title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation
| null |
3D point cloud semantic segmentation has attracted wide attention with its extensive applications in autonomous driving, AR/VR, and robot sensing fields. However, in existing methods, each point in the segmentation results is predicted independently from each other. This property causes the non-contiguity of label sets in three-dimensional space and produces many noisy label points, which hinders the improvement of segmentation accuracy. To address this problem, we first extend adversarial learning to this task and propose a novel framework Attention Adversarial Networks (AttAN). With high-order correlations in label sets learned from the adversarial learning, segmentation network can predict labels closer to the real ones and correct noisy results. Moreover, we design an additive attention block for the segmentation network, which is used to automatically focus on regions critical to the segmentation task by learning the correlation between multi-scale features. Adversarial learning, which explores the underlying relationship between labels in high-dimensional space, opens up a new way in 3D point cloud semantic segmentation. Experimental results on ScanNet and S3DIS datasets show that this framework effectively improves the segmentation quality and outperforms other state-of-the-art methods.
|
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu, Qigong Sun
| null | null | 2,020 |
ijcai
|
Latent Regularized Generative Dual Adversarial Network For Abnormal Detection
| null |
With the development of adversarial attack in deep learning, it is critical for abnormal detector to not only discover the out-of-distribution samples but also provide defence against the adversarial attacker. Since few previous universal detector is known to work well on both tasks, we consider against both scenarios by constructing a robust and effective technique, where one sample could be regarded as the abnormal sample if it exhibits a higher image reconstruction error. Due to the training instability issues existed in previous generative adversarial networks (GANs) based methods, in this paper we propose a dual auxiliary autoencoder to make a tradeoff between the capability of generator and discriminator, leading to a more stable training process and high-quality image reconstruction. Moreover, to generate discriminative and robust latent representations, the mutual information estimator regarded as latent regularizer is adopted to extract the most unique information of target class. Overall, our generative dual adversarial network simultaneously optimizes the image reconstruction space and latent space to improve the performance. Experiments show that our model has the clear superiority over cutting edge semi-supervised abnormal detectors and achieves the state-of-the-art results on the datasets.
|
Chengwei Chen, Jing Liu, Yuan Xie, Yin Xiao Ban, Chunyun Wu, Yiqing Tao, Haichuan Song
| null | null | 2,020 |
ijcai
|
Learning to Discretely Compose Reasoning Module Networks for Video Captioning
| null |
Generating natural language descriptions for videos, i.e., video captioning, essentially requires step-by-step reasoning along the generation process. For example, to generate the sentence “a man is shooting a basketball”, we need to first locate and describe the subject “man”, next reason out the man is “shooting”, then describe the object “basketball” of shooting. However, existing visual reasoning methods designed for visual question answering are not appropriate to video captioning, for it requires more complex visual reasoning on videos over both space and time, and dynamic module composition along the generation process. In this paper, we propose a novel visual reasoning approach for video captioning, named Reasoning Module Networks (RMN), to equip the existing encoder-decoder framework with the above reasoning capacity. Specifically, our RMN employs 1) three sophisticated spatio-temporal reasoning modules, and 2) a dynamic and discrete module selector trained by a linguistic loss with a Gumbel approximation. Extensive experiments on MSVD and MSR-VTT datasets demonstrate the proposed RMN outperforms the state-of-the-art methods while providing an explicit and explainable generation process. Our code is available at https://github.com/tgc1997/RMN.
|
Ganchao Tan, Daqing Liu, Meng Wang, Zheng-Jun Zha
| null | null | 2,020 |
ijcai
|
Position-Aware Recalibration Module: Learning From Feature Semantics and Feature Position
| null |
We present a new method to improve the representational power of the features in Convolutional Neural Networks (CNNs). By studying traditional image processing methods and recent CNN architectures, we propose to use positional information in CNNs for effective exploration of feature dependencies. Rather than considering feature semantics alone, we incorporate spatial positions as an augmentation for feature semantics in our design. From this vantage, we present a Position-Aware Recalibration Module (PRM in short) which recalibrates features leveraging both feature semantics and position. Furthermore, inspired by multi-head attention, our module is capable of performing multiple recalibrations where results are concatenated as the output. As PRM is efficient and easy to implement, it can be seamlessly integrated into various base networks and applied to many position-aware visual tasks. Compared to original CNNs, our PRM introduces a negligible number of parameters and FLOPs, while yielding better performance. Experimental results on ImageNet and MS COCO benchmarks show that our approach surpasses related methods by a clear margin with less computational overhead. For example, we improve the ResNet50 by absolute 1.75% (77.65% vs. 75.90%) on ImageNet 2012 validation dataset, and 1.5%~1.9% mAP on MS COCO validation dataset with almost no computational overhead. Codes are made publicly available.
|
Xu Ma, Song Fu
| null | null | 2,020 |
ijcai
|
k-SDPP: Fixed-Size Video Summarization via Sequential Determinantal Point Processes
| null |
With the explosive growth of video data, video summarization which converts long-time videos to key frame sequences has become an important task in information retrieval and machine learning. Determinantal point processes (DPPs) which are elegant probabilistic models have been successfully applied to video summarization. However, existing DPP-based video summarization methods suffer from poor efficiency of outputting a specified size summary or neglecting inherent sequential nature of videos. In this paper, we propose a new model in the DPP lineage named k-SDPP in vein of sequential determinantal point processes but with fixed user specified size k. Our k-SDPP partitions sampled frames of a video into segments where each segment is with constant number of video frames. Moreover, an efficient branch and bound method (BB) considering sequential nature of the frames is provided to optimally select k frames delegating the summary from the divided segments. Experimental results show that our proposed BB method outperforms not only k-DPP and sequential DPP (seqDPP) but also the partition and Markovian assumption based methods.
|
Jiping Zheng, Ganfeng Lu
| null | null | 2,020 |
ijcai
|
Transductive Relation-Propagation Network for Few-shot Learning
| null |
Few-shot learning, aiming to learn novel concepts from few labeled examples, is an interesting and very challenging problem with many practical advantages. To accomplish this task, one should concentrate on revealing the accurate relations of the support-query pairs. We propose a transductive relation-propagation graph neural network (TRPN) to explicitly model and propagate such relations across support-query pairs. Our TRPN treats the relation of each support-query pair as a graph node, named relational node, and resorts to the known relations between support samples, including both intra-class commonality and inter-class uniqueness, to guide the relation propagation in the graph, generating the discriminative relation embeddings for support-query pairs. A pseudo relational node is further introduced to propagate the query characteristics, and a fast, yet effective transductive learning strategy is devised to fully exploit the relation information among different queries. To the best of our knowledge, this is the first work that explicitly takes the relations of support-query pairs into consideration in few-shot learning, which might offer a new way to solve the few-shot learning problem. Extensive experiments conducted on several benchmark datasets demonstrate that our method can significantly outperform a variety of state-of-the-art few-shot learning methods.
|
Yuqing Ma, Shihao Bai, Shan An, Wei Liu, Aishan Liu, Xiantong Zhen, Xianglong Liu
| null | null | 2,020 |
ijcai
|
BARNet: Bilinear Attention Network with Adaptive Receptive Fields for Surgical Instrument Segmentation
| null |
Surgical instrument segmentation is crucial for computer-assisted surgery. Different from common object segmentation, it is more challenging due to the large illumination variation and scale variation in the surgical scenes. In this paper, we propose a bilinear attention network with adaptive receptive fields to address these two issues. To deal with the illumination variation, the bilinear attention module models global contexts and semantic dependencies between pixels by capturing second-order statistics. With them, semantic features in challenging areas can be inferred from their neighbors, and the distinction of various semantics can be boosted. To adapt to the scale variation, our adaptive receptive field module aggregates multi-scale features and selects receptive fields adaptively. Specifically, it models the semantic relationships between channels to choose feature maps with appropriate scales, changing the receptive field of subsequent convolutions. The proposed network achieves the best performance 97.47% mean IoU on Cata7. It also takes the first place on EndoVis 2017, exceeding the second place by 10.10% mean IoU.
|
Zhen-Liang Ni, Gui-Bin Bian, Guan-An Wang, Xiao-Hu Zhou, Zeng-Guang Hou, Xiao-Liang Xie, Zhen Li, Yu-Han Wang
| null | null | 2,020 |
ijcai
|
Semi-Dynamic Hypergraph Neural Network for 3D Pose Estimation
| null |
This paper proposes a novel Semi-Dynamic Hypergraph Neural Network (SD-HNN) to estimate 3D human pose from a single image. SD-HNN adopts hypergraph to represent the human body to effectively exploit the kinematic constrains among adjacent and non-adjacent joints. Specifically, a pose hypergraph in SD-HNN has two components. One is a static hypergraph constructed according to the conventional tree body structure. The other is the semi-dynamic hypergraph representing the dynamic kinematic constrains among different joints. These two hypergraphs are combined together to be trained in an end-to-end fashion. Unlike traditional Graph Convolutional Networks (GCNs) that are based on a fixed tree structure, the SD-HNN can deal with ambiguity in human pose estimation. Experimental results demonstrate that the proposed method achieves state-of-the-art performance both on the Human3.6M and MPI-INF-3DHP datasets.
|
Shengyuan Liu, Pei Lv, Yuzhen Zhang, Jie Fu, Junjin Cheng, Wanqing Li, Bing Zhou, Mingliang Xu
| null | null | 2,020 |
ijcai
|
Overflow Aware Quantization: Accelerating Neural Network Inference by Low-bit Multiply-Accumulate Operations
| null |
The inherent heavy computation of deep neural networks prevents their widespread applications. A widely used method for accelerating model inference is quantization, by replacing the input operands of a network using fixed-point values. Then the majority of computation costs focus on the integer matrix multiplication accumulation. In fact, high-bit accumulator leads to partially wasted computation and low-bit one typically suffers from numerical overflow. To address this problem, we propose an overflow aware quantization method by designing trainable adaptive fixed-point representation, to optimize the number of bits for each input tensor while prohibiting numeric overflow during the computation. With the proposed method, we are able to fully utilize the computing power to minimize the quantization loss and obtain optimized inference performance. To verify the effectiveness of our method, we conduct image classification, object detection, and semantic segmentation tasks on ImageNet, Pascal VOC, and COCO datasets, respectively. Experimental results demonstrate that the proposed method can achieve comparable performance with state-of-the-art quantization methods while accelerating the inference process by about 2 times.
|
Hongwei Xie, Yafei Song, Ling Cai, Mingyang Li
| null | null | 2,020 |
ijcai
|
Few-shot Visual Learning with Contextual Memory and Fine-grained Calibration
| null |
Few-shot learning aims to learn a model that can be readily adapted to new unseen classes (concepts) by accessing one or few examples. Despite the successful progress, most of the few-shot learning approaches, concentrating on either global or local characteristics of examples, still suffer from weak generalization abilities. Inspired by the inverted pyramid theory, to address this problem, we propose an inverted pyramid network (IPN) that intimates the human's coarse-to-fine cognition paradigm. The proposed IPN consists of two consecutive stages, namely global stage and local stage. At the global stage, a class-sensitive contextual memory network (CCMNet) is introduced to learn discriminative support-query relation embeddings and predict the query-to-class similarity based on the contextual memory. Then at the local stage, a fine-grained calibration is further appended to complement the coarse relation embeddings, targeting more precise query-to-class similarity evaluation. To the best of our knowledge, IPN is the first work that simultaneously integrates both global and local characteristics in few-shot learning, approximately imitating the human cognition mechanism. Our extensive experiments on multiple benchmark datasets demonstrate the superiority of IPN, compared to a number of state-of-the-art approaches.
|
Yuqing Ma, Wei Liu, Shihao Bai, Qingyu Zhang, Aishan Liu, Weimin Chen, Xianglong Liu
| null | null | 2,020 |
ijcai
|
Hierarchical Instance Feature Alignment for 2D Image-Based 3D Shape Retrieval
| null |
2D image-based 3D shape retrieval has become a hot research topic since its wide industrial applications and academic significance. However, existing view-based 3D shape retrieval methods are restricted by two settings, 1) learn the common-class features while neglecting the instance visual characteristics, 2) narrow the global domain variations while ignoring the local semantic variations in each category. To overcome these problems, we propose a novel hierarchical instance feature alignment (HIFA) method for this task. HIFA consists of two modules, cross-modal instance feature learning and hierarchical instance feature alignment. Specifically, we first use CNN to extract both 2D image and multi-view features. Then, we maximize the mutual information between the input data and the high-level feature to preserve as much as visual characteristics of an individual instance. To mix up the features in two domains, we enforce feature alignment considering both global domain and local semantic levels. By narrowing the global domain variations we impose the identical large norm restriction on both 2D and 3D feature-norm expectations to facilitate more transferable possibility. By narrowing the local variations we propose to minimize the distance between two centroids of the same class from different domains to obtain semantic consistency. Extensive experiments on two popular and novel datasets, MI3DOR and MI3DOR-2, validate the superiority of HIFA for 2D image-based 3D shape retrieval task.
|
Heyu Zhou, Weizhi Nie, Wenhui Li, Dan Song, An-An Liu
| null | null | 2,020 |
ijcai
|
Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes
| null |
This paper proposes a novel deep polarized network (DPN) for learning to hash, in which each channel in the network outputs is pushed far away from zero by employing a differentiable bit-wise hinge-like loss which is dubbed as polarization loss. Reformulated within a generic Hamming Distance Metric Learning framework [Norouzi et al., 2012], the proposed polarization loss bypasses the requirement to prepare pairwise labels for (dis-)similar items and, yet, the proposed loss strictly bounds from above the pairwise Hamming Distance based losses. The intrinsic connection between pairwise and pointwise label information, as disclosed in this paper, brings about the following methodological improvements: (a) we may directly employ the proposed differentiable polarization loss with no large deviations incurred from the target Hamming distance based loss; and (b) the subtask of assigning binary codes becomes extremely simple --- even random codes assigned to each class suffice to result in state-of-the-art performances, as demonstrated in CIFAR10, NUS-WIDE and ImageNet100 datasets.
|
Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, Chee Seng Chan
| null | null | 2,020 |
ijcai
|
Zero-Shot Object Detection via Learning an Embedding from Semantic Space to Visual Space
| null |
Zero-shot object detection (ZSD) has received considerable attention from the community of computer vision in recent years. It aims to simultaneously locate and categorize previously unseen objects during inference. One crucial problem of ZSD is how to accurately predict the label of each object proposal, i.e. categorizing object proposals, when conducting ZSD for unseen categories.
Previous ZSD models generally relied on learning an embedding from visual space to semantic space or learning a joint embedding between semantic description and visual representation. As the features in the learned semantic space or the joint projected space tend to suffer from the hubness problem, namely the feature vectors are likely embedded to an area of incorrect labels, and thus it will lead to lower detection precision. In this paper, instead, we propose to learn a deep embedding from the semantic space to the visual space, which enables to well alleviate the hubness problem, because, compared with semantic space or joint embedding space, the distribution in visual space has smaller variance. After learning a deep embedding model, we perform $k$ nearest neighbor search in the visual space of unseen categories to determine the category of each semantic description. Extensive experiments on two public datasets show that our approach significantly outperforms the existing methods.
|
Licheng Zhang, Xianzhi Wang, Lina Yao, Lin Wu, Feng Zheng
| null | null | 2,020 |
ijcai
|
Few-shot Human Motion Prediction via Learning Novel Motion Dynamics
| null |
Human motion prediction is a task where we anticipate future motion based on past observation. Previous approaches rely on the access to large datasets of skeleton data, and thus are difficult to be generalized to novel motion dynamics with limited training data. In our work, we propose a novel approach named Motion Prediction Network (MoPredNet) for few-short human motion prediction. MoPredNet can be adapted to predicting new motion dynamics using limited data, and it elegantly captures long-term dependency in motion dynamics. Specifically, MoPredNet dynamically selects the most informative poses in the streaming motion data as masked poses. In addition, MoPredNet improves its encoding capability of motion dynamics by adaptively learning spatio-temporal structure from the observed poses and masked poses. We also propose to adapt MoPredNet to novel motion dynamics based on accumulated motion experiences and limited novel motion dynamics data. Experimental results show that our method achieves better performance over state-of-the-art methods in motion prediction.
|
Chuanqi Zang, Mingtao Pei, Yu Kong
| null | null | 2,020 |
ijcai
|
Recurrent Relational Memory Network for Unsupervised Image Captioning
| null |
Unsupervised image captioning with no annotations is an emerging challenge in computer vision, where the existing arts usually adopt GAN (Generative
Adversarial Networks) models. In this paper, we propose a novel memory-based network rather than GAN, named Recurrent Relational Memory
Network (R2M). Unlike complicated and sensitive adversarial learning that non-ideally performs for long sentence generation, R2M implements
a concepts-to-sentence memory translator through two-stage memory mechanisms: fusion and recurrent memories, correlating the relational reasoning
between common visual concepts and the generated words for long periods. R2M encodes visual context through unsupervised training on images,
while enabling the memory to learn from irrelevant textual corpus via supervised fashion. Our solution enjoys less learnable parameters and
higher computational efficiency than GAN-based methods, which heavily bear parameter sensitivity. We experimentally validate the superiority of R2M
than state-of-the-arts on all benchmark datasets.
|
Dan Guo, Yang Wang, Peipei Song, Meng Wang
| null | null | 2,020 |
ijcai
|
Unsupervised Vehicle Re-identification with Progressive Adaptation
| null |
Vehicle re-identification (reID) aims at identifying vehicles across different non-overlapping cameras views. The existing methods heavily relied on well-labeled datasets for ideal performance, which inevitably causes fateful drop due to the severe domain bias between the training domain and the real-world scenes; worse still, these approaches required full annotations, which is labor-consuming. To tackle these challenges, we propose a novel Progressive Adaptation Learning method for vehicle reID, named PAL, which infers from the abundant data without annotations. For PAL, a data adaptation module is employed for source domain, which generates the images with similar data distribution to unlabeled target domain as “pseudo target samples”. These pseudo samples are combined with the unlabeled samples that are selected by a dynamic sampling strategy to make training faster. We further proposed a weighted label smoothing (WLS) loss, which considers the similarity between samples with different clusters to balance the confidence of pseudo labels. Comprehensive experimental results validate the advantages of PAL on both VehicleID and VeRi-776 dataset.
|
Jinjia Peng, Yang Wang, Huibing Wang, Zhao Zhang, Xianping Fu, Meng Wang
| null | null | 2,020 |
ijcai
|
Hierarchical Attention Based Spatial-Temporal Graph-to-Sequence Learning for Grounded Video Description
| null |
The task of Grounded Video Description~(GVD) is to generate sentences whose objects can be grounded with the bounding boxes in the video frames. Existing works often fail to exploit structural information both in modeling the relationships among the region proposals and in attending them for text generation. To address these issues, we cast the GVD task as a spatial-temporal Graph-to-Sequence learning problem, where we model video frames as spatial-temporal sequence graph in order to better capture implicit structural relationships. In particular, we exploit two ways to construct a sequence graph that captures spatial-temporal correlations among different objects in each frame and further present a novel graph topology refinement technique to discover optimal underlying graph structure. In addition, we also present hierarchical attention mechanism to attend sequence graph in different resolution levels for better generating the sentences. Our extensive experiments demonstrate the effectiveness of our proposed method compared to state-of-the-art methods.
|
Kai Shen, Lingfei Wu, Fangli Xu, Siliang Tang, Jun Xiao, Yueting Zhuang
| null | null | 2,020 |
ijcai
|
Set and Rebase: Determining the Semantic Graph Connectivity for Unsupervised Cross-Modal Hashing
| null |
The label-free nature of unsupervised cross-modal hashing hinders models from exploiting the exact semantic data similarity. Existing research typically simulates the semantics by a heuristic geometric prior in the original feature space. However, this introduces heavy bias into the model as the original features are not fully representing the underlying multi-view data relations. To address the problem above, in this paper, we propose a novel unsupervised hashing method called Semantic-Rebased Cross-modal Hashing (SRCH). A novel ‘Set-and-Rebase’ process is defined to initialize and update the cross-modal similarity graph of training data. In particular, we set the graph according to the intra-modal feature geometric basis and then alternately rebase it to update the edges within according to the hashing results. We develop an alternating optimization routine to rebase the graph and train the hashing auto-encoders with closed-form solutions so that the overall framework is efficiently trained. Our experimental results on benchmarked datasets demonstrate the superiority of our model against state-of-the-art algorithms.
|
Weiwei Wang, Yuming Shen, Haofeng Zhang, Yazhou Yao, Li Liu
| null | null | 2,020 |
ijcai
|
Weakly Supervised Few-shot Object Segmentation using Co-Attention with Visual and Semantic Embeddings
| null |
Significant progress has been made recently in developing few-shot object segmentation methods. Learning is shown to be successful in few-shot segmentation settings, using pixel-level, scribbles and bounding box supervision. This paper takes another approach, i.e., only requiring image-level label for few-shot object segmentation. We propose a novel multi-modal interaction module for few-shot object segmentation that utilizes a co-attention mechanism using both visual and word embedding. Our model using image-level labels achieves 4.8% improvement over previously proposed image-level few-shot object segmentation. It also outperforms state-of-the-art methods that use weak bounding box supervision on PASCAL-5^i. Our results show that few-shot segmentation benefits from utilizing word embeddings, and that we are able to perform few-shot segmentation using stacked joint visual semantic processing with weak image-level labels. We further propose a novel setup, Temporal Object Segmentation for Few-shot Learning (TOSFL) for videos. TOSFL can be used on a variety of public video data such as Youtube-VOS, as demonstrated in both instance-level and category-level TOSFL experiments.
|
Mennatullah Siam, Naren Doraiswamy, Boris N. Oreshkin, Hengshuai Yao, Martin Jagersand
| null | null | 2,020 |
ijcai
|
Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification
| null |
Gait-based person re-identification (Re-ID) is valuable for safety-critical applications, and using only 3D skeleton data to extract discriminative gait features for person Re-ID is an emerging open topic. Existing methods either adopt hand-crafted features or learn gait features by traditional supervised learning paradigms. Unlike previous methods, we for the first time propose a generic gait encoding approach that can utilize unlabeled skeleton data to learn gait representations in a self-supervised manner. Specifically, we first propose to introduce self-supervision by learning to reconstruct input skeleton sequences in reverse order, which facilitates learning richer high-level semantics and better gait representations. Second, inspired by the fact that motion's continuity endows temporally adjacent skeletons with higher correlations (“locality”), we propose a locality-aware attention mechanism that encourages learning larger attention weights for temporally adjacent skeletons when reconstructing current skeleton, so as to learn locality when encoding gait. Finally, we propose Attention-based Gait Encodings (AGEs), which are built using context vectors learned by locality-aware attention, as final gait representations. AGEs are directly utilized to realize effective person Re-ID. Our approach typically improves existing skeleton-based methods by 10-20% Rank-1 accuracy, and it achieves comparable or even superior performance to multi-modal methods with extra RGB or depth information.
|
Haocong Rao, Siqi Wang, Xiping Hu, Mingkui Tan, Huang Da, Jun Cheng, Bin Hu
| null | null | 2,020 |
ijcai
|
Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error
| null |
Reliably detecting attacks in a given set of inputs is of high practical relevance because of the vulnerability of neural networks to adversarial examples.
These altered inputs create a security risk in applications with real-world consequences, such as self-driving cars, robotics and financial services.
We propose an unsupervised method for detecting adversarial attacks in inner layers of autoencoder (AE) networks by maximizing a non-parametric measure of anomalous node activations.
Previous work in this space has shown AE networks can detect anomalous images by thresholding the reconstruction error produced by the final layer. Furthermore, other detection methods rely on data augmentation or specialized training techniques which must be asserted before training time. In contrast, we use subset scanning methods from the anomalous pattern detection domain to enhance detection power without labeled examples of the noise, retraining or data augmentation methods. In addition to an anomalous “score” our proposed method also returns the subset of nodes within the AE network that contributed to that score. This will allow future work to pivot from detection to visualisation and explainability. Our scanning approach shows consistently higher detection power than existing detection methods across several adversarial noise models and a wide range of perturbation strengths.
|
Celia Cintas, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan, Edward McFowland
| null | null | 2,020 |
ijcai
|
Consistent Domain Structure Learning and Domain Alignment for 2D Image-Based 3D Objects Retrieval
| null |
2D image-based 3D objects retrieval is a new topic for 3D objects retrieval which can be used to manage 3D data with 2D images. The goal is to search some related 3D objects when given a 2D image. The task is challenging due to the large domain gap between 2D images and 3D objects. Therefore, it is essential to consider domain adaptation problems to reduce domain discrepancy. However, most of the existing domain adaptation methods only utilize the semantic information from the source domain to predict labels in the target domain and neglect the intrinsic structure of the target domain. In this paper, we propose a domain alignment framework with consistent domain structure learning to reduce the large gap between 2D images and 3D objects. The domain structure learning module makes use of both the semantic information from the source domain and the intrinsic structure of the target domain, which provides more reliable predicted labels to the domain alignment module to better align the conditional distribution. We conducted experiments on two public datasets, MI3DOR and MI3DOR-2, and the experimental results demonstrate the proposed method outperforms the state-of-the-art methods.
|
Yuting Su, Yuqian Li, Dan Song, Weizhi Nie, Wenhui Li, An-An Liu
| null | null | 2,020 |
ijcai
|
Polar Relative Positional Encoding for Video-Language Segmentation
| null |
In this paper, we tackle a challenging task named video-language segmentation. Given a video and a sentence in natural language, the goal is to segment the object or actor described by the sentence in video frames. To accurately denote a target object, the given sentence usually refers to multiple attributes, such as nearby objects with spatial relations, etc. In this paper, we propose a novel Polar Relative Positional Encoding (PRPE) mechanism that represents spatial relations in a ``linguistic'' way, i.e., in terms of direction and range. Sentence feature can interact with positional embeddings in a more direct way to extract the implied relative positional relations. We also propose parameterized functions for these positional embeddings to adapt real-value directions and ranges. With PRPE, we design a Polar Attention Module (PAM) as the basic module for vision-language fusion. Our method outperforms previous best method by a large margin of 11.4% absolute improvement in terms of mAP on the challenging A2D Sentences dataset. Our method also achieves competitive performances on the J-HMDB Sentences dataset.
|
Ke Ning, Lingxi Xie, Fei Wu, Qi Tian
| null | null | 2,020 |
ijcai
|
Label-Attended Hashing for Multi-Label Image Retrieval
| null |
For the multi-label image retrieval, the existing hashing algorithms neglect the dependency between objects and thus fail to capture the attention information in the feature extraction, which affects the precision of hash codes. To address this problem, we explore the inter-dependency between objects through their co-occurrence correlation from the label set and adopt Multi-modal Factorized Bilinear (MFB) pooling component so that the image representation learning can capture this attention information. We propose a Label-Attended Hashing (LAH) algorithm which enables an end-to-end hash model with inter-dependency feature extraction. LAH first combines Convolutional Neural Network (CNN) and Graph Convolution Network (GCN) to separately generate the image representation and label co-occurrence embeddings, then adopts MFB to fuse these two modal vectors, finally learns the hash function with a Cauchy distribution based loss function via back propagation. Extensive experiments on public multi-label datasets demonstrate that (1) LAH can achieve the state-of-the-art retrieval results and (2) the usage of co-occurrence relationship and MFB not only promotes the precision of hash codes but also accelerates the hash learning. GitHub address: https://github.com/IDSM-AI/LAH.
|
Yanzhao Xie, Yu Liu, Yangtao Wang, Lianli Gao, Peng Wang, Ke Zhou
| null | null | 2,020 |
ijcai
|
Temporal Adaptive Alignment Network for Deep Video Inpainting
| null |
Video inpainting aims to synthesize visually pleasant and temporally consistent content in missing regions of video. Due to a variety of motions across different frames, it is highly challenging to utilize effective temporal information to recover videos. Existing deep learning based methods usually estimate optical flow to align frames and thereby exploit useful information between frames. However, these methods tend to generate artifacts once the estimated optical flow is inaccurate. To alleviate above problem, we propose a novel end-to-end Temporal Adaptive Alignment Network(TAAN) for video inpainting. The TAAN aligns reference frames with target frame via implicit motion estimation at a feature level and then reconstruct target frame by taking the aggregated aligned reference frame features as input. In the proposed network, a Temporal Adaptive Alignment (TAA) module based on deformable convolutions is designed to perform temporal alignment in a local, dense and adaptive manner. Both quantitative and qualitative evaluation results show that our method significantly outperforms existing deep learning based methods.
|
Ruixin Liu, Zhenyu Weng, Yuesheng Zhu, Bairong Li
| null | null | 2,020 |
ijcai
|
Diagnosing the Environment Bias in Vision-and-Language Navigation
| null |
Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations. These step-by-step navigational instructions are crucial when the agent is navigating new environments about which it has no prior knowledge. Most recent works that study VLN observe a significant performance drop when tested on unseen environments (i.e., environments not used in training), indicating that the neural agent models are highly biased towards training environments. Although this issue is considered as one of the major challenges in VLN research, it is still under-studied and needs a clearer explanation. In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias. We observe that neither the language nor the underlying navigational graph, but the low-level visual appearance conveyed by ResNet features directly affects the agent model and contributes to this environment bias in results. According to this observation, we explore several kinds of semantic representations that contain less low-level visual information, hence the agent learned with these features could be better generalized to unseen testing environments. Without modifying the baseline agent model and its training method, our explored semantic features significantly decrease the performance gaps between seen and unseen on multiple datasets (i.e. R2R, R4R, and CVDN) and achieve competitive unseen results to previous state-of-the-art models.
|
Yubo Zhang, Hao Tan, Mohit Bansal
| null | null | 2,020 |
ijcai
|
Self-supervised Monocular Depth and Visual Odometry Learning with Scale-consistent Geometric Constraints
| null |
The self-supervised learning-based depth and visual odometry (VO) estimators trained on monocular videos without ground truth have drawn significant attention recently. Prior works use photometric consistency as supervision, which is fragile under complex realistic environments due to illumination variations. More importantly, it suffers from scale inconsistency in the depth and pose estimation results. In this paper, robust geometric losses are proposed to deal with this problem. Specifically, we first align the scales of two reconstructed depth maps estimated from the adjacent image frames, and then enforce forward-backward relative pose consistency to formulate scale-consistent geometric constraints. Finally, a novel training framework is constructed to implement the proposed losses. Extensive evaluations on KITTI and Make3D datasets demonstrate that, i) by incorporating the proposed constraints as supervision, the depth estimation model can achieve state-of-the-art (SOTA) performance among the self-supervised methods, and ii) it is effective to use the proposed training framework to obtain a uniform global scale VO model.
|
Mingkang Xiong, Zhenghong Zhang, Weilin Zhong, Jinsheng Ji, Jiyuan Liu, Huilin Xiong
| null | null | 2,020 |
ijcai
|
Bidirectional Adversarial Training for Semi-Supervised Domain Adaptation
| null |
Semi-supervised domain adaptation (SSDA) is a novel branch of machine learning that scarce labeled target examples are available, compared with unsupervised domain adaptation. To make effective use of these additional data so as to bridge the domain gap, one possible way is to generate adversarial examples, which are images with additional perturbations, between the two domains and fill the domain gap. Adversarial training has been proven to be a powerful method for this purpose. However, the traditional adversarial training adds noises in arbitrary directions, which is inefficient to migrate between domains, or generate directional noises from the source to target domain and reverse. In this work, we devise a general bidirectional adversarial training method and employ gradient to guide adversarial examples across the domain gap, i.e., the Adaptive Adversarial Training (AAT) for source to target domain and Entropy-penalized Virtual Adversarial Training (E-VAT) for target to source domain. Particularly, we devise a Bidirectional Adversarial Training (BiAT) network to perform diverse adversarial trainings jointly. We evaluate the effectiveness of BiAT on three benchmark datasets and experimental results demonstrate the proposed method achieves the state-of-the-art.
|
Pin Jiang, Aming Wu, Yahong Han, Yunfeng Shao, Meiyu Qi, Bingshuai Li
| null | null | 2,020 |
ijcai
|
DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion
| null |
Infrared and visible image fusion, a hot topic in the field of image processing, aims at obtaining fused images keeping the advantages of source images. This paper proposes a novel auto-encoder (AE) based fusion network. The core idea is that the encoder decomposes an image into background and detail feature maps with low- and high-frequency information, respectively, and that the decoder recovers the original image. To this end, the loss function makes the background/detail feature maps of source images similar/dissimilar. In the test phase, background and detail feature maps are respectively merged via a fusion module, and the fused image is recovered by the decoder. Qualitative and quantitative results illustrate that our method can generate fusion images containing highlighted targets and abundant detail texture information with strong reproducibility and meanwhile surpass state-of-the-art (SOTA) approaches.
|
Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang, Pengfei Li
| null | null | 2,020 |
ijcai
|
Progressive Domain-Independent Feature Decomposition Network for Zero-Shot Sketch-Based Image Retrieval
| null |
Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is a specific cross-modal retrieval task for searching natural images given free-hand sketches under the zero-shot scenario. Most existing methods solve this problem by simultaneously projecting visual features and semantic supervision into a low-dimensional common space for efficient retrieval. However, such low-dimensional projection destroys the completeness of semantic knowledge in original semantic space, so that it is unable to transfer useful knowledge well when learning semantic features from different modalities. Moreover, the domain information and semantic information are entangled in visual features, which is not conducive for cross-modal matching since it will hinder the reduction of domain gap between sketch and image. In this paper, we propose a Progressive Domain-independent Feature Decomposition (PDFD) network for ZS-SBIR. Specifically, with the supervision of original semantic knowledge, PDFD decomposes visual features into domain features and semantic ones, and then the semantic features are projected into common space as retrieval features for ZS-SBIR. The progressive projection strategy maintains strong semantic supervision. Besides, to guarantee the retrieval features to capture clean and complete semantic information, the cross-reconstruction loss is introduced to encourage that any combinations of retrieval features and domain features can reconstruct the visual features. Extensive experiments demonstrate the superiority of our PDFD over state-of-the-art competitors.
|
Xinxun Xu, Muli Yang, Yanhua Yang, Hao Wang
| null | null | 2,020 |
ijcai
|
Weakly Supervised Local-Global Relation Network for Facial Expression Recognition
| null |
To extract crucial local features and enhance the complementary relation between local and global features, this paper proposes a Weakly Supervised Local-Global Relation Network (WS-LGRN), which uses the attention mechanism to deal with part location and feature fusion problems. Firstly, the Attention Map Generator quickly finds the local regions-of-interest under the supervision of image-level labels. Secondly, bilinear attention pooling is employed to generate and refine local features. Thirdly, Relational Reasoning Unit is designed to model the relation among all features before making classification. The weighted fusion mechanism in the Relational Reasoning Unit makes the model benefit from the complementary advantages between different features. In addition, contrastive losses are introduced for local and global features to increase the inter-class dispersion and intra-class compactness at different granularities. Experiments on lab-controlled and real-world facial expression dataset show that WS-LGRN achieves state-of-the-art performance, which demonstrates its superiority in FER.
|
Haifeng Zhang, Wen Su, Jun Yu, Zengfu Wang
| null | null | 2,020 |
ijcai
|
A Similarity Inference Metric for RGB-Infrared Cross-Modality Person Re-identification
| null |
RGB-Infrared (IR) cross-modality person re-identification (re-ID), which aims to search an IR image in RGB gallery or vice versa, is a challenging task due to the large discrepancy between IR and RGB modalities. Existing methods address this challenge typically by aligning feature distributions or image styles across modalities, whereas the very useful similarities among gallery samples of the same modality (i.e. intra-modality sample similarities) are largely neglected. This paper presents a novel similarity inference metric (SIM) that exploits the intra-modality sample similarities to circumvent the cross-modality discrepancy targeting optimal cross-modality image matching. SIM works by successive similarity graph reasoning and mutual nearest-neighbor reasoning that mine cross-modality sample similarities by leveraging intra-modality sample similarities from two different perspectives. Extensive experiments over two cross-modality re-ID datasets (SYSU-MM01 and RegDB) show that SIM achieves significant accuracy improvement but with little extra training as compared with the state-of-the-art.
|
Mengxi Jia, Yunpeng Zhai, Shijian Lu, Siwei Ma, Jian Zhang
| null | null | 2,020 |
ijcai
|
CP-NAS: Child-Parent Neural Architecture Search for 1-bit CNNs
| null |
Neural architecture search (NAS) proves to be among the best approaches for many tasks by generating an application-adaptive neural architectures, which are still challenged by high computational cost and memory consumption. At the same time, 1-bit convolutional neural networks (CNNs) with binarized weights and activations show their potential for resource-limited embedded devices. One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS by taking advantage of the strengths of each in a unified framework. To this end, a Child-Parent model is introduced to a differentiable NAS to search the binarized architecture(Child) under the supervision of a full-precision model (Parent). In the search stage, the Child-Parent model uses an indicator generated by the parent and child model accuracy to evaluate the performance and abandon operations with less potential. In the training stage, a kernel level CP loss is introduced to optimize the binarized network. Extensive experiments demonstrate that the proposed CP-NAS achieves a comparable accuracy with traditional NAS on both the CIFAR and ImageNet databases. It achieves an accuracy of 95.27% on CIFAR-10, 64.3% on ImageNet with binarized weights and activations, and a 30% faster search than prior arts.
|
Li'an Zhuo, Baochang Zhang, Hanlin Chen, Linlin Yang, Chen Chen, Yanjun Zhu, David Doermann
| null | null | 2,020 |
ijcai
|
Exploiting Visual Semantic Reasoning for Video-Text Retrieval
| null |
Video retrieval is a challenging research topic bridging the vision and language areas and has attracted broad attention in recent years. Previous works have been devoted to representing videos by directly encoding from frame-level features. In fact, videos consist of various and abundant semantic relations to which existing methods pay less attention. To address this issue, we propose a Visual Semantic Enhanced Reasoning Network (ViSERN) to exploit reasoning between frame regions. Specifically, we consider frame regions as vertices and construct a fully-connected semantic correlation graph. Then, we perform reasoning by novel random walk rule-based graph convolutional networks to generate region features involved with semantic relations. With the benefit of reasoning, semantic interactions between regions are considered, while the impact of redundancy is suppressed. Finally, the region features are aggregated to form frame-level features for further encoding to measure video-text similarity. Extensive experiments on two public benchmark datasets validate the effectiveness of our method by achieving state-of-the-art performance due to the powerful semantic reasoning.
|
Zerun Feng, Zhimin Zeng, Caili Guo, Zheng Li
| null | null | 2,020 |
ijcai
|
Dress like an Internet Celebrity: Fashion Retrieval in Videos
| null |
Nowadays, both online shopping and video sharing have grown exponentially. Although internet celebrities in videos are ideal exhibition for fashion corporations to sell their products, audiences do not always know where to buy fashion products in videos, which is a cross-domain problem called video-to-shop. In this paper, we propose a novel deep neural network, called Detect, Pick, and Retrieval Network (DPRNet), to break the gap between fashion products from videos and audiences. For the video side, we have modified the traditional object detector, which automatically picks out the best object proposals for every commodity in videos without duplication, to promote the performance of the video-to-shop task. For the fashion retrieval side, a simple but effective multi-task loss network obtains new state-of-the-art results on DeepFashion. Extensive experiments conducted on a new large-scale cross-domain video-to-shop dataset shows that DPRNet is efficient and outperforms the state-of-the-art methods on video-to-shop task.
|
Hongrui Zhao, Jin Yu, Yanan Li, Donghui Wang, Jie Liu, Hongxia Yang, Fei Wu
| null | null | 2,020 |
ijcai
|
Co-Saliency Spatio-Temporal Interaction Network for Person Re-Identification in Videos
| null |
Person re-identification aims at identifying a certain pedestrian across non-overlapping camera networks. Video-based person re-identification approaches have gained significant attention recently, expanding image-based approaches by learning features from multiple frames. In this work, we propose a novel Co-Saliency Spatio-Temporal Interaction Network (CSTNet) for person re-identification in videos. It captures the common salient foreground regions among video frames and explores the spatial-temporal long-range context interdependency from such regions, towards learning discriminative pedestrian representation. Specifically, multiple co-saliency learning modules within CSTNet are designed to utilize the correlated information across video frames to extract the salient features from the task-relevant regions and suppress background interference. Moreover, multiple spatial-temporal interaction modules within CSTNet are proposed, which exploit the spatial and temporal long-range context interdependencies on such features and spatial-temporal information correlation, to enhance feature representation. Extensive experiments on two benchmarks have demonstrated the effectiveness of the proposed method.
|
Jiawei Liu, Zheng-Jun Zha, Xierong Zhu, Na Jiang
| null | null | 2,020 |
ijcai
|
Feature Augmented Memory with Global Attention Network for VideoQA
| null |
Recently, Recurrent Neural Network (RNN) based methods and Self-Attention (SA) based methods have achieved promising performance in Video Question Answering (VideoQA). Despite the success of these works, RNN-based methods tend to forget the global semantic contents due to the inherent drawbacks of the recurrent units themselves, while SA-based methods cannot precisely capture the dependencies of the local neighborhood, leading to insufficient modeling for temporal order. To tackle these problems, we propose a novel VideoQA framework which progressively refines the representations of videos and questions from fine to coarse grain in a sequence-sensitive manner. Specifically, our model improves the feature representations via the following two steps: (1) introducing two fine-grained feature-augmented memories to strengthen the information augmentation of video and text which can improve memory capacity by memorizing more relevant and targeted information. (2) appending the self-attention and co-attention module to the memory output thus the module is able to capture global interaction between high-level semantic informations. Experimental results show that our approach achieves state-of-the-art performance on VideoQA benchmark datasets.
|
Jiayin Cai, Chun Yuan, Cheng Shi, Lei Li, Yangyang Cheng, Ying Shan
| null | null | 2,020 |
ijcai
|
Unsupervised Scene Adaptation with Memory Regularization in vivo
| null |
This work focuses on the unsupervised scene adaptation problem of learning from both labeled source data and unlabeled target data. Existing approaches focus on minoring the inter-domain gap between the source and target domains. However, the intra-domain knowledge and inherent uncertainty learned by the network are under-explored. In this paper, we propose an orthogonal method, called memory regularization in vivo, to exploit the intra-domain knowledge and regularize the model training. Specifically, we refer to the segmentation model itself as the memory module, and minor the discrepancy of the two classifiers, i.e., the primary classifier and the auxiliary classifier, to reduce the prediction inconsistency. Without extra parameters, the proposed method is complementary to most existing domain adaptation methods and could generally improve the performance of existing methods. Albeit simple, we verify the effectiveness of memory regularization on two synthetic-to-real benchmarks: GTA5 → Cityscapes and SYNTHIA → Cityscapes, yielding +11.1% and +11.3% mIoU improvement over the baseline model, respectively. Besides, a similar +12.0% mIoU improvement is observed on the cross-city benchmark: Cityscapes → Oxford RobotCar.
|
Zhedong Zheng, Yi Yang
| null | null | 2,020 |
ijcai
|
Self-Supervised Tuning for Few-Shot Segmentation
| null |
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples. It is a challenging task since the dense prediction can only be achieved under the guidance of latent features defined by sparse annotations. Existing meta-learning based method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space. To address this issue, this paper presents an adaptive tuning framework, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme, augmenting category-specific descriptors for label prediction. Specifically, a novel self-supervised inner-loop is firstly devised as the base learner to extract the underlying semantic features from the support image. Then, gradient maps are calculated by back-propagating self-supervised loss through the obtained features, and leveraged as guidance for augmenting the corresponding elements in the embedding space. Finally, with the ability to continuously learn from different episodes, an optimization-based meta-learner is adopted as outer loop of our proposed framework to gradually refine the segmentation results. Extensive experiments on benchmark PASCAL-5i and COCO-20i datasets demonstrate the superiority of our proposed method over state-of-the-art.
|
Kai Zhu, Wei Zhai, Yang Cao
| null | null | 2,020 |
ijcai
|
Cross-denoising Network against Corrupted Labels in Medical Image Segmentation with Domain Shift
| null |
Deep convolutional neural networks (DCNNs) have contributed many breakthroughs in segmentation tasks, especially in the field of medical imaging. However, domain shift and corrupted annotations, which are two common problems in medical imaging, dramatically degrade the performance of DCNNs in practice. In this paper, we propose a novel robust cross-denoising framework using two peer networks to address domain shift and corrupted label problems with a peer-review strategy. Specifically, each network performs as a mentor, mutually supervised to learn from reliable samples selected by the peer network to combat with corrupted labels. In addition, a noise-tolerant loss is proposed to encourage the network to capture the key location and filter the discrepancy under various noise-contaminant labels. To further reduce the accumulated error, we introduce a class-imbalanced cross learning using most confident predictions at class-level. Experimental results on REFUGE and Drishti-GS datasets for optic disc (OD) and optic cup (OC) segmentation demonstrate the superior performance of our proposed approach to the state-of-the-art methods.
|
Qinming Zhang, Luyan Liu, Kai Ma, Cheng Zhuo, Yefeng Zheng
| null | null | 2,020 |
ijcai
|
HAF-SVG: Hierarchical Stochastic Video Generation with Aligned Features
| null |
Stochastic video generation methods predict diverse videos based on observed frames, where the main challenge lies in modeling the complex future uncertainty and generating realistic frames. Numerous of Recurrent-VAE-based methods have achieved state-of-the-art results. However, on the one hand, the independence assumption of the variables of approximate posterior limits the inference performance. On the other hand, although these methods adopt skip connections between encoder and decoder to utilize multi-level features, they still produce blurry generation due to the spatial misalignment between encoder and decoder features at different time steps. In this paper, we propose a hierarchical recurrent VAE with a feature aligner, which can not only relax the independence assumption in typical VAE but also use a feature aligner to enable the decoder to obtain the aligned spatial information from the last observed frames. The proposed model is named Hierarchical Stochastic Video Generation network with Aligned Features, referred to as HAF-SVG. Experiments on Moving-MNIST, BAIR, and KTH datasets demonstrate that hierarchical structure is helpful for modeling more accurate future uncertainty, and the feature aligner is beneficial to generate realistic frames. Besides, the HAF-SVG exceeds SVG on both prediction accuracy and the quality of generated frames.
|
Zhihui Lin, Chun Yuan, Maomao Li
| null | null | 2,020 |
ijcai
|
Object-Aware Multi-Branch Relation Networks for Spatio-Temporal Video Grounding
| null |
Spatio-temporal video grounding aims to retrieve the spatio-temporal tube of a queried object according to the given sentence. Currently, most existing grounding methods are restricted to well-aligned segment-sentence pairs. In this paper, we explore spatio-temporal video grounding on unaligned data and multi-form sentences. This challenging task requires to capture critical object relations to identify the queried target. However, existing approaches cannot distinguish notable objects and remain in ineffective relation modeling between unnecessary objects. Thus, we propose a novel object-aware multi-branch relation network for object-aware relation discovery. Concretely, we first devise multiple branches to develop object-aware region modeling, where each branch focuses on a crucial object mentioned in the sentence. We then propose multi-branch relation reasoning to capture critical object relationships between the main branch and auxiliary branches. Moreover, we apply a diversity loss to make each branch only pay attention to its corresponding object and boost multi-branch learning. The extensive experiments show the effectiveness of our proposed method.
|
Zhu Zhang, Zhou Zhao, Zhijie Lin, Baoxing Huai, Jing Yuan
| null | null | 2,020 |
ijcai
|
Multi-attention Meta Learning for Few-shot Fine-grained Image Recognition
| null |
The goal of few-shot image recognition is to distinguish different categories with only one or a few training samples. Previous works of few-shot learning mainly work on general object images. And current solutions usually learn a global image representation from training tasks to adapt novel tasks. However, fine-gained categories are distinguished by subtle and local parts, which could not be captured by global representations effectively. This may hinder existing few-shot learning approaches from dealing with fine-gained categories well. In this work, we propose a multi-attention meta-learning (MattML) method for few-shot fine-grained image recognition (FSFGIR). Instead of using only base learner for general feature learning, the proposed meta-learning method uses attention mechanisms of the base learner and task learner to capture discriminative parts of images. The base learner is equipped with two convolutional block attention modules (CBAM) and a classifier. The two CBAM can learn diverse and informative parts. And the initial weights of classifier are attended by the task learner, which gives the classifier a task-related sensitive initialization. For adaptation, the gradient-based meta-learning approach is employed by updating the parameters of two CBAM and the attended classifier, which facilitates the updated base learner to adaptively focus on discriminative parts. We experimentally analyze the different components of our method, and experimental results on four benchmark datasets demonstrate the effectiveness and superiority of our method.
|
Yaohui Zhu, Chenlong Liu, Shuqiang Jiang
| null | null | 2,020 |
ijcai
|
Early and Efficient Identification of Useless Constraint Propagation for Alldifferent Constraints
| null |
Constraints propagation and backtracking are two basic techniques for solving constraint satisfaction problems (CSPs). During the search for a solution, the variable and value pairs that do not belong to any solution can be discarded by constraint propagation to ensure generalized arc consistency so as to avoid the fruitless search. However, constraint propagation is frequently invoked often with little effect on many CSPs. Much effort has been devoted to predicting when to invoke constraint propagation for solving a CSP; however, no effective approach has been developed for the alldifferent constraint. Here we present a novel theorem for identifying the edges in a value graph of alldifferent constraint whose removal can significantly reduce useless constraint propagation. We prove that if an alternating cycle exists for a prospectively removable edge that represents a variable-value assignment, the edge (and the assignment) can be discarded without constraint propagation. Based on this theorem, we developed a novel optimizing technique for early detection of useless constraint propagation which can be incorporated in any existing algorithm for alldifferent constraint. Our implementation of the new method achieved speedup by a factor of 1-5 over the state-of-art approaches on 93 benchmark problem instances in 8 domains. Furthermore, the new algorithm is scalable well and runs increasingly faster than the existing methods on larger problems.
|
Xizhe Zhang, Jian Gao, Yizhi Lv, Weixiong Zhang
| null | null | 2,020 |
ijcai
|
Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering
| null |
Fact-based Visual Question Answering (FVQA) requires external knowledge beyond the visible content to answer questions about an image. This ability is challenging but indispensable to achieve general VQA. One limitation of existing FVQA solutions is that they jointly embed all kinds of information without fine-grained selection, which introduces unexpected noises for reasoning the final answer. How to capture the question-oriented and information-complementary evidence remains a key challenge to solve the problem. In this paper, we depict an image by a multi-modal heterogeneous graph, which contains multiple layers of information corresponding to the visual, semantic and factual features. On top of the multi-layer graph representations, we propose a modality-aware heterogeneous graph convolutional network to capture evidence from different layers that is most relevant to the given question. Specifically, the intra-modal graph convolution selects evidence from each modality and cross-modal graph convolution aggregates relevant information across different graph layers. By stacking this process multiple times, our model performs iterative reasoning across three modalities and predicts the optimal answer by analyzing all question-oriented evidence. We achieve a new state-of-the-art performance on the FVQA task and demonstrate the effectiveness and interpretability of our model with extensive experiments.
|
Zihao Zhu, Jing Yu, Yujing Wang, Yajing Sun, Yue Hu, Qi Wu
| null | null | 2,020 |
ijcai
|
Fast and Parallel Decomposition of Constraint Satisfaction Problems
| null |
Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.
|
Georg Gottlob, Cem Okulmus, Reinhard Pichler
| null | null | 2,020 |
ijcai
|
On Irrelevant Literals in Pseudo-Boolean Constraint Learning
| null |
Learning pseudo-Boolean (PB) constraints in PB solvers exploiting cutting planes based inference is not as well understood as clause learning in conflict-driven clause learning solvers.
In this paper, we show that PB constraints derived using cutting planes may contain irrelevant literals, i.e., literals whose assigned values (whatever they are) never change the truth value of the constraint.
Such literals may lead to infer constraints that are weaker than they should be, impacting the size of the proof built by the solver, and thus also affecting its performance.
This suggests that current implementations of PB solvers based on cutting planes should be reconsidered to prevent the generation of irrelevant literals.
Indeed, detecting and removing irrelevant literals is too expensive in practice to be considered as an option (the associated problem is NP-hard).
|
Daniel Le Berre, Pierre Marquis, Stefan Mengel, Romain Wallon
| null | null | 2,020 |
ijcai
|
Overcoming Language Priors with Self-supervised Learning for Visual Question Answering
| null |
Most Visual Question Answering (VQA) models suffer from the language prior problem, which is caused by inherent data biases. Specifically, VQA models tend to answer questions (e.g., what color is the banana?) based on the high-frequency answers (e.g., yellow) ignoring image contents. Existing approaches tackle this problem by creating delicate models or introducing additional visual annotations to reduce question dependency and strengthen image dependency. However, they are still subject to the language prior problem since the data biases have not been fundamentally addressed. In this paper, we introduce a self-supervised learning framework to solve this problem. Concretely, we first automatically generate labeled data to balance the biased data, and then propose a self-supervised auxiliary task to utilize the balanced data to assist the VQA model to overcome language priors. Our method can compensate for the data biases by generating balanced data without introducing external annotations. Experimental results show that our method achieves state-of-the-art performance, improving the overall accuracy from 49.50% to 57.59% on the most commonly used benchmark VQA-CP v2. In other words, we can increase the performance of annotation-based methods by 16% without using external annotations. Our code is available on GitHub.
|
Xi Zhu, Zhendong Mao, Chunxiao Liu, Peng Zhang, Bin Wang, Yongdong Zhang
| null | null | 2,020 |
ijcai
|
Diversity of Solutions: An Exploration Through the Lens of Fixed-Parameter Tractability Theory
| null |
When modeling an application of practical relevance as an instance of a combinatorial problem X, we are often interested not merely in finding one optimal solution for that instance, but in finding a sufficiently diverse collection of good solutions. In this work we initiate a systematic study of diversity from the point of view of fixed-parameter tractability theory. We consider an intuitive notion of diversity of a collection of solutions which suits a large variety of combinatorial problems of practical interest. Our main contribution is an algorithmic framework which --automatically-- converts a tree-decomposition-based dynamic programming algorithm for a given combinatorial problem X into a dynamic programming algorithm for the diverse version of X. Surprisingly, our algorithm has a polynomial dependence on the diversity parameter.
|
Julien Baste, Michael R. Fellows, Lars Jaffke, Tomáš Masařík, Mateus de Oliveira Oliveira, Geevarghese Philip, Frances A. Rosamond
| null | null | 2,020 |
ijcai
|
A Graph-based Interactive Reasoning for Human-Object Interaction Detection
| null |
Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects via inferring triplets of < human, verb, object >. However, recent HOI detection methods mostly rely on additional annotations (e.g., human pose) and neglect powerful interactive reasoning beyond convolutions. In this paper, we present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs, in which interactive semantics implied among visual targets are efficiently exploited. The proposed model consists of a project function that maps related targets from convolution space to a graph-based semantic space, a message passing process propagating semantics among all nodes and an update function transforming the reasoned nodes back to convolution space. Furthermore, we construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet. Beyond inferring HOIs using instance features respectively, the framework dynamically parses pairwise interactive semantics among visual targets by integrating two-level in-Graphs, i.e., scene-wide and instance-wide in-Graphs. Our framework is end-to-end trainable and free from costly annotations like human pose. Extensive experiments show that our proposed framework outperforms existing HOI detection methods on both V-COCO and HICO-DET benchmarks and improves the baseline about 9.4% and 15% relatively, validating its efficacy in detecting HOIs.
|
Dongming Yang, Yuexian Zou
| null | null | 2,020 |
ijcai
|
NLocalSAT: Boosting Local Search with Solution Prediction
| null |
The Boolean satisfiability problem (SAT) is a famous NP-complete problem in computer science. An effective way for solving a satisfiable SAT problem is the stochastic local search (SLS). However, in this method, the initialization is assigned in a random manner, which impacts the effectiveness of SLS solvers. To address this problem, we propose NLocalSAT. NLocalSAT combines SLS with a solution prediction model, which boosts SLS by changing initialization assignments with a neural network. We evaluated NLocalSAT on five SLS solvers (CCAnr, Sparrow, CPSparrow, YalSAT, and probSAT) with instances in the random track of SAT Competition 2018. The experimental results show that solvers with NLocalSAT achieve 27% ~ 62% improvement over the original SLS solvers.
|
Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, Lu Zhang
| null | null | 2,020 |
ijcai
|
Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions
| null |
Modern subgraph isomorphism solvers carry out sophisticated reasoning using graph invariants such as degree sequences and path counts. We show that all of this reasoning can be justified compactly using the cutting planes proofs studied in complexity theory. This allows us to extend a state of the art subgraph isomorphism enumeration solver with proof logging support, so that the solutions it outputs may be audited and verified for correctness and completeness by a simple third party tool which knows nothing about graph theory.
|
Stephan Gocht, Ciaran McCreesh, Jakob Nordström
| null | null | 2,020 |
ijcai
|
Learning Sensitivity of RCPSP by Analyzing the Search Process
| null |
Solving the problem is an important part of optimization. An equally important part is the analysis of the solution where several questions can arise. For a scheduling problem, is it possible to obtain a better solution by increasing the capacity of a resource? What happens to the objective value if we start a specific task earlier? Answering such questions is important to provide explanations and increase the acceptability of a solution. A lot of research has been done on sensitivity analysis, but few techniques can be applied to constraint programming. We present a new method for sensitivity analysis applied to constraint programming. It collects information, during the search, about the propagation of the CUMULATIVE constraint, the filtering of the variables, and the solution returned by the solver. Using machine learning algorithms, we predict if increasing/decreasing the capacity of the cumulative resource allows a better solution. We also predict the impact on the objective value of forcing a task to finish earlier. We experimentally validate our method with the RCPSP problem.
|
Marc-André Ménard, Claude-Guy Quimper, Jonathan Gaudreault
| null | null | 2,020 |
ijcai
|
Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost
| null |
Recently, several exact methods to compute decision trees have been introduced. On the one hand, these approaches can find optimal trees for various objective functions including total size, depth or accuracy on the training set and therefore. On the other hand, these methods are not yet widely used in practice and classic heuristics are often still the methods of choice.
In this paper we show how the SAT model proposed by [Narodytska et.al 2018] can be lifted to a MaxSAT approach, making it much more practically relevant.
In particular, it scales to much larger data sets; the objective function can easily be adapted to take into account combinations of size, depth and accuracy on the training set; and the fine-grained control of the objective function it offers makes it particularly well suited for boosting.
Our experiments show promising results.
In particular, we show that the prediction quality of our approach often exceeds state of the art heuristics. We also show that the MaxSAT formulation is well adapted for boosting using the well-known AdaBoost Algorithm.
|
Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet
| null | null | 2,020 |
ijcai
|
Action-Guided Attention Mining and Relation Reasoning Network for Human-Object Interaction Detection
| null |
Human-object interaction (HOI) detection is important to understand human-centric scenes and is challenging due to subtle difference between fine-grained actions, and multiple co-occurring interactions. Most approaches tackle the problems by considering the multi-stream information and even introducing extra knowledge, which suffer from a huge combination space and the non-interactive pair domination problem. In this paper, we propose an Action-Guided attention mining and Relation Reasoning (AGRR) network to solve the problems. Relation reasoning on human-object pairs is performed by exploiting contextual compatibility consistency among pairs to filter out the non-interactive combinations. To better discriminate the subtle difference between fine-grained actions, an action-aware attention based on class activation map is proposed to mine the most relevant features for recognizing HOIs. Extensive experiments on V-COCO and HICO-DET datasets demonstrate the effectiveness of the proposed model compared with the state-of-the-art approaches.
|
Xue Lin, Qi Zou, Xixia Xu
| null | null | 2,020 |
ijcai
|
Automatic Dominance Breaking for a Class of Constraint Optimization Problems
| null |
Exploiting dominance relations in many Constraint Optimization Problems can drastically speed up the solving process in practice. Identification and utilization of dominance relations, however, usually require human expertise. We present a theoretical framework for a useful class of constraint optimization problems to detect dominance automatically and formulate the generation of the associated dominance breaking nogoods as constraint satisfaction. By controlling the length and quantity of the nogoods, our method can generate dominance break- ing nogoods of varying strengths. Experimentation confirms runtime improvements of up to three orders of magnitude against manual methods.
|
Jimmy Lee, Allen Zhong
| null | null | 2,020 |
ijcai
|
Bipartite Encoding: A New Binary Encoding for Solving Non-Binary CSPs
| null |
Constraint Satisfaction Problems (CSPs) are typically solved with Generalized Arc Consistency (GAC). A general CSP can also be encoded into a binary CSP and solved with Arc Consistency (AC). The well-known Hidden Variable Encoding (HVE) is still a state-of-the-art binary encoding for solving CSPs. We propose a new binary encoding, called Bipartite Encoding (BE) which uses the idea of partitioning constraints. A BE encoded CSP can achieve a higher level of consistency than GAC on the original CSP. We give an algorithm for creating compact bipartite encoding for non-binary CSPs. We present a AC propagator on the binary constraints from BE exploiting their special structure. Experiments on a large set of non-binary CSP benchmarks with table constraints using the Wdeg, Activity and Impact heuristics show that BE with our AC propagator can outperform existing state-of-the-art GAC algorithms (CT, STRbit) and binary encodings (HVE with HTAC).
|
Ruiwei Wang, Roland H.C. Yap
| null | null | 2,020 |
ijcai
|
Extended Conjunctive Normal Form and An Efficient Algorithm for Cardinality Constraints
| null |
Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) are two basic and important constraint problems with many important applications. SAT and MaxSAT are expressed in CNF, which is difficult to deal with cardinality constraints. In this paper, we introduce Extended Conjunctive Normal Form (ECNF), which expresses cardinality constraints straightforward and does not need auxiliary variables or clauses. Then, we develop a simple and efficient local search solver LS-ECNF with a well designed scoring function under ECNF. We also develop a generalized Unit Propagation (UP) based algorithm to generate the initial solution for local search. We encode instances from Nurse Rostering and Discrete Tomography Problems into CNF with three different cardinality constraint encodings and ECNF respectively. Experimental results show that LS-ECNF has much better performance than state of the art MaxSAT, SAT, Pseudo-Boolean and ILP solvers, which indicates solving cardinality constraints with ECNF is promising.
|
Zhendong Lei, Shaowei Cai, Chuan Luo
| null | null | 2,020 |
ijcai
|
Optimal Region Search with Submodular Maximization
| null |
Region search is an important problem in location-based services due to its wide applications. In this paper, we study the problem of optimal region search with submodular maximization (ORS-SM). This problem considers a region as a connected subgraph. We compute an objective value over the locations in the region using a submodular function and a budget value by summing up the costs of edges in the region, and aim to search the region with the largest objective score under a budget value constraint. ORS-SM supports many applications such as the most diversified region search. We prove that the problem is NP-hard and develop two approximation algorithms with guaranteed error bounds. We conduct experiments on two applications using three real-world datasets. The results demonstrate that our algorithms can achieve high-quality solutions and are faster than a state-of-the-art method by orders of magnitude.
|
Xuefeng Chen, Xin Cao, Yifeng Zeng, Yixiang Fang, Bin Yao
| null | null | 2,020 |
ijcai
|
GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension
| null |
Conversational machine comprehension (MC) has proven significantly more challenging compared to traditional MC since it requires better utilization of conversation history. However, most existing approaches do not effectively capture conversation history and thus have trouble handling questions involving coreference or ellipsis. Moreover, when reasoning over passage text, most of them simply treat it as a word sequence without exploring rich semantic relationships among words. In this paper, we first propose a simple yet effective graph structure learning technique to dynamically construct a question and conversation history aware context graph at each conversation turn. Then we propose a novel Recurrent Graph Neural Network, and based on that, we introduce a flow mechanism to model the temporal dependencies in a sequence of context graphs. The proposed GraphFlow model can effectively capture conversational flow in a dialog, and shows competitive performance compared to existing state-of-the-art methods on CoQA, QuAC and DoQA benchmarks. In addition, visualization experiments show that our proposed model can offer good interpretability for the reasoning process.
|
Yu Chen, Lingfei Wu, Mohammed J. Zaki
| null | null | 2,020 |
ijcai
|
Motif-Preserving Temporal Network Embedding
| null |
Network embedding, mapping nodes in a network to a low-dimensional space, achieves powerful performance. An increasing number of works focus on static network embedding, however, seldom attention has been paid to temporal network embedding, especially without considering the effect of mesoscopic dynamics when the network evolves. In light of this, we concentrate on a particular motif --- triad --- and its temporal dynamics, to study the temporal network embedding. Specifically, we propose MTNE, a novel embedding model for temporal networks. MTNE not only integrates the Hawkes process to stimulate the triad evolution process that preserves motif-aware high-order proximities, but also combines attention mechanism to distinguish the importance of different types of triads better. Experiments on various real-world temporal networks demonstrate that, compared with several state-of-the-art methods, our model achieves the best performance in both static and dynamic tasks, including node classification, link prediction, and link recommendation.
|
Hong Huang, Zixuan Fang, Xiao Wang, Youshan Miao, Hai Jin
| null | null | 2,020 |
ijcai
|
Opinion Maximization in Social Trust Networks
| null |
Social media sites are now becoming very important platforms for product promotion or marketing campaigns. Therefore, there is broad interest in determining ways to guide a site to react more positively to a product with a limited budget. However, the practical significance of the existing studies on this subject is limited for two reasons. First, most studies have investigated the issue in oversimplified networks in which several important network characteristics are ignored. Second, the opinions of individuals are modeled as bipartite states (e.g., support or not) in numerous studies, however, this setting is too strict for many real scenarios. In this study, we focus on social trust networks (STNs), which have the significant characteristics ignored in the previous studies. We generalized a famed continuous-valued opinion dynamics model for STNs, which is more consistent with real scenarios. We subsequently formalized two novel problems for solving the issue in STNs. In addition, we developed two matrix-based methods for these two problems and experiments on realworld datasets to demonstrate the practical utility of our methods.
|
Pinghua Xu, Wenbin Hu, Jia Wu, Weiwei Liu
| null | null | 2,020 |
ijcai
|
Inductive Anomaly Detection on Attributed Networks
| null |
Anomaly detection on attributed networks has attracted a surge of research attention due to its broad applications in various high-impact domains, such as security, finance, and healthcare. Nonetheless, most of the existing efforts do not naturally generalize to unseen nodes, leading to the fact that people have to retrain the detection model from scratch when dealing with newly observed data. In this study, we propose to tackle the problem of inductive anomaly detection on attributed networks with a novel unsupervised framework: Aegis (adversarial graph differentiation networks). Specifically, we design a new graph neural layer to learn anomaly-aware node representations and further employ generative adversarial learning to detect anomalies among new data. Extensive experiments on various attributed networks demonstrate the efficacy of the proposed approach.
|
Kaize Ding, Jundong Li, Nitin Agarwal, Huan Liu
| null | null | 2,020 |
ijcai
|
On the Enumeration of Association Rules: A Decomposition-based Approach
| null |
While traditional data mining techniques have been used extensively for finding patterns in databases, they are not always suitable for incorporating user-specified constraints. To overcome this issue, CP and SAT based frameworks for modeling and solving pattern mining tasks have gained a considerable audience in recent years. However, a bottleneck for all these CP and SAT-based approaches is the encoding size which makes these algorithms inefficient for large databases. This paper introduces a practical SAT-based approach to discover efficiently (minimal non-redundant) association rules. First, we present a decomposition-based paradigm that splits the original transaction database into smaller and independent subsets. Then, we show that without producing too large formulas, our decomposition method allows independent mining evaluation on a multi-core machine, improving performance. Finally, an experimental evaluation shows that our method is fast and scale well compared with the existing CP approach even in the sequential case, while significantly reducing the gap with the best state-of-the-art specialized algorithm.
|
Yacine Izza, Said Jabbour, Badran Raddaoui, Abdelahmid Boudane
| null | null | 2,020 |
ijcai
|
Simultaneous Arrival Matching for New Spatial Crowdsourcing Platforms
| null |
In recent years, 3D spatial crowdsourcing platforms become popular, in which users and workers travel together to their assigned workplaces for services, such as InterestingSport and Nanguache. A typical problem over 3D spatial crowdsourcing platforms is to match users with suitable workers and workplaces. Existing studies all ignored that the workers and users assigned to the same workplace should arrive almost at the same time, which is very practical in the real world. Thus, in this paper, we propose a new Simultaneous Arrival Matching (SAM), which enables workers and users to arrive at their assigned workplace within a given tolerant time. We find that the new considered arriving time constraint breaks the monotonic additivity of the result set. Thus, it brings a large challenge in designing effective and efficient algorithms for the SAM. We design Sliding Window algorithm and Threshold Scanning algorithm to solve the SAM. We conduct the experiments on real and synthetic datasets, experimental results show the effectiveness and efficiency of our algorithms.
|
Boyang Li, Yurong Cheng, Ye Yuan, Guoren Wang, Lei Chen
| null | null | 2,020 |
ijcai
|
Robustness of Autoencoders for Anomaly Detection Under Adversarial Impact
| null |
Detecting anomalies is an important task in a wide variety of applications and domains. Deep learning methods have achieved state-of-the-art performance in anomaly detection in recent years; unsupervised methods being particularly popular. However, deep learning methods can be fragile to small perturbations in the input data. This can be exploited by an adversary to deliberately hinder model performance; an adversarial attack. This phenomena has been widely studied in the context of supervised image classification since its discovery, however such studies for an anomaly detection setting are sorely lacking. Moreover, the plethora of defense mechanisms that have been proposed are often not applicable to unsupervised anomaly detection models. In this work, we study the effect of adversarial attacks on the performance of anomaly-detecting autoencoders using real data from a Cyber physical system (CPS) testbed with intervals of controlled, physical attacks as anomalies. An adversary would attempt to disguise these points as normal through adversarial perturbations. To combat this, we propose the Approximate Projection Autoencoder (APAE), which incorporates two defenses against such attacks into a general autoencoder. One of these involves a novel technique to improve robustness under adversarial impact by optimising latent representations for better reconstruction outputs.
|
Adam Goodge, Bryan Hooi, See Kiong Ng, Wee Siong Ng
| null | null | 2,020 |
ijcai
|
Cause-Effect Association between Event Pairs in Event Datasets
| null |
Causal discovery from observational data has been intensely studied across fields of study. In this paper, we consider datasets involving irregular occurrences of various types of events over the timeline. We propose a suite of scores and related algorithms for estimating the cause-effect association between pairs of events from such large event datasets. In particular, we introduce a general framework and the use of conditional intensity rates to characterize pairwise associations between events. Discovering such potential causal relationships is critical in several domains, including health, politics and financial analysis. We conduct an experimental investigation with synthetic data and two real-world event datasets, where we evaluate and compare our proposed scores using assessments from human raters as ground truth. For a political event dataset involving interaction between actors, we show how performance could be enhanced by enforcing additional knowledge pertaining to actor identities.
|
Debarun Bhattacharjya, Tian Gao, Nicholas Mattei, Dharmashankar Subramanian
| null | null | 2,020 |
ijcai
|
A Spatial Missing Value Imputation Method for Multi-view Urban Statistical Data
| null |
Large volumes of urban statistical data with multiple views imply rich knowledge about the development degree of cities. These data present crucial statistics which play an irreplaceable role in the regional analysis and urban computing. In reality, however, the statistical data divided into fine-grained regions usually suffer from missing data problems. Those missing values hide the useful information that may result in a distorted data analysis. Thus, in this paper, we propose a spatial missing data imputation method for multi-view urban statistical data. To address this problem, we exploit an improved spatial multi-kernel clustering method to guide the imputation process cooperating with an adaptive-weight non-negative matrix factorization strategy. Intensive experiments are conducted with other state-of-the-art approaches on six real-world urban statistical datasets. The results not only show the superiority of our method against other comparative methods on different datasets, but also represent a strong generalizability of our model.
|
Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Bei Chen, Xiangjun Dong
| null | null | 2,020 |
ijcai
|
Discrete Embedding for Latent Networks
| null |
Discrete network embedding emerged recently as a new direction of network representation learning. Compared with traditional network embedding models, discrete network embedding aims to compress model size and accelerate model inference by learning a set of short binary codes for network vertices. However, existing discrete network embedding methods usually assume that the network structures (e.g., edge weights) are readily available. In real-world scenarios such as social networks, sometimes it is impossible to collect explicit network structure information and it usually needs to be inferred from implicit data such as information cascades in the networks. To address this issue, we present an end-to-end discrete network embedding model for latent networks DELN that can learn binary representations from underlying information cascades. The essential idea is to infer a latent Weisfeiler-Lehman proximity matrix that captures node dependence based on information cascades and then to factorize the latent Weisfiler-Lehman matrix under the binary node representation constraint. Since the learning problem is a mixed integer optimization problem, an efficient maximal likelihood estimation based cyclic coordinate descent (MLE-CCD) algorithm is used as the solution. Experiments on real-world datasets show that the proposed model outperforms the state-of-the-art network embedding methods.
|
Hong Yang, Ling Chen, Minglong Lei, Lingfeng Niu, Chuan Zhou, Peng Zhang
| null | null | 2,020 |
ijcai
|
Speeding up Very Fast Decision Tree with Low Computational Cost
| null |
Very Fast Decision Tree (VFDT) is one of the most widely used online decision tree induction algorithms, and it provides high classification accuracy with theoretical guarantees. In VFDT, the split-attempt operation is essential for leaf-split. It is computation-intensive since it computes the heuristic measure of all attributes of a leaf. To reduce split-attempts, VFDT tries to split at constant intervals (for example, every 200 examples). However, this mechanism introduces split-delay for split can only happen at fixed intervals, which slows down the growth of VFDT and finally lowers accuracy. To address this problem, we first devise an online incremental algorithm that computes the heuristic measure of an attribute with a much lower computational cost. Then a subset of attributes is carefully selected to find a potential split timing using this algorithm. A split-attempt will be carried out once the timing is verified. By the whole process, computational cost and split-delay are lowered significantly. Comprehensive experiments are conducted using multiple synthetic and real datasets. Compared with state-of-the-art algorithms, our method reduces split-attempts by about 5 to 10 times on average with much lower split-delay, which makes our algorithm run faster and more accurate.
|
Jian Sun, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, Xibin Zhao
| null | null | 2,020 |
ijcai
|
MR-GCN: Multi-Relational Graph Convolutional Networks based on Generalized Tensor Product
| null |
Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.
|
Zhichao Huang, Xutao Li, Yunming Ye, Michael K. Ng
| null | null | 2,020 |
ijcai
|
GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions
| null |
Entity interaction prediction is essential in many important applications such as chemistry, biology, material science, and medical science. The problem becomes quite challenging when each entity is represented by a complex structure, namely structured entity, because two types of graphs are involved: local graphs for structured entities and a global graph to capture the interactions between structured entities. We observe that existing works on structured entity interaction prediction cannot properly exploit the unique graph of graphs model. In this paper, we propose a Graph of Graphs Neural Network, namely GoGNN, which extracts the features in both structured entity graphs and the entity interaction graph in a hierarchical way. We also propose the dual-attention mechanism that enables the model to preserve the neighbor importance in both levels of graphs. Extensive experiments on real-world datasets show that GoGNN outperforms the state-of-the-art methods on two representative structured entity interaction prediction tasks: chemical-chemical interaction prediction and drug-drug interaction prediction. Our code is available at Github.
|
Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, Xuemin Lin
| null | null | 2,020 |
ijcai
|
Graph Neural Architecture Search
| null |
Graph neural networks (GNNs) emerged recently as a powerful tool for analyzing non-Euclidean data such as social network data. Despite their success, the design of graph neural networks requires heavy manual work and domain knowledge. In this paper, we present a graph neural architecture search method (GraphNAS) that enables automatic design of the best graph neural architecture based on reinforcement learning. Specifically, GraphNAS uses a recurrent network to generate variable-length strings that describe the architectures of graph neural networks, and trains the recurrent network with policy gradient to maximize the expected accuracy of the generated architectures on a validation data set. Furthermore, to improve the search efficiency of GraphNAS on big networks, GraphNAS restricts the search space from an entire architecture space to a sequential concatenation of the best search results built on each single architecture layer. Experiments on real-world datasets demonstrate that GraphNAS can design a novel network architecture that rivals the best human-invented architecture in terms of validation set accuracy. Moreover, in a transfer learning task we observe that graph neural architectures designed by GraphNAS, when transferred to new datasets, still gain improvement in terms of prediction accuracy.
|
Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, Yue Hu
| null | null | 2,020 |
ijcai
|
Rebalancing Expanding EV Sharing Systems with Deep Reinforcement Learning
| null |
Electric Vehicle (EV) sharing systems have recently experienced unprecedented growth across the world. One of the key challenges in their operation is vehicle rebalancing, i.e., repositioning the EVs across stations to better satisfy future user demand. This is particularly challenging in the shared EV context, because i) the range of EVs is limited while charging time is substantial, which constrains the rebalancing options; and ii) as a new mobility trend, most of the current EV sharing systems are still continuously expanding their station networks, i.e., the targets for rebalancing can change over time. To tackle these challenges, in this paper we model the rebalancing task as a Multi-Agent Reinforcement Learning (MARL) problem, which directly takes the range and charging properties of the EVs into account. We propose a novel approach of policy optimization with action cascading, which isolates the non-stationarity locally, and use two connected networks to solve the formulated MARL. We evaluate the proposed approach using a simulator calibrated with 1-year operation data from a real EV sharing system. Results show that our approach significantly outperforms the state-of-the-art, offering up to 14% gain in order satisfied rate and 12% increase in net revenue.
|
Man Luo, Wenzhe Zhang, Tianyou Song, Kun Li, Hongming Zhu, Bowen Du, Hongkai Wen
| null | null | 2,020 |
ijcai
|
Understanding the Success of Graph-based Semi-Supervised Learning using Partially Labelled Stochastic Block Model
| null |
With the proliferation of learning scenarios with an abundance of instances, but limited amount of high-quality labels, semi-supervised learning algorithms came to prominence. Graph-based semi-supervised learning (G-SSL) algorithms, of which Label Propagation (LP) is a prominent example, are particularly well-suited for these problems. The premise of LP is the existence of homophily in the graph, but beyond that nothing is known about the efficacy of LP. In particular, there is no characterisation that connects the structural constraints, volume and quality of the labels to the accuracy of LP. In this work, we draw upon the notion of recovery from the literature on community detection, and provide guarantees on accuracy for partially-labelled graphs generated from the Partially-Labelled Stochastic Block Model (PLSBM). Extensive experiments performed on synthetic data verify the theoretical findings.
|
Avirup Saha, Shreyas Sheshadri, Samik Datta, Niloy Ganguly, Disha Makhija, Priyank Patel
| null | null | 2,020 |
ijcai
|
JANE: Jointly Adversarial Network Embedding
| null |
Motivated by the capability of Generative Adversarial Network on exploring the latent semantic space and capturing semantic variations in the data distribution, adversarial learning has been adopted in network embedding to improve the robustness. However, this important ability is lost in existing adversarially regularized network embedding methods, because their embedding results are directly compared to the samples drawn from perturbation (Gaussian) distribution without any rectification from real data. To overcome this vital issue, a novel Joint Adversarial Network Embedding (JANE) framework is proposed to jointly distinguish the real and fake combinations of the embeddings, topology information and node features. JANE contains three pluggable components, Embedding module, Generator module and Discriminator module.
The overall objective function of JANE is defined in a min-max form, which can be optimized via alternating stochastic gradient. Extensive experiments demonstrate the remarkable superiority of the proposed JANE on link prediction (3% gains in both AUC and AP) and node clustering (5% gain in F1 score).
|
Liang Yang, Yuexue Wang, Junhua Gu, Chuan Wang, Xiaochun Cao, Yuanfang Guo
| null | null | 2,020 |
ijcai
|
Online Semi-supervised Multi-label Classification with Label Compression and Local Smooth Regression
| null |
Online semi-supervised multi-label classification serves a practical yet challenging task since only a small number of labeled instances are available in real streaming environments. However, the mainstream of existing online classification techniques are focused on the single-label case, while only a few multi-label stream classification algorithms exist, and they are mainly trained on labeled instances. In this paper, we present a novel Online Semi-supervised Multi-Label learning algorithm (OnSeML) based on label compression and local smooth regression, which allows real-time multi-label predictions in a semi-supervised setting and is robust to evolving label distributions. Specifically, to capture the high-order label relationship and to build a compact target space for regression, OnSeML compresses the label set into a low-dimensional space by a fixed orthogonal label encoder. Then a locally defined regression function for each incoming instance is obtained with a closed-form solution. Targeting the evolving label distribution problem, we propose an adaptive decoding scheme to adequately integrate newly arriving labeled data. Extensive experiments provide empirical evidence for the effectiveness of our approach.
|
Peiyan Li, Honglian Wang, Christian Böhm, Junming Shao
| null | null | 2,020 |
ijcai
|
Enhancing Urban Flow Maps via Neural ODEs
| null |
Flow super-resolution (FSR) enables inferring fine-grained urban flows with coarse-grained observations and plays an important role in traffic monitoring and prediction. The existing FSR solutions rely on deep CNN models (e.g., ResNet) for learning spatial correlation, incurring excessive memory cost and numerous parameter updates. We propose to tackle the urban flows inference using dynamic systems paradigm and present a new method FODE -- FSR with Ordinary Differential Equations (ODEs). FODE extends neural ODEs by introducing an affine coupling layer to overcome the problem of numerically unstable gradient computation, which allows more accurate and efficient spatial correlation estimation, without extra memory cost. In addition, FODE provides a flexible balance between flow inference accuracy and computational efficiency. A FODE-based augmented normalization mechanism is further introduced to constrain the flow distribution with the influence of external factors. Experimental evaluations on two real-world datasets demonstrate that FODE significantly outperforms several baseline approaches.
|
Fan Zhou, Liang Li, Ting Zhong, Goce Trajcevski, Kunpeng Zhang, Jiahao Wang
| null | null | 2,020 |
ijcai
|
Multi-Channel Graph Neural Networks
| null |
The classification of graph-structured data has be-come increasingly crucial in many disciplines. It has been observed that the implicit or explicit hierarchical community structures preserved in real-world graphs could be useful for downstream classification applications. A straightforward way to leverage the hierarchical structure is to make use the pooling algorithms to cluster nodes into fixed groups, and shrink the input graph layer by layer to learn the pooled graphs.However, the pool shrinking discards the graph details to make it hard to distinguish two non-isomorphic graphs, and the fixed clustering ignores the inherent multiple characteristics of nodes. To compensate the shrinking loss and learn the various nodes’ characteristics, we propose the multi-channel graph neural networks (MuchGNN). Motivated by the underlying mechanisms developed in convolutional neural networks, we define the tailored graph convolutions to learn a series of graph channels at each layer, and shrink the graphs hierarchically to en-code the pooled structures. Experimental results on real-world datasets demonstrate the superiority of MuchGNN over the state-of-the-art methods.
|
Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu
| null | null | 2,020 |
ijcai
|
Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation
| null |
Graph Neural Networks (GNNs) are powerful for the representation learning of graph-structured data. Most of the GNNs use a message-passing scheme, where the embedding of a node is iteratively updated by aggregating the information from its neighbors. To achieve a better expressive capability of node influences, attention mechanism has grown to be popular to assign trainable weights to the nodes in aggregation. Though the attention-based GNNs have achieved remarkable results in various tasks, a clear understanding of their discriminative capacities is missing. In this work, we present a theoretical analysis of the representational properties of the GNN that adopts the attention mechanism as an aggregator. Our analysis determines all cases when those attention-based GNNs can always fail to distinguish certain distinct structures. Those cases appear due to the ignorance of cardinality information in attention-based aggregation. To improve the performance of attention-based GNNs, we propose cardinality preserved attention (CPA) models that can be applied to any kind of attention mechanisms. Our experiments on node and graph classification confirm our theoretical analysis and show the competitive performance of our CPA models. The code is available online: https://github.com/zetayue/CPA.
|
Shuo Zhang, Lei Xie
| null | null | 2,020 |
ijcai
|
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification
| null |
Sleep stage classification is essential for sleep assessment and disease diagnosis. However, how to effectively utilize brain spatial features and transition information among sleep stages continues to be challenging. In particular, owing to the limited knowledge of the human brain, predefining a suitable spatial brain connection structure for sleep stage classification remains an open question. In this paper, we propose a novel deep graph neural network, named GraphSleepNet, for automatic sleep stage classification. The main advantage of the GraphSleepNet is to adaptively learn the intrinsic connection among different electroencephalogram (EEG) channels, represented by an adjacency matrix, thereby best serving the spatial-temporal graph convolution network (ST-GCN) for sleep stage classification. Meanwhile, the ST-GCN consists of graph convolutions for extracting spatial features and temporal convolutions for capturing the transition rules among sleep stages. Experiments on the Montreal Archive of Sleep Studies (MASS) dataset demonstrate that the GraphSleepNet outperforms the state-of-the-art baselines.
|
Ziyu Jia, Youfang Lin, Jing Wang, Ronghao Zhou, Xiaojun Ning, Yuanlai He, Yaoshuai Zhao
| null | null | 2,020 |
ijcai
|
A Sequential Convolution Network for Population Flow Prediction with Explicitly Correlation Modelling
| null |
Population flow prediction is one of the most fundamental components in many applications from urban management to transportation schedule. It is challenging due to the complicated spatial-temporal correlation.While many studies have been done in recent years, they fail to simultaneously and effectively model the spatial correlation and temporal variations among population flows. In this paper, we propose Convolution based Sequential and Cross Network (CSCNet) to solve them. On the one hand, we design a CNN based sequential structure with progressively merging the flow features from different time in different CNN layers to model the spatial-temporal information simultaneously. On the other hand, we make use of the transition flow as the proxy to efficiently and explicitly capture the dynamic correlation between different types of population flows. Extensive experiments on 4 datasets demonstrate that CSCNet outperforms the state-of-the-art baselines by reducing the prediction error around 7.7%∼10.4%.
|
Jie Feng, Ziqian Lin, Tong Xia, Funing Sun, Diansheng Guo, Yong Li
| null | null | 2,020 |
ijcai
|
When Do GNNs Work: Understanding and Improving Neighborhood Aggregation
| null |
Graph Neural Networks (GNNs) have been shown to be powerful in a wide range of graph-related tasks. While there exists various GNN models, a critical common ingredient is neighborhood aggregation, where the embedding of each node is updated by referring to the embedding of its neighbors. This paper aims to provide a better understanding of this mechanisms by asking the following question: Is neighborhood aggregation always necessary and beneficial? In short, the answer is no. We carve out two conditions under which neighborhood aggregation is not helpful: (1) when a node's neighbors are highly dissimilar and (2) when a node's embedding is already similar with that of its neighbors. We propose novel metrics that quantitatively measure these two circumstances and integrate them into an Adaptive-layer module. Our experiments show that allowing for node-specific aggregation degrees have significant advantage over current GNNs.
|
Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, Jiawei Han
| null | null | 2,020 |
ijcai
|
Recovering Accurate Labeling Information from Partially Valid Data for Effective Multi-Label Learning
| null |
Partial Multi-label Learning (PML) aims to induce the multi-label predictor from datasets with noisy supervision, where each training instance is associated with several candidate labels but only partially valid. To address the noisy issue, the existing PML methods basically recover the ground-truth labels by leveraging the ground-truth confidence of the candidate label, i.e., the likelihood of a candidate label being a ground-truth one. However, they neglect the information from non-candidate labels, which potentially contributes to the ground-truth label recovery. In this paper, we propose to recover the ground-truth labels, i.e., estimating the ground-truth confidences, from the label enrichment, composed of the relevance degrees of candidate labels and irrelevance degrees of non-candidate labels. Upon this observation, we further develop a novel two-stage PML method, namely Partial Multi-Label Learning with Label Enrichment-Recovery (PML3ER), where in the first stage, it estimates the label enrichment with unconstrained label propagation, then jointly learns the ground-truth confidence and multi-label predictor given the label enrichment. Experimental results validate that PML3ER outperforms the state-of-the-art PML methods.
|
Ximing Li, Yang Wang
| null | null | 2,020 |
ijcai
|
Network Schema Preserving Heterogeneous Information Network Embedding
| null |
As heterogeneous networks have become increasingly ubiquitous, Heterogeneous Information Network (HIN) embedding, aiming to project nodes into a low-dimensional space while preserving the heterogeneous structure, has drawn increasing attention in recent years. Many of the existing HIN embedding methods adopt meta-path guided random walk to retain both the semantics and structural correlations between different types of nodes. However, the selection of meta-paths is still an open problem, which either depends on domain knowledge or is learned from label information. As a uniform blueprint of HIN, the network schema comprehensively embraces the high-order structure and contains rich semantics. In this paper, we make the first attempt to study network schema preserving HIN embedding, and propose a novel model named NSHE. In NSHE, a network schema sampling method is first proposed to generate sub-graphs (i.e., schema instances), and then multi-task learning task is built to preserve the heterogeneous structure of each schema instance. Besides preserving pairwise structure information, NSHE is able to retain high-order structure (i.e., network schema). Extensive experiments on three real-world datasets demonstrate that our proposed model NSHE significantly outperforms the state-of-the-art methods.
|
Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, Yanfang Ye
| null | null | 2,020 |
ijcai
|
Domain Adaptive Classification on Heterogeneous Information Networks
| null |
Heterogeneous Information Networks (HINs) are ubiquitous structures in that they can depict complex relational data. Due to their complexity, it is hard to obtain sufficient labeled data on HINs, hampering classification on HINs. While domain adaptation (DA) techniques have been widely utilized in images and texts, the heterogeneity and complex semantics pose specific challenges towards domain adaptive classification on HINs. On one hand, HINs involve multiple levels of semantics, making it demanding to do domain alignment among them. On the other hand, the trade-off between domain similarity and distinguishability must be elaborately chosen, in that domain invariant features have been shown to be homogeneous and uninformative for classification. In this paper, we propose Multi-space Domain Adaptive Classification (MuSDAC) to handle the problem of DA on HINs. Specifically, we utilize multi-channel shared weight GCNs, projecting nodes in HINs to multiple spaces where pairwise alignment is carried out. In addition, we propose a heuristic sampling algorithm that efficiently chooses the combination of channels featuring distinguishability, and moving-averaged weighted voting scheme to fuse the selected channels, minimizing both transfer and classification loss. Extensive experiments on pairwise datasets endorse not only our model's performance on domain adaptive classification on HINs and contributions by individual components.
|
Shuwen Yang, Guojie Song, Yilun Jin, Lun Du
| null | null | 2,020 |
ijcai
|
Rumor Detection on Social Media with Graph Structured Adversarial Learning
| null |
The wide spread of rumors on social media has caused tremendous effects in both the online and offline world. In addition to text information, recent detection methods began to exploit the graph structure in the propagation network. However, without a rigorous design, rumors may evade such graph models using various camouflage strategies by perturbing the structured data. Our focus in this work is to develop a robust graph-based detector to identify rumors on social media from an adversarial perspective. We first build a heterogeneous information network to model the rich information among users, posts, and user comments for detection. We then propose a graph adversarial learning framework, where the attacker tries to dynamically add intentional perturbations on the graph structure to fool the detector, while the detector would learn more distinctive structure features to resist such perturbations. In this way, our model would be enhanced in both robustness and generalization. Experiments on real-world datasets demonstrate that our model achieves better results than the state-of-the-art methods.
|
Xiaoyu Yang, Yuefei Lyu, Tian Tian, Yifei Liu, Yudong Liu, Xi Zhang
| null | null | 2,020 |
ijcai
|
Evidence-Aware Hierarchical Interactive Attention Networks for Explainable Claim Verification
| null |
Exploring evidence from relevant articles to confirm the veracity of claims is a trend towards explainable claim verification. However, most strategies capture the top-k check-worthy articles or salient words as evidence, but this evidence is difficult to focus on the questionable parts of unverified claims. Besides, they utilize relevant articles indiscriminately, ignoring the source credibility of these articles, which may cause quiet a few unreliable articles to interfere with the assessment results. In this paper, we propose Evidence-aware Hierarchical Interactive Attention Networks (EHIAN) by considering the capture of evidence fragments and the fusion of source credibility to explore more credible evidence semantics discussing the questionable parts of claims for explainable claim verification. EHIAN first designs internal interaction layer (IIL) to strengthen deep interaction and matching between claims and relevant articles for obtaining key evidence fragments, and then proposes global inference layer (GIL) that fuses source features of articles and interacts globally with the average semantics of all articles and finally earns the more credible evidence semantics discussing the questionable parts of claims. Experiments on two datasets demonstrate that EHIAN not only achieves the state-of-the-art performance but also secures effective evidence to explain the results.
|
Lianwei Wu, Yuan Rao, Xiong Yang, Wanzhen Wang, Ambreen Nazir
| null | null | 2,020 |
ijcai
|
Joint Representation Learning of Legislator and Legislation for Roll Call Prediction
| null |
In this paper, we explore to learn representations of legislation and legislator for the prediction of roll call results. The most popular approach for this topic is named the ideal point model that relies on historical voting information for representation learning of legislators. It largely ignores the context information of the legislative data. We, therefore, propose to incorporate context information to learn dense representations for both legislators and legislation. For legislators, we incorporate relations among them via graph convolutional neural networks (GCN) for their representation learning. For legislation, we utilize its narrative description via recurrent neural networks (RNN) for representation learning. In order to align two kinds of representations in the same vector space, we introduce a triplet loss for the joint training. Experimental results on a self-constructed dataset show the effectiveness of our model for roll call results prediction compared to some state-of-the-art baselines.
|
Yuqiao Yang, Xiaoqiang Lin, Geng Lin, Zengfeng Huang, Changjian Jiang, Zhongyu Wei
| null | null | 2,020 |
ijcai
|
Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization
| null |
Various types of parameter restart schemes have been proposed for proximal gradient algorithm with momentum to facilitate their convergence in convex optimization. However, under parameter restart, the convergence of proximal gradient algorithm with momentum remains obscure in nonconvex optimization.
In this paper, we propose a novel proximal gradient algorithm with momentum and parameter restart for solving nonconvex and nonsmooth problems. Our algorithm is designed to 1) allow for adopting flexible parameter restart schemes that cover many existing ones; 2) have a global sub-linear convergence rate in nonconvex and nonsmooth optimization; and 3) have guaranteed convergence to a critical point and have various types of asymptotic convergence rates depending on the parameterization of local geometry in nonconvex and nonsmooth optimization. Numerical experiments demonstrate the convergence and effectiveness of our proposed algorithm.
|
Yi Zhou, Zhe Wang, Kaiyi Ji, Yingbin Liang, Vahid Tarokh
| null | null | 2,020 |
ijcai
|
BANANA: when Behavior ANAlysis meets social Network Alignment
| null |
Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users’ behavior information during the aligning procedure and thus still suffer from the poor learning performance. In fact, we observe that social network alignment and behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment problem and user behavior analysis problem. We design a novel end-to-end framework named BANANA. In this framework, to leverage behavior analysis for social network alignment at the distribution level, we design an earth mover’s distance based alignment model to fuse users’ behavior information for more comprehensive user representations. To further leverage social network alignment for behavior analysis, in turn, we design a temporal graph neural network model to fuse behavior information in different social networks based on the alignment result. Two models above can work together in an end-to-end manner. Through extensive experiments on real-world datasets, we demonstrate that our proposed approach outperforms the state-of-the-art methods in the social network alignment task and the user behavior analysis task, respectively.
|
Fuxin Ren, Zhongbao Zhang, Jiawei Zhang, Sen Su, Li Sun, Guozhen Zhu, Congying Guo
| null | null | 2,020 |
ijcai
|
Performance as a Constraint: An Improved Wisdom of Crowds Using Performance Regularization
| null |
Quality assurance is one of the most important problems in crowdsourcing and human computation, and it has been extensively studied from various aspects. Typical approaches for quality assurance include unsupervised approaches such as introducing task redundancy (i.e., asking the same question to multiple workers and aggregating their answers) and supervised approaches such as using worker performance on past tasks or injecting qualification questions into tasks in order to estimate the worker performance. In this paper, we propose to utilize the worker performance as a global constraint for inferring the true answers. The existing semi-supervised approaches do not consider such use of qualification questions. We also propose to utilize the constraint as a regularizer combined with existing statistical aggregation methods. The experiments using heterogeneous multiple-choice questions demonstrate that the performance constraint not only has the power to estimate the ground truths when used by itself, but also boosts the existing aggregation methods when used as a regularizer.
|
Jiyi Li, Yasushi Kawase, Yukino Baba, Hisashi Kashima
| null | null | 2,020 |
ijcai
|
Two-goal Local Search and Inference Rules for Minimum Dominating Set
| null |
Minimum dominating set (MinDS) is a canonical NP-hard combinatorial optimization problem with applications. For large and hard instances one must resort to heuristic approaches to obtain good solutions within reasonable time. This paper develops an efficient local search algorithm for MinDS, which has two main ideas. The first one is a novel local search framework, while the second is a construction procedure with inference rules. Our algorithm named FastDS is evaluated on 4 standard benchmarks and 3 massive graphs benchmarks. FastDS obtains the best performance for almost all benchmarks, and obtains better solutions than state-of-the-art algorithms on massive graphs.
|
Shaowei Cai, Wenying Hou, Yiyuan Wang, Chuan Luo, Qingwei Lin
| null | null | 2,020 |
ijcai
|
Entity Synonym Discovery via Multipiece Bilateral Context Matching
| null |
Being able to automatically discover synonymous entities in an open-world setting benefits various tasks such as entity disambiguation or knowledge graph canonicalization. Existing works either only utilize entity features, or rely on structured annotations from a single piece of context where the entity is mentioned. To leverage diverse contexts where entities are mentioned, in this paper, we generalize the distributional hypothesis to a multi-context setting and propose a synonym discovery framework that detects entity synonyms from free-text corpora with considerations on effectiveness and robustness. As one of the key components in synonym discovery, we introduce a neural network model SynonymNet to determine whether or not two given entities are synonym with each other. Instead of using entities features, SynonymNet makes use of multiple pieces of contexts in which the entity is mentioned, and compares the context-level similarity via a bilateral matching schema. Experimental results demonstrate that the proposed model is able to detect synonym sets that are not observed during training on both generic and domain-specific datasets: Wiki+Freebase, PubMed+UMLS, and MedBook+MKG, with up to 4.16% improvement in terms of Area Under the Curve and 3.19% in terms of Mean Average Precision compared to the best baseline method.
|
Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu
| null | null | 2,020 |
ijcai
|
LISNN: Improving Spiking Neural Networks with Lateral Interactions for Robust Object Recognition
| null |
Spiking Neural Network (SNN) is considered more biologically plausible and energy-efficient on emerging neuromorphic hardware. Recently backpropagation algorithm has been utilized for training SNN, which allows SNN to go deeper and achieve higher performance. However, most existing SNN models for object recognition are mainly convolutional structures or fully-connected structures, which only have inter-layer connections, but no intra-layer connections. Inspired by Lateral Interactions in neuroscience, we propose a high-performance and noise-robust Spiking Neural Network (dubbed LISNN). Based on the convolutional SNN, we model the lateral interactions between spatially adjacent neurons and integrate it into the spiking neuron membrane potential formula, then build a multi-layer SNN on a popular deep learning framework, i.\,e., PyTorch. We utilize the pseudo-derivative method to solve the non-differentiable problem when applying backpropagation to train LISNN and test LISNN on multiple standard datasets. Experimental results demonstrate that the proposed model can achieve competitive or better performance compared to current state-of-the-art spiking neural networks on MNIST, Fashion-MNIST, and N-MNIST datasets. Besides, thanks to lateral interactions, our model processes stronger noise-robustness than other SNN. Our work brings a biologically plausible mechanism into SNN, hoping that it can help us understand the visual information processing in the brain.
|
Xiang Cheng, Yunzhe Hao, Jiaming Xu, Bo Xu
| null | null | 2,020 |
ijcai
|
Intelligent Virtual Machine Provisioning in Cloud Computing
| null |
Virtual machine (VM) provisioning is a common and critical problem in cloud computing. In industrial cloud platforms, there are a huge number of VMs provisioned per day. Due to the complexity and resource constraints, it needs to be carefully optimized to make cloud platforms effectively utilize the resources. Moreover, in practice, provisioning a VM from scratch requires fairly long time, which would degrade the customer experience. Hence, it is advisable to provision VMs ahead for upcoming demands. In this work, we formulate the practical scenario as the predictive VM provisioning (PreVMP) problem, where upcoming demands are unknown and need to be predicted in advance, and then the VM provisioning plan is optimized based on the predicted demands. Further, we propose Uncertainty-Aware Heuristic Search (UAHS) for solving the PreVMP problem. UAHS first models the prediction uncertainty, and then utilizes the prediction uncertainty in optimization. Moreover, UAHS leverages Bayesian optimization to interact prediction and optimization to improve its practical performance. Extensive experiments show that UAHS performs much better than state-of-the-art competitors on two public datasets and an industrial dataset. UAHS has been successfully applied in Microsoft Azure and brought practical benefits in real-world applications.
|
Chuan Luo, Bo Qiao, Xin Chen, Pu Zhao, Randolph Yao, Hongyu Zhang, Wei Wu, Andrew Zhou, Qingwei Lin
| null | null | 2,020 |
ijcai
|
Exploration Based Language Learning for Text-Based Games
| null |
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents. Moreover, they provide a learning setting in which these skills can be acquired through interactions with an environment rather than using fixed corpora.
One aspect that makes these games particularly challenging for learning agents is the combinatorially large action space. Existing methods for solving text-based games are limited to games that are either very simple or have an action space restricted to a predetermined set of admissible actions.
In this work, we propose to use the exploration approach of Go-Explore for solving text-based games. More specifically, in an initial exploration phase, we first extract trajectories with high rewards, after which we train a policy to solve the game by imitating these trajectories.
Our experiments show that this approach outperforms existing solutions in solving text-based games, and it is more sample efficient in terms of the number of interactions with the environment.
Moreover, we show that the learned policy can generalize better than existing solutions to unseen games without using any restriction on the action space.
|
Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet, Huaixiu Zheng, Alexandros Papangelis, Dian Yu, Chandra Khatri, Gokhan Tur
| null | null | 2,020 |
ijcai
|
Unsatisfiability Proofs for Weight 16 Codewords in Lam's Problem
| null |
In the 1970s and 1980s, searches performed by L. Carter, C. Lam, L. Thiel, and S. Swiercz showed that projective planes of order ten with weight 16 codewords do not exist. These searches required highly specialized and optimized computer programs and required about 2,000 hours of computing time on mainframe and supermini computers. In 2010, these searches were verified by D. Roy using an optimized C program and 16,000 hours on a cluster of desktop machines. We performed a verification of these searches by reducing the problem to the Boolean satisfiability problem (SAT). Our verification uses the cube-and-conquer SAT solving paradigm, symmetry breaking techniques using the computer algebra system Maple, and a result of Carter that there are ten nonisomorphic cases to check. Our searches completed in about 30 hours on a desktop machine and produced nonexistence proofs of about 1 terabyte in the DRAT (deletion resolution asymmetric tautology) format.
|
Curtis Bright, Kevin K.H. Cheung, Brett Stevens, Ilias Kotsireas, Vijay Ganesh
| null | null | 2,020 |
ijcai
|
NuCDS: An Efficient Local Search Algorithm for Minimum Connected Dominating Set
| null |
The minimum connected dominating set (MCDS) problem is an important extension of the minimum dominating set problem, with wide applications, especially in wireless networks. Despite its practical importance, there are few works on solving MCDS for massive graphs, mainly due to the complexity of maintaining connectivity. In this paper, we propose two novel ideas, and develop a new local search algorithm for MCDS called NuCDS. First, a hybrid dynamic connectivity maintenance method is designed to switch alternately between a novel fast connectivity maintenance method based on spanning tree and its previous counterpart. Second, we define a new vertex property called \emph{safety} to make the algorithm more considerate when selecting vertices. Experiments show that NuCDS significantly outperforms the state-of-the-art MCDS algorithms on both massive graphs and classic benchmarks.
|
Bohan Li, Xindi Zhang, Shaowei Cai, Jinkun Lin, Yiyuan Wang, Christian Blum
| null | null | 2,020 |
ijcai
|
Self-Guided Evolution Strategies with Historical Estimated Gradients
| null |
Evolution Strategies (ES) are a class of black-box optimization algorithms and have been widely applied to solve problems, e.g., in reinforcement learning (RL), where the true gradient is unavailable. ES estimate the gradient of an objective function with respect to the parameters by randomly sampling search directions and evaluating parameter perturbations in these directions. However, the gradient estimator of ES tends to have a high variance for high-dimensional optimization, thus requiring a large number of samples and making ES inefficient. In this paper, we propose a new ES algorithm SGES, which utilizes historical estimated gradients to construct a low-dimensional subspace for sampling search directions, and adjusts the importance of this subspace adaptively. We prove that the variance of the gradient estimator of SGES can be much smaller than that of Vanilla ES; meanwhile, its bias can be well bounded. Empirical results on benchmark black-box functions and a set of popular RL tasks exhibit the superior performance of SGES over state-of-the-art ES algorithms.
|
Fei-Yu Liu, Zi-Niu Li, Chao Qian
| null | null | 2,020 |
ijcai
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.