task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#C.2B.2B
C++
#include <iostream> #include <cstdint>   using integer = uint32_t;   integer next_prime_digit_number(integer n) { if (n == 0) return 2; switch (n % 10) { case 2: return n + 1; case 3: case 5: return n + 2; default: return 2 + next_prime_digit_number(n/10) * 10; } }   bool is_prime(integer n) { if (n < 2) return false; if (n % 2 == 0) return n == 2; if (n % 3 == 0) return n == 3; if (n % 5 == 0) return n == 5; constexpr integer wheel[] = { 4,2,4,2,4,6,2,6 }; integer p = 7; for (;;) { for (integer w : wheel) { if (p * p > n) return true; if (n % p == 0) return false; p += w; } } }   int main() { std::cout.imbue(std::locale("")); const integer limit = 1000000000; integer n = 0, max = 0; std::cout << "First 25 SPDS primes:\n"; for (int i = 0; n < limit; ) { n = next_prime_digit_number(n); if (!is_prime(n)) continue; if (i < 25) { if (i > 0) std::cout << ' '; std::cout << n; } else if (i == 25) std::cout << '\n'; ++i; if (i == 100) std::cout << "Hundredth SPDS prime: " << n << '\n'; else if (i == 1000) std::cout << "Thousandth SPDS prime: " << n << '\n'; else if (i == 10000) std::cout << "Ten thousandth SPDS prime: " << n << '\n'; max = n; } std::cout << "Largest SPDS prime less than " << limit << ": " << max << '\n'; return 0; }
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#AutoHotkey
AutoHotkey
SolveHidato(Grid, Locked, Max, row, col, num:=1, R:="", C:=""){ if (R&&C) ; if neighbors (not first iteration) { Grid[R, C] := ">" num ; place num in current neighbor and mark it visited ">" row:=R, col:=C ; move to current neighbor }   num++ ; increment num if (num=max) ; if reached end return map(Grid) ; return solution   if locked[num] ; if current num is a locked value { row := StrSplit((StrSplit(locked[num], ",").1) , ":").1 ; find row of num col := StrSplit((StrSplit(locked[num], ",").1) , ":").2 ; find col of num if SolveHidato(Grid, Locked, Max, row, col, num) ; solve for current location and value return map(Grid) ; if solved, return solution } else { for each, value in StrSplit(Neighbor(row,col), ",") { R := StrSplit(value, ":").1 C := StrSplit(value, ":").2   if (Grid[R,C] = "") ; a hole or out of bounds || InStr(Grid[R, C], ">") ; visited || Locked[num+1] && !(Locked[num+1]~= "\b" R ":" C "\b") ; not neighbor of locked[num+1] || Locked[num-1] && !(Locked[num-1]~= "\b" R ":" C "\b") ; not neighbor of locked[num-1] || Locked[num] ; locked value || Locked[Grid[R, C]] ; locked cell continue   if SolveHidato(Grid, Locked, Max, row, col, num, R, C) ; solve for current location, neighbor and value return map(Grid) ; if solved, return solution } } num-- ; step back for i, line in Grid for j, element in line if InStr(element, ">") && (StrReplace(element, ">") >= num) Grid[i, j] := "Y" } ;-------------------------------- ;-------------------------------- ;-------------------------------- Neighbor(row,col){ R := row-1 loop, 9 { DeltaC := Mod(A_Index, 3) ? Mod(A_Index, 3)-2 : 1 res .= (R=row && !DeltaC) ? "" : R ":" col+DeltaC "," R := Mod(A_Index, 3) ? R : R+1 } return Trim(res, ",") } ;-------------------------------- map(Grid){ for i, row in Grid { for j, element in row line .= (A_Index > 1 ? "`t" : "") . element map .= (map<>""?"`n":"") line line := "" } return StrReplace(map, ">") }
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Elixir
Elixir
defmodule Sokoban do defp setup(level) do {leng, board} = normalize(level) {player, goal} = check_position(board) board = replace(board, [{".", " "}, {"+", " "}, {"*", "$"}]) lurd = [{-1, "l", "L"}, {-leng, "u", "U"}, {1, "r", "R"}, {leng, "d", "D"}] dirs = [-1, -leng, 1, leng] dead_zone = set_dead_zone(board, goal, dirs) {board, player, goal, lurd, dead_zone} end   defp normalize(level) do board = String.split(level, "\n", trim: true) |> Enum.map(&String.trim_trailing &1) leng = Enum.map(board, &String.length &1) |> Enum.max board = Enum.map(board, &String.pad_trailing(&1, leng)) |> Enum.join {leng, board} end   defp check_position(board) do board = String.codepoints(board) player = Enum.find_index(board, fn c -> c in ["@", "+"] end) goal = Enum.with_index(board) |> Enum.filter_map(fn {c,_} -> c in [".", "+", "*"] end, fn {_,i} -> i end) {player, goal} end   defp set_dead_zone(board, goal, dirs) do wall = String.replace(board, ~r/[^#]/, " ") |> String.codepoints |> Enum.with_index |> Enum.into(Map.new, fn {c,i} -> {i,c} end) corner = search_corner(wall, goal, dirs) set_dead_zone(wall, dirs, goal, corner, corner) end   defp set_dead_zone(wall, dirs, goal, corner, dead) do dead2 = Enum.reduce(corner, dead, fn pos,acc -> Enum.reduce(dirs, acc, fn dir,acc2 -> if wall[pos+dir] == "#", do: acc2, else: acc2 ++ check_side(wall, dirs, pos+dir, dir, goal, dead, []) end) end) if dead == dead2, do: :lists.usort(dead), else: set_dead_zone(wall, dirs, goal, corner, dead2) end   defp replace(string, replacement) do Enum.reduce(replacement, string, fn {a,b},str -> String.replace(str, a, b) end) end   defp search_corner(wall, goal, dirs) do Enum.reduce(wall, [], fn {i,c},corner -> if c == "#" or i in goal do corner else case count_wall(wall, i, dirs) do 2 -> if wall[i-1] != wall[i+1], do: [i | corner], else: corner 3 -> [i | corner] _ -> corner end end end) end   defp check_side(wall, dirs, pos, dir, goal, dead, acc) do if wall[pos] == "#" or count_wall(wall, pos, dirs) == 0 or pos in goal do [] else if pos in dead, do: acc, else: check_side(wall, dirs, pos+dir, dir, goal, dead, [pos|acc]) end end   defp count_wall(wall, pos, dirs) do Enum.count(dirs, fn dir -> wall[pos + dir] == "#" end) end   defp push_box(board, pos, dir, route, goal, dead_zone) do pos2dir = pos + 2 * dir if String.at(board, pos2dir) == " " and not pos2dir in dead_zone do board2 = board |> replace_at(pos, " ") |> replace_at(pos+dir, "@") |> replace_at(pos2dir, "$") unless visited?(board2) do if solved?(board2, goal) do IO.puts route exit(:normal) else queue_in({board2, pos+dir, route}) end end end end   defp move_player(board, pos, dir) do board |> replace_at(pos, " ") |> replace_at(pos+dir, "@") end   defp replace_at(str, pos, c) do {left, right} = String.split_at(str, pos) {_, right} = String.split_at(right, 1) left <> c <> right # String.slice(str, 0, pos) <> c <> String.slice(str, pos+1..-1) end   defp solved?(board, goal) do Enum.all?(goal, fn g -> String.at(board, g) == "$" end) end   @pattern :sokoban_pattern_set @queue  :sokoban_queue   defp start_link do Agent.start_link(fn -> MapSet.new end, name: @pattern) Agent.start_link(fn -> :queue.new end, name: @queue) end   defp visited?(board) do Agent.get_and_update(@pattern, fn set -> {board in set, MapSet.put(set, board)} end) end   defp queue_in(data) do Agent.update(@queue, fn queue -> :queue.in(data, queue) end) end   defp queue_out do Agent.get_and_update(@queue, fn q -> case :queue.out(q) do {{:value, data}, queue} -> {data, queue} x -> x end end) end   def solve(level) do {board, player, goal, lurd, dead_zone} = setup(level) start_link visited?(board) queue_in({board, player, ""}) solve(goal, lurd, dead_zone) end   defp solve(goal, lurd, dead_zone) do case queue_out do {board, pos, route} -> Enum.each(lurd, fn {dir,move,push} -> case String.at(board, pos+dir) do "$" -> push_box(board, pos, dir, route<>push, goal, dead_zone) " " -> board2 = move_player(board, pos, dir) unless visited?(board2) do queue_in({board2, pos+dir, route<>move}) end _ -> :not_move # wall end end) _ -> IO.puts "No solution" exit(:normal) end solve(goal, lurd, dead_zone) end end   level = """ ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### """ IO.puts level Sokoban.solve(level)
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Go
Go
package main   import ( "fmt" "strings" )   func main() { level := ` ####### # # # # #. # # #. $$ # #.$$ # #.# @# #######` fmt.Printf("level:%s\n", level) fmt.Printf("solution:\n%s\n", solve(level)) }   func solve(board string) string { buffer = make([]byte, len(board)) width := strings.Index(board[1:], "\n") + 1 dirs := []struct { move, push string dPos int }{ {"u", "U", -width}, {"r", "R", 1}, {"d", "D", width}, {"l", "L", -1}, } visited := map[string]bool{board: true} open := []state{state{board, "", strings.Index(board, "@")}} for len(open) > 0 { s1 := &open[0] open = open[1:] for _, dir := range dirs { var newBoard, newSol string newPos := s1.pos + dir.dPos switch s1.board[newPos] { case '$', '*': newBoard = s1.push(dir.dPos) if newBoard == "" || visited[newBoard] { continue } newSol = s1.cSol + dir.push if strings.IndexAny(newBoard, ".+") < 0 { return newSol } case ' ', '.': newBoard = s1.move(dir.dPos) if visited[newBoard] { continue } newSol = s1.cSol + dir.move default: continue } open = append(open, state{newBoard, newSol, newPos}) visited[newBoard] = true } } return "No solution" }   type state struct { board string cSol string pos int }   var buffer []byte   func (s *state) move(dPos int) string { copy(buffer, s.board) if buffer[s.pos] == '@' { buffer[s.pos] = ' ' } else { buffer[s.pos] = '.' } newPos := s.pos + dPos if buffer[newPos] == ' ' { buffer[newPos] = '@' } else { buffer[newPos] = '+' } return string(buffer) }   func (s *state) push(dPos int) string { newPos := s.pos + dPos boxPos := newPos + dPos switch s.board[boxPos] { case ' ', '.': default: return "" } copy(buffer, s.board) if buffer[s.pos] == '@' { buffer[s.pos] = ' ' } else { buffer[s.pos] = '.' } if buffer[newPos] == '$' { buffer[newPos] = '@' } else { buffer[newPos] = '+' } if buffer[boxPos] == ' ' { buffer[boxPos] = '$' } else { buffer[boxPos] = '*' } return string(buffer) }
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#JavaScript
JavaScript
(() => { 'use strict';   // problems :: [[String]] const problems = [ [ " 000 " // , " 0 00 " // , " 0000000" // , "000 0 0" // , "0 0 000" // , "1000000 " // , " 00 0 " // , " 000 " // ], [ "-----1-0-----" // , "-----0-0-----" // , "----00000----" // , "-----000-----" // , "--0--0-0--0--" // , "00000---00000" // , "--00-----00--" // , "00000---00000" // , "--0--0-0--0--" // , "-----000-----" // , "----00000----" // , "-----0-0-----" // , "-----0-0-----" // ] ];   // GENERIC FUNCTIONS ------------------------------------------------------   // comparing :: (a -> b) -> (a -> a -> Ordering) const comparing = f => (x, y) => { const a = f(x), b = f(y); return a < b ? -1 : a > b ? 1 : 0 };   // concat :: [[a]] -> [a] | [String] -> String const concat = xs => xs.length > 0 ? (() => { const unit = typeof xs[0] === 'string' ? '' : []; return unit.concat.apply(unit, xs); })() : [];   // charColRow :: Char -> [String] -> Maybe (Int, Int) const charColRow = (c, rows) => foldr((a, xs, iRow) => a.nothing ? (() => { const mbiCol = elemIndex(c, xs); return mbiCol.nothing ? mbiCol : { just: [mbiCol.just, iRow], nothing: false }; })() : a, { nothing: true }, rows);   // 2 or more arguments // curry :: Function -> Function const curry = (f, ...args) => { const go = xs => xs.length >= f.length ? (f.apply(null, xs)) : function () { return go(xs.concat(Array.from(arguments))); }; return go([].slice.call(args, 1)); };   // elem :: Eq a => a -> [a] -> Bool const elem = (x, xs) => xs.indexOf(x) !== -1;   // elemIndex :: Eq a => a -> [a] -> Maybe Int const elemIndex = (x, xs) => { const i = xs.indexOf(x); return { nothing: i === -1, just: i }; };   // enumFromTo :: Int -> Int -> [Int] const enumFromTo = (m, n) => Array.from({ length: Math.floor(n - m) + 1 }, (_, i) => m + i);   // filter :: (a -> Bool) -> [a] -> [a] const filter = (f, xs) => xs.filter(f);   // findIndex :: (a -> Bool) -> [a] -> Maybe Int const findIndex = (f, xs) => { for (var i = 0, lng = xs.length; i < lng; i++) { if (f(xs[i])) return { nothing: false, just: i }; } return { nothing: true }; };   // foldl :: (b -> a -> b) -> b -> [a] -> b const foldl = (f, a, xs) => xs.reduce(f, a);   // foldr (a -> b -> b) -> b -> [a] -> b const foldr = (f, a, xs) => xs.reduceRight(f, a);   // groupBy :: (a -> a -> Bool) -> [a] -> [[a]] const groupBy = (f, xs) => { const dct = xs.slice(1) .reduce((a, x) => { const h = a.active.length > 0 ? a.active[0] : undefined, blnGroup = h !== undefined && f(h, x); return { active: blnGroup ? a.active.concat([x]) : [x], sofar: blnGroup ? a.sofar : a.sofar.concat([a.active]) }; }, { active: xs.length > 0 ? [xs[0]] : [], sofar: [] }); return dct.sofar.concat(dct.active.length > 0 ? [dct.active] : []); };   // intercalate :: String -> [a] -> String const intercalate = (s, xs) => xs.join(s);   // intersectBy::(a - > a - > Bool) - > [a] - > [a] - > [a] const intersectBy = (eq, xs, ys) => (xs.length > 0 && ys.length > 0) ? xs.filter(x => ys.some(curry(eq)(x))) : [];   // justifyRight :: Int -> Char -> Text -> Text const justifyRight = (n, cFiller, strText) => n > strText.length ? ( (cFiller.repeat(n) + strText) .slice(-n) ) : strText;   // length :: [a] -> Int const length = xs => xs.length;   // map :: (a -> b) -> [a] -> [b] const map = (f, xs) => xs.map(f);   // mappendComparing :: [(a -> b)] -> (a -> a -> Ordering) const mappendComparing = fs => (x, y) => fs.reduce((ord, f) => { if (ord !== 0) return ord; const a = f(x), b = f(y); return a < b ? -1 : a > b ? 1 : 0 }, 0);   // maximumBy :: (a -> a -> Ordering) -> [a] -> a const maximumBy = (f, xs) => xs.reduce((a, x) => a === undefined ? x : ( f(x, a) > 0 ? x : a ), undefined);   // min :: Ord a => a -> a -> a const min = (a, b) => b < a ? b : a;   // replicate :: Int -> a -> [a] const replicate = (n, a) => { let v = [a], o = []; if (n < 1) return o; while (n > 1) { if (n & 1) o = o.concat(v); n >>= 1; v = v.concat(v); } return o.concat(v); };   // sortBy :: (a -> a -> Ordering) -> [a] -> [a] const sortBy = (f, xs) => xs.slice() .sort(f);   // splitOn :: String -> String -> [String] const splitOn = (s, xs) => xs.split(s);   // take :: Int -> [a] -> [a] const take = (n, xs) => xs.slice(0, n);   // unlines :: [String] -> String const unlines = xs => xs.join('\n');   // until :: (a -> Bool) -> (a -> a) -> a -> a const until = (p, f, x) => { let v = x; while (!p(v)) v = f(v); return v; };   // zip :: [a] -> [b] -> [(a,b)] const zip = (xs, ys) => xs.slice(0, Math.min(xs.length, ys.length)) .map((x, i) => [x, ys[i]]);   // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] const zipWith = (f, xs, ys) => Array.from({ length: min(xs.length, ys.length) }, (_, i) => f(xs[i], ys[i]));   // HOLY KNIGHT's TOUR FUNCTIONS -------------------------------------------   // kmoves :: (Int, Int) -> [(Int, Int)] const kmoves = ([x, y]) => map( ([a, b]) => [a + x, b + y], [ [1, 2], [1, -2], [-1, 2], [-1, -2], [2, 1], [2, -1], [-2, 1], [-2, -1] ]);   // rowPosns :: Int -> String -> [(Int, Int)] const rowPosns = (iRow, s) => { return foldl((a, x, i) => (elem(x, ['0', '1']) ? ( a.concat([ [i, iRow] ]) ) : a), [], splitOn('', s)); };   // hash :: (Int, Int) -> String const hash = ([col, row]) => col.toString() + '.' + row.toString();   // Start node, and degree-sorted cache of moves from each node // All node references are hash strings (for this cache)   // problemModel :: [[String]] -> {cache: {nodeKey: [nodeKey], start:String}} const problemModel = boardLines => { const steps = foldl((a, xs, i) => a.concat(rowPosns(i, xs)), [], boardLines), courseMoves = (xs, [x, y]) => intersectBy( ([a, b], [c, d]) => a === c && b === d, kmoves([x, y]), xs ), maybeStart = charColRow('1', boardLines); return { start: maybeStart.nothing ? '' : hash(maybeStart.just), boardWidth: boardLines.length > 0 ? boardLines[0].length : 0, stepCount: steps.length, cache: (() => { const moveCache = foldl((a, xy) => ( a[hash(xy)] = map(hash, courseMoves(steps, xy)), a ), {}, steps), lstMoves = Object.keys(moveCache), dctDegree = foldl((a, k) => (a[k] = moveCache[k].length, a), {}, lstMoves);   return foldl((a, k) => ( a[k] = sortBy(comparing(x => dctDegree[x]), moveCache[k]), a ), {}, lstMoves); })() }; };   // firstSolution :: {nodeKey: [nodeKey]} -> Int -> // nodeKey -> nodeKey -> [nodeKey] -> // -> {path::[nodeKey], pathLen::Int, found::Bool} const firstSolution = (dctMoves, intTarget, strStart, strNodeKey, path) => { const intPath = path.length, moves = dctMoves[strNodeKey];   if ((intTarget - intPath) < 2 && elem(strStart, moves)) { return { nothing: false, just: [strStart, strNodeKey].concat(path), pathLen: intTarget }; }   const nexts = filter(k => !elem(k, path), moves), intNexts = nexts.length, lstFullPath = [strNodeKey].concat(path);   // Until we find a full path back to start return until( x => (x.nothing === false || x.i >= intNexts), x => { const idx = x.i, dctSoln = firstSolution( dctMoves, intTarget, strStart, nexts[idx], lstFullPath ); return { i: idx + 1, nothing: dctSoln.nothing, just: dctSoln.just, pathLen: dctSoln.pathLen }; }, { nothing: true, just: [], i: 0 } ); };   // maybeTour :: [String] -> { // nothing::Bool, Just::[nodeHash], i::Int: pathLen::Int } const maybeTour = trackLines => { const dctModel = problemModel(trackLines), strStart = dctModel.start; return strStart !== '' ? firstSolution( dctModel.cache, dctModel.stepCount, strStart, strStart, [] ) : { nothing: true }; };   // showLine :: Int -> Int -> String -> Maybe (Int, Int) -> // [(Int, Int, String)] -> String const showLine = curry((intCell, strFiller, maybeStart, xs) => { const blnSoln = maybeStart.nothing, [startCol, startRow] = blnSoln ? [0, 0] : maybeStart.just; return foldl((a, [iCol, iRow, sVal], i, xs) => ({ col: iCol + 1, txt: a.txt + concat(replicate((iCol - a.col) * intCell, strFiller)) + justifyRight( intCell, strFiller, (blnSoln ? sVal : ( iRow === startRow && iCol === startCol ? '1' : '0') ) ) }), { col: 0, txt: '' }, xs ) .txt });   // solutionString :: [String] -> Int -> String const solutionString = (boardLines, iProblem) => { const dtePre = Date.now(), intCols = boardLines.length > 0 ? boardLines[0].length : 0, soln = maybeTour(boardLines), intMSeconds = Date.now() - dtePre;   if (soln.nothing) return 'No solution found …';   const kCol = 0, kRow = 1, kSeq = 2, steps = soln.just, lstTriples = zipWith((h, n) => { const [col, row] = map( x => parseInt(x, 10), splitOn('.', h) ); return [col, row, n.toString()]; }, steps, enumFromTo(1, soln.pathLen)), cellWidth = length(maximumBy( comparing(x => length(x[kSeq])), lstTriples )[kSeq]) + 1, lstGroups = groupBy( (a, b) => a[kRow] === b[kRow], sortBy( mappendComparing([x => x[kRow], x => x[kCol]]), lstTriples )), startXY = take(2, lstTriples[0]), strMap = 'PROBLEM ' + (parseInt(iProblem, 10) + 1) + '.\n\n' + unlines(map(showLine(cellWidth, ' ', { nothing: false, just: startXY }), lstGroups)), strSoln = 'First solution found in c. ' + intMSeconds + ' milliseconds:\n\n' + unlines(map(showLine(cellWidth, ' ', { nothing: true, just: startXY }), lstGroups)) + '\n\n';   console.log(strSoln); return strMap + '\n\n' + strSoln; };   // TEST ------------------------------------------------------------------- return unlines(map(solutionString, problems)); })();
http://rosettacode.org/wiki/SOAP
SOAP
In this task, the goal is to create a SOAP client which accesses functions defined at http://example.com/soap/wsdl, and calls the functions soapFunc( ) and anotherSoapFunc( ). This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.
#Tcl
Tcl
package require WS::Client   # Grok the service, and generate stubs ::WS::Client::GetAndParseWsdl http://example.com/soap/wsdl ::WS::Client::CreateStubs ExampleService ;# Assume that's the service name...   # Do the calls set result1 [ExampleService::soapFunc "hello"] set result2 [ExampleService::anotherSoapFunc 34234]
http://rosettacode.org/wiki/SOAP
SOAP
In this task, the goal is to create a SOAP client which accesses functions defined at http://example.com/soap/wsdl, and calls the functions soapFunc( ) and anotherSoapFunc( ). This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.
#Uniface
Uniface
  variables string result1, result2 endvariables   activate "webservice".soapFunc("hello", result1) activate "webservice".anotherSoapFunc(34234, result2)  
http://rosettacode.org/wiki/SOAP
SOAP
In this task, the goal is to create a SOAP client which accesses functions defined at http://example.com/soap/wsdl, and calls the functions soapFunc( ) and anotherSoapFunc( ). This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.
#VBScript
VBScript
Dim client Dim result Set client = CreateObject("MSSOAP.SoapClient") client.MSSoapInit "http://example.com/soap/wsdl" result = client.soapFunc("hello") result = client.anotherSoapFunc(34234)
http://rosettacode.org/wiki/SOAP
SOAP
In this task, the goal is to create a SOAP client which accesses functions defined at http://example.com/soap/wsdl, and calls the functions soapFunc( ) and anotherSoapFunc( ). This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.
#Visual_Objects
Visual Objects
LOCAL oSoapClient AS OBJECT //OLEAUTOOBJECT LOCAL cUrl AS STRING LOCAL uResult AS USUAL oSoapClient := OLEAutoObject{"MSSOAP.SoapClient30"} cUrl  := "http://example.com/soap/wsdl" IF oSoapClient:fInit oSoapClient:mssoapinit(cUrl,"", "", "" ) uResult := oSoapClient:soapFunc("hello") uResult := oSoapClient:anotherSoapFunc(34234) ENDIF
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#Racket
Racket
#lang racket (require "hidato-family-solver.rkt")   (define hoppy-moore-neighbour-offsets '((+3 0) (-3 0) (0 +3) (0 -3) (+2 +2) (-2 -2) (-2 +2) (+2 -2)))   (define solve-hopido (solve-hidato-family hoppy-moore-neighbour-offsets))   (displayln (puzzle->string (solve-hopido #(#(_ 0 0 _ 0 0 _) #(0 0 0 0 0 0 0) #(0 0 0 0 0 0 0) #(_ 0 0 0 0 0 _) #(_ _ 0 0 0 _ _) #(_ _ _ 0 _ _ _)))))  
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#Raku
Raku
my @adjacent = [3, 0], [2, -2], [2, 2], [0, -3], [0, 3], [-2, -2], [-2, 2], [-3, 0];   solveboard q:to/END/; . _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . . _ _ _ . . . . . 1 . . . END   sub solveboard($board) { my $max = +$board.comb(/\w+/); my $width = $max.chars;   my @grid; my @known; my @neigh; my @degree;   @grid = $board.lines.map: -> $line { [ $line.words.map: { /^_/ ?? 0 !! /^\./ ?? Rat !! $_ } ] }   sub neighbors($y,$x --> List) { eager gather for @adjacent { my $y1 = $y + .[0]; my $x1 = $x + .[1]; take [$y1,$x1] if defined @grid[$y1][$x1]; } }   for ^@grid -> $y { for ^@grid[$y] -> $x { if @grid[$y][$x] -> $v { @known[$v] = [$y,$x]; } if @grid[$y][$x].defined { @neigh[$y][$x] = neighbors($y,$x); @degree[$y][$x] = +@neigh[$y][$x]; } } } print "\e[0H\e[0J";   my $tries = 0;   try_fill 1, @known[1];   sub try_fill($v, $coord [$y,$x] --> Bool) { return True if $v > $max; $tries++;   my $old = @grid[$y][$x];   return False if +$old and $old != $v; return False if @known[$v] and @known[$v] !eqv $coord;   @grid[$y][$x] = $v; # conjecture grid value   print "\e[0H"; # show conjectured board for @grid -> $r { say do for @$r { when Rat { ' ' x $width } when 0 { '_' x $width } default { .fmt("%{$width}d") } } }     my @neighbors = @neigh[$y][$x][];   my @degrees; for @neighbors -> \n [$yy,$xx] { my $d = --@degree[$yy][$xx]; # conjecture new degrees push @degrees[$d], n; # and categorize by degree }   for @degrees.grep(*.defined) -> @ties { for @ties.reverse { # reverse works better for this hidato anyway return True if try_fill $v + 1, $_; } }   for @neighbors -> [$yy,$xx] { ++@degree[$yy][$xx]; # undo degree conjectures }   @grid[$y][$x] = $old; # undo grid value conjecture return False; }   say "$tries tries"; }
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Elena
Elena
import system'routines; import extensions;   public program() { var elements := new object[]{ KeyValue.new("Krypton", 83.798r), KeyValue.new("Beryllium", 9.012182r), KeyValue.new("Silicon", 28.0855r), KeyValue.new("Cobalt", 58.933195r), KeyValue.new("Selenium", 78.96r), KeyValue.new("Germanium", 72.64r)};   var sorted := elements.sort:(former,later => former.Key < later.Key );   sorted.forEach:(element) { console.printLine(element.Key," - ",element) } }
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Elixir
Elixir
defmodule Person do defstruct name: "", value: 0 end   list = [struct(Person, [name: "Joe", value: 3]), struct(Person, [name: "Bill", value: 4]), struct(Person, [name: "Alice", value: 20]), struct(Person, [name: "Harry", value: 3])]   Enum.sort(list) |> Enum.each(fn x -> IO.inspect x end) IO.puts "" Enum.sort_by(list, &(&1.value)) |> Enum.each(&IO.inspect &1)
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Vlang
Vlang
fn counting_sort(mut arr []int, min int, max int) { println('Input: ' + arr.str()) mut count := [0].repeat(max - min + 1) for i in 0 .. arr.len { nbr := arr[i] ndx1 := nbr - min count[ndx1] = count[ndx1] + 1 } mut z := 0 for i in min .. max { curr := i - min for count[curr] > 0 { arr[z] = i z++ count[curr]-- } } println('Output: ' + arr.str()) }   fn main() { mut arr := [6, 2, 1, 7, 6, 8] counting_sort(mut arr, 1, 8) }
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Wren
Wren
var countingSort = Fn.new { |a, min, max| var count = List.filled(max - min + 1, 0) for (n in a) count[n - min] = count[n - min] + 1 var z = 0 for (i in min..max) { while (count[i - min] > 0) { a[z] = i z = z + 1 count[i - min] = count[i - min] - 1 } } }   var a = [4, 65, 2, -31, 0, 99, 2, 83, 782, 1] System.print("Unsorted: %(a)") var min = a.reduce { |min, i| (i < min) ? i : min } var max = a.reduce { |max, i| (i > max) ? i : max } countingSort.call(a, min, max) System.print("Sorted  : %(a)")
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Java
Java
import static java.lang.Math.abs; import java.util.*; import static java.util.stream.Collectors.toList; import static java.util.stream.IntStream.range;   public class NoConnection {   // adopted from Go static int[][] links = { {2, 3, 4}, // A to C,D,E {3, 4, 5}, // B to D,E,F {2, 4}, // D to C, E {5}, // E to F {2, 3, 4}, // G to C,D,E {3, 4, 5}, // H to D,E,F };   static int[] pegs = new int[8];   public static void main(String[] args) {   List<Integer> vals = range(1, 9).mapToObj(i -> i).collect(toList()); do { Collections.shuffle(vals); for (int i = 0; i < pegs.length; i++) pegs[i] = vals.get(i);   } while (!solved());   printResult(); }   static boolean solved() { for (int i = 0; i < links.length; i++) for (int peg : links[i]) if (abs(pegs[i] - peg) == 1) return false; return true; }   static void printResult() { System.out.printf("  %s %s%n", pegs[0], pegs[1]); System.out.printf("%s %s %s %s%n", pegs[2], pegs[3], pegs[4], pegs[5]); System.out.printf("  %s %s%n", pegs[6], pegs[7]); } }
http://rosettacode.org/wiki/Solve_a_Numbrix_puzzle
Solve a Numbrix puzzle
Numbrix puzzles are similar to Hidato. The most important difference is that it is only possible to move 1 node left, right, up, or down (sometimes referred to as the Von Neumann neighborhood). Published puzzles also tend not to have holes in the grid and may not always indicate the end node. Two examples follow: Example 1 Problem. 0 0 0 0 0 0 0 0 0 0 0 46 45 0 55 74 0 0 0 38 0 0 43 0 0 78 0 0 35 0 0 0 0 0 71 0 0 0 33 0 0 0 59 0 0 0 17 0 0 0 0 0 67 0 0 18 0 0 11 0 0 64 0 0 0 24 21 0 1 2 0 0 0 0 0 0 0 0 0 0 0 Solution. 49 50 51 52 53 54 75 76 81 48 47 46 45 44 55 74 77 80 37 38 39 40 43 56 73 78 79 36 35 34 41 42 57 72 71 70 31 32 33 14 13 58 59 68 69 30 17 16 15 12 61 60 67 66 29 18 19 20 11 62 63 64 65 28 25 24 21 10 1 2 3 4 27 26 23 22 9 8 7 6 5 Example 2 Problem. 0 0 0 0 0 0 0 0 0 0 11 12 15 18 21 62 61 0 0 6 0 0 0 0 0 60 0 0 33 0 0 0 0 0 57 0 0 32 0 0 0 0 0 56 0 0 37 0 1 0 0 0 73 0 0 38 0 0 0 0 0 72 0 0 43 44 47 48 51 76 77 0 0 0 0 0 0 0 0 0 0 Solution. 9 10 13 14 19 20 63 64 65 8 11 12 15 18 21 62 61 66 7 6 5 16 17 22 59 60 67 34 33 4 3 24 23 58 57 68 35 32 31 2 25 54 55 56 69 36 37 30 1 26 53 74 73 70 39 38 29 28 27 52 75 72 71 40 43 44 47 48 51 76 77 78 41 42 45 46 49 50 81 80 79 Task Write a program to solve puzzles of this ilk, demonstrating your program by solving the above examples. Extra credit for other interesting examples. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Hopido puzzle Solve the no connection puzzle
#Tcl
Tcl
# Loop over adjacent pairs in a list. # Example: #  % eachpair {a b} {1 2 3} {puts $a $b} # 1 2 # 2 3 proc eachpair {varNames ls script} { if {[lassign $varNames _i _j] ne ""} { return -code error "Must supply exactly two arguments" } tailcall foreach $_i [lrange $ls 0 end-1] $_j [lrange $ls 1 end] $script }   namespace eval numbrix {   namespace path {::tcl::mathop ::tcl::mathfunc}   proc parse {txt} { set map [split [string trim $txt] \n] }   proc print {map} { join [lmap row $map { join [lmap val $row { format %2d $val }] " " }] \n }   proc mark {map x y i} { lset map $x $y $i }   proc moves {x y} { foreach {dx dy} { 0 1 -1 0 1 0 0 -1 } { lappend r [+ $dx $x] [+ $dy $y] } return $r }   proc rmap {map} { ;# generate a reverse map in a dict {val {x y} ..} set rmap {} set h [llength $map] set w [llength [lindex $map 0]] set x $w while {[incr x -1]>=0} { set y $h while {[incr y -1]>=0} { set i [lindex $map $x $y] if {$i} { dict set rmap [lindex $map $x $y] [list $x $y] } } } return $rmap }   proc gaps {rmap} { ;# list all the gaps to be filled set known [lsort -integer [dict keys $rmap]] set gaps {} eachpair {i j} $known { if {$j > $i+1} { lappend gaps $i $j } } return $gaps }   proc fixgaps {map rmap gaps} { ;# add a "tail" gap if needed set w [llength $map] set h [llength [lindex $map 0]] set size [* $h $w] set max [max {*}[dict keys $rmap]] if {$max ne $size} { lappend gaps $max Inf } return $gaps }     proc paths {map x0 y0 n} { ;# generate all the maps with a single path filled legally if {$n == 0} {return [list $map]} set i [lindex $map $x0 $y0] set paths {} foreach {x y} [moves $x0 $y0] { set j [lindex $map $x $y] if {$j eq ""} { continue } elseif {$j == 0 && $n == $n+1} { return [list [mark $map $x $y [+ $i 1]]] } elseif {$j == $i+1} { lappend paths $map continue } elseif {$j || ($n == 1)} { continue } else { lappend paths {*}[ paths [ mark $map $x $y [+ $i 1] ] $x $y [- $n 1] ] } } return $paths }   proc solve {map} { # fixpoint map while 1 { ;# first we iteratively fill in paths with distinct solutions set rmap [rmap $map] set gaps [gaps $rmap] set gaps [fixgaps $map $rmap $gaps] if {$gaps eq ""} { return $map } set oldmap $map foreach {i j} $gaps { lassign [dict get $rmap $i] x0 y0 set n [- $j $i] set paths [paths $map $x0 $y0 $n] if {$paths eq ""} { return "" } elseif {[llength $paths] == 1} { #puts "solved $i..$j" #puts [print $map] set map [lindex $paths 0] } ;# we could intersect the paths to maybe get some tiles } if {$map eq $oldmap} { break } } #puts "unique paths exhausted - going DFS" try { ;# for any left over paths, go DFS ;# we might want to sort the gaps first foreach {i j} $gaps { lassign [dict get $rmap $i] x0 y0 set n [- $j $i] set paths [paths $map $x0 $y0 $n] foreach path $paths { #puts "recursing on $i..$j" set sol [solve $path] if {$sol ne ""} { return $sol } } } } }   namespace export {[a-z]*} namespace ensemble create }   set puzzles { { 0 0 0 0 0 0 0 0 0 0 0 46 45 0 55 74 0 0 0 38 0 0 43 0 0 78 0 0 35 0 0 0 0 0 71 0 0 0 33 0 0 0 59 0 0 0 17 0 0 0 0 0 67 0 0 18 0 0 11 0 0 64 0 0 0 24 21 0 1 2 0 0 0 0 0 0 0 0 0 0 0 }   { 0 0 0 0 0 0 0 0 0 0 11 12 15 18 21 62 61 0 0 6 0 0 0 0 0 60 0 0 33 0 0 0 0 0 57 0 0 32 0 0 0 0 0 56 0 0 37 0 1 0 0 0 73 0 0 38 0 0 0 0 0 72 0 0 43 44 47 48 51 76 77 0 0 0 0 0 0 0 0 0 0 } }     foreach puzzle $puzzles { set map [numbrix parse $puzzle] puts "\n== Puzzle [incr i] ==" puts [numbrix print $map] set sol [numbrix solve $map] if {$sol ne ""} { puts "\n== Solution $i ==" puts [numbrix print $sol] } else { puts "\n== No Solution for Puzzle $i ==" } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Euphoria
Euphoria
include sort.e print(1,sort({20, 7, 65, 10, 3, 0, 8, -60}))
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#F.23
F#
// sorting an array in place let nums = [| 2; 4; 3; 1; 2 |] Array.sortInPlace nums   // create a sorted copy of a list let nums2 = [2; 4; 3; 1; 2] let sorted = List.sort nums2
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#PicoLisp
PicoLisp
(for I (by '((L) (mapcar format (split (chop L) "."))) sort (quote "1.3.6.1.4.1.11.2.17.19.3.4.0.10" "1.3.6.1.4.1.11.2.17.5.2.0.79" "1.3.6.1.4.1.11.2.17.19.3.4.0.4" "1.3.6.1.4.1.11150.3.4.0.1" "1.3.6.1.4.1.11.2.17.19.3.4.0.1" "1.3.6.1.4.1.11150.3.4.0" ) ) (prinl I) )
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Prolog
Prolog
main:- sort_oid_list(["1.3.6.1.4.1.11.2.17.19.3.4.0.10", "1.3.6.1.4.1.11.2.17.5.2.0.79", "1.3.6.1.4.1.11.2.17.19.3.4.0.4", "1.3.6.1.4.1.11150.3.4.0.1", "1.3.6.1.4.1.11.2.17.19.3.4.0.1", "1.3.6.1.4.1.11150.3.4.0"], Sorted_list), foreach(member(oid(_, Oid), Sorted_list), writeln(Oid)).   sort_oid_list(Oid_list, Sorted_list):- parse_oid_list(Oid_list, Parsed), sort(1, @=<, Parsed, Sorted_list).   parse_oid_list([], []):-!. parse_oid_list([Oid|Oid_list], [oid(Numbers, Oid)|Parsed]):- parse_oid(Oid, Numbers), parse_oid_list(Oid_list, Parsed).   parse_oid(Oid, Numbers):- split_string(Oid, ".", ".", Strings), number_strings(Numbers, Strings).   number_strings([], []):-!. number_strings([Number|Numbers], [String|Strings]):- number_string(Number, String), number_strings(Numbers, Strings).
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#JavaScript
JavaScript
function sort_disjoint(values, indices) { var sublist = []; indices.sort(function(a, b) { return a > b; });   for (var i = 0; i < indices.length; i += 1) { sublist.push(values[indices[i]]); }   sublist.sort(function(a, b) { return a < b; });   for (var i = 0; i < indices.length; i += 1) { values[indices[i]] = sublist.pop(); }   return values; }
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Red
Red
foreach [x y z] [ "lions, tigers, and" "bears, oh my!" {(from the "Wizard of OZ")} 77444 -12 0 3.1416 3.1415926 3.141592654 #"z" #"0" #"A" 216.239.36.21 172.67.134.114 127.0.0.1 [email protected] [email protected] [email protected] potato carrot cabbage ][ set [x y z] sort reduce [x y z] print ["x:" mold x "y:" mold y "z:" mold z] ]
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#REXX
REXX
/*REXX program sorts three (any value) variables (X, Y, and Z) into ascending order.*/ parse arg x y z . /*obtain the three variables from C.L. */ if x=='' | x=="," then x= 'lions, tigers, and' /*Not specified? Use the default*/ if y=='' | y=="," then y= 'bears, oh my!' /* " " " " " */ if z=='' | z=="," then z= '(from "The Wizard of Oz")' /* " " " " " */ say '───── original value of X: ' x say '───── original value of Y: ' y say '───── original value of Z: ' z if x>y then do; _= x; x= y; y= _; end /*swap the values of X and Y. */ /* ◄─── sorting.*/ if y>z then do; _= y; y= z; z= _; end /* " " " " Y " Z. */ /* ◄─── sorting.*/ if x>y then do; _= x; x= y; y= _; end /* " " " " X " Y. */ /* ◄─── sorting */ say /*stick a fork in it, we're all done. */ say '═════ sorted value of X: ' x say '═════ sorted value of Y: ' y say '═════ sorted value of Z: ' z
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Objeck
Objeck
use Collection;   class Test { function : Main(args : String[]) ~ Nil { v := CreateHolders(["Here", "are", "some", "sample", "strings", "to", "be", "sorted"]); "unsorted: "->Print(); Show(v); v->Sort(); "sorted: "->Print(); Show(v); }   function : CreateHolders(strings : String[]) ~ CompareVector { vector := CompareVector->New(); each(i : strings) { vector->AddBack(StringHolder->New(strings[i])); };   return vector; }   function : Show(v : CompareVector) ~ Nil { each(i : v) { s := v->Get(i)->As(StringHolder); s->ToString()->Print(); if(i + 1 < v->Size()) { ','->Print(); }; }; '\n'->Print(); } }   class StringHolder implements Compare { @s : String;   New(s : String) { @s := s; }   method : public : Compare(c : Compare) ~ Int { h := c->As(StringHolder); r := h->ToString(); size := r->Size() - @s->Size(); if(size = 0) { size := @s->ToUpper()->Compare(r->ToUpper()); };   return size; }   method : public : HashID() ~ Int { return @s->HashID(); }   method : public : ToString() ~ String { return @s; } }
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#SNOBOL4
SNOBOL4
* Library for random() -include 'Random.sno'   * # String -> array define('s2a(str,n)i') :(s2a_end) s2a s2a = array(n); str = str ' ' sa1 str break(' ') . s2a<i = i + 1> span(' ') = :s(sa1)f(return) s2a_end   * # Array -> string define('a2s(a)i') :(a2s_end) a2s a2s = a2s a<i = i + 1> ' ' :s(a2s)f(return) a2s_end   * # Knuth shuffle in-place define('shuffle(a)alen,n,k,tmp') :(shuffle_end) shuffle n = alen = prototype(a); sh1 k = convert(random() * alen,'integer') + 1 eq(a<n>,a<k>) :s(sh2) tmp = a<n>; a<n> = a<k>; a<k> = tmp sh2 n = gt(n,1) n - 1 :s(sh1) shuffle = a :(return) shuffle_end   * # sorted( ) predicate -> Succeed/Fail define('sorted(a)alen,i') :(sorted_end) sorted alen = prototype(a); i = 1 std1 i = lt(i,alen) i + 1 :f(return) gt(a<i - 1>,a<i>) :s(freturn)f(std1) sorted_end   * # Bogosort define('bogo(a)') :(bogo_end) bogo output = (i = i + 1) ': ' a2s(a) bogo = sorted(a) a :s(return) shuffle(a) :(bogo) bogo_end   * # Test and display bogo(s2a('5 4 3 2 1',5)) end
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#F.23
F#
let BubbleSort (lst : list<int>) = let rec sort accum rev lst = match lst, rev with | [], true -> accum |> List.rev | [], false -> accum |> List.rev |> sort [] true | x::y::tail, _ when x > y -> sort (y::accum) false (x::tail) | head::tail, _ -> sort (head::accum) rev tail sort [] true lst  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#PARI.2FGP
PARI/GP
gnomeSort(v)={ my(i=2,j=3,n=#v,t); while(i<=n, if(v[i-1]>v[i], t=v[i]; v[i]=v[i-1]; v[i--]=t; if(i==1, i=j; j++); , i=j; j++ ) ); v };
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Objeck
Objeck
bundle Default { class Cocktail { function : Main(args : String[]) ~ Nil { values := [5, -1, 101, -4, 0, 1, 8, 6, 2, 3 ]; CocktailSort(values); each(i : values) { values[i]->PrintLine(); }; }   function : CocktailSort(a : Int[]) ~ Nil { swapped : Bool; do { swapped := false; continue := true; for (i := 0; i <= a->Size() - 2 & continue; i += 1;) { if(a[i] > a[i + 1]) { temp := a[i]; a[i] := a[i+1]; a[i+1] := temp; swapped := true; }; };   if(swapped <> true) { continue := false; };   swapped := false; for(i := a->Size() - 2; i >= 0; i -= 1;){ if(a[i] > a[i + 1]) { temp := a[i]; a[i] := a[i+1]; a[i + 1] := temp; swapped := true; }; }; } while(swapped); } } }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Cind
Cind
  var libsocket = @("lib","socket"); // connect int socket = libsocket.connect("localhost",256); // send data { sheet data = (sheet)"hello socket world"; int datalen = data.size(); int was = libsocket.send(socket,data,0,datalen); // assuming here that all data has been sent (if not, send them in some loop) } // close socket libsocket.close(socket);  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Clojure
Clojure
(ns socket-example (:import (java.net Socket) (java.io PrintWriter)))   (defn send-data [host msg] (with-open [sock (Socket. host 256) printer (PrintWriter. (.getOutputStream sock))] (.println printer msg)))   (send-data "localhost" "hello socket world")
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#F.23
F#
  // Sleeping Beauty: Nigel Galloway. May 16th., 2021 let heads,woken=let n=System.Random() in {1..1000}|>Seq.fold(fun(h,w) g->match n.Next(2) with 0->(h+1,w+1) |_->(h,w+2))(0,0) printfn "During 1000 tosses Sleeping Beauty woke %d times, %d times the toss was heads. %.0f%% of times heads had been tossed when she awoke" woken heads (100.0*float(heads)/float(woken))  
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Factor
Factor
USING: combinators.random io kernel math prettyprint ;   : sleeping ( n -- heads wakenings ) 0 0 rot [ 1 + .5 [ [ 1 + ] dip ] [ 1 + ] ifp ] times ;   "Wakenings over 1,000,000 experiments: " write 1e6 sleeping dup . /f "Sleeping Beauty should estimate a credence of: " write .
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Go
Go
package main   import ( "fmt" "math/rand" "rcu" "time" )   func sleepingBeauty(reps int) float64 { wakings := 0 heads := 0 for i := 0; i < reps; i++ { coin := rand.Intn(2) // heads = 0, tails = 1 say wakings++ if coin == 0 { heads++ } else { wakings++ } } fmt.Printf("Wakings over %s repetitions = %s\n", rcu.Commatize(reps), rcu.Commatize(wakings)) return float64(heads) / float64(wakings) * 100 }   func main() { rand.Seed(time.Now().UnixNano()) pc := sleepingBeauty(1e6) fmt.Printf("Percentage probability of heads on waking = %f%%\n", pc) }
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#F.23
F#
  // Generate Smarandache prime-digital sequence. Nigel Galloway: May 31st., 2019 let rec spds g=seq{yield! g; yield! (spds (Seq.collect(fun g->[g*10+2;g*10+3;g*10+5;g*10+7]) g))}|>Seq.filter(isPrime) spds [2;3;5;7] |> Seq.take 25 |> Seq.iter(printfn "%d") printfn "\n\n100th item of this sequence is %d" (spds [2;3;5;7] |> Seq.item 99) printfn "1000th item of this sequence is %d" (spds [2;3;5;7] |> Seq.item 999)  
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Bracmat
Bracmat
( ( hidato = Line solve lowest Ncells row column rpad , Board colWidth maxDigits start curCol curRow , range head line cellN solution output tail . out$!arg & @(!arg:? ((%@:>" ") ?:?arg)) & 0:?row:?column & :?Board & ( Line = token . whl ' ( @(!arg:?token [3 ?arg) & ( ( @(!token:? "_" ?) & :?token | @(!token:? #?token (|" " ?)) ) & (!token.!row.!column) !Board:?Board | ) & 1+!column:?column ) ) & whl ' ( @(!arg:?line \n ?arg) & Line$!line & 1+!row:?row & 0:?column ) & Line$!arg & ( range = hi lo . (!arg+1:?hi)+-2:?lo & '($lo|$arg|$hi) ) & ( solve = ToDo cellN row column head tail remainder , candCell Solved rowCand colCand pattern recurse .  !arg:(?ToDo.?cellN.?row.?column) & range$!row:(=?row) & range$!column:(=?column) & ' (  ?head ($cellN.?rowCand.?colCand) ?tail & (!rowCand.!colCand):($row.$column) & !recurse |  ?head (.($row.$column):(?rowCand.?colCand)) (?tail&!recurse) . ((!rowCand.!colCand).$cellN)  : ?candCell & (  !head !tail: & out$found! & !candCell | solve $ ( !head !tail . $cellN+1 . !rowCand . !colCand )  : ?remainder & !candCell+!remainder )  : ?Solved )  : (=?pattern.?recurse) & !ToDo:!pattern & !Solved ) & infinity:?lowest & (  !Board  : ? (<!lowest:#%?lowest.?start) (?&~) | solve$(!Board.!lowest.!start):?solution ) & :?output & 0:?curCol & !solution:((?curRow.?).?)+?+[?Ncells & @(!Ncells:? [?maxDigits) & 1+!maxDigits:?colWidth & ( rpad = len .  !arg:(?arg.?len) & @(str$(!arg " "):?arg [!len ?) & !arg ) & whl ' ( !solution:((?row.?column).?cellN)+?solution & (  !row:>!curRow:?curRow & !output \n:?output & 0:?curCol | ) & whl ' ( !curCol+1:~>!column:?curCol & !output rpad$(.!colWidth):?output ) &  !output rev$(rpad$(rev$(str$(!cellN " ")).!colWidth))  : ?output & !curCol+1:?curCol ) & str$!output ) & " __ 33 35 __ __ __ __ 24 22 __ __ __ __ 21 __ __ __ 26 __ 13 40 11 27 __ __ __ 9 __ 1 __ __ 18 __ __ __ 7 __ __ 5 __"  : ?board & out$(hidato$!board) );
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Haskell
Haskell
import Control.Monad (liftM) import Data.Array import Data.List (transpose) import Data.Maybe (mapMaybe) import qualified Data.Sequence as Seq import qualified Data.Set as Set import Prelude hiding (Left, Right)   data Field = Space | Wall | Goal deriving (Eq)   data Action = Up | Down | Left | Right | PushUp | PushDown | PushLeft | PushRight   instance Show Action where show Up = "u" show Down = "d" show Left = "l" show Right = "r" show PushUp = "U" show PushDown = "D" show PushLeft = "L" show PushRight = "R"   type Index = (Int, Int) type FieldArray = Array Index Field type BoxArray = Array Index Bool type PlayerPos = Index type GameState = (BoxArray, PlayerPos) type Game = (FieldArray, GameState)   toField :: Char -> Field toField '#' = Wall toField ' ' = Space toField '@' = Space toField '$' = Space toField '.' = Goal toField '+' = Goal toField '*' = Goal   toPush :: Action -> Action toPush Up = PushUp toPush Down = PushDown toPush Left = PushLeft toPush Right = PushRight toPush n = n   toMove :: Action -> Index toMove PushUp = ( 0, -1) toMove PushDown = ( 0, 1) toMove PushLeft = (-1, 0) toMove PushRight = ( 1, 0) toMove n = toMove $ toPush n   -- Parse the string-based game board into an easier-to-use format. -- Assume that the board is valid (rectangular, one player, etc). parseGame :: [String] -> Game parseGame fieldStrs = (field, (boxes, player)) where width = length $ head fieldStrs height = length fieldStrs bound = ((0, 0), (width - 1, height - 1)) flatField = concat $ transpose fieldStrs charField = listArray bound flatField field = fmap toField charField boxes = fmap (`elem` "$*") charField player = fst $ head $ filter (flip elem "@+" . snd) $ assocs charField   add :: (Num a, Num b) => (a, b) -> (a, b) -> (a, b) add (a, b) (x, y) = (a + x, b + y)   -- Attempt to perform an action, returning the updated game and adjusted -- action if the action was legal. tryAction :: Game -> Action -> Maybe (Game, Action) tryAction (field, (boxes, player)) action | field ! vec == Wall = Nothing | boxes ! vec = if boxes ! vecB || field ! vecB == Wall then Nothing else Just ((field, (boxes // [(vec, False), (vecB, True)], vec)), toPush action) | otherwise = Just ((field, (boxes, vec)), action) where actionVec = toMove action vec = player `add` actionVec vecB = vec `add` actionVec   -- Search the game for a solution. solveGame :: Game -> Maybe [Action] solveGame (field, initState) = liftM reverse $ bfs (Seq.singleton (initState, [])) (Set.singleton initState) where goals = map fst $ filter ((== Goal) . snd) $ assocs field isSolved st = all (st !) goals possibleActions = [Up, Down, Left, Right]   -- Breadth First Search of the game tree. bfs :: Seq.Seq (GameState, [Action]) -> Set.Set GameState -> Maybe [Action] bfs queue visited = case Seq.viewl queue of Seq.EmptyL -> Nothing (game@(boxes, _), actions) Seq.:< queueB -> if isSolved boxes then Just actions else let newMoves = filter (flip Set.notMember visited . fst) $ map (\((_, g), a) -> (g, a)) $ mapMaybe (tryAction (field, game)) possibleActions visitedB = foldl (flip Set.insert) visited $ map fst newMoves queueC = foldl (Seq.|>) queueB $ map (\(g, a) -> (g, a:actions)) newMoves in bfs queueC visitedB   exampleA :: [String] exampleA = ["#######" ,"# #" ,"# #" ,"#. # #" ,"#. $$ #" ,"#.$$ #" ,"#.# @#" ,"#######"]   main :: IO () main = case solveGame $ parseGame exampleA of Nothing -> putStrLn "Unsolvable" Just solution -> do mapM_ putStrLn exampleA putStrLn "" putStrLn $ concatMap show solution
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Julia
Julia
using .Hidato # Note that the . here means to look locally for the module rather than in the libraries   const holyknight = """ . 0 0 0 . . . . . 0 . 0 0 . . . . 0 0 0 0 0 0 0 0 0 0 . . 0 . 0 0 . 0 . . 0 0 0 1 0 0 0 0 0 0 . . . 0 0 . 0 . . . . . 0 0 0 . . """   const knightmoves = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]   board, maxmoves, fixed, starts = hidatoconfigure(holyknight) printboard(board, " 0", " ") hidatosolve(board, maxmoves, knightmoves, fixed, starts[1][1], starts[1][2], 1) printboard(board)  
http://rosettacode.org/wiki/SOAP
SOAP
In this task, the goal is to create a SOAP client which accesses functions defined at http://example.com/soap/wsdl, and calls the functions soapFunc( ) and anotherSoapFunc( ). This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.
#Wren
Wren
/* soap.wren */   var CURLOPT_URL = 10002 var CURLOPT_POST = 47 var CURLOPT_READFUNCTION = 20012 var CURLOPT_READDATA = 10009 var CURLOPT_WRITEFUNCTION = 20011 var CURLOPT_WRITEDATA = 10001 var CURLOPT_HTTPHEADER = 10023 var CURLOPT_POSTFIELDSIZE_LARGE = 30120 var CURLOPT_VERBOSE = 41   foreign class File { foreign static url   foreign static readFile   foreign static writeFile   construct open(filename, mode) {} }   foreign class CurlSlist { construct new() {}   foreign append(s) }   foreign class Curl { construct easyInit() {}   foreign easySetOpt(opt, param)   foreign easyPerform()   foreign easyCleanup() }   var soap = Fn.new { |url, inFile, outFile| var rfp = File.open(inFile, "r") if (rfp == 0) Fiber.abort("Error opening read file.") var wfp = File.open(outFile, "w+") if (wfp == 0) Fiber.abort("Error opening write file.")   var header = CurlSlist.new() header = header.append("Content-Type:text/xml") header = header.append("SOAPAction: rsc") header = header.append("Transfer-Encoding: chunked") header = header.append("Expect:")   var curl = Curl.easyInit() if (curl == 0) Fiber.abort("Error initializing cURL.") curl.easySetOpt(CURLOPT_URL, url) curl.easySetOpt(CURLOPT_POST, 1) curl.easySetOpt(CURLOPT_READFUNCTION, 0) // read function to be supplied by C curl.easySetOpt(CURLOPT_READDATA, rfp) curl.easySetOpt(CURLOPT_WRITEFUNCTION, 0) // write function to be supplied by C curl.easySetOpt(CURLOPT_WRITEDATA, wfp) curl.easySetOpt(CURLOPT_HTTPHEADER, header) curl.easySetOpt(CURLOPT_POSTFIELDSIZE_LARGE, -1) curl.easySetOpt(CURLOPT_VERBOSE, 1)   curl.easyPerform() curl.easyCleanup() }   soap.call(File.url, File.readFile, File.writeFile)
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#REXX
REXX
/*REXX program solves a Hopido puzzle, it also displays the puzzle and the solution. */ call time 'Reset' /*reset the REXX elapsed timer to zero.*/ maxR=0; maxC=0; maxX=0; minR=9e9; minC=9e9; minX=9e9; cells=0; @.= parse arg xxx /*get the cell definitions from the CL.*/ xxx=translate(xxx, , "/\;:_", ',') /*also allow other characters as comma.*/   do while xxx\=''; parse var xxx r c marks ',' xxx do while marks\=''; [email protected] parse var marks x marks if datatype(x,'N') then x=x/1 /*normalize X. */ minR=min(minR,r); maxR=max(maxR,r); minC=min(minC,c); maxC=max(maxC,c) if x==1 then do;  !r=r;  !c=c; end /*the START cell. */ if _\=='' then call err "cell at" r c 'is already occupied with:' _ @.r.c=x; c=c+1; cells=cells+1 /*assign a mark. */ if x==. then iterate /*is a hole? Skip*/ if \datatype(x,'W') then call err 'illegal marker specified:' x minX=min(minX,x); maxX=max(maxX,x) /*min and max X. */ end /*while marks¬='' */ end /*while xxx ¬='' */ call show /* [↓] is used for making fast moves. */ Nr = '0 3 0 -3 -2 2 2 -2' /*possible row for the next move. */ Nc = '3 0 -3 0 2 -2 2 -2' /* " column " " " " */ pMoves=words(Nr) /*the number of possible moves. */ do i=1 for pMoves; Nr.i=word(Nr, i); Nc.i=word(Nc,i); end /*i*/ if \next(2,!r,!c) then call err 'No solution possible for this Hopido puzzle.' say 'A solution for the Hopido exists.'; say; call show etime= format(time('Elapsed'), , 2) /*obtain the elapsed time (in seconds).*/ if etime<.1 then say 'and took less than 1/10 of a second.' else say 'and took' etime "seconds." exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ err: say; say '***error*** (from Hopido): ' arg(1); say; exit 13 /*──────────────────────────────────────────────────────────────────────────────────────*/ next: procedure expose @. Nr. Nc. cells pMoves; parse arg #,r,c; ##=#+1 do t=1 for pMoves /* [↓] try some moves. */ parse value r+Nr.t c+Nc.t with nr nc /*next move coördinates*/ if @.nr.nc==. then do; @.nr.nc=# /*let's try this move. */ if #==cells then leave /*is this the last move?*/ if next(##,nr,nc) then return 1 @.nr.nc=. /*undo the above move. */ iterate /*go & try another move.*/ end if @.nr.nc==# then do /*this a fill-in move ? */ if #==cells then return 1 /*this is the last move.*/ if next(##,nr,nc) then return 1 /*a fill-in move. */ end end /*t*/ return 0 /*This ain't working. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: if maxR<1 | maxC<1 then call err 'no legal cell was specified.' if minX<1 then call err 'no 1 was specified for the puzzle start' w=max(2,length(cells)); do r=maxR to minR by -1; _= do c=minC to maxC; _=_ right(@.r.c,w); end /*c*/ say _ end /*r*/ say; return
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Erlang
Erlang
1> lists:sort([{{2006,2007},"Ducks"}, {{2000,2001},"Avalanche"}, {{2002,2003},"Devils"}, {{2001,2002},"Red Wings"}, {{2003,2004},"Lightning"}, {{2004,2005},"N/A: lockout"}, {{2005,2006},"Hurricanes"}, {{1999,2000},"Devils"}, {{2007,2008},"Red Wings"}, {{2008,2009},"Penguins"}]). [{{1999,2000},"Devils"}, {{2000,2001},"Avalanche"}, {{2001,2002},"Red Wings"}, {{2002,2003},"Devils"}, {{2003,2004},"Lightning"}, {{2004,2005},"N/A: lockout"}, {{2005,2006},"Hurricanes"}, {{2006,2007},"Ducks"}, {{2007,2008},"Red Wings"}, {{2008,2009},"Penguins"}]
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#XPL0
XPL0
include c:\cxpl\codes;   proc CountingSort(Array, Min, Max, Size); \Sort Array int Array, Min, Max, Size; \minimum, maximum values, number of elements int Count, I, Z; [Count:= Reserve((Max-Min+1)*4); \Reserve Count with 4 bytes per integer for I:= 0 to Max-Min do Count(I):= 0; \initialize Count with 0 for I:= 0 to Size-1 do \for each number count its occurrences Count(Array(I)-Min):= Count(Array(I)-Min) + 1; Z:= 0; for I:= Min to Max do while Count(I-Min) > 0 do [Array(Z):= I; Z:= Z+1; Count(I-Min):= Count(I-Min) - 1; ]; ];   int A, I; [A:= [3, 1, 4, 1, -5, 9, 2, 6, 5, 4]; CountingSort(A, -5, 9, 10); for I:= 0 to 10-1 do [IntOut(0, A(I)); ChOut(0, ^ )]; ]
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#zkl
zkl
fcn countingSort(array, min, max){ // modifies array count:=(max - min + 1).pump(List().write,0); // array of (max - min + 1) zeros foreach number in (array){ count[number - min] += 1; } z:=-1; foreach i in ([min .. max]){ do(count[i - min]){ array[z += 1] = i } } array }
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#JavaScript
JavaScript
(() => { 'use strict';   // -------------- NO CONNECTION PUZZLE ---------------   // solvedPuzzle :: () -> [Int] const solvedPuzzle = () => {   // universe :: [[Int]] const universe = permutations(enumFromTo(1)(8));   // isSolution :: [Int] -> Bool const isSolution = ([a, b, c, d, e, f, g, h]) => all(x => abs(x) > 1)([ a - d, c - d, g - d, e - d, a - c, c - g, g - e, e - a, b - e, d - e, h - e, f - e, b - d, d - h, h - f, f - b ]);   return universe[ until(i => isSolution(universe[i]))( succ )(0) ]; }   // ---------------------- TEST ----------------------- const main = () => { const firstSolution = solvedPuzzle(), [a, b, c, d, e, f, g, h] = firstSolution;   return unlines( zipWith( a => n => a + ' = ' + n.toString() )(enumFromTo('A')('H'))(firstSolution) .concat([ [], [a, b], [c, d, e, f], [g, h] ].map( xs => unwords(xs.map(show)) .padStart(5, ' ') )) ); }   // ---------------- GENERIC FUNCTIONS ----------------   // abs :: Num -> Num const abs = // Absolute value of a given number - without the sign. Math.abs;     // all :: (a -> Bool) -> [a] -> Bool const all = p => // True if p(x) holds for every x in xs. xs => [...xs].every(p);     // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c const compose = (...fs) => // A function defined by the right-to-left // composition of all the functions in fs. fs.reduce( (f, g) => x => f(g(x)), x => x );     // enumFromTo :: Enum a => a -> a -> [a] const enumFromTo = m => n => { const [x, y] = [m, n].map(fromEnum), b = x + (isNaN(m) ? 0 : m - x); return Array.from({ length: 1 + (y - x) }, (_, i) => toEnum(m)(b + i)); };     // fromEnum :: Enum a => a -> Int const fromEnum = x => typeof x !== 'string' ? ( x.constructor === Object ? ( x.value ) : parseInt(Number(x)) ) : x.codePointAt(0);     // length :: [a] -> Int const length = xs => // Returns Infinity over objects without finite // length. This enables zip and zipWith to choose // the shorter argument when one is non-finite, // like cycle, repeat etc 'GeneratorFunction' !== xs.constructor .constructor.name ? ( xs.length ) : Infinity;     // list :: StringOrArrayLike b => b -> [a] const list = xs => // xs itself, if it is an Array, // or an Array derived from xs. Array.isArray(xs) ? ( xs ) : Array.from(xs || []);     // permutations :: [a] -> [[a]] const permutations = xs => ( ys => ys.reduceRight( (a, y) => a.flatMap( ys => Array.from({ length: 1 + ys.length }, (_, i) => i) .map(n => ys.slice(0, n) .concat(y) .concat(ys.slice(n)) ) ), [ [] ] ) )(list(xs));     // show :: a -> String const show = x => JSON.stringify(x);     // succ :: Enum a => a -> a const succ = x => 1 + x;     // take :: Int -> [a] -> [a] // take :: Int -> String -> String const take = n => // The first n elements of a list, // string of characters, or stream. xs => 'GeneratorFunction' !== xs .constructor.constructor.name ? ( xs.slice(0, n) ) : [].concat.apply([], Array.from({ length: n }, () => { const x = xs.next(); return x.done ? [] : [x.value]; }));     // toEnum :: a -> Int -> a const toEnum = e => // The first argument is a sample of the type // allowing the function to make the right mapping x => ({ 'number': Number, 'string': String.fromCodePoint, 'boolean': Boolean, 'object': v => e.min + v } [typeof e])(x);     // unlines :: [String] -> String const unlines = xs => // A single string formed by the intercalation // of a list of strings with the newline character. xs.join('\n');     // until :: (a -> Bool) -> (a -> a) -> a -> a const until = p => f => x => { let v = x; while (!p(v)) v = f(v); return v; };     // unwords :: [String] -> String const unwords = xs => // A space-separated string derived // from a list of words. xs.join(' ');     // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] const zipWith = f => // Use of `take` and `length` here allows // zipping with non-finite lists // i.e. generators like cycle, repeat, iterate. xs => ys => { const n = Math.min(length(xs), length(ys)); return Infinity > n ? ( (([as, bs]) => Array.from({ length: n }, (_, i) => f(as[i])( bs[i] )))([xs, ys].map( compose(take(n), list) )) ) : zipWithGen(f)(xs)(ys); };   return main(); })();
http://rosettacode.org/wiki/Solve_a_Numbrix_puzzle
Solve a Numbrix puzzle
Numbrix puzzles are similar to Hidato. The most important difference is that it is only possible to move 1 node left, right, up, or down (sometimes referred to as the Von Neumann neighborhood). Published puzzles also tend not to have holes in the grid and may not always indicate the end node. Two examples follow: Example 1 Problem. 0 0 0 0 0 0 0 0 0 0 0 46 45 0 55 74 0 0 0 38 0 0 43 0 0 78 0 0 35 0 0 0 0 0 71 0 0 0 33 0 0 0 59 0 0 0 17 0 0 0 0 0 67 0 0 18 0 0 11 0 0 64 0 0 0 24 21 0 1 2 0 0 0 0 0 0 0 0 0 0 0 Solution. 49 50 51 52 53 54 75 76 81 48 47 46 45 44 55 74 77 80 37 38 39 40 43 56 73 78 79 36 35 34 41 42 57 72 71 70 31 32 33 14 13 58 59 68 69 30 17 16 15 12 61 60 67 66 29 18 19 20 11 62 63 64 65 28 25 24 21 10 1 2 3 4 27 26 23 22 9 8 7 6 5 Example 2 Problem. 0 0 0 0 0 0 0 0 0 0 11 12 15 18 21 62 61 0 0 6 0 0 0 0 0 60 0 0 33 0 0 0 0 0 57 0 0 32 0 0 0 0 0 56 0 0 37 0 1 0 0 0 73 0 0 38 0 0 0 0 0 72 0 0 43 44 47 48 51 76 77 0 0 0 0 0 0 0 0 0 0 Solution. 9 10 13 14 19 20 63 64 65 8 11 12 15 18 21 62 61 66 7 6 5 16 17 22 59 60 67 34 33 4 3 24 23 58 57 68 35 32 31 2 25 54 55 56 69 36 37 30 1 26 53 74 73 70 39 38 29 28 27 52 75 72 71 40 43 44 47 48 51 76 77 78 41 42 45 46 49 50 81 80 79 Task Write a program to solve puzzles of this ilk, demonstrating your program by solving the above examples. Extra credit for other interesting examples. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Hopido puzzle Solve the no connection puzzle
#Wren
Wren
import "/sort" for Sort import "/fmt" for Fmt   var example1 = [ "00,00,00,00,00,00,00,00,00", "00,00,46,45,00,55,74,00,00", "00,38,00,00,43,00,00,78,00", "00,35,00,00,00,00,00,71,00", "00,00,33,00,00,00,59,00,00", "00,17,00,00,00,00,00,67,00", "00,18,00,00,11,00,00,64,00", "00,00,24,21,00,01,02,00,00", "00,00,00,00,00,00,00,00,00" ]   var example2 = [ "00,00,00,00,00,00,00,00,00", "00,11,12,15,18,21,62,61,00", "00,06,00,00,00,00,00,60,00", "00,33,00,00,00,00,00,57,00", "00,32,00,00,00,00,00,56,00", "00,37,00,01,00,00,00,73,00", "00,38,00,00,00,00,00,72,00", "00,43,44,47,48,51,76,77,00", "00,00,00,00,00,00,00,00,00" ]   var moves = [ [1, 0], [0, 1], [-1, 0], [0, -1] ]   var board = [] var grid = [] var clues = [] var totalToFill = 0   var solve // recursive solve = Fn.new { |r, c, count, nextClue| if (count > totalToFill) return true var back = grid[r][c] if (back != 0 && back != count) return false if (back == 0 && nextClue < clues.count && clues[nextClue] == count) { return false } if (back == count) nextClue = nextClue + 1 grid[r][c] = count for (m in moves) { if (solve.call(r + m[1], c + m[0], count + 1, nextClue)) return true } grid[r][c] = back return false }   var printResult = Fn.new { |n| System.print("Solution for example %(n):") for (row in grid) { for (i in row) if (i != -1) Fmt.write("$2d ", i) System.print() } }   var n = 0 for (ex in [example1, example2]) { board = ex var nRows = board.count + 2 var nCols = board[0].split(",").count + 2 var startRow = 0 var startCol = 0 grid = List.filled(nRows, null) for (i in 0...nRows) grid[i] = List.filled(nCols, -1) totalToFill = (nRows - 2) * (nCols - 2) var lst = [] for (r in 0...nRows) { if (r >= 1 && r < nRows - 1) { var row = board[r - 1].split(",") for (c in 1...nCols - 1) { var value = Num.fromString(row[c - 1]) if (value > 0) lst.add(value) if (value == 1) { startRow = r startCol = c } grid[r][c] = value } } } Sort.quick(lst) clues = lst if (solve.call(startRow, startCol, 1, 0)) printResult.call(n + 1) n = n + 1 }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Factor
Factor
{ 1 4 9 2 3 0 5 } natural-sort .
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Fantom
Fantom
fansh> a := [5, 1, 4, 2, 3] [5, 1, 4, 2, 3] fansh> a.sort [1, 2, 3, 4, 5] fansh> a [1, 2, 3, 4, 5]
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Python
Python
  data = [ '1.3.6.1.4.1.11.2.17.19.3.4.0.10', '1.3.6.1.4.1.11.2.17.5.2.0.79', '1.3.6.1.4.1.11.2.17.19.3.4.0.4', '1.3.6.1.4.1.11150.3.4.0.1', '1.3.6.1.4.1.11.2.17.19.3.4.0.1', '1.3.6.1.4.1.11150.3.4.0' ]   for s in sorted(data, key=lambda x: list(map(int, x.split('.')))): print(s)  
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Racket
Racket
#lang racket (require data/order)   ;; allows for key caching (define (oid->oid-key o) (map string->number (string-split o ".")))   (define oid-key< (order-<? datum-order))   (module+ test (require rackunit) (check-equal? (sort '("1.3.6.1.4.1.11.2.17.19.3.4.0.10" "1.3.6.1.4.1.11.2.17.5.2.0.79" "1.3.6.1.4.1.11.2.17.19.3.4.0.4" "1.3.6.1.4.1.11150.3.4.0.1" "1.3.6.1.4.1.11.2.17.19.3.4.0.1" "1.3.6.1.4.1.11150.3.4.0") oid-key< #:key oid->oid-key #:cache-keys? #t) '("1.3.6.1.4.1.11.2.17.5.2.0.79" "1.3.6.1.4.1.11.2.17.19.3.4.0.1" "1.3.6.1.4.1.11.2.17.19.3.4.0.4" "1.3.6.1.4.1.11.2.17.19.3.4.0.10" "1.3.6.1.4.1.11150.3.4.0" "1.3.6.1.4.1.11150.3.4.0.1")))
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#jq
jq
def setpaths(indices; values): reduce range(0; indices|length) as $i (.; .[indices[$i]] = values[$i]);   def disjointSort(indices): (indices|unique) as $ix # "unique" sorts # Set $sorted to the sorted array of values at $ix: | ([ .[ $ix[] ] ] | sort) as $sorted | setpaths( $ix; $sorted) ;
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Julia
Julia
function sortselected(a::AbstractVector{<:Real}, s::AbstractVector{<:Integer}) sel = unique(sort(s)) if sel[1] < 1 || length(a) < sel[end] throw(BoundsError()) end b = collect(copy(a)) b[sel] = sort(b[sel]) return b end   a = [7, 6, 5, 4, 3, 2, 1, 0] sel = [7, 2, 8] b = sortselected(a, sel)   println("Original: $a\n\tsorted on $sel\n -> sorted array: $b")
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Ring
Ring
# Project : Sort three variables   x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' sortthree(x,y,z) x = 77444 y = -12 z = 0 sortthree(x,y,z)   func sortthree(x,y,z) str = [] add(str,x) add(str,y) add(str,z) str = sort(str) see "x = " + str[1] + nl see "y = " + str[2] + nl see "z = " + str[3] + nl see nl  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Ruby
Ruby
x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' x, y, z = [x, y, z].sort puts x, y, z   x, y, z = 7.7444e4, -12, 18/2r # Float, Integer, Rational; taken from Perl 6 x, y, z = [x, y, z].sort puts x, y, z  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Objective-C
Objective-C
#import <Foundation/Foundation.h>   #define esign(X) (((X)>0)?1:(((X)<0)?-1:0))   int main() { @autoreleasepool {   NSMutableArray *arr = [NSMutableArray arrayWithArray: [@"this is a set of strings to sort" componentsSeparatedByString: @" "] ];   [arr sortUsingComparator: ^NSComparisonResult(id obj1, id obj2){ NSComparisonResult l = esign((int)([obj1 length] - [obj2 length])); return l ? -l // reverse the ordering : [obj1 caseInsensitiveCompare: obj2]; }];   for( NSString *str in arr ) { NSLog(@"%@", str); }   } return EXIT_SUCCESS; }
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Swift
Swift
import Darwin   func shuffle<T>(inout array: [T]) { for i in 1..<array.count { let j = Int(arc4random_uniform(UInt32(i))) (array[i], array[j]) = (array[j], array[i]) } }   func issorted<T:Comparable>(ary: [T]) -> Bool { for i in 0..<(ary.count-1) { if ary[i] > ary[i+1] { return false } } return true }   func bogosort<T:Comparable>(inout ary: [T]) { while !issorted(ary) { shuffle(&ary) } }
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Tcl
Tcl
package require Tcl 8.5   proc shuffleInPlace {listName} { upvar 1 $listName list set len [set len2 [llength $list]] for {set i 0} {$i < $len-1} {incr i; incr len2 -1} { # Pick cell to swap with set n [expr {int($i + $len2 * rand())}] # Perform swap set temp [lindex $list $i] lset list $i [lindex $list $n] lset list $n $temp } } proc inOrder {list} { set prev [lindex $list 0] foreach item [lrange $list 1 end] { if {$prev > $item} { return false } set prev $item } return true } proc bogosort {list} { while { ! [inOrder $list]} { shuffleInPlace list } return $list }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Factor
Factor
USING: fry kernel locals math math.order sequences sequences.private ; IN: rosetta.bubble   <PRIVATE   :: ?exchange ( i seq quot -- ? ) i i 1 + [ seq nth-unsafe ] bi@ quot call +gt+ = :> doit? doit? [ i i 1 + seq exchange ] when doit? ; inline   : 1pass ( seq quot -- ? ) [ [ length 1 - iota ] keep ] dip '[ _ _ ?exchange ] [ or ] map-reduce ; inline   PRIVATE>   : sort! ( seq quot -- ) over empty? [ 2drop ] [ '[ _ _ 1pass ] loop ] if ; inline   : natural-sort! ( seq -- ) [ <=> ] sort! ;
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Pascal
Pascal
procedure gnomesort(var arr : Array of Integer; size : Integer); var i, j, t : Integer; begin i := 1; j := 2; while i < size do begin if arr[i-1] <= arr[i] then begin i := j; j := j + 1 end else begin t := arr[i-1]; arr[i-1] := arr[i]; arr[i] := t; i := i - 1; if i = 0 then begin i := j; j := j + 1 end end end; end;
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#OCaml
OCaml
let swap a i j = let tmp = a.(i) in a.(i) <- a.(j); a.(j) <- tmp; ;;   let cocktail_sort a = let begin_ = ref(-1) and end_ = ref(Array.length a - 2) in let swapped = ref true in try while !swapped do swapped := false; incr begin_; for i = !begin_ to !end_ do if a.(i) > a.(i+1) then begin swap a (i) (i+1); swapped := true; end; done; if !swapped = false then raise Exit; swapped := false; decr end_; for i = !end_ downto !begin_ do if a.(i) > a.(i+1) then begin swap a (i) (i+1); swapped := true end; done; done with Exit -> () ;;   let () = let a = [| 3; 7; 4; 9; 6; 1; 8; 5; 2; |] in cocktail_sort a; Array.iter (Printf.printf " %d") a; print_newline(); ;;
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Common_Lisp
Common Lisp
CL-USER> (usocket:with-client-socket (socket stream "localhost" 256) (write-line "hello socket world" stream) (values)) ; No value
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#D
D
module socket ; import std.stdio ; import std.socket ; version(Win32) { // For Win32 systems, need to link with ws2_32.lib. pragma(lib, "ws2_32.lib") ; } void main() { long res; auto socket = new Socket(AddressFamily.INET, SocketType.STREAM) ; socket.connect(new InternetAddress("localhost",256)) ; res = socket.send(cast(void[])"hello socket world") ; writefln("Socket %d bytes sent.", res) ; socket.close() ; }
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Haskell
Haskell
import Data.Monoid (Sum(..)) import System.Random (randomIO) import Control.Monad (replicateM) import Data.Bool (bool)   data Toss = Heads | Tails deriving Show   anExperiment toss = moreWakenings <> case toss of Heads -> headsOnWaking Tails -> moreWakenings where moreWakenings = (1,0) headsOnWaking = (0,1)   main = do tosses <- map (bool Heads Tails) <$> replicateM 1000000 randomIO let (Sum w, Sum h) = foldMap anExperiment tosses let ratio = fromIntegral h / fromIntegral w putStrLn $ "Ratio: " ++ show ratio
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Julia
Julia
""" Run the Sleeping Beauty Problem experiment `repetitions` times, checking to see how often we had heads on waking Sleeping Beauty. """ function sleeping_beauty_experiment(repetitions) gotheadsonwaking = 0 wakenings = 0 for _ in 1:repetitions coin_result = rand(["heads", "tails"])   # On Monday, we check if we got heads. wakenings += 1 if coin_result == "heads" gotheadsonwaking += 1 end   # If tails, we do this again, but of course we will not add as if it was heads. if coin_result == "tails" wakenings += 1 if coin_result == "heads" gotheadsonwaking += 1 # never done end end end   # Show the number of times she was wakened. println("Wakenings over ", repetitions, " experiments: ", wakenings)   # Return the number of correct bets SB made out of the total number # of times she is awoken over all the experiments with that bet. return gotheadsonwaking / wakenings end   CREDENCE = sleeping_beauty_experiment(1_000_000) println("Results of experiment: Sleeping Beauty should estimate a credence of: ", CREDENCE)  
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
ClearAll[SleepingBeautyExperiment] SleepingBeautyExperiment[reps_Integer] := Module[{gotheadsonwaking, wakenings, coinresult}, gotheadsonwaking = 0; wakenings = 0; Do[ coinresult = RandomChoice[{"heads", "tails"}]; wakenings++; If[coinresult === "heads", gotheadsonwaking++; , wakenings++; ] , {reps} ]; Print["Wakenings over ", reps, " experiments: ", wakenings]; gotheadsonwaking/wakenings ] out = N@SleepingBeautyExperiment[10^6]; Print["Results of experiment: Sleeping Beauty should estimate a credence of: ", out]
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Factor
Factor
USING: combinators.short-circuit io lists lists.lazy math math.parser math.primes prettyprint sequences ; IN: rosetta-code.smarandache-naive   : smarandache? ( n -- ? ) { [ number>string string>digits [ prime? ] all? ] [ prime? ] } 1&& ;   : smarandache ( -- list ) 1 lfrom [ smarandache? ] lfilter ;   : smarandache-demo ( -- ) "First 25 members of the Smarandache prime-digital sequence:" print 25 smarandache ltake list>array . "100th member: " write smarandache 99 [ cdr ] times car . ;   MAIN: smarandache-demo
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Forth
Forth
: is_prime? ( n -- flag ) dup 2 < if drop false exit then dup 2 mod 0= if 2 = exit then dup 3 mod 0= if 3 = exit then 5 begin 2dup dup * >= while 2dup mod 0= if 2drop false exit then 2 + 2dup mod 0= if 2drop false exit then 4 + repeat 2drop true ;   : next_prime_digit_number ( n -- n ) dup 0= if drop 2 exit then dup 10 mod dup 2 = if drop 1+ exit then dup 3 = if drop 2 + exit then 5 = if 2 + exit then 10 / recurse 10 * 2 + ;   : spds_next ( n -- n ) begin next_prime_digit_number dup is_prime? until ;   : spds_print ( n -- ) 0 swap 0 do spds_next dup . loop drop cr ;   : spds_nth ( n -- n ) 0 swap 0 do spds_next loop ;   ." First 25 SPDS primes:" cr 25 spds_print   ." 100th SPDS prime: " 100 spds_nth . cr   ." 1000th SPDS prime: " 1000 spds_nth . cr   bye
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#FreeBASIC
FreeBASIC
  function isprime( n as ulongint ) as boolean if n < 2 then return false if n = 2 then return true if n mod 2 = 0 then return false for i as uinteger = 3 to int(sqr(n))+1 step 2 if n mod i = 0 then return false next i return true end function   dim as integer smar(1 to 100), count = 1, i = 1, digit, j smar(1) = 2 print 1, 2 while count < 100 i += 2 if not isprime(i) then continue while for j = 1 to len(str(i)) digit = val(mid(str(i),j,1)) if not isprime(digit) then continue while next j count += 1 smar(count) = i if count = 100 orelse count <=25 then print count, smar(count) end if wend
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Ada
Ada
  -- This code is a basic implementation of snake in Ada using the command prompt -- feel free to improve it!   -- Snake.ads with Ada.Containers; use Ada.Containers; with Ada.Containers.Vectors;   package Snake is   -- copy from 2048 game ( -- Keyboard management type directions is (Up, Down, Right, Left, Quit, Restart, Invalid);   -- Redefining this standard procedure as function to allow Get_Keystroke as an expression function function Get_Immediate return Character;   Arrow_Prefix : constant Character := Character'Val(224); -- works for windows   function Get_Keystroke return directions; -- )   -- The container for game data type gameBoard is array (Natural range <>, Natural range <>) of Character;   -- Initilize the board procedure init;   -- Run the game procedure run;   -- Displaying the board procedure Display_Board; -- Clear the board from content procedure ClearBoard;   -- coordinates data structure type coord is tagged record X,Y : Integer; end record;   -- list of coordinate (one coordinate for each body part of the snake) package snakeBody is new Ada.Containers.Vectors (Natural, coord); use snakeBody;   -- update snake's part depending on the snakeDirection and checking colicion (with borders and snak's part) function moveSnake return Boolean;   -- generate food if it was eaten procedure generateFood;   -- Add snake and food to the board procedure addDataToBoard;   -- generate random integer between 1 and upperBound to generate random food position function getRandomInteger(upperBound : Integer) return Integer;   private   width, height : Positive := 10; board : gameBoard := (0 .. (width+1) => (0 .. (height+1) => ' ')); snake : Vector := (1,1) & (2,1) & (3,1); snakeDirection : directions := Right;   food : coord := (5,5);   end Snake;     -- Snake.adb   with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Discrete_Random;   package body Snake is   ----------------------------------------------------------------------------- -- Redefining this standard procedure as function to allow Get_Keystroke as an expression function (copy from 2048 game) function Get_Immediate return Character is begin return Answer : Character do Ada.Text_IO.Get_Immediate(Answer); end return; end Get_Immediate;   ----------------------------------------------------------------------------- -- (copy from 2048 game) function Get_Keystroke return directions is (case Get_Immediate is when 'Q' | 'q' => Quit, when 'R' | 'r' => Restart, when 'W' | 'w' => Left, when 'A' | 'a' => Up, when 'S' | 's' => Down, when 'D' | 'd' => Right, -- Windows terminal when Arrow_Prefix => (case Character'Pos(Get_Immediate) is when 72 => Up, when 75 => Left, when 77 => Right, when 80 => Down, when others => Invalid), -- Unix escape sequences when ASCII.ESC => (case Get_Immediate is when '[' => (case Get_Immediate is when 'A' => Up, when 'B' => Down, when 'C' => Right, when 'D' => Left, when others => Invalid), when others => Invalid), when others => Invalid);   ----------------------------------------------------------------------------- procedure init is begin   for Row in 0 .. width+1 loop for Column in 0 .. height+1 loop   if Row = 0 or Row = width+1 then board(Row,Column) := '#'; -- Insert(board(Row,0), Column, '#'); else if Column = 0 or Column = height+1 then board(Row,Column) := '#'; -- Insert(board, board(Row, Column), "#"); else board(Row,Column) := ' '; -- Insert(board, board(Row, Column), " "); end if; end if;   end loop; end loop; end;   ----------------------------------------------------------------------------- procedure run is   task T; task body T is begin loop snakeDirection := Get_Keystroke; end loop; end T;   begin   init; loop exit when snakeDirection = Quit;   if moveSnake = False then Put_Line("GAME OVER!!!"); Put_Line("Your score is:" & Length(snake)'Image); exit; end if;     Display_Board; delay 0.7;   end loop; end run;   ----------------------------------------------------------------------------- procedure Display_Board is begin   for Row in 0 .. width+1 loop for Column in 0 .. height+1 loop Put(board(Row, Column)); end loop; New_Line; end loop;   end Display_Board;   ----------------------------------------------------------------------------- procedure ClearBoard is begin   for Row in 1 .. width loop for Column in 1 .. height loop board(Row, Column) := ' '; end loop; end loop;   end ClearBoard;   ----------------------------------------------------------------------------- function moveSnake return Boolean is colision : Boolean := False; headCoord : coord := Snake.First_Element; addSnakePart : Boolean := False; begin   case snakeDirection is when Up => headCoord.X := headCoord.X - 1; when Down => headCoord.X := headCoord.X + 1; when Right => headCoord.Y := headCoord.Y + 1; when Left => headCoord.Y := headCoord.Y - 1; when others => null; end case;   if headCoord.Y = height+1 then return False; end if;   if headCoord.Y = 0 then return False; end if;   if headCoord.X = width+1 then return False; end if;   if headCoord.X = 0 then return False; end if;   for index in snake.Iterate loop if headCoord = snake(To_Index(index)) then return False; end if; end loop;   snake.Prepend(headCoord);   if headCoord /= food then snake.Delete_Last; else food := (0,0); generateFood; end if;   addDataToBoard;   return True; end moveSnake;   ----------------------------------------------------------------------------- procedure generateFood is begin if food.X = 0 or food.Y = 0 then food := (getRandomInteger(width), getRandomInteger(height)); end if; end generateFood;   ----------------------------------------------------------------------------- procedure addDataToBoard is begin ClearBoard;   board(food.X, food.Y) := '*';   for index in snake.Iterate loop board(snake(To_Index(index)).X, snake(To_Index(index)).Y) := 'o'; end loop;   end addDataToBoard;   ----------------------------------------------------------------------------- function getRandomInteger(upperBound : Integer) return Integer is   subtype Random_Range is Integer range 1 .. upperBound;   package R is new Ada.Numerics.Discrete_Random (Random_Range); use R;   G : Generator; begin Reset (G); return Random (G); end getRandomInteger;   end Snake;     -- main.adb   with Snake;   procedure Main is begin Snake.run; end;  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#11l
11l
F factors(=n) [Int] rt V f = 2 I n == 1 rt.append(1) E L I 0 == (n % f) rt.append(f) n I/= f I n == 1 R rt E f++ R rt   F sum_digits(=n) V sum = 0 L n > 0 V m = n % 10 sum += m n -= m n I/= 10 R sum   F add_all_digits(lst) V sum = 0 L(i) 0 .< lst.len sum += sum_digits(lst[i]) R sum   F list_smith_numbers(cnt) [Int] r L(i) 4 .< cnt V fac = factors(i) I fac.len > 1 I sum_digits(i) == add_all_digits(fac) r.append(i) R r   V sn = list_smith_numbers(10'000) print(‘Count of Smith Numbers below 10k: ’sn.len) print() print(‘First 15 Smith Numbers:’) print_elements(sn[0.<15]) print() print(‘Last 12 Smith Numbers below 10000:’) print_elements(sn[(len)-12..])
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#C
C
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h>   int *board, *flood, *known, top = 0, w, h;   static inline int idx(int y, int x) { return y * w + x; }   int neighbors(int c, int *p) /* @c cell @p list of neighbours @return amount of neighbours */ { int i, j, n = 0; int y = c / w, x = c % w;   for (i = y - 1; i <= y + 1; i++) { if (i < 0 || i >= h) continue; for (j = x - 1; j <= x + 1; j++) if (!(j < 0 || j >= w || (j == x && i == y) || board[ p[n] = idx(i,j) ] == -1)) n++; }   return n; }   void flood_fill(int c) /* fill all free cells around @c with “1” and write output to variable “flood” @c cell */ { int i, n[8], nei;   nei = neighbors(c, n); for (i = 0; i < nei; i++) { // for all neighbours if (board[n[i]] || flood[n[i]]) continue; // if cell is not free, choose another neighbour   flood[n[i]] = 1; flood_fill(n[i]); } }   /* Check all empty cells are reachable from higher known cells. Should really do more checks to make sure cell_x and cell_x+1 share enough reachable empty cells; I'm lazy. Will implement if a good counter example is presented. */ int check_connectity(int lowerbound) { int c; memset(flood, 0, sizeof(flood[0]) * w * h); for (c = lowerbound + 1; c <= top; c++) if (known[c]) flood_fill(known[c]); // mark all free cells around known cells   for (c = 0; c < w * h; c++) if (!board[c] && !flood[c]) // if there are free cells which could not be reached from flood_fill return 0;   return 1; }   void make_board(int x, int y, const char *s) { int i;   w = x, h = y; top = 0; x = w * h;   known = calloc(x + 1, sizeof(int)); board = calloc(x, sizeof(int)); flood = calloc(x, sizeof(int));   while (x--) board[x] = -1;   for (y = 0; y < h; y++) for (x = 0; x < w; x++) { i = idx(y, x);   while (isspace(*s)) s++;   switch (*s) { case '_': board[i] = 0; case '.': break; default: known[ board[i] = strtol(s, 0, 10) ] = i; if (board[i] > top) top = board[i]; }   while (*s && !isspace(*s)) s++; } }   void show_board(const char *s) { int i, j, c;   printf("\n%s:\n", s);   for (i = 0; i < h; i++, putchar('\n')) for (j = 0; j < w; j++) { c = board[ idx(i, j) ]; printf(!c ? " __" : c == -1 ? " " : " %2d", c); } }   int fill(int c, int n) { int i, nei, p[8], ko, bo;   if ((board[c] && board[c] != n) || (known[n] && known[n] != c)) return 0;   if (n == top) return 1;   ko = known[n]; bo = board[c]; board[c] = n;   if (check_connectity(n)) { nei = neighbors(c, p); for (i = 0; i < nei; i++) if (fill(p[i], n + 1)) return 1; }   board[c] = bo; known[n] = ko; return 0; }   int main() { make_board( #define USE_E 0 #if (USE_E == 0) 8,8, " __ 33 35 __ __ .. .. .." " __ __ 24 22 __ .. .. .." " __ __ __ 21 __ __ .. .." " __ 26 __ 13 40 11 .. .." " 27 __ __ __ 9 __ 1 .." " . . __ __ 18 __ __ .." " . .. . . __ 7 __ __" " . .. .. .. . . 5 __" #elif (USE_E == 1) 3, 3, " . 4 ." " _ 7 _" " 1 _ _" #else 50, 3, " 1 _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . 74" " . . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ ." " . . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ ." #endif );   show_board("Before"); fill(known[1], 1); show_board("After"); /* "40 lbs in two weeks!" */   return 0; }
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Java
Java
import java.util.*;   public class Sokoban { String destBoard, currBoard; int playerX, playerY, nCols;   Sokoban(String[] board) { nCols = board[0].length(); StringBuilder destBuf = new StringBuilder(); StringBuilder currBuf = new StringBuilder();   for (int r = 0; r < board.length; r++) { for (int c = 0; c < nCols; c++) {   char ch = board[r].charAt(c);   destBuf.append(ch != '$' && ch != '@' ? ch : ' '); currBuf.append(ch != '.' ? ch : ' ');   if (ch == '@') { this.playerX = c; this.playerY = r; } } } destBoard = destBuf.toString(); currBoard = currBuf.toString(); }   String move(int x, int y, int dx, int dy, String trialBoard) {   int newPlayerPos = (y + dy) * nCols + x + dx;   if (trialBoard.charAt(newPlayerPos) != ' ') return null;   char[] trial = trialBoard.toCharArray(); trial[y * nCols + x] = ' '; trial[newPlayerPos] = '@';   return new String(trial); }   String push(int x, int y, int dx, int dy, String trialBoard) {   int newBoxPos = (y + 2 * dy) * nCols + x + 2 * dx;   if (trialBoard.charAt(newBoxPos) != ' ') return null;   char[] trial = trialBoard.toCharArray(); trial[y * nCols + x] = ' '; trial[(y + dy) * nCols + x + dx] = '@'; trial[newBoxPos] = '$';   return new String(trial); }   boolean isSolved(String trialBoard) { for (int i = 0; i < trialBoard.length(); i++) if ((destBoard.charAt(i) == '.') != (trialBoard.charAt(i) == '$')) return false; return true; }   String solve() { class Board { String cur, sol; int x, y;   Board(String s1, String s2, int px, int py) { cur = s1; sol = s2; x = px; y = py; } } char[][] dirLabels = {{'u', 'U'}, {'r', 'R'}, {'d', 'D'}, {'l', 'L'}}; int[][] dirs = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};   Set<String> history = new HashSet<>(); LinkedList<Board> open = new LinkedList<>();   history.add(currBoard); open.add(new Board(currBoard, "", playerX, playerY));   while (!open.isEmpty()) { Board item = open.poll(); String cur = item.cur; String sol = item.sol; int x = item.x; int y = item.y;   for (int i = 0; i < dirs.length; i++) { String trial = cur; int dx = dirs[i][0]; int dy = dirs[i][1];   // are we standing next to a box ? if (trial.charAt((y + dy) * nCols + x + dx) == '$') {   // can we push it ? if ((trial = push(x, y, dx, dy, trial)) != null) {   // or did we already try this one ? if (!history.contains(trial)) {   String newSol = sol + dirLabels[i][1];   if (isSolved(trial)) return newSol;   open.add(new Board(trial, newSol, x + dx, y + dy)); history.add(trial); } }   // otherwise try changing position } else if ((trial = move(x, y, dx, dy, trial)) != null) {   if (!history.contains(trial)) { String newSol = sol + dirLabels[i][0]; open.add(new Board(trial, newSol, x + dx, y + dy)); history.add(trial); } } } } return "No solution"; }   public static void main(String[] a) { String level = "#######,# #,# #,#. # #,#. $$ #," + "#.$$ #,#.# @#,#######"; System.out.println(new Sokoban(level.split(",")).solve()); } }
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Kotlin
Kotlin
// version 1.1.3   val moves = arrayOf( intArrayOf(-1, -2), intArrayOf( 1, -2), intArrayOf(-1, 2), intArrayOf(1, 2), intArrayOf(-2, -1), intArrayOf(-2, 1), intArrayOf( 2, -1), intArrayOf(2, 1) )   val board1 = " xxx " + " x xx " + " xxxxxxx" + "xxx x x" + "x x xxx" + "sxxxxxx " + " xx x " + " xxx "   val board2 = ".....s.x....." + ".....x.x....." + "....xxxxx...." + ".....xxx....." + "..x..x.x..x.." + "xxxxx...xxxxx" + "..xx.....xx.." + "xxxxx...xxxxx" + "..x..x.x..x.." + ".....xxx....." + "....xxxxx...." + ".....x.x....." + ".....x.x....."   fun solve(pz: Array<IntArray>, sz: Int, sx: Int, sy: Int, idx: Int, cnt: Int): Boolean { if (idx > cnt) return true for (i in 0 until moves.size) { val x = sx + moves[i][0] val y = sy + moves[i][1] if ((x in 0 until sz) && (y in 0 until sz) && pz[x][y] == 0) { pz[x][y] = idx if (solve(pz, sz, x, y, idx + 1, cnt)) return true pz[x][y] = 0 } } return false }   fun findSolution(b: String, sz: Int) { val pz = Array(sz) { IntArray(sz) { -1 } } var x = 0 var y = 0 var idx = 0 var cnt = 0 for (j in 0 until sz) { for (i in 0 until sz) { if (b[idx] == 'x') { pz[i][j] = 0 cnt++ } else if (b[idx] == 's') { pz[i][j] = 1 cnt++ x = i y = j } idx++ } }   if (solve(pz, sz, x, y, 2, cnt)) { for (j in 0 until sz) { for (i in 0 until sz) { if (pz[i][j] != -1) print("%02d ".format(pz[i][j])) else print("-- ") } println() } } else println("Cannot solve this puzzle!") }   fun main(args: Array<String>) { findSolution(board1, 8) println() findSolution(board2, 13) }
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#Ruby
Ruby
require 'HLPsolver'   ADJACENT = [[-3, 0], [0, -3], [0, 3], [3, 0], [-2, -2], [-2, 2], [2, -2], [2, 2]]   board1 = <<EOS . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 1 . . . EOS t0 = Time.now HLPsolver.new(board1).solve puts " #{Time.now - t0} sec"
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#Tcl
Tcl
package require Tcl 8.6   oo::class create HopidoSolver { variable grid start limit constructor {puzzle} { set grid $puzzle for {set y 0} {$y < [llength $grid]} {incr y} { for {set x 0} {$x < [llength [lindex $grid $y]]} {incr x} { if {[set cell [lindex $grid $y $x]] == 1} { set start [list $y $x] } incr limit [expr {$cell>=0}] } } if {![info exist start]} { return -code error "no starting position found" } } method moves {} { return { 0 -3 -2 -2 -2 2 -3 0 3 0 -2 2 2 2 0 3 } } method Moves {g r c} { set valid {} foreach {dr dc} [my moves] { set R [expr {$r + $dr}] set C [expr {$c + $dc}] if {[lindex $g $R $C] == 0} { lappend valid $R $C } } return $valid }   method Solve {g r c v} { lset g $r $c [incr v] if {$v >= $limit} {return $g} foreach {r c} [my Moves $g $r $c] { return [my Solve $g $r $c $v] } return -code continue }   method solve {} { while {[incr i]==1} { set grid [my Solve $grid {*}$start 0] return } return -code error "solution not possible" } method solution {} {return $grid} }   proc parsePuzzle {str} { foreach line [split $str "\n"] { if {[string trim $line] eq ""} continue lappend rows [lmap {- c} [regexp -all -inline {(.)\s?} $line] { string map {" " -1 "." -1} $c }] } set len [tcl::mathfunc::max {*}[lmap r $rows {llength $r}]] for {set i 0} {$i < [llength $rows]} {incr i} { while {[llength [lindex $rows $i]] < $len} { lset rows $i end+1 -1 } } return $rows } proc showPuzzle {grid name} { foreach row $grid {foreach cell $row {incr c [expr {$cell>=0}]}} set len [string length $c] set u [string repeat "_" $len] puts "$name with $c cells" foreach row $grid { puts [format "  %s" [join [lmap c $row { format "%*s" $len [if {$c==-1} list elseif {$c==0} {set u} {set c}] }]]] } } set puzzle [parsePuzzle { . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 1 . . . }] showPuzzle $puzzle "Input" HopidoSolver create hop $puzzle hop solve showPuzzle [hop solution] "Output"
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Euphoria
Euphoria
include sort.e include misc.e   constant NAME = 1 function compare_names(sequence a, sequence b) return compare(a[NAME],b[NAME]) end function   sequence s s = { { "grass", "green" }, { "snow", "white" }, { "sky", "blue" }, { "cherry", "red" } }   pretty_print(1,custom_sort(routine_id("compare_names"),s),{2})
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#jq
jq
# Short-circuit determination of whether (a|condition) # is true for all a in array: def forall(array; condition): def check: . as $ix | if $ix == (array|length) then true elif (array[$ix] | condition) then ($ix + 1) | check else false end; 0 | check;   # permutations of 0 .. (n-1) def permutations(n): # Given a single array, generate a stream by inserting n at different positions: def insert(m;n): if m >= 0 then (.[0:m] + [n] + .[m:]), insert(m-1;n) else empty end; if n==0 then [] elif n == 1 then [1] else permutations(n-1) | insert(n-1; n) end;   # Count the number of items in a stream def count(f): reduce f as $_ (0; .+1);
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Julia
Julia
  using Combinatorics   const HOLES = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] const PEGS = [1, 2, 3, 4, 5, 6, 7, 8] const EDGES = [('A', 'C'), ('A', 'D'), ('A', 'E'), ('B', 'D'), ('B', 'E'), ('B', 'F'), ('C', 'G'), ('C', 'D'), ('D', 'G'), ('D', 'E'), ('D', 'H'), ('E', 'F'), ('E', 'G'), ('E', 'H'), ('F', 'H')]   goodperm(p) = all(e->abs(p[e[1]-'A'+1] - p[e[2]-'A'+1]) > 1, EDGES)   goodplacements() = [p for p in permutations(PEGS) if goodperm(p)]   const BOARD = raw""" A B /|\ /|\ / | X | \ / |/ \| \ C - D - E - F \ |\ /| / \ | X | / \|/ \|/ G H """   function printsolutions() solutions = goodplacements() println("Found $(length(solutions)) solutions.") for soln in solutions board = BOARD for (i, n) in enumerate(soln) board = replace(board, string('A' + i - 1) => string(n)) end println(board); exit(1) # remove this exit for all solutions end end   printsolutions()  
http://rosettacode.org/wiki/Solve_a_Numbrix_puzzle
Solve a Numbrix puzzle
Numbrix puzzles are similar to Hidato. The most important difference is that it is only possible to move 1 node left, right, up, or down (sometimes referred to as the Von Neumann neighborhood). Published puzzles also tend not to have holes in the grid and may not always indicate the end node. Two examples follow: Example 1 Problem. 0 0 0 0 0 0 0 0 0 0 0 46 45 0 55 74 0 0 0 38 0 0 43 0 0 78 0 0 35 0 0 0 0 0 71 0 0 0 33 0 0 0 59 0 0 0 17 0 0 0 0 0 67 0 0 18 0 0 11 0 0 64 0 0 0 24 21 0 1 2 0 0 0 0 0 0 0 0 0 0 0 Solution. 49 50 51 52 53 54 75 76 81 48 47 46 45 44 55 74 77 80 37 38 39 40 43 56 73 78 79 36 35 34 41 42 57 72 71 70 31 32 33 14 13 58 59 68 69 30 17 16 15 12 61 60 67 66 29 18 19 20 11 62 63 64 65 28 25 24 21 10 1 2 3 4 27 26 23 22 9 8 7 6 5 Example 2 Problem. 0 0 0 0 0 0 0 0 0 0 11 12 15 18 21 62 61 0 0 6 0 0 0 0 0 60 0 0 33 0 0 0 0 0 57 0 0 32 0 0 0 0 0 56 0 0 37 0 1 0 0 0 73 0 0 38 0 0 0 0 0 72 0 0 43 44 47 48 51 76 77 0 0 0 0 0 0 0 0 0 0 Solution. 9 10 13 14 19 20 63 64 65 8 11 12 15 18 21 62 61 66 7 6 5 16 17 22 59 60 67 34 33 4 3 24 23 58 57 68 35 32 31 2 25 54 55 56 69 36 37 30 1 26 53 74 73 70 39 38 29 28 27 52 75 72 71 40 43 44 47 48 51 76 77 78 41 42 45 46 49 50 81 80 79 Task Write a program to solve puzzles of this ilk, demonstrating your program by solving the above examples. Extra credit for other interesting examples. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Hopido puzzle Solve the no connection puzzle
#zkl
zkl
// Solve Hidato/Hopido/Numbrix puzzles class Puzzle{ // hold info concerning this puzzle var board, nrows,ncols, cells, start, // (r,c) where 1 is located, Void if no 1 terminated, // if board holds highest numbered cell given, // all the pre-loaded cells adj, // a list of (r,c) that are valid next cells  ;   fcn print_board{ d:=Dictionary(-1," ", 0,"__"); foreach r in (board){ r.pump(String,'wrap(c){ "%2s ".fmt(d.find(c,c)) }).println(); } } fcn init(s,adjacent){ adj=adjacent; lines:=s.split("\n"); ncols,nrows=lines[0].split().len(),lines.len(); board=nrows.pump(List(), ncols.pump(List(),-1).copy); given,start=List(),Void; cells,terminated=0,True; foreach r,row in (lines.enumerate()){ foreach c,cell in (row.split().enumerate()){ if(cell=="X") continue; // X == not in play, leave at -1 cells+=1; val:=cell.toInt(); board[r][c]=val; given.append(val); if(val==1) start=T(r,c); } } println("Number of cells = ",cells); if(not given.holds(cells)){ given.append(cells); terminated=False; } given=given.filter().sort(); } fcn solve{ //-->Bool if(start) return(_solve(start.xplode())); foreach r,c in (nrows,ncols){ if(board[r][c]==0 and _solve(r,c)) return(True); } False } fcn [private] _solve(r,c,n=1, next=0){ if(n>given[-1]) return(True); if(not ( (0<=r<nrows) and (0<=c<ncols) )) return(False); if(board[r][c] and board[r][c]!=n) return(False); if(terminated and board[r][c]==0 and given[next]==n) return(False);   back:=0; if(board[r][c]==n){ next+=1; back=n; }   board[r][c]=n; foreach i,j in (adj){ if(self.fcn(r+i,c+j,n+1, next)) return(True) } board[r][c]=back; False } } // Puzzle
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Forth
Forth
create test-data 2 , 4 , 3 , 1 , 2 , test-data 5 cell-sort  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Fortran
Fortran
CALL ISORT@(b, a, n) ! n = number of elements ! a = array to be sorted ! b = array of indices of a. b(1) 'points' to the minimum value etc.
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Raku
Raku
.say for sort *.comb(/\d+/)».Int, < 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 >;
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#K
K
  {@[x;y@<y;:;a@<a:x@y]}[7 6 5 4 3 2 1 0;6 1 7] 7 0 5 4 3 2 1 6  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Kotlin
Kotlin
// version 1.1.51   /* in place sort */ fun IntArray.sortDisjoint(indices: Set<Int>) { val sortedSubset = this.filterIndexed { index, _ -> index in indices }.sorted() if (sortedSubset.size < indices.size) throw IllegalArgumentException("Argument set contains out of range indices") indices.sorted().forEachIndexed { index, value -> this[value] = sortedSubset[index] } }   fun main(args: Array<String>) { val values = intArrayOf(7, 6, 5, 4, 3, 2, 1, 0) val indices = setOf(6, 1, 7) println("Original array : ${values.asList()} sorted on indices $indices") values.sortDisjoint(indices) println("Sorted array  : ${values.asList()}") }  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Rust
Rust
fn main() { let mut array = [5, 1, 3]; array.sort(); println!("Sorted: {:?}", array); array.sort_by(|a, b| b.cmp(a)); println!("Reverse sorted: {:?}", array); }  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Scala
Scala
$ include "seed7_05.s7i";   const proc: genSort3 (in type: elemType) is func begin global   const proc: doSort3 (in var elemType: x, in var elemType: y, in var elemType: z) is func local var array elemType: sorted is 0 times elemType.value; begin writeln("BEFORE: x=[" <& x <& "]; y=[" <& y <& "]; z=[" <& z <& "]"); sorted := sort([](x, y, z)); x := sorted[1]; y := sorted[2]; z := sorted[3]; writeln("AFTER: x=[" <& x <& "]; y=[" <& y <& "]; z=[" <& z <& "]"); end func;   end global; end func;   genSort3(integer); genSort3(string);   const proc: main is func begin doSort3(77444, -12, 0); doSort3("lions, tigers, and", "bears, oh my!", "(from the \"Wizard of OZ\")"); end func;
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#OCaml
OCaml
let mycmp s1 s2 = if String.length s1 <> String.length s2 then compare (String.length s2) (String.length s1) else String.compare (String.lowercase s1) (String.lowercase s2)
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Oforth
Oforth
String method: customCmp(s) s size self size > ifTrue: [ true return ] s size self size < ifTrue: [ false return ] s toUpper self toUpper <= ;   ["this", "is", "a", "set", "of", "strings", "to", "sort", "This", "Is", "A", "Set", "Of", "Strings", "To", "Sort"] sortWith(#customCmp) println
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#TI-83_BASIC
TI-83 BASIC
:"BOGO" :L1→L2 :Lbl A :dim(L2)→A :For(B,1,dim(L2)-1) :randInt(1,A)→C :L2(C)→D :L2(A)→L2(C) :D→L2(A) :A-1→A :End :For(D,1,dim(L2)-1) :If L2(D)>L2(D+1) :Goto A :End :DelVar A :DelVar B :DelVar C :DelVar D :Return
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Fish
Fish
v Sorts the (pre-loaded) stack with bubblesort. v < \l0=?;l& >&:1=?v1-&2[$:{:{](?${ >~{ao ^ >~}l &{ v o","{n:&-1^?=0:&<
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Perl
Perl
use strict;   sub gnome_sort { my @a = @_;   my $size = scalar(@a); my $i = 1; my $j = 2; while($i < $size) { if ( $a[$i-1] <= $a[$i] ) { $i = $j; $j++; } else { @a[$i, $i-1] = @a[$i-1, $i]; $i--; if ($i == 0) { $i = $j; $j++; } } } return @a; }
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Octave
Octave
function sl = cocktailsort(l) swapped = true; while(swapped) swapped = false; for i = 1:(length(l)-1) if ( l(i) > l(i+1) ) t = l(i); l(i) = l(i+1); l(i+1) = t; swapped = true; endif endfor if ( !swapped ) break; endif swapped = false; for i = (length(l)-1):-1:1 if ( l(i) > l(i+1) ) t = l(i); l(i) = l(i+1); l(i+1) = t; swapped = true; endif endfor endwhile sl = l; endfunction
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Delphi
Delphi
program Sockets;   {$APPTYPE CONSOLE}   uses IdTCPClient;   var lTCPClient: TIdTCPClient; begin lTCPClient := TIdTCPClient.Create(nil); try lTCPClient.Host := '127.0.0.1'; lTCPClient.Port := 256; lTCPClient.Connect; lTCPClient.IOHandler.WriteLn('hello socket world'); finally lTCPClient.Free; end; end.
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Elena
Elena
import system'net; import system'text; import extensions'text; import system'io;   public program() { var socket := new Socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); socket.connect("127.0.0.1",256); var s := "hello socket world"; socket.write(AnsiEncoder.toByteArray(0, s.Length, s)); socket.close() }
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Nim
Nim
import random   const N = 1_000_000   type Side {.pure.} = enum Heads, Tails   const Sides = [Heads, Tails]   randomize() var onHeads, wakenings = 0 for _ in 1..N: let side = sample(Sides) inc wakenings if side == Heads: inc onHeads else: inc wakenings   echo "Wakenings over ", N, " experiments: ", wakenings echo "Sleeping Beauty should estimate a credence of: ", onHeads / wakenings
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Pascal
Pascal
  program sleepBeau; uses sysutils; //Format const iterations = 1000*1000; fmt = 'Wakings over %d repetitions = %d'+#13#10+ 'Percentage probability of heads on waking = %8.5f%%'; var i, heads, wakings, flip: Uint32; begin randomize; for i :=1 to iterations do Begin flip := random(2)+1;//-- 1==heads, 2==tails inc(wakings,1 + Ord(flip=2)); inc(heads,Ord(flip=1)); end; writeln(Format(fmt,[iterations,wakings,heads/wakings*100])); end.
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Perl
Perl
use strict; use warnings;   sub sleeping_beauty { my($trials) = @_; my($gotheadsonwaking,$wakenings); $wakenings++ and rand > .5 ? $gotheadsonwaking++ : $wakenings++ for 1..$trials; $wakenings, $gotheadsonwaking/$wakenings }   my $trials = 1_000_000; printf "Wakenings over $trials experiments: %d\nSleeping Beauty should estimate a credence of: %.4f\n", sleeping_beauty($trials);
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#F.C5.8Drmul.C3.A6
Fōrmulæ
package main   import ( "fmt" "math/big" )   var b = new(big.Int)   func isSPDSPrime(n uint64) bool { nn := n for nn > 0 { r := nn % 10 if r != 2 && r != 3 && r != 5 && r != 7 { return false } nn /= 10 } b.SetUint64(n) if b.ProbablyPrime(0) { // 100% accurate up to 2 ^ 64 return true } return false }   func listSPDSPrimes(startFrom, countFrom, countTo uint64, printOne bool) uint64 { count := countFrom for n := startFrom; ; n += 2 { if isSPDSPrime(n) { count++ if !printOne { fmt.Printf("%2d. %d\n", count, n) } if count == countTo { if printOne { fmt.Println(n) } return n } } } }   func main() { fmt.Println("The first 25 terms of the Smarandache prime-digital sequence are:") fmt.Println(" 1. 2") n := listSPDSPrimes(3, 1, 25, false) fmt.Println("\nHigher terms:") indices := []uint64{25, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000} for i := 1; i < len(indices); i++ { fmt.Printf("%6d. ", indices[i]) n = listSPDSPrimes(n+2, indices[i-1], indices[i], true) } }
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Amazing_Hopper
Amazing Hopper
  /* Snake */ /* Implementing this task in Hopper-FLOW-MATIC++ */ /* The snake must catch a bite before time runs out, which decreases by 10 points every 800 milliseconds. The remaining time will be added to your total score. */   #include <flow.h> #include <flow-term.h> #include <keys.h>   #enum 1,N,E,S,W #enum 1,SPACE,FOOD,BORDER   DEF-MAIN(argv, argc) BREAK-ON STACK 16 CLR-SCR MSET(C, quit, nHead, dir, Size, SCORE, counter, T,TPlay,ConsPrey ) SET( symbol, " $@" )   SET( w, 50 ) //50 SET( h, 28 ) // 24 SET( TIME, 100 ) LET( Size := MUL(w,h) ) SET( TLimit := 100 ) VOID( big number, numL1, numL2, numL3 ) GOSUB( set score )   DIM( Size ) AS-ONES( board ) HIDE-CURSOR   GOSUB( put titles ) GOSUB( start ) GOSUB( show ) GOSUB( ready ), SLEEP(3) TIC( T ), TIC( TPlay ) WHILE( NOT (quit) ) DEVIATE-IF( TLimit ~= TPlay ){ GOSUB( show ) WHEN( KEY-PRESSED? ){ SCAN-CODE( C ) SWITCH( C ) CASE( K_UP ) { dir = N, EXIT } CASE( K_RIGHT ){ dir = E, EXIT } CASE( K_DOWN ) { dir = S, EXIT } CASE( K_LEFT ) { dir = W, EXIT } CASE( K_ESC ) { quit = 1, EXIT } CASE( 32 ) { PAUSE, EXIT } SWEND } GOSUB( step ) } DEVIATE-IF( 800 ~= T ) { TIME-=10, CLAMP(0,100,TIME) {TIME, 12, 52} GOSUB( put time ) } WEND GOSUB(you lost), SLEEP(1) GOSUB(game over ), SLEEP(2) LOCATE(ADD(h,1),1) PRNL SHOW-CURSOR PRNL END   RUTINES   // initialize the board, plant a very first food item DEF-FUN( start ) SET( i,1 )   [1:w] {BORDER} CPUT(board) // top [ SUB(MUL(h,w),MINUS-ONE(w)) : end] {BORDER} CPUT(board) // bottom [1:w:end] {BORDER} CPUT(board) // left   SET(i, 1) FOR( LE?(i, h), ++i ) [ MUL(i, w )] {BORDER} PUT(board) // right NEXT LET( nHead := MUL( w, SUB( SUB( h, 1 ), MOD(h,2) )) DIV-INTO(2) ) [ nHead ] {-5} CPUT( board ) LET( dir := N ) SRAND( ~SECONDS) GOSUB( plant ) RET   DEF-FUN( you lost ) SET(i,1), SET(k,0), SET(n,1) LOCATE(1,1) FOR( LE?(i, h), ++i) SET(j,1) FOR( LE?(j, w), ++j) LET( k := [ n ] GET(board) ) COND( IS-NEG?( k )) LOCATE(i,j) PRNL("\033[38;15;3m\033[48;5;9m~\OFF") CEND ++n NEXT NEXT RET   DEF-FUN( show ) SET(i,1) MSET(j, k)   SET(n,1) LOCATE(1,1) FOR( LE?(i, h), ++i) SET(j,1), FOR( LE?(j, w), ++j) LET( k := [ n ] GET(board) ) COND( IS-NEG?( k )) PRN("\033[38;5;3m\033[48;5;15m~\OFF") ELS-COND( {k} IS-EQ?(BORDER)) {"\033[38;5;4m\033[48;5;2m"} PRN( [k] GET(symbol),"\OFF") ELS-COND( {k}IS-EQ?(FOOD) ) {"\033[38;5;15m\033[48;5;9m"} PRN( [k] GET(symbol),"\OFF") ELS {"\033[48;5;28m"} PRN( [k] GET(symbol),"\OFF") CEND ++n NEXT PRNL NEXT RET   // negative values denote the snake (a negated time-to-live in given cell)   // reduce a time-to-live, effectively erasing the tail DEF-FUN( age )   MSET( r, jAge, jR ) CART( IS-NEG?( board ) ) »» (r), SET-RANGE(r)   GET( board ) PLUS(1) »» (jAge) // this is necessary, because Hopper arrays begining in 1 CART( IS-ZERO?(jAge) ) »» (jR) COND( IS-ARRAY?(jR) ) SET-RANGE(jR), SET(jAge, 1), SET-RANGE(r) CEND // ****** {jAge} PUT(board), CLR-RANGE RET   DEF-FUN( step ) SET(len,0) LET( len := [nHead] GET(board) ) SWITCH(dir) CASE (N){ nHead -= w, EXIT } CASE (S){ nHead += w, EXIT } CASE (W){ --nHead, EXIT } CASE (E){ ++nHead, EXIT } SWEND SWITCH( [nHead]CGET(board)) CASE (SPACE){ --len, LET( len := IF( IS-ZERO?(len), 1, len) ) [nHead] { len }, CPUT(board) // keep in mind len is negative GOSUB( age ) EXIT } CASE (FOOD){ --len, LET( len := IF( IS-ZERO?(len), 1, len) ) [nHead] { len }, CPUT(board) GOSUB( plant ) ADD(SCORE,TIME), MOVE-TO(SCORE)   {SCORE, 4, 52} GOSUB( put score ) LET( TIME := 100 ) ++counter, COND( GT?( counter, 5 ) ) LET( TLimit := SUB( TLimit,5 )) CLAMP(30,100,TLimit) LET( counter := 0 ) CEND ++ConsPrey COLOR-FG(10) LOCATE(20,52) PRNL("SPEED: ") LOC-ROW(21), SET-ROUND(2) PRNL( MUL(INV(TLimit),100), " M/S" ) SET-ROUND(-1) LOC-ROW(23) PRNL("CONSUMED PREY:") LOC-ROW(24) PRNL(ConsPrey,"\OFF")   TIC( T ),{TIME, 12, 52} GOSUB( put time ) EXIT } LET( quit := 1 )   SWEND RET   // put a piece of food at random empty position DEF-FUN( plant ) SET(r, 0) LOOP( search position ) LET( r := MOD( CEIL(RAND(MINUS-ONE(Size))), Size ) ) BACK-IF-NOT-EQ( [r] GET(board), SPACE, search position) [r] {FOOD} CPUT( board ) RET   DEF-FUN( put titles ) LOCATE(2,52) PRNL("\033[38;5;15mSCORE\OFF") {SCORE, 4, 52} GOSUB( put score ) LOCATE(10,52) PRNL("\033[38;5;11mTIME\OFF") {TIME, 12, 52} GOSUB( put time )   COLOR-FG(15) LOCATE(26,52) SET-ITALIC, PRNL(" S P E E D") LOC-ROW(27) PRNL("S N A K E!\OFF") RET   DEF-FUN( put time, B, posx, posy ) MSET( i,j,x ) MSET( sb, lsb,nB, p4 ) SET( k,1 )   LOCATE (posx, posy) FILL-BOX(" ",5,20) LET( sb := STR(B) ) LET( lsb := LEN(sb) ) SET( rx, posy ) LET( p4 := ADD( posx, 4 ))   {"\033[38;5;11m\ENF"} PERF-UP(k, lsb, 1) LET( nB := VAL( MID( 1, k, sb )) ) SET(x, 1), SET( i, posx ) FOR( LE?(i, p4), ++i ) SET( j, rx ) FOR( LE?(j, ADD( rx, 2 ) ), ++j ) LOCATE(i, j) PRNL( STR-TO-UTF8(CHAR( [ PLUS-ONE(nB), x] CGET(big number) MUL-BY(219) ))) ++x NEXT NEXT rx += 4 NEXT PRNL("\OFF") RET   DEF-FUN( put score, SCORE, posx, posy ) MSET( ln,s, sp )   LET( sp := STR( SCORE )) LET( ln := LEN(sp))   LOCATE ( posx, posy ) FILL-BOX(" ",4,20) SET(i, 1) {"\033[38;5;15m"} PERF-UP( i, ln, 1) LET( s := VAL( MID( 1, i, sp )) ) [ PLUS-ONE(s) ] // set interval to read element of arrays LOCATE( posx, posy ) PRNL ( STR-TO-UTF8( GET(numL1) )) LOCATE( PLUS-ONE(posx),posy ) PRNL ( STR-TO-UTF8( GET(numL2) )) LOCATE( PLUS-TWO(posx),posy ) PRNL ( STR-TO-UTF8( GET(numL3) )) posy += 2 NEXT PRNL("\OFF") RET   DEF-FUN( set score )   {"┌┐"," ┐","┌┐","┌┐","┐┐","┌┐","┌┐","┌┐","┌┐","┌┐"} APND-LST(numL1) {"││"," │","┌┘"," ┤","└┤","└┐","├┐"," │","├┤","└┤"} APND-LST(numL2) {"└┘"," ┴","└┘","└┘"," ┘","└┘","└┘"," ┴","└┘","└┘"} APND-LST(numL3)   {1,1,1,1,0,1,1,0,1,1,0,1,1,1,1} APND-ROW( big number ) {1,1,0,0,1,0,0,1,0,0,1,0,1,1,1} APND-ROW( big number ) {1,1,1,0,0,1,1,1,1,1,0,0,1,1,1} APND-ROW( big number ) {1,1,1,0,0,1,0,1,1,0,0,1,1,1,1} APND-ROW( big number ) {1,0,1,1,0,1,1,1,1,0,0,1,0,0,1} APND-ROW( big number ) {1,1,1,1,0,0,1,1,1,0,0,1,1,1,1} APND-ROW( big number ) {1,0,0,1,0,0,1,1,1,1,0,1,1,1,1} APND-ROW( big number ) {1,1,1,0,0,1,0,0,1,0,0,1,0,0,1} APND-ROW( big number ) {1,1,1,1,0,1,1,1,1,1,0,1,1,1,1} APND-ROW( big number ) {1,1,1,1,0,1,1,1,1,0,0,1,0,0,1} APND-ROW( big number )   RET   DEF-FUN( ready ) {"\033[38;5;4m\033[48;5;11m"} LOC-COL(16) LOC-ROW(13); PRNL( STR-TO-UTF8(" ▄ ▄▄ ▄ ▄▄ ▄ ▄ ")) LOC-ROW(14); PRNL( STR-TO-UTF8(" █▄▀ █▀ █▄█ █ █ ▀▄▀ ")) LOC-ROW(15); PRNL( STR-TO-UTF8(" ▀ ▀ ▀▀ ▀ ▀ ▀▄▀ ▀ ")) PRNL("\OFF") RET   DEF-FUN( game over ) {"\033[38;5;15m\033[48;5;9m"} LOC-COL(17) LOC-ROW(12); PRNL( STR-TO-UTF8(" ▄▄ ▄ ▄ ▄ ▄▄ ")) LOC-ROW(13); PRNL( STR-TO-UTF8(" █ ▄ █▄█ █ █ █ █▀ ")) LOC-ROW(14); PRNL( STR-TO-UTF8(" ▀▀ ▀ ▀ ▀ ▀ ▀ ▀▀ ")) LOC-ROW(15); PRNL( STR-TO-UTF8(" ▄ ▄ ▄ ▄▄ ▄ ")) LOC-ROW(16); PRNL( STR-TO-UTF8(" █ █ █ █ █▀ █▄▀ ")) LOC-ROW(17); PRNL( STR-TO-UTF8(" ▀ ▀ ▀▀ ▀ ▀ ")) PRNL("\OFF") RET  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#360_Assembly
360 Assembly
* Smith numbers - 02/05/2017 SMITHNUM CSECT USING SMITHNUM,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) save previous context ST R13,4(R15) link backward ST R15,8(R13) link forward LR R13,R15 set addressability LA R10,PG pgi=0 LA R6,4 i=4 DO WHILE=(C,R6,LE,N) do i=4 to n LR R1,R6 i BAL R14,SUMD call sumd(i) ST R0,SS ss=sumd(i) LR R1,R6 i BAL R14,SUMFACTR call sumfactr(i) IF C,R0,EQ,SS THEN if sumd(i)=sumfactr(i) then L R2,NN nn LA R2,1(R2) nn+1 ST R2,NN nn=nn+1 XDECO R6,XDEC i MVC 0(5,R10),XDEC+7 output i LA R10,5(R10) pgi+=5 L R4,IPG ipg LA R4,1(R4) ipg+1 ST R4,IPG ipg=ipg+1 IF C,R4,EQ,=F'16' THEN if ipg=16 then XPRNT PG,80 print buffer MVC PG,=CL80' ' clear buffer LA R10,PG pgi=0 MVC IPG,=F'0' ipg=0 ENDIF , endif ENDIF , endif LA R6,1(R6) i++ ENDDO , enddo i L R4,IPG ipg IF LTR,R4,NZ,R4 THEN if ipg<>0 then XPRNT PG,80 print buffer ENDIF , endif L R1,NN nn XDECO R1,XDEC edit nn MVC PGT(4),XDEC+8 output nn L R1,N n XDECO R1,XDEC edit n MVC PGT+28(5),XDEC+7 output n XPRNT PGT,80 print L R13,4(0,R13) restore previous savearea pointer LM R14,R12,12(R13) restore previous context XR R15,R15 rc=0 BR R14 exit *------- ---- ---------------------------------------- SUMD EQU * sumd(x) SR R0,R0 s=0 DO WHILE=(LTR,R1,NZ,R1) do while x<>0 LR R2,R1 x SRDA R2,32 ~ D R2,=F'10' x/10 LR R1,R3 x=x/10 AR R0,R2 s=s+x//10 ENDDO , enddo while BR R14 return s *------- ---- ---------------------------------------- SUMFACTR EQU * sumfactr(z) ST R14,SAVER14 store r14 ST R1,ZZ z SR R8,R8 m=0 SR R9,R9 f=0 L R4,ZZ z SRDA R4,32 ~ D R4,=F'2' z/2 DO WHILE=(LTR,R4,Z,R4) do while z//2=0 LA R8,2(R8) m=m+2 LA R9,1(R9) f=f+1 L R5,ZZ z SRA R5,1 z/2 ST R5,ZZ z=z/2 LA R4,0 z D R4,=F'2' z/2 ENDDO , enddo while L R4,ZZ z SRDA R4,32 ~ D R4,=F'3' z/3 DO WHILE=(LTR,R4,Z,R4) do while z//3=0 LA R8,3(R8) m=m+3 LA R9,1(R9) f=f+1 L R4,ZZ z SRDA R4,32 ~ D R4,=F'3' z/3 ST R5,ZZ z=z/3 LA R4,0 z D R4,=F'3' z/3 ENDDO , enddo while LA R7,5 do j=5 by 2 while j<=z and j*j<=n WHILEJ C R7,ZZ if j>z BH EWHILEJ then leave while LR R5,R7 j MR R4,R7 *j C R5,N if j*j>n BH EWHILEJ then leave while LR R4,R7 j SRDA R4,32 ~ D R4,=F'3' j/3 LTR R4,R4 if j//3=0 BZ ITERJ then goto iterj L R4,ZZ z SRDA R4,32 ~ DR R4,R7 z/j DO WHILE=(LTR,R4,Z,R4) do while z//j=0 LA R9,1(R9) f=f+1 LR R1,R7 j BAL R14,SUMD call sumd(j) AR R8,R0 m=m+sumd(j) L R4,ZZ z SRDA R4,32 ~ DR R4,R7 z/j ST R5,ZZ z=z/j LA R4,0 ~ DR R4,R7 z/j ENDDO , enddo while ITERJ LA R7,2(R7) j+=2 B WHILEJ enddo EWHILEJ L R4,ZZ z IF C,R4,NE,=F'1' THEN if z<>1 then LA R9,1(R9) f=f+1 L R1,ZZ z BAL R14,SUMD call sumd(z) AR R8,R0 m=m+sumd(z) ENDIF , endif IF C,R9,LT,=F'2' THEN if f<2 then SR R8,R8 mm=0 ENDIF , endif LR R0,R8 return m L R14,SAVER14 restore r14 BR R14 return SAVER14 DS A save r14 * ---- ---------------------------------------- N DC F'10000' n NN DC F'0' nn IPG DC F'0' ipg SS DS F ss ZZ DS F z PG DC CL80' ' buffer PGT DC CL80'xxxx smith numbers found <= xxxxx' XDEC DS CL12 temp YREGS END SMITHNUM
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Action.21
Action!
CARD FUNC SumDigits(CARD n) CARD res,a   res=0 WHILE n#0 DO res==+n MOD 10 n==/10 OD RETURN (res)   CARD FUNC PrimeFactors(CARD n CARD ARRAY f) CARD a,count   a=2 count=0 DO IF n MOD a=0 THEN f(count)=a count==+1 n==/a IF n=1 THEN RETURN (count) FI ELSE a==+1 FI OD RETURN (0)   PROC Main() CARD n,i,s1,s2,count,tmp CARD ARRAY f(100)   FOR n=4 TO 10000 DO count=PrimeFactors(n,f) IF count>=2 THEN s1=SumDigits(n) s2=0 FOR i=0 TO count-1 DO tmp=f(i) s2==+SumDigits(tmp) OD IF s1=s2 THEN PrintC(n) Put(32) FI FI Poke(77,0) ;turn off the attract mode OD RETURN