "out"
1860 PRINT
1870 CASE 2
1880 PRINT "squared hole"
1890 PRINT "(5,5) ";TAB(12);
1900 MAT READ type
1910 DATA 5,5
1920 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
1930 Print "(5,8) ";Tab(12);
1940 MAT READ type
1950 DATA 5,8
1960 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
1970 PRINT "(-10,5) ";TAB(12);
1980 MAT READ type
1990 DATA -10,5
2000 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2010 PRINT "(0,5) ";TAB(12);
2020 MAT READ type
2030 DATA 0,5
2040 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2050 PRINT "(10,5) ";TAB(12);
2060 MAT READ type
2070 DATA 10,5
2080 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2090 PRINT "(8,5) ";TAB(12);
2100 MAT READ type
2110 DATA 8,5
2120 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2130 PRINT "(10,10) ";TAB(12);
2140 MAT READ type
2150 DATA 10,10
2160 IF NOT inpolygon(hole,Type)<>0 AND inpolygon(square,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2170 PRINT
2180 CASE 3
2190 PRINT "strange"
2200 PRINT "(5,5) ";TAB(12);
2210 MAT READ type
2220 DATA 5,5
2230 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2240 PRINT "(5,8) ";TAB(12);
2250 MAT READ type
2260 DATA 5,8
2270 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2280 PRINT "(-10,5) ";TAB(12);
2290 MAT READ type
2300 DATA -10,5
2310 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2320 PRINT "(0,5) ";TAB(12);
2330 MAT READ type
2340 DATA 0,5
2350 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2360 PRINT "(10,5) ";TAB(12);
2370 MAT READ type
2380 DATA 10,5
2390 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2400 PRINT "(8,5) ";TAB(12);
2410 MAT READ type
2420 DATA 8,5
2430 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2440 PRINT "(10,10) ";TAB(12);
2450 MAT READ type
2460 DATA 10,10
2470 IF inpolygon(strange,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2480 PRINT
2490 CASE 4
2500 PRINT "exagon"
2510 PRINT "(5,5) ";TAB(12);
2520 MAT READ type
2530 DATA 5,5
2540 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2550 PRINT "(5,8) ";TAB(12);
2560 MAT READ type
2570 DATA 5,8
2580 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2590 PRINT "(-10,5) ";TAB(12);
2600 MAT READ type
2610 DATA -10,5
2620 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2630 PRINT "(0,5) ";TAB(12);
2640 MAT READ type
2650 DATA 0,5
2660 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2670 PRINT "(10,5) ";TAB(12);
2680 MAT READ type
2690 DATA 10,5
2700 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2710 PRINT "(8,5) ";TAB(12);
2720 MAT READ type
2730 DATA 8,5
2740 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2750 PRINT "(10,10) ";TAB(12);
2760 MAT READ type
2770 DATA 10,10
2780 IF inpolygon(exagon,Type)<>0 THEN PRINT "in" ELSE PRINT "out"
2790 PRINT
2800 END SELECT
2810 NEXT z
2820 END
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#Frink
|
Frink
|
nthLine[filename, lineNum] :=
{
line = nth[lines[filenameToURL[filename]], lineNum-1]
if line != undef
return line
else
{
println["The file $filename does not contain a line number $lineNum"]
return undef
}
}
|
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file
|
Read a specific line from a file
|
Some languages have special semantics for obtaining a known line number from a file.
Task
Demonstrate how to obtain the contents of a specific line within a file.
For the purpose of this task demonstrate how the contents of the seventh line of a file can be obtained, and store it in a variable or in memory (for potential future use within the program if the code were to become embedded).
If the file does not contain seven lines, or the seventh line is empty, or too big to be retrieved, output an appropriate message.
If no special semantics are available for obtaining the required line, it is permissible to read line by line.
Note that empty lines are considered and should still be counted.
Also note that for functional languages or languages without variables or storage, it is permissible to output the extracted data to standard output.
|
#FutureBasic
|
FutureBasic
|
window 1
long i = 1
Str255 s, lineSeven
CFURLRef url
url = openpanel 1, @"Select text file"
if ( url )
open "I", 2, url
while ( not eof(2) )
line input #2, s
if ( i == 7 )
lineSeven = s : break
end if
i++
wend
close 2
if ( lineSeven[0] )
print lineSeven
else
print "File did not contain seven lines, or line was empty."
end if
end if
HandleEvents
|
http://rosettacode.org/wiki/Ranking_methods
|
Ranking methods
|
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
The numerical rank of competitors in a competition shows if one is better than, equal to, or worse than another based on their results in a competition.
The numerical rank of a competitor can be assigned in several different ways.
Task
The following scores are accrued for all competitors of a competition (in best-first order):
44 Solomon
42 Jason
42 Errol
41 Garry
41 Bernard
41 Barry
39 Stephen
For each of the following ranking methods, create a function/method/procedure/subroutine... that applies the ranking method to an ordered list of scores with scorers:
Standard. (Ties share what would have been their first ordinal number).
Modified. (Ties share what would have been their last ordinal number).
Dense. (Ties share the next available integer).
Ordinal. ((Competitors take the next available integer. Ties are not treated otherwise).
Fractional. (Ties share the mean of what would have been their ordinal numbers).
See the wikipedia article for a fuller description.
Show here, on this page, the ranking of the test scores under each of the numbered ranking methods.
|
#AppleScript
|
AppleScript
|
(*
The five ranking methods are implemented here as script objects sharing inherited code rather than as simple
handlers, although there appears to be little advantage either way. This way needs fewer lines of code
but more lines of explanatory comments!
*)
use AppleScript version "2.4" -- Mac OS 10.11 (Yosemite) or later (for these 'use' commands).
use sorter : script "Custom Iterative Ternary Merge Sort" -- <https://macscripter.net/viewtopic.php?pid=194430#p194430>
script standardRanking
-- Properties and handlers inherited or overridden by the other script objects.
-- The 'references' are to values that won't be available until 'results' is set to a list.
-- 'me' and 'my' refer to the script object using the code at the time.
property results : missing value
property startIndex : 1
property endIndex : a reference to length of (a reference to results)
property step : 1
property currentRank : missing value
property currentScore : missing value
-- Main handler.
on resultsFrom(theScores)
copy theScores to my results
-- The task description specifies that the input list is already ordered, but that's not assumed here.
-- Additionally, competitors with equal scores are arranged alphabetically by name.
-- The comparer here is 'me' because the current script object contains the isGreater(a, b) handler to be used.
tell sorter to sort(my results, my startIndex, my endIndex, {comparer:me})
set my currentScore to score of item (my startIndex) of my results
set my currentRank to my startIndex's contents
repeat with i from (my startIndex) to (my endIndex) by (my step)
my rankResult(i)
end repeat
-- Since these script objects are assigned to top-level variables in a running script, make sure the potentially
-- long 'results' list isn't saved back to the script file with them at the end of the run. This precaution isn't
-- necessary in a library script or if the scripts are instantiated and assigned to local variables at run time.
set localVariable to my results
set my results to missing value
return localVariable
end resultsFrom
-- Comparison handler used by the sort. The returned boolean indicates whether or not record 'a' should go after record 'b'.
on isGreater(a, b)
if (a's score is less than b's score) then return true
return ((a's score is equal to b's score) and (a's competitor comes after b's competitor))
end isGreater
-- Specialist ranking handler. Inherited by the modifiedRanking script, but overridden by the others.
on rankResult(i)
set thisResult to item i of my results
set thisScore to thisResult's score
if (thisScore is not currentScore) then
set my currentRank to i
set my currentScore to thisScore
end if
set item i of my results to thisResult & {rank:my currentRank}
end rankResult
end script
script modifiedRanking -- Uses the standardRanking code, but works backwards through the results list.
property parent : standardRanking
property startIndex : a reference to length of (a reference to results)
property endIndex : 1
property step : -1
end script
script denseRanking
property parent : standardRanking
on rankResult(i)
set thisResult to item i of my results
set thisScore to thisResult's score
if (thisScore is not my currentScore) then
set my currentRank to (my currentRank) + 1
set my currentScore to thisScore
end if
set item i of my results to thisResult & {rank:my currentRank}
end rankResult
end script
script ordinalRanking
property parent : standardRanking
on rankResult(i)
set item i of my results to (item i of my results) & {rank:i}
end rankResult
end script
script fractionalRanking
property parent : standardRanking
on rankResult(i)
set thisResult to item i of my results
set thisScore to thisResult's score
if (thisScore is not my currentScore) then
-- i and currentRank are simultaneously indices and ranks.
-- The average of any run of consecutive integers is that of the first and last.
set average to (i - 1 + (my currentRank)) / 2
repeat with j from (my currentRank) to (i - 1)
set rank of item j of my results to average
end repeat
set my currentRank to i
set my currentScore to thisScore
end if
set item i of my results to thisResult & {rank:i as real}
end rankResult
end script
-- Task code:
on formatRankings(type, theResults)
set rankings to {type}
repeat with thisResult in theResults
set end of rankings to (thisResult's rank as text) & tab & thisResult's competitor & " (" & thisResult's score & ")"
end repeat
return joinStrings(rankings, linefeed)
end formatRankings
on joinStrings(listOfText, delimiter)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delimiter
set output to listOfText as text
set AppleScript's text item delimiters to astid
return output
end joinStrings
local theScores, output
set theScores to {{score:44, competitor:"Solomon"}, {score:42, competitor:"Jason"}, {score:42, competitor:"Errol"}, ¬
{score:41, competitor:"Garry"}, {score:41, competitor:"Bernard"}, {score:41, competitor:"Barry"}, ¬
{score:39, competitor:"Stephen"}}
set output to {}
set end of output to formatRankings("Standard ranking:", standardRanking's resultsFrom(theScores))
set end of output to formatRankings("Modified ranking:", modifiedRanking's resultsFrom(theScores))
set end of output to formatRankings("Dense ranking:", denseRanking's resultsFrom(theScores))
set end of output to formatRankings("Ordinal ranking:", ordinalRanking's resultsFrom(theScores))
set end of output to formatRankings("Fractional ranking:", fractionalRanking's resultsFrom(theScores))
return joinStrings(output, linefeed & linefeed)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.