title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
null
In label-noise learning, estimating the transition matrix is a hot topic as the matrix plays an important role in building statistically consistent classifiers. Traditionally, the transition from clean labels to noisy labels (i.e., clean-label transition matrix (CLTM)) has been widely exploited to learn a clean label classifier by employing the noisy data. Motivated by that classifiers mostly output Bayes optimal labels for prediction, in this paper, we study to directly model the transition from Bayes optimal labels to noisy labels (i.e., Bayes-label transition matrix (BLTM)) and learn a classifier to predict Bayes optimal labels. Note that given only noisy data, it is ill-posed to estimate either the CLTM or the BLTM. But favorably, Bayes optimal labels have less uncertainty compared with the clean labels, i.e., the class posteriors of Bayes optimal labels are one-hot vectors while those of clean labels are not. This enables two advantages to estimate the BLTM, i.e., (a) a set of examples with theoretically guaranteed Bayes optimal labels can be collected out of noisy data; (b) the feasible solution space is much smaller. By exploiting the advantages, we estimate the BLTM parametrically by employing a deep neural network, leading to better generalization and superior classification performance.
Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu
null
null
2,022
icml
Identity-Disentangled Adversarial Augmentation for Self-supervised Learning
null
Data augmentation is critical to contrastive self-supervised learning, whose goal is to distinguish a sample’s augmentations (positives) from other samples (negatives). However, strong augmentations may change the sample-identity of the positives, while weak augmentation produces easy positives/negatives leading to nearly-zero loss and ineffective learning. In this paper, we study a simple adversarial augmentation method that can modify training data to be hard positives/negatives without distorting the key information about their original identities. In particular, we decompose a sample $x$ to be its variational auto-encoder (VAE) reconstruction $G(x)$ plus the residual $R(x)=x-G(x)$, where $R(x)$ retains most identity-distinctive information due to an information-theoretic interpretation of the VAE objective. We then adversarially perturb $G(x)$ in the VAE’s bottleneck space and adds it back to the original $R(x)$ as an augmentation, which is therefore sufficiently challenging for contrastive learning and meanwhile preserves the sample identity intact. We apply this “identity-disentangled adversarial augmentation (IDAA)” to different self-supervised learning methods. On multiple benchmark datasets, IDAA consistently improves both their efficiency and generalization performance. We further show that IDAA learned on a dataset can be transferred to other datasets. Code is available at \href{https://github.com/kai-wen-yang/IDAA}{https://github.com/kai-wen-yang/IDAA}.
Kaiwen Yang, Tianyi Zhou, Xinmei Tian, Dacheng Tao
null
null
2,022
icml
Feature Space Particle Inference for Neural Network Ensembles
null
Ensembles of deep neural networks demonstrate improved performance over single models. For enhancing the diversity of ensemble members while keeping their performance, particle-based inference methods offer a promising approach from a Bayesian perspective. However, the best way to apply these methods to neural networks is still unclear: seeking samples from the weight-space posterior suffers from inefficiency due to the over-parameterization issues, while seeking samples directly from the function-space posterior often leads to serious underfitting. In this study, we propose to optimize particles in the feature space where activations of a specific intermediate layer lie to alleviate the abovementioned difficulties. Our method encourages each member to capture distinct features, which are expected to increase the robustness of the ensemble prediction. Extensive evaluation on real-world datasets exhibits that our model significantly outperforms the gold-standard Deep Ensembles on various metrics, including accuracy, calibration, and robustness.
Shingo Yashima, Teppei Suzuki, Kohta Ishikawa, Ikuro Sato, Rei Kawakami
null
null
2,022
icml
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework
null
Pretrained language models have become the standard approach for many NLP tasks due to strong performance, but they are very expensive to train. We propose a simple and efficient learning framework, TLM, that does not rely on large-scale pretraining. Given some labeled task data and a large general corpus, TLM uses task data as queries to retrieve a tiny subset of the general corpus and jointly optimizes the task objective and the language modeling objective from scratch. On eight classification datasets in four domains, TLM achieves results better than or similar to pretrained language models (e.g., RoBERTa-Large) while reducing the training FLOPs by two orders of magnitude. With high accuracy and efficiency, we hope TLM will contribute to democratizing NLP and expediting its development.
Xingcheng Yao, Yanan Zheng, Xiaocong Yang, Zhilin Yang
null
null
2,022
icml
Centroid Approximation for Bootstrap: Improving Particle Quality at Inference
null
Bootstrap is a principled and powerful frequentist statistical tool for uncertainty quantification. Unfortunately, standard bootstrap methods are computationally intensive due to the need of drawing a large i.i.d. bootstrap sample to approximate the ideal bootstrap distribution; this largely hinders their application in large-scale machine learning, especially deep learning problems. In this work, we propose an efficient method to explicitly optimize a small set of high quality “centroid” points to better approximate the ideal bootstrap distribution. We achieve this by minimizing a simple objective function that is asymptotically equivalent to the Wasserstein distance to the ideal bootstrap distribution. This allows us to provide an accurate estimation of uncertainty with a small number of bootstrap centroids, outperforming the naive i.i.d. sampling approach. Empirically, we show that our method can boost the performance of bootstrap in a variety of applications.
Mao Ye, Qiang Liu
null
null
2,022
icml
Learning from a Learning User for Optimal Recommendations
null
In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such ”learning users” and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the user’s learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems.
Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, Haifeng Xu
null
null
2,022
icml
Molecular Representation Learning via Heterogeneous Motif Graph Neural Networks
null
We consider feature representation learning problem of molecular graphs. Graph Neural Networks have been widely used in feature representation learning of molecular graphs. However, most existing methods deal with molecular graphs individually while neglecting their connections, such as motif-level relationships. We propose a novel molecular graph representation learning method by constructing a heterogeneous motif graph to address this issue. In particular, we build a heterogeneous motif graph that contains motif nodes and molecular nodes. Each motif node corresponds to a motif extracted from molecules. Then, we propose a Heterogeneous Motif Graph Neural Network (HM-GNN) to learn feature representations for each node in the heterogeneous motif graph. Our heterogeneous motif graph also enables effective multi-task learning, especially for small molecular datasets. To address the potential efficiency issue, we propose to use an edge sampler, which can significantly reduce computational resources usage. The experimental results show that our model consistently outperforms previous state-of-the-art models. Under multi-task settings, the promising performances of our methods on combined datasets shed light on a new learning paradigm for small molecular datasets. Finally, we show that our model achieves similar performances with significantly less computational resources by using our edge sampler.
Zhaoning Yu, Hongyang Gao
null
null
2,022
icml
Fourier Learning with Cyclical Data
null
Many machine learning models for online applications, such as recommender systems, are often trained on data with cyclical properties. These data sequentially arrive from a time-varying distribution that is periodic in time. Existing algorithms either use streaming learning to track a time-varying set of optimal model parameters, yielding a dynamic regret that scales linearly in time; or partition the data of each cycle into multiple segments and train a separate model for each—a pluralistic approach that is computationally and storage-wise expensive. In this paper, we have designed a novel approach to overcome the aforementioned shortcomings. Our method, named "Fourier learning", encodes the periodicity into the model representation using a partial Fourier sequence, and trains the coefficient functions modeled by neural networks. Particularly, we design a Fourier multi-layer perceptron (F-MLP) that can be trained on streaming data with stochastic gradient descent (streaming-SGD), and we derive its convergence guarantees. We demonstrate Fourier learning’s better performance with extensive experiments on synthetic and public datasets, as well as on a large-scale recommender system that is updated in real-time, and trained with tens of millions of samples per day.
Yingxiang Yang, Zhihan Xiong, Tianyi Liu, Taiqing Wang, Chong Wang
null
null
2,022
icml
Bayesian Nonparametric Learning for Point Processes with Spatial Homogeneity: A Spatial Analysis of NBA Shot Locations
null
Basketball shot location data provide valuable summary information regarding players to coaches, sports analysts, fans, statisticians, as well as players themselves. Represented by spatial points, such data are naturally analyzed with spatial point process models. We present a novel nonparametric Bayesian method for learning the underlying intensity surface built upon a combination of Dirichlet process and Markov random field. Our method has the advantage of effectively encouraging local spatial homogeneity when estimating a globally heterogeneous intensity surface. Posterior inferences are performed with an efficient Markov chain Monte Carlo (MCMC) algorithm. Simulation studies show that the inferences are accurate and the method is superior compared to a wide range of competing methods. Application to the shot location data of $20$ representative NBA players in the 2017-2018 regular season offers interesting insights about the shooting patterns of these players. A comparison against the competing method shows that the proposed method can effectively incorporate spatial contiguity into the estimation of intensity surfaces.
Fan Yin, Jieying Jiao, Jun Yan, Guanyu Hu
null
null
2,022
icml
ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
null
Neural networks (NNs) with intensive multiplications (e.g., convolutions and transformers) are powerful yet power hungry, impeding their more extensive deployment into resource-constrained edge devices. As such, multiplication-free networks, which follow a common practice in energy-efficient hardware implementation to parameterize NNs with more efficient operators (e.g., bitwise shifts and additions), have gained growing attention. However, multiplication-free networks in general under-perform their vanilla counterparts in terms of the achieved accuracy. To this end, this work advocates hybrid NNs that consist of both powerful yet costly multiplications and efficient yet less powerful operators for marrying the best of both worlds, and proposes ShiftAddNAS, which can automatically search for more accurate and more efficient NNs. Our ShiftAddNAS highlights two enablers. Specifically, it integrates (1) the first hybrid search space that incorporates both multiplication-based and multiplication-free operators for facilitating the development of both accurate and efficient hybrid NNs; and (2) a novel weight sharing strategy that enables effective weight sharing among different operators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs. Laplacian for add operators) and simultaneously leads to a largely reduced supernet size and much better searched networks. Extensive experiments and ablation studies on various models, datasets, and tasks consistently validate the effectiveness of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9 better BLEU score as compared to state-of-the-art expert-designed and neural architecture searched NNs, while leading to up to 93% or 69% energy and latency savings, respectively. Codes and pretrained models are available at https://github.com/RICE-EIC/ShiftAddNAS.
Haoran You, Baopu Li, Shi Huihong, Yonggan Fu, Yingyan Lin
null
null
2,022
icml
De novo mass spectrometry peptide sequencing with a transformer model
null
Tandem mass spectrometry is the only high-throughput method for analyzing the protein content of complex biological samples and is thus the primary technology driving the growth of the field of proteomics. A key outstanding challenge in this field involves identifying the sequence of amino acids -the peptide- responsible for generating each observed spectrum, without making use of prior knowledge in the form of a peptide sequence database. Although various machine learning methods have been developed to address this de novo sequencing problem, challenges that arise when modeling tandem mass spectra have led to complex models that combine multiple neural networks and post-processing steps. We propose a simple yet powerful method for de novo peptide sequencing, Casanovo, that uses a transformer framework to map directly from a sequence of observed peaks (a mass spectrum) to a sequence of amino acids (a peptide). Our experiments show that Casanovo achieves state-of-the-art performance on a benchmark dataset using a standard cross-species evaluation framework which involves testing with spectra with never-before-seen peptide labels. Casanovo not only achieves superior performance but does so at a fraction of the model complexity and inference time required by other methods.
Melih Yilmaz, William Fondrie, Wout Bittremieux, Sewoong Oh, William S Noble
null
null
2,022
icml
Be Like Water: Adaptive Floating Point for Machine Learning
null
In the pursuit of optimizing memory and compute density to accelerate machine learning applications, reduced precision training and inference has been an active area of research. While some approaches selectively apply low precision computations, this may require costly off-chip data transfers or mixed precision support. In this paper, we propose a novel numerical representation, Adaptive Floating Point (AFP), that dynamically adjusts to the characteristics of deep learning data. AFP requires no changes to the model topology, requires no additional training, and applies to all layers of DNN models. We evaluate AFP on a spectrum of representative models in computer vision and NLP, and show that our technique enables ultra-low precision inference of deep learning models while providing accuracy comparable to full precision inference. By dynamically adjusting to ML data, AFP increases memory density by 1.6x, 1.6x, and 3.2x and compute density by 4x, 1.3x, and 12x when compared to BFP, BFloat16, and FP32.
Thomas Yeh, Max Sterner, Zerlina Lai, Brandon Chuang, Alexander Ihler
null
null
2,022
icml
Bitwidth Heterogeneous Federated Learning with Progressive Weight Dequantization
null
In practical federated learning scenarios, the participating devices may have different bitwidths for computation and memory storage by design. However, despite the progress made in device-heterogeneous federated learning scenarios, the heterogeneity in the bitwidth specifications in the hardware has been mostly overlooked. We introduce a pragmatic FL scenario with bitwidth heterogeneity across the participating devices, dubbed as Bitwidth Heterogeneous Federated Learning (BHFL). BHFL brings in a new challenge, that the aggregation of model parameters with different bitwidths could result in severe performance degeneration, especially for high-bitwidth models. To tackle this problem, we propose ProWD framework, which has a trainable weight dequantizer at the central server that progressively reconstructs the low-bitwidth weights into higher bitwidth weights, and finally into full-precision weights. ProWD further selectively aggregates the model parameters to maximize the compatibility across bit-heterogeneous weights. We validate ProWD against relevant FL baselines on the benchmark datasets, using clients with varying bitwidths. Our ProWD largely outperforms the baseline FL algorithms as well as naive approaches (e.g. grouped averaging) under the proposed BHFL scenario.
Jaehong Yoon, Geon Park, Wonyong Jeong, Sung Ju Hwang
null
null
2,022
icml
QSFL: A Two-Level Uplink Communication Optimization Framework for Federated Learning
null
In cross-device Federated Learning (FL), the communication cost of transmitting full-precision models between edge devices and a central server is a significant bottleneck, due to expensive, unreliable, and low-bandwidth wireless connections. As a solution, we propose a novel FL framework named QSFL, towards optimizing FL uplink (client-to-server) communication at both client and model levels. At the client level, we design a Qualification Judgment (QJ) algorithm to sample high-qualification clients to upload models. At the model level, we explore a Sparse Cyclic Sliding Segment (SCSS) algorithm to further compress transmitted models. We prove that QSFL can converge over wall-to-wall time, and develop an optimal hyperparameter searching algorithm based on theoretical analysis to enable QSFL to make the best trade-off between model accuracy and communication cost. Experimental results show that QSFL achieves state-of-the-art compression ratios with marginal model accuracy degradation.
Liping Yi, Wang Gang, Liu Xiaoguang
null
null
2,022
icml
Understanding Robust Overfitting of Adversarial Training and Beyond
null
Robust overfitting widely exists in adversarial training of deep networks. The exact underlying reasons for this are still not completely understood. Here, we explore the causes of robust overfitting by comparing the data distribution of non-overfit (weak adversary) and overfitted (strong adversary) adversarial training, and observe that the distribution of the adversarial data generated by weak adversary mainly contain small-loss data. However, the adversarial data generated by strong adversary is more diversely distributed on the large-loss data and the small-loss data. Given these observations, we further designed data ablation adversarial training and identify that some small-loss data which are not worthy of the adversary strength cause robust overfitting in the strong adversary mode. To relieve this issue, we propose minimum loss constrained adversarial training (MLCAT): in a minibatch, we learn large-loss data as usual, and adopt additional measures to increase the loss of the small-loss data. Technically, MLCAT hinders data fitting when they become easy to learn to prevent robust overfitting; philosophically, MLCAT reflects the spirit of turning waste into treasure and making the best use of each adversarial data; algorithmically, we designed two realizations of MLCAT, and extensive experiments demonstrate that MLCAT can eliminate robust overfitting and further boost adversarial robustness.
Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu
null
null
2,022
icml
How to Leverage Unlabeled Data in Offline Reinforcement Learning
null
Offline reinforcement learning (RL) can learn control policies from static datasets but, like standard RL methods, it requires reward annotations for every transition. In many cases, labeling large datasets with rewards may be costly, especially if those rewards must be provided by human labelers, while collecting diverse unlabeled data might be comparatively inexpensive. How can we best leverage such unlabeled data in offline RL? One natural solution is to learn a reward function from the labeled data and use it to label the unlabeled data. In this paper, we find that, perhaps surprisingly, a much simpler method that simply applies zero rewards to unlabeled data leads to effective data sharing both in theory and in practice, without learning any reward model at all. While this approach might seem strange (and incorrect) at first, we provide extensive theoretical and empirical analysis that illustrates how it trades off reward bias, sample complexity and distributional shift, often leading to good results. We characterize conditions under which this simple strategy is effective, and further show that extending it with a simple reweighting approach can further alleviate the bias introduced by using incorrect reward labels. Our empirical evaluation confirms these findings in simulated robotic locomotion, navigation, and manipulation settings.
Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, Sergey Levine
null
null
2,022
icml
Reachability Constrained Reinforcement Learning
null
Constrained reinforcement learning (CRL) has gained significant interest recently, since safety constraints satisfaction is critical for real-world problems. However, existing CRL methods constraining discounted cumulative costs generally lack rigorous definition and guarantee of safety. In contrast, in the safe control research, safety is defined as persistently satisfying certain state constraints. Such persistent safety is possible only on a subset of the state space, called feasible set, where an optimal largest feasible set exists for a given environment. Recent studies incorporate feasible sets into CRL with energy-based methods such as control barrier function (CBF), safety index (SI), and leverage prior conservative estimations of feasible sets, which harms the performance of the learned policy. To deal with this problem, this paper proposes the reachability CRL (RCRL) method by using reachability analysis to establish the novel self-consistency condition and characterize the feasible sets. The feasible sets are represented by the safety value function, which is used as the constraint in CRL. We use the multi-time scale stochastic approximation theory to prove that the proposed algorithm converges to a local optimum, where the largest feasible set can be guaranteed. Empirical results on different benchmarks validate the learned feasible set, the policy performance, and constraint satisfaction of RCRL, compared to CRL and safe control baselines.
Dongjie Yu, Haitong Ma, Shengbo Li, Jianyu Chen
null
null
2,022
icml
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
null
By integrating domain knowledge with labeled samples, informed machine learning has been emerging to improve the learning performance for a wide range of applications. Nonetheless, rigorous understanding of the role of injected domain knowledge has been under-explored. In this paper, we consider an informed deep neural network (DNN) with over-parameterization and domain knowledge integrated into its training objective function, and study how and why domain knowledge benefits the performance. Concretely, we quantitatively demonstrate the two benefits of domain knowledge in informed learning {—} regularizing the label-based supervision and supplementing the labeled samples {—} and reveal the trade-off between label and knowledge imperfectness in the bound of the population risk. Based on the theoretical analysis, we propose a generalized informed training objective to better exploit the benefits of knowledge and balance the label and knowledge imperfectness, which is validated by the population risk bound. Our analysis on sampling complexity sheds lights on how to choose the hyper-parameters for informed learning, and further justifies the advantages of knowledge informed learning.
Jianyi Yang, Shaolei Ren
null
null
2,022
icml
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks
null
Neural networks tend to achieve better accuracy with training if they are larger {—} even if the resulting models are overparameterized. Nevertheless, carefully removing such excess of parameters before, during, or after training may also produce models with similar or even improved accuracy. In many cases, that can be curiously achieved by heuristics as simple as removing a percentage of the weights with the smallest absolute value {—} even though absolute value is not a perfect proxy for weight relevance. With the premise that obtaining significantly better performance from pruning depends on accounting for the combined effect of removing multiple weights, we revisit one of the classic approaches for impact-based pruning: the Optimal Brain Surgeon (OBS). We propose a tractable heuristic for solving the combinatorial extension of OBS, in which we select weights for simultaneous removal, and we combine it with a single-pass systematic update of unpruned weights. Our selection method outperforms other methods for high sparsity, and the single-pass weight update is also advantageous if applied after those methods.
Xin Yu, Thiago Serra, Srikumar Ramalingam, Shandian Zhe
null
null
2,022
icml
Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts
null
Most existing methods in vision language pre-training rely on object-centric features extracted through object detection and make fine-grained alignments between the extracted features and texts. It is challenging for these methods to learn relations among multiple objects. To this end, we propose a new method called X-VLM to perform ‘multi-grained vision language pre-training.’ The key to learning multi-grained alignments is to locate visual concepts in the image given the associated texts, and in the meantime align the texts with the visual concepts, where the alignments are in multi-granularity. Experimental results show that X-VLM effectively leverages the learned multi-grained alignments to many downstream vision language tasks and consistently outperforms state-of-the-art methods.
Yan Zeng, Xinsong Zhang, Hang Li
null
null
2,022
icml
Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning
null
Model compression is an essential technique for deploying deep neural networks (DNNs) on power and memory-constrained resources. However, existing model-compression methods often rely on human expertise and focus on parameters’ local importance, ignoring the rich topology information within DNNs. In this paper, we propose a novel multi-stage graph embedding technique based on graph neural networks (GNNs) to identify DNN topologies and use reinforcement learning (RL) to find a suitable compression policy. We performed resource-constrained (i.e., FLOPs) channel pruning and compared our approach with state-of-the-art model compression methods. We evaluated our method on various models from typical to mobile-friendly networks, such as ResNet family, VGG-16, MobileNet-v1/v2, and ShuffleNet. Results show that our method can achieve higher compression ratios with a minimal fine-tuning cost yet yields outstanding and competitive performance.
Sixing Yu, Arya Mazaheri, Ali Jannesari
null
null
2,022
icml
Latent Diffusion Energy-Based Model for Interpretable Text Modelling
null
Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts.
Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, Ying Nian Wu
null
null
2,022
icml
GraphFM: Improving Large-Scale GNN Training via Feature Momentum
null
Training of graph neural networks (GNNs) for large-scale node classification is challenging. A key difficulty lies in obtaining accurate hidden node representations while avoiding the neighborhood explosion problem. Here, we propose a new technique, named feature momentum (FM), that uses a momentum step to incorporate historical embeddings when updating feature representations. We develop two specific algorithms, known as GraphFM-IB and GraphFM-OB, that consider in-batch and out-of-batch data, respectively. GraphFM-IB applies FM to in-batch sampled data, while GraphFM-OB applies FM to out-of-batch data that are 1-hop neighborhood of in-batch data. We provide a convergence analysis for GraphFM-IB and some theoretical insight for GraphFM-OB. Empirically, we observe that GraphFM-IB can effectively alleviate the neighborhood explosion problem of existing methods. In addition, GraphFM-OB achieves promising performance on multiple large-scale graph datasets.
Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, Shuiwang Ji
null
null
2,022
icml
Predicting Out-of-Distribution Error with the Projection Norm
null
We propose a metric—Projection Norm—to predict a model’s performance on out-of-distribution (OOD) data without access to ground truth labels. Projection Norm first uses model predictions to pseudo-label test samples and then trains a new model on the pseudo-labels. The more the new model’s parameters differ from an in-distribution model, the greater the predicted OOD error. Empirically, our approach outperforms existing methods on both image and text classification tasks and across different network architectures. Theoretically, we connect our approach to a bound on the test error for overparameterized linear models. Furthermore, we find that Projection Norm is the only approach that achieves non-trivial detection performance on adversarial examples. Our code is available at \url{https://github.com/yaodongyu/ProjNorm}.
Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma, Jacob Steinhardt
null
null
2,022
icml
Stabilizing Q-learning with Linear Architectures for Provable Efficient Learning
null
The Q-learning algorithm is a simple, fundamental and practically very effective reinforcement learning algorithm. However, the basic protocol can exhibit an unstable behavior when implemented even with simple linear function approximation. While tools like target networks and experience replay are often implemented to stabilize the learning process, the individual contribution of each of these mechanisms is not well understood theoretically. This work proposes an exploration variant of the basic Q-learning protocol with linear function approximation. Our modular analysis illustrates the role played by each algorithmic tool that we adopt: a second order update rule, a set of target networks, and a mechanism akin to experience replay. Together, they enable state of the art regret bounds on linear MDPs while preserving the most prominent feature of the algorithm, namely a space complexity independent of the number of steps elapsed. Furthermore, we show that the performance of the algorithm degrades very gracefully under a new, more permissive notion of approximation error. Finally, the algorithm partially inherits problem dependent regret bounds, function of the number of ‘effective’ feature dimension.
Andrea Zanette, Martin Wainwright
null
null
2,022
icml
Robust Task Representations for Offline Meta-Reinforcement Learning via Contrastive Learning
null
We study offline meta-reinforcement learning, a practical reinforcement learning paradigm that learns from offline data to adapt to new tasks. The distribution of offline data is determined jointly by the behavior policy and the task. Existing offline meta-reinforcement learning algorithms cannot distinguish these factors, making task representations unstable to the change of behavior policies. To address this problem, we propose a contrastive learning framework for task representations that are robust to the distribution mismatch of behavior policies in training and test. We design a bi-level encoder structure, use mutual information maximization to formalize task representation learning, derive a contrastive learning objective, and introduce several approaches to approximate the true distribution of negative pairs. Experiments on a variety of offline meta-reinforcement learning benchmarks demonstrate the advantages of our method over prior methods, especially on the generalization to out-of-distribution behavior policies.
Haoqi Yuan, Zongqing Lu
null
null
2,022
icml
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance
null
In this paper, we study contrastive learning from an optimization perspective, aiming to analyze and address a fundamental issue of existing contrastive learning methods that either rely on a large batch size or a large dictionary of feature vectors. We consider a global objective for contrastive learning, which contrasts each positive pair with all negative pairs for an anchor point. From the optimization perspective, we explain why existing methods such as SimCLR require a large batch size in order to achieve a satisfactory result. In order to remove such requirement, we propose a memory-efficient Stochastic Optimization algorithm for solving the Global objective of Contrastive Learning of Representations, named SogCLR. We show that its optimization error is negligible under a reasonable condition after a sufficient number of iterations or is diminishing for a slightly different global contrastive objective. Empirically, we demonstrate that SogCLR with small batch size (e.g., 256) can achieve similar performance as SimCLR with large batch size (e.g., 8192) on self-supervised learning task on ImageNet-1K. We also attempt to show that the proposed optimization technique is generic and can be applied to solving other contrastive losses, e.g., two-way contrastive losses for bimodal contrastive learning. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org).
Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, Tianbao Yang
null
null
2,022
icml
Adaptive Conformal Predictions for Time Series
null
Uncertainty quantification of predictive models is crucial in decision-making problems. Conformal prediction is a general and theoretically sound answer. However, it requires exchangeable data, excluding time series. While recent works tackled this issue, we argue that Adaptive Conformal Inference (ACI, Gibbs & Cand{è}s, 2021), developed for distribution-shift time series, is a good procedure for time series with general dependency. We theoretically analyse the impact of the learning rate on its efficiency in the exchangeable and auto-regressive case. We propose a parameter-free method, AgACI, that adaptively builds upon ACI based on online expert aggregation. We lead extensive fair simulations against competing methods that advocate for ACI’s use in time series. We conduct a real case study: electricity price forecasting. The proposed aggregation algorithm provides efficient prediction intervals for day-ahead forecasting. All the code and data to reproduce the experiments are made available on GitHub.
Margaux Zaffran, Olivier Feron, Yannig Goude, Julie Josse, Aymeric Dieuleveut
null
null
2,022
icml
Time Is MattEr: Temporal Self-supervision for Video Transformers
null
Understanding temporal dynamics of video is an essential aspect of learning better video representations. Recently, transformer-based architectural designs have been extensively explored for video tasks due to their capability to capture long-term dependency of input sequences. However, we found that these Video Transformers are still biased to learn spatial dynamics rather than temporal ones, and debiasing the spurious correlation is critical for their performance. Based on the observations, we design simple yet effective self-supervised tasks for video models to learn temporal dynamics better. Specifically, for debiasing the spatial bias, our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs. Also, our method learns the temporal flow direction of video tokens among consecutive frames for enhancing the correlation toward temporal dynamics. Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.
Sukmin Yun, Jaehyung Kim, Dongyoon Han, Hwanjun Song, Jung-Woo Ha, Jinwoo Shin
null
null
2,022
icml
Actor-Critic based Improper Reinforcement Learning
null
We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process, and wishes to combine them optimally to produce a potentially new controller that can outperform each of the base ones. This can be useful in tuning across controllers, learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target environment with relatively few trials. Towards this, we propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic (AC) based scheme and a Natural Actor-Critic (NAC) scheme depending on the available information. Both algorithms operate over a class of improper mixtures of the given controllers. For the first case, we derive convergence rate guarantees assuming access to a gradient oracle. For the AC-based approach we provide convergence rate guarantees to a stationary point in the basic AC case and to a global optimum in the NAC case. Numerical results on (i) the standard control theoretic benchmark of stabilizing an inverted pendulum; and (ii) a constrained queueing task show that our improper policy optimization algorithm can stabilize the system even when the base policies at its disposal are unstable.
Mohammadi Zaki, Avi Mohan, Aditya Gopalan, Shie Mannor
null
null
2,022
icml
Multi Resolution Analysis (MRA) for Approximate Self-Attention
null
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at \url{https://github.com/mlpen/mra-attention}.
Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh
null
null
2,022
icml
Pure Noise to the Rescue of Insufficient Data: Improving Imbalanced Classification by Training on Random Noise Images
null
Despite remarkable progress on visual recognition tasks, deep neural-nets still struggle to generalize well when training data is scarce or highly imbalanced, rendering them extremely vulnerable to real-world examples. In this paper, we present a surprisingly simple yet highly effective method to mitigate this limitation: using pure noise images as additional training data. Unlike the common use of additive noise or adversarial noise for data augmentation, we propose an entirely different perspective by directly training on pure random noise images. We present a new Distribution-Aware Routing Batch Normalization layer (DAR-BN), which enables training on pure noise images in addition to natural images within the same network. This encourages generalization and suppresses overfitting. Our proposed method significantly improves imbalanced classification performance, obtaining state-of-the-art results on a large variety of long-tailed image classification datasets (CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, Places-LT, and CelebA-5). Furthermore, our method is extremely simple and easy to use as a general new augmentation tool (on top of existing augmentations), and can be incorporated in any training scheme. It does not require any specialized data generation or training procedures, thus keeping training fast and efficient.
Shiran Zada, Itay Benou, Michal Irani
null
null
2,022
icml
Revisiting End-to-End Speech-to-Text Translation From Scratch
null
End-to-end (E2E) speech-to-text translation (ST) often depends on pretraining its encoder and/or decoder using source transcripts via speech recognition or text translation tasks, without which translation performance drops substantially. However, transcripts are not always available, and how significant such pretraining is for E2E ST has rarely been studied in the literature. In this paper, we revisit this question and explore the extent to which the quality of E2E ST trained on speech-translation pairs alone can be improved. We reexamine several techniques proven beneficial to ST previously, and offer a set of best practices that biases a Transformer-based E2E ST system toward training from scratch. Besides, we propose parameterized distance penalty to facilitate the modeling of locality in the self-attention model for speech. On four benchmarks covering 23 languages, our experiments show that, without using any transcripts or pretraining, the proposed system reaches and even outperforms previous studies adopting pretraining, although the gap remains in (extremely) low-resource settings. Finally, we discuss neural acoustic feature modeling, where a neural model is designed to extract acoustic features from raw speech signals directly, with the goal to simplify inductive biases and add freedom to the model in describing speech. For the first time, we demonstrate its feasibility and show encouraging results on ST tasks.
Biao Zhang, Barry Haddow, Rico Sennrich
null
null
2,022
icml
Stochastic Continuous Submodular Maximization: Boosting via Non-oblivious Function
null
In this paper, we revisit Stochastic Continuous Submodular Maximization in both offline and online settings, which can benefit wide applications in machine learning and operations research areas. We present a boosting framework covering gradient ascent and online gradient ascent. The fundamental ingredient of our methods is a novel non-oblivious function $F$ derived from a factor-revealing optimization problem, whose any stationary point provides a $(1-e^{-\gamma})$-approximation to the global maximum of the $\gamma$-weakly DR-submodular objective function $f\in C^{1,1}_L(\mathcal{X})$. Under the offline scenario, we propose a boosting gradient ascent method achieving $(1-e^{-\gamma}-\epsilon^{2})$-approximation after $O(1/\epsilon^2)$ iterations, which improves the $(\frac{\gamma^2}{1+\gamma^2})$ approximation ratio of the classical gradient ascent algorithm. In the online setting, for the first time we consider the adversarial delays for stochastic gradient feedback, under which we propose a boosting online gradient algorithm with the same non-oblivious function $F$. Meanwhile, we verify that this boosting online algorithm achieves a regret of $O(\sqrt{D})$ against a $(1-e^{-\gamma})$-approximation to the best feasible solution in hindsight, where $D$ is the sum of delays of gradient feedback. To the best of our knowledge, this is the first result to obtain $O(\sqrt{T})$ regret against a $(1-e^{-\gamma})$-approximation with $O(1)$ gradient inquiry at each time step, when no delay exists, i.e., $D=T$. Finally, numerical experiments demonstrate the effectiveness of our boosting methods.
Qixin Zhang, Zengde Deng, Zaiyi Chen, Haoyuan Hu, Yu Yang
null
null
2,022
icml
Anytime Information Cascade Popularity Prediction via Self-Exciting Processes
null
One important aspect of understanding behaviors of information cascades is to be able to accurately predict their popularity, that is, their message counts at any future time. Self-exciting Hawkes processes have been widely adopted for such tasks due to their success in describing cascading behaviors. In this paper, for general, marked Hawkes point processes, we present closed-form expressions for the mean and variance of future event counts, conditioned on observed events. Furthermore, these expressions allow us to develop a predictive approach, namely, Cascade Anytime Size Prediction via self-Exciting Regression model (CASPER), which is specifically tailored to popularity prediction, unlike existing generative approaches {–} based on point processes {–} for the same task. We showcase CASPER’s merits via experiments entailing both synthetic and real-world data, and demonstrate that it considerably improves upon prior works in terms of accuracy, especially for early-stage prediction.
Xi Zhang, Akshay Aravamudan, Georgios C Anagnostopoulos
null
null
2,022
icml
Collaboration of Experts: Achieving 80% Top-1 Accuracy on ImageNet with 100M FLOPs
null
In this paper, we propose a Collaboration of Experts (CoE) framework to assemble the expertise of multiple networks towards a common goal. Each expert is an individual network with expertise on a unique portion of the dataset, contributing to the collective capacity. Given a sample, delegator selects an expert and simultaneously outputs a rough prediction to trigger potential early termination. For each model in CoE, we propose a novel training algorithm with two major components: weight generation module (WGM) and label generation module (LGM). It fulfills the co-adaptation of experts and delegator. WGM partitions the training data into portions based on delegator via solving a balanced transportation problem, then impels each expert to focus on one portion by reweighting the losses. LGM generates the label to constitute the loss of delegator for expert selection. CoE achieves the state-of-the-art performance on ImageNet, 80.7% top-1 accuracy with 194M FLOPs. Combined with PWLU and CondConv, CoE further boosts the accuracy to 80.0% with only 100M FLOPs for the first time. Furthermore, experiment results on the translation task also demonstrate the strong generalizability of CoE. CoE is hardware-friendly, yielding a 3 6x acceleration compared with existing conditional computation approaches.
Yikang Zhang, Zhuo Chen, Zhao Zhong
null
null
2,022
icml
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
null
Providing privacy protection has been one of the primary motivations of Federated Learning (FL). Recently, there has been a line of work on incorporating the formal privacy notion of differential privacy with FL. To guarantee the client-level differential privacy in FL algorithms, the clients’ transmitted model updates have to be clipped before adding privacy noise. Such clipping operation is substantially different from its counterpart of gradient clipping in the centralized differentially private SGD and has not been well-understood. In this paper, we first empirically demonstrate that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity when training neural networks, which is partly because the clients’ updates become similar for several popular deep architectures. Based on this key observation, we provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients’ updates. To the best of our knowledge, this is the first work that rigorously investigates theoretical and empirical issues regarding the clipping operation in FL algorithms.
Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Steven Wu, Jinfeng Yi
null
null
2,022
icml
Position Prediction as an Effective Pretraining Strategy
null
Transformers \cite{transformer} have gained increasing popularity in a wide range of applications, including Natural Language Processing (NLP), Computer Vision and Speech Recognition, because of their powerful representational capacity. However, harnessing this representational capacity effectively requires a large amount of data, strong regularization, or both, to mitigate overfitting. Recently, the power of the Transformer has been unlocked by self-supervised pretraining strategies based on masked autoencoders which rely on reconstructing masked inputs, directly, or contrastively from unmasked content. This pretraining strategy which has been used in BERT models in NLP \cite{bert}, Wav2Vec models in Speech \cite{wv2v2} and, recently, in MAE models in Vision \cite{beit, mae}, forces the model to learn about relationships between the content in different parts of the input using autoencoding related objectives. In this paper, we propose a novel, but surprisingly simple alternative to content reconstruction – that of predicting locations from content, without providing positional information for it. Doing so requires the Transformer to understand the positional relationships between different parts of the input, from their content alone. This amounts to an efficient implementation where the pretext task is a classification problem among all possible positions for each input token. We experiment on both Vision and Speech benchmarks, where our approach brings improvements over strong supervised training baselines and is comparable to modern unsupervised/self-supervised pretraining methods. Our method also enables Transformers trained without position embeddings to outperform ones trained with full position information.
Shuangfei Zhai, Navdeep Jaitly, Jason Ramapuram, Dan Busbridge, Tatiana Likhomanenko, Joseph Y Cheng, Walter Talbott, Chen Huang, Hanlin Goh, Joshua M Susskind
null
null
2,022
icml
A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms
null
In modern machine learning systems, distributed algorithms are deployed across applications to ensure data privacy and optimal utilization of computational resources. This work offers a fresh perspective to model, analyze, and design distributed optimization algorithms through the lens of stochastic multi-rate feedback control. We show that a substantial class of distributed algorithms—including popular Gradient Tracking for decentralized learning, and FedPD and Scaffold for federated learning—can be modeled as a certain discrete-time stochastic feedback-control system, possibly with multiple sampling rates. This key observation allows us to develop a generic framework to analyze the convergence of the entire algorithm class. It also enables one to easily add desirable features such as differential privacy guarantees, or to deal with practical settings such as partial agent participation, communication compression, and imperfect communication in algorithm design and analysis.
Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Nicola Elia
null
null
2,022
icml
UAST: Uncertainty-Aware Siamese Tracking
null
Visual object tracking is basically formulated as target classification and bounding box estimation. Recent anchor-free Siamese trackers rely on predicting the distances to four sides for efficient regression but fail to estimate accurate bounding box in complex scenes. We argue that these approaches lack a clear probabilistic explanation, so it is desirable to model the uncertainty and ambiguity representation of target estimation. To address this issue, this paper presents an Uncertainty-Aware Siamese Tracker (UAST) by developing a novel distribution-based regression formulation with localization uncertainty. We exploit regression vectors to directly represent the discretized probability distribution for four offsets of boxes, which is general, flexible and informative. Based on the resulting distributed representation, our method is able to provide a probabilistic value of uncertainty. Furthermore, considering the high correlation between the uncertainty and regression accuracy, we propose to learn a joint representation head of classification and localization quality for reliable tracking, which also avoids the inconsistency of classification and quality estimation between training and inference. Extensive experiments on several challenging tracking benchmarks demonstrate the effectiveness of UAST and its superiority over other Siamese trackers.
Dawei Zhang, Yanwei Fu, Zhonglong Zheng
null
null
2,022
icml
Fairness Interventions as (Dis)Incentives for Strategic Manipulation
null
Although machine learning (ML) algorithms are widely used to make decisions about individuals in various domains, concerns have arisen that (1) these algorithms are vulnerable to strategic manipulation and "gaming the algorithm"; and (2) ML decisions may exhibit bias against certain social groups. Existing works have largely examined these as two separate issues, e.g., by focusing on building ML algorithms robust to strategic manipulation, or on training a fair ML algorithm. In this study, we set out to understand the impact they each have on the other, and examine how to characterize fair policies in the presence of strategic behavior. The strategic interaction between a decision maker and individuals (as decision takers) is modeled as a two-stage (Stackelberg) game; when designing an algorithm, the former anticipates the latter may manipulate their features in order to receive more favorable decisions. We analytically characterize the equilibrium strategies of both, and examine how the algorithms and their resulting fairness properties are affected when the decision maker is strategic (anticipates manipulation), as well as the impact of fairness interventions on equilibrium strategies. In particular, we identify conditions under which anticipation of strategic behavior may mitigate/exacerbate unfairness, and conditions under which fairness interventions can serve as (dis)incentives for strategic manipulation.
Xueru Zhang, Mohammad Mahdi Khalili, Kun Jin, Parinaz Naghizadeh, Mingyan Liu
null
null
2,022
icml
PDE-Based Optimal Strategy for Unconstrained Online Learning
null
Unconstrained Online Linear Optimization (OLO) is a practical problem setting to study the training of machine learning models. Existing works proposed a number of potential-based algorithms, but in general the design of these potential functions relies heavily on guessing. To streamline this workflow, we present a framework that generates new potential functions by solving a Partial Differential Equation (PDE). Specifically, when losses are 1-Lipschitz, our framework produces a novel algorithm with anytime regret bound $C\sqrt{T}+||u||\sqrt{2T}[\sqrt{\log(1+||u||/C)}+2]$, where $C$ is a user-specified constant and $u$ is any comparator unknown and unbounded a priori. Such a bound attains an optimal loss-regret trade-off without the impractical doubling trick. Moreover, a matching lower bound shows that the leading order term, including the constant multiplier $\sqrt{2}$, is tight. To our knowledge, the proposed algorithm is the first to achieve such optimalities.
Zhiyu Zhang, Ashok Cutkosky, Ioannis Paschalidis
null
null
2,022
icml
Examining Scaling and Transfer of Language Model Architectures for Machine Translation
null
Natural language understanding and generation models follow one of the two dominant architectural paradigms: language models (LMs) that process concatenated sequences in a single stack of layers, and encoder-decoder models (EncDec) that utilize separate layer stacks for input and output processing. In machine translation, EncDec has long been the favoured approach, but with few studies investigating the performance of LMs. In this work, we thoroughly examine the role of several architectural design choices on the performance of LMs on bilingual, (massively) multilingual and zero-shot translation tasks, under systematic variations of data conditions and model sizes. Our results show that: (i) Different LMs have different scaling properties, where architectural differences often have a significant impact on model performance at small scales, but the performance gap narrows as the number of parameters increases, (ii) Several design choices, including causal masking and language-modeling objectives for the source sequence, have detrimental effects on translation quality, and (iii) When paired with full-visible masking for source sequences, LMs could perform on par with EncDec on supervised bilingual and multilingual translation tasks, and improve greatly on zero-shot directions by facilitating the reduction of off-target translations.
Biao Zhang, Behrooz Ghorbani, Ankur Bapna, Yong Cheng, Xavier Garcia, Jonathan Shen, Orhan Firat
null
null
2,022
icml
GALAXY: Graph-based Active Learning at the Extreme
null
Active learning is a label-efficient approach to train highly effective models while interactively selecting only small subsets of unlabelled data for labelling and training. In “open world" settings, the classes of interest can make up a small fraction of the overall dataset – most of the data may be viewed as an out-of-distribution or irrelevant class. This leads to extreme class-imbalance, and our theory and methods focus on this core issue. We propose a new strategy for active learning called GALAXY (Graph-based Active Learning At the eXtrEme), which blends ideas from graph-based active learning and deep learning. GALAXY automatically and adaptively selects more class-balanced examples for labeling than most other methods for active learning. Our theory shows that GALAXY performs a refined form of uncertainty sampling that gathers a much more class-balanced dataset than vanilla uncertainty sampling. Experimentally, we demonstrate GALAXY’s superiority over existing state-of-art deep active learning algorithms in unbalanced vision classification settings generated from popular datasets.
Jifan Zhang, Julian Katz-Samuels, Robert Nowak
null
null
2,022
icml
Federated Learning with Label Distribution Skew via Logits Calibration
null
Traditional federated optimization methods perform poorly with heterogeneous data (i.e. , accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf{Fed}erated learning via \textbf{L}ogits \textbf{C}alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.
Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, Chao Wu
null
null
2,022
icml
Personalized Federated Learning via Variational Bayesian Inference
null
Federated learning faces huge challenges from model overfitting due to the lack of data and statistical diversity among clients. To address these challenges, this paper proposes a novel personalized federated learning method via Bayesian variational inference named pFedBayes. To alleviate the overfitting, weight uncertainty is introduced to neural networks for clients and the server. To achieve personalization, each client updates its local distribution parameters by balancing its construction error over private data and its KL divergence with global distribution from the server. Theoretical analysis gives an upper bound of averaged generalization error and illustrates that the convergence rate of the generalization error is minimax optimal up to a logarithmic factor. Experiments show that the proposed method outperforms other advanced personalized methods on personalized models, e.g., pFedBayes respectively outperforms other SOTA algorithms by 1.25%, 0.42% and 11.71% on MNIST, FMNIST and CIFAR-10 under non-i.i.d. limited data.
Xu Zhang, Yinchuan Li, Wenpeng Li, Kaiyang Guo, Yunfeng Shao
null
null
2,022
icml
Dynamic Topic Models for Temporal Document Networks
null
Dynamic topic models explore the time evolution of topics in temporally accumulative corpora. While existing topic models focus on the dynamics of individual documents, we propose two neural topic models aimed at learning unified topic distributions that incorporate both document dynamics and network structure. For the first model, by adding a time dimension, we propose Time-Aware Optimal Transport, which measures the probability of a link between two differently timestamped documents using their semantic distance. Since the gradually evolving topological structure of network may also influence the establishment of a new link, for the second model, we further design a Temporal Point Process to capture the impact of historical neighbors on the current link formation at the network level. Experiments on four dynamic document networks demonstrate the advantage of our models in jointly modeling document dynamics and network adjacency.
Delvin Ce Zhang, Hady Lauw
null
null
2,022
icml
A Langevin-like Sampler for Discrete Distributions
null
We propose discrete Langevin proposal (DLP), a simple and scalable gradient-based proposal for sampling complex high-dimensional discrete distributions. In contrast to Gibbs sampling-based methods, DLP is able to update all coordinates in parallel in a single step and the magnitude of changes is controlled by a stepsize. This allows a cheap and efficient exploration in the space of high-dimensional and strongly correlated variables. We prove the efficiency of DLP by showing that the asymptotic bias of its stationary distribution is zero for log-quadratic distributions, and is small for distributions that are close to being log-quadratic. With DLP, we develop several variants of sampling algorithms, including unadjusted, Metropolis-adjusted, stochastic and preconditioned versions. DLP outperforms many popular alternatives on a wide variety of tasks, including Ising models, restricted Boltzmann machines, deep energy-based models, binary neural networks and language generation.
Ruqi Zhang, Xingchao Liu, Qiang Liu
null
null
2,022
icml
Neurotoxin: Durable Backdoors in Federated Learning
null
Federated learning (FL) systems have an inherent vulnerability to adversarial backdoor attacks during training due to their decentralized nature. The goal of the attacker is to implant backdoors in the learned model with poisoned updates such that at test time, the model’s outputs can be fixed to a given target for certain inputs (e.g., if a user types “people from New York” into a mobile keyboard app that uses a backdoored next word prediction model, the model will autocomplete their sentence to “people in New York are rude”). Prior work has shown that backdoors can be inserted in FL, but these backdoors are not durable: they do not remain in the model after the attacker stops uploading poisoned updates because training continues, and in production FL systems an inserted backdoor may not survive until deployment. We propose Neurotoxin, a simple one-line backdoor attack that functions by attacking parameters that are changed less in magnitude during training. We conduct an exhaustive evaluation across ten natural language processing and computer vision tasks and find that we can double the durability of state of the art backdoors by adding a single line with Neurotoxin.
Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Mahoney, Prateek Mittal, Ramchandran Kannan, Joseph Gonzalez
null
null
2,022
icml
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
null
This work examines the deep disconnect between existing theoretical analyses of gradient-based algorithms and the practice of training deep neural networks. Specifically, we provide numerical evidence that in large-scale neural network training (e.g., ImageNet + ResNet101, and WT103 + TransformerXL models), the neural network’s weights do not converge to stationary points where the gradient of the loss is zero. Remarkably, however, we observe that even though the weights do not converge to stationary points, the progress in minimizing the loss function halts and training loss stabilizes. Inspired by this observation, we propose a new perspective based on ergodic theory of dynamical systems to explain it. Rather than studying the evolution of weights, we study the evolution of the distribution of weights. We prove convergence of the distribution of weights to an approximate invariant measure, thereby explaining how the training loss can stabilize without weights necessarily converging to stationary points. We further discuss how this perspective can better align optimization theory with empirical observations in machine learning practice.
Jingzhao Zhang, Haochuan Li, Suvrit Sra, Ali Jadbabaie
null
null
2,022
icml
Rich Feature Construction for the Optimization-Generalization Dilemma
null
There often is a dilemma between ease of optimization and robust out-of-distribution (OoD) generalization. For instance, many OoD methods rely on penalty terms whose optimization is challenging. They are either too strong to optimize reliably or too weak to achieve their goals. We propose to initialize the networks with a rich representation containing a palette of potentially useful features, ready to be used by even simple models. On the one hand, a rich representation provides a good initialization for the optimizer. On the other hand, it also provides an inductive bias that helps OoD generalization. Such a representation is constructed with the Rich Feature Construction (RFC) algorithm, also called the Bonsai algorithm, which consists of a succession of training episodes. During discovery episodes, we craft a multi-objective optimization criterion and its associated datasets in a manner that prevents the network from using the features constructed in the previous iterations. During synthesis episodes, we use knowledge distillation to force the network to simultaneously represent all the previously discovered features. Initializing the networks with Bonsai representations consistently helps six OoD methods achieve top performance on ColoredMNIST benchmark. The same technique substantially outperforms comparable results on the Wilds Camelyon17 task, eliminates the high result variance that plagues other methods, and makes hyperparameter tuning and model selection more reliable.
Jianyu Zhang, David Lopez-Paz, Leon Bottou
null
null
2,022
icml
Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations
null
Spurious correlations pose a major challenge for robust machine learning. Models trained with empirical risk minimization (ERM) may learn to rely on correlations between class labels and spurious attributes, leading to poor performance on data groups without these correlations. This is challenging to address when the spurious attribute labels are unavailable. To improve worst-group performance on spuriously correlated data without training attribute labels, we propose Correct-N-Contrast (CNC), a contrastive approach to directly learn representations robust to spurious correlations. As ERM models can be good spurious attribute predictors, CNC works by (1) using a trained ERM model’s outputs to identify samples with the same class but dissimilar spurious features, and (2) training a robust model with contrastive learning to learn similar representations for these samples. To support CNC, we introduce new connections between worst-group error and a representation alignment loss that CNC aims to minimize. We empirically observe that worst-group error closely tracks with alignment loss, and prove that the alignment loss over a class helps upper-bound the class’s worst-group vs. average error gap. On popular benchmarks, CNC reduces alignment loss drastically, and achieves state-of-the-art worst-group accuracy by 3.6% average absolute lift. CNC is also competitive with oracle methods that require group labels.
Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, Christopher Re
null
null
2,022
icml
Deep and Flexible Graph Neural Architecture Search
null
Graph neural networks (GNNs) have been intensively applied to various graph-based applications. Despite their success, designing good GNN architectures is non-trivial, which heavily relies on lots of human efforts and domain knowledge. Although several attempts have been made in graph neural architecture search, they suffer from the following limitations: 1) fixed pipeline pattern of propagation (P) and (T) transformation operations; 2) restricted pipeline depth of GNN architectures. This paper proposes DFG-NAS, a novel method that searches for deep and flexible GNN architectures. Unlike most existing methods that focus on micro-architecture, DFG-NAS highlights another level of design: the search for macro-architectures of how atomic P and T are integrated and organized into a GNN. Concretely, DFG-NAS proposes a novel-designed search space for the P-T permutations and combinations based on the message-passing dis-aggregation, and defines various mutation strategies and employs the evolutionary algorithm to conduct an efficient and effective search. Empirical studies on four benchmark datasets demonstrate that DFG-NAS could find more powerful architectures than state-of-the-art manual designs and meanwhile are more efficient than the current graph neural architecture search approaches.
Wentao Zhang, Zheyu Lin, Yu Shen, Yang Li, Zhi Yang, Bin Cui
null
null
2,022
icml
Role-based Multiplex Network Embedding
null
In recent years, multiplex network embedding has received great attention from researchers. However, existing multiplex network embedding methods neglect structural role information, which can be used to determine the structural similarity between nodes. To overcome this shortcoming, this work proposes a simple, effective, role-based embedding method for multiplex networks, called RMNE. The RMNE uses the structural role information of nodes to preserve the structural similarity between nodes in the entire multiplex network. Specifically, a role-modified random walk is designed to generate node sequences of each node, which can capture both the within-layer neighbors, structural role members, and cross-layer structural role members of a node. Additionally, the variant of RMNE extends the existing collaborative embedding method by unifying the structural role information into our method to obtain the role-based node representations. Finally, the proposed methods were evaluated on the network reconstruction, node classification, link prediction, and multi-class edge classification tasks. The experimental results on eight public, real-world multiplex networks demonstrate that the proposed methods outperform state-of-the-art baseline methods.
Hegui Zhang, Gang Kou
null
null
2,022
icml
Learning to Estimate and Refine Fluid Motion with Physical Dynamics
null
Extracting information on fluid motion directly from images is challenging. Fluid flow represents a complex dynamic system governed by the Navier-Stokes equations. General optical flow methods are typically designed for rigid body motion, and thus struggle if applied to fluid motion estimation directly. Further, optical flow methods only focus on two consecutive frames without utilising historical temporal information, while the fluid motion (velocity field) can be considered a continuous trajectory constrained by time-dependent partial differential equations (PDEs). This discrepancy has the potential to induce physically inconsistent estimations. Here we propose an unsupervised learning based prediction-correction scheme for fluid flow estimation. An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector. The proposed approach outperforms optical flow methods and shows competitive results compared to existing supervised learning based methods on a benchmark dataset. Furthermore, the proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable. Finally, experiments demonstrate that the physical corrector can refine flow estimates by mimicking the operator splitting method commonly utilised in fluid dynamical simulation.
Mingrui Zhang, Jianhong Wang, James B Tlhomole, Matthew Piggott
null
null
2,022
icml
NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning
null
Recently, graph neural networks (GNNs) have shown prominent performance in graph representation learning by leveraging knowledge from both graph structure and node features. However, most of them have two major limitations. First, GNNs can learn higher-order structural information by stacking more layers but can not deal with large depth due to the over-smoothing issue. Second, it is not easy to apply these methods on large graphs due to the expensive computation cost and high memory usage. In this paper, we present node-adaptive feature smoothing (NAFS), a simple non-parametric method that constructs node representations without parameter learning. NAFS first extracts the features of each node with its neighbors of different hops by feature smoothing, and then adaptively combines the smoothed features. Besides, the constructed node representation can further be enhanced by the ensemble of smoothed features extracted via different smoothing strategies. We conduct experiments on four benchmark datasets on two different application scenarios: node clustering and link prediction. Remarkably, NAFS with feature ensemble outperforms the state-of-the-art GNNs on these tasks and mitigates the aforementioned two limitations of most learning-based GNN counterparts.
Wentao Zhang, Zeang Sheng, Mingyu Yang, Yang Li, Yu Shen, Zhi Yang, Bin Cui
null
null
2,022
icml
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
null
We study oracle complexity of gradient based methods for stochastic approximation problems. Though in many settings optimal algorithms and tight lower bounds are known for such problems, these optimal algorithms do not achieve the best performance when used in practice. We address this theory-practice gap by focusing on instance-dependent complexity instead of worst case complexity. In particular, we first summarize known instance-dependent complexity results and categorize them into three levels. We identify the domination relation between different levels and propose a fourth instance-dependent bound that dominates existing ones. We then provide a sufficient condition according to which an adaptive algorithm with moment estimation can achieve the proposed bound without knowledge of noise levels. Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation as it achieves improved instance complexity.
Jingzhao Zhang, Hongzhou Lin, Subhro Das, Suvrit Sra, Ali Jadbabaie
null
null
2,022
icml
Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
null
Permutation invariant neural networks are a promising tool for predictive modeling of set data. We show, however, that existing architectures struggle to perform well when they are deep. In this work, we mathematically and empirically analyze normalization layers and residual connections in the context of deep permutation invariant neural networks. We develop set norm, a normalization tailored for sets, and introduce the “clean path principle” for equivariant residual connections alongside a novel benefit of such connections, the reduction of information loss. Based on our analysis, we propose Deep Sets++ and Set Transformer++, deep models that reach comparable or better performance than their original counterparts on a diverse suite of tasks. We additionally introduce Flow-RBC, a new single-cell dataset and real-world application of permutation invariant prediction. We open-source our data and code here: https://github.com/rajesh-lab/deep_permutation_invariant.
Lily Zhang, Veronica Tozzo, John Higgins, Rajesh Ranganath
null
null
2,022
icml
Partial Counterfactual Identification from Observational and Experimental Data
null
This paper investigates the problem of bounding counterfactual queries from an arbitrary collection of observational and experimental distributions and qualitative knowledge about the underlying data-generating model represented in the form of a causal diagram. We show that all counterfactual distributions in an arbitrary structural causal model (SCM) with discrete observed domains could be generated by a canonical family of SCMs with the same causal diagram where unobserved (exogenous) variables are also discrete, taking values in finite domains. Utilizing the canonical SCMs, we translate the problem of bounding counterfactuals into that of polynomial programming whose solution provides optimal bounds for the counterfactual query. Solving such polynomial programs is in general computationally expensive. We then develop effective Monte Carlo algorithms to approximate optimal bounds from a combination of observational and experimental data. Our algorithms are validated extensively on synthetic and real-world datasets.
Junzhe Zhang, Jin Tian, Elias Bareinboim
null
null
2,022
icml
A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks
null
Strong adversarial attacks are important for evaluating the true robustness of deep neural networks. Most existing attacks search in the input space, e.g., using gradient descent, and may miss adversarial examples due to non-convexity. In this work, we systematically search adversarial examples in the activation space of ReLU networks to tackle hard instances where none of the existing adversarial attacks succeed. Unfortunately, searching the activation space typically relies on generic mixed integer programming (MIP) solvers and is limited to small networks and easy problem instances. To improve scalability and practicability, we use branch and bound (BaB) with specialized GPU-based bound propagation methods, and propose a top-down beam-search approach to quickly identify the subspace that may contain adversarial examples. Moreover, we build an adversarial candidates pool using cheap attacks to further assist the search in activation space via diving techniques and a bottom-up large neighborhood search. Our adversarial attack framework, BaB-Attack, opens up a new opportunity for designing novel adversarial attacks not limited to searching the input space, and enables us to borrow techniques from integer programming theory and neural network verification. In experiments, we can successfully generate adversarial examples when existing attacks on input space fail. Compared to off-the-shelf MIP solver based attacks that requires significant computations, we outperform in both success rates and efficiency.
Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, Zico Kolter
null
null
2,022
icml
Making Linear MDPs Practical via Contrastive Representation Learning
null
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations. This motivates much of the recent theoretical study on linear MDPs. However, most approaches require a given representation under unrealistic assumptions about the normalization of the decomposition or introduce unresolved computational challenges in practice. Instead, we consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning via contrastive estimation. The framework also admits confidence-adjusted index algorithms, enabling an efficient and principled approach to incorporating optimism or pessimism in the face of uncertainty. To the best of our knowledge, this provides the first practical representation learning method for linear MDPs that achieves both strong theoretical guarantees and empirical performance. Theoretically, we prove that the proposed algorithm is sample efficient in both the online and offline settings. Empirically, we demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, Bo Dai
null
null
2,022
icml
Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control
null
Many studies confirmed that a proper traffic state representation is more important than complex algorithms for the classical traffic signal control (TSC) problem. In this paper, we (1) present a novel, flexible and efficient method, namely advanced max pressure (Advanced-MP), taking both running and queuing vehicles into consideration to decide whether to change current signal phase; (2) inventively design the traffic movement representation with the efficient pressure and effective running vehicles from Advanced-MP, namely advanced traffic state (ATS); and (3) develop a reinforcement learning (RL) based algorithm template, called Advanced-XLight, by combining ATS with the latest RL approaches, and generate two RL algorithms, namely "Advanced-MPLight" and "Advanced-CoLight" from Advanced-XLight. Comprehensive experiments on multiple real-world datasets show that: (1) the Advanced-MP outperforms baseline methods, and it is also efficient and reliable for deployment; and (2) Advanced-MPLight and Advanced-CoLight can achieve the state-of-the-art.
Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, Jianqing Wu
null
null
2,022
icml
Generative Flow Networks for Discrete Probabilistic Modeling
null
We present energy-based generative flow networks (EB-GFN), a novel probabilistic modeling algorithm for high-dimensional discrete data. Building upon the theory of generative flow networks (GFlowNets), we model the generation process by a stochastic data construction policy and thus amortize expensive MCMC exploration into a fixed number of actions sampled from a GFlowNet. We show how GFlowNets can approximately perform large-block Gibbs sampling to mix between modes. We propose a framework to jointly train a GFlowNet with an energy function, so that the GFlowNet learns to sample from the energy distribution, while the energy learns with an approximate MLE objective with negative samples from the GFlowNet. We demonstrate EB-GFN’s effectiveness on various probabilistic modeling tasks. Code is publicly available at https://github.com/zdhNarsil/EB_GFN.
Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, Yoshua Bengio
null
null
2,022
icml
Building Robust Ensembles via Margin Boosting
null
In the context of adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks, and as a result, has sub-optimal robustness. Consequently, an emerging line of work has focused on learning an ensemble of neural networks to defend against adversarial attacks. In this work, we take a principled approach towards building robust ensembles. We view this problem from the perspective of margin-boosting and develop an algorithm for learning an ensemble with maximum margin. Through extensive empirical evaluation on benchmark datasets, we show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion. An important byproduct of our work is a margin-maximizing cross-entropy (MCE) loss, which is a better alternative to the standard cross-entropy (CE) loss. Empirically, we show that replacing the CE loss in state-of-the-art adversarial training techniques with our MCE loss leads to significant performance improvement.
Dinghuai Zhang, Hongyang Zhang, Aaron Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala
null
null
2,022
icml
Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach
null
We present BRIEE, an algorithm for efficient reinforcement learning in Markov Decision Processes with block-structured dynamics (i.e., Block MDPs), where rich observations are generated from a set of unknown latent states. BRIEE interleaves latent states discovery, exploration, and exploitation together, and can provably learn a near-optimal policy with sample complexity scaling polynomially in the number of latent states, actions, and the time horizon, with no dependence on the size of the potentially infinite observation space. Empirically, we show that BRIEE is more sample efficient than the state-of-art Block MDP algorithm HOMER and other empirical RL baselines on challenging rich-observation combination lock problems which require deep exploration.
Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, Wen Sun
null
null
2,022
icml
PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance
null
Large Transformer-based models have exhibited superior performance in various natural language processing and computer vision tasks. However, these models contain enormous amounts of parameters, which restrict their deployment to real-world applications. To reduce the model size, researchers prune these models based on the weights’ importance scores. However, such scores are usually estimated on mini-batches during training, which incurs large variability/uncertainty due to mini-batch sampling and complicated training dynamics. As a result, some crucial weights could be pruned by commonly used pruning methods because of such uncertainty, which makes training unstable and hurts generalization. To resolve this issue, we propose PLATON, which captures the uncertainty of importance scores by upper confidence bound of importance estimation. In particular, for the weights with low importance scores but high uncertainty, PLATON tends to retain them and explores their capacity. We conduct extensive experiments with several Transformer-based models on natural language understanding, question answering and image classification to validate the effectiveness of PLATON. Results demonstrate that PLATON manifests notable improvement under different sparsity levels. Our code is publicly available at https://github.com/QingruZhang/PLATON.
Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, Tuo Zhao
null
null
2,022
icml
Uncertainty Modeling in Generative Compressed Sensing
null
Compressed sensing (CS) aims to recover a high-dimensional signal with structural priors from its low-dimensional linear measurements. Inspired by the huge success of deep neural networks in modeling the priors of natural signals, generative neural networks have been recently used to replace the hand-crafted structural priors in CS. However, the reconstruction capability of the generative model is fundamentally limited by the range of its generator, typically a small subset of the signal space of interest. To break this bottleneck and thus reconstruct those out-of-range signals, this paper presents a novel method called CS-BGM that can effectively expands the range of generator. Specifically, CS-BGM introduces uncertainties to the latent variable and parameters of the generator, while adopting the variational inference (VI) and maximum a posteriori (MAP) to infer them. Theoretical analysis demonstrates that expanding the range of generators is necessary for reducing the reconstruction error in generative CS. Extensive experiments show a consistent improvement of CS-BGM over the baselines.
Yilang Zhang, Mengchu Xu, Xiaojun Mao, Jian Wang
null
null
2,022
icml
No-Regret Learning in Time-Varying Zero-Sum Games
null
Learning from repeated play in a fixed two-player zero-sum game is a classic problem in game theory and online learning. We consider a variant of this problem where the game payoff matrix changes over time, possibly in an adversarial manner. We first present three performance measures to guide the algorithmic design for this problem: 1) the well-studied individual regret, 2) an extension of duality gap, and 3) a new measure called dynamic Nash Equilibrium regret, which quantifies the cumulative difference between the player’s payoff and the minimax game value. Next, we develop a single parameter-free algorithm that simultaneously enjoys favorable guarantees under all these three performance measures. These guarantees are adaptive to different non-stationarity measures of the payoff matrices and, importantly, recover the best known results when the payoff matrix is fixed. Our algorithm is based on a two-layer structure with a meta-algorithm learning over a group of black-box base-learners satisfying a certain property, along with several novel ingredients specifically designed for the time-varying game setting. Empirical results further validate the effectiveness of our algorithm.
Mengxiao Zhang, Peng Zhao, Haipeng Luo, Zhi-Hua Zhou
null
null
2,022
icml
Low-Precision Stochastic Gradient Langevin Dynamics
null
While low-precision optimization has been widely used to accelerate deep learning, low-precision sampling remains largely unexplored. As a consequence, sampling is simply infeasible in many large-scale scenarios, despite providing remarkable benefits to generalization and uncertainty estimation for neural networks. In this paper, we provide the first study of low-precision Stochastic Gradient Langevin Dynamics (SGLD), showing that its costs can be significantly reduced without sacrificing performance, due to its intrinsic ability to handle system noise. We prove that the convergence of low-precision SGLD with full-precision gradient accumulators is less affected by the quantization error than its SGD counterpart in the strongly convex setting. To further enable low-precision gradient accumulators, we develop a new quantization function for SGLD that preserves the variance in each update step. We demonstrate that low-precision SGLD achieves comparable performance to full-precision SGLD with only 8 bits on a variety of deep learning tasks.
Ruqi Zhang, Andrew Gordon Wilson, Christopher De Sa
null
null
2,022
icml
Learning to Solve PDE-constrained Inverse Problems with Graph Networks
null
Learned graph neural networks (GNNs) have recently been established as fast and accurate alternatives for principled solvers in simulating the dynamics of physical systems. In many application domains across science and engineering, however, we are not only interested in a forward simulation but also in solving inverse problems with constraints defined by a partial differential equation (PDE). Here we explore GNNs to solve such PDE-constrained inverse problems. Given a sparse set of measurements, we are interested in recovering the initial condition or parameters of the PDE. We demonstrate that GNNs combined with autodecoder-style priors are well-suited for these tasks, achieving more accurate estimates of initial conditions or physical parameters than other learned approaches when applied to the wave equation or Navier Stokes equations. We also demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
Qingqing Zhao, David B Lindell, Gordon Wetzstein
null
null
2,022
icml
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization
null
Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, Fast-AT and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance Fast-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly-used Fast-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bi-level AT (Fast-BAT), which effectively defends sign-based projected gradient descent (PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show that our method yields substantial robustness improvements over multiple baselines across multiple models and datasets.
Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu
null
null
2,022
icml
Certified Robustness Against Natural Language Attacks by Causal Intervention
null
Deep learning models have achieved great success in many fields, yet they are vulnerable to adversarial examples. This paper follows a causal perspective to look into the adversarial vulnerability and proposes Causal Intervention by Semantic Smoothing (CISS), a novel framework towards robustness against natural language attacks. Instead of merely fitting observational data, CISS learns causal effects p(y|do(x)) by smoothing in the latent semantic space to make robust predictions, which scales to deep architectures and avoids tedious construction of noise customized for specific attacks. CISS is provably robust against word substitution attacks, as well as empirically robust even when perturbations are strengthened by unknown attack algorithms. For example, on YELP, CISS surpasses the runner-up by 6.8% in terms of certified robustness against word substitutions, and achieves 80.7% empirical robustness when syntactic attacks are integrated.
Haiteng Zhao, Chang Ma, Xinshuai Dong, Anh Tuan Luu, Zhi-Hong Deng, Hanwang Zhang
null
null
2,022
icml
Efficient Learning for AlphaZero via Path Consistency
null
In recent years, deep reinforcement learning have made great breakthroughs on board games. Still, most of the works require huge computational resources for a large scale of environmental interactions or self-play for the games. This paper aims at building powerful models under a limited amount of self-plays which can be utilized by a human throughout the lifetime. We proposes a learning algorithm built on AlphaZero, with its path searching regularised by a path consistency (PC) optimality, i.e., values on one optimal search path should be identical. Thus, the algorithm is shortly named PCZero. In implementation, historical trajectory and scouted search paths by MCTS makes a good balance between exploration and exploitation, which enhances the generalization ability effectively. PCZero obtains $94.1%$ winning rate against the champion of Hex Computer Olympiad in 2015 on $13\times 13$ Hex, much higher than $84.3%$ by AlphaZero. The models consume only $900K$ self-play games, about the amount humans can study in a lifetime. The improvements by PCZero have been also generalized to Othello and Gomoku. Experiments also demonstrate the efficiency of PCZero under offline learning setting.
Dengwei Zhao, Shikui Tu, Lei Xu
null
null
2,022
icml
Dynamic Regret of Online Markov Decision Processes
null
We investigate online Markov Decision Processes (MDPs) with adversarially changing loss functions and known transitions. We choose dynamic regret as the performance measure, defined as the performance difference between the learner and any sequence of feasible changing policies. The measure is strictly stronger than the standard static regret that benchmarks the learner’s performance with a fixed compared policy. We consider three foundational models of online MDPs, including episodic loop-free Stochastic Shortest Path (SSP), episodic SSP, and infinite-horizon MDPs. For the three models, we propose novel online ensemble algorithms and establish their dynamic regret guarantees respectively, in which the results for episodic (loop-free) SSP are provably minimax optimal in terms of time horizon and certain non-stationarity measure.
Peng Zhao, Long-Fei Li, Zhi-Hua Zhou
null
null
2,022
icml
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
null
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
Jiayao Zhang, Hongming Zhang, Weijie Su, Dan Roth
null
null
2,022
icml
Toward Compositional Generalization in Object-Oriented World Modeling
null
Compositional generalization is a critical ability in learning and decision-making. We focus on the setting of reinforcement learning in object-oriented environments to study compositional generalization in world modeling. We (1) formalize the compositional generalization problem with an algebraic approach and (2) study how a world model can achieve that. We introduce a conceptual environment, Object Library, and two instances, and deploy a principled pipeline to measure the generalization ability. Motivated by the formulation, we analyze several methods with exact or no compositional generalization ability using our framework, and design a differentiable approach, Homomorphic Object-oriented World Model (HOWM), that achieves soft but more efficient compositional generalization.
Linfeng Zhao, Lingzhi Kong, Robin Walters, Lawson L.S. Wong
null
null
2,022
icml
Global Optimization Networks
null
We consider the problem of estimating a good maximizer of a black-box function given noisy examples. We propose to fit a new type of function called a global optimization network (GON), defined as any composition of an invertible function and a unimodal function, whose unique global maximizer can be inferred in $\mathcal{O}(D)$ time, and used as the estimate. As an example way to construct GON functions, and interesting in its own right, we give new results for specifying multi-dimensional unimodal functions using lattice models with linear inequality constraints. We extend to conditional GONs that find a global maximizer conditioned on specified inputs of other dimensions. Experiments show the GON maximizers are statistically significantly better predictions than those produced by convex fits, GPR, or DNNs, and form more reasonable predictions for real-world problems.
Sen Zhao, Erez Louidor, Maya Gupta
null
null
2,022
icml
Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning
null
How to train deep neural networks (DNNs) to generalize well is a central concern in deep learning, especially for severely overparameterized networks nowadays. In this paper, we propose an effective method to improve the model generalization by additionally penalizing the gradient norm of loss function during optimization. We demonstrate that confining the gradient norm of loss function could help lead the optimizers towards finding flat minima. We leverage the first-order approximation to efficiently implement the corresponding gradient to fit well in the gradient descent framework. In our experiments, we confirm that when using our methods, generalization performance of various models could be improved on different datasets. Also, we show that the recent sharpness-aware minimization method (Foretet al., 2021) is a special, but not the best, case of our method, where the best case of our method could give new state-of-art performance on these tasks. Code is available at https://github.com/zhaoyang-0204/gnp.
Yang Zhao, Hao Zhang, Xiuyuan Hu
null
null
2,022
icml
NysADMM: faster composite convex optimization via low-rank approximation
null
This paper develops a scalable new algorithm, called NysADMM, to minimize a smooth convex loss function with a convex regularizer. NysADMM accelerates the inexact Alternating Direction Method of Multipliers (ADMM) by constructing a preconditioner for the ADMM subproblem from a randomized low-rank Nyström approximation. NysADMM comes with strong theoretical guarantees: it solves the ADMM subproblem in a constant number of iterations when the rank of the Nyström approximation is the effective dimension of the subproblem regularized Gram matrix. In practice, ranks much smaller than the effective dimension can succeed, so NysADMM uses an adaptive strategy to choose the rank that enjoys analogous guarantees. Numerical experiments on real-world datasets demonstrate that NysADMM can solve important applications, such as the lasso, logistic regression, and support vector machines, in half the time (or less) required by standard solvers. The breadth of problems on which NysADMM beats standard solvers is a surprise: it suggests that ADMM is a dominant paradigm for numerical optimization across a wide range of statistical learning problems that are usually solved with bespoke methods.
Shipu Zhao, Zachary Frangella, Madeleine Udell
null
null
2,022
icml
A Hierarchical Bayesian Approach to Inverse Reinforcement Learning with Symbolic Reward Machines
null
A misspecified reward can degrade sample efficiency and induce undesired behaviors in reinforcement learning (RL) problems. We propose symbolic reward machines for incorporating high-level task knowledge when specifying the reward signals. Symbolic reward machines augment existing reward machine formalism by allowing transitions to carry predicates and symbolic reward outputs. This formalism lends itself well to inverse reinforcement learning, whereby the key challenge is determining appropriate assignments to the symbolic values from a few expert demonstrations. We propose a hierarchical Bayesian approach for inferring the most likely assignments such that the concretized reward machine can discriminate expert demonstrated trajectories from other trajectories with high accuracy. Experimental results show that learned reward machines can significantly improve training efficiency for complex RL tasks and generalize well across different task environment configurations.
Weichao Zhou, Wenchao Li
null
null
2,022
icml
Linear Complexity Randomized Self-attention Mechanism
null
Recently, random feature attentions (RFAs) are proposed to approximate the softmax attention in linear time and space complexity by linearizing the exponential kernel. In this paper, we first propose a novel perspective to understand the bias in such approximation by recasting RFAs as self-normalized importance samplers. This perspective further sheds light on an unbiased estimator for the whole softmax attention, called randomized attention (RA). RA constructs positive random features via query-specific distributions and enjoys greatly improved approximation fidelity, albeit exhibiting quadratic complexity. By combining the expressiveness in RA and the efficiency in RFA, we develop a novel linear complexity self-attention mechanism called linear randomized attention (LARA). Extensive experiments across various domains demonstrate that RA and LARA significantly improve the performance of RFAs by a substantial margin.
Lin Zheng, Chong Wang, Lingpeng Kong
null
null
2,022
icml
Online Decision Transformer
null
Recent work has shown that offline reinforcement learning (RL) can be formulated as a sequence modeling problem (Chen et al., 2021; Janner et al., 2021) and solved via approaches similar to large-scale language modeling. However, any practical instantiation of RL also involves an online component, where policies pretrained on passive offline datasets are finetuned via task-specific interactions with the environment. We propose Online Decision Transformers (ODT), an RL algorithm based on sequence modeling that blends offline pretraining with online finetuning in a unified framework. Our framework uses sequence-level entropy regularizers in conjunction with autoregressive modeling objectives for sample-efficient exploration and finetuning. Empirically, we show that ODT is competitive with the state-of-the-art in absolute performance on the D4RL benchmark but shows much more significant gains during the finetuning procedure.
Qinqing Zheng, Amy Zhang, Aditya Grover
null
null
2,022
icml
Learning Efficient and Robust Ordinary Differential Equations via Invertible Neural Networks
null
Advances in differentiable numerical integrators have enabled the use of gradient descent techniques to learn ordinary differential equations (ODEs), where a flexible function approximator (often a neural network) is used to estimate the system dynamics, given as a time derivative. However, these integrators can be unsatisfactorily slow and unstable when learning systems of ODEs from long sequences. We propose to learn an ODE of interest from data by viewing its dynamics as a vector field related to another base vector field via a diffeomorphism (i.e., a differentiable bijection), represented by an invertible neural network (INN). By learning both the INN and the dynamics of the base ODE, we provide an avenue to offload some of the complexity in modelling the dynamics directly on to the INN. Consequently, by restricting the base ODE to be amenable to integration, we can speed up and improve the robustness of integrating trajectories from the learned system. We demonstrate the efficacy of our method in training and evaluating benchmark ODE systems, as well as within continuous-depth neural networks models. We show that our approach attains speed-ups of up to two orders of magnitude when integrating learned ODEs.
Weiming Zhi, Tin Lai, Lionel Ott, Edwin V. Bonilla, Fabio Ramos
null
null
2,022
icml
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
null
When training deep neural networks for classification tasks, an intriguing empirical phenomenon has been widely observed in the last-layer classifiers and features, where (i) the class means and the last-layer classifiers all collapse to the vertices of a Simplex Equiangular Tight Frame (ETF) up to scaling, and (ii) cross-example within-class variability of last-layer activations collapses to zero. This phenomenon is called Neural Collapse (NC), which seems to take place regardless of the choice of loss functions. In this work, we justify NC under the mean squared error (MSE) loss, where recent empirical evidence shows that it performs comparably or even better than the de-facto cross-entropy loss. Under a simplified unconstrained feature model, we provide the first global landscape analysis for vanilla nonconvex MSE loss and show that the (only!) global minimizers are neural collapse solutions, while all other critical points are strict saddles whose Hessian exhibit negative curvature directions. Furthermore, we justify the usage of rescaled MSE loss by probing the optimization landscape around the NC solutions, showing that the landscape can be improved by tuning the rescaling hyperparameters. Finally, our theoretical findings are experimentally verified on practical network architectures.
Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, Zhihui Zhu
null
null
2,022
icml
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets
null
We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional shift between the behavior policy and the optimal policy, (ii) function approximation to handle large state space, and (iii) minimax optimization for equilibrium solving. We propose a pessimism-based algorithm, dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distributional shift by constructing pessimistic estimates of the value functions for both players and outputs a policy pair by solving a correlated coarse equilibrium based on the two value functions. Furthermore, we establish a data-dependent upper bound on the suboptimality which recovers a sublinear rate without the assumption on uniform coverage of the dataset. We also prove an information-theoretical lower bound, which shows our upper bound is nearly minimax optimal, which suggests that the data-dependent term is intrinsic. Our theoretical results also highlight a notion of “relative uncertainty”, which characterizes the necessary and sufficient condition for achieving sample efficiency in offline MGs. To the best of our knowledge, we provide the first nearly minimax optimal result for offline MGs with function approximation.
Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang
null
null
2,022
icml
Improving Adversarial Robustness via Mutual Information Estimation
null
Deep neural networks (DNNs) are found to be vulnerable to adversarial noise. They are typically misled by adversarial samples to make wrong predictions. To alleviate this negative effect, in this paper, we investigate the dependence between outputs of the target model and input adversarial samples from the perspective of information theory, and propose an adversarial defense method. Specifically, we first measure the dependence by estimating the mutual information (MI) between outputs and the natural patterns of inputs (called natural MI) and MI between outputs and the adversarial patterns of inputs (called adversarial MI), respectively. We find that adversarial samples usually have larger adversarial MI and smaller natural MI compared with those w.r.t. natural samples. Motivated by this observation, we propose to enhance the adversarial robustness by maximizing the natural MI and minimizing the adversarial MI during the training process. In this way, the target model is expected to pay more attention to the natural pattern that contains objective semantics. Empirical evaluations demonstrate that our method could effectively improve the adversarial accuracy against multiple attacks.
Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu
null
null
2,022
icml
Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory
null
Off-Policy Evaluation (OPE) serves as one of the cornerstones in Reinforcement Learning (RL). Fitted Q Evaluation (FQE) with various function approximators, especially deep neural networks, has gained practical success. While statistical analysis has proved FQE to be minimax-optimal with tabular, linear and several nonparametric function families, its practical performance with more general function approximator is less theoretically understood. We focus on FQE with general differentiable function approximators, making our theory applicable to neural function approximations. We approach this problem using the Z-estimation theory and establish the following results: The FQE estimation error is asymptotically normal with explicit variance determined jointly by the tangent space of the function class at the ground truth, the reward structure, and the distribution shift due to off-policy learning; The finite-sample FQE error bound is dominated by the same variance term, and it can also be bounded by function class-dependent divergence, which measures how the off-policy distribution shift intertwines with the function approximator. In addition, we study bootstrapping FQE estimators for error distribution inference and estimating confidence intervals, accompanied by a Cramer-Rao lower bound that matches our upper bounds. The Z-estimation analysis provides a generalizable theoretical framework for studying off-policy estimation in RL and provides sharp statistical theory for FQE with differentiable function approximators.
Ruiqi Zhang, Xuezhou Zhang, Chengzhuo Ni, Mengdi Wang
null
null
2,022
icml
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
null
Distributionally robust optimization (DRO) and invariant risk minimization (IRM) are two popular methods proposed to improve out-of-distribution (OOD) generalization performance of machine learning models. While effective for small models, it has been observed that these methods can be vulnerable to overfitting with large overparameterized models. This work proposes a principled method, Model Agnostic samPLe rEweighting (MAPLE), to effectively address OOD problem, especially in overparameterized scenarios. Our key idea is to find an effective reweighting of the training samples so that the standard empirical risk minimization training of a large model on the weighted training data leads to superior OOD generalization performance. The overfitting issue is addressed by considering a bilevel formulation to search for the sample reweighting, in which the generalization complexity depends on the search space of sample weights instead of the model size. We present theoretical analysis in linear case to prove the insensitivity of MAPLE to model size, and empirically verify its superiority in surpassing state-of-the-art methods by a large margin.
Xiao Zhou, Yong Lin, Renjie Pi, Weizhong Zhang, Renzhe Xu, Peng Cui, Tong Zhang
null
null
2,022
icml
Describing Differences between Text Distributions with Natural Language
null
How do two distributions of text differ? Humans are slow at answering this, since discovering patterns might require tediously reading through hundreds of samples. We propose to automatically summarize the differences by “learning a natural language hypothesis": given two distributions $D_{0}$ and $D_{1}$, we search for a description that is more often true for $D_{1}$, e.g., “is military-related." To tackle this problem, we fine-tune GPT-3 to propose descriptions with the prompt: “[samples of $D_{0}$] + [samples of $D_{1}$] + the difference between them is \underline{\space\space\space\space}". We then re-rank the descriptions by checking how often they hold on a larger set of samples with a learned verifier. On a benchmark of 54 real-world binary classification tasks, while GPT-3 Curie (13B) only generates a description similar to human annotation 7% of the time, the performance reaches 61% with fine-tuning and re-ranking, and our best system using GPT-3 Davinci (175B) reaches 76%. We apply our system to describe distribution shifts, debug dataset shortcuts, summarize unknown tasks, and label text clusters, and present analyses based on automatically generated descriptions.
Ruiqi Zhong, Charlie Snell, Dan Klein, Jacob Steinhardt
null
null
2,022
icml
HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
null
In this work we propose a HyperTransformer, a Transformer-based model for supervised and semi-supervised few-shot learning that generates weights of a convolutional neural network (CNN) directly from support samples. Since the dependence of a small generated CNN model on a specific task is encoded by a high-capacity Transformer model, we effectively decouple the complexity of the large task space from the complexity of individual tasks. Our method is particularly effective for small target CNN architectures where learning a fixed universal task-independent embedding is not optimal and better performance is attained when the information about the task can modulate all model parameters. For larger models we discover that generating the last layer alone allows us to produce competitive or better results than those obtained with state-of-the-art methods while being end-to-end differentiable.
Andrey Zhmoginov, Mark Sandler, Maksym Vladymyrov
null
null
2,022
icml
Dimension-free Complexity Bounds for High-order Nonconvex Finite-sum Optimization
null
Stochastic high-order methods for finding first-order stationary points in nonconvex finite-sum optimization have witnessed increasing interest in recent years, and various upper and lower bounds of the oracle complexity have been proved. However, under standard regularity assumptions, existing complexity bounds are all dimension-dependent (e.g., polylogarithmic dependence), which contrasts with the dimension-free complexity bounds for stochastic first-order methods and deterministic high-order methods. In this paper, we show that the polylogarithmic dimension dependence gap is not essential and can be closed. More specifically, we propose stochastic high-order algorithms with novel first-order and high-order derivative estimators, which can achieve dimension-free complexity bounds. With the access to $p$-th order derivatives of the objective function, we prove that our algorithm finds $\epsilon$-stationary points with $O(n^{(2p-1)/(2p)}/\epsilon^{(p+1)/p})$ high-order oracle complexities, where $n$ is the number of individual functions. Our result strictly improves the complexity bounds of existing high-order deterministic methods with respect to the dependence on $n$, and it is dimension-free compared with existing stochastic high-order methods.
Dongruo Zhou, Quanquan Gu
null
null
2,022
icml
Understanding The Robustness in Vision Transformers
null
Recent studies show that Vision Transformers (ViTs) exhibit strong robustness against various corruptions. Although this property is partly attributed to the self-attention mechanism, there is still a lack of an explanatory framework towards a more systematic understanding. In this paper, we examine the role of self-attention in learning robust representations. Our study is motivated by the intriguing properties of self-attention in visual grouping which indicate that self-attention could promote improved mid-level representation and robustness. We thus propose a family of fully attentional networks (FANs) that incorporate self-attention in both token mixing and channel processing. We validate the design comprehensively on various hierarchical backbones. Our model with a DeiT architecture achieves a state-of-the-art 47.6% mCE on ImageNet-C with 29M parameters. We also demonstrate significantly improved robustness in two downstream tasks: semantic segmentation and object detection
Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, Jose M. Alvarez
null
null
2,022
icml
Probabilistic Bilevel Coreset Selection
null
The goal of coreset selection in supervised learning is to produce a weighted subset of data, so that training only on the subset achieves similar performance as training on the entire dataset. Existing methods achieved promising results in resource-constrained scenarios such as continual learning and streaming. However, most of the existing algorithms are limited to traditional machine learning models. A few algorithms that can handle large models adopt greedy search approaches due to the difficulty in solving the discrete subset selection problem, which is computationally costly when coreset becomes larger and often produces suboptimal results. In this work, for the first time we propose a continuous probabilistic bilevel formulation of coreset selection by learning a probablistic weight for each training sample. The overall objective is posed as a bilevel optimization problem, where 1) the inner loop samples coresets and train the model to convergence and 2) the outer loop updates the sample probability progressively according to the model’s performance. Importantly, we develop an efficient solver to the bilevel optimization problem via unbiased policy gradient without trouble of implicit differentiation. We theoretically prove the convergence of this training procedure and demonstrate the superiority of our algorithm against various coreset selection methods in various tasks, especially in more challenging label-noise and class-imbalance scenarios.
Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, Zonghao Chen, Tong Zhang
null
null
2,022
icml
Prototype-Anchored Learning for Learning with Imperfect Annotations
null
The success of deep neural networks greatly relies on the availability of large amounts of high-quality annotated data, which however are difficult or expensive to obtain. The resulting labels may be class imbalanced, noisy or human biased. It is challenging to learn unbiased classification models from imperfectly annotated datasets, on which we usually suffer from overfitting or underfitting. In this work, we thoroughly investigate the popular softmax loss and margin-based loss, and offer a feasible approach to tighten the generalization error bound by maximizing the minimal sample margin. We further derive the optimality condition for this purpose, which indicates how the class prototypes should be anchored. Motivated by theoretical analysis, we propose a simple yet effective method, namely prototype-anchored learning (PAL), which can be easily incorporated into various learning-based classification schemes to handle imperfect annotation. We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.
Xiong Zhou, Xianming Liu, Deming Zhai, Junjun Jiang, Xin Gao, Xiangyang Ji
null
null
2,022
icml
On Numerical Integration in Neural Ordinary Differential Equations
null
The combination of ordinary differential equations and neural networks, i.e., neural ordinary differential equations (Neural ODE), has been widely studied from various angles. However, deciphering the numerical integration in Neural ODE is still an open challenge, as many researches demonstrated that numerical integration significantly affects the performance of the model. In this paper, we propose the inverse modified differential equations (IMDE) to clarify the influence of numerical integration on training Neural ODE models. IMDE is determined by the learning task and the employed ODE solver. It is shown that training a Neural ODE model actually returns a close approximation of the IMDE, rather than the true ODE. With the help of IMDE, we deduce that (i) the discrepancy between the learned model and the true ODE is bounded by the sum of discretization error and learning loss; (ii) Neural ODE using non-symplectic numerical integration fail to learn conservation laws theoretically. Several experiments are performed to numerically verify our theoretical analysis.
Aiqing Zhu, Pengzhan Jin, Beibei Zhu, Yifa Tang
null
null
2,022
icml
Contrastive Learning with Boosted Memorization
null
Self-supervised learning has achieved a great success in the representation learning of visual and textual data. However, the current methods are mainly validated on the well-curated datasets, which do not exhibit the real-world long-tailed distribution. Recent attempts to consider self-supervised long-tailed learning are made by rebalancing in the loss perspective or the model perspective, resembling the paradigms in the supervised long-tailed learning. Nevertheless, without the aid of labels, these explorations have not shown the expected significant promise due to the limitation in tail sample discovery or the heuristic structure design. Different from previous works, we explore this direction from an alternative perspective, i.e., the data perspective, and propose a novel Boosted Contrastive Learning (BCL) method. Specifically, BCL leverages the memorization effect of deep neural networks to automatically drive the information discrepancy of the sample views in contrastive learning, which is more efficient to enhance the long-tailed learning in the label-unaware context. Extensive experiments on a range of benchmark datasets demonstrate the effectiveness of BCL over several state-of-the-art methods. Our code is available at https://github.com/MediaBrain-SJTU/BCL.
Zhihan Zhou, Jiangchao Yao, Yan-Feng Wang, Bo Han, Ya Zhang
null
null
2,022
icml
Resilient and Communication Efficient Learning for Heterogeneous Federated Systems
null
The rise of Federated Learning (FL) is bringing machine learning to edge computing by utilizing data scattered across edge devices. However, the heterogeneity of edge network topologies and the uncertainty of wireless transmission are two major obstructions of FL’s wide application in edge computing, leading to prohibitive convergence time and high communication cost. In this work, we propose an FL scheme to address both challenges simultaneously. Specifically, we enable edge devices to learn self-distilled neural networks that are readily prunable to arbitrary sizes, which capture the knowledge of the learning domain in a nested and progressive manner. Not only does our approach tackle system heterogeneity by serving edge devices with varying model architectures, but it also alleviates the issue of connection uncertainty by allowing transmitting part of the model parameters under faulty network connections, without wasting the contributing knowledge of the transmitted parameters. Extensive empirical studies show that under system heterogeneity and network instability, our approach demonstrates significant resilience and higher communication efficiency compared to the state-of-the-art.
Zhuangdi Zhu, Junyuan Hong, Steve Drew, Jiayu Zhou
null
null
2,022
icml
Sparse Invariant Risk Minimization
null
Invariant Risk Minimization (IRM) is an emerging invariant feature extracting technique to help generalization with distributional shift. However, we find that there exists a basic and intractable contradiction between the model trainability and generalization ability in IRM. On one hand, recent studies on deep learning theory indicate the importance of large-sized or even overparameterized neural networks to make the model easy to train. On the other hand, unlike empirical risk minimization that can be benefited from overparameterization, our empirical and theoretical analyses show that the generalization ability of IRM is much easier to be demolished by overfitting caused by overparameterization. In this paper, we propose a simple yet effective paradigm named Sparse Invariant Risk Minimization (SparseIRM) to address this contradiction. Our key idea is to employ a global sparsity constraint as a defense to prevent spurious features from leaking in during the whole IRM process. Compared with sparisfy-after-training prototype by prior work which can discard invariant features, the global sparsity constraint limits the budget for feature selection and enforces SparseIRM to select the invariant features. We illustrate the benefit of SparseIRM through a theoretical analysis on a simple linear case. Empirically we demonstrate the power of SparseIRM through various datasets and models and surpass state-of-the-art methods with a gap up to 29%.
Xiao Zhou, Yong Lin, Weizhong Zhang, Tong Zhang
null
null
2,022
icml
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting
null
Long-term time series forecasting is challenging since prediction accuracy tends to decrease dramatically with the increasing horizon. Although Transformer-based methods have significantly improved state-of-the-art results for long-term forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in a well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer (FEDformer), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, Fedformer can reduce prediction error by 14.8% and 22.6% for multivariate and univariate time series, respectively. Code is publicly available at https://github.com/MAZiqing/FEDformer.
Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin
null
null
2,022
icml
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
null
The label noise transition matrix, denoting the transition probabilities from clean labels to noisy labels, is crucial for designing statistically robust solutions. Existing estimators for noise transition matrices, e.g., using either anchor points or clusterability, focus on computer vision tasks that are relatively easier to obtain high-quality representations. We observe that tasks with lower-quality features fail to meet the anchor-point or clusterability condition, due to the coexistence of both uninformative and informative representations. To handle this issue, we propose a generic and practical information-theoretic approach to down-weight the less informative parts of the lower-quality features. This improvement is crucial to identifying and estimating the label noise transition matrix. The salient technical challenge is to compute the relevant information-theoretical metrics using only noisy labels instead of clean ones. We prove that the celebrated $f$-mutual information measure can often preserve the order when calculated using noisy labels. We then build our transition matrix estimator using this distilled version of features. The necessity and effectiveness of the proposed method are also demonstrated by evaluating the estimation error on a varied set of tabular data and text classification tasks with lower-quality features. Code is available at github.com/UCSC-REAL/BeyondImages.
Zhaowei Zhu, Jialu Wang, Yang Liu
null
null
2,022
icml