task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#AutoHotkey
AutoHotkey
Roman_Decode(str){ res := 0 Loop Parse, str { n := {M: 1000, D:500, C:100, L:50, X:10, V:5, I:1}[A_LoopField] If ( n > OldN ) && OldN res -= 2*OldN res += n, oldN := n } return res }   test = MCMXC|MMVIII|MDCLXVI Loop Parse, test, | res .= A_LoopField "`t= " Roman_Decode(A_LoopField) "`r`n" clipboard := res
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#Delphi
Delphi
type TFunc = function (x : Float) : Float;   function f(x : Float) : Float; begin Result := x*x*x-3.0*x*x +2.0*x; end;   const e = 1.0e-12;   function Secant(xA, xB : Float; f : TFunc) : Float; const limit = 50; var fA, fB : Float; d : Float; i : Integer; begin fA := f(xA); for i := 0 to limit do begin fB := f(xB); d := (xB-xA)/(fB-fA)*fB; if Abs(d) < e then Exit(xB); xA := xB; fA := fB; xB -= d; end; PrintLn(Format('Function is not converging near (%7.4f,%7.4f).', [xA, xB])); Result := -99.0; end;   const fstep = 1.0e-2;   var x := -1.032; // just so we use secant method var xx, value : Float; var s := f(x)>0.0;   while (x < 3.0) do begin value := f(x); if Abs(value)<e then begin PrintLn(Format("Root found at x= %12.9f", [x])); s := (f(x+0.0001)>0.0); end else if (value>0.0) <> s then begin xx := Secant(x-fstep, x, f); if xx <> -99.0 then // -99 meaning secand method failed PrintLn(Format('Root found at x = %12.9f', [xx])) else PrintLn(Format('Root found near x= %7.4f', [xx])); s := (f(x+0.0001)>0.0); end; x += fstep; end;
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#C.23
C#
using System; using System.Collections.Generic; using System.Linq;   namespace RockPaperScissors { class Program { static void Main(string[] args) { // There is no limit on the amount of weapons supported by RPSGame. Matchups are calculated depending on the order. var rps = new RPSGame("scissors", "paper", "rock", "lizard", "spock");   int wins = 0, losses = 0, draws = 0;   while (true) { Console.WriteLine("Make your move: " + string.Join(", ", rps.Weapons) + ", quit");   string weapon = Console.ReadLine().Trim().ToLower();   if (weapon == "quit") break;   if (!rps.Weapons.Contains(weapon)) { Console.WriteLine("Invalid weapon!"); continue; }   int result = rps.Next(weapon);   Console.WriteLine("You chose {0} and your opponent chose {1}!", weapon, rps.LastAIWeapon);   switch (result) { case 1: Console.WriteLine("{0} pwns {1}. You're a winner!", weapon, rps.LastAIWeapon); wins++; break; case 0: Console.WriteLine("Draw!"); draws++; break; case -1: Console.WriteLine("{0} pwns {1}. You're a loser!", rps.LastAIWeapon, weapon); losses++; break; }   Console.WriteLine(); }   Console.WriteLine("\nPlayer Statistics\nWins: {0}\nLosses: {1}\nDraws: {2}", wins, losses, draws); }   class RPSGame { public RPSGame(params string[] weapons) { Weapons = weapons;   // Creates a new AI opponent, and gives it the list of weapons. _rpsAI = new RPSAI(weapons); }   // Play next turn. public int Next(string weapon) { string aiWeapon = _rpsAI.NextMove(); // Gets the AI opponent's next move. LastAIWeapon = aiWeapon; // Saves the AI opponent's move in a property so the player can see it.   _rpsAI.AddPlayerMove(weapon); // Let the AI know which weapon the player chose, for future predictions. return GetWinner(Weapons, weapon, aiWeapon); // Returns -1 if AI win, 0 if draw, and 1 if player win. }   // Returns matchup winner. public static int GetWinner(string[] weapons, string weapon1, string weapon2) { if (weapon1 == weapon2) return 0; // If weapons are the same, return 0 for draw.   if (GetVictories(weapons, weapon1).Contains(weapon2)) return 1; // Returns 1 for weapon1 win. else if (GetVictories(weapons, weapon2).Contains(weapon1)) return -1; // Returns -1 for weapon2 win.   throw new Exception("No winner found."); }   /* * Return weapons that the provided weapon beats. * The are calculated in the following way: * If the index of the weapon is even, then all even indices less than it, * and all odd indices greater than it, are victories. * One exception is if it is an odd index, and also the last index in the set, * then the first index in the set is a victory. */ public static IEnumerable<string> GetVictories(string[] weapons, string weapon) { // Gets index of weapon. int index = Array.IndexOf(weapons, weapon);   // If weapon is odd and the final index in the set, then return the first item in the set as a victory. if (index % 2 != 0 && index == weapons.Length - 1) yield return weapons[0];   for (int i = index - 2; i >= 0; i -= 2) yield return weapons[i];   for (int i = index + 1; i < weapons.Length; i += 2) yield return weapons[i]; }   public string LastAIWeapon { private set; get; }   public readonly string[] Weapons; private RPSAI _rpsAI;   class RPSAI { public RPSAI(params string[] weapons) { _weapons = weapons; _weaponProbability = new Dictionary<string, int>();   // The AI sets the probability for each weapon to be chosen as 1. foreach (string weapon in weapons) _weaponProbability.Add(weapon, 1);   _random = new Random(); }   // Increases probability of selecting each weapon that beats the provided move. public void AddPlayerMove(string weapon) { int index = Array.IndexOf(_weapons, weapon);   foreach (string winWeapon in _weapons.Except(GetVictories(_weapons, weapon))) if (winWeapon != weapon) _weaponProbability[winWeapon]++; }   // Gets the AI's next move. public string NextMove() { double r = _random.NextDouble();   double divisor = _weaponProbability.Values.Sum();   var weightedWeaponRanges = new Dictionary<double, string>();   double currentPos = 0.0;   // Maps probabilities to ranges between 0.0 and 1.0. Returns weighted random weapon. foreach (var weapon in _weaponProbability) { double weightedRange = weapon.Value / divisor; if (r <= currentPos + (weapon.Value / divisor)) return weapon.Key; currentPos += weightedRange; }   throw new Exception("Error calculating move."); }   Random _random; private readonly string[] _weapons; private Dictionary<string, int> _weaponProbability; } } } }
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#Emacs_Lisp
Emacs Lisp
(defun run-length-encode (str) (let (output) (with-temp-buffer (insert str) (goto-char (point-min)) (while (not (eobp)) (let* ((char (char-after (point))) (count (skip-chars-forward (string char)))) (push (format "%d%c" count char) output)))) (mapconcat #'identity (nreverse output) "")))
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Lambdatalk
Lambdatalk
  // cleandisp just to display 0 when n < 10^-10 {def cleandisp {lambda {:n} {if {<= {abs :n} 1.e-10} then 0 else :n}}} -> cleandisp   {def uroots {lambda {:n} {S.map {{lambda {:n :i} {let { {:theta {/ {* 2 {PI} :i} :n}} } {cons {cleandisp {cos :theta}} {cleandisp {sin :theta}}}}} :n} {S.serie 0 {- :n 1}}} }} -> uroots   {S.map {lambda {:i} {hr}i = :i -> {uroots :i}} {S.serie 2 10}} -> i = 2 -> (1 0) (-1 0) i = 3 -> (1 0) (-0.4999999999999998 0.8660254037844388) (-0.5000000000000004 -0.8660254037844384) i = 4 -> (1 0) (0 1) (-1 0) (0 -1) i = 5 -> (1 0) (0.30901699437494745 0.9510565162951535) (-0.8090169943749473 0.5877852522924732) (-0.8090169943749475 -0.587785252292473) (0.30901699437494723 -0.9510565162951536) i = 6 -> (1 0) (0.5000000000000001 0.8660254037844386) (-0.4999999999999998 0.8660254037844388) (-1 0) (-0.5000000000000004 -0.8660254037844384) (0.5 -0.8660254037844386) i = 7 -> (1 0) (0.6234898018587336 0.7818314824680297) (-0.22252093395631434 0.9749279121818236) (-0.900968867902419 0.43388373911755823) (-0.9009688679024191 -0.433883739117558) (-0.2225209339563146 -0.9749279121818235) (0.6234898018587334 -0.7818314824680299) i = 8 -> (1 0) (0.7071067811865476 0.7071067811865475) (0 1) (-0.7071067811865475 0.7071067811865476) (-1 0) (-0.7071067811865477 -0.7071067811865475) (0 -1) (0.7071067811865475 -0.7071067811865477) i = 9 -> (1 0) (0.7660444431189781 0.6427876096865393) (0.17364817766693041 0.984807753012208) (-0.4999999999999998 0.8660254037844388) (-0.9396926207859083 0.3420201433256689) (-0.9396926207859084 -0.34202014332566866) (-0.5000000000000004 -0.8660254037844384) (0.17364817766692997 -0.9848077530122081) (0.7660444431189779 -0.6427876096865396) i = 10 -> (1 0) (0.8090169943749475 0.5877852522924731) (0.30901699437494745 0.9510565162951535) (-0.30901699437494734 0.9510565162951536) (-0.8090169943749473 0.5877852522924732) (-1 0) (-0.8090169943749475 -0.587785252292473) (-0.30901699437494756 -0.9510565162951535) (0.30901699437494723 -0.9510565162951536) (0.8090169943749473 -0.5877852522924732)    
http://rosettacode.org/wiki/Rosetta_Code/Find_bare_lang_tags
Rosetta Code/Find bare lang tags
Task Find all   <lang>   tags without a language specified in the text of a page. Display counts by language section: Description <lang>Pseudocode</lang> =={{header|C}}== <lang C>printf("Hello world!\n");</lang> =={{header|Perl}}== <lang>print "Hello world!\n"</lang> should display something like 2 bare language tags. 1 in perl 1 in no language Extra credit Allow multiple files to be read.   Summarize all results by language: 5 bare language tags. 2 in c ([[Foo]], [[Bar]]) 1 in perl ([[Foo]]) 2 in no language ([[Baz]]) Extra extra credit Use the   Media Wiki API   to test actual RC tasks.
#Tcl
Tcl
package require Tcl 8.5 package require http package require json package require textutil::split package require uri   proc getUrlWithRedirect {base args} { set url $base?[http::formatQuery {*}$args] while 1 { set t [http::geturl $url] if {[http::status $t] ne "ok"} { error "Oops: url=$url\nstatus=$s\nhttp code=[http::code $token]" } if {[string match 2?? [http::ncode $t]]} { return $t } # OK, but not 200? Must be a redirect... set url [uri::resolve $url [dict get [http::meta $t] Location]] http::cleanup $t } }   proc get_tasks {category} { global cache if {[info exists cache($category)]} { return $cache($category) } set query [dict create cmtitle Category:$category] set tasks [list]   while {1} { set response [getUrlWithRedirect http://rosettacode.org/mw/api.php \ action query list categorymembers format json cmlimit 500 {*}$query]   # Get the data out of the message set data [json::json2dict [http::data $response]] http::cleanup $response   # add tasks to list foreach task [dict get $data query categorymembers] { lappend tasks [dict get [dict create {*}$task] title] }   if {[catch { dict get $data query-continue categorymembers cmcontinue } continue_task]} then { # no more continuations, we're done break } dict set query cmcontinue $continue_task } return [set cache($category) $tasks] } proc getTaskContent task { set token [getUrlWithRedirect http://rosettacode.org/mw/index.php \ title $task action raw] set content [http::data $token] http::cleanup $token return $content }   proc init {} { global total count found set total 0 array set count {} array set found {} } proc findBareTags {pageName pageContent} { global total count found set t {{}} lappend t {*}[textutil::split::splitx $pageContent \ {==\s*\{\{\s*header\s*\|\s*([^{}]+?)\s*\}\}\s*==}] foreach {sectionName sectionText} $t { set n [regexp -all {<lang>} $sectionText] if {!$n} continue incr count($sectionName) $n lappend found($sectionName) $pageName incr total $n } } proc printResults {} { global total count found puts "$total bare language tags." if {$total} { puts "" if {[info exists found()]} { puts "$count() in task descriptions\ (\[\[[join $found() {]], [[}]\]\])" unset found() } foreach sectionName [lsort -dictionary [array names found]] { puts "$count($sectionName) in $sectionName\ (\[\[[join $found($sectionName) {]], [[}]\]\])" } } }   init set tasks [get_tasks Programming_Tasks] #puts stderr "querying over [llength $tasks] tasks..." foreach task [get_tasks Programming_Tasks] { #puts stderr "$task..." findBareTags $task [getTaskContent $task] } printResults
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Liberty_BASIC
Liberty BASIC
a=1:b=2:c=3 'assume a<>0 print quad$(a,b,c) end   function quad$(a,b,c) D=b^2-4*a*c x=-1*b if D<0 then quad$=str$(x/(2*a));" +i";str$(sqr(abs(D))/(2*a));" , ";str$(x/(2*a));" -i";str$(sqr(abs(D))/abs(2*a)) else quad$=str$(x/(2*a)+sqr(D)/(2*a));" , ";str$(x/(2*a)-sqr(D)/(2*a)) end if end function
http://rosettacode.org/wiki/Rot-13
Rot-13
Task Implement a   rot-13   function   (or procedure, class, subroutine, or other "callable" object as appropriate to your programming environment). Optionally wrap this function in a utility program   (like tr,   which acts like a common UNIX utility, performing a line-by-line rot-13 encoding of every line of input contained in each file listed on its command line,   or (if no filenames are passed thereon) acting as a filter on its   "standard input." (A number of UNIX scripting languages and utilities, such as   awk   and   sed   either default to processing files in this way or have command line switches or modules to easily implement these wrapper semantics, e.g.,   Perl   and   Python). The   rot-13   encoding is commonly known from the early days of Usenet "Netnews" as a way of obfuscating text to prevent casual reading of   spoiler   or potentially offensive material. Many news reader and mail user agent programs have built-in rot-13 encoder/decoders or have the ability to feed a message through any external utility script for performing this (or other) actions. The definition of the rot-13 function is to simply replace every letter of the ASCII alphabet with the letter which is "rotated" 13 characters "around" the 26 letter alphabet from its normal cardinal position   (wrapping around from   z   to   a   as necessary). Thus the letters   abc   become   nop   and so on. Technically rot-13 is a   "mono-alphabetic substitution cipher"   with a trivial   "key". A proper implementation should work on upper and lower case letters, preserve case, and pass all non-alphabetic characters in the input stream through without alteration. Related tasks   Caesar cipher   Substitution Cipher   Vigenère Cipher/Cryptanalysis Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Common_Lisp
Common Lisp
(defconstant +alphabet+ '(#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M #\N #\O #\P #\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z))   (defun rot13 (s) (map 'string (lambda (c &aux (n (position (char-upcase c) +alphabet+))) (if n (funcall (if (lower-case-p c) #'char-downcase #'identity) (nth (mod (+ 13 n) 26) +alphabet+)) c)) s))
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#Phix
Phix
with javascript_semantics constant dt = 0.1 atom y = 1.0 printf(1," x true/actual y calculated y relative error\n") printf(1," --- ------------- ------------- --------------\n") for i=0 to 100 do atom t = i*dt if integer(t) then atom act = power(t*t+4,2)/16 printf(1,"%4.1f  %14.9f  %14.9f  %.9e\n",{t,act,y,abs(y-act)}) end if atom k1 = t*sqrt(y), k2 = (t+dt/2)*sqrt(y+dt/2*k1), k3 = (t+dt/2)*sqrt(y+dt/2*k2), k4 = (t+dt)*sqrt(y+dt*k3) y += dt*(k1+2*(k2+k3)+k4)/6 end for
http://rosettacode.org/wiki/S-expressions
S-expressions
S-Expressions   are one convenient way to parse and store data. Task Write a simple reader and writer for S-Expressions that handles quoted and unquoted strings, integers and floats. The reader should read a single but nested S-Expression from a string and store it in a suitable datastructure (list, array, etc). Newlines and other whitespace may be ignored unless contained within a quoted string. “()”   inside quoted strings are not interpreted, but treated as part of the string. Handling escaped quotes inside a string is optional;   thus “(foo"bar)” maybe treated as a string “foo"bar”, or as an error. For this, the reader need not recognize “\” for escaping, but should, in addition, recognize numbers if the language has appropriate datatypes. Languages that support it may treat unquoted strings as symbols. Note that with the exception of “()"” (“\” if escaping is supported) and whitespace there are no special characters. Anything else is allowed without quotes. The reader should be able to read the following input ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) and turn it into a native datastructure. (see the Pike, Python and Ruby implementations for examples of native data structures.) The writer should be able to take the produced list and turn it into a new S-Expression. Strings that don't contain whitespace or parentheses () don't need to be quoted in the resulting S-Expression, but as a simplification, any string may be quoted. Extra Credit Let the writer produce pretty printed output with indenting and line-breaks.
#Raku
Raku
grammar S-Exp { rule TOP {^ <s-list> $};   token s-list { '(' ~ ')' [ <in_list>+ % [\s+] | '' ] } token in_list { <s-token> | <s-list> }   proto token s-token {*} token s-token:sym<Num> {\d*\.?\d+} token s-token:sym<String> {'"' ['\"' |<-[\\"]>]*? '"'} #' token s-token:sym<Atom> {<-[()\s]>+}   }   # The Actions class, for each syntactic rule there is a method # that stores some data in the abstract syntax tree with make class S-Exp::ACTIONS { method TOP ($/) {make $<s-list>.ast} method s-list ($/) {make [$<in_list>».ast]} method in_list ($/) {make $/.values[0].ast}   method s-token:sym<Num> ($/){make +$/} method s-token:sym<String> ($/){make ~$/.substr(1,*-1)} method s-token:sym<Atom> ($/){make ~$/} }   multi s-exp_writer (Positional $ary) {'(' ~ $ary.map(&s-exp_writer).join(' ') ~ ')'} multi s-exp_writer (Numeric $num) {~$num} multi s-exp_writer (Str $str) { return $str unless $str ~~ /<[(")]>|\s/; return '()' if $str eq '()'; '"' ~ $str.subst('"', '\"' ) ~ '"'; }     my $s-exp = '((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)")))';   my $actions = S-Exp::ACTIONS.new(); my $raku_array = (S-Exp.parse($s-exp, :$actions)).ast;   say "the expression:\n$s-exp\n"; say "the Raku expression:\n{$raku_array.raku}\n"; say "and back:\n{s-exp_writer($raku_array)}";
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#Quackery
Quackery
[ 0 swap witheach + ] is sum ( [ --> n )   [ 0 ]'[ rot witheach [ over do swap dip + ] drop ] is count ( [ --> n )   [ [] 4 times [ 6 random 1+ join ] sort behead drop sum ] is attribute ( --> n )   [ [] 6 times [ attribute join ] ] is raw ( --> [ )   [ dup sum 74 > not iff [ drop false ] done count [ 14 > ] 1 > ] is valid ( [ --> b )   [ raw dup valid if done drop again ] is stats ( --> [ )   randomise stats dup echo cr cr say 'Sum: ' dup sum echo cr say '# of attributes > 14: ' count [ 14 > ] echo
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#Racket
Racket
#lang racket   (define (d6 . _) (+ (random 6) 1))   (define (best-3-of-4d6 . _) (apply + (rest (sort (build-list 4 d6) <))))   (define (generate-character) (let* ((rolls (build-list 6 best-3-of-4d6)) (total (apply + rolls))) (if (or (< total 75) (< (length (filter (curryr >= 15) rolls)) 2)) (generate-character) (values rolls total))))   (module+ main (define-values (rolled-stats total) (generate-character)) (printf "Rolls:\t~a~%Total:\t~a" rolled-stats total))
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
Sieve of Eratosthenes
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers up to a given integer. Task Implement the   Sieve of Eratosthenes   algorithm, with the only allowed optimization that the outer loop can stop at the square root of the limit, and the inner loop may start at the square of the prime just found. That means especially that you shouldn't optimize by using pre-computed wheels, i.e. don't assume you need only to cross out odd numbers (wheel based on 2), numbers equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on low primes. If there's an easy way to add such a wheel based optimization, implement it as an alternative version. Note It is important that the sieve algorithm be the actual algorithm used to find prime numbers for the task. Related tasks   Emirp primes   count in factors   prime decomposition   factors of an integer   extensible prime generator   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#Stata
Stata
prog def sieve args n clear qui set obs `n' gen long p=_n gen byte a=_n>1 forv i=2/`n' { if a[`i'] { loc j=`i'*`i' if `j'>`n' { continue, break } forv k=`j'(`i')`n' { qui replace a=0 in `k' } } } qui keep if a drop a end
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Python
Python
from urllib.request import urlopen, Request import xml.dom.minidom   r = Request( 'https://www.rosettacode.org/mw/api.php?action=query&list=categorymembers&cmtitle=Category:Programming_Tasks&cmlimit=500&format=xml', headers={'User-Agent': 'Mozilla/5.0'}) x = urlopen(r)   tasks = [] for i in xml.dom.minidom.parseString(x.read()).getElementsByTagName('cm'): t = i.getAttribute('title').replace(' ', '_') r = Request(f'https://www.rosettacode.org/mw/index.php?title={t}&action=raw', headers={'User-Agent': 'Mozilla/5.0'}) y = urlopen(r) tasks.append( y.read().lower().count(b'{{header|') ) print(t.replace('_', ' ') + f': {tasks[-1]} examples.')   print(f'\nTotal: {sum(tasks)} examples.')  
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#R
R
  library(XML) library(RCurl) doc <- xmlInternalTreeParse("http://www.rosettacode.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:Programming_Tasks&cmlimit=500&format=xml") nodes <- getNodeSet(doc,"//cm") titles = as.character( sapply(nodes, xmlGetAttr, "title") ) headers <- list() counts <- list() for (i in 1:length(titles)){ headers[[i]] <- getURL( paste("http://rosettacode.org/mw/index.php?title=", gsub(" ", "_", titles[i]), "&action=raw", sep="") ) counts[[i]] <- strsplit(headers[[i]],split=" ")[[1]] counts[[i]] <- grep("\\{\\{header", counts[[i]]) cat(titles[i], ":", length(counts[[i]]), "examples\n") } cat("Total: ", length(unlist(counts)), "examples\n")  
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
haystack = {"Zig","Zag","Wally","Ronald","Bush","Zig","Zag","Krusty","Charlie","Bush","Bozo"}; needle = "Zag"; first = Position[haystack,needle,1][[1,1]] last = Position[haystack,needle,1][[-1,1]] all = Position[haystack,needle,1][[All,1]]
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#MATLAB
MATLAB
stringCollection = {'string1','string2',...,'stringN'}
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
Rosetta Code/Rank languages by popularity
Rosetta Code/Rank languages by popularity You are encouraged to solve this task according to the task description, using any language you may know. Task Sort the most popular computer programming languages based in number of members in Rosetta Code categories. Sample output on 01 juin 2022 at 14:13 +02 Rank: 1 (1,540 entries) Phix Rank: 2 (1,531 entries) Wren Rank: 3 (1,507 entries) Julia Rank: 4 (1,494 entries) Go Rank: 5 (1,488 entries) Raku Rank: 6 (1,448 entries) Perl Rank: 7 (1,402 entries) Nim Rank: 8 (1,382 entries) Python Rank: 9 (1,204 entries) C Rank: 10 (1,152 entries) REXX ... Notes   Each language typically demonstrates one or two methods of accessing the data:   with web scraping   (via http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)   with the API method   (examples below for Awk, Perl, Ruby, Tcl, etc).   The scraping and API solutions can be separate subsections, see the Tcl example.   Filtering wrong results is optional.   You can check against Special:MostLinkedCategories (if using web scraping) If you use the API, and do elect to filter, you may check your results against this complete, accurate, sortable, wikitable listing of all 869 programming languages, updated periodically, typically weekly.   A complete ranked listing of all   813   languages (from the REXX example) is included here   ──►   output from the REXX program.
#Perl
Perl
use 5.010; use MediaWiki::API;   my $api = MediaWiki::API->new( { api_url => 'http://rosettacode.org/mw/api.php' } );   my @languages; my $gcmcontinue; while (1) { my $apih = $api->api( { action => 'query', generator => 'categorymembers', gcmtitle => 'Category:Programming Languages', gcmlimit => 250, prop => 'categoryinfo', gcmcontinue => $gcmcontinue } ); push @languages, values %{ $apih->{'query'}{'pages'} };   last if not $gcmcontinue = $apih->{'continue'}{'gcmcontinue'}; }   for (@languages) { $_->{'title'} =~ s/Category://; $_->{'categoryinfo'}{'size'} //= 0; }   my @sorted_languages = reverse sort { $a->{'categoryinfo'}{'size'} <=> $b->{'categoryinfo'}{'size'} } @languages;   binmode STDOUT, ':encoding(utf8)'; my $n = 1; for (@sorted_languages) { printf "%3d. %20s - %3d\n", $n++, $_->{'title'}, $_->{'categoryinfo'}{'size'}; }  
http://rosettacode.org/wiki/Roman_numerals/Encode
Roman numerals/Encode
Task Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero. In Roman numerals: 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC 2008 is written as 2000=MM, 8=VIII; or MMVIII 1666 uses each Roman symbol in descending order: MDCLXVI
#AutoHotkey
AutoHotkey
MsgBox % stor(444)   stor(value) { romans = M,CM,D,CD,C,XC,L,XL,X,IX,V,IV,I M := 1000 CM := 900 D := 500 CD := 400 C := 100 XC := 90 L := 50 XL := 40 X := 10 IX := 9 V := 5 IV := 4 I := 1 Loop, Parse, romans, `, { While, value >= %A_LoopField% { result .= A_LoopField value := value - (%A_LoopField%) } } Return result . "O" }
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#AWK
AWK
# syntax: GAWK -f ROMAN_NUMERALS_DECODE.AWK BEGIN { leng = split("MCMXC MMVIII MDCLXVI",arr," ") for (i=1; i<=leng; i++) { n = arr[i] printf("%s = %s\n",n,roman2arabic(n)) } exit(0) } function roman2arabic(r, a,i,p,q,u,ua,una,unr) { r = toupper(r) unr = "MDCLXVI" # each Roman numeral in descending order una = "1000 500 100 50 10 5 1" # and its Arabic equivalent split(una,ua," ") i = split(r,u,"") a = ua[index(unr,u[i])] while (--i) { p = index(unr,u[i]) q = index(unr,u[i+1]) a += ua[p] * ((p>q) ? -1 : 1) } return( (a>0) ? a : "" ) }
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#DWScript
DWScript
type TFunc = function (x : Float) : Float;   function f(x : Float) : Float; begin Result := x*x*x-3.0*x*x +2.0*x; end;   const e = 1.0e-12;   function Secant(xA, xB : Float; f : TFunc) : Float; const limit = 50; var fA, fB : Float; d : Float; i : Integer; begin fA := f(xA); for i := 0 to limit do begin fB := f(xB); d := (xB-xA)/(fB-fA)*fB; if Abs(d) < e then Exit(xB); xA := xB; fA := fB; xB -= d; end; PrintLn(Format('Function is not converging near (%7.4f,%7.4f).', [xA, xB])); Result := -99.0; end;   const fstep = 1.0e-2;   var x := -1.032; // just so we use secant method var xx, value : Float; var s := f(x)>0.0;   while (x < 3.0) do begin value := f(x); if Abs(value)<e then begin PrintLn(Format("Root found at x= %12.9f", [x])); s := (f(x+0.0001)>0.0); end else if (value>0.0) <> s then begin xx := Secant(x-fstep, x, f); if xx <> -99.0 then // -99 meaning secand method failed PrintLn(Format('Root found at x = %12.9f', [xx])) else PrintLn(Format('Root found near x= %7.4f', [xx])); s := (f(x+0.0001)>0.0); end; x += fstep; end;
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#C.2B.2B
C++
  #include <windows.h> #include <iostream> #include <string>   //------------------------------------------------------------------------------- using namespace std;   //------------------------------------------------------------------------------- enum choices { ROCK, SPOCK, PAPER, LIZARD, SCISSORS, MX_C }; enum indexes { PLAYER, COMPUTER, DRAW };   //------------------------------------------------------------------------------- class stats { public: stats() : _draw( 0 ) { ZeroMemory( _moves, sizeof( _moves ) ); ZeroMemory( _win, sizeof( _win ) ); } void draw() { _draw++; } void win( int p ) { _win[p]++; } void move( int p, int m ) { _moves[p][m]++; } int getMove( int p, int m ) { return _moves[p][m]; } string format( int a ) { char t[32]; wsprintf( t, "%.3d", a ); string d( t ); return d; }   void print() { string d = format( _draw ), pw = format( _win[PLAYER] ), cw = format( _win[COMPUTER] ), pr = format( _moves[PLAYER][ROCK] ), cr = format( _moves[COMPUTER][ROCK] ), pp = format( _moves[PLAYER][PAPER] ), cp = format( _moves[COMPUTER][PAPER] ), ps = format( _moves[PLAYER][SCISSORS] ), cs = format( _moves[COMPUTER][SCISSORS] ), pl = format( _moves[PLAYER][LIZARD] ), cl = format( _moves[COMPUTER][LIZARD] ), pk = format( _moves[PLAYER][SPOCK] ), ck = format( _moves[COMPUTER][SPOCK] );   system( "cls" ); cout << endl; cout << "+----------+-------+--------+--------+---------+----------+--------+---------+" << endl; cout << "| | WON | DRAW | ROCK | PAPER | SCISSORS | LIZARD | SPOCK |" << endl; cout << "+----------+-------+--------+--------+---------+----------+--------+---------+" << endl; cout << "| PLAYER | " << pw << " | | " << pr << " | " << pp << " | " << ps << " | " << pl << " | " << pk << " |" << endl; cout << "+----------+-------+ " << d << " +--------+---------+----------+--------+---------+" << endl; cout << "| COMPUTER | " << cw << " | | " << cr << " | " << cp << " | " << cs << " | " << cl << " | " << ck << " |" << endl; cout << "+----------+-------+--------+--------+---------+----------+--------+---------+" << endl; cout << endl << endl;   system( "pause" );   }   private: int _moves[2][MX_C], _win[2], _draw; }; //------------------------------------------------------------------------------- class rps { private: int makeMove() { int total = 0, r, s; for( int i = 0; i < MX_C; total += statistics.getMove( PLAYER, i++ ) ); r = rand() % total;   for( int i = ROCK; i < SCISSORS; i++ ) { s = statistics.getMove( PLAYER, i ); if( r < s ) return ( i + 1 ); r -= s; }   return ROCK; }   void printMove( int p, int m ) { if( p == COMPUTER ) cout << "My move: "; else cout << "Your move: ";   switch( m ) { case ROCK: cout << "ROCK\n"; break; case PAPER: cout << "PAPER\n"; break; case SCISSORS: cout << "SCISSORS\n"; break; case LIZARD: cout << "LIZARD\n"; break; case SPOCK: cout << "SPOCK\n"; } }   public: rps() { checker[ROCK][ROCK] = 2; checker[ROCK][PAPER] = 1; checker[ROCK][SCISSORS] = 0; checker[ROCK][LIZARD] = 0; checker[ROCK][SPOCK] = 1; checker[PAPER][ROCK] = 0; checker[PAPER][PAPER] = 2; checker[PAPER][SCISSORS] = 1; checker[PAPER][LIZARD] = 1; checker[PAPER][SPOCK] = 0; checker[SCISSORS][ROCK] = 1; checker[SCISSORS][PAPER] = 0; checker[SCISSORS][SCISSORS] = 2; checker[SCISSORS][LIZARD] = 0; checker[SCISSORS][SPOCK] = 1; checker[LIZARD][ROCK] = 1; checker[LIZARD][PAPER] = 0; checker[LIZARD][SCISSORS] = 1; checker[LIZARD][LIZARD] = 2; checker[LIZARD][SPOCK] = 0; checker[SPOCK][ROCK] = 0; checker[SPOCK][PAPER] = 1; checker[SPOCK][SCISSORS] = 0; checker[SPOCK][LIZARD] = 1; checker[SPOCK][SPOCK] = 2; } void play() { int p, r, m; while( true ) { cout << "What is your move (1)ROCK (2)SPOCK (3)PAPER (4)LIZARD (5)SCISSORS (0)Quit ? "; cin >> p; if( !p || p < 0 ) break; if( p > 0 && p < 6 ) { p--; cout << endl; printMove( PLAYER, p ); statistics.move( PLAYER, p );   m = makeMove(); statistics.move( COMPUTER, m ); printMove( COMPUTER, m );   r = checker[p][m]; switch( r ) { case DRAW: cout << endl << "DRAW!" << endl << endl; statistics.draw(); break; case COMPUTER: cout << endl << "I WIN!" << endl << endl; statistics.win( COMPUTER ); break; case PLAYER: cout << endl << "YOU WIN!" << endl << endl; statistics.win( PLAYER );   } system( "pause" ); } system( "cls" ); } statistics.print(); }   private: stats statistics; int checker[MX_C][MX_C]; }; //------------------------------------------------------------------------------- int main( int argc, char* argv[] ) { srand( GetTickCount() ); rps game; game.play(); return 0; } //-------------------------------------------------------------------------------  
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#Erlang
Erlang
-module(rle).   -export([encode/1,decode/1]).   -include_lib("eunit/include/eunit.hrl").   encode(S) -> doEncode(string:substr(S, 2), string:substr(S, 1, 1), 1, []).   doEncode([], CurrChar, Count, R) -> R ++ integer_to_list(Count) ++ CurrChar; doEncode(S, CurrChar, Count, R) -> NextChar = string:substr(S, 1, 1), if NextChar == CurrChar -> doEncode(string:substr(S, 2), CurrChar, Count + 1, R); true -> doEncode(string:substr(S, 2), NextChar, 1, R ++ integer_to_list(Count) ++ CurrChar) end.   decode(S) -> doDecode(string:substr(S, 2), string:substr(S, 1, 1), []).   doDecode([], _, R) -> R; doDecode(S, CurrString, R) -> NextChar = string:substr(S, 1, 1), IsInt = erlang:is_integer(catch(erlang:list_to_integer(NextChar))), if IsInt -> doDecode(string:substr(S, 2), CurrString ++ NextChar, R); true -> doDecode(string:substr(S, 2), [], R ++ string:copies(NextChar, list_to_integer(CurrString))) end.   rle_test_() -> PreEncoded = "WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW", Expected = "12W1B12W3B24W1B14W", [  ?_assert(encode(PreEncoded) =:= Expected),  ?_assert(decode(Expected) =:= PreEncoded),  ?_assert(decode(encode(PreEncoded)) =:= PreEncoded) ].
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Liberty_BASIC
Liberty BASIC
WindowWidth =400 WindowHeight =400   'nomainwin   open "N'th Roots of One" for graphics_nsb_nf as #w   #w "trapclose [quit]"   for n =1 To 10 angle =0 #w "font arial 16 bold" print n; "th roots." #w "cls" #w "size 1 ; goto 200 200 ; down ; color lightgray ; circle 150 ; size 10 ; set 200 200 ; size 2" #w "up ; goto 200 0 ; down ; goto 200 400 ; up ; goto 0 200 ; down ; goto 400 200" #w "up ; goto 40 20 ; down ; color black" #w "font arial 6" #w "\"; n; " roots of 1."   for i = 1 To n x = cos( Radian( angle)) y = sin( Radian( angle))   print using( "##", i); ": ( " + using( "##.######", x);_ " +i *" +using( "##.######", y); ") or e^( i *"; i -1; " *2 *Pi/ "; n; ")"   #w "color "; 255 *i /n; " 0 "; 256 -255 *i /n #w "up ; goto 200 200" #w "down ; goto "; 200 +150 *x; " "; 200 -150 *y #w "up  ; goto "; 200 +165 *x; " "; 200 -165 *y #w "\"; str$( i) #w "up"   angle =angle +360 /n   next i   timer 500, [on] wait [on] timer 0 next n   wait   [quit] close #w   end   function Radian( theta) Radian =theta *3.1415926535 /180 end function
http://rosettacode.org/wiki/Rosetta_Code/Find_bare_lang_tags
Rosetta Code/Find bare lang tags
Task Find all   <lang>   tags without a language specified in the text of a page. Display counts by language section: Description <lang>Pseudocode</lang> =={{header|C}}== <lang C>printf("Hello world!\n");</lang> =={{header|Perl}}== <lang>print "Hello world!\n"</lang> should display something like 2 bare language tags. 1 in perl 1 in no language Extra credit Allow multiple files to be read.   Summarize all results by language: 5 bare language tags. 2 in c ([[Foo]], [[Bar]]) 1 in perl ([[Foo]]) 2 in no language ([[Baz]]) Extra extra credit Use the   Media Wiki API   to test actual RC tasks.
#Wren
Wren
import "/ioutil" for FileUtil import "/pattern" for Pattern import "/set" for Set import "/sort" for Sort import "/fmt" for Fmt   var p = Pattern.new("/=/={{header/|[+0/y]}}/=/=", Pattern.start) var bareCount = 0 var bareLang = {} for (fileName in ["example.txt", "example2.txt", "example3.txt"]) { var lines = FileUtil.readLines(fileName) var lastHeader = "No language" for (line in lines) { line = line.trimStart() if (line == "") continue var m = p.find(line) if (m) { lastHeader = m.capsText[0] continue } if (line.startsWith("<lang>")) { bareCount = bareCount + 1 var value = bareLang[lastHeader] if (value) { value[0] = value[0] + 1 value[1].add(fileName) } else { bareLang[lastHeader] = [1, Set.new([fileName])] } } } } System.print("%(bareCount) bare language tags:") for (me in bareLang) { var lang = me.key var count = me.value[0] var names = me.value[1].toList Sort.insertion(names) Fmt.print(" $2d in $-11s $n", count, lang, names) }
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Logo
Logo
to quadratic :a :b :c localmake "d sqrt (:b*:b - 4*:a*:c) if :b < 0 [make "d minus :d] output list (:d-:b)/(2*:a) (2*:c)/(:d-:b) end
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Lua
Lua
function qsolve(a, b, c) if b < 0 then return qsolve(-a, -b, -c) end val = b + (b^2 - 4*a*c)^(1/2) --this never exhibits instability if b > 0 return -val / (2 * a), -2 * c / val --2c / val is the same as the "unstable" second root end   for i = 1, 12 do print(qsolve(1, 0-10^i, 1)) end
http://rosettacode.org/wiki/Rot-13
Rot-13
Task Implement a   rot-13   function   (or procedure, class, subroutine, or other "callable" object as appropriate to your programming environment). Optionally wrap this function in a utility program   (like tr,   which acts like a common UNIX utility, performing a line-by-line rot-13 encoding of every line of input contained in each file listed on its command line,   or (if no filenames are passed thereon) acting as a filter on its   "standard input." (A number of UNIX scripting languages and utilities, such as   awk   and   sed   either default to processing files in this way or have command line switches or modules to easily implement these wrapper semantics, e.g.,   Perl   and   Python). The   rot-13   encoding is commonly known from the early days of Usenet "Netnews" as a way of obfuscating text to prevent casual reading of   spoiler   or potentially offensive material. Many news reader and mail user agent programs have built-in rot-13 encoder/decoders or have the ability to feed a message through any external utility script for performing this (or other) actions. The definition of the rot-13 function is to simply replace every letter of the ASCII alphabet with the letter which is "rotated" 13 characters "around" the 26 letter alphabet from its normal cardinal position   (wrapping around from   z   to   a   as necessary). Thus the letters   abc   become   nop   and so on. Technically rot-13 is a   "mono-alphabetic substitution cipher"   with a trivial   "key". A proper implementation should work on upper and lower case letters, preserve case, and pass all non-alphabetic characters in the input stream through without alteration. Related tasks   Caesar cipher   Substitution Cipher   Vigenère Cipher/Cryptanalysis Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Cubescript
Cubescript
alias rot13 [ push alpha [ "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z" "a b c d e f g h i j k l m n o p q r s t u v w x y z" ] [ push chars [] [ loop i (strlen $arg1) [ looplist n $alpha [ if (! (listlen $chars)) [ alias chars (? (> (listindex $n (substr $arg1 $i 1)) -1) $n []) ] ] alias arg1 ( concatword (substr $arg1 0 $i) ( ? (listlen $chars) ( at $chars ( mod (+ ( listindex $chars (substr $arg1 $i 1) ) 13 ) (listlen $chars) ) ) (substr $arg1 $i 1) ) (substr $arg1 (+ $i 1) (strlen $arg1)) ) alias chars [] ] ] ] result $arg1 ]
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#PL.2FI
PL/I
  Runge_Kutta: procedure options (main); /* 10 March 2014 */ declare (y, dy1, dy2, dy3, dy4) float (18); declare t fixed decimal (10,1); declare dt float (18) static initial (0.1);   y = 1; do t = 0 to 10 by 0.1; dy1 = dt * ydash(t, y); dy2 = dt * ydash(t + dt/2, y + dy1/2); dy3 = dt * ydash(t + dt/2, y + dy2/2); dy4 = dt * ydash(t + dt, y + dy3);   if mod(t, 1.0) = 0 then put skip edit('y(', trim(t), ')=', y, ', error = ', abs(y - (t**2 + 4)**2 / 16 )) (3 a, column(9), f(16,10), a, f(13,10)); y = y + (dy1 + 2*dy2 + 2*dy3 + dy4)/6; end;     ydash: procedure (t, y) returns (float(18)); declare (t, y) float (18) nonassignable; return ( t*sqrt(y) ); end ydash;   end Runge_kutta;  
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#PowerShell
PowerShell
  function Runge-Kutta (${function:F}, ${function:y}, $y0, $t0, $dt, $tEnd) { function RK ($tn,$yn) { $y1 = $dt*(F -t $tn -y $yn) $y2 = $dt*(F -t ($tn + (1/2)*$dt) -y ($yn + (1/2)*$y1)) $y3 = $dt*(F -t ($tn + (1/2)*$dt) -y ($yn + (1/2)*$y2)) $y4 = $dt*(F -t ($tn + $dt) -y ($yn + $y3)) $yn + (1/6)*($y1 + 2*$y2 + 2*$y3 + $y4) } function time ($t0, $dt, $tEnd) { $end = [MATH]::Floor(($tEnd - $t0)/$dt) foreach ($_ in 0..$end) { $_*$dt + $t0 } } $time, $yn, $t = (time $t0 $dt $tEnd), $y0, 0 foreach ($tn in $time) { if($t -eq $tn) { [pscustomobject]@{ t = "$tn" y = "$yn" error = "$([MATH]::abs($yn - (y $tn)))" } $t += 1 } $yn = RK $tn $yn } } function F ($t,$y) { $t * [MATH]::Sqrt($y) } function y ($t) { (1/16) * [MATH]::Pow($t*$t + 4,2) } $y0 = 1 $t0 = 0 $dt = 0.1 $tEnd = 10 Runge-Kutta F y $y0 $t0 $dt $tEnd  
http://rosettacode.org/wiki/S-expressions
S-expressions
S-Expressions   are one convenient way to parse and store data. Task Write a simple reader and writer for S-Expressions that handles quoted and unquoted strings, integers and floats. The reader should read a single but nested S-Expression from a string and store it in a suitable datastructure (list, array, etc). Newlines and other whitespace may be ignored unless contained within a quoted string. “()”   inside quoted strings are not interpreted, but treated as part of the string. Handling escaped quotes inside a string is optional;   thus “(foo"bar)” maybe treated as a string “foo"bar”, or as an error. For this, the reader need not recognize “\” for escaping, but should, in addition, recognize numbers if the language has appropriate datatypes. Languages that support it may treat unquoted strings as symbols. Note that with the exception of “()"” (“\” if escaping is supported) and whitespace there are no special characters. Anything else is allowed without quotes. The reader should be able to read the following input ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) and turn it into a native datastructure. (see the Pike, Python and Ruby implementations for examples of native data structures.) The writer should be able to take the produced list and turn it into a new S-Expression. Strings that don't contain whitespace or parentheses () don't need to be quoted in the resulting S-Expression, but as a simplification, any string may be quoted. Extra Credit Let the writer produce pretty printed output with indenting and line-breaks.
#REXX
REXX
/*REXX program parses an S-expression and displays the results to the terminal. */ input= '((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)")))' say center('input', length(input), "═") /*display the header title to terminal.*/ say input /* " " input data " " */ say copies('═', length(input) ) /* " " header sep " " */ grpO.=; grpO.1 = '{'  ; grpC.1 = "}" /*pair of grouping symbol: braces */ grpO.2 = '['  ; grpC.2 = "]" /* " " " " brackets */ grpO.3 = '('  ; grpC.3 = ")" /* " " " " parentheses */ grpO.4 = '«'  ; grpC.4 = "»" /* " " " " guillemets */ q.=; q.1 = "'"  ; q.2 = '"' /*1st and 2nd literal string delimiter.*/ # = 0 /*the number of tokens found (so far). */ tabs = 10 /*used for the indenting of the levels.*/ seps = ',;' /*characters used for separation. */ atoms = ' 'seps /* " " to separate atoms. */ level = 0 /*the current level being processed. */ quoted = 0 /*quotation level (for nested quotes).*/ grpU = /*used to go up an expression level.*/ grpD = /* " " " down " " " */ @.=; do n=1 while grpO.n\=='' atoms = atoms || grpO.n || grpC.n /*add Open and Closed groups to ATOMS.*/ grpU = grpU || grpO.n /*add Open groups to GRPU, */ grpD = grpD || grpC.n /*add Closed groups to GRPD, */ end /*n*/ /* [↑] handle a bunch of grouping syms*/ literals= do k=1 while q.k\==''; literals= literals || q.k /*add literal delimiters*/ end /*k*/ !=; literalStart= do j=1 to length(input); $= substr(input, j, 1) /* ◄■■■■■text parsing*/ /* ◄■■■■■text parsing*/ if quoted then do;  !=! || $; if $==literalStart then quoted= 0 /* ◄■■■■■text parsing*/ iterate /* ◄■■■■■text parsing*/ end /* [↑] handle running quoted string. */ /* ◄■■■■■text parsing*/ /* ◄■■■■■text parsing*/ if pos($, literals)\==0 then do; literalStart= $;  != ! || $; quoted= 1 /* ◄■■■■■text parsing*/ iterate /* ◄■■■■■text parsing*/ end /* [↑] handle start of quoted strring.*/ /* ◄■■■■■text parsing*/ /* ◄■■■■■text parsing*/ if pos($, atoms)==0 then do;  != ! || $; iterate; end /*is an atom?*/ /* ◄■■■■■text parsing*/ else do; call add!;  != $; end /*isn't " " ?*/ /* ◄■■■■■text parsing*/ /* ◄■■■■■text parsing*/ if pos($, literals)==0 then do; if pos($, grpU)\==0 then level= level + 1 /* ◄■■■■■text parsing*/ call add! /* ◄■■■■■text parsing*/ if pos($, grpD)\==0 then level= level - 1 /* ◄■■■■■text parsing*/ if level<0 then say 'error, mismatched' $ /* ◄■■■■■text parsing*/ end /* ◄■■■■■text parsing*/ end /*j*/ /* ◄■■■■■text parsing*/ /* ◄■■■■■text parsing*/ call add! /*process any residual tokens. */ /* ◄■■■■■text parsing*/ if level\==0 then say 'error, mismatched grouping symbol' /* ◄■■■■■text parsing*/ if quoted then say 'error, no end of quoted literal' literalStart /* ◄■■■■■text parsing*/   do m=1 for #; say @.m /*display the tokens ───► terminal. */ end /*m*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ add!: if !='' then return; #=#+1; @.#=left("", max(0, tabs*(level-1)))!;  !=; return
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#R
R
genStats <- function() { stats <- c(STR = 0, DEX = 0, CON = 0, INT = 0, WIS = 0, CHA = 0) for(i in seq_along(stats)) { results <- sample(6, 4, replace = TRUE) stats[i] <- sum(results[-which.min(results)]) } if(sum(stats >= 15) < 2 || (stats["TOT"] <- sum(stats)) < 75) Recall() else stats } print(genStats())
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
Sieve of Eratosthenes
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers up to a given integer. Task Implement the   Sieve of Eratosthenes   algorithm, with the only allowed optimization that the outer loop can stop at the square root of the limit, and the inner loop may start at the square of the prime just found. That means especially that you shouldn't optimize by using pre-computed wheels, i.e. don't assume you need only to cross out odd numbers (wheel based on 2), numbers equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on low primes. If there's an easy way to add such a wheel based optimization, implement it as an alternative version. Note It is important that the sieve algorithm be the actual algorithm used to find prime numbers for the task. Related tasks   Emirp primes   count in factors   prime decomposition   factors of an integer   extensible prime generator   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#Swift
Swift
import Foundation // for sqrt() and Date()   let max = 1_000_000 let maxroot = Int(sqrt(Double(max))) let startingPoint = Date()   var isprime = [Bool](repeating: true, count: max+1 ) for i in 2...maxroot { if isprime[i] { for k in stride(from: max/i, through: i, by: -1) { if isprime[k] { isprime[i*k] = false } } } }   var count = 0 for i in 2...max { if isprime[i] { count += 1 } } print("\(count) primes found under \(max)")   print("\(startingPoint.timeIntervalSinceNow * -1) seconds")
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Racket
Racket
  #lang racket   (require net/url net/uri-codec json (only-in racket/dict [dict-ref ref]))   (define (RC-get verb params) ((compose1 get-pure-port string->url format) "http://rosettacode.org/mw/~a.php?~a" verb (alist->form-urlencoded params)))   (define (get-category catname) (let loop ([c #f]) (define t ((compose1 read-json RC-get) 'api `([action . "query"] [format . "json"] [list . "categorymembers"] [cmtitle . ,(format "Category:~a" catname)] [cmcontinue . ,(and c (ref c 'cmcontinue))] [cmlimit . "500"]))) (define (c-m key) (ref (ref t key '()) 'categorymembers #f)) (append (for/list ([page (c-m 'query)]) (ref page 'title)) (cond [(c-m 'query-continue) => loop] [else '()]))))   (printf "Total: ~a\n" (for/sum ([task (get-category 'Programming_Tasks)]) (define s ((compose1 length regexp-match-positions*) #rx"=={{" (RC-get 'index `([action . "raw"] [title . ,task])))) (printf "~a: ~a\n" task s) s))  
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Raku
Raku
use HTTP::UserAgent; use URI::Escape; use JSON::Fast; use Lingua::EN::Numbers :short;   unit sub MAIN ( Bool :nf(:$no-fetch) = False, :t(:$tier) = 1 );   # Friendlier descriptions for task categories my %cat = ( 'Programming_Tasks' => 'Task', 'Draft_Programming_Tasks' => 'Draft' );   my $client = HTTP::UserAgent.new; $client.timeout = 10;   my $url = 'http://rosettacode.org/mw';   my $hashfile = './RC_Task_count.json'; my $tablefile = "./RC_Task_count-{$tier}.txt";   my %tasks;   my @places = <① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳ ㉑ ㉒ ㉓ ㉔ ㉕ ㉖ ㉗ ㉘ ㉙ ㉚ ㉛ ㉜ ㉝ ㉞ ㉟ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊷ ㊸ ㊹ ㊺ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿>;   # clear screen run($*DISTRO.is-win ?? 'cls' !! 'clear') unless $no-fetch;   my %counts = mediawiki-query( $url, 'pages', :generator<categorymembers>, :gcmtitle<Category:Programming Languages>, :gcmlimit<350>, :rawcontinue(), :prop<categoryinfo> ) .map({ .<title>.subst(/^'Category:'/, '') => .<categoryinfo><pages> || 0 });   my $per-tier = 10;   my $which = (^$per-tier) »+» $per-tier * ($tier - 1);   my @top-n = %counts.sort( {-.value, .key} )[|$which].map: *.key.trans(' ' => '_');   # dump a copy to STDOUT, mostly for debugging purposes say "<pre>{tc $tier.&ord-n} {$per-tier.&card} programming languages by number of task examples completed:"; say ' ', join ' ', .map( {("{(@places[|$which])[$_]} {@top-n[$_]}").fmt("%-15s")} ) for (^@top-n).batch(5); say "</pre>\n";   unless $no-fetch {   note 'Retrieving task information...';   mkdir('./pages') unless './pages'.IO.e;   @top-n = %counts.sort( {-.value, .key} )[^@places].map: *.key.trans(' ' => '_');;   for %cat.keys.sort -> $cat { mediawiki-query( $url, 'pages', :generator<categorymembers>, :gcmtitle("Category:$cat"), :gcmlimit<350>, :rawcontinue(), :prop<title> ).map({ my $page; my $response;   loop { $response = $client.get("{ $url }/index.php?title={ uri-escape .<title> }&action=raw"); if $response.is-success { $page = $response.content; last; } else { redo; } }   "./pages/{ uri-escape .<title>.subst(/' '/, '_', :g) }".IO.spurt($page); my $lc = $page.lc.trans(' ' => '_'); my $count = +$lc.comb(/ ^^'==' <-[\n=]>* '{{header|' <-[}]>+? '}}==' \h* $$ /); %tasks{.<title>} = {'cat' => %cat{$cat}, :$count}; %tasks{.<title>}<top-n> = (^@top-n).map( { ($lc.contains("==\{\{header|{@top-n[$_].lc}}}") or # Deal with 3 part headers - {{header|F_Sharp|F#}}, {{header|C_Sharp|C#}}, etc. $lc.contains("==\{\{header|{@top-n[$_].lc}|") or # Icon and Unicon are their own special flowers $lc.contains("}}_and_\{\{header|{@top-n[$_].lc}}}==") or # Language1 / Language2 for shared entries (e.g. C / C++) $lc.contains(rx/'}}''_'*'/''_'*'{{header|'$(@top-n[$_].lc)'}}=='/)) ?? (@places[$_]) !! # Check if the task was omitted $lc.contains("\{\{omit_from|{@top-n[$_].lc}") ?? 'O' !! # The task is neither done or omitted ' ' } ).join; print clear, 1 + $++, ' ', %cat{$cat}, ' ', .<title>; }) }   print clear;   note "\nTask information saved to local file: {$hashfile.IO.absolute}"; $hashfile.IO.spurt(%tasks.&to-json);   }   # Load information from local file %tasks = $hashfile.IO.e ?? $hashfile.IO.slurp.&from-json !! ( );   @top-n = %counts.sort( {-.value, .key} )[|$which].map: *.key.trans(' ' => '_');   # Convert saved task info to a table note "\nBuilding table..."; my $count = +%tasks; my $taskcnt = +%tasks.grep: *.value.<cat> eq %cat<Programming_Tasks>; my $draftcnt = $count - $taskcnt; my $total = sum %tasks{*}»<count>;   # Dump table to a file my $out = open($tablefile, :w) or die "$!\n";   $out.say: "<pre>{tc $tier.&ord-n} {$per-tier.&card} programming languages by number of task examples completed:"; $out.say: ' ', join ' ', .map( {("{(@places[|$which])[$_]} {@top-n[$_]}").fmt("%-15s")} ) for (^@top-n).batch(5); $out.say: "</pre>\n\n<div style=\"height:40em;overflow:scroll;\">";   # Add table boilerplate and caption $out.say: '{|class="wikitable sortable"', "\n", "|+ As of { DateTime.new(time) } :: Tasks: { $taskcnt } ::<span style=\"background-color:#ffd\"> Draft Tasks:", "{ $draftcnt } </span>:: Total Tasks: { $count } :: Total Examples: { $total }\n", "!Count!!Task!!{(@places[|$which]).join('!!')}" ;   # Sort tasks by count then add row for %tasks.sort: { [-.value<count>, .key] } -> $task { $out.say: ( $task.value<cat> eq 'Draft' ?? "|- style=\"background-color: #ffc\"\n" !! "|-\n" ), "| { $task.value<count> }\n", ( $task.key ~~ /\d/ ?? "|data-sort-value=\"{ $task.key.&naturally }\"| [[{uri-escape $task.key}|{$task.key}]]\n" !! "| [[{uri-escape $task.key}|{$task.key}]]\n" ), "|{ $task.value<top-n>.comb[|$which].join('||') }" }   $out.say( "|}\n</div>" ); $out.close;   note "Table file saved as: {$tablefile.IO.absolute}";   sub mediawiki-query ($site, $type, *%query) { my $url = "$site/api.php?" ~ uri-query-string( :action<query>, :format<json>, :formatversion<2>, |%query); my $continue = '';   gather loop { my $response = $client.get("$url&$continue"); my $data = from-json($response.content); take $_ for $data.<query>.{$type}.values; $continue = uri-query-string |($data.<query-continue>{*}».hash.hash or last); } }   sub uri-query-string (*%fields) { %fields.map({ "{.key}={uri-escape .value}" }).join("&") }   sub naturally ($a) { $a.lc.subst(/(\d+)/, ->$/ {0~(65+$0.chars).chr~$0},:g) }   sub clear { "\r" ~ ' ' x 116 ~ "\r" }
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#Maxima
Maxima
haystack: ["Zig","Zag","Wally","Ronald","Bush","Zig","Zag","Krusty","Charlie","Bush","Bozo"]; needle: "Zag";   findneedle(needle, haystack, [opt]):=block([idx], idx: sublist_indices(haystack, lambda([w], w=needle)), if emptyp(idx) then throw('notfound), if emptyp(opt) then return(idx), opt: first(opt), if opt='f then first(idx) else if opt='l then last(idx) else throw('unknownmode));
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
Rosetta Code/Rank languages by popularity
Rosetta Code/Rank languages by popularity You are encouraged to solve this task according to the task description, using any language you may know. Task Sort the most popular computer programming languages based in number of members in Rosetta Code categories. Sample output on 01 juin 2022 at 14:13 +02 Rank: 1 (1,540 entries) Phix Rank: 2 (1,531 entries) Wren Rank: 3 (1,507 entries) Julia Rank: 4 (1,494 entries) Go Rank: 5 (1,488 entries) Raku Rank: 6 (1,448 entries) Perl Rank: 7 (1,402 entries) Nim Rank: 8 (1,382 entries) Python Rank: 9 (1,204 entries) C Rank: 10 (1,152 entries) REXX ... Notes   Each language typically demonstrates one or two methods of accessing the data:   with web scraping   (via http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)   with the API method   (examples below for Awk, Perl, Ruby, Tcl, etc).   The scraping and API solutions can be separate subsections, see the Tcl example.   Filtering wrong results is optional.   You can check against Special:MostLinkedCategories (if using web scraping) If you use the API, and do elect to filter, you may check your results against this complete, accurate, sortable, wikitable listing of all 869 programming languages, updated periodically, typically weekly.   A complete ranked listing of all   813   languages (from the REXX example) is included here   ──►   output from the REXX program.
#Phix
Phix
-- demo\rosetta\Rank_Languages.exw constant output_users = false, limit = 20, -- 0 to list all languages = "http://rosettacode.org/wiki/Category:Programming_Languages", categories = "http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000" include rosettacode_cache.e -- see Rosetta_Code/Count_examples#Phix function correct_name(string ri) ri = substitute(ri,`"`,`"`) ri = substitute(ri,`'`,`'`) ri = substitute(ri,"\xE2\x80\x99","'") ri = substitute(ri,"\xC3\xB6","o") ri = substitute(ri,"%3A",":") ri = substitute(ri,"%E2%80%93","-") ri = substitute(ri,"%E2%80%99","'") ri = substitute(ri,"%27","'") ri = substitute(ri,"%2B","+") ri = substitute(ri,"%C3%A8","e") ri = substitute(ri,"%C3%A9","e") ri = substitute(ri,"%C3%B6","o") ri = substitute(ri,"%C5%91","o") ri = substitute(ri,"%22",`"`) ri = substitute(ri,"%2A","*") ri = substitute(ri,"\xC2\xB5","u") ri = substitute(ri,"\xC3\xA0","a") ri = substitute(ri,"\xC3\xA6","a") ri = substitute(ri,"\xC3\xA9","e") ri = substitute(ri,"\xC3\xB4","o") ri = substitute(ri,"\xC5\x8D","o") ri = substitute(ri,"\xCE\x9C","u") ri = substitute(ri,"\xD0\x9C\xD0\x9A","MK") ri = substitute(ri,"\xE0\xAE\x89\xE0\xAE\xAF\xE0\xAE\xBF\xE0\xAE\xB0\xE0\xAF\x8D/","") ri = substitute(ri,"APEX","Apex") ri = substitute(ri,"uC++ ","UC++") ri = substitute(ri,`CASIO BASIC`,`Casio BASIC`) ri = substitute(ri,`Visual BASIC`,`Visual Basic`) ri = substitute(ri,`INTERCAL`,`Intercal`) ri = substitute(ri,`SETL4`,`Setl4`) ri = substitute(ri,`QBASIC`,`QBasic`) ri = substitute(ri,`RED`,`Red`) ri = substitute(ri,`OCTAVE`,`Octave`) ri = substitute(ri,`OoREXX`,`OoRexx`) return ri end function include builtins/sets.e constant cat_title = `title="Category:` function extract_names() sequence results = {} -- {rank,count,name} if get_file_type("rc_cache")!=FILETYPE_DIRECTORY then if not create_directory("rc_cache") then crash("cannot create rc_cache directory") end if end if -- 1) extract languages from eg title="Category:Phix" sequence language_names = {} string langs = open_download("languages.htm",languages), language_name langs = langs[1..match(`<div class="printfooter">`,langs)-1] integer start = match("<h2>Subcategories</h2>",langs), k while true do k = match(cat_title,langs,start) if k=0 then exit end if k += length(cat_title) start = find('"',langs,k) language_name = correct_name(langs[k..start-1]) language_names = append(language_names,language_name) end while -- 2) extract results from eg title="Category:Phix">Phix</a>?? (997 members)</li> -- but obviously only when we have found that language in the phase above. -- (note there is / ignore some wierd uncode-like stuff after the </a>...) string cats = open_download("categories.htm",categories) start = 1 while true do k = match(cat_title,cats,start) if k=0 then exit end if k += length(cat_title) start = find('"',cats,k) language_name = correct_name(cats[k..start-1]) start = match("</a>",cats,start)+4 if output_users then if length(language_name)>5 and language_name[-5..-1] = " User" then language_name = correct_name(language_name[1..-6]) else language_name = "" end if end if if length(language_name) and find(language_name,language_names) then while not find(cats[start],"(<") do start += 1 end while -- (ignore) string members = cats[start..find('<',cats,start+1)] members = substitute(members,",","") sequence res = scanf(members,"(%d member%s)<") results = append(results,{0,res[1][1],language_name}) end if end while results = sort_columns(results,{-2,3}) -- (descending 2nd column, then asc 3rd) --3) assign rank integer count, prev = 0, rank for i=1 to length(results) do count = results[i][2] if count=prev then results[i][1] = "=" else rank = i results[i][1] = sprint(rank) prev = count end if end for return results end function procedure show(sequence results) progress("") for i=1 to iff(limit?limit:length(results)) do printf(1,"%3s: %,d - %s\n",results[i]) end for end procedure show(extract_names())
http://rosettacode.org/wiki/Roman_numerals/Encode
Roman numerals/Encode
Task Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero. In Roman numerals: 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC 2008 is written as 2000=MM, 8=VIII; or MMVIII 1666 uses each Roman symbol in descending order: MDCLXVI
#Autolisp
Autolisp
  (defun c:roman() (romanNumber (getint "\n Enter number > ")) (defun romanNumber (n / uni dec hun tho nstr strlist nlist rom) (if (and (> n 0) (<= n 3999)) (progn (setq UNI (list "" "I" "II" "III" "IV" "V" "VI" "VII" "VIII" "IX") DEC (list "" "X" "XX" "XXX" "XL" "L" "LX" "LXX" "LXXX" "XC") HUN (list "" "C" "CC" "CCC" "CD" "D" "DC" "DCC" "DCCC" "CM") THO (list "" "M" "MM" "MMM") nstr (itoa n) ) (while (> (strlen nstr) 0) (setq strlist (append strlist (list (substr nstr 1 1))) nstr (substr nstr 2 (strlen nstr)))) (setq nlist (mapcar 'atoi strlist)) (cond ((> n 999)(setq rom(strcat(nth (car nlist) THO)(nth (cadr nlist) HUN)(nth (caddr nlist) DEC) (nth (last nlist)UNI )))) ((and (> n 99)(<= n 999))(setq rom(strcat (nth (car nlist) HUN)(nth (cadr nlist) DEC) (nth (last nlist)UNI )))) ((and (> n 9)(<= n 99))(setq rom(strcat (nth (car nlist) DEC) (nth (last nlist)UNI )))) ((<= n 9)(setq rom(nth (last nlist)UNI))) ) ) (princ "\nNumber out of range!") ) rom )  
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#BASIC256
BASIC256
function romToDec (roman$) num = 0 prenum = 0 for i = length(roman$) to 1 step -1 x$ = mid(roman$, i, 1) n = 0 if x$ = "M" then n = 1000 if x$ = "D" then n = 500 if x$ = "C" then n = 100 if x$ = "L" then n = 50 if x$ = "X" then n = 10 if x$ = "V" then n = 5 if x$ = "I" then n = 1   if n < preNum then num -= n else num += n preNum = n next i   return num end function   #Testing print "MCMXCIX = "; romToDec("MCMXCIX") #1999 print "MDCLXVI = "; romToDec("MDCLXVI") #1666 print "XXV = "; romToDec("XXV") #25 print "CMLIV = "; romToDec("CMLIV") #954 print "MMXI = "; romToDec("MMXI") #2011
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#EchoLisp
EchoLisp
  (lib 'math.lib) Lib: math.lib loaded. (define fp ' ( 0 2 -3 1)) (poly->string 'x fp) → x^3 -3x^2 +2x (poly->html 'x fp) → x<sup>3</sup> -3x<sup>2</sup> +2x (define (f x) (poly x fp)) (math-precision 1.e-6) → 0.000001   (root f -1000 1000) → 2.0000000133245677 ;; 2 (root f -1000 (- 2 epsilon)) → 1.385559938161431e-7 ;; 0 (root f epsilon (- 2 epsilon)) → 1.0000000002190812 ;; 1  
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#Clojure
Clojure
$ lein trampoline run
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#Euphoria
Euphoria
include misc.e   function encode(sequence s) sequence out integer prev_char,count if length(s) = 0 then return {} end if out = {} prev_char = s[1] count = 1 for i = 2 to length(s) do if s[i] != prev_char then out &= {count,prev_char} prev_char = s[i] count = 1 else count += 1 end if end for out &= {count,prev_char} return out end function   function decode(sequence s) sequence out out = {} for i = 1 to length(s) by 2 do out &= repeat(s[i+1],s[i]) end for return out end function   sequence s s = encode("WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW") pretty_print(1,s,{3}) puts(1,'\n') puts(1,decode(s))
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Lua
Lua
--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs. complex = setmetatable({ __add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end, __sub = function(u, v) return complex(u.real - v.real, u.imag - v.imag) end, __mul = function(u, v) return complex(u.real * v.real - u.imag * v.imag, u.real * v.imag + u.imag * v.real) end, __div = function(u, v) return u * complex(v.real / v.norm, -v.imag / v.norm) end, __unm = function(u) return complex(-u.real, -u.imag) end, __concat = function(u, v) if type(u) == "table" then return u.real .. " + " .. u.imag .. "i" .. v elseif type(u) == "string" or type(u) == "number" then return u .. v.real .. " + " .. v.imag .. "i" end end, __index = function(u, index) local operations = { norm = function(u) return u.real ^ 2 + u.imag ^ 2 end, conj = function(u) return complex(u.real, -u.imag) end, } return operations[index] and operations[index](u) end, __newindex = function() error() end }, { __call = function(z, realpart, imagpart) return setmetatable({real = realpart, imag = imagpart}, complex) end } ) n = io.read() + 0 val = complex(math.cos(2*math.pi / n), math.sin(2*math.pi / n)) root = complex(1, 0) for i = 1, n do root = root * val print(root .. "") end
http://rosettacode.org/wiki/Rosetta_Code/Find_bare_lang_tags
Rosetta Code/Find bare lang tags
Task Find all   <lang>   tags without a language specified in the text of a page. Display counts by language section: Description <lang>Pseudocode</lang> =={{header|C}}== <lang C>printf("Hello world!\n");</lang> =={{header|Perl}}== <lang>print "Hello world!\n"</lang> should display something like 2 bare language tags. 1 in perl 1 in no language Extra credit Allow multiple files to be read.   Summarize all results by language: 5 bare language tags. 2 in c ([[Foo]], [[Bar]]) 1 in perl ([[Foo]]) 2 in no language ([[Baz]]) Extra extra credit Use the   Media Wiki API   to test actual RC tasks.
#zkl
zkl
var [const] CURL=Import("zklCurl"), partURI="http://rosettacode.org/wiki?action=raw&title=%s", langRE=RegExp(0'!\s*==\s*{{\s*header\s*\|(.+)}}!), // == {{ header | zkl }} emptyRE=RegExp(0'!<lang\s*>!);   fcn findEmptyTags(a,b,c,etc){ // -->[lang:(task,task...)] results:=Dictionary(); foreach task in (vm.arglist){ println("processing ",task); currentLang:=""; page:=CURL().get(partURI.fmt(CURL.urlEncode(task))); foreach line in (page[0]){ if(langRE.search(line,True)){ lang:=langRE.matched[1].strip(); if(lang) currentLang=lang; } if(emptyRE.matches(line,True)) results.appendV(currentLang,task); } } results }
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Maple
Maple
solve(a*x^2+b*x+c,x);   solve(1.0*x^2-10.0^9*x+1.0,x,explicit,allsolutions);   fsolve(x^2-10^9*x+1,x,complex);
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
Solve[a x^2 + b x + c == 0, x] Solve[x^2 - 10^5 x + 1 == 0, x] Root[#1^2 - 10^5 #1 + 1 &, 1] Root[#1^2 - 10^5 #1 + 1 &, 2] Reduce[a x^2 + b x + c == 0, x] Reduce[x^2 - 10^5 x + 1 == 0, x] FindInstance[x^2 - 10^5 x + 1 == 0, x, Reals, 2] FindRoot[x^2 - 10^5 x + 1 == 0, {x, 0}] FindRoot[x^2 - 10^5 x + 1 == 0, {x, 10^6}]
http://rosettacode.org/wiki/Rot-13
Rot-13
Task Implement a   rot-13   function   (or procedure, class, subroutine, or other "callable" object as appropriate to your programming environment). Optionally wrap this function in a utility program   (like tr,   which acts like a common UNIX utility, performing a line-by-line rot-13 encoding of every line of input contained in each file listed on its command line,   or (if no filenames are passed thereon) acting as a filter on its   "standard input." (A number of UNIX scripting languages and utilities, such as   awk   and   sed   either default to processing files in this way or have command line switches or modules to easily implement these wrapper semantics, e.g.,   Perl   and   Python). The   rot-13   encoding is commonly known from the early days of Usenet "Netnews" as a way of obfuscating text to prevent casual reading of   spoiler   or potentially offensive material. Many news reader and mail user agent programs have built-in rot-13 encoder/decoders or have the ability to feed a message through any external utility script for performing this (or other) actions. The definition of the rot-13 function is to simply replace every letter of the ASCII alphabet with the letter which is "rotated" 13 characters "around" the 26 letter alphabet from its normal cardinal position   (wrapping around from   z   to   a   as necessary). Thus the letters   abc   become   nop   and so on. Technically rot-13 is a   "mono-alphabetic substitution cipher"   with a trivial   "key". A proper implementation should work on upper and lower case letters, preserve case, and pass all non-alphabetic characters in the input stream through without alteration. Related tasks   Caesar cipher   Substitution Cipher   Vigenère Cipher/Cryptanalysis Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#D
D
import std.stdio; import std.ascii: letters, U = uppercase, L = lowercase; import std.string: makeTrans, translate;   immutable r13 = makeTrans(letters, //U[13 .. $] ~ U[0 .. 13] ~ U[13 .. U.length] ~ U[0 .. 13] ~ L[13 .. L.length] ~ L[0 .. 13]);   void main() { writeln("This is the 1st test!".translate(r13, null)); }
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#PureBasic
PureBasic
EnableExplicit Define.i i Define.d y=1.0, k1=0.0, k2=0.0, k3=0.0, k4=0.0, t=0.0   If OpenConsole() For i=0 To 100 t=i/10 If Not i%10 PrintN("y("+RSet(StrF(t,0),2," ")+") ="+RSet(StrF(y,4),9," ")+#TAB$+"Error ="+RSet(StrF(Pow(Pow(t,2)+4,2)/16-y,10),14," ")) EndIf k1=t*Sqr(y) k2=(t+0.05)*Sqr(y+0.05*k1) k3=(t+0.05)*Sqr(y+0.05*k2) k4=(t+0.10)*Sqr(y+0.10*k3) y+0.1*(k1+2*(k2+k3)+k4)/6 Next Print("Press return to exit...") : Input() EndIf End
http://rosettacode.org/wiki/S-expressions
S-expressions
S-Expressions   are one convenient way to parse and store data. Task Write a simple reader and writer for S-Expressions that handles quoted and unquoted strings, integers and floats. The reader should read a single but nested S-Expression from a string and store it in a suitable datastructure (list, array, etc). Newlines and other whitespace may be ignored unless contained within a quoted string. “()”   inside quoted strings are not interpreted, but treated as part of the string. Handling escaped quotes inside a string is optional;   thus “(foo"bar)” maybe treated as a string “foo"bar”, or as an error. For this, the reader need not recognize “\” for escaping, but should, in addition, recognize numbers if the language has appropriate datatypes. Languages that support it may treat unquoted strings as symbols. Note that with the exception of “()"” (“\” if escaping is supported) and whitespace there are no special characters. Anything else is allowed without quotes. The reader should be able to read the following input ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) and turn it into a native datastructure. (see the Pike, Python and Ruby implementations for examples of native data structures.) The writer should be able to take the produced list and turn it into a new S-Expression. Strings that don't contain whitespace or parentheses () don't need to be quoted in the resulting S-Expression, but as a simplification, any string may be quoted. Extra Credit Let the writer produce pretty printed output with indenting and line-breaks.
#Ruby
Ruby
class SExpr def initialize(str) @original = str @data = parse_sexpr(str) end attr_reader :data, :original   def to_sexpr @data.to_sexpr end   private   def parse_sexpr(str) state = :token_start tokens = [] word = "" str.each_char do |char| case state   when :token_start case char when "(" tokens << :lbr when ")" tokens << :rbr when /\s/ # do nothing, just consume the whitespace when '"' state = :read_quoted_string word = "" else state = :read_string_or_number word = char end   when :read_quoted_string case char when '"' tokens << word state = :token_start else word << char end   when :read_string_or_number case char when /\s/ tokens << symbol_or_number(word) state = :token_start when ')' tokens << symbol_or_number(word) tokens << :rbr state = :token_start else word << char end end end   sexpr_tokens_to_array(tokens) end   def symbol_or_number(word) Integer(word) rescue ArgumentError begin Float(word) rescue ArgumentError word.to_sym end end   def sexpr_tokens_to_array(tokens, idx = 0) result = [] while idx < tokens.length case tokens[idx] when :lbr tmp, idx = sexpr_tokens_to_array(tokens, idx + 1) result << tmp when :rbr return [result, idx] else result << tokens[idx] end idx += 1 end result[0] end end   class Object def to_sexpr self end end   class String def to_sexpr self.match(/[\s()]/) ? self.inspect : self end end   class Symbol alias :to_sexpr :to_s end   class Array def to_sexpr "(%s)" % inject([]) {|a, elem| a << elem.to_sexpr}.join(" ") end end     sexpr = SExpr.new <<END ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) END   puts "original sexpr:\n#{sexpr.original}" puts "\nruby data structure:\n#{sexpr.data}" puts "\nand back to S-Expr:\n#{sexpr.to_sexpr}"
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#Raku
Raku
my ( $min_sum, $hero_attr_min, $hero_count_min ) = 75, 15, 2; my @attr-names = <Str Int Wis Dex Con Cha>;   sub heroic { + @^a.grep: * >= $hero_attr_min }   my @attr; repeat until @attr.sum >= $min_sum and heroic(@attr) >= $hero_count_min {   @attr = @attr-names.map: { (1..6).roll(4).sort(+*).skip(1).sum }; }   say @attr-names Z=> @attr; say "Sum: {@attr.sum}, with {heroic(@attr)} attributes >= $hero_attr_min";
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
Sieve of Eratosthenes
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers up to a given integer. Task Implement the   Sieve of Eratosthenes   algorithm, with the only allowed optimization that the outer loop can stop at the square root of the limit, and the inner loop may start at the square of the prime just found. That means especially that you shouldn't optimize by using pre-computed wheels, i.e. don't assume you need only to cross out odd numbers (wheel based on 2), numbers equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on low primes. If there's an easy way to add such a wheel based optimization, implement it as an alternative version. Note It is important that the sieve algorithm be the actual algorithm used to find prime numbers for the task. Related tasks   Emirp primes   count in factors   prime decomposition   factors of an integer   extensible prime generator   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#Tailspin
Tailspin
  templates sieve def limit: $; @: [ 2..$limit ]; 1 -> # $@ !   when <..$@::length ?($@($) * $@($) <..$limit>)> do templates sift def prime: $; @: $prime * $prime; @sieve: [ $@sieve... -> # ]; when <..~$@> do $ ! when <$@~..> do @: $@ + $prime; $ -> # end sift   $@($) -> sift ! $ + 1 -> # end sieve   1000 -> sieve ...-> '$; ' -> !OUT::write  
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Ring
Ring
  # Project: Rosetta Code/Count examples   load "stdlib.ring" ros= download("http://rosettacode.org/wiki/Category:Programming_Tasks") pos = 1 num = 0 totalros = 0 rosname = "" rostitle = "" for n = 1 to len(ros) nr = searchstring(ros,'<li><a href="/wiki/',pos) if nr = 0 exit else pos = nr + 1 ok nr = searchname(nr) nr = searchtitle(nr) next see nl see "Total: " + totalros + " examples." + nl   func searchstring(str,substr,n) newstr=right(str,len(str)-n+1) nr = substr(newstr, substr) if nr = 0 return 0 else return n + nr -1 ok   func searchname(sn) nr2 = searchstring(ros,'">',sn) nr3 = searchstring(ros,"</a></li>",sn) rosname = substr(ros,nr2+2,nr3-nr2-2) return sn   func searchtitle(sn) st = searchstring(ros,"title=",sn) rostitle = substr(ros,sn+19,st-sn-21) rostitle = "rosettacode.org/wiki/" + rostitle rostitle = download(rostitle) sum = count(rostitle,"Edit section:") num = num + 1 see "" + num + ". " + rosname + ": " + sum + " examples." + nl totalros = totalros + sum return sn   func count(cstring,dstring) sum = 0 while substr(cstring,dstring) > 0 sum = sum + 1 cstring = substr(cstring,substr(cstring,dstring)+len(string(sum))) end return sum  
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Ruby
Ruby
require 'open-uri' require 'rexml/document'   module RosettaCode   URL_ROOT = "http://rosettacode.org/mw"   def self.get_url(page, query) begin # Ruby 1.9.2 pstr = URI.encode_www_form_component(page) qstr = URI.encode_www_form(query) rescue NoMethodError require 'cgi' pstr = CGI.escape(page) qstr = query.map {|k,v| "%s=%s" % [CGI.escape(k.to_s), CGI.escape(v.to_s)]}.join("&") end url = "#{URL_ROOT}/#{pstr}?#{qstr}" p url if $DEBUG url end   def self.get_api_url(query) get_url "api.php", query end   def self.category_members(category) query = { "action" => "query", "list" => "categorymembers", "cmtitle" => "Category:#{category}", "format" => "xml", "cmlimit" => 500, } while true url = get_api_url query doc = REXML::Document.new open(url)   REXML::XPath.each(doc, "//cm") do |task| yield task.attribute("title").value end   continue = REXML::XPath.first(doc, "//query-continue") break if continue.nil? cm = REXML::XPath.first(continue, "categorymembers") query["cmcontinue"] = cm.attribute("cmcontinue").value end end   end
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#MAXScript
MAXScript
haystack=#("Zig","Zag","Wally","Ronald","Bush","Krusty","Charlie","Bush","Bozo")   for needle in #("Washington","Bush") do ( index = findItem haystack needle   if index == 0 then ( format "% is not in haystack\n" needle ) else ( format "% %\n" index needle ) )
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
Rosetta Code/Rank languages by popularity
Rosetta Code/Rank languages by popularity You are encouraged to solve this task according to the task description, using any language you may know. Task Sort the most popular computer programming languages based in number of members in Rosetta Code categories. Sample output on 01 juin 2022 at 14:13 +02 Rank: 1 (1,540 entries) Phix Rank: 2 (1,531 entries) Wren Rank: 3 (1,507 entries) Julia Rank: 4 (1,494 entries) Go Rank: 5 (1,488 entries) Raku Rank: 6 (1,448 entries) Perl Rank: 7 (1,402 entries) Nim Rank: 8 (1,382 entries) Python Rank: 9 (1,204 entries) C Rank: 10 (1,152 entries) REXX ... Notes   Each language typically demonstrates one or two methods of accessing the data:   with web scraping   (via http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)   with the API method   (examples below for Awk, Perl, Ruby, Tcl, etc).   The scraping and API solutions can be separate subsections, see the Tcl example.   Filtering wrong results is optional.   You can check against Special:MostLinkedCategories (if using web scraping) If you use the API, and do elect to filter, you may check your results against this complete, accurate, sortable, wikitable listing of all 869 programming languages, updated periodically, typically weekly.   A complete ranked listing of all   813   languages (from the REXX example) is included here   ──►   output from the REXX program.
#PicoLisp
PicoLisp
(load "@lib/http.l")   (for (I . X) (flip (sort (make (client "rosettacode.org" 80 "mw/index.php?title=Special:Categories&limit=5000" (while (from "<li><a href=\"/wiki/Category:") (let Cat (till "\"") (from "(") (when (format (till " " T)) (link (cons @ (ht:Pack Cat))) ) ) ) ) ) ) ) (prinl (align 3 I) ". " (car X) " - " (cdr X)) )
http://rosettacode.org/wiki/Roman_numerals/Encode
Roman numerals/Encode
Task Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero. In Roman numerals: 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC 2008 is written as 2000=MM, 8=VIII; or MMVIII 1666 uses each Roman symbol in descending order: MDCLXVI
#AWK
AWK
  # syntax: GAWK -f ROMAN_NUMERALS_ENCODE.AWK BEGIN { leng = split("1990 2008 1666",arr," ") for (i=1; i<=leng; i++) { n = arr[i] printf("%s = %s\n",n,dec2roman(n)) } exit(0) } function dec2roman(number, v,w,x,y,roman1,roman10,roman100,roman1000) { number = int(number) # force to integer if (number < 1 || number > 3999) { # number is too small | big return } split("I II III IV V VI VII VIII IX",roman1," ") # 1 2 ... 9 split("X XX XXX XL L LX LXX LXXX XC",roman10," ") # 10 20 ... 90 split("C CC CCC CD D DC DCC DCCC CM",roman100," ") # 100 200 ... 900 split("M MM MMM",roman1000," ") # 1000 2000 3000 v = (number - (number % 1000)) / 1000 number = number % 1000 w = (number - (number % 100)) / 100 number = number % 100 x = (number - (number % 10)) / 10 y = number % 10 return(roman1000[v] roman100[w] roman10[x] roman1[y]) }  
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#Batch_File
Batch File
@echo off setlocal enabledelayedexpansion ::Testing... call :toArabic MCMXC echo MCMXC = !arabic! call :toArabic MMVIII echo MMVIII = !arabic! call :toArabic MDCLXVI echo MDCLXVI = !arabic! call :toArabic CDXLIV echo CDXLIV = !arabic! call :toArabic XCIX echo XCIX = !arabic! pause>nul exit/b 0 ::The "function"... :toArabic set roman=%1 set arabic= set lastval= %== Alternative for counting the string length ==% set leng=-1 for /l %%. in (0,1,1000) do set/a leng+=1&if "!roman:~%%.,1!"=="" goto break :break set /a last=!leng!-1 for /l %%i in (!last!,-1,0) do ( set n=0 if /i "!roman:~%%i,1!"=="M" set n=1000 if /i "!roman:~%%i,1!"=="D" set n=500 if /i "!roman:~%%i,1!"=="C" set n=100 if /i "!roman:~%%i,1!"=="L" set n=50 if /i "!roman:~%%i,1!"=="X" set n=10 if /i "!roman:~%%i,1!"=="V" set n=5 if /i "!roman:~%%i,1!"=="I" set n=1   if !n! lss !lastval! ( set /a arabic-=n ) else ( set /a arabic+=n ) set lastval=!n! ) goto :EOF
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#Elixir
Elixir
defmodule RC do def find_roots(f, range, step \\ 0.001) do first .. last = range max = last + step / 2 Stream.iterate(first, &(&1 + step)) |> Stream.take_while(&(&1 < max)) |> Enum.reduce(sign(first), fn x,sn -> value = f.(x) cond do abs(value) < step / 100 -> IO.puts "Root found at #{x}" 0 sign(value) == -sn -> IO.puts "Root found between #{x-step} and #{x}" -sn true -> sign(value) end end) end   defp sign(x) when x>0, do: 1 defp sign(x) when x<0, do: -1 defp sign(0) , do: 0 end   f = fn x -> x*x*x - 3*x*x + 2*x end RC.find_roots(f, -1..3)
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#Crystal
Crystal
  # conventional weapons enum Choice Rock Paper Scissors end   BEATS = { Choice::Rock => [Choice::Paper], Choice::Paper => [Choice::Scissors], Choice::Scissors => [Choice::Rock], }   # uncomment to use additional weapons # enum Choice # Rock # Paper # Scissors # Lizard # Spock # end   # BEATS = { # Choice::Rock => [Choice::Paper, Choice::Spock], # Choice::Paper => [Choice::Scissors, Choice::Lizard], # Choice::Scissors => [Choice::Rock, Choice::Spock], # Choice::Lizard => [Choice::Rock, Choice::Scissors], # Choice::Spock => [Choice::Paper, Choice::Lizard], # }   class RPSAI @stats = {} of Choice => Int32   def initialize Choice.values.each do |c| @stats[c] = 1 end end   def choose v = rand(@stats.values.sum) @stats.each do |choice, rate| v -= rate return choice if v < 0 end raise "" end   def train(selected) BEATS[selected].each do |c| @stats[c] += 1 end end end   enum GameResult HumanWin ComputerWin Draw   def to_s case self when .draw? "Draw" when .human_win? "You win!" when .computer_win? "I win!" end end end   class RPSGame @score = Hash(GameResult, Int32).new(0) @ai = RPSAI.new   def check(player, computer) return GameResult::ComputerWin if BEATS[player].includes? computer return GameResult::HumanWin if BEATS[computer].includes? player return GameResult::Draw end   def round puts "" print "Your choice (#{Choice.values.join(", ")}):" s = gets.not_nil!.strip.downcase return false if "quit".starts_with? s player_turn = Choice.values.find { |choice| choice.to_s.downcase.starts_with? s } unless player_turn puts "Invalid choice" return true end ai_turn = @ai.choose result = check(player_turn, ai_turn) puts "H: #{player_turn}, C: #{ai_turn} => #{result}" @score[result] += 1 puts "score: human=%d, computer=%d, draw=%d" % GameResult.values.map { |r| @score[r] } @ai.train player_turn true end end   game = RPSGame.new loop do break unless game.round end
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#F.23
F#
  open System open System.Text.RegularExpressions   let encode data = // encodeData : seq<'T> -> seq<int * 'T> i.e. Takes a sequence of 'T types and return a sequence of tuples containing the run length and an instance of 'T. let rec encodeData input = seq { if not (Seq.isEmpty input) then let head = Seq.head input let runLength = Seq.length (Seq.takeWhile ((=) head) input) yield runLength, head yield! encodeData (Seq.skip runLength input) }   encodeData data |> Seq.fold(fun acc (len, d) -> acc + len.ToString() + d.ToString()) ""   let decode str = [ for m in Regex.Matches(str, "(\d+)(.)") -> m ] |> List.map (fun m -> Int32.Parse(m.Groups.[1].Value), m.Groups.[2].Value) |> List.fold (fun acc (len, s) -> acc + String.replicate len s) ""  
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Maple
Maple
RootsOfUnity := proc( n ) solve(z^n = 1, z); end proc:
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
RootsUnity[nthroot_Integer?Positive] := Table[Exp[2 Pi I i/nthroot], {i, 0, nthroot - 1}]
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#MATLAB
MATLAB
function z = rootsOfUnity(n)   assert(n >= 1,'n >= 1'); z = roots([1 zeros(1,n-1) -1]);   end
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#MATLAB_.2F_Octave
MATLAB / Octave
roots([1 -3 2]) % coefficients in decreasing order of power e.g. [x^n ... x^2 x^1 x^0]
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Maxima
Maxima
solve(a*x^2 + b*x + c = 0, x);   /* 2 2 sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b [x = - --------------------, x = --------------------] 2 a 2 a */   fpprec: 40$   solve(x^2 - 10^9*x + 1 = 0, x); /* [x = 500000000 - sqrt(249999999999999999), x = sqrt(249999999999999999) + 500000000] */   bfloat(%); /* [x = 1.0000000000000000009999920675269450501b-9, x = 9.99999999999999998999999999999999999b8] */
http://rosettacode.org/wiki/Rot-13
Rot-13
Task Implement a   rot-13   function   (or procedure, class, subroutine, or other "callable" object as appropriate to your programming environment). Optionally wrap this function in a utility program   (like tr,   which acts like a common UNIX utility, performing a line-by-line rot-13 encoding of every line of input contained in each file listed on its command line,   or (if no filenames are passed thereon) acting as a filter on its   "standard input." (A number of UNIX scripting languages and utilities, such as   awk   and   sed   either default to processing files in this way or have command line switches or modules to easily implement these wrapper semantics, e.g.,   Perl   and   Python). The   rot-13   encoding is commonly known from the early days of Usenet "Netnews" as a way of obfuscating text to prevent casual reading of   spoiler   or potentially offensive material. Many news reader and mail user agent programs have built-in rot-13 encoder/decoders or have the ability to feed a message through any external utility script for performing this (or other) actions. The definition of the rot-13 function is to simply replace every letter of the ASCII alphabet with the letter which is "rotated" 13 characters "around" the 26 letter alphabet from its normal cardinal position   (wrapping around from   z   to   a   as necessary). Thus the letters   abc   become   nop   and so on. Technically rot-13 is a   "mono-alphabetic substitution cipher"   with a trivial   "key". A proper implementation should work on upper and lower case letters, preserve case, and pass all non-alphabetic characters in the input stream through without alteration. Related tasks   Caesar cipher   Substitution Cipher   Vigenère Cipher/Cryptanalysis Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Delphi
Delphi
  program Rot13;   {$APPTYPE CONSOLE}   uses System.SysUtils;   function Rot13char(c: AnsiChar): AnsiChar; begin Result := c; if (c >= 'a') and (c <= 'm') or (c >= 'A') and (c <= 'M') then Result := AnsiChar(ord(c) + 13) else if (c >= 'n') and (c <= 'z') or (c >= 'N') and (c <= 'Z') then Result := AnsiChar(ord(c) - 13);   end;   function Rot13Fn(s: ansistring): ansistring; begin SetLength(result, length(s)); for var i := 1 to length(s) do Result[i] := Rot13char(s[i]); end;   begin writeln(Rot13Fn('nowhere ABJURER')); readln; end.
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#Python
Python
from math import sqrt   def rk4(f, x0, y0, x1, n): vx = [0] * (n + 1) vy = [0] * (n + 1) h = (x1 - x0) / float(n) vx[0] = x = x0 vy[0] = y = y0 for i in range(1, n + 1): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) vx[i] = x = x0 + i * h vy[i] = y = y + (k1 + k2 + k2 + k3 + k3 + k4) / 6 return vx, vy   def f(x, y): return x * sqrt(y)   vx, vy = rk4(f, 0, 1, 10, 100) for x, y in list(zip(vx, vy))[::10]: print("%4.1f %10.5f %+12.4e" % (x, y, y - (4 + x * x)**2 / 16))   0.0 1.00000 +0.0000e+00 1.0 1.56250 -1.4572e-07 2.0 4.00000 -9.1948e-07 3.0 10.56250 -2.9096e-06 4.0 24.99999 -6.2349e-06 5.0 52.56249 -1.0820e-05 6.0 99.99998 -1.6595e-05 7.0 175.56248 -2.3518e-05 8.0 288.99997 -3.1565e-05 9.0 451.56246 -4.0723e-05 10.0 675.99995 -5.0983e-05
http://rosettacode.org/wiki/S-expressions
S-expressions
S-Expressions   are one convenient way to parse and store data. Task Write a simple reader and writer for S-Expressions that handles quoted and unquoted strings, integers and floats. The reader should read a single but nested S-Expression from a string and store it in a suitable datastructure (list, array, etc). Newlines and other whitespace may be ignored unless contained within a quoted string. “()”   inside quoted strings are not interpreted, but treated as part of the string. Handling escaped quotes inside a string is optional;   thus “(foo"bar)” maybe treated as a string “foo"bar”, or as an error. For this, the reader need not recognize “\” for escaping, but should, in addition, recognize numbers if the language has appropriate datatypes. Languages that support it may treat unquoted strings as symbols. Note that with the exception of “()"” (“\” if escaping is supported) and whitespace there are no special characters. Anything else is allowed without quotes. The reader should be able to read the following input ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) and turn it into a native datastructure. (see the Pike, Python and Ruby implementations for examples of native data structures.) The writer should be able to take the produced list and turn it into a new S-Expression. Strings that don't contain whitespace or parentheses () don't need to be quoted in the resulting S-Expression, but as a simplification, any string may be quoted. Extra Credit Let the writer produce pretty printed output with indenting and line-breaks.
#Rust
Rust
  //! This implementation isn't based on anything in particular, although it's probably informed by a //! lot of Rust's JSON encoding code. It should be very fast (both encoding and decoding the toy //! example here takes under a microsecond on my machine) and tries to avoid unnecessary allocation. //! //! In a real implementation, most of this would be private, with only a few visible functions, and //! there would be somewhat nicer signatures (in particular, the fact that `ParseContext` has to be //! mutable would get annoying in real code pretty quickly, so it would probably be split out). //! //! It supports the ability to read individual atoms, not just lists, although whether this is //! useful is questionable. //! //! Caveats: Does not support symbols vs. non-symbols (it wouldn't be hard, but it would greatly //! complicate setting up our test structure since we'd have to force it to go through functions //! that checked to make sure `Symbol`s couldn't have spaces, or slow down our parser by checking //! for this information each time, which is obnoxious). Does not support string escaping, because //! the decoding technique doesn't allocate extra space for strings. Does support numbers, but //! only float types (supporting more types is possible but would complicate the code //! significantly).   extern crate typed_arena;   use typed_arena::Arena;   use self::Error::*; use self::SExp::*; use self::Token::*; use std::io; use std::num::FpCategory; use std::str::FromStr;   /// The actual `SExp` structure. Supports `f64`s, lists, and string literals. Note that it takes /// everything by reference, rather than owning it--this is mostly done just so we can allocate /// `SExp`s statically (since we don't have to call `Vec`). It does complicate the code a bit, /// requiring us to have a `ParseContext` that holds an arena where lists are actually allocated. #[derive(PartialEq, Debug)] pub enum SExp<'a> { /// Float literal: 0.5 F64(f64),   /// List of SExps: ( a b c) List(&'a [SExp<'a>]),   /// Plain old string literal: "abc" Str(&'a str), }   /// Errors that can be thrown by the parser. #[derive(PartialEq, Debug)] pub enum Error { /// If the float is `NaN`, `Infinity`, etc. NoReprForFloat,   /// Missing an end double quote during string parsing UnterminatedStringLiteral,   /// Some other kind of I/O error Io,   /// ) appeared where it shouldn't (usually as the first token) IncorrectCloseDelimiter,   /// Usually means a missing ), but could also mean there were no tokens at all. UnexpectedEOF,   /// More tokens after the list is finished, or after a literal if there is no list. ExpectedEOF, }   impl From<io::Error> for Error { fn from(_err: io::Error) -> Error { Error::Io } }   /// Tokens returned from the token stream. #[derive(PartialEq, Debug)] enum Token<'a> { /// Left parenthesis ListStart,   /// Right parenthesis ListEnd,   /// String or float literal, quotes removed. Literal(SExp<'a>),   /// Stream is out of tokens. Eof, }   /// An iterator over a string that yields a stream of Tokens. /// /// Implementation note: it probably seems weird to store first, rest, AND string, since they should /// all be derivable from string. But see below. #[derive(Copy, Clone, Debug)] struct Tokens<'a> { /// The part of the string that still needs to be parsed string: &'a str,   /// The first character to parse first: Option<char>,   /// The rest of the string after the first character rest: &'a str, }   impl<'a> Tokens<'a> { /// Initialize a token stream for a given string. fn new(string: &str) -> Tokens { let mut chars = string.chars();   match chars.next() { Some(ch) => Tokens { string, first: Some(ch), rest: chars.as_str(), }, None => Tokens { string, first: None, rest: string, }, } }   /// Utility function to update information in the iterator. It might not be performant to keep /// rest cached, but there are times where we don't know exactly what string is (at least, not /// in a way that we can *safely* reconstruct it without allocating), so we keep both here. /// With some unsafe code we could probably get rid of one of them (and maybe first, too). fn update(&mut self, string: &'a str) { self.string = string; let mut chars = self.string.chars();   if let Some(ch) = chars.next() { self.first = Some(ch); self.rest = chars.as_str(); } else { self.first = None; }; }   /// This is where the lexing happens. Note that it does not handle string escaping. fn next_token(&mut self) -> Result<Token<'a>, Error> { loop { match self.first { // List start Some('(') => { self.update(self.rest); return Ok(ListStart); } // List end Some(')') => { self.update(self.rest); return Ok(ListEnd); } // Quoted literal start Some('"') => { // Split the string at most once. This lets us get a // reference to the next piece of the string without having // to loop through the string again. let mut iter = self.rest.splitn(2, '"'); // The first time splitn is run it will never return None, so this is safe. let str = iter.next().unwrap(); match iter.next() { // Extract the interior of the string without allocating. If we want to // handle string escaping, we would have to allocate at some point though. Some(s) => { self.update(s); return Ok(Literal(Str(str))); } None => return Err(UnterminatedStringLiteral), } } // Plain old literal start Some(c) => { // Skip whitespace. This could probably be made more efficient. if c.is_whitespace() { self.update(self.rest); continue; } // Since we've exhausted all other possibilities, this must be a real literal. // Unlike the quoted case, it's not an error to encounter EOF before whitespace. let mut end_ch = None; let str = { let mut iter = self.string.splitn(2, |ch: char| { let term = ch == ')' || ch == '('; if term { end_ch = Some(ch) } term || ch.is_whitespace() }); // The first time splitn is run it will never return None, so this is safe. let str = iter.next().unwrap(); self.rest = iter.next().unwrap_or(""); str }; match end_ch { // self.string will be incorrect in the Some(_) case. The only reason it's // okay is because the next time next() is called in this case, we know it // will be '(' or ')', so it will never reach any code that actually looks // at self.string. In a real implementation this would be enforced by // visibility rules. Some(_) => self.first = end_ch, None => self.update(self.rest), } return Ok(Literal(parse_literal(str))); } None => return Ok(Eof), } } } }   /// This is not the most efficient way to do this, because we end up going over numeric literals /// twice, but it avoids having to write our own number parsing logic. fn parse_literal(literal: &str) -> SExp { match literal.bytes().next() { Some(b'0'..=b'9') | Some(b'-') => match f64::from_str(literal) { Ok(f) => F64(f), Err(_) => Str(literal), }, _ => Str(literal), } }   /// Parse context, holds information required by the parser (and owns any allocations it makes) pub struct ParseContext<'a> { /// The string being parsed. Not required, but convenient. string: &'a str,   /// Arena holding any allocations made by the parser. arena: Option<Arena<Vec<SExp<'a>>>>,   /// Stored in the parse context so it can be reused once allocated. stack: Vec<Vec<SExp<'a>>>, }   impl<'a> ParseContext<'a> { /// Create a new parse context from a given string pub fn new(string: &'a str) -> ParseContext<'a> { ParseContext { string, arena: None, stack: Vec::new(), } } }   impl<'a> SExp<'a> { /// Serialize a SExp. fn encode<T: io::Write>(&self, writer: &mut T) -> Result<(), Error> { match *self { F64(f) => { match f.classify() { // We don't want to identify NaN, Infinity, etc. as floats. FpCategory::Normal | FpCategory::Zero => { write!(writer, "{}", f)?; Ok(()) } _ => Err(Error::NoReprForFloat), } } List(l) => { // Writing a list is very straightforward--write a left parenthesis, then // recursively call encode on each member, and then write a right parenthesis. The // only reason the logic is as long as it is is to make sure we don't write // unnecessary spaces between parentheses in the zero or one element cases. write!(writer, "(")?; let mut iter = l.iter(); if let Some(sexp) = iter.next() { sexp.encode(writer)?; for sexp in iter { write!(writer, " ")?; sexp.encode(writer)?; } } write!(writer, ")")?; Ok(()) } Str(s) => { write!(writer, "\"{}\"", s)?; Ok(()) } } }   /// Deserialize a SExp. pub fn parse(ctx: &'a mut ParseContext<'a>) -> Result<SExp<'a>, Error> { ctx.arena = Some(Arena::new()); // Hopefully this unreachable! gets optimized out, because it should literally be // unreachable. let arena = match ctx.arena { Some(ref mut arena) => arena, None => unreachable!(), }; let ParseContext { string, ref mut stack, .. } = *ctx; // Make sure the stack is cleared--we keep it in the context to avoid unnecessary // reallocation between parses (if you need to remember old parse information for a new // list, you can pass in a new context). stack.clear(); let mut tokens = Tokens::new(string); // First, we check the very first token to see if we're parsing a full list. It // simplifies parsing a lot in the subsequent code if we can assume that. let next = tokens.next_token(); let mut list = match next? { ListStart => Vec::new(), Literal(s) => { return if tokens.next_token()? == Eof { Ok(s) } else { Err(ExpectedEOF) }; } ListEnd => return Err(IncorrectCloseDelimiter), Eof => return Err(UnexpectedEOF), };   // We know we're in a list if we got this far. loop { let tok = tokens.next_token(); match tok? { ListStart => { // We push the previous context onto our stack when we start reading a new list. stack.push(list); list = Vec::new() } Literal(s) => list.push(s), // Plain old literal, push it onto the current list ListEnd => { match stack.pop() { // Pop the old context off the stack on list end. Some(mut l) => { // We allocate a slot for the current list in our parse context (needed // for safety) before pushing it onto its parent list. l.push(List(&*arena.alloc(list))); // Now reset the current list to the parent list list = l; } // There was nothing on the stack, so we're at the end of the topmost list. // The check to make sure there are no more tokens is required for // correctness. None => { return match tokens.next_token()? { Eof => Ok(List(&*arena.alloc(list))), _ => Err(ExpectedEOF), }; } } } // We encountered an EOF before the list ended--that's an error. Eof => return Err(UnexpectedEOF), } } }   /// Convenience method for the common case where you just want to encode a SExp as a String. pub fn buffer_encode(&self) -> Result<String, Error> { let mut m = Vec::new(); self.encode(&mut m)?; // Because encode() only ever writes valid UTF-8, we can safely skip the secondary check we // normally have to do when converting from Vec<u8> to String. If we didn't know that the // buffer was already UTF-8, we'd want to call container_as_str() here. unsafe { Ok(String::from_utf8_unchecked(m)) } } }   pub const SEXP_STRUCT: SExp<'static> = List(&[ List(&[Str("data"), Str("quoted data"), F64(123.), F64(4.5)]), List(&[ Str("data"), List(&[Str("!@#"), List(&[F64(4.5)]), Str("(more"), Str("data)")]), ]), ]);   pub const SEXP_STRING_IN: &str = r#"((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)")))"#;     and main.rs:   use s_expressions::{ParseContext, SExp, SEXP_STRING_IN, SEXP_STRUCT};   fn main() { println!("{:?}", SEXP_STRUCT.buffer_encode()); let ctx = &mut ParseContext::new(SEXP_STRING_IN); println!("{:?}", SExp::parse(ctx)); }  
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#Red
Red
Red ["RPG attributes generator"]   raw-attribute: does [ sum next sort collect [ loop 4 [keep random/only 6] ] ]   raw-attributes: does [ collect [ loop 6 [keep raw-attribute] ] ]   valid-attributes?: func [b][ n: 0 foreach attr b [ if attr > 14 [n: n + 1] ] all [ n > 1 greater? sum b 74 ] ]   attributes: does [ until [ valid-attributes? a: raw-attributes ] a ]   show-attributes: function [a][ i: 1 foreach stat-name [ "Strength" "Dexterity" "Constitution" "Intelligence" "Wisdom" "Charisma" ][ print [rejoin [stat-name ":"] a/:i] i: i + 1 ] print "-----------------" print ["Sum:" sum a] print [n "attributes > 14"] ]   show-attributes attributes
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
Sieve of Eratosthenes
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers up to a given integer. Task Implement the   Sieve of Eratosthenes   algorithm, with the only allowed optimization that the outer loop can stop at the square root of the limit, and the inner loop may start at the square of the prime just found. That means especially that you shouldn't optimize by using pre-computed wheels, i.e. don't assume you need only to cross out odd numbers (wheel based on 2), numbers equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on low primes. If there's an easy way to add such a wheel based optimization, implement it as an alternative version. Note It is important that the sieve algorithm be the actual algorithm used to find prime numbers for the task. Related tasks   Emirp primes   count in factors   prime decomposition   factors of an integer   extensible prime generator   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#Tcl
Tcl
package require Tcl 8.5   proc sieve n { if {$n < 2} {return {}}   # create a container to hold the sequence of numbers. # use a dictionary for its speedy access (like an associative array) # and for its insertion order preservation (like a list) set nums [dict create] for {set i 2} {$i <= $n} {incr i} { # the actual value is never used dict set nums $i "" }   set primes [list] while {[set nextPrime [lindex [dict keys $nums] 0]] <= sqrt($n)} { dict unset nums $nextPrime for {set i [expr {$nextPrime ** 2}]} {$i <= $n} {incr i $nextPrime} { dict unset nums $i } lappend primes $nextPrime } return [concat $primes [dict keys $nums]] }   puts [sieve 100] ;# 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Run_BASIC
Run BASIC
html "<table border=1><tr bgcolor=wheat align=center><td>Num</td><td>Task</td><td>Examples</td></tr>"   a$ = httpGet$("http://rosettacode.org/wiki/Category:Programming_Tasks") a$ = word$(a$,1,"</table></div>") i = instr(a$,"<a href=""/wiki/") i = instr(a$,"<a href=""/wiki/",i+1) while i > 0 count = count + 1 i = instr(a$,"<a href=""/wiki/",i+1) j = instr(a$,">",i+5) a1$ = mid$(a$,i+15,j-i) taskId$ = word$(a1$,1,"""") task$ = word$(a1$,3,"""") url$ = "http://rosettacode.org/wiki/";taskId$ a2$ = httpGet$(url$) ii = instr(a2$,"<span class=""tocnumber"">") jj = 0 while ii > 0 jj = ii ii = instr(a2$,"<span class=""tocnumber"">",ii+10) wend if jj = 0 then examp = 0 else kk = instr(a2$,"<",jj+24) examp = int(val(mid$(a2$,jj+24,kk-jj-24))) end if html "<tr><td align=right>";count;"</td><td>";task$;"</td><td align=right>";examp;"</td></tr>" totExamp = totExamp + examp wend html "<tr bgcolor=wheat><td>**</td><td>** Total **</td><td align=right>";totExamp;"</td></tr></table>" end
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Rust
Rust
extern crate reqwest; extern crate url; extern crate rustc_serialize;   use std::io::Read; use self::url::Url; use rustc_serialize::json::{self, Json};   pub struct Task { page_id: u64, pub title: String, }   #[derive(Debug)] enum ParseError { /// Something went wrong with the HTTP request to the API. Http(reqwest::Error),   /// There was a problem parsing the API response into JSON. Json(json::ParserError),   /// Unexpected JSON format from response UnexpectedFormat, } impl From<json::ParserError> for ParseError { fn from(error: json::ParserError) -> Self { ParseError::Json(error) } }   impl From<reqwest::Error> for ParseError { fn from(error: reqwest::Error) -> Self { ParseError::Http(error) } }     fn construct_query_category(category: &str) -> Url { let mut base_url = Url::parse("http://rosettacode.org/mw/api.php").unwrap(); let cat = format!("Category:{}", category); let query_pairs = vec![("action", "query"), ("format", "json"), ("list", "categorymembers"), ("cmlimit", "500"), ("cmtitle", &cat), ("continue", "")]; base_url.query_pairs_mut().extend_pairs(query_pairs.into_iter()); base_url }   fn construct_query_task_content(task_id: &str) -> Url { let mut base_url = Url::parse("http://rosettacode.org/mw/api.php").unwrap(); let mut query_pairs = vec![("action", "query"), ("format", "json"), ("prop", "revisions"), ("rvprop", "content")]; query_pairs.push(("pageids", task_id)); base_url.query_pairs_mut().extend_pairs(query_pairs.into_iter()); base_url }   fn query_api(url: Url) -> Result<Json, ParseError> { let mut response = try!(reqwest::get(url.as_str())); // Build JSON let mut body = String::new(); response.read_to_string(&mut body).unwrap();   Ok(try!(Json::from_str(&body))) }   fn parse_all_tasks(reply: &Json) -> Result<Vec<Task>, ParseError> { let json_to_task = |json: &Json| -> Result<Task, ParseError> { let page_id: u64 = try!(json.find("pageid") .and_then(|id| id.as_u64()) .ok_or(ParseError::UnexpectedFormat)); let title: &str = try!(json.find("title") .and_then(|title| title.as_string()) .ok_or(ParseError::UnexpectedFormat));   Ok(Task { page_id: page_id, title: title.to_owned(), }) }; let tasks_json = try!(reply.find_path(&["query", "categorymembers"]) .and_then(|tasks| tasks.as_array()) .ok_or(ParseError::UnexpectedFormat));   // Convert into own type tasks_json.iter().map(json_to_task).collect() } fn count_number_examples(task: &Json, task_id: u64) -> Result<u32, ParseError> { let revisions = try!(task.find_path(&["query", "pages", task_id.to_string().as_str(), "revisions"]) .and_then(|content| content.as_array()) .ok_or(ParseError::UnexpectedFormat)); let content = try!(revisions[0] .find("*") .and_then(|content| content.as_string()) .ok_or(ParseError::UnexpectedFormat)); Ok(content.split("=={{header").count() as u32) }   pub fn query_all_tasks() -> Vec<Task> { let query = construct_query_category("Programming_Tasks"); let json: Json = query_api(query).unwrap(); parse_all_tasks(&json).unwrap() }   pub fn query_a_task(task: &Task) -> u32 { let query = construct_query_task_content(&task.page_id.to_string()); let json: Json = query_api(query).unwrap(); count_number_examples(&json, task.page_id).unwrap() }
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#Nanoquery
Nanoquery
$haystack = list() append $haystack "Zig" "Zag" "Wally" "Ronald" "Bush" "Krusty" "Charlie" append $haystack "Bush" "Bozo"   $needles = list() append $needles "Washington" append $needles "Bush"   for ($i = 0) ($i < len($needles)) ($i = $i + 1) $needle = $needles[$i] try // use array lookup syntax to get the index of the needle println $haystack[$needle] + " " + $needle catch println $needle + " is not in haystack" end end for
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary   driver(arg) -- call the test wrapper return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method searchListOfWords(haystack, needle, forwards = (1 == 1), respectCase = (1 == 1)) public static signals Exception   if \respectCase then do needle = needle.upper() haystack = haystack.upper() end if forwards then wp = haystack.wordpos(needle) else wp = haystack.words() - haystack.reverse().wordpos(needle.reverse()) + 1 if wp = 0 then signal Exception('*** Error! "'needle'" not found in list ***')   return wp   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method searchIndexedList(haystack, needle, forwards = (1 == 1), respectCase = (1 == 1)) public static signals Exception if forwards then do strtIx = 1 endIx = haystack[0] incrIx = 1 end else do strtIx = haystack[0] endIx = 1 incrIx = -1 end   wp = 0 loop ix = strtIx to endIx by incrIx if respectCase then if needle == haystack[ix] then wp = ix else nop else if needle.upper() == haystack[ix].upper() then wp = ix else nop if wp > 0 then leave ix end ix if wp = 0 then signal Exception('*** Error! "'needle'" not found in indexed list ***')   return wp   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Test wrapper method driver(arg) public static -- some manifests TRUE_ = (1 == 1); FALSE_ = \TRUE_ FORWARDS_ = TRUE_; BACKWARDS_ = FALSE_ CASERESPECT_ = TRUE_; CASEIGNORE_ = \CASERESPECT_   -- test data needles = ['barley', 'quinoa']   -- a simple list of words. Lists of words are indexable in NetRexx via the word(N) function hayrick = 'Barley maize barley sorghum millet wheat rice rye barley Barley oats flax'   -- a Rexx indexed string made up from the words in hayrick cornstook = '' loop w_ = 1 to hayrick.words() -- populate the indexed string cornstook[0] = w_ cornstook[w_] = hayrick.word(w_) end w_   loop needle over needles do -- process the list of words say 'Searching for "'needle'" in the list "'hayrick'"' idxF = searchListOfWords(hayrick, needle) idxL = searchListOfWords(hayrick, needle, BACKWARDS_) say ' The first occurence of "'needle'" is at index' idxF 'in the list' say ' The last occurence of "'needle'" is at index' idxL 'in the list' idxF = searchListOfWords(hayrick, needle, FORWARDS_, CASEIGNORE_) idxL = searchListOfWords(hayrick, needle, BACKWARDS_, CASEIGNORE_) say ' The first caseless occurence of "'needle'" is at index' idxF 'in the list' say ' The last caseless occurence of "'needle'" is at index' idxL 'in the list' say catch ex = Exception say ' 'ex.getMessage() say end   do -- process the indexed list corn = '' loop ci = 1 to cornstook[0] corn = corn cornstook[ci] end ci say 'Searching for "'needle'" in the indexed list "'corn.space()'"' idxF = searchIndexedList(cornstook, needle) idxL = searchIndexedList(cornstook, needle, BACKWARDS_) say ' The first occurence of "'needle'" is at index' idxF 'in the indexed list' say ' The last occurence of "'needle'" is at index' idxL 'in the indexed list' idxF = searchIndexedList(cornstook, needle, FORWARDS_, CASEIGNORE_) idxL = searchIndexedList(cornstook, needle, BACKWARDS_, CASEIGNORE_) say ' The first caseless occurence of "'needle'" is at index' idxF 'in the indexed list' say ' The last caseless occurence of "'needle'" is at index' idxL 'in the indexed list' say catch ex = Exception say ' 'ex.getMessage() say end end needle   return
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
Rosetta Code/Rank languages by popularity
Rosetta Code/Rank languages by popularity You are encouraged to solve this task according to the task description, using any language you may know. Task Sort the most popular computer programming languages based in number of members in Rosetta Code categories. Sample output on 01 juin 2022 at 14:13 +02 Rank: 1 (1,540 entries) Phix Rank: 2 (1,531 entries) Wren Rank: 3 (1,507 entries) Julia Rank: 4 (1,494 entries) Go Rank: 5 (1,488 entries) Raku Rank: 6 (1,448 entries) Perl Rank: 7 (1,402 entries) Nim Rank: 8 (1,382 entries) Python Rank: 9 (1,204 entries) C Rank: 10 (1,152 entries) REXX ... Notes   Each language typically demonstrates one or two methods of accessing the data:   with web scraping   (via http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)   with the API method   (examples below for Awk, Perl, Ruby, Tcl, etc).   The scraping and API solutions can be separate subsections, see the Tcl example.   Filtering wrong results is optional.   You can check against Special:MostLinkedCategories (if using web scraping) If you use the API, and do elect to filter, you may check your results against this complete, accurate, sortable, wikitable listing of all 869 programming languages, updated periodically, typically weekly.   A complete ranked listing of all   813   languages (from the REXX example) is included here   ──►   output from the REXX program.
#PowerShell
PowerShell
  $get1 = (New-Object Net.WebClient).DownloadString("http://www.rosettacode.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:Programming_Languages&cmlimit=700&format=json") $get2 = (New-Object Net.WebClient).DownloadString("http://www.rosettacode.org/w/index.php?title=Special:Categories&limit=5000") $match1 = [regex]::matches($get1, "`"title`":`"Category:(.+?)`"") $match2 = [regex]::matches($get2, "title=`"Category:([^`"]+?)`">[^<]+?</a>[^\(]*\((\d+) members\)") $r = 1 $langs = $match1 | foreach { $_.Groups[1].Value.Replace("\","") } $res = $match2 | sort -Descending {[Int]$($_.Groups[2].Value)} | foreach { if ($langs.Contains($_.Groups[1].Value)) { [pscustomobject]@{ Rank = "$r" Members = "$($_.Groups[2].Value)" Language = "$($_.Groups[1].Value)" } $r++ } } 1..30 | foreach{ [pscustomobject]@{ "Rank 1..30" = "$($_)" "Members 1..30" = "$($res[$_-1].Members)" "Language 1..30" = "$($res[$_-1].Language)" "Rank 31..60" = "$($_+30)" "Members 31..60" = "$($res[$_+30].Members)" "Language 31..60" = "$($res[$_+30].Language)" } }| Format-Table -AutoSize  
http://rosettacode.org/wiki/Roman_numerals/Encode
Roman numerals/Encode
Task Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero. In Roman numerals: 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC 2008 is written as 2000=MM, 8=VIII; or MMVIII 1666 uses each Roman symbol in descending order: MDCLXVI
#BASIC
BASIC
1 N = 1990: GOSUB 5: PRINT N" = "V$ 2 N = 2008: GOSUB 5: PRINT N" = "V$ 3 N = 1666: GOSUB 5: PRINT N" = "V$; 4 END 5 V = N:V$ = "": FOR I = 0 TO 12: FOR L = 1 TO 0 STEP 0:A = VAL ( MID$ ("1E3900500400100+90+50+40+10+09+05+04+01",I * 3 + 1,3)) 6 L = (V - A) > = 0:V$ = V$ + MID$ ("M.CMD.CDC.XCL.XLX.IXV.IVI",I * 2 + 1,(I - INT (I / 2) * 2 + 1) * L):V = V - A * L: NEXT L,I 7 RETURN
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#BBC_BASIC
BBC BASIC
PRINT "MCMXCIX", FNromandecode("MCMXCIX") PRINT "MMXII", FNromandecode("MMXII") PRINT "MDCLXVI", FNromandecode("MDCLXVI") PRINT "MMMDCCCLXXXVIII", FNromandecode("MMMDCCCLXXXVIII") END   DEF FNromandecode(roman$) LOCAL i%, j%, p%, n%, r%() DIM r%(7) : r%() = 0,1,5,10,50,100,500,1000 FOR i% = LEN(roman$) TO 1 STEP -1 j% = INSTR("IVXLCDM", MID$(roman$,i%,1)) IF j%=0 ERROR 100, "Invalid character" IF j%>=p% n% += r%(j%) ELSE n% -= r%(j%) p% = j% NEXT = n%
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#Erlang
Erlang
% Implemented by Arjun Sunel -module(roots). -export([main/0]). main() -> F = fun(X)->X*X*X - 3*X*X + 2*X end, Step = 0.001, % Using smaller steps will provide more accurate results Start = -1, Stop = 3, Sign = F(Start) > 0, X = Start, while(X, Step, Start, Stop, Sign,F).   while(X, Step, Start, Stop, Sign,F) -> Value = F(X), if Value == 0 -> % We hit a root io:format("Root found at ~p~n",[X]), while(X+Step, Step, Start, Stop, Value > 0,F);   (Value < 0) == Sign -> % We passed a root io:format("Root found near ~p~n",[X]), while(X+Step , Step, Start, Stop, Value > 0,F);   X > Stop -> io:format("") ; true -> while(X+Step, Step, Start, Stop, Value > 0,F) end.  
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#D
D
import std.stdio, std.random, std.string, std.conv, std.array, std.typecons;   enum Choice { rock, paper, scissors }   bool beats(in Choice c1, in Choice c2) pure nothrow @safe @nogc { with (Choice) return (c1 == paper && c2 == rock) || (c1 == scissors && c2 == paper) || (c1 == rock && c2 == scissors); }   Choice genMove(in int r, in int p, in int s) @safe /*@nogc*/ { immutable x = uniform!"[]"(1, r + p + s); if (x < s) return Choice.rock; if (x <= s + r) return Choice.paper; else return Choice.scissors; }   Nullable!To maybeTo(To, From)(From x) pure nothrow @safe { try { return typeof(return)(x.to!To); } catch (ConvException) { return typeof(return)(); } catch (Exception e) { static immutable err = new Error("std.conv.to failure"); throw err; } }   void main() /*@safe*/ { int r = 1, p = 1, s = 1;   while (true) { write("rock, paper or scissors? "); immutable hs = readln.strip.toLower; if (hs.empty) break;   immutable h = hs.maybeTo!Choice; if (h.isNull) { writeln("Wrong input: ", hs); continue; }   immutable c = genMove(r, p, s); writeln("Player: ", h.get, " Computer: ", c);   if (beats(h, c)) writeln("Player wins\n"); else if (beats(c, h)) writeln("Player loses\n"); else writeln("Draw\n");   final switch (h.get) { case Choice.rock: r++; break; case Choice.paper: p++; break; case Choice.scissors: s++; break; } } }
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#Factor
Factor
USING: io kernel literals math.parser math.ranges sequences sequences.extras sequences.repeating splitting.extras splitting.monotonic strings ; IN: rosetta-code.run-length-encoding   CONSTANT: alpha $[ CHAR: A CHAR: Z [a,b] >string ]   : encode ( str -- str ) [ = ] monotonic-split [ [ length number>string ] [ first ] bi suffix ] map concat ;   : decode ( str -- str ) alpha split* [ odd-indices ] [ even-indices [ string>number ] map ] bi [ repeat ] 2map concat ;   "WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW" "12W1B12W3B24W1B14W" [ encode ] [ decode ] bi* [ print ] bi@
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#Maxima
Maxima
solve(1 = x^n, x)
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#MiniScript
MiniScript
  complexRoots = function(n) result = [] for i in range(0, n-1) real = cos(2*pi * i/n) if abs(real) < 1e-6 then real = 0 imag = sin(2*pi * i/n) if abs(imag) < 1e-6 then imag = 0 result.push real + " " + "+" * (imag>=0) + imag + "i" end for return result end function   for i in range(2,5) print i + ": " + complexRoots(i).join(", ") end for
http://rosettacode.org/wiki/Roots_of_unity
Roots of unity
The purpose of this task is to explore working with   complex numbers. Task Given   n,   find the   nth   roots of unity.
#.D0.9C.D0.9A-61.2F52
МК-61/52
П0 0 П1 ИП1 sin ИП1 cos С/П 2 пи * ИП0 / ИП1 + П1 БП 03
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#.D0.9C.D0.9A-61.2F52
МК-61/52
П2 С/П /-/ <-> / 2 / П3 x^2 С/П ИП2 / - Вx <-> КвКор НОП x>=0 28 ИП3 x<0 24 <-> /-/ + / Вx С/П /-/ КвКор ИП3 С/П
http://rosettacode.org/wiki/Roots_of_a_quadratic_function
Roots of a quadratic function
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. Write a program to find the roots of a quadratic equation, i.e., solve the equation a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} . Your program must correctly handle non-real roots, but it need not check that a ≠ 0 {\displaystyle a\neq 0} . The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with a = 1 {\displaystyle a=1} , b = − 10 5 {\displaystyle b=-10^{5}} , and c = 1 {\displaystyle c=1} . (For double-precision floats, set b = − 10 9 {\displaystyle b=-10^{9}} .) Consider the following implementation in Ada: with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;   procedure Quadratic_Equation is type Roots is array (1..2) of Float; function Solve (A, B, C : Float) return Roots is SD : constant Float := sqrt (B**2 - 4.0 * A * C); AA : constant Float := 2.0 * A; begin return ((- B + SD) / AA, (- B - SD) / AA); end Solve;   R : constant Roots := Solve (1.0, -10.0E5, 1.0); begin Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); end Quadratic_Equation; Output: X1 = 1.00000E+06 X2 = 0.00000E+00 As we can see, the second root has lost all significant figures. The right answer is that X2 is about 10 − 6 {\displaystyle 10^{-6}} . The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters q = a c / b {\displaystyle q={\sqrt {ac}}/b} and f = 1 / 2 + 1 − 4 q 2 / 2 {\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2} and the two roots of the quardratic are: − b a f {\displaystyle {\frac {-b}{a}}f} and − c b f {\displaystyle {\frac {-c}{bf}}} Task: do it better. This means that given a = 1 {\displaystyle a=1} , b = − 10 9 {\displaystyle b=-10^{9}} , and c = 1 {\displaystyle c=1} , both of the roots your program returns should be greater than 10 − 11 {\displaystyle 10^{-11}} . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle b = − 10 6 {\displaystyle b=-10^{6}} . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
#Modula-3
Modula-3
MODULE Quad EXPORTS Main;   IMPORT IO, Fmt, Math;   TYPE Roots = ARRAY [1..2] OF LONGREAL;   VAR r: Roots;   PROCEDURE Solve(a, b, c: LONGREAL): Roots = VAR sd: LONGREAL := Math.sqrt(b * b - 4.0D0 * a * c); x: LONGREAL; BEGIN IF b < 0.0D0 THEN x := (-b + sd) / (2.0D0 * a); RETURN Roots{x, c / (a * x)}; ELSE x := (-b - sd) / (2.0D0 * a); RETURN Roots{c / (a * x), x}; END; END Solve;   BEGIN r := Solve(1.0D0, -10.0D5, 1.0D0); IO.Put("X1 = " & Fmt.LongReal(r[1]) & " X2 = " & Fmt.LongReal(r[2]) & "\n"); END Quad.
http://rosettacode.org/wiki/Rot-13
Rot-13
Task Implement a   rot-13   function   (or procedure, class, subroutine, or other "callable" object as appropriate to your programming environment). Optionally wrap this function in a utility program   (like tr,   which acts like a common UNIX utility, performing a line-by-line rot-13 encoding of every line of input contained in each file listed on its command line,   or (if no filenames are passed thereon) acting as a filter on its   "standard input." (A number of UNIX scripting languages and utilities, such as   awk   and   sed   either default to processing files in this way or have command line switches or modules to easily implement these wrapper semantics, e.g.,   Perl   and   Python). The   rot-13   encoding is commonly known from the early days of Usenet "Netnews" as a way of obfuscating text to prevent casual reading of   spoiler   or potentially offensive material. Many news reader and mail user agent programs have built-in rot-13 encoder/decoders or have the ability to feed a message through any external utility script for performing this (or other) actions. The definition of the rot-13 function is to simply replace every letter of the ASCII alphabet with the letter which is "rotated" 13 characters "around" the 26 letter alphabet from its normal cardinal position   (wrapping around from   z   to   a   as necessary). Thus the letters   abc   become   nop   and so on. Technically rot-13 is a   "mono-alphabetic substitution cipher"   with a trivial   "key". A proper implementation should work on upper and lower case letters, preserve case, and pass all non-alphabetic characters in the input stream through without alteration. Related tasks   Caesar cipher   Substitution Cipher   Vigenère Cipher/Cryptanalysis Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Dyalect
Dyalect
func Char.Rot13() { return Char(this.Order() + 13) when this is >= 'a' and <= 'm' or >= 'A' and <= 'M' return Char(this.Order() - 13) when this is >= 'n' and <= 'z' or >= 'N' and <= 'Z' return this }   func String.Rot13() { var cs = [] for c in this { cs.Add(c.Rot13()) } String.Concat(values: cs) }   "ABJURER nowhere".Rot13()
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#R
R
rk4 <- function(f, x0, y0, x1, n) { vx <- double(n + 1) vy <- double(n + 1) vx[1] <- x <- x0 vy[1] <- y <- y0 h <- (x1 - x0)/n for(i in 1:n) { k1 <- h*f(x, y) k2 <- h*f(x + 0.5*h, y + 0.5*k1) k3 <- h*f(x + 0.5*h, y + 0.5*k2) k4 <- h*f(x + h, y + k3) vx[i + 1] <- x <- x0 + i*h vy[i + 1] <- y <- y + (k1 + k2 + k2 + k3 + k3 + k4)/6 } cbind(vx, vy) }   sol <- rk4(function(x, y) x*sqrt(y), 0, 1, 10, 100) cbind(sol, sol[, 2] - (4 + sol[, 1]^2)^2/16)[seq(1, 101, 10), ]   vx vy [1,] 0 1.000000 0.000000e+00 [2,] 1 1.562500 -1.457219e-07 [3,] 2 3.999999 -9.194792e-07 [4,] 3 10.562497 -2.909562e-06 [5,] 4 24.999994 -6.234909e-06 [6,] 5 52.562489 -1.081970e-05 [7,] 6 99.999983 -1.659460e-05 [8,] 7 175.562476 -2.351773e-05 [9,] 8 288.999968 -3.156520e-05 [10,] 9 451.562459 -4.072316e-05 [11,] 10 675.999949 -5.098329e-05
http://rosettacode.org/wiki/Runge-Kutta_method
Runge-Kutta method
Given the example Differential equation: y ′ ( t ) = t × y ( t ) {\displaystyle y'(t)=t\times {\sqrt {y(t)}}} With initial condition: t 0 = 0 {\displaystyle t_{0}=0} and y 0 = y ( t 0 ) = y ( 0 ) = 1 {\displaystyle y_{0}=y(t_{0})=y(0)=1} This equation has an exact solution: y ( t ) = 1 16 ( t 2 + 4 ) 2 {\displaystyle y(t)={\tfrac {1}{16}}(t^{2}+4)^{2}} Task Demonstrate the commonly used explicit   fourth-order Runge–Kutta method   to solve the above differential equation. Solve the given differential equation over the range t = 0 … 10 {\displaystyle t=0\ldots 10} with a step value of δ t = 0.1 {\displaystyle \delta t=0.1} (101 total points, the first being given) Print the calculated values of y {\displaystyle y} at whole numbered t {\displaystyle t} 's ( 0.0 , 1.0 , … 10.0 {\displaystyle 0.0,1.0,\ldots 10.0} ) along with error as compared to the exact solution. Method summary Starting with a given y n {\displaystyle y_{n}} and t n {\displaystyle t_{n}} calculate: δ y 1 = δ t × y ′ ( t n , y n ) {\displaystyle \delta y_{1}=\delta t\times y'(t_{n},y_{n})\quad } δ y 2 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 1 ) {\displaystyle \delta y_{2}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{1})} δ y 3 = δ t × y ′ ( t n + 1 2 δ t , y n + 1 2 δ y 2 ) {\displaystyle \delta y_{3}=\delta t\times y'(t_{n}+{\tfrac {1}{2}}\delta t,y_{n}+{\tfrac {1}{2}}\delta y_{2})} δ y 4 = δ t × y ′ ( t n + δ t , y n + δ y 3 ) {\displaystyle \delta y_{4}=\delta t\times y'(t_{n}+\delta t,y_{n}+\delta y_{3})\quad } then: y n + 1 = y n + 1 6 ( δ y 1 + 2 δ y 2 + 2 δ y 3 + δ y 4 ) {\displaystyle y_{n+1}=y_{n}+{\tfrac {1}{6}}(\delta y_{1}+2\delta y_{2}+2\delta y_{3}+\delta y_{4})} t n + 1 = t n + δ t {\displaystyle t_{n+1}=t_{n}+\delta t\quad }
#Racket
Racket
  (define (RK4 F δt) (λ (t y) (define δy1 (* δt (F t y))) (define δy2 (* δt (F (+ t (* 1/2 δt)) (+ y (* 1/2 δy1))))) (define δy3 (* δt (F (+ t (* 1/2 δt)) (+ y (* 1/2 δy2))))) (define δy4 (* δt (F (+ t δt) (+ y δy1)))) (list (+ t δt) (+ y (* 1/6 (+ δy1 (* 2 δy2) (* 2 δy3) δy4))))))  
http://rosettacode.org/wiki/S-expressions
S-expressions
S-Expressions   are one convenient way to parse and store data. Task Write a simple reader and writer for S-Expressions that handles quoted and unquoted strings, integers and floats. The reader should read a single but nested S-Expression from a string and store it in a suitable datastructure (list, array, etc). Newlines and other whitespace may be ignored unless contained within a quoted string. “()”   inside quoted strings are not interpreted, but treated as part of the string. Handling escaped quotes inside a string is optional;   thus “(foo"bar)” maybe treated as a string “foo"bar”, or as an error. For this, the reader need not recognize “\” for escaping, but should, in addition, recognize numbers if the language has appropriate datatypes. Languages that support it may treat unquoted strings as symbols. Note that with the exception of “()"” (“\” if escaping is supported) and whitespace there are no special characters. Anything else is allowed without quotes. The reader should be able to read the following input ((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)"))) and turn it into a native datastructure. (see the Pike, Python and Ruby implementations for examples of native data structures.) The writer should be able to take the produced list and turn it into a new S-Expression. Strings that don't contain whitespace or parentheses () don't need to be quoted in the resulting S-Expression, but as a simplification, any string may be quoted. Extra Credit Let the writer produce pretty printed output with indenting and line-breaks.
#Scheme
Scheme
(define (sexpr-read port) (define (help port) (let ((char (read-char port))) (cond ((or (eof-object? char) (eq? char #\) )) '()) ((eq? char #\( ) (cons (help port) (help port))) ((char-whitespace? char) (help port)) ((eq? char #\"") (cons (quote-read port) (help port))) (#t (unread-char char port) (cons (string-read port) (help port)))))) ; This is needed because the function conses all parsed sexprs onto something, ; so the top expression is one level too deep. (car (help port)))   (define (quote-read port) (define (help port) (let ((char (read-char port))) (if (or (eof-object? char) (eq? char #\"")) '() (cons char (help port))))) (list->string (help port)))   (define (string-read port) (define (help port) (let ((char (read-char port))) (cond ((or (eof-object? char) (char-whitespace? char)) '()) ((eq? char #\) ) (unread-char char port) '()) (#t (cons char (help port)))))) (list->string (help port)))   (define (format-sexpr expr) (define (help expr pad) (if (list? expr) (begin (format #t "~a(~%" (make-string pad #\tab)) (for-each (lambda (x) (help x (1+ pad))) expr) (format #t "~a)~%" (make-string pad #\tab))) (format #t "~a~a~%" (make-string pad #\tab) expr))) (help expr 0))   (format-sexpr (sexpr-read (open-input-string "((data \"quoted data\" 123 4.5) (data (!@# (4.5) \"(more\" \"data)\")))")))
http://rosettacode.org/wiki/RPG_attributes_generator
RPG attributes generator
RPG   =   Role Playing Game. You're running a tabletop RPG, and your players are creating characters. Each character has six core attributes: strength, dexterity, constitution, intelligence, wisdom, and charisma. One way of generating values for these attributes is to roll four, 6-sided dice (d6) and sum the three highest rolls, discarding the lowest roll. Some players like to assign values to their attributes in the order they're rolled. To ensure generated characters don't put players at a disadvantage, the following requirements must be satisfied: The total of all character attributes must be at least 75. At least two of the attributes must be at least 15. However, this can require a lot of manual dice rolling. A programatic solution would be much faster. Task Write a program that: Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. The order in which each value was generated must be preserved. The total of all 6 values must be at least 75. At least 2 of the values must be 15 or more.
#REXX
REXX
/* REXX Generates 4 random, whole values between 1 and 6. Saves the sum of the 3 largest values. Generates a total of 6 values this way. Displays the total, and all 6 values once finished. */ Do try=1 By 1 ge15=0 sum=0 ol='' Do i=1 To 6 rl='' Do j=1 To 4 rl=rl (random(5)+1) End rl=wordsort(rl) rsum.i=maxsum() If rsum.i>=15 Then ge15=ge15+1 sum=sum+rsum.i ol=ol right(rsum.i,2) End Say ol '->' ge15 sum If ge15>=2 & sum>=75 Then Leave End Say try 'iterations' Say ol '=>' sum Exit   maxsum: procedure Expose rl /********************************************************************** * Comute the sum of the 3 largest values **********************************************************************/ m=0 Do i=2 To 4 m=m+word(rl,i) End Return m   wordsort: Procedure /********************************************************************** * Sort the list of words supplied as argument. Return the sorted list **********************************************************************/ Parse Arg wl wa.='' wa.0=0 Do While wl<>'' Parse Var wl w wl Do i=1 To wa.0 If wa.i>w Then Leave End If i<=wa.0 Then Do Do j=wa.0 To i By -1 ii=j+1 wa.ii=wa.j End End wa.i=w wa.0=wa.0+1 End swl='' Do i=1 To wa.0 swl=swl wa.i End Return strip(swl)
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
Sieve of Eratosthenes
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task. The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers up to a given integer. Task Implement the   Sieve of Eratosthenes   algorithm, with the only allowed optimization that the outer loop can stop at the square root of the limit, and the inner loop may start at the square of the prime just found. That means especially that you shouldn't optimize by using pre-computed wheels, i.e. don't assume you need only to cross out odd numbers (wheel based on 2), numbers equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on low primes. If there's an easy way to add such a wheel based optimization, implement it as an alternative version. Note It is important that the sieve algorithm be the actual algorithm used to find prime numbers for the task. Related tasks   Emirp primes   count in factors   prime decomposition   factors of an integer   extensible prime generator   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#TI-83_BASIC
TI-83 BASIC
Input "Limit:",N N→Dim(L1) For(I,2,N) 1→L1(I) End For(I,2,SQRT(N)) If L1(I)=1 Then For(J,I*I,N,I) 0→L1(J) End End End For(I,2,N) If L1(I)=1 Then Disp i End End ClrList L1
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
Rosetta Code/Count examples
task Essentially, count the number of occurrences of =={{header| on each task page. Output: 100 doors: 20 examples. 99 Bottles of Beer: 29 examples. Abstract type: 10 examples. Total: X examples. For a full output, updated periodically, see Rosetta Code/Count examples/Full list. You'll need to use the Media Wiki API, which you can find out about locally, here, or in Media Wiki's API documentation at, API:Query
#Scala
Scala
import scala.language.postfixOps   object TaskCount extends App { import java.net.{ URL, URLEncoder } import scala.io.Source.fromURL   System.setProperty("http.agent", "*") val allTasksURL = "http://www.rosettacode.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:Programming_Tasks&cmlimit=500&format=xml" val allTasks = xml.parsing.XhtmlParser(fromURL(new URL(allTasksURL)))   val regexExpr = "(?i)==\\{\\{header\\|".r   def oneTaskURL(title: String) = { println(s"Check $title") "http://www.rosettacode.org/w/index.php?title=%s&action=raw" format URLEncoder.encode(title.replace(' ', '_'), "UTF-8") }   def count(title: String) = regexExpr findAllIn fromURL(new URL(oneTaskURL(title)))(io.Codec.UTF8).mkString length   val counts = for (task <- allTasks \\ "cm" \\ "@title" map (_.text)) yield scala.actors.Futures.future((task, count(task)))   counts map (_.apply) map Function.tupled("%s: %d examples." format (_, _)) foreach println println("\nTotal: %d examples." format (counts map (_.apply._2) sum)) }
http://rosettacode.org/wiki/Search_a_list
Search a list
Task[edit] Find the index of a string (needle) in an indexable, ordered collection of strings (haystack). Raise an exception if the needle is missing. If there is more than one occurrence then return the smallest index to the needle. Extra credit Return the largest index to a needle that has multiple occurrences in the haystack. See also Search a list of records
#Nim
Nim
let haystack = ["Zig","Zag","Wally","Ronald","Bush","Krusty","Charlie","Bush","Bozo"]   for needle in ["Bush", "Washington"]: let f = haystack.find(needle) if f >= 0: echo f, " ", needle else: raise newException(ValueError, needle & " not in haystack")
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
Rosetta Code/Rank languages by popularity
Rosetta Code/Rank languages by popularity You are encouraged to solve this task according to the task description, using any language you may know. Task Sort the most popular computer programming languages based in number of members in Rosetta Code categories. Sample output on 01 juin 2022 at 14:13 +02 Rank: 1 (1,540 entries) Phix Rank: 2 (1,531 entries) Wren Rank: 3 (1,507 entries) Julia Rank: 4 (1,494 entries) Go Rank: 5 (1,488 entries) Raku Rank: 6 (1,448 entries) Perl Rank: 7 (1,402 entries) Nim Rank: 8 (1,382 entries) Python Rank: 9 (1,204 entries) C Rank: 10 (1,152 entries) REXX ... Notes   Each language typically demonstrates one or two methods of accessing the data:   with web scraping   (via http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)   with the API method   (examples below for Awk, Perl, Ruby, Tcl, etc).   The scraping and API solutions can be separate subsections, see the Tcl example.   Filtering wrong results is optional.   You can check against Special:MostLinkedCategories (if using web scraping) If you use the API, and do elect to filter, you may check your results against this complete, accurate, sortable, wikitable listing of all 869 programming languages, updated periodically, typically weekly.   A complete ranked listing of all   813   languages (from the REXX example) is included here   ──►   output from the REXX program.
#PureBasic
PureBasic
Procedure handleError(value, msg.s) If value = 0 MessageRequester("Error", msg) End EndIf EndProcedure   Structure languageInfo name.s pageCount.i EndStructure   #JSON_web_data = 0 ;ID# for our parsed JSON web data object   Define NewList languages.languageInfo()   Define blah.s, object_val, allPages_mem, title_mem, page_mem, categoryInfo_mem, continue_mem Define url$, title$, currentPage$, language$, langPageCount, gcmcontinue$, *bufferPtr   handleError(InitNetwork(), "Unable to initialize network functions.")   Repeat url$ = "http://www.rosettacode.org/mw/api.php?action=query" + "&generator=categorymembers&gcmtitle=Category:Programming%20Languages" + "&gcmlimit=500" + "&gcmcontinue=" + gcmcontinue$ + "&prop=categoryinfo&format=json"   *bufferPtr = ReceiveHTTPMemory(url$) handleError(*bufferPtr, "Unable to receive web page data.") If CatchJSON(#JSON_web_data, *bufferPtr, MemorySize(*bufferPtr)) = 0 MessageRequester("Error", JSONErrorMessage() + " at position " + JSONErrorPosition() + " in line " + JSONErrorLine() + " of JSON web Data") End EndIf FreeMemory(*bufferPtr)   object_val = JSONValue(#JSON_web_data) allPages_mem = GetJSONMember(GetJSONMember(object_val, "query"), "pages") If ExamineJSONMembers(allPages_mem) While NextJSONMember(allPages_mem) page_mem = JSONMemberValue(allPages_mem) title_mem = GetJSONMember(page_mem, "title") If title_mem title$ = GetJSONString(title_mem) If Left(title$, 9) = "Category:" language$ = Mid(title$, 10) categoryInfo_mem = GetJSONMember(page_mem, "categoryinfo") If categoryInfo_mem langPageCount = GetJSONInteger(GetJSONMember(categoryInfo_mem, "pages")) Else langPageCount = 0 EndIf   AddElement(languages()) languages()\name = language$ languages()\pageCount = langPageCount EndIf EndIf Wend EndIf   ;check for continue continue_mem = GetJSONMember(object_val, "continue") If continue_mem gcmcontinue$ = GetJSONString(GetJSONMember(continue_mem, "gcmcontinue")) Else gcmcontinue$ = "" EndIf   FreeJSON(#JSON_web_data) Until gcmcontinue$ = ""   ;all data has been aquired, now process and display it SortStructuredList(languages(), #PB_Sort_Descending, OffsetOf(languageInfo\pageCount), #PB_Integer)   If OpenConsole()   If ListSize(languages()) Define i, *startOfGroupPtr.languageInfo, *lastElementPtr, groupSize, rank Define outputSize = 100, outputLine   PrintN(Str(ListSize(languages())) + " languages." + #CRLF$) LastElement(languages()) *lastElementPtr = @languages() ;pointer to last element FirstElement(languages()) *startOfGroupPtr = @languages() ;pointer to first element groupSize = 1 rank = 1   While NextElement(languages()) If languages()\pageCount <> *startOfGroupPtr\pageCount Or *lastElementPtr = @languages() ;display a group of languages at the same rank ChangeCurrentElement(languages(), *startOfGroupPtr) For i = 1 To groupSize ;display output in groups to allow viewing of all entries If outputLine = 0 PrintN(" Rank Tasks Language") PrintN(" ------ ----- --------") EndIf   PrintN(RSet(Str(rank), 6) + ". " + RSet(Str(languages()\pageCount), 4) + " " + languages()\name)   outputLine + 1 If outputLine >= outputSize Print(#CRLF$ + #CRLF$ + "Press ENTER to continue" + #CRLF$): Input() outputLine = 0 EndIf   NextElement(languages()) Next   rank + groupSize groupSize = 1 *startOfGroupPtr = @languages() Else groupSize + 1 EndIf Wend Else PrintN("No language categories found.") EndIf   Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Roman_numerals/Encode
Roman numerals/Encode
Task Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero. In Roman numerals: 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC 2008 is written as 2000=MM, 8=VIII; or MMVIII 1666 uses each Roman symbol in descending order: MDCLXVI
#BASIC256
BASIC256
  print 1666+" = "+convert$(1666) print 2008+" = "+convert$(2008) print 1001+" = "+convert$(1001) print 1999+" = "+convert$(1999)   function convert$(value) convert$="" arabic = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 } roman$ = {"M", "CM", "D","CD", "C","XC","L","XL","X","IX","V","IV","I"} for i = 0 to 12 while value >= arabic[i] convert$ += roman$[i] value = value - arabic[i] end while next i end function  
http://rosettacode.org/wiki/Roman_numerals/Decode
Roman numerals/Decode
Task Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer. You don't need to validate the form of the Roman numeral. Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately, starting with the leftmost decimal digit and skipping any 0s   (zeroes). 1990 is rendered as   MCMXC     (1000 = M,   900 = CM,   90 = XC)     and 2008 is rendered as   MMVIII       (2000 = MM,   8 = VIII). The Roman numeral for 1666,   MDCLXVI,   uses each letter in descending order.
#BCPL
BCPL
get "libhdr"   let roman(s) = valof $( let digit(ch) = valof $( let ds = table 'm','d','c','l','x','v','i' let vs = table 1000,500,100,50,10,5,1 for i=0 to 6 if ds!i=(ch|32) then resultis vs!i resultis 0 $) let acc = 0 for i=1 to s%0 $( let d = digit(s%i) if d=0 then resultis 0 test i<s%0 & d<digit(s%(i+1)) do acc := acc-d or acc := acc+d $) resultis acc $)   let show(s) be writef("%S: %N*N", s, roman(s))   let start() be $( show("MCMXC") show("MDCLXVI") show("MMVII") show("MMXXI") $)
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#ERRE
ERRE
  PROGRAM ROOTS_FUNCTION   !VAR E,X,STP,VALUE,S%,I%,LIMIT%,X1,X2,D   FUNCTION F(X) F=X*X*X-3*X*X+2*X END FUNCTION   BEGIN X=-1 STP=1.0E-6 E=1.0E-9 S%=(F(X)>0)   PRINT("VERSION 1: SIMPLY STEPPING X") WHILE X<3.0 DO VALUE=F(X) IF ABS(VALUE)<E THEN PRINT("ROOT FOUND AT X =";X) S%=NOT S% ELSE IF ((VALUE>0)<>S%) THEN PRINT("ROOT FOUND AT X =";X) S%=NOT S% END IF END IF X=X+STP END WHILE   PRINT PRINT("VERSION 2: SECANT METHOD") X1=-1.0 X2=3.0 E=1.0E-15 I%=1 LIMIT%=300 LOOP IF I%>LIMIT% THEN PRINT("ERROR: FUNCTION NOT CONVERGING") EXIT END IF D=(X2-X1)/(F(X2)-F(X1))*F(X2) IF ABS(D)<E THEN IF D=0 THEN PRINT("EXACT ";) ELSE PRINT("APPROXIMATE ";) END IF PRINT("ROOT FOUND AT X =";X2) EXIT END IF X1=X2 X2=X2-D I%=I%+1 END LOOP END PROGRAM  
http://rosettacode.org/wiki/Roots_of_a_function
Roots of a function
Task Create a program that finds and outputs the roots of a given function, range and (if applicable) step width. The program should identify whether the root is exact or approximate. For this task, use:     ƒ(x)   =   x3 - 3x2 + 2x
#Fortran
Fortran
PROGRAM ROOTS_OF_A_FUNCTION   IMPLICIT NONE   INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(15) REAL(dp) :: f, e, x, step, value LOGICAL :: s   f(x) = x*x*x - 3.0_dp*x*x + 2.0_dp*x   x = -1.0_dp ; step = 1.0e-6_dp ; e = 1.0e-9_dp   s = (f(x) > 0) DO WHILE (x < 3.0) value = f(x) IF(ABS(value) < e) THEN WRITE(*,"(A,F12.9)") "Root found at x =", x s = .NOT. s ELSE IF ((value > 0) .NEQV. s) THEN WRITE(*,"(A,F12.9)") "Root found near x = ", x s = .NOT. s END IF x = x + step END DO   END PROGRAM ROOTS_OF_A_FUNCTION
http://rosettacode.org/wiki/Rock-paper-scissors
Rock-paper-scissors
Task Implement the classic children's game Rock-paper-scissors, as well as a simple predictive   AI   (artificial intelligence)   player. Rock Paper Scissors is a two player game. Each player chooses one of rock, paper or scissors, without knowing the other player's choice. The winner is decided by a set of rules:   Rock beats scissors   Scissors beat paper   Paper beats rock If both players choose the same thing, there is no winner for that round. For this task, the computer will be one of the players. The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent. Extra credit Support additional choices   additional weapons.
#Elixir
Elixir
defmodule Rock_paper_scissors do def play, do: loop([1,1,1])   defp loop([r,p,s]=odds) do IO.gets("What is your move? (R,P,S,Q) ") |> String.upcase |> String.first |> case do "Q" -> IO.puts "Good bye!" human when human in ["R","P","S"] -> IO.puts "Your move is #{play_to_string(human)}." computer = select_play(odds) IO.puts "My move is #{play_to_string(computer)}" case beats(human,computer) do true -> IO.puts "You win!" false -> IO.puts "I win!" _ -> IO.puts "Draw" end case human do "R" -> loop([r+1,p,s]) "P" -> loop([r,p+1,s]) "S" -> loop([r,p,s+1]) end _ -> IO.puts "Invalid play" loop(odds) end end   defp beats("R","S"), do: true defp beats("P","R"), do: true defp beats("S","P"), do: true defp beats(x,x), do: :draw defp beats(_,_), do: false   defp play_to_string("R"), do: "Rock" defp play_to_string("P"), do: "Paper" defp play_to_string("S"), do: "Scissors"   defp select_play([r,p,s]) do n = :rand.uniform(r+p+s) cond do n <= r -> "P" n <= r+p -> "S" true -> "R" end end end   Rock_paper_scissors.play
http://rosettacode.org/wiki/Run-length_encoding
Run-length encoding
Run-length encoding You are encouraged to solve this task according to the task description, using any language you may know. Task Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it. Example Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW Output: 12W1B12W3B24W1B14W Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
#FALSE
FALSE
1^[^$~][$@$@=$[%%\1+\$0~]?~[@.,1\$]?%]#%\., {encode}