task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Subtractive_generator | Subtractive generator | A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence.
The formula is
r
n
=
r
(
n
−
i
)
−
r
(
n
−
j
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}}
for some fixed values of
i
{\displaystyle i}
,
j
{\displaystyle j}
and
m
{\displaystyle m}
, all positive integers. Supposing that
i
>
j
{\displaystyle i>j}
, then the state of this generator is the list of the previous numbers from
r
n
−
i
{\displaystyle r_{n-i}}
to
r
n
−
1
{\displaystyle r_{n-1}}
. Many states generate uniform random integers from
0
{\displaystyle 0}
to
m
−
1
{\displaystyle m-1}
, but some states are bad. A state, filled with zeros, generates only zeros. If
m
{\displaystyle m}
is even, then a state, filled with even numbers, generates only even numbers. More generally, if
f
{\displaystyle f}
is a factor of
m
{\displaystyle m}
, then a state, filled with multiples of
f
{\displaystyle f}
, generates only multiples of
f
{\displaystyle f}
.
All subtractive generators have some weaknesses. The formula correlates
r
n
{\displaystyle r_{n}}
,
r
(
n
−
i
)
{\displaystyle r_{(n-i)}}
and
r
(
n
−
j
)
{\displaystyle r_{(n-j)}}
; these three numbers are not independent, as true random numbers would be. Anyone who observes
i
{\displaystyle i}
consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits.
The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of
r
(
n
−
i
)
−
r
(
n
−
j
)
{\displaystyle r_{(n-i)}-r_{(n-j)}}
is always between
−
m
{\displaystyle -m}
and
m
{\displaystyle m}
, so a program only needs to add
m
{\displaystyle m}
to negative numbers.
The choice of
i
{\displaystyle i}
and
j
{\displaystyle j}
affects the period of the generator. A popular choice is
i
=
55
{\displaystyle i=55}
and
j
=
24
{\displaystyle j=24}
, so the formula is
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}}
The subtractive generator from xpat2 uses
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
10
9
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}}
The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A).
Bentley uses this clever algorithm to seed the generator.
Start with a single
s
e
e
d
{\displaystyle seed}
in range
0
{\displaystyle 0}
to
10
9
−
1
{\displaystyle 10^{9}-1}
.
Set
s
0
=
s
e
e
d
{\displaystyle s_{0}=seed}
and
s
1
=
1
{\displaystyle s_{1}=1}
. The inclusion of
s
1
=
1
{\displaystyle s_{1}=1}
avoids some bad states (like all zeros, or all multiples of 10).
Compute
s
2
,
s
3
,
.
.
.
,
s
54
{\displaystyle s_{2},s_{3},...,s_{54}}
using the subtractive formula
s
n
=
s
(
n
−
2
)
−
s
(
n
−
1
)
(
mod
10
9
)
{\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}}
.
Reorder these 55 values so
r
0
=
s
34
{\displaystyle r_{0}=s_{34}}
,
r
1
=
s
13
{\displaystyle r_{1}=s_{13}}
,
r
2
=
s
47
{\displaystyle r_{2}=s_{47}}
, ...,
r
n
=
s
(
34
∗
(
n
+
1
)
(
mod
55
)
)
{\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}}
.
This is the same order as
s
0
=
r
54
{\displaystyle s_{0}=r_{54}}
,
s
1
=
r
33
{\displaystyle s_{1}=r_{33}}
,
s
2
=
r
12
{\displaystyle s_{2}=r_{12}}
, ...,
s
n
=
r
(
(
34
∗
n
)
−
1
(
mod
55
)
)
{\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}}
.
This rearrangement exploits how 34 and 55 are relatively prime.
Compute the next 165 values
r
55
{\displaystyle r_{55}}
to
r
219
{\displaystyle r_{219}}
. Store the last 55 values.
This generator yields the sequence
r
220
{\displaystyle r_{220}}
,
r
221
{\displaystyle r_{221}}
,
r
222
{\displaystyle r_{222}}
and so on. For example, if the seed is 292929, then the sequence begins with
r
220
=
467478574
{\displaystyle r_{220}=467478574}
,
r
221
=
512932792
{\displaystyle r_{221}=512932792}
,
r
222
=
539453717
{\displaystyle r_{222}=539453717}
. By starting at
r
220
{\displaystyle r_{220}}
, this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next
r
n
{\displaystyle r_{n}}
. Any array or list would work; a ring buffer is ideal but not necessary.
Implement a subtractive generator that replicates the sequences from xpat2.
| #Nim | Nim | import deques, sequtils
template shfl(idx): untyped = (K*(idx+1)) mod I
func mutuallyprime(I, K: int16): bool {.compiletime.} =
## compile time check shuffling works properly
let
x = {1'i16..I}
s = x.toSeq
var r: set[int16]
for n in 0..<I:
r.incl s[n.shfl]
r == x
func `%`(i: int, m: int): int = (if i < 0: i+m else: i)
## positive modulo, and we don't need to test if > m
## because (i-j) is always less than m
template next(state): untyped =
state.addLast (state[^I]-state[^J]) % M
discard state.popFirst()
func seedGen[I, J, K, M: static int](seed: range[0..M-1]): Deque[int] =
var s = @[seed, 1]
for _ in 2..<I:
s.add (s[^2]-s[^1]) % M
#reorder and put into ring buffer
for i in 0..<I:
result.addLast s[i.shfl]
#cycle through the next 165 values
for _ in 0..<3*I:
result.next
func initSubGen[I, J, K, M: static int](seed: range[0..M-1]): auto =
##check parameters at compile time
##seed will be checked to be in the range 0..M-1
static:
for x in [I, J, K, M]:
assert x > 0, "all params must be positive"
assert I > J, "I must be > J"
assert mutuallyprime(I, K), "I, K must be relatively prime"
var r = seedGen[I, J, K, M](seed)
result = proc(): int =
r.next
r.peekLast
let subGen* = initSubGen[55, 24, 34, 1e9.int]
when isMainModule:
let rand = subGen(292929)
for _ in 1..3:
echo rand() |
http://rosettacode.org/wiki/Substitution_cipher | Substitution cipher | Substitution Cipher Implementation - File Encryption/Decryption
Task
Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file.
This type of Encryption/Decryption scheme is often called a Substitution Cipher.
Related tasks
Caesar cipher
Rot-13
Vigenère Cipher/Cryptanalysis
See also
Wikipedia: Substitution cipher
| #VBScript | VBScript |
option explicit
const maxk=94
dim key(94)
a="I'm working on modernizing Rosetta Code's infrastructure. Starting with communications."&_
" Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)"
sub gen 'swaps items not previusly affected by a swap
dim i,m,t
for i=0 to ubound(key)
key(i)=i+32
next
for i=0 to ubound(key)-1
if key(i)=i+32 then
m=i+int(rnd*(maxk-i))
if key(m)=m+32 then
t=key(m):key(m)=key(i):key(i)=t
end if
end if
next
end sub
function viewkey
dim i,b
b=""
for i=1 to ubound(key)
b=b&chr(key(i))
next
viewkey=b
end function
function iif(a,b,c) if a then iif=b else iif =c end if: end function
function docode(a)
dim b,i,ch,n
n=maxk+32
b=""
for i=1 to len(a)
ch=asc(mid(a,i,1))
'wscript.echo ch
b=b&chr(key(iif (ch>n or ch<32,0,ch-32)))
next
docode=b
end function
randomize timer
dim a,b,c
gen
wscript.echo "Key: " & viewkey & vbcrlf
wscript.echo "Original: " & a & Vbcrlf
b=docode(a)
wscript.echo "Encoded: "& b & Vbcrlf
c=docode(b)
wscript.echo "Decoded: " & c & Vbcrlf
wscript.quit(0)
|
http://rosettacode.org/wiki/Substitution_cipher | Substitution cipher | Substitution Cipher Implementation - File Encryption/Decryption
Task
Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file.
This type of Encryption/Decryption scheme is often called a Substitution Cipher.
Related tasks
Caesar cipher
Rot-13
Vigenère Cipher/Cryptanalysis
See also
Wikipedia: Substitution cipher
| #Wren | Wren | var key = "]kYV}(!7P$n5_0i R:?jOWtF/=-pe'AD&@r6\%ZXs\"v*N[#wSl9zq2^+g;LoB`aGh{3.HIu4fbK)mU8|dMET><,Qc\\C1yxJ"
var encode = Fn.new { |s|
var res = ""
for (c in s) res = res + key[c.bytes[0] - 32]
return res
}
var decode = Fn.new { |s|
var res = ""
for (c in s) res = res + String.fromByte(key.indexOf(c) + 32)
return res
}
var s = "The quick brown fox jumps over the lazy dog, who barks VERY loudly!"
var enc = encode.call(s)
System.print("Encoded: %(enc)")
System.print("Decoded: %(decode.call(enc))") |
http://rosettacode.org/wiki/Sum_and_product_of_an_array | Sum and product of an array | Task
Compute the sum and product of an array of integers.
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
Dim a(1 To 4) As Integer = {1, 4, 6, 3}
Dim As Integer i, sum = 0, prod = 1
For i = 1 To 4
sum += a(i)
prod *= a(i)
Next
Print "Sum ="; sum
Print "Product ="; prod
Print
Print "Press any key to quit"
Sleep |
http://rosettacode.org/wiki/Sum_and_product_of_an_array | Sum and product of an array | Task
Compute the sum and product of an array of integers.
| #Frink | Frink |
a = [1,2,3,5,7]
sum[a]
product[a]
|
http://rosettacode.org/wiki/Sum_of_a_series | Sum of a series | Compute the nth term of a series, i.e. the sum of the n first terms of the corresponding sequence.
Informally this value, or its limit when n tends to infinity, is also called the sum of the series, thus the title of this task.
For this task, use:
S
n
=
∑
k
=
1
n
1
k
2
{\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}}
and compute
S
1000
{\displaystyle S_{1000}}
This approximates the zeta function for S=2, whose exact value
ζ
(
2
)
=
π
2
6
{\displaystyle \zeta (2)={\pi ^{2} \over 6}}
is the solution of the Basel problem.
| #Erlang | Erlang | lists:sum([1/math:pow(X,2) || X <- lists:seq(1,1000)]). |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Clojure | Clojure | > (apply str (take-while #(not (#{\# \;} %)) "apples # comment"))
"apples " |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #COBOL | COBOL | identification division.
program-id. StripComments.
data division.
working-storage section.
01 line-text pic x(64).
procedure division.
main.
move "apples, pears # and bananas" to line-text
perform show-striped-text
move "apples, pears ; and bananas" to line-text
perform show-striped-text
stop run
.
show-striped-text.
unstring line-text delimited by "#" or ";" into line-text
display quote, function trim(line-text), quote
. |
http://rosettacode.org/wiki/Strip_block_comments | Strip block comments | A block comment begins with a beginning delimiter and ends with a ending delimiter, including the delimiters. These delimiters are often multi-character sequences.
Task
Strip block comments from program text (of a programming language much like classic C).
Your demos should at least handle simple, non-nested and multi-line block comment delimiters.
The block comment delimiters are the two-character sequences:
/* (beginning delimiter)
*/ (ending delimiter)
Sample text for stripping:
/**
* Some comments
* longer comments here that we can parse.
*
* Rahoo
*/
function subroutine() {
a = /* inline comment */ b + c ;
}
/*/ <-- tricky comments */
/**
* Another comment.
*/
function something() {
}
Extra credit
Ensure that the stripping code is not hard-coded to the particular delimiters described above, but instead allows the caller to specify them. (If your language supports them, optional parameters may be useful for this.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Fortran | Fortran |
SUBROUTINE UNBLOCK(THIS,THAT) !Removes block comments bounded by THIS and THAT.
Copies from file INF to file OUT, record by record, except skipping null output records.
CHARACTER*(*) THIS,THAT !Starting and ending markers.
INTEGER LOTS !How long is a piece of string?
PARAMETER (LOTS = 6666) !This should do.
CHARACTER*(LOTS) ACARD,ALINE !Scratchpads.
INTEGER LC,LL,L !Lengths.
INTEGER L1,L2 !Scan fingers.
INTEGER NC,NL !Might as well count records read and written.
LOGICAL BLAH !A state: in or out of a block comment.
INTEGER MSG,KBD,INF,OUT !I/O unit numbers.
COMMON /IODEV/MSG,KBD,INF,OUT !Thus.
NC = 0 !No cards read in.
NL = 0 !No lines written out.
BLAH = .FALSE. !And we're not within a comment.
Chug through the input.
10 READ(INF,11,END = 100) LC,ACARD(1:MIN(LC,LOTS)) !Yum.
11 FORMAT (Q,A) !Sez: how much remains (Q), then, characters (A).
NC = NC + 1 !A card has been read.
IF (LC.GT.LOTS) THEN !Paranoia.
WRITE (MSG,12) NC,LC,LOTS !Scream.
12 FORMAT ("Record ",I0," has length ",I0,"! My limit is ",I0)
LC = LOTS !Stay calm, and carry on.
END IF !None of this should happen.
Chew through ACARD according to mood.
LL = 0 !No output yet.
L2 = 0 !Syncopation. Where the previous sniff ended.
20 L1 = L2 + 1 !The start of what we're looking at.
IF (L1.LE.LC) THEN !Anything left?
L2 = L1 !Yes. This is the probe.
IF (BLAH) THEN !So, what's our mood?
21 IF (L2 + LEN(THAT) - 1 .LE. LC) THEN !We're skipping stuff.
IF (ACARD(L2:L2 + LEN(THAT) - 1).EQ.THAT) THEN !An ender yet?
BLAH = .FALSE. !Yes!
L2 = L2 + LEN(THAT) - 1 !Finger its final character.
GO TO 20 !And start a new advance.
END IF !But if that wasn't an ender,
L2 = L2 + 1 !Advance one.
GO TO 21 !And try again.
END IF !By here, insufficient text remains to match THAT, so we're finished with ACARD.
ELSE !Otherwise, if we're not in a comment, we're looking at grist.
22 IF (L2 + LEN(THIS) - 1 .LE. LC) THEN !Enough text to match a comment starter?
IF (ACARD(L2:L2 + LEN(THIS) - 1).EQ.THIS) THEN !Yes. Does it?
BLAH = .TRUE. !Yes!
L = L2 - L1 !Recalling where this state started.
ALINE(LL + 1:LL + L) = ACARD(L1:L2 - 1) !Copy the non-BLAH text.
LL = LL + L !L2 fingers the first of THIS.
L2 = L2 + LEN(THIS) - 1 !Finger the last matching THIS.
GO TO 20 !And resume.
END IF !But if that wasn't a comment starter,
L2 = L2 + 1 !Advance one.
GO TO 22 !And try again.
END IF !But if there remains insufficient to match THIS
L = LC - L1 + 1 !Then the remainder of the line is grist.
ALINE(LL + 1:LL + L) = ACARD(L1:LC) !So grab it.
LL = LL + L !And count it in.
END IF !By here, we're finished witrh ACARD.
END IF !So much for ACARD.
Cast forth some output.
IF (LL.GT.0) THEN !If there is any.
WRITE (OUT,23) ALINE(1:LL) !There is.
23 FORMAT (">",A,"<") !Just text, but with added bounds.
NL = NL + 1 !Count a line.
END IF !So much for output.
GO TO 10 !Perhaps there is some more input.
Completed.
100 WRITE (MSG,101) NC,NL !Be polite.
101 FORMAT (I0," read, ",I0," written.")
END !No attention to context, such as quoted strings.
PROGRAM TEST
INTEGER MSG,KBD,INF,OUT
COMMON /IODEV/MSG,KBD,INF,OUT
KBD = 5
MSG = 6
INF = 10
OUT = 11
OPEN (INF,FILE="Source.txt",STATUS="OLD",ACTION="READ")
OPEN (OUT,FILE="Src.txt",STATUS="REPLACE",ACTION="WRITE")
CALL UNBLOCK("/*","*/")
END !All open files are closed on exit..
|
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program insertString64.s */
/* In assembler, there is no function to insert a chain */
/* so this program offers two functions to insert */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ CHARPOS, '@'
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szString: .asciz " string "
szString1: .asciz "insert"
szString2: .asciz "abcd@efg"
szString3: .asciz "abcdef @"
szString4: .asciz "@ abcdef"
szCarriageReturn: .asciz "\n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // entry of program
ldr x0,qAdrszString // string address
ldr x1,qAdrszString1 // string address
mov x2,#0
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszString // string address
ldr x1,qAdrszString1 // string address
mov x2,#3
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszString // string address
ldr x1,qAdrszString1 // string address
mov x2,#40
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszString2 // string address
ldr x1,qAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszString3 // string address
ldr x1,qAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszString4 // string address
ldr x1,qAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr x0,qAdrszCarriageReturn
bl affichageMess
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc 0 // perform the system call
qAdrszString: .quad szString
qAdrszString1: .quad szString1
qAdrszString2: .quad szString2
qAdrszString3: .quad szString3
qAdrszString4: .quad szString4
qAdrszCarriageReturn: .quad szCarriageReturn
/******************************************************************/
/* insertion of a sub-chain in a chain in the desired position */
/******************************************************************/
/* x0 contains the address of string 1 */
/* x1 contains the address of string to insert */
/* x2 contains the position of insertion :
0 start string
if x2 > lenght string 1 insert at end of string*/
/* x0 return the address of new string on the heap */
strInsert:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x3,#0 // length counter
1: // compute length of string 1
ldrb w4,[x0,x3]
cmp w4,#0
cinc x3,x3,ne // increment to one if not equal
bne 1b // loop if not equal
mov x5,#0 // length counter insertion string
2: // compute length of insertion string
ldrb w4,[x1,x5]
cmp x4,#0
cinc x5,x5,ne // increment to one if not equal
bne 2b
cmp x5,#0
beq 99f // string empty -> error
add x3,x3,x5 // add 2 length
add x3,x3,#1 // +1 for final zero
mov x6,x0 // save address string 1
mov x0,#0 // allocation place heap
mov x8,BRK // call system 'brk'
svc #0
mov x5,x0 // save address heap for output string
add x0,x0,x3 // reservation place x3 length
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
//
mov x8,#0 // index load characters string 1
cmp x2,#0 // index insertion = 0
beq 5f // insertion at string 1 begin
3: // loop copy characters string 1
ldrb w0,[x6,x8] // load character
cmp w0,#0 // end string ?
beq 5f // insertion at end
strb w0,[x5,x8] // store character in output string
add x8,x8,#1 // increment index
cmp x8,x2 // < insertion index ?
blt 3b // yes -> loop
5:
mov x4,x8 // init index character output string
mov x3,#0 // index load characters insertion string
6:
ldrb w0,[x1,x3] // load characters insertion string
cmp w0,#0 // end string ?
beq 7f
strb w0,[x5,x4] // store in output string
add x3,x3,#1 // increment index
add x4,x4,#1 // increment output index
b 6b // and loop
7:
ldrb w0,[x6,x8] // load other character string 1
strb w0,[x5,x4] // store in output string
cmp x0,#0 // end string 1 ?
beq 8f // yes -> end
add x4,x4,#1 // increment output index
add x8,x8,#1 // increment index
b 7b // and loop
8:
mov x0,x5 // return output string address
b 100f
99: // error
mov x0,#-1
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret
/******************************************************************/
/* insert string at character insertion */
/******************************************************************/
/* x0 contains the address of string 1 */
/* x1 contains the address of insertion string */
/* x0 return the address of new string on the heap */
/* or -1 if error */
strInsertAtChar:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x3,#0 // length counter
1: // compute length of string 1
ldrb w4,[x0,x3]
cmp w4,#0
cinc x3,x3,ne // increment to one if not equal
bne 1b // loop if not equal
mov x5,#0 // length counter insertion string
2: // compute length to insertion string
ldrb w4,[x1,x5]
cmp x4,#0
cinc x5,x5,ne // increment to one if not equal
bne 2b // and loop
cmp x5,#0
beq 99f // string empty -> error
add x3,x3,x5 // add 2 length
add x3,x3,#1 // +1 for final zero
mov x6,x0 // save address string 1
mov x0,#0 // allocation place heap
mov x8,BRK // call system 'brk'
svc #0
mov x5,x0 // save address heap for output string
add x0,x0,x3 // reservation place x3 length
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
mov x2,0
mov x4,0
3: // loop copy string begin
ldrb w3,[x6,x2]
cmp w3,0
beq 99f
cmp w3,CHARPOS // insertion character ?
beq 5f // yes
strb w3,[x5,x4] // no store character in output string
add x2,x2,1
add x4,x4,1
b 3b // and loop
5: // x4 contains position insertion
add x8,x4,1 // init index character output string
// at position insertion + one
mov x3,#0 // index load characters insertion string
6:
ldrb w0,[x1,x3] // load characters insertion string
cmp w0,#0 // end string ?
beq 7f // yes
strb w0,[x5,x4] // store in output string
add x3,x3,#1 // increment index
add x4,x4,#1 // increment output index
b 6b // and loop
7: // loop copy end string
ldrb w0,[x6,x8] // load other character string 1
strb w0,[x5,x4] // store in output string
cmp x0,#0 // end string 1 ?
beq 8f // yes -> end
add x4,x4,#1 // increment output index
add x8,x8,#1 // increment index
b 7b // and loop
8:
mov x0,x5 // return output string address
b 100f
99: // error
mov x0,#-1
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Action.21 | Action! | PROC Main()
CHAR ARRAY extra="little"
PrintF("Mary had a %S lamb.%E",extra)
RETURN |
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | with Ada.Strings.Fixed, Ada.Text_IO;
use Ada.Strings, Ada.Text_IO;
procedure String_Replace is
Original : constant String := "Mary had a @__@ lamb.";
Tbr : constant String := "@__@";
New_Str : constant String := "little";
Index : Natural := Fixed.Index (Original, Tbr);
begin
Put_Line (Fixed.Replace_Slice (
Original, Index, Index + Tbr'Length - 1, New_Str));
end String_Replace; |
http://rosettacode.org/wiki/Sum_to_100 | Sum to 100 | Task
Find solutions to the sum to one hundred puzzle.
Add (insert) the mathematical
operators + or - (plus
or minus) before any of the digits in the
decimal numeric string 123456789 such that the
resulting mathematical expression adds up to a
particular sum (in this iconic case, 100).
Example:
123 + 4 - 5 + 67 - 89 = 100
Show all output here.
Show all solutions that sum to 100
Show the sum that has the maximum number of solutions (from zero to infinity‡)
Show the lowest positive sum that can't be expressed (has no solutions), using the rules for this task
Show the ten highest numbers that can be expressed using the rules for this task (extra credit)
‡ (where infinity would be a relatively small 123,456,789)
An example of a sum that can't be expressed (within the rules of this task) is: 5074
(which, of course, isn't the lowest positive sum that can't be expressed).
| #PureBasic | PureBasic | #START=6561
#STOPP=19682
#SUMME=100
#BASIS="123456789"
Structure TSumTerm
sum.i
ter.s
EndStructure
NewList Solutions.TSumTerm()
NewMap SolCount.i()
Dim op.s{1}(8)
Dim b.s{1}(8)
PokeS(@b(),#BASIS)
Procedure StripTerm(*p_Term)
If PeekS(*p_Term,1)="+" : PokeC(*p_Term,' ') : EndIf
EndProcedure
Procedure.s Triadisch(v)
While v : r$=Str(v%3)+r$ : v/3 : Wend
ProcedureReturn r$
EndProcedure
Procedure.i Calc(t$)
While Len(t$)
x=Val(t$) : r+x
If x<0 : s$=Str(x) : Else : s$="+"+Str(x) : EndIf
t$=RemoveString(t$,s$,#PB_String_NoCase,1,1)
Wend
ProcedureReturn r
EndProcedure
For n=#START To #STOPP
PokeS(@op(),Triadisch(n))
Term$=""
For i=0 To 8
Select op(i)
Case "0" : Term$+ b(i)
Case "1" : Term$+"+"+b(i)
Case "2" : Term$+"-"+b(i)
EndSelect
Next
AddElement(Solutions()) : Solutions()\sum=Calc(Term$) : StripTerm(@Term$) : Solutions()\ter=Term$
Next
SortStructuredList(Solutions(),#PB_Sort_Ascending,OffsetOf(TSumTerm\sum),TypeOf(TSumTerm\sum))
If OpenConsole()
PrintN("Show all solutions that sum to 100:")
ForEach Solutions()
If Solutions()\sum=#SUMME : PrintN(#TAB$+Solutions()\ter) : EndIf
SolCount(Str(Solutions()\sum))+1
Next
ForEach SolCount()
If SolCount()>MaxCount : MaxCount=SolCount() : MaxVal$=MapKey(SolCount()) : EndIf
Next
PrintN("Show the positve sum that has the maximum number of solutions:")
PrintN(#TAB$+MaxVal$+" has "+Str(MaxCount)+" solutions")
If LastElement(Solutions())
MaxVal=Solutions()\sum
PrintN("Show the lowest positive number that can't be expressed:")
For i=1 To MaxVal
If SolCount(Str(i))=0 : PrintN(#TAB$+Str(i)) : Break : EndIf
Next
PrintN("Show the 10 highest numbers that can be expressed:")
For i=1 To 10
PrintN(#TAB$+LSet(Str(Solutions()\sum),9)+" = "+Solutions()\ter)
If Not PreviousElement(Solutions()) : Break : EndIf
Next
EndIf
Input()
EndIf |
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string | Strip a set of characters from a string | Task
Create a function that strips a set of characters from a string.
The function should take two arguments:
a string to be stripped
a string containing the set of characters to be stripped
The returned string should contain the first string, stripped of any characters in the second argument:
print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AWK | AWK | #!/usr/bin/awk -f
BEGIN {
x = "She was a soul stripper. She took my heart!";
print x;
gsub(/[aei]/,"",x);
print x;
} |
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string | Strip a set of characters from a string | Task
Create a function that strips a set of characters from a string.
The function should take two arguments:
a string to be stripped
a string containing the set of characters to be stripped
The returned string should contain the first string, stripped of any characters in the second argument:
print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BaCon | BaCon | text$ = "She was a soul stripper. She took my heart!"
PRINT text$
PRINT EXTRACT$(text$, "[aei]", TRUE)
|
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #ColdFusion | ColdFusion |
<cfoutput>
<cfset who = "World!">
#"Hello " & who#
</cfoutput>
|
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #Common_Lisp | Common Lisp | (defmacro prependf (s &rest strs)
"Prepend the given string variable with additional strings. The string variable is modified in-place."
`(setf ,s (concatenate 'string ,@strs ,s)))
(defvar *str* "foo")
(prependf *str* "bar")
(format T "~a~%" *str*) |
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #D | D | import std.stdio;
void main() {
string s = "world!";
s = "Hello " ~ s;
writeln(s);
} |
http://rosettacode.org/wiki/String_comparison | String comparison |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to compare two strings from within the language and how to achieve a lexical comparison.
The task should demonstrate:
Comparing two strings for exact equality
Comparing two strings for inequality (i.e., the inverse of exact equality)
Comparing two strings to see if one is lexically ordered before than the other
Comparing two strings to see if one is lexically ordered after than the other
How to achieve both case sensitive comparisons and case insensitive comparisons within the language
How the language handles comparison of numeric strings if these are not treated lexically
Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system.
For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
Here "generic/polymorphic" comparison means that the function or operator you're using doesn't always do string comparison, but bends the actual semantics of the comparison depending on the types one or both arguments; with such an operator, you achieve string comparison only if the arguments are sufficiently string-like in type or appearance.
In contrast, a "coercive/allomorphic" comparison function or operator has fixed string-comparison semantics regardless of the argument type; instead of the operator bending, it's the arguments that are forced to bend instead and behave like strings if they can, and the operator simply fails if the arguments cannot be viewed somehow as strings. A language may have one or both of these kinds of operators; see the Raku entry for an example of a language with both kinds of operators.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Aime | Aime | text s, t;
s = "occidental";
t = "oriental";
# operator case sensitive comparison
o_form("~ vs ~ (==, !=, <, <=, >=, >): ~ ~ ~ ~ ~ ~\n", s, t, s == t, s != t, s < t, s <= t, s >= t, s > t);
s = "Oriental";
t = "oriental";
# case sensitive comparison
o_form("~ vs ~ (==, !=, <, >): ~ ~ ~ ~\n", s, t, !compare(s, t), compare(s, t), compare(s, t) < 0, 0 < compare(s, t));
# case insensitive comparison
o_form("~ vs ~ (==, !=, <, >): ~ ~ ~ ~\n", s, t, !icompare(s, t), icompare(s, t), icompare(s, t) < 0, 0 < icompare(s, t)); |
http://rosettacode.org/wiki/String_comparison | String comparison |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to compare two strings from within the language and how to achieve a lexical comparison.
The task should demonstrate:
Comparing two strings for exact equality
Comparing two strings for inequality (i.e., the inverse of exact equality)
Comparing two strings to see if one is lexically ordered before than the other
Comparing two strings to see if one is lexically ordered after than the other
How to achieve both case sensitive comparisons and case insensitive comparisons within the language
How the language handles comparison of numeric strings if these are not treated lexically
Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system.
For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
Here "generic/polymorphic" comparison means that the function or operator you're using doesn't always do string comparison, but bends the actual semantics of the comparison depending on the types one or both arguments; with such an operator, you achieve string comparison only if the arguments are sufficiently string-like in type or appearance.
In contrast, a "coercive/allomorphic" comparison function or operator has fixed string-comparison semantics regardless of the argument type; instead of the operator bending, it's the arguments that are forced to bend instead and behave like strings if they can, and the operator simply fails if the arguments cannot be viewed somehow as strings. A language may have one or both of these kinds of operators; see the Raku entry for an example of a language with both kinds of operators.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | STRING a := "abc ", b := "ABC ";
# when comparing strings, Algol 68 ignores trailing blanks #
# so e.g. "a" = "a " is true #
# test procedure, prints message if condition is TRUE #
PROC test = ( BOOL condition, STRING message )VOID:
IF condition THEN print( ( message, newline ) ) FI;
# equality? #
test( a = b, "a = b" );
# inequality? #
test( a /= b, "a not = b" );
# lexically ordered before? #
test( a < b, "a < b" );
# lexically ordered after? #
test( a > b, "a > b" );
# Algol 68's builtin string comparison operators are case-sensitive. #
# To perform case insensitive comparisons, procedures or operators #
# would need to be written #
# e.g. #
# compare two strings, ignoring case #
# Note the "to upper" PROC is an Algol 68G extension #
# It could be written in standard Algol 68 (assuming ASCII) as e.g. #
# PROC to upper = ( CHAR c )CHAR: #
# IF c < "a" OR c > "z" THEN c #
# ELSE REPR ( ( ABS c - ABS "a" ) + ABS "A" ) FI; #
PROC caseless comparison = ( STRING a, b )INT:
BEGIN
INT a max = UPB a, b max = UPB b;
INT a pos := LWB a, b pos := LWB b;
INT result := 0;
WHILE result = 0
AND ( a pos <= a max OR b pos <= b max )
DO
CHAR a char := to upper( IF a pos <= a max THEN a[ a pos ] ELSE " " FI );
CHAR b char := to upper( IF b pos <= b max THEN b[ b pos ] ELSE " " FI );
result := ABS a char - ABS b char;
a pos +:= 1;
b pos +:= 1
OD;
IF result < 0 THEN -1 ELIF result > 0 THEN 1 ELSE 0 FI
END ; # caseless comparison #
# compare two strings for equality, ignoring case #
PROC equal ignoring case = ( STRING a, b )BOOL: caseless comparison( a, b ) = 0;
# similar procedures for inequality and lexical ording ... #
test( equal ignoring case( a, b ), "a = b (ignoring case)" );
# Algol 68 is strongly typed - strings cannot be compared to e.g. integers #
# unless procedures or operators are written, e.g. #
# e.g. OP = = ( STRING a, INT b )BOOL: a = whole( b, 0 ); #
# OP = = ( INT a, STRING b )BOOL: b = a; #
# etc. #
# Algol 68 also has <= and >= comparison operators for testing for #
# "lexically before or equal" and "lexically after or equal" #
test( a <= b, "a <= b" );
test( a >= b, "a >= b" );
# there are no other forms of string comparison builtin to Algol 68 # |
http://rosettacode.org/wiki/String_case | String case | Task
Take the string alphaBETA and demonstrate how to convert it to:
upper-case and
lower-case
Use the default encoding of a string literal or plain ASCII if there is no string literal in your language.
Note: In some languages alphabets toLower and toUpper is not reversable.
Show any additional case conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that may be included in the library of your language.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #68000_Assembly | 68000 Assembly | UpperCase:
;input: A0 = pointer to the string's base address.
;alters the string in-place.
MOVE.B (A0),D0 ;load a letter
BEQ .Terminated ;we've reached the null terminator.
CMP.B #'a',D0 ;compare to ascii code for a
BCS .overhead ;if less than a, keep looping.
CMP.B #'z',D0 ;compare to ascii code for z
BHI .overhead ;if greater than z, keep looping
AND.B #%1101111,D0 ;this "magic constant" turns lower case to upper case, since they're always 32 apart.
.overhead:
MOVE.B D0,(A0)+ ;store the letter back and increment the pointer.
;If this isn't an alphabetical character, D0 won't change and this store won't affect the string at all.
;If it was a letter, it will have been changed to upper case before storing back.
BRA UpperCase ;next letter
.Terminated:
RTS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
LowerCase:
MOVE.B (A0),D0 ;load a letter
BEQ .Terminated ;we've reached the null terminator.
CMP.B #'A',D0 ;compare to ascii code for A
BCS .overhead ;if less than A, keep looping.
CMP.B #'Z',D0 ;compare to ascii code for Z
BHI .overhead ;if greater than Z, keep looping
OR.B #%00100000,D0 ;this "magic constant" turns upper case to lower case, since they're always 32 apart.
.overhead:
MOVE.B D0,(A0)+ ;store the result and get ready to read the next letter.
BRA LowerCase ;next letter
.Terminated:
RTS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ToggleCase:
MOVE.B (A0),D0 ;load a letter and inc the pointer to the next letter
BEQ .Terminated ;we've reached the null terminator.
MOVE.B D0,D1 ;copy the letter
AND.B #%11011111 ;convert the copy to upper case so we can check it.
CMP.B #'A',D1 ;compare to ascii code for A
BCS overhead ;if less than A, keep looping.
CMP.B #'Z',D1 ;compare to ascii code for Z
BHI overhead ;if greater than Z, keep looping
EOR.B #%00100000,D0 ;swaps the case of the letter
overhead:
MOVE.B D0,(A0)+ ;store the result
BRA ToggleCase ;next letter
.Terminated:
RTS |
http://rosettacode.org/wiki/String_matching | String matching |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings, demonstrate the following three types of string matching:
Determining if the first string starts with second string
Determining if the first string contains the second string at any location
Determining if the first string ends with the second string
Optional requirements:
Print the location of the match for part 2
Handle multiple occurrences of a string for part 2.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | set stringA to "I felt happy because I saw the others were happy and because I knew I should feel happy, but I wasn’t really happy."
set string1 to "I felt happy"
set string2 to "I should feel happy"
set string3 to "I wasn't really happy"
-- Determining if the first string starts with second string
stringA starts with string1 --> true
-- Determining if the first string contains the second string at any location
stringA contains string2 --> true
-- Determining if the first string ends with the second string
stringA ends with string3 --> false
-- Print the location of the match for part 2
offset of string2 in stringA --> 69 |
http://rosettacode.org/wiki/String_length | String length | Task
Find the character and byte length of a string.
This means encodings like UTF-8 need to be handled properly, as there is not necessarily a one-to-one relationship between bytes and characters.
By character, we mean an individual Unicode code point, not a user-visible grapheme containing combining characters.
For example, the character length of "møøse" is 5 but the byte length is 7 in UTF-8 and 10 in UTF-16.
Non-BMP code points (those between 0x10000 and 0x10FFFF) must also be handled correctly: answers should produce actual character counts in code points, not in code unit counts.
Therefore a string like "𝔘𝔫𝔦𝔠𝔬𝔡𝔢" (consisting of the 7 Unicode characters U+1D518 U+1D52B U+1D526 U+1D520 U+1D52C U+1D521 U+1D522) is 7 characters long, not 14 UTF-16 code units; and it is 28 bytes long whether encoded in UTF-8 or in UTF-16.
Please mark your examples with ===Character Length=== or ===Byte Length===.
If your language is capable of providing the string length in graphemes, mark those examples with ===Grapheme Length===.
For example, the string "J̲o̲s̲é̲" ("J\x{332}o\x{332}s\x{332}e\x{301}\x{332}") has 4 user-visible graphemes, 9 characters (code points), and 14 bytes when encoded in UTF-8.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Action.21 | Action! | PROC Test(CHAR ARRAY s)
PrintF("Length of ""%S"" is %B%E",s,s(0))
RETURN
PROC Main()
Test("Hello world!")
Test("")
RETURN |
http://rosettacode.org/wiki/String_length | String length | Task
Find the character and byte length of a string.
This means encodings like UTF-8 need to be handled properly, as there is not necessarily a one-to-one relationship between bytes and characters.
By character, we mean an individual Unicode code point, not a user-visible grapheme containing combining characters.
For example, the character length of "møøse" is 5 but the byte length is 7 in UTF-8 and 10 in UTF-16.
Non-BMP code points (those between 0x10000 and 0x10FFFF) must also be handled correctly: answers should produce actual character counts in code points, not in code unit counts.
Therefore a string like "𝔘𝔫𝔦𝔠𝔬𝔡𝔢" (consisting of the 7 Unicode characters U+1D518 U+1D52B U+1D526 U+1D520 U+1D52C U+1D521 U+1D522) is 7 characters long, not 14 UTF-16 code units; and it is 28 bytes long whether encoded in UTF-8 or in UTF-16.
Please mark your examples with ===Character Length=== or ===Byte Length===.
If your language is capable of providing the string length in graphemes, mark those examples with ===Grapheme Length===.
For example, the string "J̲o̲s̲é̲" ("J\x{332}o\x{332}s\x{332}e\x{301}\x{332}") has 4 user-visible graphemes, 9 characters (code points), and 14 bytes when encoded in UTF-8.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ActionScript | ActionScript |
package {
import flash.display.Sprite;
import flash.events.Event;
import flash.utils.ByteArray;
public class StringByteLength extends Sprite {
public function StringByteLength() {
if ( stage ) _init();
else addEventListener(Event.ADDED_TO_STAGE, _init);
}
private function _init(e:Event = null):void {
var s1:String = "The quick brown fox jumps over the lazy dog";
var s2:String = "𝔘𝔫𝔦𝔠𝔬𝔡𝔢";
var s3:String = "José";
var b:ByteArray = new ByteArray();
b.writeUTFBytes(s1);
trace(b.length); // 43
b.clear();
b.writeUTFBytes(s2);
trace(b.length); // 28
b.clear();
b.writeUTFBytes(s3);
trace(b.length); // 5
}
}
}
|
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Clojure | Clojure | ; generate our test string of characters with control and extended characters
(def range-of-chars (apply str (map char (range 256))))
; filter out the control characters:
(apply str (filter #(not (Character/isISOControl %)) range-of-chars))
; filter to return String of characters that are between 32 - 126:
(apply str (filter #(<= 32 (int %) 126) range-of-chars)) |
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Common_Lisp | Common Lisp | (defun control-char-p (ch)
(or (< (char-code ch) 32)
(= (char-code ch) 127)))
(defun extended-char-p (ch)
(> (char-code ch) 127))
(defun strip-special-chars (string &key strip-extended)
(let ((needs-removing-p (if strip-extended
(lambda (ch)
(or (control-char-p ch)
(extended-char-p ch)))
#'control-char-p)))
(remove-if needs-removing-p string)))
|
http://rosettacode.org/wiki/String_concatenation | String concatenation | String concatenation
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create a string variable equal to any text value.
Create another string variable whose value is the original variable concatenated with another string literal.
To illustrate the operation, show the content of the variables.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Apex | Apex |
String s1 = 'Hello ';
String s2 = 'Salesforce Developer!';
String s3 = s1+s2;
// Print output
System.debug(s3); |
http://rosettacode.org/wiki/String_concatenation | String concatenation | String concatenation
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create a string variable equal to any text value.
Create another string variable whose value is the original variable concatenated with another string literal.
To illustrate the operation, show the content of the variables.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | try
set endMsg to "world!"
set totMsg to "Hello, " & endMsg
display dialog totMsg
end try |
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5 | Sum multiples of 3 and 5 | Task
The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n.
Show output for n = 1000.
This is is the same as Project Euler problem 1.
Extra credit: do this efficiently for n = 1e20 or higher.
| #Groovy | Groovy | def sumMul = { n, f -> BigInteger n1 = (n - 1) / f; f * n1 * (n1 + 1) / 2 }
def sum35 = { sumMul(it, 3) + sumMul(it, 5) - sumMul(it, 15) } |
http://rosettacode.org/wiki/Sum_digits_of_an_integer | Sum digits of an integer | Task
Take a Natural Number in a given base and return the sum of its digits:
110 sums to 1
123410 sums to 10
fe16 sums to 29
f0e16 sums to 29
| #Groovy | Groovy | def digitsum = { number, radix = 10 ->
Integer.toString(number, radix).collect { Integer.parseInt(it, radix) }.sum()
} |
http://rosettacode.org/wiki/Sum_of_squares | Sum of squares | Task
Write a program to find the sum of squares of a numeric vector.
The program should work on a zero-length vector (with an answer of 0).
Related task
Mean
| #JavaScript | JavaScript | function sumsq(array) {
var sum = 0;
var i, iLen;
for (i = 0, iLen = array.length; i < iLen; i++) {
sum += array[i] * array[i];
}
return sum;
}
alert(sumsq([1,2,3,4,5])); // 55 |
http://rosettacode.org/wiki/Strip_whitespace_from_a_string/Top_and_tail | Strip whitespace from a string/Top and tail | Task
Demonstrate how to strip leading and trailing whitespace from a string.
The solution should demonstrate how to achieve the following three results:
String with leading whitespace removed
String with trailing whitespace removed
String with both leading and trailing whitespace removed
For the purposes of this task whitespace includes non printable characters such as the space character, the tab character, and other such characters that have no corresponding graphical representation.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Common_Lisp | Common Lisp | ; Common whitespace characters
(defvar *whitespace* '(#\Space #\Newline #\Tab))
(defvar str " foo bar baz ")
(string-trim *whitespace* str)
; -> "foo bar baz"
(string-left-trim *whitespace* str)
; -> "foo bar baz "
(string-right-trim *whitespace* str)
; -> " foo bar baz"
; Whitespace characters defined by Unicode for
; implementations which support it (e.g. CLISP, SBCL).
; (see http://www.unicode.org/Public/UCD/latest/ucd/PropList.txt)
(defvar *unicode-whitespace*
'(#\u0009 #\u000a #\u000b #\u000c #\u000d
#\u0020 #\u0085 #\u00a0 #\u1680 #\u2000
#\u2001 #\u2002 #\u2003 #\u2004 #\u2005
#\u2006 #\u2007 #\u2008 #\u2009 #\u200a
#\u2028 #\u2029 #\u202f #\u205f #\u3000))
(defvar unicode-str
(format nil "~C~Cfoo~Cbar~Cbaz~C~C"
#\u2000 #\u2003 #\u0020 #\u00a0 #\u0009 #\u202f))
(string-trim *unicode-whitespace* unicode-str)
; -> "foo bar baz"
(string-left-trim *unicode-whitespace* unicode-str)
; -> "foo bar baz "
(string-right-trim *unicode-whitespace* unicode-str)
; -> " foo bar baz" |
http://rosettacode.org/wiki/Strip_whitespace_from_a_string/Top_and_tail | Strip whitespace from a string/Top and tail | Task
Demonstrate how to strip leading and trailing whitespace from a string.
The solution should demonstrate how to achieve the following three results:
String with leading whitespace removed
String with trailing whitespace removed
String with both leading and trailing whitespace removed
For the purposes of this task whitespace includes non printable characters such as the space character, the tab character, and other such characters that have no corresponding graphical representation.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Crystal | Crystal |
def strip_whitepace(s)
puts s.lstrip()
puts s.rstrip()
puts s.strip()
end
strip_whitepace("\t hello \t")
# => hello
# => hello
# => hello
|
http://rosettacode.org/wiki/Strong_and_weak_primes | Strong and weak primes |
Definitions (as per number theory)
The prime(p) is the pth prime.
prime(1) is 2
prime(4) is 7
A strong prime is when prime(p) is > [prime(p-1) + prime(p+1)] ÷ 2
A weak prime is when prime(p) is < [prime(p-1) + prime(p+1)] ÷ 2
Note that the definition for strong primes is different when used in the context of cryptography.
Task
Find and display (on one line) the first 36 strong primes.
Find and display the count of the strong primes below 1,000,000.
Find and display the count of the strong primes below 10,000,000.
Find and display (on one line) the first 37 weak primes.
Find and display the count of the weak primes below 1,000,000.
Find and display the count of the weak primes below 10,000,000.
(Optional) display the counts and "below numbers" with commas.
Show all output here.
Related Task
Safe primes and unsafe primes.
Also see
The OEIS article A051634: strong primes.
The OEIS article A051635: weak primes.
| #Perl | Perl | use ntheory qw(primes vecfirst);
sub comma {
(my $s = reverse shift) =~ s/(.{3})/$1,/g;
$s =~ s/,(-?)$/$1/;
$s = reverse $s;
}
sub below { my ($m, @a) = @_; vecfirst { $a[$_] > $m } 0..$#a }
my (@strong, @weak, @balanced);
my @primes = @{ primes(10_000_019) };
for my $k (1 .. $#primes - 1) {
my $x = ($primes[$k - 1] + $primes[$k + 1]) / 2;
if ($x > $primes[$k]) { push @weak, $primes[$k] }
elsif ($x < $primes[$k]) { push @strong, $primes[$k] }
else { push @balanced, $primes[$k] }
}
for ([\@strong, 'strong', 36, 1e6, 1e7],
[\@weak, 'weak', 37, 1e6, 1e7],
[\@balanced, 'balanced', 28, 1e6, 1e7]) {
my($pr, $type, $d, $c1, $c2) = @$_;
print "\nFirst $d $type primes:\n", join ' ', map { comma $_ } @$pr[0..$d-1], "\n";
print "Count of $type primes <= @{[comma $c1]}: " . comma below($c1,@$pr) . "\n";
print "Count of $type primes <= @{[comma $c2]}: " . comma scalar @$pr . "\n";
} |
http://rosettacode.org/wiki/Substring | Substring |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Display a substring:
starting from n characters in and of m length;
starting from n characters in, up to the end of the string;
whole string minus the last character;
starting from a known character within the string and of m length;
starting from a known substring within the string and of m length.
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point,
whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.2B.2B | C++ | #include <iostream>
#include <string>
int main()
{
std::string s = "0123456789";
int const n = 3;
int const m = 4;
char const c = '2';
std::string const sub = "456";
std::cout << s.substr(n, m)<< "\n";
std::cout << s.substr(n) << "\n";
std::cout << s.substr(0, s.size()-1) << "\n";
std::cout << s.substr(s.find(c), m) << "\n";
std::cout << s.substr(s.find(sub), m) << "\n";
} |
http://rosettacode.org/wiki/Sudoku | Sudoku | Task
Solve a partially filled-in normal 9x9 Sudoku grid and display the result in a human-readable format.
references
Algorithmics of Sudoku may help implement this.
Python Sudoku Solver Computerphile video.
| #D | D | import std.stdio, std.range, std.string, std.algorithm, std.array,
std.ascii, std.typecons;
struct Digit {
immutable char d;
this(in char d_) pure nothrow @safe @nogc
in { assert(d_ >= '0' && d_ <= '9'); }
body { this.d = d_; }
this(in int d_) pure nothrow @safe @nogc
in { assert(d_ >= '0' && d_ <= '9'); }
body { this.d = cast(char)d_; } // Required cast.
alias d this;
}
enum size_t sudokuUnitSide = 3;
enum size_t sudokuSide = sudokuUnitSide ^^ 2; // Sudoku grid side.
alias SudokuTable = Digit[sudokuSide ^^ 2];
Nullable!SudokuTable sudokuSolver(in ref SudokuTable problem)
pure nothrow {
alias Tgrid = uint;
Tgrid[SudokuTable.length] grid = void;
problem[].map!(c => c - '0').copy(grid[]);
// DMD doesn't inline this function. Performance loss.
Tgrid access(in size_t x, in size_t y) nothrow @safe @nogc {
return grid[y * sudokuSide + x];
}
// DMD doesn't inline this function. If you want to retain
// the same performance as the C++ entry and you use the DMD
// compiler then this function must be manually inlined.
bool checkValidity(in Tgrid val, in size_t x, in size_t y)
pure nothrow @safe @nogc {
/*static*/ foreach (immutable i; staticIota!(0, sudokuSide))
if (access(i, y) == val || access(x, i) == val)
return false;
immutable startX = (x / sudokuUnitSide) * sudokuUnitSide;
immutable startY = (y / sudokuUnitSide) * sudokuUnitSide;
/*static*/ foreach (immutable i; staticIota!(0, sudokuUnitSide))
/*static*/ foreach (immutable j; staticIota!(0, sudokuUnitSide))
if (access(startX + j, startY + i) == val)
return false;
return true;
}
bool canPlaceNumbers(in size_t pos=0) nothrow @safe @nogc {
if (pos == SudokuTable.length)
return true;
if (grid[pos] > 0)
return canPlaceNumbers(pos + 1);
foreach (immutable n; 1 .. sudokuSide + 1)
if (checkValidity(n, pos % sudokuSide, pos / sudokuSide)) {
grid[pos] = n;
if (canPlaceNumbers(pos + 1))
return true;
grid[pos] = 0;
}
return false;
}
if (canPlaceNumbers) {
//return typeof(return)(grid[]
// .map!(c => Digit(c + '0'))
// .array);
immutable SudokuTable result = grid[]
.map!(c => Digit(c + '0'))
.array;
return typeof(return)(result);
} else
return typeof(return)();
}
string representSudoku(in ref SudokuTable sudo)
pure nothrow @safe out(result) {
assert(result.countchars("1-9") == sudo[].count!q{a != '0'});
assert(result.countchars(".") == sudo[].count!q{a == '0'});
} body {
static assert(sudo.length == 81,
"representSudoku works only with a 9x9 Sudoku.");
string result;
foreach (immutable i; 0 .. sudokuSide) {
foreach (immutable j; 0 .. sudokuSide) {
result ~= sudo[i * sudokuSide + j];
result ~= ' ';
if (j == 2 || j == 5)
result ~= "| ";
}
result ~= "\n";
if (i == 2 || i == 5)
result ~= "------+-------+------\n";
}
return result.replace("0", ".");
}
void main() {
enum ValidateCells(string s) = s.map!Digit.array;
immutable SudokuTable problem = ValidateCells!("
850002400
720000009
004000000
000107002
305000900
040000000
000080070
017000000
000036040".removechars(whitespace));
problem.representSudoku.writeln;
immutable solution = problem.sudokuSolver;
if (solution.isNull)
writeln("Unsolvable!");
else
solution.get.representSudoku.writeln;
} |
http://rosettacode.org/wiki/Subleq | Subleq | Subleq is an example of a One-Instruction Set Computer (OISC).
It is named after its only instruction, which is SUbtract and Branch if Less than or EQual to zero.
Task
Your task is to create an interpreter which emulates a SUBLEQ machine.
The machine's memory consists of an array of signed integers. These integers may be interpreted in three ways:
simple numeric values
memory addresses
characters for input or output
Any reasonable word size that accommodates all three of the above uses is fine.
The program should load the initial contents of the emulated machine's memory, set the instruction pointer to the first address (which is defined to be address 0), and begin emulating the machine, which works as follows:
Let A be the value in the memory location identified by the instruction pointer; let B and C be the values stored in the next two consecutive addresses in memory.
Advance the instruction pointer three words, to point at the address after the address containing C.
If A is -1 (negative unity), then a character is read from the machine's input and its numeric value stored in the address given by B. C is unused.
If B is -1 (negative unity), then the number contained in the address given by A is interpreted as a character and written to the machine's output. C is unused.
Otherwise, both A and B are treated as addresses. The number contained in address A is subtracted from the number in address B (and the difference left in address B). If the result is positive, execution continues uninterrupted; if the result is zero or negative, the number in C becomes the new instruction pointer.
If the instruction pointer becomes negative, execution halts.
Your solution may initialize the emulated machine's memory in any convenient manner, but if you accept it as input, it should be a separate input stream from the one fed to the emulated machine once it is running. And if fed as text input, it should be in the form of raw subleq "machine code" - whitespace-separated decimal numbers, with no symbolic names or other assembly-level extensions, to be loaded into memory starting at address 0 (zero).
For purposes of this task, show the output of your solution when fed the below "Hello, world!" program.
As written, this example assumes ASCII or a superset of it, such as any of the Latin-N character sets or Unicode; you may translate the numbers representing characters (starting with 72=ASCII 'H') into another character set if your implementation runs in a non-ASCII-compatible environment. If 0 is not an appropriate terminator in your character set, the program logic will need some adjustment as well.
15 17 -1 17 -1 -1 16 1 -1 16 3 -1 15 15 0 0 -1 72 101 108 108 111 44 32 119 111 114 108 100 33 10 0
The above "machine code" corresponds to something like this in a hypothetical assembler language for a signed 8-bit version of the machine:
start:
0f 11 ff subleq (zero), (message), -1
11 ff ff subleq (message), -1, -1 ; output character at message
10 01 ff subleq (neg1), (start+1), -1
10 03 ff subleq (neg1), (start+3), -1
0f 0f 00 subleq (zero), (zero), start
; useful constants
zero:
00 .data 0
neg1:
ff .data -1
; the message to print
message: .data "Hello, world!\n\0"
48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21 0a 00
| #Delphi | Delphi |
program SubleqTest;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils;
var
mem: array of Integer;
instructionPointer: Integer;
a, b: Integer;
begin
mem := [15, 17, -1, 17, -1, -1, 16, 1, -1, 16, 3, -1, 15, 15, 0, 0, -1, 72,
101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33, 10, 0];
instructionPointer := 0;
repeat
a := mem[instructionPointer];
b := mem[instructionPointer + 1];
if a = -1 then
begin
read(mem[b]);
end
else if b = -1 then
begin
write(ansichar(mem[a]));
end
else
begin
mem[b] := mem[b] - mem[a];
if (mem[b] < 1) then
begin
instructionPointer := mem[instructionPointer + 2];
Continue;
end;
end;
inc(instructionPointer, 3);
until (instructionPointer >= length(mem)) or (instructionPointer < 0);
readln;
end.
|
http://rosettacode.org/wiki/Successive_prime_differences | Successive prime differences | The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values.
Example 1: Specifying that the difference between s'primes be 2 leads to the groups:
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ...
(Known as Twin primes or Prime pairs)
Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups:
(5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), ....
In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes.
Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely).
Task
In each case use a list of primes less than 1_000_000
For the following Differences show the first and last group, as well as the number of groups found:
Differences of 2.
Differences of 1.
Differences of 2, 2.
Differences of 2, 4.
Differences of 4, 2.
Differences of 6, 4, 2.
Show output here.
Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged.
references
https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf
https://www.primepuzzles.net/puzzles/puzz_011.htm
https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0 | #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | ClearAll[Primediffs]
p = Prime[Range[PrimePi[10^6]]];
Primediffs[seq_] := {First[#], Last[#], Length[#]} &[p[[#1 ;; #2 + 1]] & @@@ SequencePosition[Differences[p], seq]]
Primediffs[{2}]
Primediffs[{1}]
Primediffs[{2, 2}]
Primediffs[{2, 4}]
Primediffs[{4, 2}]
Primediffs[{6, 4, 2}] |
http://rosettacode.org/wiki/Substring/Top_and_tail | Substring/Top and tail | The task is to demonstrate how to remove the first and last characters from a string.
The solution should demonstrate how to obtain the following results:
String with first character removed
String with last character removed
String with both the first and last characters removed
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Elena | Elena | import extensions;
public program()
{
var testString := "test";
console.printLine(testString.Substring(1));
console.printLine(testString.Substring(0, testString.Length - 1));
console.printLine(testString.Substring(1, testString.Length - 2))
} |
http://rosettacode.org/wiki/Substring/Top_and_tail | Substring/Top and tail | The task is to demonstrate how to remove the first and last characters from a string.
The solution should demonstrate how to obtain the following results:
String with first character removed
String with last character removed
String with both the first and last characters removed
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Elixir | Elixir | iex(1)> str = "abcdefg"
"abcdefg"
iex(2)> String.slice(str, 1..-1)
"bcdefg"
iex(3)> String.slice(str, 0..-2)
"abcdef"
iex(4)> String.slice(str, 1..-2)
"bcdef" |
http://rosettacode.org/wiki/Subtractive_generator | Subtractive generator | A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence.
The formula is
r
n
=
r
(
n
−
i
)
−
r
(
n
−
j
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}}
for some fixed values of
i
{\displaystyle i}
,
j
{\displaystyle j}
and
m
{\displaystyle m}
, all positive integers. Supposing that
i
>
j
{\displaystyle i>j}
, then the state of this generator is the list of the previous numbers from
r
n
−
i
{\displaystyle r_{n-i}}
to
r
n
−
1
{\displaystyle r_{n-1}}
. Many states generate uniform random integers from
0
{\displaystyle 0}
to
m
−
1
{\displaystyle m-1}
, but some states are bad. A state, filled with zeros, generates only zeros. If
m
{\displaystyle m}
is even, then a state, filled with even numbers, generates only even numbers. More generally, if
f
{\displaystyle f}
is a factor of
m
{\displaystyle m}
, then a state, filled with multiples of
f
{\displaystyle f}
, generates only multiples of
f
{\displaystyle f}
.
All subtractive generators have some weaknesses. The formula correlates
r
n
{\displaystyle r_{n}}
,
r
(
n
−
i
)
{\displaystyle r_{(n-i)}}
and
r
(
n
−
j
)
{\displaystyle r_{(n-j)}}
; these three numbers are not independent, as true random numbers would be. Anyone who observes
i
{\displaystyle i}
consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits.
The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of
r
(
n
−
i
)
−
r
(
n
−
j
)
{\displaystyle r_{(n-i)}-r_{(n-j)}}
is always between
−
m
{\displaystyle -m}
and
m
{\displaystyle m}
, so a program only needs to add
m
{\displaystyle m}
to negative numbers.
The choice of
i
{\displaystyle i}
and
j
{\displaystyle j}
affects the period of the generator. A popular choice is
i
=
55
{\displaystyle i=55}
and
j
=
24
{\displaystyle j=24}
, so the formula is
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}}
The subtractive generator from xpat2 uses
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
10
9
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}}
The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A).
Bentley uses this clever algorithm to seed the generator.
Start with a single
s
e
e
d
{\displaystyle seed}
in range
0
{\displaystyle 0}
to
10
9
−
1
{\displaystyle 10^{9}-1}
.
Set
s
0
=
s
e
e
d
{\displaystyle s_{0}=seed}
and
s
1
=
1
{\displaystyle s_{1}=1}
. The inclusion of
s
1
=
1
{\displaystyle s_{1}=1}
avoids some bad states (like all zeros, or all multiples of 10).
Compute
s
2
,
s
3
,
.
.
.
,
s
54
{\displaystyle s_{2},s_{3},...,s_{54}}
using the subtractive formula
s
n
=
s
(
n
−
2
)
−
s
(
n
−
1
)
(
mod
10
9
)
{\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}}
.
Reorder these 55 values so
r
0
=
s
34
{\displaystyle r_{0}=s_{34}}
,
r
1
=
s
13
{\displaystyle r_{1}=s_{13}}
,
r
2
=
s
47
{\displaystyle r_{2}=s_{47}}
, ...,
r
n
=
s
(
34
∗
(
n
+
1
)
(
mod
55
)
)
{\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}}
.
This is the same order as
s
0
=
r
54
{\displaystyle s_{0}=r_{54}}
,
s
1
=
r
33
{\displaystyle s_{1}=r_{33}}
,
s
2
=
r
12
{\displaystyle s_{2}=r_{12}}
, ...,
s
n
=
r
(
(
34
∗
n
)
−
1
(
mod
55
)
)
{\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}}
.
This rearrangement exploits how 34 and 55 are relatively prime.
Compute the next 165 values
r
55
{\displaystyle r_{55}}
to
r
219
{\displaystyle r_{219}}
. Store the last 55 values.
This generator yields the sequence
r
220
{\displaystyle r_{220}}
,
r
221
{\displaystyle r_{221}}
,
r
222
{\displaystyle r_{222}}
and so on. For example, if the seed is 292929, then the sequence begins with
r
220
=
467478574
{\displaystyle r_{220}=467478574}
,
r
221
=
512932792
{\displaystyle r_{221}=512932792}
,
r
222
=
539453717
{\displaystyle r_{222}=539453717}
. By starting at
r
220
{\displaystyle r_{220}}
, this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next
r
n
{\displaystyle r_{n}}
. Any array or list would work; a ring buffer is ideal but not necessary.
Implement a subtractive generator that replicates the sequences from xpat2.
| #OCaml | OCaml | let _mod = 1_000_000_000
let state = Array.create 55 0
let si = ref 0
let sj = ref 0
let rec subrand_seed _p1 =
let p1 = ref _p1 in
let p2 = ref 1 in
state.(0) <- !p1 mod _mod;
let j = ref 21 in
for i = 1 to pred 55 do
if !j >= 55 then j := !j - 55;
state.(!j) <- !p2;
p2 := !p1 - !p2;
if !p2 < 0 then p2 := !p2 + _mod;
p1 := state.(!j);
j := !j + 21;
done;
si := 0;
sj := 24;
for i = 0 to pred 165 do ignore (subrand()) done
and subrand() =
if !si = !sj then subrand_seed 0;
decr si; if !si < 0 then si := 54;
decr sj; if !sj < 0 then sj := 54;
let x = state.(!si) - state.(!sj) in
let x = if x < 0 then x + _mod else x in
state.(!si) <- x;
(x)
let () =
subrand_seed 292929;
for i = 1 to 10 do Printf.printf "%d\n" (subrand()) done |
http://rosettacode.org/wiki/Substitution_cipher | Substitution cipher | Substitution Cipher Implementation - File Encryption/Decryption
Task
Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file.
This type of Encryption/Decryption scheme is often called a Substitution Cipher.
Related tasks
Caesar cipher
Rot-13
Vigenère Cipher/Cryptanalysis
See also
Wikipedia: Substitution cipher
| #zkl | zkl | class SubstitutionCipher{
// 92 characters: " !"#$%&" ... "xyz{|}", doesn't include "~"
const KEY="]kYV}(!7P$n5_0i R:?jOWtF/=-pe'AD&@r6%ZXs\"v*N"
"[#wSl9zq2^+g;LoB`aGh{3.HIu4fbK)mU8|dMET><,Qc\\C1yxJ";
fcn encode(s){ s.apply(fcn(c){ try{ KEY[c.toAsc()-32] }catch{ c } }) }
fcn decode(s){ s.apply(fcn(c){ try{ (KEY.index(c)+32).toChar() }catch{ c } }) }
} |
http://rosettacode.org/wiki/Sum_and_product_of_an_array | Sum and product of an array | Task
Compute the sum and product of an array of integers.
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | Public Sub Main()
Dim iList As Integer[] = [1, 2, 3, 4, 5]
Dim iSum, iCount As Integer
Dim iPrd As Integer = 1
For iCount = 0 To iList.Max
iSum += iList[iCount]
iPrd *= iList[iCount]
Next
Print "The Sum =\t" & iSum
Print "The Product =\t" & iPrd
End |
http://rosettacode.org/wiki/Sum_of_a_series | Sum of a series | Compute the nth term of a series, i.e. the sum of the n first terms of the corresponding sequence.
Informally this value, or its limit when n tends to infinity, is also called the sum of the series, thus the title of this task.
For this task, use:
S
n
=
∑
k
=
1
n
1
k
2
{\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}}
and compute
S
1000
{\displaystyle S_{1000}}
This approximates the zeta function for S=2, whose exact value
ζ
(
2
)
=
π
2
6
{\displaystyle \zeta (2)={\pi ^{2} \over 6}}
is the solution of the Basel problem.
| #Euphoria | Euphoria |
function s( atom x )
return 1 / power( x, 2 )
end function
function sum( atom low, atom high )
atom ret = 0.0
for i = low to high do
ret = ret + s( i )
end for
return ret
end function
printf( 1, "%.15f\n", sum( 1, 1000 ) ) |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Common_Lisp | Common Lisp | (defun strip-comments (s cs)
"Truncate s at the first occurrence of a character in cs."
(defun comment-char-p (c)
(some #'(lambda (x) (char= x c)) cs))
(let ((pos (position-if #'comment-char-p s)))
(subseq s 0 pos))) |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #D | D | import std.stdio, std.regex;
string remove1LineComment(in string s, in string pat=";#") {
const re = "([^" ~ pat ~ "]*)([" ~ pat ~ `])[^\n\r]*([\n\r]|$)`;
return s.replace(regex(re, "gm"), "$1$3");
}
void main() {
const s = "apples, pears # and bananas
apples, pears ; and bananas ";
writeln(s, "\n====>\n", s.remove1LineComment());
} |
http://rosettacode.org/wiki/Strip_block_comments | Strip block comments | A block comment begins with a beginning delimiter and ends with a ending delimiter, including the delimiters. These delimiters are often multi-character sequences.
Task
Strip block comments from program text (of a programming language much like classic C).
Your demos should at least handle simple, non-nested and multi-line block comment delimiters.
The block comment delimiters are the two-character sequences:
/* (beginning delimiter)
*/ (ending delimiter)
Sample text for stripping:
/**
* Some comments
* longer comments here that we can parse.
*
* Rahoo
*/
function subroutine() {
a = /* inline comment */ b + c ;
}
/*/ <-- tricky comments */
/**
* Another comment.
*/
function something() {
}
Extra credit
Ensure that the stripping code is not hard-coded to the particular delimiters described above, but instead allows the caller to specify them. (If your language supports them, optional parameters may be useful for this.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #FreeBASIC | FreeBASIC | Const CRLF = Chr(13) + Chr(10)
Function stripBlocks(text As String, first As String, last As String) As String
Dim As String temp = ""
For i As Integer = 1 To Len(text) - Len(first)
If Mid(text, i, Len(first)) = first Then
i += Len(first)
Do
If Mid(text, i, 2) = CRLF Then temp &= CRLF
i += 1
Loop Until (Mid(text, i, Len(last)) = last) Or (i = Len(text) - Len(last))
i += Len(last) -1
Else
temp &= Mid(text, i, 1)
End If
Next i
Return temp
End Function
Dim As String source
source = " /**" + CRLF + _
" * Some comments" + CRLF + _
" * longer comments here that we can parse." + CRLF + _
" *" + CRLF + _
" * Rahoo " + CRLF + _
" */" + CRLF + _
" function subroutine() {" + CRLF + _
" a = /* inline comment */ b + c ;" + CRLF + _
" }" + CRLF + _
" /*/ <-- tricky comments */" + CRLF + _
"" + CRLF + _
" /**" + CRLF + _
" * Another comment." + CRLF + _
" */" + CRLF + _
" function something() {" + CRLF + _
" }" + CRLF
Print stripBlocks(source, "/*", "*/")
Sleep |
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Aikido | Aikido | const little = "little"
printf ("Mary had a %s lamb\n", little)
// alternatively
println ("Mary had a " + little + " lamb") |
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | main:(
# as a STRING #
STRING extra = "little";
printf(($"Mary had a "g" lamb."l$, extra));
# as a FORMAT #
FORMAT extraf = $"little"$;
printf($"Mary had a "f(extraf)" lamb."l$);
# or: use simply use STRING concatenation #
print(("Mary had a "+extra+" lamb.", new line))
) |
http://rosettacode.org/wiki/Sum_to_100 | Sum to 100 | Task
Find solutions to the sum to one hundred puzzle.
Add (insert) the mathematical
operators + or - (plus
or minus) before any of the digits in the
decimal numeric string 123456789 such that the
resulting mathematical expression adds up to a
particular sum (in this iconic case, 100).
Example:
123 + 4 - 5 + 67 - 89 = 100
Show all output here.
Show all solutions that sum to 100
Show the sum that has the maximum number of solutions (from zero to infinity‡)
Show the lowest positive sum that can't be expressed (has no solutions), using the rules for this task
Show the ten highest numbers that can be expressed using the rules for this task (extra credit)
‡ (where infinity would be a relatively small 123,456,789)
An example of a sum that can't be expressed (within the rules of this task) is: 5074
(which, of course, isn't the lowest positive sum that can't be expressed).
| #Python | Python | from itertools import product, islice
def expr(p):
return "{}1{}2{}3{}4{}5{}6{}7{}8{}9".format(*p)
def gen_expr():
op = ['+', '-', '']
return [expr(p) for p in product(op, repeat=9) if p[0] != '+']
def all_exprs():
values = {}
for expr in gen_expr():
val = eval(expr)
if val not in values:
values[val] = 1
else:
values[val] += 1
return values
def sum_to(val):
for s in filter(lambda x: x[0] == val, map(lambda x: (eval(x), x), gen_expr())):
print(s)
def max_solve():
print("Sum {} has the maximum number of solutions: {}".
format(*max(all_exprs().items(), key=lambda x: x[1])))
def min_solve():
values = all_exprs()
for i in range(123456789):
if i not in values:
print("Lowest positive sum that can't be expressed: {}".format(i))
return
def highest_sums(n=10):
sums = map(lambda x: x[0],
islice(sorted(all_exprs().items(), key=lambda x: x[0], reverse=True), n))
print("Highest Sums: {}".format(list(sums)))
sum_to(100)
max_solve()
min_solve()
highest_sums() |
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string | Strip a set of characters from a string | Task
Create a function that strips a set of characters from a string.
The function should take two arguments:
a string to be stripped
a string containing the set of characters to be stripped
The returned string should contain the first string, stripped of any characters in the second argument:
print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BASIC | BASIC | DECLARE FUNCTION stripchars$(src AS STRING, remove AS STRING)
PRINT stripchars$("She was a soul stripper. She took my heart!", "aei")
FUNCTION stripchars$(src AS STRING, remove AS STRING)
DIM l0 AS LONG, t AS LONG, s AS STRING
s = src
FOR l0 = 1 TO LEN(remove)
DO
t = INSTR(s, MID$(remove, l0, 1))
IF t THEN
s = LEFT$(s, t - 1) + MID$(s, t + 1)
ELSE
EXIT DO
END IF
LOOP
NEXT
stripchars$ = s
END FUNCTION |
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #Delphi | Delphi |
program String_preappend;
{$APPTYPE CONSOLE}
uses
System.SysUtils;
type
TStringHelper = record helper for string
procedure Preappend(str: string);
end;
{ TStringHelper }
procedure TStringHelper.Preappend(str: string);
begin
Self := str + self;
end;
begin
var h: string;
// with + operator
h := 'World';
h := 'Hello ' + h;
writeln(h);
// with a function concat
h := 'World';
h := concat('Hello ', h);
writeln(h);
// with helper
h := 'World';
h.Preappend('Hello ');
writeln(h);
readln;
end. |
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #Dyalect | Dyalect | var s = "world!"
s = "Hello " + s
print(s) |
http://rosettacode.org/wiki/String_comparison | String comparison |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to compare two strings from within the language and how to achieve a lexical comparison.
The task should demonstrate:
Comparing two strings for exact equality
Comparing two strings for inequality (i.e., the inverse of exact equality)
Comparing two strings to see if one is lexically ordered before than the other
Comparing two strings to see if one is lexically ordered after than the other
How to achieve both case sensitive comparisons and case insensitive comparisons within the language
How the language handles comparison of numeric strings if these are not treated lexically
Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system.
For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
Here "generic/polymorphic" comparison means that the function or operator you're using doesn't always do string comparison, but bends the actual semantics of the comparison depending on the types one or both arguments; with such an operator, you achieve string comparison only if the arguments are sufficiently string-like in type or appearance.
In contrast, a "coercive/allomorphic" comparison function or operator has fixed string-comparison semantics regardless of the argument type; instead of the operator bending, it's the arguments that are forced to bend instead and behave like strings if they can, and the operator simply fails if the arguments cannot be viewed somehow as strings. A language may have one or both of these kinds of operators; see the Raku entry for an example of a language with both kinds of operators.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_W | ALGOL W | begin
string(10) a;
string(12) b;
a := "abc";
b := "ABC";
% when comparing strings, Algol W ignores trailing blanks %
% so e.g. "a" = "a " is true %
% equality? %
if a = b then write( "a = b" );
% inequality? %
if a not = b then write( "a not = b" );
% lexically ordered before? %
if a < b then write( "a < b" );
% lexically ordered after? %
if a > b then write( "a > b" );
% Algol W string comparisons are case-sensitive. To perform case %
% insensitive comparisons, procedures would need to be written %
% e.g. as in the following block (assuming the character set is ASCII) %
begin
% convert a character to upper-case %
integer procedure toupper( integer value c ) ;
if c < decode( "a" ) or c > decode( "z" ) then c
else ( c - decode( "a" ) ) + decode( "A" );
% compare two strings, ignoring case %
% note that strings can be at most 256 characters long in Algol W %
integer procedure caselessComparison ( string(256) value a, b ) ;
begin
integer comparisonResult, pos;
comparisonResult := pos := 0;
while pos < 256 and comparisonResult = 0 do begin
comparisonResult := toupper( decode( a(pos//1) ) )
- toupper( decode( b(pos//1) ) );
pos := pos + 1
end;
if comparisonResult < 0 then -1
else if comparisonResult > 0 then 1
else 0
end caselessComparison ;
% compare two strings for equality, ignoring case %
logical procedure equalIgnoringCase ( string(256) value a, b ) ;
( caselessComparison( a, b ) = 0 );
% similar procedures for inequality and lexical ording ... %
if equalIgnoringCase( a, b ) then write( "a = b (ignoring case)" )
end caselessComparison ;
% Algol W is strongly typed - strings cannot be compared to e.g. integers %
% e.g. "if a = 23 then ..." would be a syntax error %
% Algol W also has <= and >= comparison operators for testing for %
% "lexically before or equal" and "lexically after or equal" %
if a <= b then write( "a <= b" );
if a >= b then write( "a >= b" );
% there are no other forms of string comparison builtin to Algol W %
end. |
http://rosettacode.org/wiki/String_comparison | String comparison |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to compare two strings from within the language and how to achieve a lexical comparison.
The task should demonstrate:
Comparing two strings for exact equality
Comparing two strings for inequality (i.e., the inverse of exact equality)
Comparing two strings to see if one is lexically ordered before than the other
Comparing two strings to see if one is lexically ordered after than the other
How to achieve both case sensitive comparisons and case insensitive comparisons within the language
How the language handles comparison of numeric strings if these are not treated lexically
Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system.
For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
Here "generic/polymorphic" comparison means that the function or operator you're using doesn't always do string comparison, but bends the actual semantics of the comparison depending on the types one or both arguments; with such an operator, you achieve string comparison only if the arguments are sufficiently string-like in type or appearance.
In contrast, a "coercive/allomorphic" comparison function or operator has fixed string-comparison semantics regardless of the argument type; instead of the operator bending, it's the arguments that are forced to bend instead and behave like strings if they can, and the operator simply fails if the arguments cannot be viewed somehow as strings. A language may have one or both of these kinds of operators; see the Raku entry for an example of a language with both kinds of operators.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Apex | Apex | public class Compare
{
/**
* Test in the developer console:
* Compare.compare('Hello', 'Hello');
* Compare.compare('5', '5.0');
* Compare.compare('java', 'Java');
* Compare.compare('ĴÃVÁ', 'ĴÃVÁ');
*/
public static void compare (String A, String B)
{
if (A.equals(B))
System.debug(A + ' and ' + B + ' are lexically equal.');
else
System.debug(A + ' and ' + B + ' are not lexically equal.');
if (A.equalsIgnoreCase(B))
System.debug(A + ' and ' + B + ' are case-insensitive lexically equal.');
else
System.debug(A + ' and ' + B + ' are not case-insensitive lexically equal.');
if (A.compareTo(B) < 0)
System.debug(A + ' is lexically before ' + B);
else if (A.compareTo(B) > 0)
System.debug(A + ' is lexically after ' + B);
if (A.compareTo(B) >= 0)
System.debug(A + ' is not lexically before ' + B);
if (A.compareTo(B) <= 0)
System.debug(A + ' is not lexically after ' + B);
System.debug('The lexical relationship is: ' + A.compareTo(B));
}
} |
http://rosettacode.org/wiki/String_case | String case | Task
Take the string alphaBETA and demonstrate how to convert it to:
upper-case and
lower-case
Use the default encoding of a string literal or plain ASCII if there is no string literal in your language.
Note: In some languages alphabets toLower and toUpper is not reversable.
Show any additional case conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that may be included in the library of your language.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #8080_Assembly | 8080 Assembly | org 100h
jmp demo
;;; Convert CP/M string under [HL] to upper case
unext: inx h
ucase: mov a,m ; Get character <- entry point is here
cpi '$' ; Done?
rz ; If so, stop
cpi 'a' ; >= 'a'?
jc unext ; If not, next character
cpi 'z'+1 ; <= 'z'?
jnc unext ; If not, next character
sui 32 ; Subtract 32
mov m,a ; Write character back
jmp unext
;;; Convert CP/M string under [HL] to lower case
lnext: inx h
lcase: mov a,m ; Get character <- entry point is here
cpi '$' ; Done?
rz ; If so, stop
cpi 'A' ; >= 'A'?
jc lnext ; If not, next character
cpi 'Z'+1 ; <= 'Z'?
jnc lnext ; If not, next character
adi 32 ; Subtract 32
mov m,a ; Write character back
jmp lnext
;;; Apply to given string
demo: call print ; Print without change
lxi h,str
call ucase ; Make uppercase
call print ; Print uppercase version
lxi h,str
call lcase ; Make lowercase (fall through to print)
print: lxi d,str ; Print string using CP/M call
mvi c,9
jmp 5
str: db 'alphaBETA',13,10,'$' |
http://rosettacode.org/wiki/String_case | String case | Task
Take the string alphaBETA and demonstrate how to convert it to:
upper-case and
lower-case
Use the default encoding of a string literal or plain ASCII if there is no string literal in your language.
Note: In some languages alphabets toLower and toUpper is not reversable.
Show any additional case conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that may be included in the library of your language.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Action.21 | Action! | INCLUDE "D2:CHARTEST.ACT" ;from the Action! Tool Kit
PROC UpperCase(CHAR ARRAY text,res)
BYTE i
res(0)=text(0)
FOR i=1 TO res(0)
DO
res(i)=ToUpper(text(i))
OD
RETURN
PROC LowerCase(CHAR ARRAY text,res)
BYTE i
res(0)=text(0)
FOR i=1 TO res(0)
DO
res(i)=ToLower(text(i))
OD
RETURN
PROC Main()
CHAR ARRAY text="alphaBETA"
CHAR ARRAY upper(20),lower(20)
UpperCase(text,upper)
LowerCase(text,lower)
Put(125) PutE() ;clear screen
PrintF("Original string: ""%S""%E",text)
PrintF("Upper-case string: ""%S""%E",upper)
PrintF("Lower-case string: ""%S""%E",lower)
RETURN |
http://rosettacode.org/wiki/String_matching | String matching |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings, demonstrate the following three types of string matching:
Determining if the first string starts with second string
Determining if the first string contains the second string at any location
Determining if the first string ends with the second string
Optional requirements:
Print the location of the match for part 2
Handle multiple occurrences of a string for part 2.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program strMatching.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessFound: .asciz "String found. \n"
szMessNotFound: .asciz "String not found. \n"
szString: .asciz "abcdefghijklmnopqrstuvwxyz"
szString2: .asciz "abc"
szStringStart: .asciz "abcd"
szStringEnd: .asciz "xyz"
szStringStart2: .asciz "abcd"
szStringEnd2: .asciz "xabc"
szCarriageReturn: .asciz "\n"
/* UnInitialized data */
.bss
/* code section */
.text
.global main
main:
ldr r0,iAdrszString @ address input string
ldr r1,iAdrszStringStart @ address search string
bl searchStringDeb @ Determining if the first string starts with second string
cmp r0,#0
ble 1f
ldr r0,iAdrszMessFound @ display message
bl affichageMess
b 2f
1:
ldr r0,iAdrszMessNotFound
bl affichageMess
2:
ldr r0,iAdrszString @ address input string
ldr r1,iAdrszStringEnd @ address search string
bl searchStringFin @ Determining if the first string ends with the second string
cmp r0,#0
ble 3f
ldr r0,iAdrszMessFound @ display message
bl affichageMess
b 4f
3:
ldr r0,iAdrszMessNotFound
bl affichageMess
4:
ldr r0,iAdrszString2 @ address input string
ldr r1,iAdrszStringStart2 @ address search string
bl searchStringDeb @
cmp r0,#0
ble 5f
ldr r0,iAdrszMessFound @ display message
bl affichageMess
b 6f
5:
ldr r0,iAdrszMessNotFound
bl affichageMess
6:
ldr r0,iAdrszString2 @ address input string
ldr r1,iAdrszStringEnd2 @ address search string
bl searchStringFin
cmp r0,#0
ble 7f
ldr r0,iAdrszMessFound @ display message
bl affichageMess
b 8f
7:
ldr r0,iAdrszMessNotFound
bl affichageMess
8:
ldr r0,iAdrszString @ address input string
ldr r1,iAdrszStringEnd @ address search string
bl searchSubString @ Determining if the first string contains the second string at any location
cmp r0,#0
ble 9f
ldr r0,iAdrszMessFound @ display message
bl affichageMess
b 10f
9:
ldr r0,iAdrszMessNotFound @ display substring result
bl affichageMess
10:
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessFound: .int szMessFound
iAdrszMessNotFound: .int szMessNotFound
iAdrszString: .int szString
iAdrszString2: .int szString2
iAdrszStringStart: .int szStringStart
iAdrszStringEnd: .int szStringEnd
iAdrszStringStart2: .int szStringStart2
iAdrszStringEnd2: .int szStringEnd2
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/
/* search substring at begin of input string */
/******************************************************************/
/* r0 contains the address of the input string */
/* r1 contains the address of substring */
/* r0 returns 1 if find or 0 if not or -1 if error */
searchStringDeb:
push {r1-r4,lr} @ save registers
mov r3,#0 @ counter byte string
ldrb r4,[r1,r3] @ load first byte of substring
cmp r4,#0 @ empty string ?
moveq r0,#-1 @ error
beq 100f
1:
ldrb r2,[r0,r3] @ load byte string input
cmp r2,#0 @ zero final ?
moveq r0,#0 @ not find
beq 100f
cmp r4,r2 @ bytes equals ?
movne r0,#0 @ no not find
bne 100f
add r3,#1 @ increment counter
ldrb r4,[r1,r3] @ and load next byte of substring
cmp r4,#0 @ zero final ?
bne 1b @ no -> loop
mov r0,#1 @ yes is ok
100:
pop {r1-r4,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* search substring at end of input string */
/******************************************************************/
/* r0 contains the address of the input string */
/* r1 contains the address of substring */
/* r0 returns 1 if find or 0 if not or -1 if error */
searchStringFin:
push {r1-r5,lr} @ save registers
mov r3,#0 @ counter byte string
@ search the last character of substring
1:
ldrb r4,[r1,r3] @ load byte of substring
cmp r4,#0 @ zero final ?
addne r3,#1 @ no increment counter
bne 1b @ and loop
cmp r3,#0 @ empty string ?
moveq r0,#-1 @ error
beq 100f
sub r3,#1 @ index of last byte
ldrb r4,[r1,r3] @ load last byte of substring
@ search the last character of string
mov r2,#0 @ index last character
2:
ldrb r5,[r0,r2] @ load first byte of substring
cmp r5,#0 @ zero final ?
addne r2,#1 @ no -> increment counter
bne 2b @ and loop
cmp r2,#0 @ empty input string ?
moveq r0,#0 @ yes -> not found
beq 100f
sub r2,#1 @ index last character
3:
ldrb r5,[r0,r2] @ load byte string input
cmp r4,r5 @ bytes equals ?
movne r0,#0 @ no -> not found
bne 100f
subs r3,#1 @ decrement counter
movlt r0,#1 @ if zero -> ok found
blt 100f
subs r2,#1 @ decrement counter input string
movlt r0,#0 @ if zero -> not found
blt 100f
ldrb r4,[r1,r3] @ load previous byte of substring
b 3b @ and loop
100:
pop {r1-r5,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* search a substring in the string */
/******************************************************************/
/* r0 contains the address of the input string */
/* r1 contains the address of substring */
/* r0 returns index of substring in string or -1 if not found */
searchSubString:
push {r1-r6,lr} @ save registers
mov r2,#0 @ counter byte input string
mov r3,#0 @ counter byte string
mov r6,#-1 @ index found
ldrb r4,[r1,r3]
1:
ldrb r5,[r0,r2] @ load byte string
cmp r5,#0 @ zero final ?
moveq r0,#-1 @ yes returns error
beq 100f
cmp r5,r4 @ compare character
beq 2f
mov r6,#-1 @ no equals - > raz index
mov r3,#0 @ and raz counter byte
add r2,#1 @ and increment counter byte
b 1b @ and loop
2: @ characters equals
cmp r6,#-1 @ first characters equals ?
moveq r6,r2 @ yes -> index begin in r6
add r3,#1 @ increment counter substring
ldrb r4,[r1,r3] @ and load next byte
cmp r4,#0 @ zero final ?
beq 3f @ yes -> end search
add r2,#1 @ else increment counter string
b 1b @ and loop
3:
mov r0,r6
100:
pop {r1-r6,lr} @ restaur registers
bx lr
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call system
pop {r0,r1,r2,r7,lr} @ restaur registers
bx lr @ return
|
http://rosettacode.org/wiki/String_length | String length | Task
Find the character and byte length of a string.
This means encodings like UTF-8 need to be handled properly, as there is not necessarily a one-to-one relationship between bytes and characters.
By character, we mean an individual Unicode code point, not a user-visible grapheme containing combining characters.
For example, the character length of "møøse" is 5 but the byte length is 7 in UTF-8 and 10 in UTF-16.
Non-BMP code points (those between 0x10000 and 0x10FFFF) must also be handled correctly: answers should produce actual character counts in code points, not in code unit counts.
Therefore a string like "𝔘𝔫𝔦𝔠𝔬𝔡𝔢" (consisting of the 7 Unicode characters U+1D518 U+1D52B U+1D526 U+1D520 U+1D52C U+1D521 U+1D522) is 7 characters long, not 14 UTF-16 code units; and it is 28 bytes long whether encoded in UTF-8 or in UTF-16.
Please mark your examples with ===Character Length=== or ===Byte Length===.
If your language is capable of providing the string length in graphemes, mark those examples with ===Grapheme Length===.
For example, the string "J̲o̲s̲é̲" ("J\x{332}o\x{332}s\x{332}e\x{301}\x{332}") has 4 user-visible graphemes, 9 characters (code points), and 14 bytes when encoded in UTF-8.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | Str : String := "Hello World";
Length : constant Natural := Str'Size / 8; |
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #D | D | import std.traits;
S stripChars(S)(S s, bool function(dchar) pure nothrow mustStrip)
pure nothrow if (isSomeString!S) {
S result;
foreach (c; s) {
if (!mustStrip(c))
result ~= c;
}
return result;
}
void main() {
import std.stdio, std.uni;
auto s = "\u0000\u000A abc\u00E9def\u007F";
writeln(s.stripChars( &isControl ));
writeln(s.stripChars( c => isControl(c) || c == '\u007F' ));
writeln(s.stripChars( c => isControl(c) || c >= '\u007F' ));
} |
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Erlang | Erlang |
-module( strip_control_codes ).
-export( [is_not_control_code/1, is_not_control_code_nor_extended_character/1, task/0] ).
is_not_control_code( C ) when C > 127 -> true;
is_not_control_code( C ) when C < 32; C =:= 127 -> false;
is_not_control_code( _C ) -> true.
is_not_control_code_nor_extended_character( C ) when C > 127 -> false;
is_not_control_code_nor_extended_character( C ) -> is_not_control_code( C ).
task() ->
String = lists:seq( 0, 255 ),
io:fwrite( "String (~p characters): ~s~n", [erlang:length(String), String] ),
String_without_cc = lists:filter( fun is_not_control_code/1, String ),
io:fwrite( "String without control codes (~p characters): ~s~n", [erlang:length(String_without_cc), String_without_cc] ),
String_without_cc_nor_ec = lists:filter( fun is_not_control_code_nor_extended_character/1, String ),
io:fwrite( "String without control codes nor extended characters (~p characters): ~s~n", [erlang:length(String_without_cc_nor_ec), String_without_cc_nor_ec] ).
|
http://rosettacode.org/wiki/String_concatenation | String concatenation | String concatenation
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create a string variable equal to any text value.
Create another string variable whose value is the original variable concatenated with another string literal.
To illustrate the operation, show the content of the variables.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program strConcat.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessFinal: .asciz "The final string is \n"
szString: .asciz "Hello "
szString1: .asciz " the world. \n"
/* UnInitialized data */
.bss
szFinalString: .skip 255
/* code section */
.text
.global main
main:
@ load string
ldr r1,iAdrszString
ldr r2,iAdrszFinalString
mov r4,#0
1:
ldrb r0,[r1,r4] @ load byte of string
strb r0,[r2,r4]
cmp r0,#0 @ compar with zero ?
addne r4,#1
bne 1b
ldr r1,iAdrszString1
mov r3,#0
2:
ldrb r0,[r1,r3] @ load byte of string 1
strb r0,[r2,r4]
cmp r0,#0 @ compar with zero ?
addne r4,#1
addne r3,#1
bne 2b
mov r0,r2 @ display final string
bl affichageMess
100: @ standard end of the program */
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform the system call
iAdrszString: .int szString
iAdrszString1: .int szString1
iAdrszFinalString: .int szFinalString
iAdrszMessFinal: .int szMessFinal
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur des 2 registres
bx lr @ return
|
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5 | Sum multiples of 3 and 5 | Task
The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n.
Show output for n = 1000.
This is is the same as Project Euler problem 1.
Extra credit: do this efficiently for n = 1e20 or higher.
| #Haskell | Haskell | import Data.List (nub)
----------------- SUM MULTIPLES OF 3 AND 5 ---------------
sum35 :: Integer -> Integer
sum35 n = f 3 + f 5 - f 15
where
f = sumMul n
sumMul :: Integer -> Integer -> Integer
sumMul n f = f * n1 * (n1 + 1) `div` 2
where
n1 = (n - 1) `div` f
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_
print
[ sum35 1000,
sum35 100000000000000000000000000000000,
sumMulS 1000 [3, 5],
sumMulS 10000000 [2, 3, 5, 7, 11, 13]
]
---------------- FOR VARIABLE LENGTH INPUTS --------------
pairLCM :: [Integer] -> [Integer]
pairLCM [] = []
pairLCM (x : xs) = (lcm x <$> xs) <> pairLCM xs
sumMulS :: Integer -> [Integer] -> Integer
sumMulS _ [] = 0
sumMulS n s =
( ((-) . sum . fmap f)
<*> (g . pairLCM)
)
(nub s)
where
f = sumMul n
g = sumMulS n |
http://rosettacode.org/wiki/Sum_digits_of_an_integer | Sum digits of an integer | Task
Take a Natural Number in a given base and return the sum of its digits:
110 sums to 1
123410 sums to 10
fe16 sums to 29
f0e16 sums to 29
| #Haskell | Haskell | digsum
:: Integral a
=> a -> a -> a
digsum base = f 0
where
f a 0 = a
f a n = f (a + r) q
where
(q, r) = n `quotRem` base
main :: IO ()
main = print $ digsum 16 255 -- "FF": 15 + 15 = 30 |
http://rosettacode.org/wiki/Sum_of_squares | Sum of squares | Task
Write a program to find the sum of squares of a numeric vector.
The program should work on a zero-length vector (with an answer of 0).
Related task
Mean
| #jq | jq | # ss for an input array:
def ss: map(.*.) | add;
# ss for a stream, S, without creating an intermediate array:
def ss(S): reduce S as $x (0; . + ($x * $x) ); |
http://rosettacode.org/wiki/Sum_of_squares | Sum of squares | Task
Write a program to find the sum of squares of a numeric vector.
The program should work on a zero-length vector (with an answer of 0).
Related task
Mean
| #Julia | Julia | julia> sum([1,2,3,4,5].^2)
55
julia> sum([x^2 for x in [1,2,3,4,5]])
55
julia> mapreduce(x->x^2,+,[1:5])
55
julia> sum([x^2 for x in []])
0 |
http://rosettacode.org/wiki/Strip_whitespace_from_a_string/Top_and_tail | Strip whitespace from a string/Top and tail | Task
Demonstrate how to strip leading and trailing whitespace from a string.
The solution should demonstrate how to achieve the following three results:
String with leading whitespace removed
String with trailing whitespace removed
String with both leading and trailing whitespace removed
For the purposes of this task whitespace includes non printable characters such as the space character, the tab character, and other such characters that have no corresponding graphical representation.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #D | D | import std.stdio, std.string;
void main() {
auto s = " \t \r \n String with spaces \t \r \n ";
assert(s.stripLeft() == "String with spaces \t \r \n ");
assert(s.stripRight() == " \t \r \n String with spaces");
assert(s.strip() == "String with spaces");
} |
http://rosettacode.org/wiki/Strip_whitespace_from_a_string/Top_and_tail | Strip whitespace from a string/Top and tail | Task
Demonstrate how to strip leading and trailing whitespace from a string.
The solution should demonstrate how to achieve the following three results:
String with leading whitespace removed
String with trailing whitespace removed
String with both leading and trailing whitespace removed
For the purposes of this task whitespace includes non printable characters such as the space character, the tab character, and other such characters that have no corresponding graphical representation.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Delphi.2FPascal | Delphi/Pascal | program StripWhitespace;
{$APPTYPE CONSOLE}
uses SysUtils;
const
TEST_STRING = ' String with spaces ';
begin
Writeln('"' + TEST_STRING + '"');
Writeln('"' + TrimLeft(TEST_STRING) + '"');
Writeln('"' + TrimRight(TEST_STRING) + '"');
Writeln('"' + Trim(TEST_STRING) + '"');
end. |
http://rosettacode.org/wiki/Strong_and_weak_primes | Strong and weak primes |
Definitions (as per number theory)
The prime(p) is the pth prime.
prime(1) is 2
prime(4) is 7
A strong prime is when prime(p) is > [prime(p-1) + prime(p+1)] ÷ 2
A weak prime is when prime(p) is < [prime(p-1) + prime(p+1)] ÷ 2
Note that the definition for strong primes is different when used in the context of cryptography.
Task
Find and display (on one line) the first 36 strong primes.
Find and display the count of the strong primes below 1,000,000.
Find and display the count of the strong primes below 10,000,000.
Find and display (on one line) the first 37 weak primes.
Find and display the count of the weak primes below 1,000,000.
Find and display the count of the weak primes below 10,000,000.
(Optional) display the counts and "below numbers" with commas.
Show all output here.
Related Task
Safe primes and unsafe primes.
Also see
The OEIS article A051634: strong primes.
The OEIS article A051635: weak primes.
| #Phix | Phix | with javascript_semantics
sequence strong = {}, weak = {}
for i=2 to get_maxprime(1e14) do -- (ie idx of primes < (sqrt(1e14)==1e7), bar 1st)
integer p = get_prime(i),
c = compare(p,(get_prime(i-1)+get_prime(i+1))/2)
if c=+1 then strong &= p end if
if c=-1 then weak &= p end if
end for
printf(1,"The first thirty six strong primes: %s\n",{join(shorten(strong[1..36],"",4,"%2d"),", ")})
printf(1,"The first thirty seven weak primes: %s\n",{join(shorten( weak[1..37],"",4,"%2d"),", ")})
printf(1,"There are %,d strong primes below %,d and %,d below %,d\n",{abs(binary_search(1e6,strong))-1,1e6,length(strong),1e7})
printf(1,"There are %,d weak primes below %,d and %,d below %,d\n",{abs(binary_search(1e6, weak))-1,1e6,length( weak),1e7})
|
http://rosettacode.org/wiki/Substring | Substring |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Display a substring:
starting from n characters in and of m length;
starting from n characters in, up to the end of the string;
whole string minus the last character;
starting from a known character within the string and of m length;
starting from a known substring within the string and of m length.
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point,
whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.23 | C# | using System;
namespace SubString
{
class Program
{
static void Main(string[] args)
{
string s = "0123456789";
const int n = 3;
const int m = 2;
const char c = '3';
const string z = "345";
// A: starting from n characters in and of m length;
Console.WriteLine(s.Substring(n, m));
// B: starting from n characters in, up to the end of the string;
Console.WriteLine(s.Substring(n, s.Length - n));
// C: whole string minus the last character;
Console.WriteLine(s.Substring(0, s.Length - 1));
// D: starting from a known character within the string and of m length;
Console.WriteLine(s.Substring(s.IndexOf(c), m));
// E: starting from a known substring within the string and of m length.
Console.WriteLine(s.Substring(s.IndexOf(z), m));
}
}
} |
http://rosettacode.org/wiki/Sudoku | Sudoku | Task
Solve a partially filled-in normal 9x9 Sudoku grid and display the result in a human-readable format.
references
Algorithmics of Sudoku may help implement this.
Python Sudoku Solver Computerphile video.
| #Delphi | Delphi | type
TIntArray = array of Integer;
{ TSudokuSolver }
TSudokuSolver = class
private
FGrid: TIntArray;
function CheckValidity(val: Integer; x: Integer; y: Integer): Boolean;
function ToString: string; reintroduce;
function PlaceNumber(pos: Integer): Boolean;
public
constructor Create(s: string);
procedure Solve;
end;
implementation
uses
Dialogs;
{ TSudokuSolver }
function TSudokuSolver.CheckValidity(val: Integer; x: Integer; y: Integer
): Boolean;
var
i: Integer;
j: Integer;
StartX: Integer;
StartY: Integer;
begin
for i := 0 to 8 do
begin
if (FGrid[y * 9 + i] = val) or
(FGrid[i * 9 + x] = val) then
begin
Result := False;
Exit;
end;
end;
StartX := (x div 3) * 3;
StartY := (y div 3) * 3;
for i := StartY to Pred(StartY + 3) do
begin
for j := StartX to Pred(StartX + 3) do
begin
if FGrid[i * 9 + j] = val then
begin
Result := False;
Exit;
end;
end;
end;
Result := True;
end;
function TSudokuSolver.ToString: string;
var
sb: string;
i: Integer;
j: Integer;
c: char;
begin
sb := '';
for i := 0 to 8 do
begin
for j := 0 to 8 do
begin
c := (IntToStr(FGrid[i * 9 + j]) + '0')[1];
sb := sb + c + ' ';
if (j = 2) or (j = 5) then sb := sb + '| ';
end;
sb := sb + #13#10;
if (i = 2) or (i = 5) then
sb := sb + '-----+-----+-----' + #13#10;
end;
Result := sb;
end;
function TSudokuSolver.PlaceNumber(pos: Integer): Boolean;
var
n: Integer;
begin
Result := False;
if Pos = 81 then
begin
Result := True;
Exit;
end;
if FGrid[pos] > 0 then
begin
Result := PlaceNumber(Succ(pos));
Exit;
end;
for n := 1 to 9 do
begin
if CheckValidity(n, pos mod 9, pos div 9) then
begin
FGrid[pos] := n;
Result := PlaceNumber(Succ(pos));
if not Result then
FGrid[pos] := 0;
end;
end;
end;
constructor TSudokuSolver.Create(s: string);
var
lcv: Cardinal;
begin
SetLength(FGrid, 81);
for lcv := 0 to Pred(Length(s)) do
FGrid[lcv] := StrToInt(s[Succ(lcv)]);
end;
procedure TSudokuSolver.Solve;
begin
if not PlaceNumber(0) then
ShowMessage('Unsolvable')
else
ShowMessage('Solved!');
end;
end; |
http://rosettacode.org/wiki/Subleq | Subleq | Subleq is an example of a One-Instruction Set Computer (OISC).
It is named after its only instruction, which is SUbtract and Branch if Less than or EQual to zero.
Task
Your task is to create an interpreter which emulates a SUBLEQ machine.
The machine's memory consists of an array of signed integers. These integers may be interpreted in three ways:
simple numeric values
memory addresses
characters for input or output
Any reasonable word size that accommodates all three of the above uses is fine.
The program should load the initial contents of the emulated machine's memory, set the instruction pointer to the first address (which is defined to be address 0), and begin emulating the machine, which works as follows:
Let A be the value in the memory location identified by the instruction pointer; let B and C be the values stored in the next two consecutive addresses in memory.
Advance the instruction pointer three words, to point at the address after the address containing C.
If A is -1 (negative unity), then a character is read from the machine's input and its numeric value stored in the address given by B. C is unused.
If B is -1 (negative unity), then the number contained in the address given by A is interpreted as a character and written to the machine's output. C is unused.
Otherwise, both A and B are treated as addresses. The number contained in address A is subtracted from the number in address B (and the difference left in address B). If the result is positive, execution continues uninterrupted; if the result is zero or negative, the number in C becomes the new instruction pointer.
If the instruction pointer becomes negative, execution halts.
Your solution may initialize the emulated machine's memory in any convenient manner, but if you accept it as input, it should be a separate input stream from the one fed to the emulated machine once it is running. And if fed as text input, it should be in the form of raw subleq "machine code" - whitespace-separated decimal numbers, with no symbolic names or other assembly-level extensions, to be loaded into memory starting at address 0 (zero).
For purposes of this task, show the output of your solution when fed the below "Hello, world!" program.
As written, this example assumes ASCII or a superset of it, such as any of the Latin-N character sets or Unicode; you may translate the numbers representing characters (starting with 72=ASCII 'H') into another character set if your implementation runs in a non-ASCII-compatible environment. If 0 is not an appropriate terminator in your character set, the program logic will need some adjustment as well.
15 17 -1 17 -1 -1 16 1 -1 16 3 -1 15 15 0 0 -1 72 101 108 108 111 44 32 119 111 114 108 100 33 10 0
The above "machine code" corresponds to something like this in a hypothetical assembler language for a signed 8-bit version of the machine:
start:
0f 11 ff subleq (zero), (message), -1
11 ff ff subleq (message), -1, -1 ; output character at message
10 01 ff subleq (neg1), (start+1), -1
10 03 ff subleq (neg1), (start+3), -1
0f 0f 00 subleq (zero), (zero), start
; useful constants
zero:
00 .data 0
neg1:
ff .data -1
; the message to print
message: .data "Hello, world!\n\0"
48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21 0a 00
| #Draco | Draco | \util.g
proc nonrec rdch() byte:
char c;
if read(c) then
pretend(c, byte)
else
case ioerror()
incase CH_MISSING: readln(); 10
default: 0
esac
fi
corp
proc nonrec wrch(byte b) void:
if b=10
then writeln()
else write(pretend(b, char))
fi
corp
proc nonrec main() void:
[16384] int mem;
file() srcfile;
channel input text srcch;
*char fname;
int a, b, c, i;
byte iob;
BlockFill(pretend(&mem[0], *byte), sizeof(byte), 0);
fname := GetPar();
if fname = nil then
writeln("usage: SUBLEQ filename");
exit(1);
fi;
if not open(srcch, srcfile, fname) then
writeln("Cannot open input file");
exit(1)
fi;
i := 0;
while read(srcch; mem[i]) do i := i + 1 od;
close(srcch);
i := 0;
while i>=0 do
a := mem[i];
b := mem[i+1];
c := mem[i+2];
i := i + 3;
if a=-1 then mem[b] := rdch()
elif b=-1 then wrch(mem[a])
else
mem[b] := mem[b] - mem[a];
if mem[b] <= 0 then i := c fi
fi
od
corp |
http://rosettacode.org/wiki/Subleq | Subleq | Subleq is an example of a One-Instruction Set Computer (OISC).
It is named after its only instruction, which is SUbtract and Branch if Less than or EQual to zero.
Task
Your task is to create an interpreter which emulates a SUBLEQ machine.
The machine's memory consists of an array of signed integers. These integers may be interpreted in three ways:
simple numeric values
memory addresses
characters for input or output
Any reasonable word size that accommodates all three of the above uses is fine.
The program should load the initial contents of the emulated machine's memory, set the instruction pointer to the first address (which is defined to be address 0), and begin emulating the machine, which works as follows:
Let A be the value in the memory location identified by the instruction pointer; let B and C be the values stored in the next two consecutive addresses in memory.
Advance the instruction pointer three words, to point at the address after the address containing C.
If A is -1 (negative unity), then a character is read from the machine's input and its numeric value stored in the address given by B. C is unused.
If B is -1 (negative unity), then the number contained in the address given by A is interpreted as a character and written to the machine's output. C is unused.
Otherwise, both A and B are treated as addresses. The number contained in address A is subtracted from the number in address B (and the difference left in address B). If the result is positive, execution continues uninterrupted; if the result is zero or negative, the number in C becomes the new instruction pointer.
If the instruction pointer becomes negative, execution halts.
Your solution may initialize the emulated machine's memory in any convenient manner, but if you accept it as input, it should be a separate input stream from the one fed to the emulated machine once it is running. And if fed as text input, it should be in the form of raw subleq "machine code" - whitespace-separated decimal numbers, with no symbolic names or other assembly-level extensions, to be loaded into memory starting at address 0 (zero).
For purposes of this task, show the output of your solution when fed the below "Hello, world!" program.
As written, this example assumes ASCII or a superset of it, such as any of the Latin-N character sets or Unicode; you may translate the numbers representing characters (starting with 72=ASCII 'H') into another character set if your implementation runs in a non-ASCII-compatible environment. If 0 is not an appropriate terminator in your character set, the program logic will need some adjustment as well.
15 17 -1 17 -1 -1 16 1 -1 16 3 -1 15 15 0 0 -1 72 101 108 108 111 44 32 119 111 114 108 100 33 10 0
The above "machine code" corresponds to something like this in a hypothetical assembler language for a signed 8-bit version of the machine:
start:
0f 11 ff subleq (zero), (message), -1
11 ff ff subleq (message), -1, -1 ; output character at message
10 01 ff subleq (neg1), (start+1), -1
10 03 ff subleq (neg1), (start+3), -1
0f 0f 00 subleq (zero), (zero), start
; useful constants
zero:
00 .data 0
neg1:
ff .data -1
; the message to print
message: .data "Hello, world!\n\0"
48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21 0a 00
| #Forth | Forth | create M 32 cells allot
: enter refill drop parse-word evaluate ; : M[] cells M + ;
: init M 32 cells bounds ?do i ! 1 cells +loop ;
: b-a+! dup dup cell+ @ M[] swap @ M[] @ negate over +! ;
: c b-a+! @ 1- 0< if 2 cells + @ else swap 3 + then nip ;
: b? dup cell+ @ 0< if @ M[] @ emit 3 + else c then ;
: a? dup @ 0< if cell+ @ M[] enter swap ! 3 + else b? then ;
: subleq cr 0 begin dup 1+ 0> while dup M[] a? repeat drop ;
0 10 33 100 108 114 111 119 32 44 111 108 108 101 72
-1 0 0 15 15 -1 3 16 -1 1 16 -1 -1 17 -1 17 15
init subleq |
http://rosettacode.org/wiki/Successive_prime_differences | Successive prime differences | The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values.
Example 1: Specifying that the difference between s'primes be 2 leads to the groups:
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ...
(Known as Twin primes or Prime pairs)
Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups:
(5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), ....
In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes.
Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely).
Task
In each case use a list of primes less than 1_000_000
For the following Differences show the first and last group, as well as the number of groups found:
Differences of 2.
Differences of 1.
Differences of 2, 2.
Differences of 2, 4.
Differences of 4, 2.
Differences of 6, 4, 2.
Show output here.
Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged.
references
https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf
https://www.primepuzzles.net/puzzles/puzz_011.htm
https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0 | #Nim | Nim | import math, strutils
const N = 1_000_000
var comp: array[2..(N - 1), bool] # True is composite, so default is prime.
for n in 2..<N:
if not comp[n]:
for k in countup(n * n, N - 1, n):
comp[k] = true
var primes = @[2]
for n in countup(3, N - 1, 2):
if not comp[n]:
primes.add n
iterator groups(primes: seq[int]; diffs: varargs[int]): seq[int] =
## Yield groups of successive primes with given differences.
var cumdiffs = cumsummed(diffs) # Compute differences from first prime of group.
let groupSize = diffs.len + 1
for i in 0..(primes.len - groupSize):
let p = primes[i]
var group = @[p]
for k, diff in cumdiffs:
if primes[i + k + 1] != p + diff: break
group.add p + diff
if group.len == groupSize:
yield group
proc findGroups(primes: seq[int]; diffs: varargs[int]) =
## In the given list of primes and for the given differences,
## find the first group, the last group and the count of groups.
var
first, last: seq[int]
count = 0
for group in primes.groups(diffs):
if first.len == 0: first = group
last = group
inc count
echo "Differences: ", diffs.join(", ")
echo "– first: ($#)" % first.join(", ")
echo "– last: ($#)" % last.join(", ")
echo "– count: ", count
echo()
primes.findGroups(2)
primes.findGroups(1)
primes.findGroups(2, 2)
primes.findGroups(2, 4)
primes.findGroups(4, 2)
primes.findGroups(6, 4, 2) |
http://rosettacode.org/wiki/Successive_prime_differences | Successive prime differences | The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values.
Example 1: Specifying that the difference between s'primes be 2 leads to the groups:
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ...
(Known as Twin primes or Prime pairs)
Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups:
(5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), ....
In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes.
Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely).
Task
In each case use a list of primes less than 1_000_000
For the following Differences show the first and last group, as well as the number of groups found:
Differences of 2.
Differences of 1.
Differences of 2, 2.
Differences of 2, 4.
Differences of 4, 2.
Differences of 6, 4, 2.
Show output here.
Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged.
references
https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf
https://www.primepuzzles.net/puzzles/puzz_011.htm
https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0 | #Perl | Perl | use strict;
use warnings;
use List::EachCons;
use Array::Compare;
use ntheory 'primes';
my $limit = 1E6;
my @primes = (2, @{ primes($limit) });
my @intervals = map { $primes[$_] - $primes[$_-1] } 1..$#primes;
print "Groups of successive primes <= $limit\n";
my $c = Array::Compare->new;
for my $diffs ([2], [1], [2,2], [2,4], [4,2], [6,4,2]) {
my $n = -1;
my @offsets = grep {$_} each_cons @$diffs, @intervals, sub { $n++; $n if $c->compare(\@_, \@$diffs) };
printf "%10s has %5d sets: %15s … %s\n",
'(' . join(' ',@$diffs) . ')',
scalar @offsets,
join(' ', @primes[$offsets[ 0]..($offsets[ 0]+@$diffs)]),
join(' ', @primes[$offsets[-1]..($offsets[-1]+@$diffs)]);
} |
http://rosettacode.org/wiki/Substring/Top_and_tail | Substring/Top and tail | The task is to demonstrate how to remove the first and last characters from a string.
The solution should demonstrate how to obtain the following results:
String with first character removed
String with last character removed
String with both the first and last characters removed
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Emacs_Lisp | Emacs Lisp | (let ((string "top and tail"))
(substring string 1) ;=> "op and tail"
(substring string 0 (1- (length string))) ;=> "top and tai"
(substring string 1 (1- (length string)))) ;=> "op and tai" |
http://rosettacode.org/wiki/Substring/Top_and_tail | Substring/Top and tail | The task is to demonstrate how to remove the first and last characters from a string.
The solution should demonstrate how to obtain the following results:
String with first character removed
String with last character removed
String with both the first and last characters removed
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Erlang | Erlang | 1> Str = "Hello".
"Hello"
2> string:sub_string(Str, 2). % To strip the string from the right by 1
"ello"
3> string:sub_string(Str, 1, length(Str)-1). % To strip the string from the left by 1
"Hell"
4> string:sub_string(Str, 2, length(Str)-1). % To strip the string from both sides by 1
"ell" |
http://rosettacode.org/wiki/Subtractive_generator | Subtractive generator | A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence.
The formula is
r
n
=
r
(
n
−
i
)
−
r
(
n
−
j
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}}
for some fixed values of
i
{\displaystyle i}
,
j
{\displaystyle j}
and
m
{\displaystyle m}
, all positive integers. Supposing that
i
>
j
{\displaystyle i>j}
, then the state of this generator is the list of the previous numbers from
r
n
−
i
{\displaystyle r_{n-i}}
to
r
n
−
1
{\displaystyle r_{n-1}}
. Many states generate uniform random integers from
0
{\displaystyle 0}
to
m
−
1
{\displaystyle m-1}
, but some states are bad. A state, filled with zeros, generates only zeros. If
m
{\displaystyle m}
is even, then a state, filled with even numbers, generates only even numbers. More generally, if
f
{\displaystyle f}
is a factor of
m
{\displaystyle m}
, then a state, filled with multiples of
f
{\displaystyle f}
, generates only multiples of
f
{\displaystyle f}
.
All subtractive generators have some weaknesses. The formula correlates
r
n
{\displaystyle r_{n}}
,
r
(
n
−
i
)
{\displaystyle r_{(n-i)}}
and
r
(
n
−
j
)
{\displaystyle r_{(n-j)}}
; these three numbers are not independent, as true random numbers would be. Anyone who observes
i
{\displaystyle i}
consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits.
The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of
r
(
n
−
i
)
−
r
(
n
−
j
)
{\displaystyle r_{(n-i)}-r_{(n-j)}}
is always between
−
m
{\displaystyle -m}
and
m
{\displaystyle m}
, so a program only needs to add
m
{\displaystyle m}
to negative numbers.
The choice of
i
{\displaystyle i}
and
j
{\displaystyle j}
affects the period of the generator. A popular choice is
i
=
55
{\displaystyle i=55}
and
j
=
24
{\displaystyle j=24}
, so the formula is
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
m
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}}
The subtractive generator from xpat2 uses
r
n
=
r
(
n
−
55
)
−
r
(
n
−
24
)
(
mod
10
9
)
{\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}}
The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A).
Bentley uses this clever algorithm to seed the generator.
Start with a single
s
e
e
d
{\displaystyle seed}
in range
0
{\displaystyle 0}
to
10
9
−
1
{\displaystyle 10^{9}-1}
.
Set
s
0
=
s
e
e
d
{\displaystyle s_{0}=seed}
and
s
1
=
1
{\displaystyle s_{1}=1}
. The inclusion of
s
1
=
1
{\displaystyle s_{1}=1}
avoids some bad states (like all zeros, or all multiples of 10).
Compute
s
2
,
s
3
,
.
.
.
,
s
54
{\displaystyle s_{2},s_{3},...,s_{54}}
using the subtractive formula
s
n
=
s
(
n
−
2
)
−
s
(
n
−
1
)
(
mod
10
9
)
{\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}}
.
Reorder these 55 values so
r
0
=
s
34
{\displaystyle r_{0}=s_{34}}
,
r
1
=
s
13
{\displaystyle r_{1}=s_{13}}
,
r
2
=
s
47
{\displaystyle r_{2}=s_{47}}
, ...,
r
n
=
s
(
34
∗
(
n
+
1
)
(
mod
55
)
)
{\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}}
.
This is the same order as
s
0
=
r
54
{\displaystyle s_{0}=r_{54}}
,
s
1
=
r
33
{\displaystyle s_{1}=r_{33}}
,
s
2
=
r
12
{\displaystyle s_{2}=r_{12}}
, ...,
s
n
=
r
(
(
34
∗
n
)
−
1
(
mod
55
)
)
{\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}}
.
This rearrangement exploits how 34 and 55 are relatively prime.
Compute the next 165 values
r
55
{\displaystyle r_{55}}
to
r
219
{\displaystyle r_{219}}
. Store the last 55 values.
This generator yields the sequence
r
220
{\displaystyle r_{220}}
,
r
221
{\displaystyle r_{221}}
,
r
222
{\displaystyle r_{222}}
and so on. For example, if the seed is 292929, then the sequence begins with
r
220
=
467478574
{\displaystyle r_{220}=467478574}
,
r
221
=
512932792
{\displaystyle r_{221}=512932792}
,
r
222
=
539453717
{\displaystyle r_{222}=539453717}
. By starting at
r
220
{\displaystyle r_{220}}
, this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next
r
n
{\displaystyle r_{n}}
. Any array or list would work; a ring buffer is ideal but not necessary.
Implement a subtractive generator that replicates the sequences from xpat2.
| #ooREXX | ooREXX | /*REXX program uses a subtractive generaTor,and creates a sequence of ranDom numbers. */
/* array index must be positive! */
s=.array~new
r=.array~new
s[1]=292929
s[2]=1
billion=1e9
numeric digits 20
ci=55
Do i=2 To ci-1
s[i+1]=mod(s[i-1]-s[i],billion)
End
cp=34
Do j=0 To ci-1
r[j+1]=s[mod(cp*(j+1),ci)+1]
End
m=219
cj= 24
Do k=ci To m
_=k//ci
r[_+1]=mod(r[mod(k-ci,ci)+1]-r[mod(k-cj,ci)+1],billion)
End
t=235
Do n=m+1 To t
_=n//ci
r[_+1]=mod(r[mod(n-ci,ci)+1]-r[mod(n-cj,ci)+1],billion)
Say right(r[_+1],40)
End
Exit
mod: Procedure
Parse Arg a,b
Return ((a//b)+b)//b |
http://rosettacode.org/wiki/Sum_and_product_of_an_array | Sum and product of an array | Task
Compute the sum and product of an array of integers.
| #Gambas | Gambas | Public Sub Main()
Dim iList As Integer[] = [1, 2, 3, 4, 5]
Dim iSum, iCount As Integer
Dim iPrd As Integer = 1
For iCount = 0 To iList.Max
iSum += iList[iCount]
iPrd *= iList[iCount]
Next
Print "The Sum =\t" & iSum
Print "The Product =\t" & iPrd
End |
http://rosettacode.org/wiki/Sum_of_a_series | Sum of a series | Compute the nth term of a series, i.e. the sum of the n first terms of the corresponding sequence.
Informally this value, or its limit when n tends to infinity, is also called the sum of the series, thus the title of this task.
For this task, use:
S
n
=
∑
k
=
1
n
1
k
2
{\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}}
and compute
S
1000
{\displaystyle S_{1000}}
This approximates the zeta function for S=2, whose exact value
ζ
(
2
)
=
π
2
6
{\displaystyle \zeta (2)={\pi ^{2} \over 6}}
is the solution of the Basel problem.
| #Excel | Excel | sumOfSeries
=LAMBDA(f,
LAMBDA(n,
SUM(
f(SEQUENCE(n, 1, 1, 1))
)
)
)
inverseSquare
=LAMBDA(n,
1 / (n ^ 2)
) |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Delphi | Delphi | program StripComments;
{$APPTYPE CONSOLE}
uses
SysUtils;
function DoStripComments(const InString: string; const CommentMarker: Char): string;
begin
Result := Trim(Copy(InString,1,Pos(CommentMarker,InString)-1));
end;
begin
Writeln('apples, pears # and bananas --> ' + DoStripComments('apples, pears # and bananas','#'));
Writeln('');
Writeln('apples, pears ; and bananas --> ' + DoStripComments('apples, pears ; and bananas',';'));
Readln;
end. |
http://rosettacode.org/wiki/Strip_comments_from_a_string | Strip comments from a string | Strip comments from a string
You are encouraged to solve this task according to the task description, using any language you may know.
The task is to remove text that follow any of a set of comment markers, (in these examples either a hash or a semicolon) from a string or input line.
Whitespace debacle: There is some confusion about whether to remove any whitespace from the input line.
As of 2 September 2011, at least 8 languages (C, C++, Java, Perl, Python, Ruby, sed, UNIX Shell) were incorrect, out of 36 total languages, because they did not trim whitespace by 29 March 2011 rules. Some other languages might be incorrect for the same reason.
Please discuss this issue at Talk:Strip comments from a string.
From 29 March 2011, this task required that: "The comment marker and any whitespace at the beginning or ends of the resultant line should be removed. A line without comments should be trimmed of any leading or trailing whitespace before being produced as a result." The task had 28 languages, which did not all meet this new requirement.
From 28 March 2011, this task required that: "Whitespace before the comment marker should be removed."
From 30 October 2010, this task did not specify whether or not to remove whitespace.
The following examples will be truncated to either "apples, pears " or "apples, pears".
(This example has flipped between "apples, pears " and "apples, pears" in the past.)
apples, pears # and bananas
apples, pears ; and bananas
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #DWScript | DWScript | function StripComments(s : String) : String;
begin
var p := FindDelimiter('#;', s);
if p>0 then
Result := Trim(Copy(s, 1, p-1))
else Result := Trim(s);
end;
PrintLn(StripComments('apples, pears # and bananas'));
PrintLn(StripComments('apples, pears ; and bananas')); |
http://rosettacode.org/wiki/Strip_block_comments | Strip block comments | A block comment begins with a beginning delimiter and ends with a ending delimiter, including the delimiters. These delimiters are often multi-character sequences.
Task
Strip block comments from program text (of a programming language much like classic C).
Your demos should at least handle simple, non-nested and multi-line block comment delimiters.
The block comment delimiters are the two-character sequences:
/* (beginning delimiter)
*/ (ending delimiter)
Sample text for stripping:
/**
* Some comments
* longer comments here that we can parse.
*
* Rahoo
*/
function subroutine() {
a = /* inline comment */ b + c ;
}
/*/ <-- tricky comments */
/**
* Another comment.
*/
function something() {
}
Extra credit
Ensure that the stripping code is not hard-coded to the particular delimiters described above, but instead allows the caller to specify them. (If your language supports them, optional parameters may be useful for this.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Go | Go | package main
import (
"fmt"
"strings"
)
// idiomatic to name a function newX that allocates an object, initializes it,
// and returns it ready to use. the object in this case is a closure.
func newStripper(start, end string) func(string) string {
// default to c-style block comments
if start == "" || end == "" {
start, end = "/*", "*/"
}
// closes on variables start, end.
return func(source string) string {
for {
cs := strings.Index(source, start)
if cs < 0 {
break
}
ce := strings.Index(source[cs+2:], end)
if ce < 0 {
break
}
source = source[:cs] + source[cs+ce+4:]
}
return source
}
}
func main() {
// idiomatic is that zero values indicate to use meaningful defaults
stripC := newStripper("", "")
// strip function now defined and can be called any number of times
// without respecifying delimiters
fmt.Println(stripC(` /**
* Some comments
* longer comments here that we can parse.
*
* Rahoo
*/
function subroutine() {
a = /* inline comment */ b + c ;
}
/*/ <-- tricky comments */
/**
* Another comment.
*/
function something() {
}`))
} |
http://rosettacode.org/wiki/String_interpolation_(included) | String interpolation (included) |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Given a string and defined variables or values, string interpolation is the replacement of defined character sequences in the string by values or variable values.
For example, given an original string of "Mary had a X lamb.", a value of "big", and if the language replaces X in its interpolation routine, then the result of its interpolation would be the string "Mary had a big lamb".
(Languages usually include an infrequently used character or sequence of characters to indicate what is to be replaced such as "%", or "#" rather than "X").
Task
Use your languages inbuilt string interpolation abilities to interpolate a string missing the text "little" which is held in a variable, to produce the output string "Mary had a little lamb".
If possible, give links to further documentation on your languages string interpolation features.
Note: The task is not to create a string interpolation routine, but to show a language's built-in capability.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program insertString.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/*******************************************/
/* Constantes */
/*******************************************/
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ BRK, 0x2d @ Linux syscall
.equ CHARPOS, '@'
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szString: .asciz " string "
szString1: .asciz "insert"
szString2: .asciz "abcd@efg"
szString3: .asciz "abcdef @"
szString4: .asciz "@ abcdef"
szCarriageReturn: .asciz "\n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // entry of program
ldr r0,iAdrszString // string address
ldr r1,iAdrszString1 // string address
mov r2,#0
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
ldr r0,iAdrszString // string address
ldr r1,iAdrszString1 // string address
mov r2,#3
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
ldr r0,iAdrszString // string address
ldr r1,iAdrszString1 // string address
mov r2,#40
bl strInsert //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
ldr r0,iAdrszString2 // string address
ldr r1,iAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
ldr r0,iAdrszString3 // string address
ldr r1,iAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
ldr r0,iAdrszString4 // string address
ldr r1,iAdrszString1 // string address
bl strInsertAtChar //
// return new pointer
bl affichageMess // display result string
ldr r0,iAdrszCarriageReturn
bl affichageMess
100: // standard end of the program
mov r0, #0 // return code
mov r7, #EXIT // request to exit program
svc 0 // perform the system call
iAdrszString: .int szString
iAdrszString1: .int szString1
iAdrszString2: .int szString2
iAdrszString3: .int szString3
iAdrszString4: .int szString4
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/
/* insertion of a sub-chain in a chain in the desired position */
/******************************************************************/
/* r0 contains the address of string 1 */
/* r1 contains the address of string to insert */
/* r2 contains the position of insertion :
0 start string
if r2 > lenght string 1 insert at end of string*/
/* r0 return the address of new string on the heap */
strInsert:
push {r1-r4,lr} @ save registres
mov r3,#0 // length counter
1: // compute length of string 1
ldrb r4,[r0,r3]
cmp r4,#0
addne r3,r3,#1 // increment to one if not equal
bne 1b // loop if not equal
mov r5,#0 // length counter insertion string
2: // compute length of insertion string
ldrb r4,[r1,r5]
cmp r4,#0
addne r5,r5,#1 // increment to one if not equal
bne 2b
cmp r5,#0
beq 99f // string empty -> error
add r3,r3,r5 // add 2 length
add r3,r3,#1 // +1 for final zero
mov r6,r0 // save address string 1
mov r0,#0 // allocation place heap
mov r7,#BRK // call system 'brk'
svc #0
mov r5,r0 // save address heap for output string
add r0,r0,r3 // reservation place r3 length
mov r7,#BRK // call system 'brk'
svc #0
cmp r0,#-1 // allocation error
beq 99f
//
mov r7,#0 // index load characters string 1
cmp r2,#0 // index insertion = 0
beq 5f // insertion at string 1 begin
3: // loop copy characters string 1
ldrb r0,[r6,r7] // load character
cmp r0,#0 // end string ?
beq 5f // insertion at end
strb r0,[r5,r7] // store character in output string
add r7,r7,#1 // increment index
cmp r7,r2 // < insertion index ?
blt 3b // yes -> loop
5:
mov r4,r7 // init index character output string
mov r3,#0 // index load characters insertion string
6:
ldrb r0,[r1,r3] // load characters insertion string
cmp r0,#0 // end string ?
beq 7f
strb r0,[r5,r4] // store in output string
add r3,r3,#1 // increment index
add r4,r4,#1 // increment output index
b 6b // and loop
7:
ldrb r0,[r6,r7] // load other character string 1
strb r0,[r5,r4] // store in output string
cmp r0,#0 // end string 1 ?
beq 8f // yes -> end
add r4,r4,#1 // increment output index
add r7,r7,#1 // increment index
b 7b // and loop
8:
mov r0,r5 // return output string address
b 100f
99: // error
mov r0,#-1
100:
pop {r1-r4,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* insert string at character insertion */
/******************************************************************/
/* r0 contains the address of string 1 */
/* r1 contains the address of insertion string */
/* r0 return the address of new string on the heap */
/* or -1 if error */
strInsertAtChar:
push {r1-r7,lr} @ save registres
mov r3,#0 // length counter
1: // compute length of string 1
ldrb r4,[r0,r3]
cmp r4,#0
addne r3,r3,#1 // increment to one if not equal
bne 1b // loop if not equal
mov r5,#0 // length counter insertion string
2: // compute length to insertion string
ldrb r4,[r1,r5]
cmp r4,#0
addne r5,r5,#1 // increment to one if not equal
bne 2b // and loop
cmp r5,#0
beq 99f // string empty -> error
add r3,r3,r5 // add 2 length
add r3,r3,#1 // +1 for final zero
mov r6,r0 // save address string 1
mov r0,#0 // allocation place heap
mov r7,#BRK // call system 'brk'
svc #0
mov r5,r0 // save address heap for output string
add r0,r0,r3 // reservation place r3 length
mov r7,#BRK // call system 'brk'
svc #0
cmp r0,#-1 // allocation error
beq 99f
mov r2,#0
mov r4,#0
3: // loop copy string begin
ldrb r3,[r6,r2]
cmp r3,#0
beq 99f
cmp r3,#CHARPOS // insertion character ?
beq 5f // yes
strb r3,[r5,r4] // no store character in output string
add r2,r2,#1
add r4,r4,#1
b 3b // and loop
5: // r4 contains position insertion
add r7,r4,#1 // init index character output string
// at position insertion + one
mov r3,#0 // index load characters insertion string
6:
ldrb r0,[r1,r3] // load characters insertion string
cmp r0,#0 // end string ?
beq 7f // yes
strb r0,[r5,r4] // store in output string
add r3,r3,#1 // increment index
add r4,r4,#1 // increment output index
b 6b // and loop
7: // loop copy end string
ldrb r0,[r6,r7] // load other character string 1
strb r0,[r5,r4] // store in output string
cmp r0,#0 // end string 1 ?
beq 8f // yes -> end
add r4,r4,#1 // increment output index
add r7,r7,#1 // increment index
b 7b // and loop
8:
mov r0,r5 // return output string address
b 100f
99: // error
mov r0,#-1
100:
pop {r1-r7,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
|
http://rosettacode.org/wiki/Sum_to_100 | Sum to 100 | Task
Find solutions to the sum to one hundred puzzle.
Add (insert) the mathematical
operators + or - (plus
or minus) before any of the digits in the
decimal numeric string 123456789 such that the
resulting mathematical expression adds up to a
particular sum (in this iconic case, 100).
Example:
123 + 4 - 5 + 67 - 89 = 100
Show all output here.
Show all solutions that sum to 100
Show the sum that has the maximum number of solutions (from zero to infinity‡)
Show the lowest positive sum that can't be expressed (has no solutions), using the rules for this task
Show the ten highest numbers that can be expressed using the rules for this task (extra credit)
‡ (where infinity would be a relatively small 123,456,789)
An example of a sum that can't be expressed (within the rules of this task) is: 5074
(which, of course, isn't the lowest positive sum that can't be expressed).
| #Racket | Racket | #lang racket
(define list-partitions
(match-lambda
[(list) (list null)]
[(and L (list _)) (list (list L))]
[(list L ...)
(for*/list
((i (in-range 1 (add1 (length L))))
(r (in-list (list-partitions (drop L i)))))
(cons (take L i) r))]))
(define digits->number (curry foldl (λ (dgt acc) (+ (* 10 acc) dgt)) 0))
(define partition-digits-to-numbers
(let ((memo (make-hash)))
(λ (dgts)
(hash-ref! memo dgts
(λ ()
(map (λ (p) (map digits->number p))
(list-partitions dgts)))))))
(define (fold-sum-to-ns digits kons k0)
(define (get-solutions nmbrs acc chain k)
(match nmbrs
[(list)
(kons (cons acc (let ((niahc (reverse chain)))
(if (eq? '+ (car niahc)) (cdr niahc) niahc)))
k)]
[(cons a d)
(get-solutions d (- acc a) (list* a '- chain)
(get-solutions d (+ acc a) (list* a '+ chain) k))]))
(foldl (λ (nmbrs k) (get-solutions nmbrs 0 null k)) k0 (partition-digits-to-numbers digits)))
(define sum-to-ns/hash-promise
(delay (fold-sum-to-ns
'(1 2 3 4 5 6 7 8 9)
(λ (a.s d) (hash-update d (car a.s) (λ (x) (cons (cdr a.s) x)) list))
(hash))))
(module+ main
(define S (force sum-to-ns/hash-promise))
(displayln "Show all solutions that sum to 100")
(pretty-print (hash-ref S 100))
(displayln "Show the sum that has the maximum number of solutions (from zero to infinity*)")
(let-values (([k-max v-max]
(for/fold ((k-max #f) (v-max 0))
(([k v] (in-hash S)) #:when (> (length v) v-max))
(values k (length v)))))
(printf "~a has ~a solutions~%" k-max v-max))
(displayln "Show the lowest positive sum that can't be expressed (has no solutions),
using the rules for this task")
(for/first ((n (in-range 1 (add1 123456789))) #:unless (hash-has-key? S n)) n)
(displayln "Show the ten highest numbers that can be expressed using the rules for this task")
(take (sort (hash-keys S) >) 10))
(module+ test
(require rackunit)
(check-equal? (list-partitions null) '(()))
(check-equal? (list-partitions '(1)) '(((1))))
(check-equal? (list-partitions '(1 2)) '(((1) (2)) ((1 2))))
(check-equal? (partition-digits-to-numbers '()) '(()))
(check-equal? (partition-digits-to-numbers '(1)) '((1)))
(check-equal? (partition-digits-to-numbers '(1 2)) '((1 2) (12)))) |
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string | Strip a set of characters from a string | Task
Create a function that strips a set of characters from a string.
The function should take two arguments:
a string to be stripped
a string containing the set of characters to be stripped
The returned string should contain the first string, stripped of any characters in the second argument:
print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BASIC256 | BASIC256 | function stripchars(texto, remove)
s = texto
for i = 1 to length(remove)
s = replace(s, mid(remove, i, 1), "", true) #true se puede omitir
next i
return s
end function
print stripchars("She was a soul stripper. She took my heart!", "aei") |
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string | Strip a set of characters from a string | Task
Create a function that strips a set of characters from a string.
The function should take two arguments:
a string to be stripped
a string containing the set of characters to be stripped
The returned string should contain the first string, stripped of any characters in the second argument:
print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BBC_BASIC | BBC BASIC | PRINT FNstripchars("She was a soul stripper. She took my heart!", "aei")
END
DEF FNstripchars(A$, S$)
LOCAL I%, C%, C$
FOR I% = 1 TO LEN(S$)
C$ = MID$(S$, I%, 1)
REPEAT
C% = INSTR(A$, C$)
IF C% A$ = LEFT$(A$, C%-1) + MID$(A$, C%+1)
UNTIL C% = 0
NEXT
= A$ |
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #D.C3.A9j.C3.A0_Vu | Déjà Vu | local :s "world!"
set :s concat( "Hello " s)
!print s |
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #EchoLisp | EchoLisp |
define-syntax-rule
(set!-string-prepend a before)
(set! a (string-append before a)))
→ #syntax:set!-string-prepend
(define name "Presley")
→ name
(set!-string-prepend name "Elvis ")
name
→ "Elvis Presley"
|
http://rosettacode.org/wiki/String_prepend | String prepend |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Create a string variable equal to any text value.
Prepend the string variable with another string literal.
If your language supports any idiomatic ways to do this without referring to the variable twice in one expression, include such solutions.
To illustrate the operation, show the content of the variable.
| #Elena | Elena | import extensions;
import extensions'text;
public program()
{
var s := "World";
s := "Hello " + s;
console.writeLine:s;
// Alternative way
var s2 := StringWriter.load("World");
s2.insert(0, "Hello ");
console.writeLine:s2;
console.readChar()
} |
http://rosettacode.org/wiki/String_comparison | String comparison |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to compare two strings from within the language and how to achieve a lexical comparison.
The task should demonstrate:
Comparing two strings for exact equality
Comparing two strings for inequality (i.e., the inverse of exact equality)
Comparing two strings to see if one is lexically ordered before than the other
Comparing two strings to see if one is lexically ordered after than the other
How to achieve both case sensitive comparisons and case insensitive comparisons within the language
How the language handles comparison of numeric strings if these are not treated lexically
Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system.
For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
Here "generic/polymorphic" comparison means that the function or operator you're using doesn't always do string comparison, but bends the actual semantics of the comparison depending on the types one or both arguments; with such an operator, you achieve string comparison only if the arguments are sufficiently string-like in type or appearance.
In contrast, a "coercive/allomorphic" comparison function or operator has fixed string-comparison semantics regardless of the argument type; instead of the operator bending, it's the arguments that are forced to bend instead and behave like strings if they can, and the operator simply fails if the arguments cannot be viewed somehow as strings. A language may have one or both of these kinds of operators; see the Raku entry for an example of a language with both kinds of operators.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | --Comparing two strings for exact equality
set s1 to "this"
set s2 to "that"
if s1 is s2 then
-- strings are equal
end if
--Comparing two strings for inequality (i.e., the inverse of exact equality)
if s1 is not s2 then
-- string are not equal
end if
-- Comparing two strings to see if one is lexically ordered before than the other
if s1 < s2 then
-- s1 is lexically ordered before s2
end if
-- Comparing two strings to see if one is lexically ordered after than the other
if s1 > s2 then
-- s1 is lexically ordered after s2
end if
-- How to achieve both case sensitive comparisons and case insensitive comparisons within the language
set s1 to "this"
set s2 to "This"
considering case
if s1 is s2 then
-- strings are equal with case considering
end if
end considering
ignoring case -- default
if s2 is s2 then
-- string are equal without case considering
end if
end ignoring
-- Demonstrate any other kinds of string comparisons that the language provides, particularly as it relates to your type system. For example, you might demonstrate the difference between generic/polymorphic comparison and coercive/allomorphic comparison if your language supports such a distinction.
-- When comparing the right object is coerced into the same type as the object left from the operator. This implicit coercion enables to compare integers with strings (containining integer values).
set s1 to "3"
set int1 to 2
if s1 < int1 then
-- comparison is lexically
end if
if int1 < s1 then
-- comparison is numeric
end if |
http://rosettacode.org/wiki/String_case | String case | Task
Take the string alphaBETA and demonstrate how to convert it to:
upper-case and
lower-case
Use the default encoding of a string literal or plain ASCII if there is no string literal in your language.
Note: In some languages alphabets toLower and toUpper is not reversable.
Show any additional case conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that may be included in the library of your language.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ActionScript | ActionScript | var string:String = 'alphaBETA';
var upper:String = string.toUpperCase();
var lower:String = string.toLowerCase(); |
http://rosettacode.org/wiki/String_case | String case | Task
Take the string alphaBETA and demonstrate how to convert it to:
upper-case and
lower-case
Use the default encoding of a string literal or plain ASCII if there is no string literal in your language.
Note: In some languages alphabets toLower and toUpper is not reversable.
Show any additional case conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that may be included in the library of your language.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | with Ada.Characters.Handling, Ada.Text_IO;
use Ada.Characters.Handling, Ada.Text_IO;
procedure Upper_Case_String is
S : constant String := "alphaBETA";
begin
Put_Line (To_Upper (S));
Put_Line (To_Lower (S));
end Upper_Case_String; |
http://rosettacode.org/wiki/String_matching | String matching |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings, demonstrate the following three types of string matching:
Determining if the first string starts with second string
Determining if the first string contains the second string at any location
Determining if the first string ends with the second string
Optional requirements:
Print the location of the match for part 2
Handle multiple occurrences of a string for part 2.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Arturo | Arturo | print prefix? "abcd" "ab"
print prefix? "abcd" "cd"
print suffix? "abcd" "ab"
print suffix? "abcd" "cd"
print contains? "abcd" "ab"
print contains? "abcd" "xy"
print in? "ab" "abcd"
print in? "xy" "abcd"
print index "abcd" "bc"
print index "abcd" "xy" |
http://rosettacode.org/wiki/String_length | String length | Task
Find the character and byte length of a string.
This means encodings like UTF-8 need to be handled properly, as there is not necessarily a one-to-one relationship between bytes and characters.
By character, we mean an individual Unicode code point, not a user-visible grapheme containing combining characters.
For example, the character length of "møøse" is 5 but the byte length is 7 in UTF-8 and 10 in UTF-16.
Non-BMP code points (those between 0x10000 and 0x10FFFF) must also be handled correctly: answers should produce actual character counts in code points, not in code unit counts.
Therefore a string like "𝔘𝔫𝔦𝔠𝔬𝔡𝔢" (consisting of the 7 Unicode characters U+1D518 U+1D52B U+1D526 U+1D520 U+1D52C U+1D521 U+1D522) is 7 characters long, not 14 UTF-16 code units; and it is 28 bytes long whether encoded in UTF-8 or in UTF-16.
Please mark your examples with ===Character Length=== or ===Byte Length===.
If your language is capable of providing the string length in graphemes, mark those examples with ===Grapheme Length===.
For example, the string "J̲o̲s̲é̲" ("J\x{332}o\x{332}s\x{332}e\x{301}\x{332}") has 4 user-visible graphemes, 9 characters (code points), and 14 bytes when encoded in UTF-8.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Aime | Aime | length("Hello, World!") |
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #F.23 | F# |
open System
let stripControl (arg:string) =
String(Array.filter (fun x -> not (Char.IsControl(x))) (arg.ToCharArray()))
//end stripControl
let stripExtended (arg:string) =
let numArr = Array.map (fun (x:char) -> Convert.ToUInt16(x)) (arg.ToCharArray()) in
String([|for num in numArr do if num >= 32us && num <= 126us then yield Convert.ToChar(num) |])
//end stripExtended
[<EntryPoint>]
let main args =
let test = "string of ☺☻♥♦⌂, may include control characters and other ilk.♫☼§►↔◄"
printfn "Original: %s" test
printfn "Stripped of controls: %s" (stripControl test)
printfn "Stripped of extended: %s" (stripExtended test)
0//main must return integer, much like in C/C++
|
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string | Strip control codes and extended characters from a string | Task
Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
a string with control codes stripped (but extended characters not stripped)
a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Factor | Factor | USING: ascii kernel sequences ;
: strip-control-codes ( str -- str' ) [ control? not ] filter ;
: strip-control-codes-and-extended ( str -- str' )
strip-control-codes [ ascii? ] filter ; |
http://rosettacode.org/wiki/String_concatenation | String concatenation | String concatenation
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create a string variable equal to any text value.
Create another string variable whose value is the original variable concatenated with another string literal.
To illustrate the operation, show the content of the variables.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Arturo | Arturo | str1: "Hello "
str2: "World"
print str1 ++ str2 ++ "!" |
http://rosettacode.org/wiki/String_concatenation | String concatenation | String concatenation
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create a string variable equal to any text value.
Create another string variable whose value is the original variable concatenated with another string literal.
To illustrate the operation, show the content of the variables.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Asymptote | Asymptote | string s1 = "Hello";
write(s1 + " World!");
write(s1, " World!");
string s2 = s1 + " World!";
write(s2); |
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5 | Sum multiples of 3 and 5 | Task
The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n.
Show output for n = 1000.
This is is the same as Project Euler problem 1.
Extra credit: do this efficiently for n = 1e20 or higher.
| #Icon_and_Unicon | Icon and Unicon | procedure main(A)
n := (integer(A[1]) | 1000)-1
write(sum(n,3)+sum(n,5)-sum(n,15))
end
procedure sum(n,m)
return m*((n/m)*(n/m+1)/2)
end |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.