task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Run_BASIC
Run BASIC
for i = 1 to 100 ' fill array a(i) = rnd(0) * 100 next i ' ------- sort ------- beg = 2 siz = 100 whatWay = 1 changed = 1 while changed changed = 0 FOR i = beg TO siz STEP whatWay IF a(i-1) > a(i) THEN hold = a(i) a(i) = a(i-1) a(i-1) = hold changed = i end if NEXT i siz = beg beg = changed - whatWay whatWay = 0 - whatWay wend ' ------ print result -------- for i = 1 to 100 print i;" ";a(i) next i end
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Pike
Pike
import Stdio;   int main(){ object con = File(); con->connect("127.0.0.1",256); con->write("hello socket world"); con->close(); }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Prolog
Prolog
start(Port) :- socket('AF_INET',Socket), socket_connect(Socket, 'AF_INET'(localhost,Port), Input, Output), write(Output, 'hello socket world'), flush_output(Output), close(Output), close(Input).
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Rust
Rust
/* add to file Cargo.toml: [dependencies] winsafe = "0.0.8" rand = "0.8.4" */   #![windows_subsystem = "windows"]   use rand::Rng; use std::{cell::RefCell, rc::Rc}; use winsafe::{co, gui, prelude::*, COLORREF, HBRUSH, HPEN, SIZE};   const STEP: i32 = 3; // px, motion per frame. STEP and FPS determine the smoothness and speed of the animation. const FPS: u32 = 90; const CELL: i32 = 21; // px, game grid (logical step). Will be aligned by STEP const FIELD_W: i32 = 20; // width of the square field in CELLs const SNAKE_W: i32 = 20; // px const ROUNDING: SIZE = SIZE::new(SNAKE_W / 2, SNAKE_W / 2);   const RATIO: i32 = CELL / STEP; const START_CELL: i32 = FIELD_W / 2 * RATIO; /// total field width (with overlap for collisions) in STEPs const TW: i32 = (FIELD_W + 2) * RATIO; #[derive(Clone, Copy)] #[repr(i32)] enum Direction { Start = 0, A = -1, D = 1, W = -TW, S = TW, } use Direction::*;   struct Context { wnd: gui::WindowMain, snake: Vec<i32>, // [ids_rect] where id_rect = y * TW + x (where x, y: nSTEPs) id_r: [i32; 6], // ID 6 rectangles to color in next frame (bg, tail, turn, body, food, head) gap: i32, // gap in STEPs between animation and logic cell (negative - remove tail) dir: Direction, ordered_dir: Direction, } impl Context { fn new(wnd: gui::WindowMain, len: usize) -> Self { Self { wnd, snake: vec![START_CELL; len.saturating_sub(RATIO as usize)], id_r: [START_CELL; 6], gap: 0, dir: Start, ordered_dir: S, } } }   pub fn main() { let [bg, tail, turn, body, food, head] = [0usize, 1, 2, 3, 4, 5]; let mut colors = [(0x00, 0xF0, 0xA0); 6]; // color tail, turn, body colors[bg] = (0x00, 0x50, 0x90); colors[food] = (0xFF, 0x50, 0x00); colors[head] = (0xFF, 0xFF, 0x00); let brushes = COLORREF::new_array(&colors).map(|c| HBRUSH::CreateSolidBrush(c).unwrap());   let wnd = gui::WindowMain::new(gui::WindowMainOpts { title: "Snake - Start: Space, then press W-A-S-D".to_string(), size: winsafe::SIZE::new(FIELD_W * RATIO * STEP, FIELD_W * RATIO * STEP), ex_style: co::WS_EX::CLIENTEDGE, class_bg_brush: brushes[bg], ..Default::default() });   let context = Rc::new(RefCell::new(Context::new(wnd.clone(), 0)));   wnd.on().wm_key_down({ let context = Rc::clone(&context); move |k| { let mut ctx = context.borrow_mut(); match (ctx.dir, k.char_code as u8) { (Start, bt @ (b' ' | 113)) => { let len = ctx.snake.len(); // 113 == F2 key *ctx = Context::new(ctx.wnd.clone(), if bt == b' ' { len } else { 0 }); ctx.wnd.hwnd().InvalidateRect(None, true)?; // call .wm_paint() with erase ctx.wnd.hwnd().SetTimer(1, 1000 / FPS, None)?; } (W | S, bt @ (b'A' | b'D')) => ctx.ordered_dir = if bt == b'A' { A } else { D }, (A | D, bt @ (b'S' | b'W')) => ctx.ordered_dir = if bt == b'S' { S } else { W }, _ => (), } Ok(()) } });   wnd.on().wm_timer(1, { let context = Rc::clone(&context); let cells: Vec<i32> = (1..=FIELD_W) .flat_map(|y| (1..=FIELD_W).map(move |x| (y * TW + x) * RATIO)) .collect(); move || { let mut ctx = context.borrow_mut(); let new_h = ctx.id_r[head] + ctx.dir as i32; ctx.id_r[body] = ctx.id_r[head]; ctx.id_r[head] = new_h; if ctx.gap < 0 { ctx.id_r[bg] = ctx.snake.remove(0); ctx.id_r[tail] = ctx.snake[0]; ctx.id_r[turn] = ctx.snake[RATIO as usize / 2]; } ctx.gap -= ctx.gap.signum(); if ctx.gap == 0 { ctx.dir = ctx.ordered_dir; let hw = ctx.wnd.hwnd(); let eat = new_h == ctx.id_r[food]; if !eat && (cells.binary_search(&new_h).is_err() || ctx.snake.contains(&&new_h)) { hw.KillTimer(1)?; hw.SetWindowText(&(hw.GetWindowText()? + " Restart: F2 (with save - Space)"))?; ctx.dir = Start; return Ok(()); } else if eat || ctx.id_r[food] == 0 && ctx.id_r[tail] != START_CELL { let mut snk_cells: Vec<_> = ctx.snake.iter().step_by(RATIO as usize).collect(); if eat && snk_cells.len() == cells.len() - 2 { hw.SetWindowText(&format!("Snake - EATEN ALL: {} !!!", snk_cells.len()))? } else if eat { hw.SetWindowText(&format!("Snake - Eaten: {}.", snk_cells.len()))? } if ctx.id_r[tail] == START_CELL || eat && snk_cells.len() == cells.len() - 2 { ctx.id_r[food] = 0; // hide food if not all of the saved snake has come out or everything is eaten } else if snk_cells.len() + 1 < cells.len() { snk_cells.sort(); ctx.id_r[food] = *(cells.iter()) .filter(|i| **i != new_h && snk_cells.binary_search(i).is_err()) .nth(rand::thread_rng().gen_range(0..cells.len() - snk_cells.len() - 1)) .unwrap(); } } ctx.gap = if eat { RATIO } else { -RATIO } } ctx.snake.push(new_h); ctx.wnd.hwnd().InvalidateRect(None, false)?; // call .wm_paint() without erase Ok(()) } });   wnd.on().wm_paint(move || { let ctx = context.borrow(); let mut ps = winsafe::PAINTSTRUCT::default(); let hdc = ctx.wnd.hwnd().BeginPaint(&mut ps)?; hdc.SelectObjectPen(HPEN::CreatePen(co::PS::NULL, 0, COLORREF::new(0, 0, 0))?)?; for (&id_rect, &brush) in ctx.id_r.iter().zip(&brushes) { hdc.SelectObjectBrush(brush)?; let left = id_rect % TW * STEP - (STEP * RATIO + SNAKE_W) / 2; let top = id_rect / TW * STEP - (STEP * RATIO + SNAKE_W) / 2; hdc.RoundRect( winsafe::RECT { left, top, right: left + SNAKE_W, bottom: top + SNAKE_W, }, ROUNDING, )?; } ctx.wnd.hwnd().EndPaint(&ps); Ok(()) });   if let Err(e) = wnd.run_main(None) { winsafe::HWND::NULL .MessageBox(&e.to_string(), "Uncaught error", co::MB::ICONERROR) .unwrap(); } }
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#JavaScript
JavaScript
(() => { 'use strict';   // isSmith :: Int -> Bool const isSmith = n => { const pfs = primeFactors(n); return (1 < pfs.length || n !== pfs[0]) && ( sumDigits(n) === pfs.reduce( (a, x) => a + sumDigits(x), 0 ) ); };   // TEST -----------------------------------------------   // main :: IO () const main = () => {   // lowSmiths :: [Int] const lowSmiths = enumFromTo(2)(9999) .filter(isSmith);   // lowSmithCount :: Int const lowSmithCount = lowSmiths.length; return [ "Count of Smith Numbers below 10k:", show(lowSmithCount), "\nFirst 15 Smith Numbers:", unwords(take(15)(lowSmiths)), "\nLast 12 Smith Numbers below 10000:", unwords(drop(lowSmithCount - 12)(lowSmiths)) ].join('\n'); };   // SMITH ----------------------------------------------   // primeFactors :: Int -> [Int] const primeFactors = x => { const go = n => { const fs = take(1)( dropWhile(x => 0 != n % x)( enumFromTo(2)( floor(sqrt(n)) ) ) ); return 0 === fs.length ? [n] : fs.concat( go(floor(n / fs[0])) ); }; return go(x); };   // sumDigits :: Int -> Int const sumDigits = n => unfoldl( x => 0 === x ? ( Nothing() ) : Just(quotRem(x)(10)) )(n).reduce((a, x) => a + x, 0);     // GENERIC --------------------------------------------   // Nothing :: Maybe a const Nothing = () => ({ type: 'Maybe', Nothing: true, });   // Just :: a -> Maybe a const Just = x => ({ type: 'Maybe', Nothing: false, Just: x });   // Tuple (,) :: a -> b -> (a, b) const Tuple = a => b => ({ type: 'Tuple', '0': a, '1': b, length: 2 });   // drop :: Int -> [a] -> [a] // drop :: Int -> String -> String const drop = n => xs => xs.slice(n)     // dropWhile :: (a -> Bool) -> [a] -> [a] // dropWhile :: (Char -> Bool) -> String -> String const dropWhile = p => xs => { const lng = xs.length; return 0 < lng ? xs.slice( until(i => i === lng || !p(xs[i]))( i => 1 + i )(0) ) : []; };   // enumFromTo :: Int -> Int -> [Int] const enumFromTo = m => n => Array.from({ length: 1 + n - m }, (_, i) => m + i);   // floor :: Num -> Int const floor = Math.floor;     // quotRem :: Int -> Int -> (Int, Int) const quotRem = m => n => Tuple(Math.floor(m / n))( m % n );   // show :: a -> String const show = x => JSON.stringify(x, null, 2);   // sqrt :: Num -> Num const sqrt = n => (0 <= n) ? Math.sqrt(n) : undefined;   // sum :: [Num] -> Num const sum = xs => xs.reduce((a, x) => a + x, 0);   // take :: Int -> [a] -> [a] // take :: Int -> String -> String const take = n => xs => 'GeneratorFunction' !== xs.constructor.constructor.name ? ( xs.slice(0, n) ) : [].concat.apply([], Array.from({ length: n }, () => { const x = xs.next(); return x.done ? [] : [x.value]; }));     // unfoldl :: (b -> Maybe (b, a)) -> b -> [a] const unfoldl = f => v => { let xr = [v, v], xs = []; while (true) { const mb = f(xr[0]); if (mb.Nothing) { return xs } else { xr = mb.Just; xs = [xr[1]].concat(xs); } } };   // until :: (a -> Bool) -> (a -> a) -> a -> a const until = p => f => x => { let v = x; while (!p(v)) v = f(v); return v; };   // unwords :: [String] -> String const unwords = xs => xs.join(' ');   return main(); })();
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Python
Python
board = [] given = [] start = None   def setup(s): global board, given, start lines = s.splitlines() ncols = len(lines[0].split()) nrows = len(lines) board = [[-1] * (ncols + 2) for _ in xrange(nrows + 2)]   for r, row in enumerate(lines): for c, cell in enumerate(row.split()): if cell == "__" : board[r + 1][c + 1] = 0 continue elif cell == ".": continue # -1 else: val = int(cell) board[r + 1][c + 1] = val given.append(val) if val == 1: start = (r + 1, c + 1) given.sort()   def solve(r, c, n, next=0): if n > given[-1]: return True if board[r][c] and board[r][c] != n: return False if board[r][c] == 0 and given[next] == n: return False   back = 0 if board[r][c] == n: next += 1 back = n   board[r][c] = n for i in xrange(-1, 2): for j in xrange(-1, 2): if solve(r + i, c + j, n + 1, next): return True board[r][c] = back return False   def print_board(): d = {-1: " ", 0: "__"} bmax = max(max(r) for r in board) form = "%" + str(len(str(bmax)) + 1) + "s" for r in board[1:-1]: print "".join(form % d.get(c, str(c)) for c in r[1:-1])   hi = """\ __ 33 35 __ __ . . . __ __ 24 22 __ . . . __ __ __ 21 __ __ . . __ 26 __ 13 40 11 . . 27 __ __ __ 9 __ 1 . . . __ __ 18 __ __ . . . . . __ 7 __ __ . . . . . . 5 __"""   setup(hi) print_board() solve(start[0], start[1], 1) print print_board()
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#ooRexx
ooRexx
  a = .array~new   a~append(.pair~new("06-07", "Ducks")) a~append(.pair~new("00-01", "Avalanche")) a~append(.pair~new("02-03", "Devils")) a~append(.pair~new("01-02", "Red Wings")) a~append(.pair~new("03-04", "Lightning")) a~append(.pair~new("04-05", "lockout")) a~append(.pair~new("05-06", "Hurricanes")) a~append(.pair~new("99-00", "Devils")) a~append(.pair~new("07-08", "Red Wings")) a~append(.pair~new("08-09", "Penguins"))   b = a~copy -- make a copy before sorting b~sort say "Sorted using direct comparison" do pair over b say pair end   c = a~copy -- this uses a custom comparator instead c~sortWith(.paircomparator~new) say say "Sorted using a comparator (inverted)" do pair over c say pair end   -- a name/value mapping class that directly support the sort comparisons ::class pair inherit comparable ::method init expose name value use strict arg name, value   ::attribute name ::attribute value   ::method string expose name value return name "=" value   -- the compareto method is a requirement brought in -- by the ::method compareto expose name use strict arg other return name~compareto(other~name)   -- a comparator that shows an alternate way of sorting ::class pairComparator subclass comparator ::method compare use strict arg left, right -- perform the comparison on the names return -left~name~compareTo(right~name)  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Nanoquery
Nanoquery
% import sort % println sort({2,4,3,1,2}) [1, 2, 2, 3, 4]
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Neko
Neko
/** <doc><h2>Sort integer array, in Neko</h2> <p>Array sort function modified from Haxe codegen with -D neko-source</p> <p>The Neko target emits support code for Haxe basics, sort is included</p> <p>Tectonics:<br />prompt$ nekoc sort.neko<br />prompt$ neko sort</p> </doc> **/   var sort = function(a) { var i = 0; var len = $asize(a); while ( i < len ) { var swap = false; var j = 0; var max = (len - i) - 1; while ( j < max ) { if ( (a[j] - a[j + 1]) > 0 ) { var tmp = a[j + 1]; a[j + 1] = a[j]; a[j] = tmp; swap = true; } j += 1; } if ( $not(swap) ) break;; i += 1; } return a; }   var arr = $array(5,3,2,1,4) $print(arr, "\n")   /* Sorts in place */ sort(arr) $print(arr, "\n")   /* Also returns the sorted array for chaining */ $print(sort($array(3,1,4,1,5,9,2,6,5,3,5,8)), "\n")
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Scala
Scala
import scala.compat.Platform   object SortedDisjointSubList extends App { val (list, subListIndex) = (List(7, 6, 5, 4, 3, 2, 1, 0), List(6, 1, 7))   def sortSubList[T: Ordering](indexList: List[Int], list: List[T]) = { val subListIndex = indexList.sorted val sortedSubListMap = subListIndex.zip(subListIndex.map(list(_)).sorted).toMap   list.zipWithIndex.map { case (value, index) => if (sortedSubListMap.isDefinedAt(index)) sortedSubListMap(index) else value } }   assert(sortSubList(subListIndex, list) == List(7, 0, 5, 4, 3, 2, 1, 6), "Incorrect sort") println(s"List in sorted order.\nSuccessfully completed without errors. [total ${Platform.currentTime - executionStart} ms]") }
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Tcl
Tcl
proc sorter {a b} { set la [string length $a] set lb [string length $b] if {$la < $lb} { return 1 } elseif {$la > $lb} { return -1 } return [string compare [string tolower $a] [string tolower $b]] }   set strings {here are Some sample strings to be sorted} lsort -command sorter $strings ;# ==> strings sample sorted here Some are be to
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Liberty_BASIC
Liberty BASIC
  itemCount = 20 dim item(itemCount) for i = 1 to itemCount item(i) = int(rnd(1) * 100) next i print "Before Sort" for i = 1 to itemCount print item(i) next i print: print counter = itemCount do hasChanged = 0 for i = 1 to counter - 1 if item(i) > item(i + 1) then temp = item(i) item(i) = item(i + 1) item(i + 1) = temp hasChanged = 1 end if next i counter =counter -1 loop while hasChanged = 1 print "After Sort" for i = 1 to itemCount print item(i) next i end  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Smalltalk
Smalltalk
Smalltalk at: #gnomesort put: nil.   "Utility" OrderedCollection extend [ swap: a with: b [ |t| t := self at: a. self at: a put: b. self at: b put: t ] ].   "Gnome sort as block closure" gnomesort := [ :c | |i j| i := 2. j := 3. [ i <= (c size) ] whileTrue: [ (c at: (i-1)) <= (c at: i) ifTrue: [ i := j copy. j := j + 1. ] ifFalse: [ c swap: (i-1) with: i. i := i - 1. i == 1 ifTrue: [ i := j copy. j := j + 1 ] ] ] ].
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Rust
Rust
fn cocktail_sort<T: PartialOrd>(a: &mut [T]) { let len = a.len(); loop { let mut swapped = false; let mut i = 0; while i + 1 < len { if a[i] > a[i + 1] { a.swap(i, i + 1); swapped = true; } i += 1; } if swapped { swapped = false; i = len - 1; while i > 0 { if a[i - 1] > a[i] { a.swap(i - 1, i); swapped = true; } i -= 1; } } if !swapped { break; } } }   fn main() { let mut v = vec![10, 8, 4, 3, 1, 9, 0, 2, 7, 5, 6]; println!("before: {:?}", v); cocktail_sort(&mut v); println!("after: {:?}", v); }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#PureBasic
PureBasic
InitNetwork() ConnectionID = OpenNetworkConnection("localhost", 256) SendNetworkString(ConnectionID, "hello socket world") CloseNetworkConnection(ConnectionID)
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Python
Python
import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(("localhost", 256)) sock.sendall("hello socket world") sock.close()
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Sidef
Sidef
class SnakeGame(w, h) { const readkey = frequire('Term::ReadKey') const ansi = frequire('Term::ANSIColor')   enum (VOID, HEAD, BODY, TAIL, FOOD)   define ( LEFT = [+0, -1], RIGHT = [+0, +1], UP = [-1, +0], DOWN = [+1, +0], )   define BG_COLOR = "on_black" define FOOD_COLOR = ("red" + " " + BG_COLOR) define SNAKE_COLOR = ("bold green" + " " + BG_COLOR) define SLEEP_SEC = 0.02   const ( A_VOID = ansi.colored(' ', BG_COLOR), A_FOOD = ansi.colored('❇', FOOD_COLOR), A_BLOCK = ansi.colored('■', SNAKE_COLOR), )   has dir = LEFT has grid = [[]] has head_pos = [0, 0] has tail_pos = [0, 0]   method init { grid = h.of { w.of { [VOID] } }   head_pos = [h//2, w//2] tail_pos = [head_pos[0], head_pos[1]+1]   grid[head_pos[0]][head_pos[1]] = [HEAD, dir] # head grid[tail_pos[0]][tail_pos[1]] = [TAIL, dir] # tail   self.make_food() }   method make_food { var (food_x, food_y)   do { food_x = w.rand.int food_y = h.rand.int } while (grid[food_y][food_x][0] != VOID)   grid[food_y][food_x][0] = FOOD }   method display { print("\033[H", grid.map { |row| row.map { |cell| given (cell[0]) { when (VOID) { A_VOID } when (FOOD) { A_FOOD } default { A_BLOCK } } }.join('') }.join("\n") ) }   method move { var grew = false   # Move the head var (y, x) = head_pos...   var new_y = (y+dir[0] % h) var new_x = (x+dir[1] % w)   var cell = grid[new_y][new_x]   given (cell[0]) { when (BODY) { die "\nYou just bit your own body!\n" } when (TAIL) { die "\nYou just bit your own tail!\n" } when (FOOD) { grew = true; self.make_food() } }   # Create a new head grid[new_y][new_x] = [HEAD, dir]   # Replace the current head with body grid[y][x] = [BODY, dir]   # Update the head position head_pos = [new_y, new_x]   # Move the tail if (!grew) { var (y, x) = tail_pos...   var pos = grid[y][x][1] var new_y = (y+pos[0] % h) var new_x = (x+pos[1] % w)   grid[y][x][0] = VOID # erase the current tail grid[new_y][new_x][0] = TAIL # create a new tail   tail_pos = [new_y, new_x] } }   method play { STDOUT.autoflush(true) readkey.ReadMode(3)   try { loop { var key while (!defined(key = readkey.ReadLine(-1))) { self.move() self.display() Sys.sleep(SLEEP_SEC) }   given (key) { when ("\e[A") { if (dir != DOWN ) { dir = UP } } when ("\e[B") { if (dir != UP ) { dir = DOWN } } when ("\e[C") { if (dir != LEFT ) { dir = RIGHT } } when ("\e[D") { if (dir != RIGHT) { dir = LEFT } } } } } catch { readkey.ReadMode(0) } } }   var w = `tput cols`.to_i var h = `tput lines`.to_i   SnakeGame(w || 80, h || 24).play
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#jq
jq
def is_prime: . as $n | if ($n < 2) then false elif ($n % 2 == 0) then $n == 2 elif ($n % 3 == 0) then $n == 3 elif ($n % 5 == 0) then $n == 5 elif ($n % 7 == 0) then $n == 7 elif ($n % 11 == 0) then $n == 11 elif ($n % 13 == 0) then $n == 13 elif ($n % 17 == 0) then $n == 17 elif ($n % 19 == 0) then $n == 19 else {i:23} | until( (.i * .i) > $n or ($n % .i == 0); .i += 2) | .i * .i > $n end;   def sum(s): reduce s as $x (null; . + $x);   # emit a stream of the prime factors as per prime factorization def prime_factors: . as $num | def m($p): # emit $p with appropriate multiplicity $num | while( . % $p == 0; . / $p ) | $p ; if (. % 2) == 0 then m(2) else empty end, (range(3; 1 + (./2); 2) | select(($num % .) == 0 and is_prime) | m(.));  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Julia
Julia
# v0.6   function sumdigits(n::Integer) sum = 0 while n > 0 sum += n % 10 n = div(n, 10) end return sum end   using Primes issmith(n::Integer) = !isprime(n) && sumdigits(n) == sum(sumdigits(f) for f in factor(Vector, n))   smithnumbers = collect(n for n in 2:10000 if issmith(n)) println("Smith numbers up to 10000:\n$smithnumbers")
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Racket
Racket
  #lang racket (require math/array)   ;#f = not a legal position, #t = blank position (define board (array #[#[#t 33 35 #t #t #f #f #f] #[#t #t 24 22 #t #f #f #f] #[#t #t #t 21 #t #t #f #f] #[#t 26 #t 13 40 11 #f #f] #[27 #t #t #t 9 #t 1 #f] #[#f #f #t #t 18 #t #t #f] #[#f #f #f #f #t 7 #t #t] #[#f #f #f #f #f #f 5 #t]]))   ;filters elements with the predicate, returning the element and its indices (define (array-indices-of a f) (for*/list ([i (range 0 (vector-ref (array-shape a) 0))] [j (range 0 (vector-ref (array-shape a) 1))] #:when (f (array-ref a (vector i j)))) (list (array-ref a (vector i j)) i j)))   ;returns a list, each element is a list of the number followed by i and j indices ;sorted ascending by number (define (goal-list v) (sort (array-indices-of v number?) (λ (a b) (< (car a) (car b)))))   ;every direction + start position that's on the board (define (legal-moves a i0 j0) (for*/list ([i (range (sub1 i0) (+ i0 2))] [j (range (sub1 j0) (+ j0 2))]  ;cartesian product -1..1 and -1..1, except 0 0 #:when (and (not (and (= i i0) (= j j0)))  ;make sure it's on the board (<= 0 i (sub1 (vector-ref (array-shape a) 0))) (<= 0 j (sub1 (vector-ref (array-shape a) 1)))  ;make sure it's an actual position too (the real board isn't square) (array-ref a (vector i j)))) (cons i j)))   ;find path through array, returning list of coords from start to finish (define (hidato-path a)  ;get starting position as first goal (match-let ([(cons (list n i j) goals) (goal-list a)]) (let hidato ([goals goals] [n n] [i i] [j j] [path '()]) (match goals  ;no more goals, return path ['() (reverse (cons (cons i j) path))]  ;get next goal [(cons (list n-goal i-goal j-goal) _) (let ([move (cons i j)])  ;already visiting a spot or taking too many moves to reach the next goal is no good (cond [(or (member move path) (> n n-goal)) #f]  ;taking the right number of moves to be at the goal square is good  ;so go to the next goal [(and (= n n-goal) (= i i-goal) (= j j-goal)) (hidato (cdr goals) n i j path)]  ;depth first search using every legal move to find next goal [else (ormap (λ (m) (hidato goals (add1 n) (car m) (cdr m) (cons move path))) (legal-moves a i j))]))]))))   ;take a path and insert it into the array (define (put-path a path) (let ([a (array->mutable-array a)]) (for ([n (range 1 (add1 (length path)))] [move path]) (array-set! a (vector (car move) (cdr move)) n)) a))   ;main function (define (hidato board) (put-path board (hidato-path board)))  
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Oz
Oz
declare People = [person(name:joe value:3) person(name:bill value:4) person(name:alice value:20) person(name:harry value:3)]   SortedPeople = {Sort People fun {$ P1 P2} P1.name < P2.name end } in {ForAll SortedPeople Show}
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#PARI.2FGP
PARI/GP
vecsort([["name", "value"],["name2", "value2"]], 1, 2)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Nemerle
Nemerle
using System.Console;   module IntSort { Main() : void { def nums = [1, 5, 3, 7, 2, 8, 3, 9]; def sorted = nums.Sort((x, y) => x.CompareTo(y));   WriteLine(nums); WriteLine(sorted); } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref savelog symbols binary   ia = int[] ia = [ 2, 4, 3, 1, 2, -1, 0, -2 ]   display(ia) Arrays.sort(ia) display(ia)   -- Display results method display(in = int[]) public static   sorted = Rexx('')   loop ix = 0 for in.length sorted = sorted || Rexx(in[ix]).right(4) end ix   say sorted.strip('t')   return
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Scheme
Scheme
(use gauche.sequence) (define num-list '(7 6 5 4 3 2 1 0)) (define indices '(6 1 7)) (define table (alist->hash-table (map cons (sort indices) (sort indices < (lambda (x) (~ num-list x))))))   (map last (sort (map-with-index (lambda (i x) (list (hash-table-get table i i) x)) num-list) < car))
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#TUSCRIPT
TUSCRIPT
  $$ MODE TUSCRIPT setofstrings="this is a set of strings to sort This Is A Set Of Strings To Sort" unsorted=SPLIT (setofstrings,": :") PRINT "1. setofstrings unsorted" index="" LOOP l=unsorted PRINT l length=LENGTH (l),index=APPEND(index,length) ENDLOOP index =DIGIT_INDEX (index) sorted=INDEX_SORT (unsorted,index) PRINT "2. setofstrings sorted" *{sorted}  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Ursala
Ursala
#import std #show+   data = <'this','is','a','list','of','strings','to','be','sorted'>   example = psort<not leql,lleq+ ~* ~&K31K30piK26 letters> data
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Lisaac
Lisaac
Section Header   + name := BUBBLE_SORT;   - external := `#include <time.h>`;   Section Public   - main <- ( + a : ARRAY(INTEGER);   a := ARRAY(INTEGER).create 0 to 100; `srand(time(NULL))`; 0.to 100 do { i : INTEGER; a.put `rand()`:INTEGER to i; };   bubble a;   a.foreach { item : INTEGER; item.print; '\n'.print; }; );   - bubble a : ARRAY(INTEGER) <- ( + lower, size, t : INTEGER; + sorted : BOOLEAN; lower := a.lower; size := a.upper - lower + 1; { sorted := TRUE; size := size - 1; 0.to (size - 1) do { i : INTEGER; (a.item(lower + i + 1) < a.item(lower + i)).if { t := a.item(lower + i + 1); a.put (a.item(lower + i)) to (lower + i + 1); a.put t to (lower + i); sorted := FALSE; }; }; }.do_while {!sorted}; );
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#SNOBOL4
SNOBOL4
*** GNOME SORT ***************************************************************** * GNOME(V) -- gnome sort of the numerical vector V. *** HELPER FUNCTIONS *********************************************************** * IDXMAX(V) -- highest index of vector V. * IDXMIN(V) -- lowest index of vector V. * NUMBER(V) -- succeeds if V is some form of numerical data, fails otherwise. * NUMBERS(V) -- succeeds iff all elements of vector V are numerical * SWAP(A,B) -- swaps the values of two variables (named with .var). * VECTOR(V) -- succeeds iff V is a vector. ******************************************************************************** define('GNOME(V)I,J,K,L,H,T') * define('IDXMAX(V)') define('IDXMIN(V)') define('NUMBER(V)') define('NUMBERS(V)I,M') define('SWAP(SWAP_PARAMETER_VAR_A,SWAP_PARAMETER_VAR_B)') define('VECTOR(V)')  :(GNOME.END)   **************************************** * GNOME FUNCTION * **************************************** GNOME numbers(v)  :F(FRETURN) gnome = copy(v) l = idxmin(v) ; h = idxmax(v) ; i = l + 1 GNOME.LOOP j = i - 1 le(i, l)  :S(GNOME.FORWARD) gt(i,h)  :S(RETURN) le(gnome<j>, gnome<i>)  :S(GNOME.FORWARD) swap(.gnome<j>, .gnome<i>) i = i - 1  :(GNOME.LOOP) GNOME.FORWARD i = i + 1  :(GNOME.LOOP)   **************************************** * HELPER FUNCTIONS * **************************************** IDXMAX vector(v)  :F(FRETURN) prototype(v) ':' span('-' &digits) . idxmax :S(RETURN)F(IDXMAX.NORM) IDXMAX.NORM idxmax = prototype(v)  :(RETURN) **************************************** IDXMIN vector(v)  :F(FRETURN) prototype(v) span('-' &digits) . idxmin ':' :S(RETURN)F(IDXMIN.NORM) IDXMIN.NORM idxmin = 1  :(RETURN) **************************************** NUMBER ident(datatype(v), 'INTEGER')  :S(RETURN) ident(datatype(v), 'REAL')  :S(RETURN)F(FRETURN) **************************************** NUMBERS vector(v)  :F(FRETURN) i = idxmin(v) ; m = idxmax(v) NUMBERS.LOOP le(i,m)  :F(RETURN) number(v<i>)  :F(FRETURN) i = i + 1  :(NUMBERS.LOOP) **************************************** SWAP SWAP = $SWAP_PARAMETER_VAR_A $SWAP_PARAMETER_VAR_A = $SWAP_PARAMETER_VAR_B $SWAP_PARAMETER_VAR_B = SWAP SWAP =  :(RETURN) **************************************** VECTOR ident(v)  :S(FRETURN) prototype(v) ','  :S(FRETURN)F(RETURN) **************************************** GNOME.END
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Scala
Scala
object CocktailSort extends App { def sort(arr: Array[Int]) = { var swapped = false do { def swap(i: Int) { val temp = arr(i) arr(i) = arr(i + 1) arr(i + 1) = temp swapped = true }   swapped = false for (i <- 0 to (arr.length - 2)) if (arr(i) > arr(i + 1)) swap(i)   if (swapped) { swapped = false for (j <- arr.length - 2 to 0 by -1) if (arr(j) > arr(j + 1)) swap(j) //if no elements have been swapped, then the list is sorted } } while (swapped) arr }   println(sort(Array(170, 45, 75, -90, -802, 24, 2, 66)).mkString(", "))   }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#R
R
  s <- make.socket(port = 256) write.socket(s, "hello socket world") close.socket(s)  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Racket
Racket
#lang racket (let-values ([(in out) (tcp-connect "localhost" 256)]) (display "hello socket world\n" out) (close-output-port out))
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Wren
Wren
/* snake.wren */   import "random" for Random import "./dynamic" for Enum, Lower   foreign class Window { construct initscr() {}   foreign nodelay(bf) }   class Ncurses { foreign static cbreak()   foreign static noecho()   foreign static refresh()   foreign static getch()   foreign static mvaddch(y, x, ch)   foreign static endwin() }   class C { foreign static usleep(usec) }   var Dir = Enum.create("Dir", ["N", "E", "S", "W"]) var State = Enum.create("State", ["space", "food", "border"])   var w = 80 var h = 40 var board = List.filled(w * h, 0) var rand = Random.new() var head var dir var quit   // ASCII values var hash = 35 var at = 64 var dot = 46 var spc = 32   /* negative values denote the snake (a negated time-to-live in given cell) */   // reduce a time-to-live, effectively erasing the tail var age = Fn.new { for (i in 0...w * h) { if (board[i] < 0) board[i] = board[i] + 1 } }   // put a piece of food at random empty position var plant = Fn.new { var r while (true) { r = rand.int(w * h) if (board[r] = State.space) break } board[r] = State.food }   // initialize the board, plant a very first food item var start = Fn.new { for (i in 0...w) board[i] = board[i + (h - 1) * w] = State.border for (i in 0...h) board[i * w] = board[i * w + w - 1] = State.border head = (w * (h - 1 - h % 2) / 2).floor // screen center for any h board[head] = -5 dir = Dir.N quit = false plant.call() }   var step = Fn.new { var len = board[head] if (dir == Dir.N) { head = head - w } else if (dir == Dir.S) { head = head + w } else if (dir == Dir.W) { head = head - 1 } else if (dir == Dir.E) { head = head + 1 }   if (board[head] == State.space) { board[head] = len - 1 // keep in mind len is negative age.call() } else if (board[head] == State.food) { board[head] = len - 1 plant.call() } else { quit = true } }   var show = Fn.new { var symbol = [spc, at, dot] for (i in 0...w*h) { Ncurses.mvaddch((i/w).floor, i % w, board[i] < 0 ? hash : symbol[board[i]]) } Ncurses.refresh() }   var initScreen = Fn.new { var win = Window.initscr() Ncurses.cbreak() Ncurses.noecho() win.nodelay(true) }   initScreen.call() start.call() while (true) { show.call() var ch = Ncurses.getch() if (ch == Lower.i) { dir = Dir.N } else if (ch == Lower.j) { dir = Dir.W } else if (ch == Lower.k) { dir = Dir.S } else if (ch == Lower.l) { dir = Dir.E } else if (ch == Lower.q) { quit = true } step.call() C.usleep(300 * 1000) // 300 ms is a reasonable delay if (quit) break } C.usleep(999 * 1000) Ncurses.endwin()
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Kotlin
Kotlin
// version 1.0.6   fun getPrimeFactors(n: Int): MutableList<Int> { val factors = mutableListOf<Int>() if (n < 2) return factors var factor = 2 var nn = n while (true) { if (nn % factor == 0) { factors.add(factor) nn /= factor if (nn == 1) return factors } else if (factor >= 3) factor += 2 else factor = 3 } }   fun sumDigits(n: Int): Int = when { n < 10 -> n else -> { var sum = 0 var nn = n while (nn > 0) { sum += (nn % 10) nn /= 10 } sum } }   fun isSmith(n: Int): Boolean { if (n < 2) return false val factors = getPrimeFactors(n) if (factors.size == 1) return false val primeSum = factors.sumBy { sumDigits(it) } return sumDigits(n) == primeSum }   fun main(args: Array<String>) { println("The Smith numbers below 10000 are:\n") var count = 0 for (i in 2 until 10000) { if (isSmith(i)) { print("%5d".format(i)) count++ } } println("\n\n$count numbers found") }
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Raku
Raku
my @adjacent = [-1, -1], [-1, 0], [-1, 1], [ 0, -1], [ 0, 1], [ 1, -1], [ 1, 0], [ 1, 1];   solveboard q:to/END/; __ 33 35 __ __ .. .. .. __ __ 24 22 __ .. .. .. __ __ __ 21 __ __ .. .. __ 26 __ 13 40 11 .. .. 27 __ __ __ 9 __ 1 .. .. .. __ __ 18 __ __ .. .. .. .. .. __ 7 __ __ .. .. .. .. .. .. 5 __ END   sub solveboard($board) { my $max = +$board.comb(/\w+/); my $width = $max.chars;   my @grid; my @known; my @neigh; my @degree;   @grid = $board.lines.map: -> $line { [ $line.words.map: { /^_/ ?? 0 !! /^\./ ?? Rat !! $_ } ] }   sub neighbors($y,$x --> List) { eager gather for @adjacent { my $y1 = $y + .[0]; my $x1 = $x + .[1]; take [$y1,$x1] if defined @grid[$y1][$x1]; } }   for ^@grid -> $y { for ^@grid[$y] -> $x { if @grid[$y][$x] -> $v { @known[$v] = [$y,$x]; } if @grid[$y][$x].defined { @neigh[$y][$x] = neighbors($y,$x); @degree[$y][$x] = +@neigh[$y][$x]; } } } print "\e[0H\e[0J";   my $tries = 0;   try_fill 1, @known[1];   sub try_fill($v, $coord [$y,$x] --> Bool) { return True if $v > $max; $tries++;   my $old = @grid[$y][$x];   return False if +$old and $old != $v; return False if @known[$v] and @known[$v] !eqv $coord;   @grid[$y][$x] = $v; # conjecture grid value   print "\e[0H"; # show conjectured board for @grid -> $r { say do for @$r { when Rat { ' ' x $width } when 0 { '_' x $width } default { .fmt("%{$width}d") } } }     my @neighbors = @neigh[$y][$x][];   my @degrees; for @neighbors -> \n [$yy,$xx] { my $d = --@degree[$yy][$xx]; # conjecture new degrees push @degrees[$d], n; # and categorize by degree }   for @degrees.grep(*.defined) -> @ties { for @ties.reverse { # reverse works better for this hidato anyway return True if try_fill $v + 1, $_; } }   for @neighbors -> [$yy,$xx] { ++@degree[$yy][$xx]; # undo degree conjectures }   @grid[$y][$x] = $old; # undo grid value conjecture return False; }   say "$tries tries"; }
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Pascal
Pascal
@people = (['joe', 120], ['foo', 31], ['bar', 51]); @people = sort { $a->[0] cmp $b->[0] } @people;
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Nial
Nial
sort >= 9 6 8 7 1 10 = 10 9 8 7 6 1
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Nim
Nim
import algorithm   var a: array[0..8, int] = [2, 3, 5, 8, 4, 1, 6, 9, 7] a.sort(Ascending) for x in a: echo x
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Sidef
Sidef
func disjointSort(values, indices) { values[indices.sort] = [values[indices]].sort... }   var values = [7, 6, 5, 4, 3, 2, 1, 0]; var indices = [6, 1, 7];   disjointSort(values, indices); say values;
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Visual_Basic_.NET
Visual Basic .NET
Imports System   Module Sorting_Using_a_Custom_Comparator Function CustomComparator(ByVal x As String, ByVal y As String) As Integer Dim result As Integer result = y.Length - x.Length If result = 0 Then result = String.Compare(x, y, True) End If Return result End Function   Sub Main() Dim strings As String() = {"test", "Zoom", "strings", "a"}   Array.Sort(strings, New Comparison(Of String)(AddressOf CustomComparator)) End Sub End Module
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Lua
Lua
  function bubbleSort(A) local itemCount=#A local hasChanged repeat hasChanged = false itemCount=itemCount - 1 for i = 1, itemCount do if A[i] > A[i + 1] then A[i], A[i + 1] = A[i + 1], A[i] hasChanged = true end end until hasChanged == false end  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Swift
Swift
func gnomeSort<T: Comparable>(_ a: inout [T]) { var i = 1 var j = 2 while i < a.count { if a[i - 1] <= a[i] { i = j j += 1 } else { a.swapAt(i - 1, i) i -= 1 if i == 0 { i = j j += 1 } } } }   var array = [10, 8, 4, 3, 1, 9, 0, 2, 7, 5, 6] print("before: \(array)") gnomeSort(&array) print(" after: \(array)")
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Scilab
Scilab
function varargout=cocktailSort(list_in) swapped = %T; while swapped swapped = %F; for i = [1:length(list_in)-1] if list_in(i) > list_in(i+1) then list_in([i i+1])=list_in([i+1 i]); swapped = %T; end end if ~swapped break end swapped = %F; for i = [length(list_in)-1:-1:1] if list_in(i) > list_in(i+1) list_in([i i+1]) = list_in([i+1 i]) swapped = %T; end end end varargout=list(list_in) endfunction   disp(cocktailSort([6 3 7 8 5 1 2 4 9]));
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Raku
Raku
my $host = '127.0.0.1'; my $port = 256;   my $client = IO::Socket::INET.new(:$host, :$port); $client.print( 'hello socket world' ); $client.close;
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Rhope
Rhope
Socket Send(0,0) |: [New@Net Client["localhost",256]]Put String["hello socket world"] :|
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#XPL0
XPL0
def Width=40, Height=25-1, \playing area including border StartLength = 10, \starting length of snake including head Morsels = 10; \number of food items constantly offered int Heading; \direction snake is heading def Up, Down, Left, Right; int Length, \current length of snake including head Score; \number of food items eaten char SnakeX(10000), \location of each segment including head SnakeY(10000), \ample room to grow FoodX(Morsels), FoodY(Morsels); \location of each food item def Black, Blue, Green, Cyan, Red, Magenta, Brown, White, \attribute colors Gray, LBlue, LGreen, LCyan, LRed, LMagenta, Yellow, BWhite; \EGA palette   proc PlaceFood(N); \Place Nth food item in playing area int N; [FoodX(N):= Ran(Width-3) + 1; \pick random location inside borders FoodY(N):= Ran(Height-3) + 1; Cursor(FoodX(N), FoodY(N)); \show food Attrib(Red<<4+LRed); ChOut(6, ^@); ]; \PlaceFood     int X, Y, I, C; [SetVid($01); \set 40x25 text mode ShowCursor(false); \turn off flashing cursor   Attrib(Blue<<4+LBlue); \show borders Cursor(0, 0); for X:= 0 to Width-1 do ChOut(6, ^+); Cursor(0, Height-1); for X:= 0 to Width-1 do ChOut(6, ^+); for Y:= 0 to Height-1 do [Cursor(0, Y); ChOut(6, ^+); Cursor(Width-1, Y); ChOut(6, ^+); ]; Attrib(Black<<4+White); \show initial score Cursor(0, 24); Text(6, "Score: 0"); Score:= 0;   SnakeX(0):= Width/2; \start snake head at center SnakeY(0):= Height/2; Heading:= Left; Length:= StartLength; for I:= 1 to Length-1 do \segments follow head to the right [SnakeX(I):= SnakeX(I-1) + 1; SnakeY(I):= SnakeY(I-1); ]; for I:= 0 to Morsels-1 do PlaceFood(I); \sow some tasty food   \Continuously move snake loop \-------------------------------------------------------------------------- [Attrib(Black<<4+White); \remove tail-end segment Cursor(SnakeX(Length-1), SnakeY(Length-1)); ChOut(6, ^ ); Attrib(Green<<4+Yellow); \add segment at head location Cursor(SnakeX(0), SnakeY(0)); ChOut(6, ^#);   \Shift coordinates toward tail (+1 in case a segment gets added) for I:= Length downto 1 do \segment behind head gets head's coords [SnakeX(I):= SnakeX(I-1); SnakeY(I):= SnakeY(I-1); ]; if ChkKey then \key hit--get new movement direction [repeat C:= ChIn(1) until C # 0; \remove arrow keys' prefix byte case C of $1B: exit; \Escape, and scan codes for arrow keys $48: if Heading # Down then Heading:= Up; $50: if Heading # Up then Heading:= Down; $4B: if Heading # Right then Heading:= Left; $4D: if Heading # Left then Heading:= Right other []; \ignore any other keystrokes ]; case Heading of \move head to its new location Up: SnakeY(0):= SnakeY(0)-1; Down: SnakeY(0):= SnakeY(0)+1; Left: SnakeX(0):= SnakeX(0)-1; Right:SnakeX(0):= SnakeX(0)+1 other []; Cursor(SnakeX(0), SnakeY(0)); \show head at its new location ChOut(6, ^8);   for I:= 0 to Morsels-1 do if SnakeX(0)=FoodX(I) & SnakeY(0)=FoodY(I) then [Score:= Score+1; \ate a morsel Attrib(Black<<4+White); Cursor(7, 24); IntOut(6, Score*10); PlaceFood(I); \replenish morsel Length:= Length+1; \grow snake one segment I:= Morsels; \over eating can be bad--quit for loop Sound(1, 1, 1500); \BURP! Sound(1, 1, 1000); ]; if I = Morsels then Sound(0, 2, 1); \no sound adds delay of 2/18th second   if SnakeX(0)=0 or SnakeX(0)=Width-1 or SnakeY(0)=0 or SnakeY(0)=Height-1 then quit; \snake hit border--game over for I:= 1 to Length-1 do if SnakeX(0)=SnakeX(I) & SnakeY(0)=SnakeY(I) then quit; \snake bit itself--game over ]; \loop ----------------------------------------------------------------------- for I:= 1 to 8 do Sound(1, 1, 4000*I); \death dirge Sound(0, 36, 1); \pause 2 seconds to see result OpenI(1); \flush any pending keystrokes ]
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Lua
Lua
-- Returns a boolean indicating whether n is prime function isPrime (n) if n < 2 then return false end if n < 4 then return true end if n % 2 == 0 then return false end for d = 3, math.sqrt(n), 2 do if n % d == 0 then return false end end return true end   -- Returns a table of the prime factors of n function primeFactors (n) local pfacs, divisor = {}, 1 if n < 1 then return pfacs end while not isPrime(n) do while not isPrime(divisor) do divisor = divisor + 1 end while n % divisor == 0 do n = n / divisor table.insert(pfacs, divisor) end divisor = divisor + 1 if n == 1 then return pfacs end end table.insert(pfacs, n) return pfacs end   -- Returns the sum of the digits of n function sumDigits (n) local sum, nStr = 0, tostring(n) for digit = 1, nStr:len() do sum = sum + tonumber(nStr:sub(digit, digit)) end return sum end   -- Returns a boolean indicating whether n is a Smith number function isSmith (n) if isPrime(n) then return false end local sumFacs = 0 for _, v in ipairs(primeFactors(n)) do sumFacs = sumFacs + sumDigits(v) end return sumFacs == sumDigits(n) end   -- Main procedure for n = 1, 10000 do if isSmith(n) then io.write(n .. "\t") end end
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#REXX
REXX
/*REXX program solves a Numbrix (R) puzzle, it also displays the puzzle and solution. */ maxR=0; maxC=0; maxX=0; minR=9e9; minC=9e9; minX=9e9; cells=0; @.= parse arg xxx; PZ='Hidato puzzle' /*get the cell definitions from the CL.*/ xxx=translate(xxx, , "/\;:_", ',') /*also allow other characters as comma.*/   do while xxx\=''; parse var xxx r c marks ',' xxx do while marks\=''; [email protected] parse var marks x marks if datatype(x,'N') then do; x=x/1 /*normalize X*/ if x<0 then PZ= 'Numbrix puzzle' x=abs(x) /*use │x│ */ end minR=min(minR,r); maxR=max(maxR,r); minC=min(minC,c); maxC=max(maxC,c) if x==1 then do;  !r=r;  !c=c; end /*the START cell. */ if _\=='' then call err "cell at" r c 'is already occupied with:' _ @.r.c=x; c=c+1; cells=cells+1 /*assign a mark. */ if x==. then iterate /*is a hole? Skip*/ if \datatype(x,'W') then call err 'illegal marker specified:' x minX=min(minX,x); maxX=max(maxX,x) /*min and max X. */ end /*while marks¬='' */ end /*while xxx ¬='' */ call show /* [↓] is used for making fast moves. */ Nr = '0 1 0 -1 -1 1 1 -1' /*possible row for the next move. */ Nc = '1 0 -1 0 1 -1 1 -1' /* " column " " " " */ pMoves=words(Nr) -4*(left(PZ,1)=='N') /*is this to be a Numbrix puzzle ? */ do i=1 for pMoves; Nr.i=word(Nr,i); Nc.i=word(Nc,i); end /*for fast moves. */ if \next(2,!r,!c) then call err 'No solution possible for this' PZ "puzzle." say 'A solution for the' PZ "exists."; say; call show exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ err: say; say '***error*** (from' PZ"): " arg(1); say; exit 13 /*──────────────────────────────────────────────────────────────────────────────────────*/ next: procedure expose @. Nr. Nc. cells pMoves; parse arg #,r,c; ##=#+1 do t=1 for pMoves /* [↓] try some moves. */ parse value r+Nr.t c+Nc.t with nr nc /*next move coördinates.*/ if @.nr.nc==. then do; @.nr.nc=# /*let's try this move. */ if #==cells then leave /*is this the last move?*/ if next(##,nr,nc) then return 1 @.nr.nc=. /*undo the above move. */ iterate /*go & try another move.*/ end if @.nr.nc==# then do /*this a fill-in move ? */ if #==cells then return 1 /*this is the last move.*/ if next(##,nr,nc) then return 1 /*a fill-in move. */ end end /*t*/ return 0 /*this ain't working. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: if maxR<1 | maxC<1 then call err 'no legal cell was specified.' if minX<1 then call err 'no 1 was specified for the puzzle start' w=max(2,length(cells)); do r=maxR to minR by -1; _= do c=minC to maxC; _=_ right(@.r.c,w); end /*c*/ say _ end /*r*/ say; return
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Perl
Perl
@people = (['joe', 120], ['foo', 31], ['bar', 51]); @people = sort { $a->[0] cmp $b->[0] } @people;
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Phix
Phix
sequence s = {{"grass","green"},{"snow","white"},{"sky","blue"},{"cherry","red"},{0,1.2},{3.4,-1}} ?sort(s) function compare_col2(sequence a, b) return compare(a[2],b[2]) end function ?custom_sort(compare_col2,s) ?sort_columns(s,{2}) -- 0.8.0+, same result as above w/o needing an explicit comparison routine
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Niue
Niue
2 6 1 0 3 8 sort .s 0 1 2 3 6 8
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Objeck
Objeck
bundle Default { class Sort { function : Main(args : System.String[]) ~ Nil { nums := Structure.IntVector->New([2,4,3,1,2]); nums->Sort(); } } }
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Standard_ML
Standard ML
functor SortDisjointFn (A : MONO_ARRAY) : sig val sort : (A.elem * A.elem -> order) -> (A.array * int array) -> unit end = struct   structure DisjointView : MONO_ARRAY = struct type elem = A.elem type array = A.array * int array fun length (a, s) = Array.length s fun sub ((a, s), i) = A.sub (a, Array.sub (s, i)) fun update ((a, s), i, x) = A.update (a, Array.sub (s, i), x)   (* dummy implementations for not-needed functions *) type vector = unit val maxLen = Array.maxLen fun array _ = raise Domain fun fromList _ = raise Domain fun tabulate _ = raise Domain fun vector _ = raise Domain fun copy _ = raise Domain fun copyVec _ = raise Domain fun appi _ = raise Domain fun app _ = raise Domain fun modifyi _ = raise Domain fun modify _ = raise Domain fun foldli _ = raise Domain fun foldl _ = raise Domain fun foldri _ = raise Domain fun foldr _ = raise Domain fun findi _ = raise Domain fun find _ = raise Domain fun exists _ = raise Domain fun all _ = raise Domain fun collate _ = raise Domain end   structure DisjointViewSort = ArrayQSortFn (DisjointView)   fun sort cmp (arr, indices) = ( ArrayQSort.sort Int.compare indices; DisjointViewSort.sort cmp (arr, indices) ) end
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Swift
Swift
struct DisjointSublistView<T> : MutableCollectionType { let array : UnsafeMutablePointer<T> let indexes : [Int]   subscript (position: Int) -> T { get { return array[indexes[position]] } set { array[indexes[position]] = newValue } } var startIndex : Int { return 0 } var endIndex : Int { return indexes.count } func generate() -> IndexingGenerator<DisjointSublistView<T>> { return IndexingGenerator(self) } }   func sortDisjointSublist<T : Comparable>(inout array: [T], indexes: [Int]) { var d = DisjointSublistView(array: &array, indexes: sorted(indexes)) sort(&d) }   var a = [7, 6, 5, 4, 3, 2, 1, 0] let ind = [6, 1, 7] sortDisjointSublist(&a, ind) println(a)
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Wren
Wren
import "/sort" for Cmp, Sort   var cmp = Fn.new { |s, t| if (s.count < t.count) return 1 if (s.count > t.count) return -1 return Cmp.insensitive.call(s, t) }   var strings = ["Here", "are", "some", "sample", "strings", "to", "be", "sorted"] System.print("Unsorted: %(strings)") Sort.insertion(strings, cmp) System.print("Sorted  : %(strings)")
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#zkl
zkl
s:=T("Cat","apple","Adam","zero","Xmas","quit","Level","add","Actor","base","butter"); r:=s.sort(fcn(a,b){ an,bn := a.len(),b.len(); if(an==bn)(a.toLower() < b.toLower()) else (an > bn) }); r.pump(Console.println);
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Lucid
Lucid
bsort(a) = if iseod(first a) then a else follow(bsort(allbutlast(b)),last(b)) fi where b = bubble(a); bubble(a) = smaller(max, next a) where max = first a fby larger(max, next a); larger(x,y) = if iseod(y) then y elseif x end; follow(x,y) = if xdone then y upon xdone else x fi where xdone = iseod x fby xdone or iseod x; end; last(x) = (x asa iseod next x) fby eod; allbutlast(x) = if not iseod(next x) then x else eod fi; end
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Tcl
Tcl
package require Tcl 8.5 package require struct::list   proc gnomesort {a} { set i 1 set j 2 set size [llength $a] while {$i < $size} { if {[lindex $a [expr {$i - 1}]] <= [lindex $a $i]} { set i $j incr j } else { struct::list swap a [expr {$i - 1}] $i incr i -1 if {$i == 0} { set i $j incr j } } } return $a }   puts [gnomesort {8 6 4 2 1 3 5 7 9}] ;# => 1 2 3 4 5 6 7 8 9
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Seed7
Seed7
const proc: cocktailSort (inout array elemType: arr) is func local var boolean: swapped is FALSE; var integer: i is 0; var elemType: help is elemType.value; begin repeat swapped := FALSE; for i range 1 to length(arr) - 1 do if arr[i] > arr[i + 1] then help := arr[i]; arr[i] := arr[i + 1]; arr[i + 1] := help; swapped := TRUE; end if; end for; if swapped then swapped := FALSE; for i range length(arr) - 1 downto 1 do if arr[i] > arr[i + 1] then help := arr[i]; arr[i] := arr[i + 1]; arr[i + 1] := help; swapped := TRUE; end if; end for; end if; until not swapped; end func;
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Ring
Ring
  Load "guilib.ring"   new qApp { oClient = new Client { client() } exec() }   Class Client   win1 oTcpSocket   func client   win1 = new qwidget()   new qpushbutton(win1) { setgeometry(50,50,100,30) settext("connect") setclickevent("oClient.Connect()") }   win1 { setwindowtitle("client") setgeometry(10,100,400,400) show() }   func connect oTcpSocket = new qTcpSocket(win1) { setconnectedevent("oClient.pConnected()") connecttohost("127.0.0.1",256,3,0) waitforconnected(5000) }   func pConnected cStr = "hello socket world" write(cStr,len(cStr)) flush() waitforbyteswritten(300000) close()  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Ruby
Ruby
require 'socket' sock = TCPSocket.open("localhost", 256) sock.write("hello socket world") sock.close
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { Set Fast ! Form 80, 40 Refresh Function Smith(max=10000) { Function SumDigit(a$) { def long sum For i=1 to len(a$) {sum+=val(mid$(a$,i, 1)) } =sum } x=max \\ Euler's Sieve Dim r(x+1)=1 k=2 k2=k**2 While k2<x { For m=k2 to x step k {r(m)=0} Repeat { k++ : k2=k**2 } Until r(k)=1 or k2>x } r(0)=0 smith=0 smith2=0 lastI=0 inventory smithnumbers Top=max div 100 c=4 For i=4 to max { if c> top then print over $(0,6), ceil(i/max*100);"%" : Refresh : c=1 c++ if r(i)=0 then { smith=sumdigit(str$(i)) : lastI=i smith2=0 do { ii=int(sqrt(i))+1 do { ii-- : while r(ii)<>1 {ii--} } until i mod ii=0 if ii<2 then smith2+=sumdigit(str$(i)):exit smith3=sumdigit(str$(ii)) do { smith2+=smith3 i=i div ii : if ii<2 or i<2 then exit } until i mod ii<>0 or smith2>smith } until i<2 or smith2>smith If smith=smith2 then Append smithnumbers, lastI } } =smithnumbers } const MaxNumbers=10000 numbers= Smith(MaxNumbers) Print Print $(,5), numbers Print Print format$(" {0} smith numbers found <= {1}", Len(numbers), MaxNumbers) } Checkit  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#MAD
MAD
NORMAL MODE IS INTEGER PRINT COMMENT$ SMITH NUMBERS$   R GENERATE PRIMES UP TO 10,000 USING SIEVE METHOD BOOLEAN SIEVE DIMENSION SIEVE(10000) DIMENSION PRIMES(1500)   THROUGH SET, FOR I=2, 1, I.G.10000 SET SIEVE(I) = 1B   THROUGH NXPRIM, FOR P=2, 1, P.G.100 WHENEVER SIEVE(P) THROUGH MARK, FOR I=P*P, P, I.G.10000 MARK SIEVE(I) = 0B NXPRIM END OF CONDITIONAL   NPRIMS = 0 THROUGH CNTPRM, FOR P=2, 1, P.G.10000 WHENEVER SIEVE(P) PRIMES(NPRIMS) = P NPRIMS = NPRIMS + 1 CNTPRM END OF CONDITIONAL   R CHECK SMITH NUMBERS THROUGH SMITH, FOR I=4, 1, I.GE.10000 WHENEVER .NOT. SIEVE(I) K = I PFSUM = 0 THROUGH FACSUM, FOR P=0, 1, P.GE.NPRIMS .OR. K.E.0 L = PRIMES(P) FACDIV WHENEVER K/L*L.E.K .AND. K.NE.0 PFSUM = PFSUM + DGTSUM.(L) K = K/L TRANSFER TO FACDIV FACSUM END OF CONDITIONAL WHENEVER PFSUM.E.DGTSUM.(I), PRINT FORMAT NUMFMT,I SMITH END OF CONDITIONAL   VECTOR VALUES NUMFMT = $I5*$   R GET SUM OF DIGITS OF N INTERNAL FUNCTION(N) ENTRY TO DGTSUM. DSUM = 0 DNUM = N LOOP WHENEVER DNUM.E.0, FUNCTION RETURN DSUM DSUM = DSUM + DNUM-DNUM/10*10 DNUM = DNUM/10 TRANSFER TO LOOP END OF FUNCTION END OF PROGRAM
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Ruby
Ruby
# Solve a Hidato Puzzle # class Hidato Cell = Struct.new(:value, :used, :adj) ADJUST = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]]   def initialize(board, pout=true) @board = [] board.each_line do |line| @board << line.split.map{|n| Cell[Integer(n), false] rescue nil} + [nil] end @board << [] # frame (Sentinel value : nil) @board.each_with_index do |row, x| row.each_with_index do |cell, y| if cell @sx, @sy = x, y if cell.value==1 # start position cell.adj = ADJUST.map{|dx,dy| [x+dx,y+dy]}.select{|xx,yy| @board[xx][yy]} end end end @xmax = @board.size - 1 @ymax = @board.map(&:size).max - 1 @end = @board.flatten.compact.size puts to_s('Problem:') if pout end   def solve @zbl = Array.new(@end+1, false) @board.flatten.compact.each{|cell| @zbl[cell.value] = true} puts (try(@board[@sx][@sy], 1) ? to_s('Solution:') : "No solution") end   def try(cell, seq_num) return true if seq_num > @end return false if cell.used value = cell.value return false if value > 0 and value != seq_num return false if value == 0 and @zbl[seq_num] cell.used = true cell.adj.each do |x, y| if try(@board[x][y], seq_num+1) cell.value = seq_num return true end end cell.used = false end   def to_s(msg=nil) str = (0...@xmax).map do |x| (0...@ymax).map{|y| "%3s" % ((c=@board[x][y]) ? c.value : c)}.join end (msg ? [msg] : []) + str + [""] end end
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Phixmonti
Phixmonti
include ..\Utilitys.pmt   def minverse reverse enddef   getid minverse var f   ( ( "grass" "green" ) ( "snow" "white" ) ( "sky" "blue" ) ( "cherry" "red" ) ( 0 1.2 ) ( 3.4 -1 ) ) dup   sort print nl   /# sorted by second component #/ f map sort f map print
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#PicoLisp
PicoLisp
: (sort '(("def" 456) ("abc" 789) ("ghi" 123))) -> (("abc" 789) ("def" 456) ("ghi" 123))
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Objective-C
Objective-C
NSArray *nums = @[@2, @4, @3, @1, @2]; NSArray *sorted = [nums sortedArrayUsingSelector:@selector(compare:)];
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#OCaml
OCaml
let nums = [|2; 4; 3; 1; 2|] Array.sort compare nums
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Tcl
Tcl
package require Tcl 8.5 proc disjointSort {values indices args} { # Ensure that we have a unique list of integers, in order # We assume there are no end-relative indices set indices [lsort -integer -unique $indices] # Map from those indices to the values to sort set selected {} foreach i $indices {lappend selected [lindex $values $i]} # Sort the values (using any extra options) and write back to the list foreach i $indices v [lsort {*}$args $selected] { lset values $i $v } # The updated list is the result return $values }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#M2000_Interpreter
M2000 Interpreter
  Module Bubble { function bubblesort { dim a() \\ [] is a stack object, interpreter pass current stack pointer, and set a new stack for current stack \\ array( stackobject ) get a stack object and return an array a()=array([]) itemcount=len(a()) repeat { haschange=false if itemcount>1 then { for index=0 to itemcount-2 { if a(index)>a(index+1) then swap a(index), a(index+1) : haschange=true } } itemcount-- } until not haschange =a() } \\ function can take parameters Print bubblesort(5,3,2,7,6,1) A=(2, 10, 17, 13, 20, 14, 3, 17, 16, 16)   \\ !A copy values from array A to function stack B=bubblesort(!A) Print Len(A)=10 Print B \\ Print array in descending order k=each(b, -1, 1) While k { Print Array(k), } \\ sort two arrays in one Print BubbleSort(!A, !B) \\ We can use a stack object, and values pop from object Z=Stack:=2, 10, 17, 13, 20, 14, 3, 17, 16, 16 Print Len(Z)=10 Def GetStack(x)=Stack(x) Z1=GetStack(BubbleSort(!Z)) Print Type$(Z1)="mStiva" Print Z1 Print Len(Z1) Print Len(Z)=0 ' now Z is empty } Bubble  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#TI-83_BASIC
TI-83 BASIC
:1→P :L1→L2 :While P<dim(L2) :If PP=1 :Then :P+1→P :Else :If L2(P)≥L2(P-1) :Then :P+1→P :Else :L2(P)→Q :L2(P-1)→L2(P) :Q→L2(P-1) :P-1→P :End :End :End :If L2(dim(L2))<L2(dim(L2)-1) :Then :L2(dim(L2))→Q :L2(dim(L2)-1)→L2(dim(L2)) :Q→L2(dim(L2)-1) :End :DelVar P :DelVar Q :Return
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Sidef
Sidef
func cocktailsort(a) { var swapped = false func cmpsw(i) { if (a[i] > a[i+1]) { a[i, i+1] = a[i+1, i] swapped = true } } var max = a.end do { {|i| cmpsw(i) } << ^max swapped.not! && break {|i| cmpsw(max-i) } << 1..max } while (swapped) return a }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Rust
Rust
use std::io::prelude::*; use std::net::TcpStream;   fn main() { // Open a tcp socket connecting to 127.0.0.1:256, no error handling (unwrap) let mut my_stream = TcpStream::connect("127.0.0.1:256").unwrap();   // Write 'hello socket world' to the stream, ignoring the result of write let _ = my_stream.write(b"hello socket world");   } // <- my_stream's drop function gets called, which closes the socket
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Scala
Scala
import java.net.Socket   object sendSocketData {   def sendData(host: String, msg: String) { val sock = new Socket(host, 256) sock.getOutputStream().write(msg.getBytes()) sock.getOutputStream().flush() sock.close() }   sendData("localhost", "hello socket world") }
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Maple
Maple
isSmith := proc(n::posint) local factors, sumofDigits, sumofFactorDigits, x; if isprime(n) then return false; else sumofDigits := add(x, x = convert(n, base, 10)); sumofFactorDigits := add(map(x -> op(convert(x, base, 10)), [op(NumberTheory:-PrimeFactors(n))])); return evalb(sumofDigits = sumofFactorDigits); end if; end proc:   findSmith := proc(n::posint) return select(isSmith, [seq(1 .. n - 1)]); end proc:   findSmith(10000);
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
smithQ[n_] := Not[PrimeQ[n]] && Total[IntegerDigits[n]] == Total[IntegerDigits /@ Flatten[ConstantArray @@@ FactorInteger[n]],2]; Select[Range[2, 10000], smithQ]
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Rust
Rust
  use std::cmp::{max, min}; use std::fmt; use std::ops;   #[derive(Debug, Clone, PartialEq)] struct Board { cells: Vec<Vec<Option<u32>>>, }   impl Board { fn new(initial_board: Vec<Vec<u32>>) -> Self { let b = initial_board .iter() .map(|r| { r.iter() .map(|c| if *c == u32::MAX { None } else { Some(*c) }) .collect() }) .collect();   Board { cells: b } }   fn height(&self) -> usize { self.cells.len() }   fn width(&self) -> usize { self.cells[0].len() } } impl ops::Index<(usize, usize)> for Board { type Output = Option<u32>;   fn index(&self, (y, x): (usize, usize)) -> &Self::Output { &self.cells[y][x] } } impl ops::IndexMut<(usize, usize)> for Board { /// Returns a mutable reference to an cell for a given 'x' 'y' coordinates fn index_mut(&mut self, (y, x): (usize, usize)) -> &mut Option<u32> { &mut self.cells[y][x] } }   impl fmt::Display for Board { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let output: Vec<String> = self .cells .iter() .map(|r| { let mut row = String::default();   r.iter().for_each(|c| match c { None => row.push_str(format!("{:>2} ", " ").as_ref()), Some(c) if c == &0 => row.push_str(format!("{:>2} ", ".").as_ref()), Some(c) => row.push_str(format!("{:>2} ", c).as_ref()), }); row }) .collect();   write!(f, "{}", output.join("\n")) } }   /// Structure for holding puzzle related information. #[derive(Clone, Debug)] struct Puzzle { /// The state of the board. board: Board,   /// All the numbers which were given at puzzle setup: /// the numbers which cannot be changed during solving the puzzle. fixed: Vec<u32>,   /// Position of the first number (1). start: (usize, usize), }   impl Puzzle { /// Creates a new puzzle /// * `initial_board` contains the layout and the startin position. /// /// - Simple numbers in the `initial_board` are considered as "fixed", /// aka the solving does not change them /// /// - As the board can be non-rectangular, all cells which are invalid or cannot be used /// are marked with u32::MAX in the `initial_board` fn new(initial_board: Vec<Vec<u32>>) -> Self { let mut s: (usize, usize) = (0, 0); let mut f = initial_board .iter() .enumerate() .flat_map(|(y, r)| r.iter().enumerate().map(move |(x, c)| (y, x, *c))) .filter(|(_, _, c)| (1..u32::MAX).contains(c)) .fold(Vec::new(), |mut fixed, (y, x, c)| { fixed.push(c); if c == 1 { // store the position of the start s = (y, x) }; fixed });   f.sort_unstable();   Puzzle { board: Board::new(initial_board), fixed: f, start: s, } }   pub fn print_board(&self) { println!("{}", self.board); }   fn solver(&mut self, current: (usize, usize), n: &u32, mut next: usize) -> bool { // reached the last number, solving successful if n > self.fixed.last().unwrap() { return true; }   // check for exit conditions match self.board[current] { // cell outside of the board None => return false,   //cell is already has a number in it Some(c) if c != 0 && c != *n => return false,   //cell is empty, but the to be placed number is already matching the next fixed number Some(c) if c == 0 && self.fixed[next] == *n => return false,   // continue _ => (), }   let mut backup: u32 = 0; if self.board[current] == Some(*n) { backup = *n; next += 1; }   self.board[current] = Some(*n);   for y in (max(current.0, 1) - 1)..=min(current.0 + 1, self.board.height() - 1) { for x in (max(current.1, 1) - 1)..=min(current.1 + 1, self.board.width() - 1) { if self.solver((y, x), &(n + 1), next) { return true; } } }   // unsuccessful branch, restore original value self.board[current] = Some(backup); false }   pub fn solve(&mut self) { let start = self.start; self.solver(start, &1, 0); } }   fn main() { let input = vec![ vec![0, 33, 35, 0, 0, u32::MAX, u32::MAX, u32::MAX], vec![0, 0, 24, 22, 0, u32::MAX, u32::MAX, u32::MAX], vec![0, 0, 0, 21, 0, 0, u32::MAX, u32::MAX], vec![0, 26, 0, 13, 40, 11, u32::MAX, u32::MAX], vec![27, 0, 0, 0, 9, 0, 1, u32::MAX], vec![u32::MAX, u32::MAX, 0, 0, 18, 0, 0, u32::MAX], vec![u32::MAX, u32::MAX, u32::MAX, u32::MAX, 0, 7, 0, 0], vec![ u32::MAX, u32::MAX, u32::MAX, u32::MAX, u32::MAX, u32::MAX, 5, 0, ], ];   let mut p = Puzzle::new(input); p.print_board(); p.solve(); println!("\nSolution:"); p.print_board(); }    
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#PowerShell
PowerShell
  $list = @{ "def" = "one" "abc" = "two" "jkl" = "three" "abcdef" = "four" "ghi" = "five" "ghijkl" = "six" } $list.GetEnumerator() | sort {-($PSItem.Name).length}, Name  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Octave
Octave
sortedv = sort(v);
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#TUSCRIPT
TUSCRIPT
  $$ MODE TUSCRIPT values="7'6'5'4'3'2'1'0" indices="7'2'8" v_unsorted=SELECT (values,#indices) v_sort=DIGIT_SORT (v_unsorted) i_sort=DIGIT_SORT (indices) LOOP i=i_sort,v=v_sort values=REPLACE (values,#i,v) ENDLOOP PRINT values  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Ursala
Ursala
#import std #import nat   disjoint_sort = ^|(~&,num); ("i","v"). (-:(-:)"v"@p nleq-<~~lSrSX ~&rlPlw~|/"i" "v")*lS "v"   #cast %nL   t = disjoint_sort({6,1,7},<7,6,5,4,3,2,1,0>)
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#M4
M4
divert(-1)   define(`randSeed',141592653) define(`setRand', `define(`randSeed',ifelse(eval($1<10000),1,`eval(20000-$1)',`$1'))') define(`rand_t',`eval(randSeed^(randSeed>>13))') define(`random', `define(`randSeed',eval((rand_t^(rand_t<<18))&0x7fffffff))randSeed')   define(`set',`define(`$1[$2]',`$3')') define(`get',`defn(`$1[$2]')') define(`new',`set($1,size,0)') dnl for the heap calculations, it's easier if origin is 0, so set value first define(`append', `set($1,size,incr(get($1,size)))`'set($1,get($1,size),$2)')   dnl swap(<name>,<j>,<name>[<j>],<k>) using arg stack for the temporary define(`swap',`set($1,$2,get($1,$4))`'set($1,$4,$3)')   define(`deck', `new($1)for(`x',1,$2, `append(`$1',eval(random%100))')') define(`show', `for(`x',1,get($1,size),`get($1,x) ')') define(`for', `ifelse($#,0,``$0'', `ifelse(eval($2<=$3),1, `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')   define(`bubbleonce', `for(`x',1,$2, `ifelse(eval(get($1,x)>get($1,incr(x))),1, `swap($1,x,get($1,x),incr(x))`'1')')0') define(`bubbleupto', `ifelse(bubbleonce($1,$2),0, `', `bubbleupto($1,decr($2))')') define(`bubblesort', `bubbleupto($1,decr(get($1,size)))')   divert deck(`a',10) show(`a') bubblesort(`a') show(`a')
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#True_BASIC
True BASIC
  RANDOMIZE  !RAMDOMZE TIMER en QBASIC DIM array(-5 TO 12) CALL iniciarray(array()) PRINT "unsort: "; CALL escritura(array()) CALL gnomeSort(array()) PRINT PRINT " sort: "; CALL escritura(array()) END   SUB escritura (array()) FOR i = LBOUND(array) TO UBOUND(array) PRINT array(i); NEXT i PRINT END SUB   SUB gnomeSort (array()) LET i = LBOUND(array) + 1 LET j = i + 1 DO WHILE i <= UBOUND(array) IF array(i - 1) <= array(i) THEN LET i = j LET j = j + 1 ELSE LET T = array(i - 1) LET array(i - 1) = array(i) LET array(i) = T LET i = i - 1 IF i = LBOUND(array) THEN LET i = j LET j = j + 1 END IF END IF LOOP END SUB   SUB iniciarray (array()) FOR i = LBOUND(array) TO UBOUND(array) LET array(i) = (RND * 98) + 1 NEXT i END SUB  
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Slate
Slate
s@(Sequence traits) cocktailSort [ |swapped| swapped: False. s size <= 1 ifTrue: [^ s]. [{0 to: s size - 2. s size - 2 downTo: 0} do: [|:range| range do: [|:index| (s at: index) > (s at: index + 1) ifTrue: [s swap: index with: index + 1. swapped: True]]. swapped ifFalse: [^ s]. swapped: False]. ] loop ].
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Scheme
Scheme
(let ((s (socket PF_INET SOCK_STREAM 0))) (connect s AF_INET (inet-pton AF_INET "127.0.0.1") 256) (display "hello socket world" s))
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Seed7
Seed7
$ include "seed7_05.s7i"; include "socket.s7i";   const proc: main is func local var file: sock is STD_NULL; begin sock := openInetSocket(256); writeln(sock, "hello socket world"); close(sock); end func;
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Modula-2
Modula-2
MODULE SmithNumbers; FROM FormatString IMPORT FormatString; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;   PROCEDURE SumDigits(n : INTEGER) : INTEGER; VAR sum : INTEGER; BEGIN sum := 0; WHILE n > 0 DO sum := sum + (n MOD 10); n := n DIV 10; END; RETURN sum; END SumDigits;   VAR n,i,j,fc,sum,rc : INTEGER; buf : ARRAY[0..63] OF CHAR; BEGIN rc := 0; FOR i:=1 TO 10000 DO n := i; fc := 0; sum := SumDigits(n);   j := 2; WHILE n MOD j = 0 DO INC(fc); sum := sum - SumDigits(j); n := n DIV j; END;   j := 3; WHILE j*j<=n DO WHILE n MOD j = 0 DO INC(fc); sum := sum - SumDigits(j); n := n DIV j; END; INC(j,2); END;   IF n#1 THEN INC(fc); sum := sum - SumDigits(n); END;   IF (fc>1) AND (sum=0) THEN FormatString("%4i ", buf, i); WriteString(buf); INC(rc); IF rc=10 THEN rc := 0; WriteLn; END; END; END;   ReadChar; END SmithNumbers.
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Seed7
Seed7
$ include "seed7_05.s7i";   var set of integer: given is {}; var array array integer: board is 0 times 0 times 0; var integer: startRow is 0; var integer: startColumn is 0;   const proc: setup (in array string: input) is func local var integer: r is 0; var integer: c is 0; var array string: row is 0 times ""; var string: cell is ""; var integer: value is 0; begin board := (length(input) + 2) times 0 times 0; for key r range input do row := split(input[r], " "); board[r + 1] := (length(row) + 2) times - 1; for key c range row do cell := row[c]; if cell = "_" then board[r + 1][c + 1] := 0; elsif cell[1] in {'0' .. '9'} then value := integer parse cell; board[r + 1][c + 1] := value; incl(given, value); if value = 1 then startRow := r + 1; startColumn := c + 1; end if; end if; end for; end for; board[1] := (length(row) + 2) times - 1; board[length(input) + 2] := (length(row) + 2) times - 1; end func;   const func boolean: solve (in integer: r, in integer: c, in integer: n) is func result var boolean: solved is FALSE; local var integer: back is 0; var integer: i is 0; var integer: j is 0; begin if n > max(given) then solved := TRUE; elsif board[r][c] = 0 and n not in given or board[r][c] = n then back := board[r][c]; board[r][c] := n; for i range -1 to 1 until solved do for j range -1 to 1 until solved do solved := solve(r + i, c + j, n + 1); end for; end for; if not solved then board[r][c] := back; end if; end if; end func;   const proc: printBoard is func local var integer: r is 0; var integer: c is 0; begin for key r range board do for c range board[r] do if c = -1 then write(" . "); elsif c > 0 then write(c lpad 2 <& " "); else write("__ "); end if; end for; writeln; end for; end func;   const proc: main is func local const array string: input is [] ("_ 33 35 _ _ . . .", "_ _ 24 22 _ . . .", "_ _ _ 21 _ _ . .", "_ 26 _ 13 40 11 . .", "27 _ _ _ 9 _ 1 .", ". . _ _ 18 _ _ .", ". . . . _ 7 _ _", ". . . . . . 5 _"); begin setup(input); printBoard; writeln; if solve(startRow, startColumn, 1) then writeln("Found:"); printBoard; end if; end func;
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#PureBasic
PureBasic
Structure MyPair ; Define a structured data type Name$ Value.i EndStructure   Dim People.MyPair(2) ; Allocate some elements   People(0)\Name$ = "John" ; Start filling them in People(0)\Value = 100   People(1)\Name$ = "Emma" People(1)\Value = 200   People(2)\Name$ = "Johnny" People(2)\Value = 175   If OpenConsole() Define i ; Sort ascending by name SortStructuredArray(People(), #PB_Sort_Ascending, OffsetOf(MyPair\Name$), #PB_Sort_String) PrintN(#CRLF$+"Sorted ascending by name.") For i=0 To 2 PrintN(People(i)\Name$+" - Value: "+Str(People(i)\Value)) Next ; Sort descending by value SortStructuredArray(People(), #PB_Sort_Descending, OffsetOf(MyPair\Value), #PB_Sort_Integer) PrintN(#CRLF$+"Sorted descending by value.") For i=0 To 2 PrintN(People(i)\Name$+" - Value: "+Str(People(i)\Value)) Next ; Wait for user... PrintN(#CRLF$+"Press ENTER to exit"):Input() EndIf
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Oforth
Oforth
[ 8, 2, 5, 9, 1, 3, 6, 7, 4 ] sort
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#ooRexx
ooRexx
a = .array~of(4, 1, 6, -2, 99, -12) say "The sorted numbers are" say a~sortWith(.numericComparator~new)~makeString
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Wren
Wren
import "/sort" for Sort   // sorts values in place, leaves indices unsorted var sortDisjoint = Fn.new { |values, indices| var sublist = [] for (ix in indices) sublist.add(values[ix]) Sort.quick(sublist) var i = 0 var indices2 = Sort.merge(indices) for (ix in indices2) { values[ix] = sublist[i] i = i + 1 } }   var values = [7, 6, 5, 4, 3, 2, 1, 0] var indices = [6, 1, 7] System.print("Initial: %(values)") sortDisjoint.call(values, indices) System.print("Sorted : %(values)")
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Maple
Maple
arr := Array([17,3,72,0,36,2,3,8,40,0]): len := numelems(arr): while(true) do change := false: len--; for i from 1 to len do if (arr[i] > arr[i+1]) then temp := arr[i]: arr[i] := arr[i+1]: arr[i+1] := temp: change := true: end if: end do: if (not change) then break end if: end do: arr;
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#uBasic.2F4tH
uBasic/4tH
PRINT "Gnome sort:" n = FUNC (_InitArray) PROC _ShowArray (n) PROC _Gnomesort (n) PROC _ShowArray (n) PRINT   END     _Gnomesort PARAM (1) ' Gnome sort LOCAL (2) b@=1 c@=2   DO WHILE b@ < a@ IF @(b@-1) > @(b@) THEN PROC _Swap (b@, b@-1) b@ = b@ - 1 IF b@ THEN CONTINUE ENDIF ENDIF b@ = c@ c@ = c@ + 1 LOOP RETURN     _Swap PARAM(2) ' Swap two array elements PUSH @(a@) @(a@) = @(b@) @(b@) = POP() RETURN     _InitArray ' Init example array PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1   FOR i = 0 TO 9 @(i) = POP() NEXT   RETURN (i)     _ShowArray PARAM (1) ' Show array subroutine FOR i = 0 TO a@-1 PRINT @(i), NEXT   PRINT RETURN
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Smalltalk
Smalltalk
OrderedCollection extend [ swap: indexA and: indexB [ |t| t := self at: indexA. self at: indexA put: (self at: indexB). self at: indexB put: t ] cocktailSort [ |swapped| [ swapped := false. 1 to: (self size - 1) do: [ :i | (self at: i) > (self at: (i+1)) ifTrue: [ self swap: i and: (i+1). swapped := true ] ]. swapped ifFalse: [ ^ self ]. swapped := false. (self size - 1) to: 1 by: -1 do: [ :i | (self at: i) > (self at: (i+1)) ifTrue: [ self swap: i and: (i+1). swapped := true ] ]. swapped ] whileTrue: [ ]. ^ self ] ].
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#SenseTalk
SenseTalk
  set SocketID to "localhost:256" open socket SocketID write "Hello socket world!" to socket SocketID close socket SocketID  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Sidef
Sidef
var host = Socket.gethostbyname('localhost'); var in = Socket.sockaddr_in(256, host); var proto = Socket.getprotobyname('tcp');   var sock = Socket.open(Socket.AF_INET, Socket.SOCK_STREAM, proto); sock.connect(in); sock.send('hello socket world', 0, in); sock.close;
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Nim
Nim
import strformat   func primeFactors(n: int): seq[int] = result = newSeq[int]() var n = n var i = 2 while n mod i == 0: result.add(i) n = n div i i = 3 while i * i <= n: while n mod i == 0: result.add(i) n = n div i inc i, 2 if n != 1: result.add(n)   func sumDigits(n: int): int = var n = n var sum = 0 while n > 0: inc sum, n mod 10 n = n div 10 sum   var cnt = 0 for n in 1..10_000: var factors = primeFactors(n) if factors.len > 1: var sum = sumDigits(n) for f in factors: dec sum, sumDigits(f) if sum == 0: stdout.write(&"{n:4} ") inc cnt if cnt == 10: cnt = 0 stdout.write("\n") echo()
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Objeck
Objeck
use Collection;   class Test { function : Main(args : String[]) ~ Nil { for(n := 1; n < 10000; n+=1;) { factors := PrimeFactors(n); if(factors->Size() > 1) { sum := SumDigits(n); each(i : factors) { sum -= SumDigits(factors->Get(i)); };   if(sum = 0) { n->PrintLine(); }; }; }; }   function : PrimeFactors(n : Int) ~ IntVector { result := IntVector->New();   for(i := 2; n % i = 0; n /= i;) { result->AddBack(i); };   for(i := 3; i * i <= n; i += 2;) { while(n % i = 0) { result->AddBack(i); n /= i; }; };   if(n <> 1) { result->AddBack(n); };   return result; }   function : SumDigits(n : Int) ~ Int { sum := 0; while(n > 0) { sum += (n % 10); n /= 10; };   return sum; } }
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Tailspin
Tailspin
  def input: '__ 33 35 __ __ . . . __ __ 24 22 __ . . . __ __ __ 21 __ __ . . __ 26 __ 13 40 11 . . 27 __ __ __ 9 __ 1 . . . __ __ 18 __ __ . . . . . __ 7 __ __ . . . . . . 5 __';   templates hidato composer setup data givenInput <[<={}|{row: <row>, col: <col>}>*]> local @: {row: 1, col: 1, givenInput:[]}; { board: [ <line>+ ], given: [email protected] -> \[i](<~={}> { n: $i, $...} !\) } rule line: [ <cell>+ ] (<'\n '>?) (..|@: {row: [email protected]::raw + 1, col: 1};) rule cell: <open|blocked|given> (<' '>?) (@.col: [email protected]::raw + 1;) rule open: <'__'> -> 0 rule blocked: <' \.'> -> -1 rule given: (<' '>?) (def given: <INT>;) ($given -> ..|@.givenInput: [email protected]::length+1..$ -> {};) ($given -> @.givenInput($): { row: [email protected], col: [email protected] };) $given end setup   templates solve when <~{row: <[email protected]::length>, col: <[email protected](1)::length>}> do !VOID when <{ n: <[email protected](last).n>, row: <[email protected](last).row>, col: <[email protected](last).col> }> do [email protected] ! when <?([email protected]($.row; $.col) <~=0|=$.n>)> do !VOID when <?([email protected]($.row; $.col) <=0>)?([email protected]($.next) <=$.n>)> do !VOID otherwise def guess: $; def back: [email protected]($.row; $.col); def next: $ -> \(when <{n: <=$back>}> do $.next::raw + 1! otherwise $.next!\); @hidato.board($.row; $.col): $.n::raw; 0..8 -> { next: $next, n: $guess.n::raw + 1, row: $guess.row::raw + $ ~/ 3 - 1, col: $guess.col::raw + $ mod 3 - 1 } -> # @hidato.board($.row; $.col): $back; end solve   @: $ -> setup; { next: 1, [email protected](1)... } -> solve ! end hidato   $input -> hidato -> '$... -> '$... -> ' $ -> \(when <=-1> do ' .' ! when <10..> do '$;' ! otherwise ' $;' !\);'; '; ' ->!OUT::write