title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Category-Specific Nuance Exploration Network for Fine-Grained Object Retrieval
| null |
Employing additional prior knowledge to model local features as a final fine-grained object representation has become a trend for fine-grained object retrieval (FGOR). A potential limitation of these methods is that they only focus on common parts across the dataset (e.g. head, body or even leg) by introducing additional prior knowledge, but the retrieval of a fine-grained object may rely on category-specific nuances that contribute to category prediction. To handle this limitation, we propose an end-to-end Category-specific Nuance Exploration Network (CNENet) that elaborately discovers category-specific nuances that contribute to category prediction, and semantically aligns these nuances grouped by subcategory without any additional prior knowledge, to directly emphasize the discrepancy among subcategories. Specifically, we design a Nuance Modelling Module that adaptively predicts a group of category-specific response (CARE) maps via implicitly digging into category-specific nuances, specifying the locations and scales for category-specific nuances. Upon this, two nuance regularizations are proposed: 1) semantic discrete loss that forces each CARE map to attend to different spatial regions to capture diverse nuances; 2) semantic alignment loss that constructs a consistent semantic correspondence for each CARE map of the same order with the same subcategory via guaranteeing each instance and its transformed counterpart to be spatially aligned. Moreover, we propose a Nuance Expansion Module, which exploits context appearance information of discovered nuances and refines the prediction of current nuance by its similar neighbors, leading to further improvement on nuance consistency and completeness. Extensive experiments validate that our CNENet consistently yields the best performance under the same settings against most competitive approaches on CUB Birds, Stanford Cars, and FGVC Aircraft datasets.
|
Shijie Wang, Zhihui Wang, Haojie Li, Wanli Ouyang
| null | null | 2,022 |
aaai
|
Anchor DETR: Query Design for Transformer-Based Detector
| null |
In this paper, we propose a novel query design for the transformer-based object detection. In previous transformer-based detectors, the object queries are a set of learned embeddings. However, each learned embedding does not have an explicit physical meaning and we cannot explain where it will focus on. It is difficult to optimize as the prediction slot of each object query does not have a specific mode. In other words, each object query will not focus on a specific region. To solve these problems, in our query design, object queries are based on anchor points, which are widely used in CNN-based detectors. So each object query focuses on the objects near the anchor point. Moreover, our query design can predict multiple objects at one position to solve the difficulty: ``one region, multiple objects''. In addition, we design an attention variant, which can reduce the memory cost while achieving similar or better performance than the standard attention in DETR. Thanks to the query design and the attention variant, the proposed detector that we called Anchor DETR, can achieve better performance and run faster than the DETR with 10x fewer training epochs. For example, it achieves 44.2 AP with 19 FPS on the MSCOCO dataset when using the ResNet50-DC5 feature for training 50 epochs. Extensive experiments on the MSCOCO benchmark prove the effectiveness of the proposed methods. Code is available at https://github.com/megvii-research/AnchorDETR.
|
Yingming Wang, Xiangyu Zhang, Tong Yang, Jian Sun
| null | null | 2,022 |
aaai
|
Learning Temporally and Semantically Consistent Unpaired Video-to-Video Translation through Pseudo-Supervision from Synthetic Optical Flow
| null |
Unpaired video-to-video translation aims to translate videos between a source and a target domain without the need of paired training data, making it more feasible for real applications. Unfortunately, the translated videos generally suffer from temporal and semantic inconsistency. To address this, many existing works adopt spatiotemporal consistency constraints incorporating temporal information based on motion estimation. However, the inaccuracies in the estimation of motion deteriorate the quality of the guidance towards spatiotemporal consistency, which leads to unstable translation. In this work, we propose a novel paradigm that regularizes the spatiotemporal consistency by synthesizing motions in input videos with the generated optical flow instead of estimating them. Therefore, the synthetic motion can be applied in the regularization paradigm to keep motions consistent across domains without the risk of errors in motion estimation. Thereafter, we utilize our unsupervised recycle and unsupervised spatial loss, guided by the pseudo-supervision provided by the synthetic optical flow, to accurately enforce spatiotemporal consistency in both domains. Experiments show that our method is versatile in various scenarios and achieves state-of-the-art performance in generating temporally and semantically consistent videos. Code is available at: https://github.com/wangkaihong/Unsup_Recycle_GAN/.
|
Kaihong Wang, Kumar Akash, Teruhisa Misu
| null | null | 2,022 |
aaai
|
Scaled ReLU Matters for Training Vision Transformers
| null |
Vision transformers (ViTs) have been an alternative design paradigm to convolutional neural networks (CNNs). However, the training of ViTs is much harder than CNNs, as it is sensitive to the training parameters, such as learning rate, optimizer and warmup epoch. The reasons for training difficulty are empirically analysed in the paper Early Convolutions Help Transformers See Better, and the authors conjecture that the issue lies with the patchify-stem of ViT models. In this paper, we further investigate this problem and extend the above conclusion: only early convolutions do not help for stable training, but the scaled ReLU operation in the convolutional stem (conv-stem) matters. We verify, both theoretically and empirically, that scaled ReLU in conv-stem not only improves training stabilization, but also increases the diversity of patch tokens, thus boosting peak performance with a large margin via adding few parameters and flops. In addition, extensive experiments are conducted to demonstrate that previous ViTs are far from being well trained, further showing that ViTs have great potential to be a better substitute of CNNs.
|
Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, Rong Jin
| null | null | 2,022 |
aaai
|
Privacy-Preserving Face Recognition in the Frequency Domain
| null |
Some applications may require performing face recognition (FR) on third-party servers, which could be accessed by attackers with malicious intents to compromise the privacy of users’ face information. This paper advocates a practical privacy-preserving FR scheme without key management realized in the frequency domain. The new scheme first collects the components of the same frequency from different blocks of a face image to form component channels. Only part of the channels are retained and fed into the analysis network that performs an interpretable privacy-accuracy trade-off analysis to identify channels important for face image visualization but not crucial for maintaining high FR accuracy. For this purpose, the loss function of the analysis network consists of the empirical FR error loss and a face visualization penalty term, and the network is trained in an end-to-end manner. We find that with the developed analysis network, more than 94% of the image energy can be dropped while the face recognition accuracy stays almost undegraded. In order to further protect the remaining frequency components, we propose a fast masking method. Effectiveness of the new scheme in removing the visual information of face images while maintaining their distinguishability is validated over several large face datasets. Results show that the proposed scheme achieves a recognition performance and inference time comparable to ArcFace operating on original face images directly.
|
Yinggui Wang, Jian Liu, Man Luo, Le Yang, Li Wang
| null | null | 2,022 |
aaai
|
Panini-Net: GAN Prior Based Degradation-Aware Feature Interpolation for Face Restoration
| null |
Emerging high-quality face restoration (FR) methods often utilize pre-trained GAN models (i.e., StyleGAN2) as GAN Prior. However, these methods usually struggle to balance realness and fidelity when facing various degradation levels. Besides, there is still a noticeable visual quality gap compared with pre-trained GAN models. In this paper, we propose a novel GAN Prior based degradation-aware feature interpolation network, dubbed Panini-Net, for FR tasks by explicitly learning the abstract representations to distinguish various degradations. Specifically, an unsupervised degradation representation learning (UDRL) strategy is first developed to extract degradation representations (DR) of the input degraded images. Then, a degradation-aware feature interpolation (DAFI) module is proposed to dynamically fuse the two types of informative features (i.e., features from input images and features from GAN Prior) with flexible adaption to various degradations based on DR. Ablation studies reveal the working mechanism of DAFI and its potential for editable FR. Extensive experiments demonstrate that our Panini-Net achieves state-of-the-art performance for multi-degradation face restoration and face super-resolution. The source code is available at https://github.com/jianzhangcs/panini.
|
Yinhuai Wang, Yujie Hu, Jian Zhang
| null | null | 2,022 |
aaai
|
Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer
| null |
Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at https://github.com/WangTaoAs/PFD_Net
|
Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo, Wei Shi
| null | null | 2,022 |
aaai
|
FFNet: Frequency Fusion Network for Semantic Scene Completion
| null |
Semantic scene completion (SSC) requires the estimation of the 3D geometric occupancies of objects in the scene, along with the object categories. Currently, many methods employ RGB-D images to capture the geometric and semantic information of objects. These methods use simple but popular spatial- and channel-wise operations, which fuse the information of RGB and depth data. Yet, they ignore the large discrepancy of RGB-D data and the uncertainty measurements of depth data. To solve this problem, we propose the Frequency Fusion Network (FFNet), a novel method for boosting semantic scene completion by better utilizing RGB-D data. FFNet explicitly correlates the RGB-D data in the frequency domain, different from the features directly extracted by the convolution operation. Then, the network uses the correlated information to guide the feature learning from the RG- B and depth images, respectively. Moreover, FFNet accounts for the properties of different frequency components of RGB- D features. It has a learnable elliptical mask to decompose the features learned from the RGB and depth images, attending to various frequencies to facilitate the correlation process of RGB-D data. We evaluate FFNet intensively on the public SSC benchmarks, where FFNet surpasses the state-of- the-art methods. The code package of FFNet is available at https://github.com/alanWXZ/FFNet.
|
Xuzhi Wang, Di Lin, Liang Wan
| null | null | 2,022 |
aaai
|
Detail-Preserving Transformer for Light Field Image Super-resolution
| null |
Recently, numerous algorithms have been developed to tackle the problem of light field super-resolution (LFSR), i.e., super-resolving low-resolution light fields to gain high-resolution views. Despite delivering encouraging results, these approaches are all convolution-based, and are naturally weak in global relation modeling of sub-aperture images necessarily to characterize the inherent structure of light fields. In this paper, we put forth a novel formulation built upon Transformers, by treating LFSR as a sequence-to-sequence reconstruction task. In particular, our model regards sub-aperture images of each vertical or horizontal angular view as a sequence, and establishes long-range geometric dependencies within each sequence via a spatial-angular locally-enhanced self-attention layer, which maintains the locality of each sub-aperture image as well. Additionally, to better recover image details, we propose a detail-preserving Transformer (termed as DPT), by leveraging gradient maps of light field to guide the sequence learning. DPT consists of two branches, with each associated with a Transformer for learning from an original or gradient image sequence. The two branches are finally fused to obtain comprehensive feature representations for reconstruction. Evaluations are conducted on a number of light field datasets, including real-world scenes and synthetic data. The proposed method achieves superior performance comparing with other state-of-the-art schemes. Our code is publicly available at: https://github.com/BITszwang/DPT.
|
Shunzhou Wang, Tianfei Zhou, Yao Lu, Huijun Di
| null | null | 2,022 |
aaai
|
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding
| null |
Temporal grounding aims to localize a video moment which is semantically aligned with a given natural language query. Existing methods typically apply a detection or regression pipeline on the fused representation with the research focus on designing complicated prediction heads or fusion strategies. Instead, from a perspective on temporal grounding as a metric-learning problem, we present a Mutual Matching Network (MMN), to directly model the similarity between language queries and video moments in a joint embedding space. This new metric-learning framework enables fully exploiting negative samples from two new aspects: constructing negative cross-modal pairs in a mutual matching scheme and mining negative pairs across different videos. These new negative samples could enhance the joint representation learning of two modalities via cross-modal mutual matching to maximize their mutual information. Experiments show that our MMN achieves highly competitive performance compared with the state-of-the-art methods on four video grounding benchmarks. Based on MMN, we present a winner solution for the HC-STVG challenge of the 3rd PIC workshop. This suggests that metric learning is still a promising method for temporal grounding via capturing the essential cross-modal correlation in a joint embedding space. Code is available at https://github.com/MCG-NJU/MMN.
|
Zhenzhi Wang, Limin Wang, Tao Wu, Tianhao Li, Gangshan Wu
| null | null | 2,022 |
aaai
|
Transfer Learning from Synthetic to Real LiDAR Point Cloud for Semantic Segmentation
| null |
Knowledge transfer from synthetic to real data has been widely studied to mitigate data annotation constraints in various computer vision tasks such as semantic segmentation. However, the study focused on 2D images and its counterpart in 3D point clouds segmentation lags far behind due to the lack of large-scale synthetic datasets and effective transfer methods. We address this issue by collecting SynLiDAR, a large-scale synthetic LiDAR dataset that contains point-wise annotated point clouds with accurate geometric shapes and comprehensive semantic classes. SynLiDAR was collected from multiple virtual environments with rich scenes and layouts which consists of over 19 billion points of 32 semantic classes. In addition, we design PCT, a novel point cloud translator that effectively mitigates the gap between synthetic and real point clouds. Specifically, we decompose the synthetic-to-real gap into an appearance component and a sparsity component and handle them separately which improves the point cloud translation greatly. We conducted extensive experiments over three transfer learning setups including data augmentation, semi-supervised domain adaptation and unsupervised domain adaptation. Extensive experiments show that SynLiDAR provides a high-quality data source for studying 3D transfer and the proposed PCT achieves superior point cloud translation consistently across the three setups. The dataset is available at https://github.com/xiaoaoran/SynLiDAR.
|
Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, Shijian Lu
| null | null | 2,022 |
aaai
|
End-to-End Transformer Based Model for Image Captioning
| null |
CNN-LSTM based architectures have played an important role in image captioning, but limited by the training efficiency and expression ability, researchers began to explore the CNN-Transformer based models and achieved great success. Meanwhile, almost all recent works adopt Faster R-CNN as the backbone encoder to extract region-level features from given images. However, Faster R-CNN needs a pre-training on an additional dataset, which divides the image captioning task into two stages and limits its potential applications. In this paper, we build a pure Transformer-based model, which integrates image captioning into one stage and realizes end-to-end training. Firstly, we adopt SwinTransformer to replace Faster R-CNN as the backbone encoder to extract grid-level features from given images; Then, referring to Transformer, we build a refining encoder and a decoder. The refining encoder refines the grid features by capturing the intra-relationship between them, and the decoder decodes the refined features into captions word by word. Furthermore, in order to increase the interaction between multi-modal (vision and language) features to enhance the modeling capability, we calculate the mean pooling of grid features as the global feature, then introduce it into refining encoder to refine with grid features together, and add a pre-fusion process of refined global feature and generated words in decoder. To validate the effectiveness of our proposed model, we conduct experiments on MSCOCO dataset. The experimental results compared to existing published works demonstrate that our model achieves new state-of-the-art performances of 138.2% (single model) and 141.0% (ensemble of 4 models) CIDEr scores on 'Karpathy' offline test split and 136.0% (c5) and 138.3% (c40) CIDEr scores on the official online test server. Trained models and source code will be released.
|
Yiyu Wang, Jungang Xu, Yingfei Sun
| null | null | 2,022 |
aaai
|
Low-Light Image Enhancement with Normalizing Flow
| null |
To enhance low-light images to normally-exposed ones is highly ill-posed, namely that the mapping relationship between them is one-to-many. Previous works based on the pixel-wise reconstruction losses and deterministic processes fail to capture the complex conditional distribution of normally exposed images, which results in improper brightness, residual noise, and artifacts. In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model. An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution. In this way, the conditional distribution of the normally exposed images can be well modeled, and the enhancement process, i.e., the other inference direction of the invertible network, is equivalent to being constrained by a loss function that better describes the manifold structure of natural images during the training. The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
|
Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-Pui Chau, Alex Kot
| null | null | 2,022 |
aaai
|
One-Shot Talking Face Generation from Single-Speaker Audio-Visual Correlation Learning
| null |
Audio-driven one-shot talking face generation methods are usually trained on video resources of various persons. However, their created videos often suffer unnatural mouth shapes and asynchronous lips because those methods struggle to learn a consistent speech style from different speakers. We observe that it would be much easier to learn a consistent speech style from a specific speaker, which leads to authentic mouth movements. Hence, we propose a novel one-shot talking face generation framework by exploring consistent correlations between audio and visual motions from a specific speaker and then transferring audio-driven motion fields to a reference image. Specifically, we develop an Audio-Visual Correlation Transformer (AVCT) that aims to infer talking motions represented by keypoint based dense motion fields from an input audio. In particular, considering audio may come from different identities in deployment, we incorporate phonemes to represent audio signals. In this manner, our AVCT can inherently generalize to audio spoken by other identities. Moreover, as face keypoints are used to represent speakers, AVCT is agnostic against appearances of the training speaker, and thus allows us to manipulate face images of different identities readily. Considering different face shapes lead to different motions, a motion field transfer module is exploited to reduce the audio-driven dense motion field gap between the training identity and the one-shot reference. Once we obtained the dense motion field of the reference image, we employ an image renderer to generate its talking face videos from an audio clip. Thanks to our learned consistent speaking style, our method generates authentic mouth shapes and vivid movements. Extensive experiments demonstrate that our synthesized videos outperform the state-of-the-art in terms of visual quality and lip-sync.
|
Suzhen Wang, Lincheng Li, Yu Ding, Xin Yu
| null | null | 2,022 |
aaai
|
Learning to Detect 3D Facial Landmarks via Heatmap Regression with Graph Convolutional Network
| null |
3D facial landmark detection is extensively used in many research fields such as face registration, facial shape analysis, and face recognition. Most existing methods involve traditional features and 3D face models for the detection of landmarks, and their performances are limited by the hand-crafted intermediate process. In this paper, we propose a novel 3D facial landmark detection method, which directly locates the coordinates of landmarks from 3D point cloud with a well-customized graph convolutional network. The graph convolutional network learns geometric features adaptively for 3D facial landmark detection with the assistance of constructed 3D heatmaps, which are Gaussian functions of distances to each landmark on a 3D face. On this basis, we further develop a local surface unfolding and registration module to predict 3D landmarks from the heatmaps. The proposed method forms the first baseline of deep point cloud learning method for 3D facial landmark detection. We demonstrate experimentally that the proposed method exceeds the existing approaches by a clear margin on BU-3DFE and FRGC datasets for landmark localization accuracy and stability, and also achieves high-precision results on a recent large-scale dataset.
|
Yuan Wang, Min Cao, Zhenfeng Fan, Silong Peng
| null | null | 2,022 |
aaai
|
Computing Diverse Shortest Paths Efficiently: A Theoretical and Experimental Study
| null |
Finding diverse solutions in combinatorial problems recently has received considerable attention (Baste et al. 2020; Fomin et al. 2020; Hanaka et al. 2021). In this paper we study the following type of problems: given an integer k, the problem asks for k solutions such that the sum of pairwise (weighted) Hamming distances between these solutions is maximized. Such solutions are called diverse solutions. We present a polynomial-time algorithm for finding diverse shortest st-paths in weighted directed graphs. Moreover, we study the diverse version of other classical combinatorial problems such as diverse weighted matroid bases, diverse weighted arborescences, and diverse bipartite matchings. We show that these problems can be solved in polynomial time as well. To evaluate the practical performance of our algorithm for finding diverse shortest st-paths, we conduct a computational experiment with synthetic and real-world instances. The experiment shows that our algorithm successfully computes diverse solutions within reasonable computational time.
|
Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, See Woo Lee, Yota Otachi
| null | null | 2,022 |
aaai
|
Learning to Search in Local Branching
| null |
Finding high-quality solutions to mixed-integer linear programming problems (MILPs) is of great importance for many practical applications. In this respect, the refinement heuristic local branching (LB) has been proposed to produce improving solutions and has been highly influential for the development of local search methods in MILP. The algorithm iteratively explores a sequence of solution neighborhoods defined by the so-called local branching constraint, namely, a linear inequality limiting the distance from a reference solution. For a LB algorithm, the choice of the neighborhood size is critical to performance. Although it was initialized by a conservative value in the original LB scheme, our new observation is that the "best" size is strongly dependent on the particular MILP instance. In this work, we investigate the relation between the size of the search neighborhood and the behavior of the underlying LB algorithm, and we devise a leaning-based framework for guiding the neighborhood search of the LB heuristic. The framework consists of a two-phase strategy. For the first phase, a scaled regression model is trained to predict the size of the LB neighborhood at the first iteration through a regression task. In the second phase, we leverage reinforcement learning and devise a reinforced neighborhood search strategy to dynamically adapt the size at the subsequent iterations. We computationally show that the neighborhood size can indeed be learned, leading to improved performances and that the overall algorithm generalizes well both with respect to the instance size and, remarkably, across instances.
|
Defeng Liu, Matteo Fischetti, Andrea Lodi
| null | null | 2,022 |
aaai
|
Encoding Multi-Valued Decision Diagram Constraints as Binary Constraint Trees
| null |
Ordered Multi-valued Decision Diagram (MDD) is a compact representation used to model various constraints, such as regular constraints and table constraints. It can be particularly useful for representing ad-hoc problem specific constraints. Many algorithms have been proposed to enforce Generalized Arc Consistency (GAC) on MDD constraints. In this paper, we introduce a new compact representation called Binary Constraint Tree (BCT). We propose tree binary encodings to transform any MDD constraint into a BCT constraint. We also present a specialized algorithm enforcing GAC on the BCT constraint resulting from a MDD constraint. Experimental results on a large set of benchmarks show that the BCT GAC algorithm can significantly outperform state-of-the-art MDD as well as table GAC algorithms.
|
Ruiwei Wang, Roland H.C. Yap
| null | null | 2,022 |
aaai
|
The SoftCumulative Constraint with Quadratic Penalty
| null |
The Cumulative constraint greatly contributes to the success of constraint programming at solving scheduling problems. The SoftCumulative, a version of the Cumulative where overloading the resource incurs a penalty is, however, less studied. We introduce a checker and a filtering algorithm for the SoftCumulative, which are inspired by the powerful energetic reasoning rule for the Cumulative. Both algorithms can be used with classic linear penalty function, but also with a quadratic penalty function, where the penalty of overloading the resource increases quadratically with the amount of the overload. We show that these algorithms are more general than existing algorithms and vastly outperform a decomposition of the SoftCumulative in practice.
|
Yanick Ouellet, Claude-Guy Quimper
| null | null | 2,022 |
aaai
|
Analysis of Pure Literal Elimination Rule for Non-uniform Random (MAX) k-SAT Problem with an Arbitrary Degree Distribution
| null |
MAX k-SAT is one of the archetypal NP-hard problems. Its variation called random MAX k-SAT problem was introduced in order to understand how hard it is to solve instances of the problem on average. The most common model to sample random instances is the uniform model, which has received a large amount of attention. However, the uniform model often fails to capture important structural properties we observe in the real-world instances. To address these limitations, a more general (in a certain sense) model has been proposed, the configuration model, which is able to produce instances with an arbitrary distribution of variables' degrees, and so can simulate biases in instances appearing in various applications. Our overall goal is to expand the theory built around the uniform model to the more general configuration model for a wide range of degree distributions. This includes locating satisfiability thresholds and analysing the performance of the standard heuristics applied to instances sampled from the configuration model. In this paper we analyse the performance of the pure literal elimination rule. We provide an equation that given an underlying degree distribution gives the number of clauses the pure literal elimination rule satisfies w.h.p. We also show how the distribution of variable degrees changes over time as the algorithm is being executed.
|
Oleksii Omelchenko, Andrei A. Bulatov
| null | null | 2,022 |
aaai
|
Real-Time Driver-Request Assignment in Ridesourcing
| null |
Online on-demand ridesourcing service has played a huge role in transforming urban transportation. A central function in most on-demand ridesourcing platforms is to dynamically assign drivers to rider requests that could balance the request waiting times and the driver pick-up distances. To deal with the online nature of this problem, existing literature either divides the time horizon into short windows and applies a static offline assignment algorithm within each window or assumes a fully online setting that makes decisions for each request immediately upon its arrival. In this paper, we propose a more realistic model for the driver-request assignment that bridges the above two settings together. Our model allows the requests to wait after their arrival but assumes that they may leave at any time following a quitting function. Under this model, we design an efficient algorithm for assigning available drivers to requests in real-time. Our algorithm is able to incorporate future estimated driver arrivals into consideration and make strategic waiting and matching decisions that could balance the waiting time and pick-up distance of the assignment. We prove that our algorithm is optimal ex-ante in the single-request setting, and demonstrate its effectiveness in the general multi-request setting through experiments on both synthetic and real-world datasets.
|
Hao Wang, Xiaohui Bei
| null | null | 2,022 |
aaai
|
A Provably-Efficient Model-Free Algorithm for Infinite-Horizon Average-Reward Constrained Markov Decision Processes
| null |
This paper presents a model-free reinforcement learning (RL) algorithm for infinite-horizon average-reward Constrained Markov Decision Processes (CMDPs). Considering a learning horizon K, which is sufficiently large, the proposed algorithm achieves sublinear regret and zero constraint violation. The bounds depend on the number of states S, the number of actions A, and two constants which are independent of the learning horizon K.
|
Honghao Wei, Xin Liu, Lei Ying
| null | null | 2,022 |
aaai
|
Two Compacted Models for Efficient Model-Based Diagnosis
| null |
Model-based diagnosis (MBD) with multiple observations is complicated and difficult to manage over. In this paper, we proposed two new diagnosis models, namely, the Compacted Model with Multiple Observations (CMMO) and the Dominated-based Compacted Model with Multiple Observations (D-CMMO), to solve the problem in which a considerable amount of time is needed when multiple observations are given and more than one fault is injected. Three ideas are presented in this paper. First, we propose to encode MBD with each observation as a subsystem and share as many system variables as possible to compress the size of encoded clauses. Second, we utilize the notion of gate dominance in the CMMO approach to compute Top-Level Diagnosis with Compacted Model (CM-TLD) to reduce the solution space. Finally, we explore the performance of our model using three fault models. Experimental results on the ISCAS-85 benchmarks show that CMMO and D-CMMO perform better than the state-of-the-art algorithms.
|
Huisi Zhou, Dantong Ouyang, Xiangfu Zhao, Liming Zhang
| null | null | 2,022 |
aaai
|
Using MaxSAT for Efficient Explanations of Tree Ensembles
| null |
Tree ensembles (TEs) denote a prevalent machine learning model that do not offer guarantees of interpretability, that represent a challenge from the perspective of explainable artificial intelligence. Besides model agnostic approaches, recent work proposed to explain TEs with formally-defined explanations, which are computed with oracles for propositional satisfiability (SAT) and satisfiability modulo theories. The computation of explanations for TEs involves linear constraints to express the prediction. In practice, this deteriorates scalability of the underlying reasoners. Motivated by the inherent propositional nature of TEs, this paper proposes to circumvent the need for linear constraints and instead employ an optimization engine for pure propositional logic to efficiently handle the prediction. Concretely, the paper proposes to use a MaxSAT solver and exploit the objective function to determine a winning class. This is achieved by devising a propositional encoding for computing explanations of TEs. Furthermore, the paper proposes additional heuristics to improve the underlying MaxSAT solving procedure. Experimental results obtained on a wide range of publicly available datasets demonstrate that the proposed MaxSAT-based approach is either on par or outperforms the existing reasoning-based explainers, thus representing a robust and efficient alternative for computing formal explanations for TEs.
|
Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, Joao Marques-Silva
| null | null | 2,022 |
aaai
|
Resolving Inconsistencies in Simple Temporal Problems: A Parameterized Approach
| null |
The simple temporal problem (STP) is one of the most influential reasoning formalisms for representing temporal information in AI. We study the problem of resolving inconsistency of data encoded in the STP. We prove that the problem of identifying a maximally large consistent subset of data is NP-hard. In practical instances, it is reasonable to assume that the amount of erroneous data is small. We therefore parameterize by the number of constraints that need to be removed to achieve consistency. Using tools from parameterized complexity we design fixed-parameter tractable algorithms for two large fragments of the STP. Our main algorithmic results employ reductions to the Directed Subset Feedback Arc Set problem and iterative compression combined with an efficient algorithm for the Edge Multicut problem. We complement our algorithmic results with hardness results that rule out fixed-parameter tractable algorithms for all remaining non-trivial fragments of the STP (under standard complexity-theoretic assumptions). Together, our results give a full classification of the classical and parameterized complexity of the problem.
|
Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov
| null | null | 2,022 |
aaai
|
Efficient Riemannian Meta-Optimization by Implicit Differentiation
| null |
To solve optimization problems with nonlinear constrains, the recently developed Riemannian meta-optimization methods show promise, which train neural networks as an optimizer to perform optimization on Riemannian manifolds. A key challenge is the heavy computational and memory burdens, because computing the meta-gradient with respect to the optimizer involves a series of time-consuming derivatives, and stores large computation graphs in memory. In this paper, we propose an efficient Riemannian meta-optimization method that decouples the complex computation scheme from the meta-gradient. We derive Riemannian implicit differentiation to compute the meta-gradient by establishing a link between Riemannian optimization and the implicit function theorem. As a result, the updating our optimizer is only related to the final two iterations, which in turn speeds up our method and reduces the memory footprint significantly. We theoretically study the computational load and memory footprint of our method for long optimization trajectories, and conduct an empirical study to demonstrate the benefits of the proposed method. Evaluations of three optimization problems on different Riemannian manifolds show that our method achieves state-of-the-art performance in terms of the convergence speed and the quality of optima.
|
Xiaomeng Fan, Yuwei Wu, Zhi Gao, Yunde Jia, Mehrtash Harandi
| null | null | 2,022 |
aaai
|
Finding Backdoors to Integer Programs: A Monte Carlo Tree Search Framework
| null |
In Mixed Integer Linear Programming (MIP), a (strong) backdoor is a ``small" subset of an instance's integer variables with the following property: in a branch-and-bound procedure, the instance can be solved to global optimality by branching only on the variables in the backdoor. Constructing datasets of pre-computed backdoors for widely used MIP benchmark sets or particular problem families can enable new questions around novel structural properties of a MIP, or explain why a problem that is hard in theory can be solved efficiently in practice. Existing algorithms for finding backdoors rely on sampling candidate variable subsets in various ways, an approach which has demonstrated the existence of backdoors for some instances from MIPLIB2003 and MIPLIB2010. However, these algorithms fall short of consistently succeeding at the task due to an imbalance between exploration and exploitation. We propose BaMCTS, a Monte Carlo Tree Search framework for finding backdoors to MIPs. Extensive algorithmic engineering, hybridization with traditional MIP concepts, and close integration with the CPLEX solver have enabled our method to outperform baselines on MIPLIB2017 instances, finding backdoors more frequently and more efficiently.
|
Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina
| null | null | 2,022 |
aaai
|
A Variant of Concurrent Constraint Programming on GPU
| null |
The number of cores on graphical computing units (GPUs) is reaching thousands nowadays, whereas the clock speed of processors stagnates. Unfortunately, constraint programming solvers do not take advantage yet of GPU parallelism. One reason is that constraint solvers were primarily designed within the mental frame of sequential computation. To solve this issue, we take a step back and contribute to a simple, intrinsically parallel, lock-free and formally correct programming language based on concurrent constraint programming. We then re-examine parallel constraint solving on GPUs within this formalism, and develop Turbo, a simple constraint solver entirely programmed on GPUs. Turbo validates the correctness of our approach and compares positively to a parallel CPU-based solver.
|
Pierre Talbot, Frédéric G Pinel, Pascal Bouvry
| null | null | 2,022 |
aaai
|
Sample Average Approximation for Stochastic Optimization with Dependent Data: Performance Guarantees and Tractability
| null |
Sample average approximation (SAA), a popular method for tractably solving stochastic optimization problems, enjoys strong asymptotic performance guarantees in settings with independent training samples. However, these guarantees are not known to hold generally with dependent samples, such as in online learning with time series data or distributed computing with Markovian training samples. In this paper, we show that SAA remains tractable when the distribution of unknown parameters is only observable through dependent instances and still enjoys asymptotic consistency and finite sample guarantees. Specifically, we provide a rigorous probability error analysis to derive 1 - beta confidence bounds for the out-of-sample performance of SAA estimators and show that these estimators are asymptotically consistent. We then, using monotone operator theory, study the performance of a class of stochastic first-order algorithms trained on a dependent source of data. We show that approximation error for these algorithms is bounded and concentrates around zero, and establish deviation bounds for iterates when the underlying stochastic process is phi-mixing. The algorithms presented can be used to handle numerically inconvenient loss functions such as the sum of a smooth and non-smooth function or of non-smooth functions with constraints. To illustrate the usefulness of our results, we present several stochastic versions of popular algorithms such as stochastic proximal gradient descent (S-PGD), stochastic relaxed Peaceman-Rachford splitting algorithms (S-rPRS), and numerical experiment.
|
Yafei Wang, Bo Pan, Wei Tu, Peng Liu, Bei Jiang, Chao Gao, Wei Lu, Shangling Jui, Linglong Kong
| null | null | 2,022 |
aaai
|
Efficient Vertex-Oriented Polytopic Projection for Web-Scale Applications
| null |
We consider applications involving a large set of instances of projecting points to polytopes. We develop an intuition guided by theoretical and empirical analysis to show that when these instances follow certain structures, a large majority of the projections lie on vertices of the polytopes. To do these projections efficiently we derive a vertex-oriented incremental algorithm to project a point onto any arbitrary polytope, as well as give specific algorithms to cater to simplex projection and polytopes where the unit box is cut by planes. Such settings are especially useful in web-scale applications such as optimal matching or allocation problems. Several such problems in internet marketplaces (e-commerce, ride-sharing, food delivery, professional services, advertising, etc.), can be formulated as Linear Programs (LP) with such polytope constraints that require a projection step in the overall optimization process. We show that in some of the very recent works, the polytopic projection is the most expensive step and our efficient projection algorithms help in gaining massive improvements in performance.
|
Rohan Ramanath, S. Sathiya Keerthi, Yao Pan, Konstantin Salomatin, Kinjal Basu
| null | null | 2,022 |
aaai
|
A Lyapunov-Based Methodology for Constrained Optimization with Bandit Feedback
| null |
In a wide variety of applications including online advertising, contractual hiring, and wireless scheduling, the controller is constrained by a stringent budget constraint on the available resources, which are consumed in a random amount by each action, and a stochastic feasibility constraint that may impose important operational limitations on decision-making. In this work, we consider a general model to address such problems, where each action returns a random reward, cost, and penalty from an unknown joint distribution, and the decision-maker aims to maximize the total reward under a budget constraint B on the total cost and a stochastic constraint on the time-average penalty. We propose a novel low-complexity algorithm based on Lyapunov optimization methodology, named LyOn, and prove that for K arms it achieves square root of KBlog(B) regret and zero constraint-violation when B is sufficiently large. The low computational cost and sharp performance bounds of LyOn suggest that Lyapunov-based algorithm design methodology can be effective in solving constrained bandit optimization problems.
|
Semih Cayci, Yilin Zheng, Atilla Eryilmaz
| null | null | 2,022 |
aaai
|
A Divide and Conquer Algorithm for Predict+Optimize with Non-convex Problems
| null |
The predict+optimize problem combines machine learning and combinatorial optimization by predicting the problem coefficients first and then using these coefficients to solve the optimization problem. While this problem can be solved in two separate stages, recent research shows end to end models can achieve better results. This requires differentiating through a discrete combinatorial function. Models that use differentiable surrogates are prone to approximation errors, while existing exact models are limited to dynamic programming, or they do not generalize well with scarce data. In this work we propose a novel divide and conquer algorithm based on transition points to reason over exact optimization problems and predict the coefficients using the optimization loss. Moreover, our model is not limited to dynamic programming problems. We also introduce a greedy version, which achieves similar results with less computation. In comparison with other predict+optimize frameworks, we show our method outperforms existing exact frameworks and can reason over hard combinatorial problems better than surrogate methods.
|
Ali Ugur Guler, Emir Demirović, Jeffrey Chan, James Bailey, Christopher Leckie, Peter J. Stuckey
| null | null | 2,022 |
aaai
|
TextHoaxer: Budgeted Hard-Label Adversarial Attacks on Text
| null |
This paper focuses on a newly challenging setting in hard-label adversarial attacks on text data by taking the budget information into account. Although existing approaches can successfully generate adversarial examples in the hard-label setting, they follow an ideal assumption that the victim model does not restrict the number of queries. However, in real-world applications the query budget is usually tight or limited. Moreover, existing hard-label adversarial attack techniques use the genetic algorithm to optimize discrete text data by maintaining a number of adversarial candidates during optimization, which can lead to the problem of generating low-quality adversarial examples in the tight-budget setting. To solve this problem, in this paper, we propose a new method named TextHoaxer by formulating the budgeted hard-label adversarial attack task on text data as a gradient-based optimization problem of perturbation matrix in the continuous word embedding space. Compared with the genetic algorithm-based optimization, our solution only uses a single initialized adversarial example as the adversarial candidate for optimization, which significantly reduces the number of queries. The optimization is guided by a new objective function consisting of three terms, i.e., semantic similarity term, pair-wise perturbation constraint, and sparsity constraint. Semantic similarity term and pair-wise perturbation constraint can ensure the high semantic similarity of adversarial examples from both comprehensive text-level and individual word-level, while the sparsity constraint explicitly restricts the number of perturbed words, which is also helpful for enhancing the quality of generated text. We conduct extensive experiments on eight text datasets against three representative natural language models, and experimental results show that TextHoaxer can generate high-quality adversarial examples with higher semantic similarity and lower perturbation rate under the tight-budget setting.
|
Muchao Ye, Chenglin Miao, Ting Wang, Fenglong Ma
| null | null | 2,022 |
aaai
|
Online Enhanced Semantic Hashing: Towards Effective and Efficient Retrieval for Streaming Multi-Modal Data
| null |
With the vigorous development of multimedia equipments and applications, efficient retrieval of large-scale multi-modal data has become a trendy research topic. Thereinto, hashing has become a prevalent choice due to its retrieval efficiency and low storage cost. Although multi-modal hashing has drawn lots of attention in recent years, there still remain some problems. The first point is that existing methods are mainly designed in batch mode and not able to efficiently handle streaming multi-modal data. The second point is that all existing online multi-modal hashing methods fail to effectively handle unseen new classes which come continuously with streaming data chunks. In this paper, we propose a new model, termed Online enhAnced SemantIc haShing (OASIS). We design novel semantic-enhanced representation for data, which could help handle the new coming classes, and thereby construct the enhanced semantic objective function. An efficient and effective discrete online optimization algorithm is further proposed for OASIS. Extensive experiments show that our method can exceed the state-of-the-art models. For good reproducibility and benefiting the community, our code and data are already publicly available.
|
Xiao-Ming Wu, Xin Luo, Yu-Wei Zhan, Chen-Lu Ding, Zhen-Duo Chen, Xin-Shun Xu
| null | null | 2,022 |
aaai
|
GEQCA: Generic Qualitative Constraint Acquisition
| null |
Many planning, scheduling or multi-dimensional packing problems involve the design of subtle logical combinations of temporal or spatial constraints. On the one hand, the precise modelling of these constraints, which are formulated in various relation algebras, entails a number of possible logical combinations and requires expertise in constraint-based modelling. On the other hand, active constraint acquisition (CA) has been used successfully to support non-experienced users in learning conjunctive constraint networks through the generation of a sequence of queries. In this paper, we propose GEACQ, which stands for Generic Qualitative Constraint Acquisition, an active CA method that learns qualitative constraints via the concept of qualitative queries. GEACQ combines qualitative queries with time-bounded path consistency (PC) and background knowledge propagation to acquire the qualitative constraints of any scheduling or packing problem. We prove soundness, completeness and termination of GEACQ by exploiting the jointly exhaustive and pairwise disjoint property of qualitative calculus and we give an experimental evaluation that shows (i) the efficiency of our approach in learning temporal constraints and, (ii) the use of GEACQ on real scheduling instances.
|
Mohamed-Bachir Belaid, Nassim Belmecheri, Arnaud Gotlieb, Nadjib Lazaar, Helge Spieker
| null | null | 2,022 |
aaai
|
Undercover Boolean Matrix Factorization with MaxSAT
| null |
The k-undercover Boolean matrix factorization problem aims to approximate a m×n Boolean matrix X as the Boolean product of an m×k and a k×n matrices A◦B such that X is a cover of A◦B, i.e., no representation error is allowed on the 0’s entries of the matrix X. To infer an optimal and “block-optimal” k-undercover, we propose two exact methods based on MaxSAT encodings. From a theoretical standpoint, we prove that our method of inferring “block-optimal” k-undercover is a (1 - 1/e) ≈ 0.632 approximation for the optimal k-undercover problem. From a practical standpoint, experimental results indicate that our “block-optimal” k-undercover algorithm outperforms the state-of-the-art even when compared with algorithms for the more general k-undercover Boolean Matrix Factorization problem for which only minimizing reconstruction error is required.
|
Florent Avellaneda, Roger Villemaire
| null | null | 2,022 |
aaai
|
Certified Symmetry and Dominance Breaking for Combinatorial Optimisation
| null |
Symmetry and dominance breaking can be crucial for solving hard combinatorial search and optimisation problems, but the correctness of these techniques sometimes relies on subtle arguments. For this reason, it is desirable to produce efficient, machine-verifiable certificates that solutions have been computed correctly. Building on the cutting planes proof system, we develop a certification method for optimisation problems in which symmetry and dominance breaking are easily expressible. Our experimental evaluation demonstrates that we can efficiently verify fully general symmetry breaking in Boolean satisfiability (SAT) solving, thus providing, for the first time, a unified method to certify a range of advanced SAT techniques that also includes XOR and cardinality reasoning. In addition, we apply our method to maximum clique solving and constraint programming as a proof of concept that the approach applies to a wider range of combinatorial problems.
|
Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordström
| null | null | 2,022 |
aaai
|
Defending Graph Convolutional Networks against Dynamic Graph Perturbations via Bayesian Self-Supervision
| null |
In recent years, plentiful evidence illustrates that Graph Convolutional Networks (GCNs) achieve extraordinary accomplishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dynamic graphs. Many existing works aim to strengthen the robustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confident unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self-supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advantages prove to be generalized over three classic GCNs across five public graph datasets.
|
Jun Zhuang, Mohammad Al Hasan
| null | null | 2,022 |
aaai
|
Faster Algorithms for Weak Backdoors
| null |
A weak backdoor, or simply a backdoor, for a Boolean SAT formula F into a class of SAT formulae C is a partial truth assignment T such that F[T] is in C and satisfiability is preserved. The problem of finding a backdoor from class C1 into class C2, or WB(C1,C2), can be stated as follows: Given a formula F in C1, and a natural number k, determine whether there exists a backdoor for F into C2 assigning at most k variables. The class 0-Val contains all Boolean formulae with at least one negative literal in each clause. We design a new algorithm for WB(3CNF, 0-Val) by reducing it to a local search variant of 3-SAT. We show that our algorithm runs in time O*(2.562^k), improving on the previous state-of-the-art of O*(2.85^k). Here, the O* notation is a variant of the big-O notation that allows to omit polynomial factors in the input size. Next, we look at WB(3CNF, Null), where Null is the class consisting of the empty formula. This problem was known to have a trivial running time upper bound of O*(6^k) and can easily be solved in O*(3^k) time. We use a reduction to Conflict-Free-d-Hitting-Set to prove an upper bound of O*(2.2738^k), and also prove a lower bound of 2^o(k) assuming the Exponential Time Hypothesis. Finally, Horn is the class of formulae with at most one positive literal per clause. We improve the previous O*(4.54^k) running time for WB(3CNF, Horn) problem to O*(4.17^k), by exploiting the structure of the SAT instance to give a novel proof of the non-existence of the slowest cases after a slight restructuring of the branching priorities.
|
Serge Gaspers, Andrew Kaploun
| null | null | 2,022 |
aaai
|
CoCoS: Enhancing Semi-supervised Learning on Graphs with Unlabeled Data via Contrastive Context Sharing
| null |
Graph Neural Networks (GNNs) have recently become a popular framework for semi-supervised learning on graph-structured data. However, typical GNN models heavily rely on labeled data in the learning process, while ignoring or paying little attention to the data that are unlabeled but available. To make full use of available data, we propose a generic framework, Contrastive Context Sharing (CoCoS), to enhance the learning capacity of GNNs for semi-supervised tasks. By sharing the contextual information among nodes estimated to be in the same class, different nodes can be correlated even if they are unlabeled and remote from each other in the graph. Models can therefore learn different combinations of contextual patterns, which improves the robustness of node representations. Additionally, motivated by recent advances in self-supervised learning, we augment the context sharing strategy by integrating with contrastive learning, which naturally correlates intra-class and inter-class data. Such operations utilize all available data for training and effectively improve a model's learning capacity. CoCoS can be easily extended to a wide range of GNN-based models with little computational overheads. Extensive experiments show that CoCoS considerably enhances typical GNN models, especially when labeled data are sparse in a graph, and achieves state-of-the-art or competitive results in real-world public datasets. The code of CoCoS is available online.
|
Siyue Xie, Da Sun Handason Tam, Wing Cheong Lau
| null | null | 2,022 |
aaai
|
Optimizing Binary Decision Diagrams with MaxSAT for Classification
| null |
The growing interest in explainable artificial intelligence(XAI) for critical decision making motivates the need for interpretable machine learning (ML) models. In fact, due to their structure (especially with small sizes), these models are inherently understandable by humans. Recently, several exact methods for computing such models are proposed to overcome weaknesses of traditional heuristic methods by providing more compact models or better prediction quality. Despite their compressed representation of Boolean functions, Binary decision diagrams (BDDs) did not gain enough interest as other interpretable ML models. In this paper, we first propose SAT-based models for learning optimal BDDs (in terms of the number of features) that classify all input examples. Then, we lift the encoding to a MaxSAT model to learn optimal BDDs in limited depths, that maximize the number of examples correctly classified. Finally, we tackle the fragmentation problem by introducing a method to merge compatible subtrees for the BDDs found via the MaxSAT model. Our empirical study shows clear benefits of the proposed approach in terms of prediction quality and interpretability (i.e., lighter size) compared to the state-of-the-art approaches.
|
Hao Hu, Marie-José Huguet, Mohamed Siala
| null | null | 2,022 |
aaai
|
Ensemble Semi-supervised Entity Alignment via Cycle-Teaching
| null |
Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semi-supervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semi-supervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange the optimal order that can maximize the overall performance of multiple aligners. The cycle-teaching process can break the limitations of each model's learning capability and reduce the noise in new training data, leading to improved performance. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed cycle-teaching framework, which significantly outperforms the state-of-the-art models when the training data is insufficient and the new entity alignment has much noise.
|
Kexuan Xin, Zequn Sun, Wen Hua, Bing Liu, Wei Hu, Jianfeng Qu, Xiaofang Zhou
| null | null | 2,022 |
aaai
|
SmartIdx: Reducing Communication Cost in Federated Learning by Exploiting the CNNs Structures
| null |
Top-k sparsification method is popular and powerful forreducing the communication cost in Federated Learning(FL). However, according to our experimental observation, it spends most of the total communication cost on the index of the selected parameters (i.e., their position informa-tion), which is inefficient for FL training. To solve this problem, we propose a FL compression algorithm for convolution neural networks (CNNs), called SmartIdx, by extending the traditional Top-k largest variation selection strategy intothe convolution-kernel-based selection, to reduce the proportion of the index in the overall communication cost and thusachieve a high compression ratio. The basic idea of SmartIdx is to improve the 1:1 proportion relationship betweenthe value and index of the parameters to n:1, by regarding the convolution kernel as the basic selecting unit in parameter selection, which can potentially deliver more informationto the parameter server under the limited network traffic. Tothis end, a set of rules are designed for judging which kernel should be selected and the corresponding packaging strategies are also proposed for further improving the compressionratio. Experiments on mainstream CNNs and datasets show that our proposed SmartIdx performs 2.5×−69.2× higher compression ratio than the state-of-the-art FL compression algorithms without degrading model performance.
|
Donglei Wu, Xiangyu Zou, Shuyu Zhang, Haoyu Jin, Wen Xia, Binxing Fang
| null | null | 2,022 |
aaai
|
Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach
| null |
Reinforcement learning is widely used in applications where one needs to perform sequential decisions while interacting with the environment. The problem becomes more challenging when the decision requirement includes satisfying some safety constraints. The problem is mathematically formulated as constrained Markov decision process (CMDP). In the literature, various algorithms are available to solve CMDP problems in a model-free manner to achieve epsilon-optimal cumulative reward with epsilon feasible policies. An epsilon-feasible policy implies that it suffers from constraint violation. An important question here is whether we can achieve epsilon-optimal cumulative reward with zero constraint violations or not. To achieve that, we advocate the use of a randomized primal-dual approach to solve the CMDP problems and propose a conservative stochastic primal-dual algorithm (CSPDA) which is shown to exhibit O(1/epsilon^2) sample complexity to achieve epsilon-optimal cumulative reward with zero constraint violations. In the prior works, the best available sample complexity for the epsilon-optimal policy with zero constraint violation is O(1/epsilon^5). Hence, the proposed algorithm provides a significant improvement compared to the state of the art.
|
Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel, Vaneet Aggarwal
| null | null | 2,022 |
aaai
|
DeepGPD: A Deep Learning Approach for Modeling Geospatio-Temporal Extreme Events
| null |
Geospatio-temporal data are pervasive across numerous application domains.These rich datasets can be harnessed to predict extreme events such as disease outbreaks, flooding, crime spikes, etc. However, since the extreme events are rare, predicting them is a hard problem. Statistical methods based on extreme value theory provide a systematic way for modeling the distribution of extreme values. In particular, the generalized Pareto distribution (GPD) is useful for modeling the distribution of excess values above a certain threshold. However, applying such methods to large-scale geospatio-temporal data is a challenge due to the difficulty in capturing the complex spatial relationships between extreme events at multiple locations. This paper presents a deep learning framework for long-term prediction of the distribution of extreme values at different locations. We highlight its computational challenges and present a novel framework that combines convolutional neural networks with deep set and GPD. We demonstrate the effectiveness of our approach on a real-world dataset for modeling extreme climate events.
|
Tyler Wilson, Pang-Ning Tan, Lifeng Luo
| null | null | 2,022 |
aaai
|
Unsupervised Adversarially Robust Representation Learning on Graphs
| null |
Unsupervised/self-supervised pre-training methods for graph representation learning have recently attracted increasing research interests, and they are shown to be able to generalize to various downstream applications. Yet, the adversarial robustness of such pre-trained graph learning models remains largely unexplored. More importantly, most existing defense techniques designed for end-to-end graph representation learning methods require pre-specified label definitions, and thus cannot be directly applied to the pre-training methods. In this paper, we propose an unsupervised defense technique to robustify pre-trained deep graph models, so that the perturbations on the input graph can be successfully identified and blocked before the model is applied to different downstream tasks. Specifically, we introduce a mutual information-based measure, graph representation vulnerability (GRV), to quantify the robustness of graph encoders on the representation space. We then formulate an optimization problem to learn the graph representation by carefully balancing the trade-off between the expressive power and the robustness (i.e., GRV) of the graph encoder. The discrete nature of graph topology and the joint space of graph data make the optimization problem intractable to solve. To handle the above difficulty and to reduce computational expense, we further relax the problem and thus provide an approximate solution. Additionally, we explore a provable connection between the robustness of the unsupervised graph encoder and that of models on downstream tasks. Extensive experiments demonstrate that even without access to labels and tasks, our model is still able to enhance robustness against adversarial attacks on three downstream tasks (node classification, link prediction, and community detection) by an average of +16.5% compared with existing methods.
|
Jiarong Xu, Yang Yang, Junru Chen, Xin Jiang, Chunping Wang, Jiangang Lu, Yizhou Sun
| null | null | 2,022 |
aaai
|
Multi-Scale Distillation from Multiple Graph Neural Networks
| null |
Knowledge Distillation (KD), which is an effective model compression and acceleration technique, has been successfully applied to graph neural networks (GNNs) recently. Existing approaches utilize a single GNN model as the teacher to distill knowledge. However, we notice that GNN models with different number of layers demonstrate different classification abilities on nodes with different degrees. On the one hand, for nodes with high degrees, their local structures are dense and complex, hence more message passing is needed. Therefore, GNN models with more layers perform better. On the other hand, for nodes with low degrees, whose local structures are relatively sparse and simple, the repeated message passing can easily lead to over-smoothing. Thus, GNN models with less layers are more suitable. However, existing single-teacher GNN knowledge distillation approaches which are based on a single GNN model, are sub-optimal. To this end, we propose a novel approach to distill multi-scale knowledge, which learns from multiple GNN teacher models with different number of layers to capture the topological semantic at different scales. Instead of learning from the teacher models equally, the proposed method automatically assigns proper weights for each teacher model via an attention mechanism which enables the student to select teachers for different local structures. Extensive experiments are conducted to evaluate the proposed method on four public datasets. The experimental results demonstrate the superiority of our proposed method over state-of-the-art methods. Our code is publicly available at https://github.com/NKU-IIPLab/MSKD.
|
Chunhai Zhang, Jie Liu, Kai Dang, Wenzheng Zhang
| null | null | 2,022 |
aaai
|
Mind the Gap: Cross-Lingual Information Retrieval with Hierarchical Knowledge Enhancement
| null |
Cross-Lingual Information Retrieval (CLIR) aims to rank the documents written in a language different from the user’s query. The intrinsic gap between different languages is an essential challenge for CLIR. In this paper, we introduce the multilingual knowledge graph (KG) to the CLIR task due to the sufficient information of entities in multiple languages. It is regarded as a “silver bullet” to simultaneously perform explicit alignment between queries and documents and also broaden the representations of queries. And we propose a model named CLIR with HIerarchical Knowledge Enhancement (HIKE) for our task. The proposed model encodes the textual information in queries, documents and the KG with multilingual BERT, and incorporates the KG information in the query-document matching process with a hierarchical information fusion mechanism. Particularly, HIKE first integrates the entities and their neighborhood in KG into query representations with a knowledge-level fusion, then combines the knowledge from both source and target languages to further mitigate the linguistic gap with a language-level fusion. Finally, experimental results demonstrate that HIKE achieves substantial improvements over state-of-the-art competitors.
|
Fuwei Zhang, Zhao Zhang, Xiang Ao, Dehong Gao, Fuzhen Zhuang, Yi Wei, Qing He
| null | null | 2,022 |
aaai
|
PolygonE: Modeling N-ary Relational Data as Gyro-Polygons in Hyperbolic Space
| null |
N-ary relational knowledge base (KBs) embedding aims to map binary and beyond-binary facts into low-dimensional vector space simultaneously. Existing approaches typically decompose n-ary relational facts into subtuples (entity pairs, triples or quintuples, etc.), and they generally model n-ary relational KBs in Euclidean space. However, n-ary relational facts are semantically and structurally intact, decomposition leads to the loss of global information and undermines the semantical and structural integrity. Moreover, compared to the binary relational KBs, n-ary ones are characterized by more abundant and complicated hierarchy structures, which could not be well expressed in Euclidean space. To address the issues, we propose a gyro-polygon embedding approach to realize n-ary fact integrity keeping and hierarchy capturing, termed as PolygonE. Specifically, n-ary relational facts are modeled as gyro-polygons in the hyperbolic space, where we denote entities in facts as vertexes of gyro-polygons and relations as entity translocation operations. Importantly, we design a fact plausibility measuring strategy based on the vertex-gyrocentroid geodesic to optimize the relation-adjusted gyro-polygon. Extensive experiments demonstrate that PolygonE shows SOTA performance on all benchmark datasets, generalizability to binary data, and applicability to arbitrary arity fact. Finally, we also visualize the embedding to help comprehend PolygonE's awareness of hierarchies.
|
Shiyao Yan, Zequn Zhang, Xian Sun, Guangluan Xu, Shuchao Li, Qing Liu, Nayu Liu, Shensi Wang
| null | null | 2,022 |
aaai
|
Multi-Type Urban Crime Prediction
| null |
Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fine-grained spatio-temporal logs have been recorded. Such helpful information can boost our understandings of the temporal evolution and spatial factors of urban crimes and can enhance accurate crime prediction. However, the vast majority of existing crime prediction algorithms either do not distinguish different types of crime or treat each crime type separately, which fails to capture the intrinsic correlations among different types of crime. In this paper, we perform crime prediction exploiting the cross-type and spatio-temporal correlations of urban crimes. In particular, we verify the existence of correlations among different types of crime from temporal and spatial perspectives, and propose a coherent framework to mathematically model these correlations for crime prediction. Extensive experiments on real-world datasets validate the effectiveness of our framework.
|
Xiangyu Zhao, Wenqi Fan, Hui Liu, Jiliang Tang
| null | null | 2,022 |
aaai
|
Multi-View Intent Disentangle Graph Networks for Bundle Recommendation
| null |
Bundle recommendation aims to recommend the user a bundle of items as a whole. Previous models capture user’s preferences on both items and the association of items. Nevertheless, they usually neglect the diversity of user’s intents on adopting items and fail to disentangle user’s intents in representations. In the real scenario of bundle recommendation, a user’s intent may be naturally distributed in the different bundles of that user (Global view). And a bundle may contain multiple intents of a user (Local view). Each view has its advantages for intent disentangling: 1) In the global view, more items are involved to present each intent, which can demonstrate the user’s preference under each intent more clearly. 2) The local view can reveal the association between items under each intent since the items within the same bundle are highly correlated to each other. To this end, in this paper we propose a novel model named Multi-view Intent Disentangle Graph Networks (MIDGN), which is capable of precisely and comprehensively capturing the diversity of user intent and items’ associations at the finer granularity. Specifically, MIDGN disentangles user’s intents from two different perspectives, respectively: 1) taking the Global view, MIDGN disentangles the user’s intent coupled with inter-bundle items; 2) taking the Local view, MIDGN disentangles the user’s intent coupled with items within each bundle. Meanwhile, we compare user’s intents disentangled from different views by a contrast method to improve the learned intents. Extensive experiments are conducted on two benchmark datasets and MIDGN outperforms the state-of-the-art methods by over 10.7% and 26.8%, respectively.
|
Sen Zhao, Wei Wei, Ding Zou, Xianling Mao
| null | null | 2,022 |
aaai
|
Cross-Task Knowledge Distillation in Multi-Task Recommendation
| null |
Multi-task learning (MTL) has been widely used in recommender systems, wherein predicting each type of user feedback on items (e.g, click, purchase) are treated as individual tasks and jointly trained with a unified model. Our key observation is that the prediction results of each task may contain task-specific knowledge about user’s fine-grained preference towards items. While such knowledge could be transferred to benefit other tasks, it is being overlooked under the current MTL paradigm. This paper, instead, proposes a Cross-Task Knowledge Distillation framework that attempts to leverage prediction results of one task as supervised signals to teach another task. However, integrating MTL and KD in a proper manner is non-trivial due to several challenges including task conflicts, inconsistent magnitude and requirement of synchronous optimization. As countermeasures, we 1) introduce auxiliary tasks with quadruplet loss functions to capture cross-task fine-grained ranking information and avoid task conflicts, 2) design a calibrated distillation approach to align and distill knowledge from auxiliary tasks, and 3) propose a novel error correction mechanism to enable and facilitate synchronous training of teacher and student models. Comprehensive experiments are conducted to verify the effectiveness of our framework in real-world datasets.
|
Chenxiao Yang, Junwei Pan, Xiaofeng Gao, Tingyu Jiang, Dapeng Liu, Guihai Chen
| null | null | 2,022 |
aaai
|
Heterogeneous Peer Effects in the Linear Threshold Model
| null |
The Linear Threshold Model is a widely used model that describes how information diffuses through a social network. According to this model, an individual adopts an idea or product after the proportion of their neighbors who have adopted it reaches a certain threshold. Typical applications of the Linear Threshold Model assume that thresholds are either the same for all network nodes or randomly distributed, even though some people may be more susceptible to peer pressure than others. To address individual-level differences, we propose causal inference methods for estimating individual thresholds that can more accurately predict whether and when individuals will be affected by their peers. We introduce the concept of heterogeneous peer effects and develop a Structural Causal Model which corresponds to the Linear Threshold Model and supports heterogeneous peer effect identification and estimation. We develop two algorithms for individual threshold estimation, one based on causal trees and one based on causal meta-learners. Our experimental results on synthetic and real- world datasets show that our proposed models can better predict individual-level thresholds in the Linear Threshold Model and thus more precisely predict which nodes will get activated over time.
|
Christopher Tran, Elena Zheleva
| null | null | 2,022 |
aaai
|
Multi-Dimensional Prediction of Guild Health in Online Games: A Stability-Aware Multi-Task Learning Approach
| null |
Guild is the most important long-term virtual community and emotional bond in massively multiplayer online role-playing games (MMORPGs). It matters a lot to the player retention and game ecology how the guilds are going, e.g., healthy or not. The main challenge now is to characterize and predict the guild health in a quantitative, dynamic, and multi-dimensional manner based on complicated multi-media data streams. To this end, we propose a novel framework, namely Stability-Aware Multi-task Learning Approach(SAMLA) to address these challenges. Specifically, different media-specific modules are designed to extract information from multiple media types of tabular data, time seriescharacteristics, and heterogeneous graphs. To capture the dynamics of guild health, we introduce a representation encoder to provide a time series view of multi-media data that is used for task prediction. Inspiredby well-received theories on organization management, we delicately define five specific and quantitative dimensions of guild health and make parallel predictions based on a multi-task approach. Besides, we devise a novel auxiliary task, i.e.,the guild stability, to boost the performance of the guild health prediction task. Extensive experiments on a real-world large-scale MMORPG dataset verify that our proposed method outperforms the state-of-the-art methods in the task of organizational health characterization and prediction. Moreover, our work has been practically deployed in online MMORPG, and case studies clearly illustrate the significant value.
|
Chuang Zhao, Hongke Zhao, Runze Wu, Qilin Deng, Yu Ding, Jianrong Tao, Changjie Fan
| null | null | 2,022 |
aaai
|
Anisotropic Additive Quantization for Fast Inner Product Search
| null |
Maximum Inner Product Search (MIPS) plays an important role in many applications ranging from information retrieval, recommender systems to natural language processing and machine learning. However, exhaustive MIPS is often expensive and impractical when there are a large number of candidate items. The state-of-the-art approximated MIPS is product quantization with a score-aware loss, which weighs more heavily on items with larger inner product scores. However, it is challenging to extend the score-aware loss for additive quantization due to parallel-orthogonal decomposition of residual error. Learning additive quantization with respect to this loss is important since additive quantization can achieve a lower approximation error than product quantization. To this end, we propose a quantization method called Anisotropic Additive Quantization to combine the score-aware anisotropic loss and additive quantization. To efficiently update the codebooks in this algorithm, we develop a new alternating optimization algorithm. The proposed algorithm is extensively evaluated on three real-world datasets. The experimental results show that it outperforms the state-of-the-art baselines with respect to approximate search accuracy while guaranteeing a similar retrieval efficiency.
|
Jin Zhang, Qi Liu, Defu Lian, Zheng Liu, Le Wu, Enhong Chen
| null | null | 2,022 |
aaai
|
Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs
| null |
Adversarial attacks on graphs have attracted considerable research interests. Existing works assume the attacker is either (partly) aware of the victim model, or able to send queries to it. These assumptions are, however, unrealistic. To bridge the gap between theoretical graph attacks and real-world scenarios, in this work, we propose a novel and more realistic setting: strict black-box graph attack, in which the attacker has no knowledge about the victim model at all and is not allowed to send any queries. To design such an attack strategy, we first propose a generic graph filter to unify different families of graph-based models. The strength of attacks can then be quantified by the change in the graph filter before and after attack. By maximizing this change, we are able to find an effective attack strategy, regardless of the underlying model. To solve this optimization problem, we also propose a relaxation technique and approximation theories to reduce the difficulty as well as the computational expense. Experiments demonstrate that, even with no exposure to the model, the Macro-F1 drops 6.4% in node classification and 29.5% in graph classification, which is a significant result compared with existent works.
|
Jiarong Xu, Yizhou Sun, Xin Jiang, Yanhao Wang, Chunping Wang, Jiangang Lu, Yang Yang
| null | null | 2,022 |
aaai
|
Robust Heterogeneous Graph Neural Networks against Adversarial Attacks
| null |
Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention in recent years and achieved outstanding performance in many tasks. However, despite their wide use, there is currently no understanding of their robustness to adversarial attacks. In this work, we first systematically study the robustness of HGNNs and show that they can be easily fooled by adding the adversarial edge between the target node and large-degree node (i.e., hub). Furthermore, we show two key reasons for such vulnerability of HGNNs: one is perturbation enlargement effect, i.e., HGNNs, failing to encode transiting probability, will enlarge the effect of the adversarial hub in comparison of GCNs, and the other is soft attention mechanism, i.e., such mechanism assigns positive attention values to obviously unreliable neighbors. Based on the two facts, we propose a novel robust HGNN framework RoHe against topology adversarial attacks by equipping an attention purifier, which can prune malicious neighbors based on topology and feature. Specifically, to eliminate the perturbation enlargement, we introduce the metapath-based transiting probability as the prior criterion of the purifier, restraining the confidence of malicious neighbors from the adversarial hub. Then the purifier learns to mask out neighbors with low confidence, thus can effectively alleviate the negative effect of malicious neighbors in the soft attention mechanism. Extensive experiments on different benchmark datasets for multiple HGNNs are conducted, where the considerable improvement of HGNNs under adversarial attacks will demonstrate the effectiveness and generalization ability of our defense framework.
|
Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, Jun Zhou
| null | null | 2,022 |
aaai
|
Forecasting Asset Dependencies to Reduce Portfolio Risk
| null |
Financial assets exhibit dependence structures, i.e., movements of their prices or returns show various correlations. Knowledge of assets’ price dependencies can help investors to create a diversified portfolio, aiming to reduce portfolio risk due to the high volatility of the financial market. Since asset dependency changes with time in complex patterns, asset dependency forecast is an essential problem in finance. In this paper, we organize pairwise assets dependencies in an Asset Dependency Matrix (ADM) and formulate the problem of assets dependencies forecast to predict the future ADM given a sequence of past ADMs. We propose a novel idea viewing a sequence of ADMs as a sequence of images to capture the spatial and temporal dependencies among the assets. Inspired by video prediction tasks, we develop a novel Asset Dependency Neural Network (ADNN) to tackle the ADM prediction problem. Experiments show that our proposed framework consistently outperforms baselines on both future ADM prediction and portfolio risk reduction tasks.
|
Haoren Zhu, Shih-Yang Liu, Pengfei Zhao, Yingying Chen, Dik Lun Lee
| null | null | 2,022 |
aaai
|
HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting
| null |
The goal of the crime forecasting problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crime patterns, recent state-of-the-art solutions constructed a distance-based region graph and utilized Graph Neural Network (GNN) techniques for crime forecasting, because the GNN techniques could effectively exploit the latent relationships between neighboring region nodes in the graph if the edges reveal high dependency or correlation. However, this distance-based pre-defined graph can not fully capture crime correlation between regions that are far from each other but share similar crime patterns. Hence, to make a more accurate crime prediction, the main challenge is to learn a better graph that reveals the dependencies between regions in crime occurrences and meanwhile captures the temporal patterns from historical crime records. To address these challenges, we propose an end-to-end graph convolutional recurrent network called HAGEN with several novel designs for crime prediction. Specifically, our framework could jointly capture the crime correlation between regions and the temporal crime dynamics by combining an adaptive region graph learning module with the Diffusion Convolution Gated Recurrent Unit (DCGRU). Based on the homophily assumption of GNN (i.e., graph convolution works better where neighboring nodes share the same label), we propose a homophily-aware constraint to regularize the optimization of the region graph so that neighboring region nodes on the learned graph share similar crime patterns, thus fitting the mechanism of diffusion convolution. Empirical experiments and comprehensive analysis on two real-world datasets showcase the effectiveness of HAGEN.
|
Chenyu Wang, Zongyu Lin, Xiaochen Yang, Jiao Sun, Mingxuan Yue, Cyrus Shahabi
| null | null | 2,022 |
aaai
|
Discovering Interpretable Data-to-Sequence Generators
| null |
We study the problem of predicting an event sequence given some meta data. In particular, we are interested in learning easily interpretable models that can accurately generate a sequence based on an attribute vector. To this end, we propose to learn a sparse event-flow graph over the training sequences, and statistically robust rules that use meta data to determine which paths to follow. We formalize the problem in terms of the Minimum Description Length (MDL) principle, by which we identify the best model as the one that compresses the data best. As the resulting optimization problem is NP-hard, we propose the efficient ConSequence algorithm to discover good event-flow graphs from data. Through an extensive set of experiments including a case study, we show that it ably discovers compact, interpretable and accurate models for the generation and prediction of event sequences from data, has a low sample complexity, and is particularly robust against noise.
|
Boris Wiegand, Dietrich Klakow, Jilles Vreeken
| null | null | 2,022 |
aaai
|
Exploring Relational Semantics for Inductive Knowledge Graph Completion
| null |
Knowledge graph completion (KGC) aims to infer missing information in incomplete knowledge graphs (KGs). Most previous works only consider the transductive scenario where entities are existing in KGs, which cannot work effectively for the inductive scenario containing emerging entities. Recently some graph neural network-based methods have been proposed for inductive KGC by aggregating neighborhood information to capture some uncertainty semantics from the neighboring auxiliary triples. But these methods ignore the more general relational semantics underlying all the known triples that can provide richer information to represent emerging entities so as to satisfy the inductive scenario. In this paper, we propose a novel model called CFAG, which utilizes two granularity levels of relational semantics in a coarse-grained aggregator (CG-AGG) and a fine-grained generative adversarial net (FG-GAN), for inductive KGC. The CG-AGG firstly generates entity representations with multiple semantics through a hypergraph neural network-based global aggregator and a graph neural network-based local aggregator, and the FG-GAN further enhances entity representations with specific semantics through conditional generative adversarial nets. Experimental results on benchmark datasets show that our model outperforms state-of-the-art models for inductive KGC.
|
Changjian Wang, Xiaofei Zhou, Shirui Pan, Linhua Dong, Zeliang Song, Ying Sha
| null | null | 2,022 |
aaai
|
Self-Supervised Graph Neural Networks via Diverse and Interactive Message Passing
| null |
By interpreting Graph Neural Networks (GNNs) as the message passing from the spatial perspective, their success is attributed to Laplacian smoothing. However, it also leads to serious over-smoothing issue by stacking many layers. Recently, many efforts have been paid to overcome this issue in semi-supervised learning. Unfortunately, it is more serious in unsupervised node representation learning task due to the lack of supervision information. Thus, most of the unsupervised or self-supervised GNNs often employ textit{one-layer GCN} as the encoder. Essentially, the over-smoothing issue is caused by the over-simplification of the existing message passing, which possesses two intrinsic limits: blind message and uniform passing. In this paper, a novel Diverse and Interactive Message Passing (DIMP) is proposed for self-supervised learning by overcoming these limits. Firstly, to prevent the message from blindness and make it interactive between two connected nodes, the message is determined by both the two connected nodes instead of the attributes of one node. Secondly, to prevent the passing from uniformness and make it diverse over different attribute channels, different propagation weights are assigned to different elements in the message. To this end, a natural implementation of the message in DIMP is the element-wise product of the representations of two connected nodes. From the perspective of numerical optimization, the proposed DIMP is equivalent to performing an overlapping community detection via expectation-maximization (EM). Both the objective function of the community detection and the convergence of EM algorithm guarantee that DMIP can prevent from over-smoothing issue. Extensive evaluations on node-level and graph-level tasks demonstrate the superiority of DIMP on improving performance and overcoming over-smoothing issue.
|
Liang Yang, Cheng Chen, Weixun Li, Bingxin Niu, Junhua Gu, Chuan Wang, Dongxiao He, Yuanfang Guo, Xiaochun Cao
| null | null | 2,022 |
aaai
|
Transferring the Contamination Factor between Anomaly Detection Domains by Shape Similarity
| null |
Anomaly detection attempts to find examples in a dataset that do not conform to the expected behavior. Algorithms for this task assign an anomaly score to each example representing its degree of anomalousness. Setting a threshold on the anomaly scores enables converting these scores into a discrete prediction for each example. Setting an appropriate threshold is challenging in practice since anomaly detection is often treated as an unsupervised problem. A common approach is to set the threshold based on the dataset's contamination factor, i.e., the proportion of anomalous examples in the data. While the contamination factor may be known based on domain knowledge, it is often necessary to estimate it by labeling data. However, many anomaly detection problems involve monitoring multiple related, yet slightly different entities (e.g., a fleet of machines). Then, estimating the contamination factor for each dataset separately by labeling data would be extremely time-consuming. Therefore, this paper introduces a method for transferring the known contamination factor from one dataset (the source domain) to a related dataset where it is unknown (the target domain). Our approach does not require labeled target data and is based on modeling the shape of the distribution of the anomaly scores in both domains. We theoretically analyze how our method behaves when the (biased) target domain anomaly score distribution converges to its true one. Empirically, our method outperforms several baselines on real-world datasets.
|
Lorenzo Perini, Vincent Vercruyssen, Jesse Davis
| null | null | 2,022 |
aaai
|
Powerful Graph Convolutional Networks with Adaptive Propagation Mechanism for Homophily and Heterophily
| null |
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
|
Tao Wang, Di Jin, Rui Wang, Dongxiao He, Yuxiao Huang
| null | null | 2,022 |
aaai
|
TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs
| null |
Conventional static knowledge graphs model entities in relational data as nodes, connected by edges of specific relation types. However, information and knowledge evolve continuously, and temporal dynamics emerge, which are expected to influence future situations. In temporal knowledge graphs, time information is integrated into the graph by equipping each edge with a timestamp or a time range. Embedding-based methods have been introduced for link prediction on temporal knowledge graphs, but they mostly lack explainability and comprehensible reasoning chains. Particularly, they are usually not designed to deal with link forecasting -- event prediction involving future timestamps. We address the task of link forecasting on temporal knowledge graphs and introduce TLogic, an explainable framework that is based on temporal logical rules extracted via temporal random walks. We compare TLogic with state-of-the-art baselines on three benchmark datasets and show better overall performance while our method also provides explanations that preserve time consistency. Furthermore, in contrast to most state-of-the-art embedding-based methods, TLogic works well in the inductive setting where already learned rules are transferred to related datasets with a common vocabulary.
|
Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, Volker Tresp
| null | null | 2,022 |
aaai
|
Meta-Learning for Online Update of Recommender Systems
| null |
Online recommender systems should be always aligned with users' current interest to accurately suggest items that each user would like. Since user interest usually evolves over time, the update strategy should be flexible to quickly catch users' current interest from continuously generated new user-item interactions. Existing update strategies focus either on the importance of each user-item interaction or the learning rate for each recommender parameter, but such one-directional flexibility is insufficient to adapt to varying relationships between interactions and parameters. In this paper, we propose MeLON, a meta-learning based novel online recommender update strategy that supports two-directional flexibility. It is featured with an adaptive learning rate for each parameter-interaction pair for inducing a recommender to quickly learn users' up-to-date interest. The procedure of MeLON is optimized following a meta-learning approach: it learns how a recommender learns to generate the optimal learning rates for future updates. Specifically, MeLON first enriches the meaning of each interaction based on previous interactions and identifies the role of each parameter for the interaction; and then combines these two pieces of information to generate an adaptive learning rate. Theoretical analysis and extensive evaluation on three real-world online recommender datasets validate the effectiveness of MeLON.
|
Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, Jae-Gil Lee
| null | null | 2,022 |
aaai
|
ShuttleNet: Position-Aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton
| null |
The increasing demand for analyzing the insights in sports has stimulated a line of productive studies from a variety of perspectives, e.g., health state monitoring, outcome prediction. In this paper, we focus on objectively judging what and where to return strokes, which is still unexplored in turn-based sports. By formulating stroke forecasting as a sequence prediction task, existing works can tackle the problem but fail to model information based on the characteristics of badminton. To address these limitations, we propose a novel Position-aware Fusion of Rally Progress and Player Styles framework (ShuttleNet) that incorporates rally progress and information of the players by two modified encoder-decoder extractors. Moreover, we design a fusion network to integrate rally contexts and contexts of the players by conditioning on information dependency and different positions. Extensive experiments on the badminton dataset demonstrate that ShuttleNet significantly outperforms the state-of-the-art methods and also empirically validates the feasibility of each component in ShuttleNet. On top of that, we provide an analysis scenario for the stroke forecasting problem.
|
Wei-Yao Wang, Hong-Han Shuai, Kai-Shiang Chang, Wen-Chih Peng
| null | null | 2,022 |
aaai
|
DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation
| null |
In many real-world scenarios, we often deal with streaming data that is sequentially collected over time. Due to the non-stationary nature of the environment, the streaming data distribution may change in unpredictable ways, which is known as the concept drift in the literature. To handle concept drift, previous methods first detect when/where the concept drift happens and then adapt models to fit the distribution of the latest data. However, there are still many cases that some underlying factors of environment evolution are predictable, making it possible to model the future concept drift trend of the streaming data, while such cases are not fully explored in previous work. In this paper, we propose a novel method DDG-DA, that can effectively forecast the evolution of data distribution and improve the performance of models. Specifically, we first train a predictor to estimate the future data distribution, then leverage it to generate training samples, and finally train models on the generated data. We conduct experiments on three real-world tasks (forecasting on stock price trend, electricity load and solar irradiance) and obtained significant improvement on multiple widely-used models.
|
Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, Jiang Bian
| null | null | 2,022 |
aaai
|
A Self-Supervised Mixed-Curvature Graph Neural Network
| null |
Graph representation learning received increasing attentions in recent years. Most of the existing methods ignore the complexity of the graph structures and restrict graphs in a single constant-curvature representation space, which is only suitable to particular kinds of graph structure indeed. Additionally, these methods follow the supervised or semi-supervised learning paradigm, and thereby notably limit their deployment on the unlabeled graphs in real applications. To address these aforementioned limitations, we take the first attempt to study the self-supervised graph representation learning in the mixed-curvature spaces. In this paper, we present a novel Self-Supervised Mixed-Curvature Graph Neural Network (SelfMGNN). To capture the complex graph structures, we construct a mixed-curvature space via the Cartesian product of multiple Riemannian component spaces, and design hierarchical attention mechanisms for learning and fusing graph representations across these component spaces. To enable the self-supervised learning, we propose a novel dual contrastive approach. The constructed mixed-curvature space actually provides multiple Riemannian views for the contrastive learning. We introduce a Riemannian projector to reveal these views, and utilize a well-designed Riemannian discriminator for the single-view and cross-view contrastive learning within and across the Riemannian views. Finally, extensive experiments show that SelfMGNN captures the complex graph structures and outperforms state-of-the-art baselines.
|
Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, Philip S Yu
| null | null | 2,022 |
aaai
|
From One to All: Learning to Match Heterogeneous and Partially Overlapped Graphs
| null |
Recent years have witnessed a flurry of research activity in graph matching, which aims at finding the correspondence of nodes across two graphs and lies at the heart of many artificial intelligence applications. However, matching heterogeneous graphs with partial overlap remains a challenging problem in real-world applications. This paper proposes the first practical learning-to-match method to meet this challenge. The proposed unsupervised method adopts a novel partial optimal transport paradigm to learn a transport plan and node embeddings simultaneously. In a from-one-to-all manner, the entire learning procedure is decomposed into a series of easy-to-solve sub-procedures, each of which only handles the alignment of a single type of nodes. A mechanism for searching the transport mass is also proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art graph matching methods.
|
Weijie Liu, Hui Qian, Chao Zhang, Jiahao Xie, Zebang Shen, Nenggan Zheng
| null | null | 2,022 |
aaai
|
Calibrated Nonparametric Scan Statistics for Anomalous Pattern Detection in Graphs
| null |
We propose a new approach, the calibrated nonparametric scan statistic (CNSS), for more accurate detection of anomalous patterns in large-scale, real-world graphs. Scan statistics identify connected subgraphs that are interesting or unexpected through maximization of a likelihood ratio statistic; in particular, nonparametric scan statistics (NPSSs) identify subgraphs with a higher than expected proportion of individually significant nodes. However, we show that recently proposed NPSS methods are miscalibrated, failing to account for the maximization of the statistic over the multiplicity of subgraphs. This results in both reduced detection power for subtle signals, and low precision of the detected subgraph even for stronger signals. Thus we develop a new statistical approach to recalibrate NPSSs, correctly adjusting for multiple hypothesis testing and taking the underlying graph structure into account. While the recalibration, based on randomization testing, is computationally expensive, we propose both an efficient (approximate) algorithm and new, closed-form lower bounds (on the expected maximum proportion of significant nodes for subgraphs of a given size, under the null hypothesis of no anomalous patterns). These advances, along with the integration of recent core-tree decomposition methods, enable CNSS to scale to large real-world graphs, with substantial improvement in the accuracy of detected subgraphs. Extensive experiments on both semi-synthetic and real-world datasets are demonstrated to validate the effectiveness of our proposed methods, in comparison with state-of-the-art counterparts.
|
Chunpai Wang, Daniel B. Neill, Feng Chen
| null | null | 2,022 |
aaai
|
MS-HGAT: Memory-Enhanced Sequential Hypergraph Attention Network for Information Diffusion Prediction
| null |
Predicting the diffusion cascades is a critical task to understand information spread on social networks. Previous methods usually focus on the order or structure of the infected users in a single cascade, thus ignoring the global dependencies of users and cascades, limiting the performance of prediction. Current strategies to introduce social networks only learn the social homogeneity among users, which is not enough to describe their interaction preferences, let alone the dynamic changes. To address the above issues, we propose a novel information diffusion prediction model named Memory-enhanced Sequential Hypergraph Attention Networks (MS-HGAT). Specifically, to introduce the global dependencies of users, we not only take advantages of their friendships, but also consider their interactions at the cascade level. Furthermore, to dynamically capture user' preferences, we divide the diffusion hypergraph into several sub graphs based on timestamps, develop Hypergraph Attention Networks to learn the sequential hypergraphs, and connect them with gated fusion strategy. In addition, a memory-enhanced embedding lookup module is proposed to capture the learned user representations into the cascade-specific embedding space, thus highlighting the feature interaction within the cascade. The experimental results over four realistic datasets demonstrate that MS-HGAT significantly outperforms the state-of-the-art diffusion prediction models in both Hits@K and MAP@k metrics.
|
Ling Sun, Yuan Rao, Xiangbo Zhang, Yuqian Lan, Shuanghe Yu
| null | null | 2,022 |
aaai
|
DANets: Deep Abstract Networks for Tabular Data Classification and Regression
| null |
Tabular data are ubiquitous in real world applications. Although many commonly-used neural components (e.g., convolution) and extensible neural networks (e.g., ResNet) have been developed by the machine learning community, few of them were effective for tabular data and few designs were adequately tailored for tabular data structures. In this paper, we propose a novel and flexible neural component for tabular data, called Abstract Layer (AbstLay), which learns to explicitly group correlative input features and generate higher-level features for semantics abstraction. Also, we design a structure re-parameterization method to compress the trained AbstLay, thus reducing the computational complexity by a clear margin in the reference phase. A special basic block is built using AbstLays, and we construct a family of Deep Abstract Networks (DANets) for tabular data classification and regression by stacking such blocks. In DANets, a special shortcut path is introduced to fetch information from raw tabular features, assisting feature interactions across different levels. Comprehensive experiments on seven real-world tabular datasets show that our AbstLay and DANets are effective for tabular data classification and regression, and the computational complexity is superior to competitive methods. Besides, we evaluate the performance gains of DANet as it goes deep, verifying the extendibility of our method. Our code is available at https://github.com/WhatAShot/DANet.
|
Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z. Chen, Jian Wu
| null | null | 2,022 |
aaai
|
The Triangle-Densest-K-Subgraph Problem: Hardness, Lovász Extension, and Application to Document Summarization
| null |
We introduce the triangle-densest-K-subgraph problem (TDKS) for undirected graphs: given a size parameter K, compute a subset of K vertices that maximizes the number of induced triangles. The problem corresponds to the simplest generalization of the edge based densest-K-subgraph problem (DKS) to the case of higher-order network motifs. We prove that TDKS is NP-hard and is not amenable to efficient approximation, in the worst-case. By judiciously exploiting the structure of the problem, we propose a relaxation algorithm for the purpose of obtaining high-quality, sub-optimal solutions. Our approach utilizes the fact that the cost function of TDKS is submodular to construct a convex relaxation for the problem based on the Lovász extension for submodular functions. We demonstrate that our approaches attain state-of-the-art performance on real-world graphs and can offer substantially improved exploration of the optimal density-size curve compared to sophisticated approximation baselines for DKS. We use document summarization to showcase why TDKS is a useful generalization of DKS.
|
Aritra Konar, Nicholas D. Sidiropoulos
| null | null | 2,022 |
aaai
|
Unsupervised Anomaly Detection by Robust Density Estimation
| null |
Density estimation is a widely used method to perform unsupervised anomaly detection. By learning the density function, data points with relatively low densities are classified as anomalies. Unfortunately, the presence of anomalies in training data may significantly impact the density estimation process, thereby imposing significant challenges to the use of more sophisticated density estimation methods such as those based on deep neural networks. In this work, we propose RobustRealNVP, a deep density estimation framework that enhances the robustness of flow-based density estimation methods, enabling their application to unsupervised anomaly detection. RobustRealNVP differs from existing flow-based models from two perspectives. First, RobustRealNVP discards data points with low estimated densities during optimization to prevent them from corrupting the density estimation process. Furthermore, it imposes Lipschitz regularization to the flow-based model to enforce smoothness in the estimated density function. We demonstrate the robustness of our algorithm against anomalies in training data from both theoretical and empirical perspectives. The results show that our algorithm achieves competitive results as compared to state-of-the-art unsupervised anomaly detection methods.
|
Boyang Liu, Pang-Ning Tan, Jiayu Zhou
| null | null | 2,022 |
aaai
|
TAG: Learning Timed Automata from Logs
| null |
Event logs are often one of the main sources of information to understand the behavior of a system. While numerous approaches have extracted partial information from event logs, in this work, we aim at inferring a global model of a system from its event logs. We consider real-time systems, which can be modeled with Timed Automata: our approach is thus a Timed Automata learner. There is a handful of related work, however, they might require a lot of parameters or produce Timed Automata that either are undeterministic or lack precision. In contrast, our proposed approach, called TAG, requires only one parameter and learns a deterministic Timed Automaton having a good tradeoff between accuracy and complexity of the automata. This allows getting an interpretable and accurate global model of the real-time system considered. Our experiments compare our approach to the related work and demonstrate its merits.
|
Lénaïg Cornanguer, Christine Largouët, Laurence Rozé, Alexandre Termier
| null | null | 2,022 |
aaai
|
Unifying Knowledge Base Completion with PU Learning to Mitigate the Observation Bias
| null |
Methods for Knowledge Base Completion (KBC) reason about a knowledge base (KB) in order to derive new facts that should be included in the KB. This is challenging for two reasons. First, KBs only contain positive examples. This complicates model evaluation which needs both positive and negative examples. Second, those facts that were selected to be included in the knowledge base, are most likely not an i.i.d. sample of the true facts, due to the way knowledge bases are constructed. In this paper, we focus on rule-based approaches, which traditionally address the first challenge by making assumptions that enable identifying negative examples, which in turn makes it possible to compute a rule's confidence or precision. However, they largely ignore the second challenge, which means that their estimates of a rule's confidence can be biased. This paper approaches rule-based KBC through the lens of PU-learning, which can cope with both challenges. We make three contributions.: (1) We provide a unifying view that formalizes the relationship between multiple existing confidences measures based on (i) what assumption they make about and (ii) how their accuracy depends on the selection mechanism. (2) We introduce two new confidence measures that can mitigate known biases by using propensity scores that quantify how likely a fact is to be included the KB. (3) We show through theoretical and empirical analysis that taking the bias into account improves the confidence estimates, even when the propensity scores are not known exactly.
|
Jonas Schouterden, Jessa Bekker, Jesse Davis, Hendrik Blockeel
| null | null | 2,022 |
aaai
|
Two-Stage Octave Residual Network for End-to-End Image Compression
| null |
Octave Convolution (OctConv) is a generic convolutional unit that has already achieved good performances in many computer vision tasks. Recent studies also have shown the potential of applying the OctConv in end-to-end image compression. However, considering the characteristic of image compression task, current works of OctConv may limit the performance of the image compression network due to the loss of spatial information caused by the sampling operations of inter-frequency communication. Besides, the correlation between multi-frequency latents produced by OctConv is not utilized in current architectures. In this paper, to address these problems, we propose a novel Two-stage Octave Residual (ToRes) block which strips the sampling operation from OctConv to strengthen the capability of preserving useful information. Moreover, to capture the redundancy between the multi-frequency latents, a context transfer module is designed. The results show that both ToRes block and the incorporation of context transfer module help to improve the Rate-Distortion performance, and the combination of these two strategies makes our model achieve the state-of-the-art performance and outperform the latest compression standard Versatile Video Coding (VVC) in terms of both PSNR and MS-SSIM.
|
Fangdong Chen, Yumeng Xu, Li Wang
| null | null | 2,022 |
aaai
|
FPAdaMetric: False-Positive-Aware Adaptive Metric Learning for Session-Based Recommendation
| null |
Modern recommendation systems are mostly based on implicit feedback data which can be quite noisy due to false positives (FPs) caused by many reasons, such as misclicks or quick curiosity. Numerous recommendation algorithms based on collaborative filtering have leveraged post-click user behavior (e.g., skip) to identify false positives. They effectively involved these false positives in the model supervision as negative-like signals. Yet, false positives had not been considered in existing session-based recommendation systems (SBRs) although they provide just as deleterious effects. To resolve false positives in SBRs, we first introduce FP-Metric model which reformulates the objective of the session-based recommendation with FP constraints into metric learning regularization. In addition, we propose FP-AdaMetric that enhances the metric-learning regularization terms with an adaptive module that elaborately calculates the impact of FPs inside sequential patterns. We verify that FP-AdaMetric improves several session-based recommendation models' performances in terms of Hit Rate (HR), MRR, and NDCG on datasets from different domains including music, movie, and game. Furthermore, we show that the adaptive module plays a much more crucial role in FP-AdaMetric model than in other baselines.
|
Jongwon Jeong, Jeong Choi, Hyunsouk Cho, Sehee Chung
| null | null | 2,022 |
aaai
|
Parameterized Approximation Algorithms for K-center Clustering and Variants
| null |
k-center is one of the most popular clustering models. While it admits a simple 2-approximation in polynomial time in general metrics, the Euclidean version is NP-hard to approximate within a factor of 1.93, even in the plane, if one insists the dependence on k in the running time be polynomial. Without this restriction, a classic algorithm yields a 2^{O((klog k)/{epsilon})}dn-time (1+epsilon)-approximation for Euclidean k-center, where d is the dimension. In this work, we give a faster algorithm for small dimensions: roughly speaking an O^*(2^{O((1/epsilon)^{O(d)} k^{1-1/d} log k)})-time (1+epsilon)-approximation. In particular, the running time is roughly O^*(2^{O((1/epsilon)^{O(1)}sqrt{k}log k)}) in the plane. We complement our algorithmic result with a matching hardness lower bound. We also consider a well-studied generalization of k-center, called Non-uniform k-center (NUkC), where we allow different radii clusters. NUkC is NP-hard to approximate within any factor, even in the Euclidean case. We design a 2^{O(klog k)}n^2 time 3-approximation for NUkC, and a 2^{O((klog k)/epsilon)}dn time (1+epsilon)-approximation for Euclidean NUkC. The latter time bound matches the bound for k-center.
|
Sayan Bandyapadhyay, Zachary Friggstad, Ramin Mousavi
| null | null | 2,022 |
aaai
|
Heterogeneity-Aware Twitter Bot Detection with Relational Graph Transformers
| null |
Twitter bot detection has become an important and challenging task to combat misinformation and protect the integrity of the online discourse. State-of-the-art approaches generally leverage the topological structure of the Twittersphere, while they neglect the heterogeneity of relations and influence among users. In this paper, we propose a novel bot detection framework to alleviate this problem, which leverages the topological structure of user-formed heterogeneous graphs and models varying influence intensity between users. Specifically, we construct a heterogeneous information network with users as nodes and diversified relations as edges. We then propose relational graph transformers to model heterogeneous influence between users and learn node representations. Finally, we use semantic attention networks to aggregate messages across users and relations and conduct heterogeneity-aware Twitter bot detection. Extensive experiments demonstrate that our proposal outperforms state-of-the-art methods on a comprehensive Twitter bot detection benchmark. Additional studies also bear out the effectiveness of our proposed relational graph transformers, semantic attention networks and the graph-based approach in general.
|
Shangbin Feng, Zhaoxuan Tan, Rui Li, Minnan Luo
| null | null | 2,022 |
aaai
|
Subspace Differential Privacy
| null |
Many data applications have certain invariant constraints due to practical needs. Data curators who employ differential privacy need to respect such constraints on the sanitized data product as a primary utility requirement. Invariants challenge the formulation, implementation, and interpretation of privacy guarantees. We propose subspace differential privacy, to honestly characterize the dependence of the sanitized output on confidential aspects of the data. We discuss two design frameworks that convert well-known differentially private mechanisms, such as the Gaussian and the Laplace mechanisms, to subspace differentially private ones that respect the invariants specified by the curator. For linear queries, we discuss the design of near-optimal mechanisms that minimize the mean squared error. Subspace differentially private mechanisms rid the need for post-processing due to invariants, preserve transparency and statistical intelligibility of the output, and can be suitable for distributed implementation. We showcase the proposed mechanisms on the 2020 Census Disclosure Avoidance demonstration data, and a spatio-temporal dataset of mobile access point connections on a large university campus.
|
Jie Gao, Ruobin Gong, Fang-Yi Yu
| null | null | 2,022 |
aaai
|
Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations
| null |
Despite the remarkable performance of graph neural networks (GNNs) in semi-supervised learning, it is criticized for not making full use of unlabeled data and suffering from over-fitting. Recently, graph data augmentation, used to improve both accuracy and generalization of GNNs, has received considerable attentions. However, one fundamental question is how to evaluate the quality of graph augmentations in principle? In this paper, we propose two metrics, Consistency and Diversity, from the aspects of augmentation correctness and generalization. Moreover, we discover that existing augmentations fall into a dilemma between these two metrics. Can we find a graph augmentation satisfying both consistency and diversity? A well-informed answer can help us understand the mechanism behind graph augmentation and improve the performance of GNNs. To tackle this challenge, we analyze two representative semi-supervised learning algorithms: label propagation (LP) and consistency regularization (CR). We find that LP utilizes the prior knowledge of graphs to improve consistency and CR adopts variable augmentations to promote diversity. Based on this discovery, we treat neighbors as augmentations to capture the prior knowledge embodying homophily assumption, which promises a high consistency of augmentations. To further promote diversity, we randomly replace the immediate neighbors of each node with its remote neighbors. After that, a neighbor-constrained regularization is proposed to enforce the predictions of the augmented neighbors to be consistent with each other. Extensive experiments on five real-world graphs validate the superiority of our method in improving the accuracy and generalization of GNNs.
|
Deyu Bo, Binbin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, Jun Zhou
| null | null | 2,022 |
aaai
|
DDGCN: Dual Dynamic Graph Convolutional Networks for Rumor Detection on Social Media
| null |
Detecting rumors on social media has become particular important due to the rapid dissemination and adverse impacts on our lives. Though a set of rumor detection models have exploited the message propagation structural or temporal information, they seldom model them altogether to enjoy the best of both worlds. Moreover, the dynamics of knowledge information associated with the comments are not involved, either. To this end, we propose a novel Dual-Dynamic Graph Convolutional Networks, termed as DDGCN, which can model the dynamics of messages in propagation as well as the dynamics of the background knowledge from Knowledge graphs in one unified framework. Specifically, two Graph Convolutional Networks are adopted to capture the above two types of structure information at different time stages, which are then combined with a temporal fusing unit. This allows for learning the dynamic event representations in a more fine-grained manner, and incrementally aggregating them to capture the cascading effect for better rumor detection. Extensive experiments on two public real-world datasets demonstrate that our proposal yields significant improvements compared to strong baselines and can detect rumors at early stages.
|
Mengzhu Sun, Xi Zhang, Jiaqi Zheng, Guixiang Ma
| null | null | 2,022 |
aaai
|
GNN-Retro: Retrosynthetic Planning with Graph Neural Networks
| null |
Retrosynthetic planning plays an important role in the field of organic chemistry, which could generate a synthetic route for the target product. The synthetic route is a series of reactions which are started from the available molecules. The most challenging problem in the generation of the synthetic route is the large search space of the candidate reactions. Estimating the cost of candidate reactions has been proved effectively to prune the search space, which could achieve a higher accuracy with the same search iteration. And the estimation of one reaction is comprised of the estimations of all its reactants. So, how to estimate the cost of these reactants will directly influence the quality of results. To get a better performance, we propose a new framework, named GNN-Retro, for retrosynthetic planning problem by combining graph neural networks(GNN) and the latest search algorithm. The structure of GNN in our framework could incorporate the information of neighboring molecules, which will improve the estimation accuracy of our framework. The experiments on the USPTO dataset show that our framework could outperform the state-of-the-art methods with a large margin under the same settings.
|
Peng Han, Peilin Zhao, Chan Lu, Junzhou Huang, Jiaxiang Wu, Shuo Shang, Bin Yao, Xiangliang Zhang
| null | null | 2,022 |
aaai
|
CATN: Cross Attentive Tree-Aware Network for Multivariate Time Series Forecasting
| null |
Modeling complex hierarchical and grouped feature interaction in the multivariate time series data is indispensable to comprehend the data dynamics and predicting the future condition. The implicit feature interaction and high-dimensional data make multivariate forecasting very challenging. Many existing works did not put more emphasis on exploring explicit correlation among multiple time series data, and complicated models are designed to capture long- and short-range pattern with the aid of attention mechanism. In this work, we think that pre-defined graph or general learning method is difficult due to their irregular structure. Hence, we present CATN, an end-to-end model of Cross Attentive Tree-aware Network to jointly capture the inter-series correlation and intra-series temporal pattern. We first construct a tree structure to learn hierarchical and grouped correlation and design an embedding approach that can pass dynamic message to generalize implicit but interpretable cross features among multiple time series. Next in temporal aspect, we propose a multi-level dependency learning mechanism including global&local learning and cross attention mechanism, which can combine long-range dependencies, short-range dependencies as well as cross dependencies at different time steps. The extensive experiments on different datasets from real world show the effectiveness and robustness of the method we proposed when compared with existing state-of-the-art methods.
|
Hui He, Qi Zhang, Simeng Bai, Kun Yi, Zhendong Niu
| null | null | 2,022 |
aaai
|
Contact-Distil: Boosting Low Homologous Protein Contact Map Prediction by Self-Supervised Distillation
| null |
Accurate protein contact map prediction (PCMP) is essential for precise protein structure estimation and further biological studies. Recent works achieve significant performance on this task with high quality multiple sequence alignment (MSA). However, the PCMP accuracy drops dramatically while only poor MSA (e.g., absolute MSA count less than 10) is available. Therefore, in this paper, we propose the Contact-Distil to improve the low homologous PCMP accuracy through knowledge distillation on a self-supervised model. Particularly, two pre-trained transformers are exploited to learn the high quality and low quality MSA representation in parallel for the teacher and student model correspondingly. Besides, the co-evolution information is further extracted from pure sequence through a pretrained ESM-1b model, which provides auxiliary knowledge to improve student performance. Extensive experiments show Contact-Distil outperforms previous state-of-the-arts by large margins on CAMEO-L dataset for low homologous PCMP, i.e., around 13.3% and 9.5% improvements against Alphafold2 and MSA Transformer respectively when MSA count less than 10.
|
Qin Wang, Jiayang Chen, Yuzhe Zhou, Yu Li, Liangzhen Zheng, Sheng Wang, Zhen Li, Shuguang Cui
| null | null | 2,022 |
aaai
|
Fully Adaptive Framework: Neural Computerized Adaptive Testing for Online Education
| null |
Computerized Adaptive Testing (CAT) refers to an efficient and personalized test mode in online education, aiming to accurately measure student proficiency level on the required subject/domain. The key component of CAT is the "adaptive" question selection algorithm, which automatically selects the best suited question for student based on his/her current estimated proficiency, reducing test length. Existing algorithms rely on some manually designed and pre-fixed informativeness/uncertainty metrics of question for selections, which is labor-intensive and not sufficient for capturing complex relations between students and questions. In this paper, we propose a fully adaptive framework named Neural Computerized Adaptive Testing (NCAT), which formally redefines CAT as a reinforcement learning problem and directly learns selection algorithm from real-world data. Specifically, a bilevel optimization is defined and simplified under CAT's application scenarios to make the algorithm learnable. Furthermore, to address the CAT task effectively, we tackle it as an equivalent reinforcement learning problem and propose an attentive neural policy to model complex non-linear interactions. Extensive experiments on real-world datasets demonstrate the effectiveness and robustness of NCAT compared with several state-of-the-art methods.
|
Yan Zhuang, Qi Liu, Zhenya Huang, Zhi Li, Shuanghong Shen, Haiping Ma
| null | null | 2,022 |
aaai
|
NSGZero: Efficiently Learning Non-exploitable Policy in Large-Scale Network Security Games with Neural Monte Carlo Tree Search
| null |
How resources are deployed to secure critical targets in networks can be modelled by Network Security Games (NSGs). While recent advances in deep learning (DL) provide a powerful approach to dealing with large-scale NSGs, DL methods such as NSG-NFSP suffer from the problem of data inefficiency. Furthermore, due to centralized control, they cannot scale to scenarios with a large number of resources. In this paper, we propose a novel DL-based method, NSGZero, to learn a non-exploitable policy in NSGs. NSGZero improves data efficiency by performing planning with neural Monte Carlo Tree Search (MCTS). Our main contributions are threefold. First, we design deep neural networks (DNNs) to perform neural MCTS in NSGs. Second, we enable neural MCTS with decentralized control, making NSGZero applicable to NSGs with many resources. Third, we provide an efficient learning paradigm, to achieve joint training of the DNNs in NSGZero. Compared to state-of-the-art algorithms, our method achieves significantly better data efficiency and scalability.
|
Wanqi Xue, Bo An, Chai Kiat Yeo
| null | null | 2,022 |
aaai
|
Learning Temporal Point Processes for Efficient Retrieval of Continuous Time Event Sequences
| null |
Recent developments in predictive modeling using marked temporal point processes (MTPPs) have enabled an accurate characterization of several real-world applications involving continuous-time event sequences (CTESs). However, the retrieval problem of such sequences remains largely unaddressed in literature. To tackle this, we propose NEUROSEQRET which learns to retrieve and rank a relevant set of continuous-time event sequences for a given query sequence, from a large corpus of sequences. More specifically, NEUROSEQRET first applies a trainable unwarping function on the query sequence, which makes it comparable with corpus sequences, especially when a relevant query-corpus pair has individually different attributes. Next, it feeds the unwarped query sequence and the corpus sequence into MTPP guided neural relevance models. We develop two variants of the relevance model which offer a tradeoff between accuracy and efficiency. We also propose an optimization framework to learn binary sequence embeddings from the relevance scores, suitable for the locality-sensitive hashing leading to a significant speedup in returning top-K results for a given query sequence. Our experiments with several datasets show the significant accuracy boost of NEUROSEQRET beyond several baselines, as well as the efficacy of our hashing mechanism.
|
Vinayak Gupta, Srikanta Bedathur, Abir De
| null | null | 2,022 |
aaai
|
EtinyNet: Extremely Tiny Network for TinyML
| null |
There are many AI applications in high-income countries because their implementation depends on expensive GPU cards (~2000$) and reliable power supply (~200W). To deploy AI in resource-poor settings on cheaper (~20$) and low-power devices (
|
Kunran Xu, Yishi Li, Huawei Zhang, Rui Lai, Lin Gu
| null | null | 2,022 |
aaai
|
Constrained Prescriptive Trees via Column Generation
| null |
With the abundance of available data, many enterprises seek to implement data-driven prescriptive analytics to help them make informed decisions. These prescriptive policies need to satisfy operational constraints, and proactively eliminate rule conflicts, both of which are ubiquitous in practice. It is also desirable for them to be simple and interpretable, so they can be easily verified and implemented. Existing approaches from the literature center around constructing variants of prescriptive decision trees to generate interpretable policies. However, none of the existing methods is able to handle constraints. In this paper, we propose a scalable method that solves the constrained prescriptive policy generation problem. We introduce a novel path-based mixed-integer program (MIP) formulation which identifies a (near) optimal policy efficiently via column generation. The policy generated can be represented as a multiway-split tree which is more interpretable and informative than binary-split trees due to its shorter rules. We demonstrate the efficacy of our method with extensive computational experiments on both synthetic and real datasets.
|
Shivaram Subramanian, Wei Sun, Youssef Drissi, Markus Ettl
| null | null | 2,022 |
aaai
|
RepBin: Constraint-Based Graph Representation Learning for Metagenomic Binning
| null |
Mixed communities of organisms are found in many environments -- from the human gut to marine ecosystems -- and can have profound impact on human health and the environment. Metagenomics studies the genomic material of such communities through high-throughput sequencing that yields DNA subsequences for subsequent analysis. A fundamental problem in the standard workflow, called binning, is to discover clusters, of genomic subsequences, associated with the constituent organisms. Inherent noise in the subsequences, various biological constraints that need to be imposed on them and the skewed cluster size distribution exacerbate the difficulty of this unsupervised learning problem. In this paper, we present a new formulation using a graph where the nodes are subsequences and edges represent homophily information. In addition, we model biological constraints providing heterophilous signal about nodes that cannot be clustered together. We solve the binning problem by developing new algorithms for (i) graph representation learning that preserves both homophily relations and heterophily constraints (ii) constraint-based graph clustering method that addresses the problems of skewed cluster size distribution. Extensive experiments, on real and synthetic datasets, demonstrate that our approach, called RepBin, outperforms a wide variety of competing methods. Our constraint-based graph representation learning and clustering methods, that may be useful in other domains as well, advance the state-of-the-art in both metagenomics binning and graph representation learning.
|
Hansheng Xue, Vijini Mallawaarachchi, Yujia Zhang, Vaibhav Rajan, Yu Lin
| null | null | 2,022 |
aaai
|
STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction
| null |
High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.
|
Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, Hu Zhang
| null | null | 2,022 |
aaai
|
6DCNN with Roto-Translational Convolution Filters for Volumetric Data Processing
| null |
In this work, we introduce 6D Convolutional Neural Network (6DCNN) designed to tackle the problem of detecting relative positions and orientations of local patterns when processing three-dimensional volumetric data. 6DCNN also includes SE(3)-equivariant message-passing and nonlinear activation operations constructed in the Fourier space. Working in the Fourier space allows significantly reducing the computational complexity of our operations. We demonstrate the properties of the 6D convolution and its efficiency in the recognition of spatial patterns. We also assess the 6DCNN model on several datasets from the recent CASP protein structure prediction challenges. Here, 6DCNN improves over the baseline architecture and also outperforms the state of the art.
|
Dmitrii Zhemchuzhnikov, Ilia Igashov, Sergei Grudinin
| null | null | 2,022 |
aaai
|
DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning
| null |
Optimizing the combustion efficiency of a thermal power generating unit (TPGU) is a highly challenging and critical task in the energy industry. We develop a new data-driven AI system, namely DeepThermal, to optimize the combustion control strategy for TPGUs. At its core, is a new model-based offline reinforcement learning (RL) framework, called MORE, which leverages historical operational data of a TGPU to solve a highly complex constrained Markov decision process problem via purely offline training. In DeepThermal, we first learn a data-driven combustion process simulator from the offline dataset. The RL agent of MORE is then trained by combining real historical data as well as carefully filtered and processed simulation data through a novel restrictive exploration scheme. DeepThermal has been successfully deployed in four large coal-fired thermal power plants in China. Real-world experiments show that DeepThermal effectively improves the combustion efficiency of TPGUs. We also report the superior performance of MORE by comparing with the state-of-the-art algorithms on the standard offline RL benchmarks.
|
Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, Yu Zheng
| null | null | 2,022 |
aaai
|
Naming the Most Anomalous Cluster in Hilbert Space for Structures with Attribute Information
| null |
We consider datasets consisting of arbitrarily structured entities (e.g., molecules, sequences, graphs, etc) whose similarity can be assessed with a reproducing ker- nel (or a family thereof). These entities are assumed to additionally have a set of named attributes (e.g.: number_of_atoms, stock_price, etc). These attributes can be used to classify the structured entities in discrete sets (e.g., ‘number_of_atoms < 3’, ‘stock_price ≤ 100’, etc) and can effectively serve as Boolean predicates. Our goal is to use this side-information to provide explain- able kernel-based clustering. To this end, we propose a method which is able to find among all possible entity subsets that can be described as a conjunction of the available predicates either a) the optimal cluster within the Reproducing Kernel Hilbert Space, or b) the most anomalous subset within the same space. Our method works employs combinatorial optimisation via an adaptation of the Maximum-Mean-Discrepancy measure that captures the above intuition. Finally, we propose a criterion to select the optimal one out of a family of kernels in a way that preserves the available side-information. We provide several real world datasets that demonstrate the usefulness of our proposed method.
|
Janis Kalofolias, Jilles Vreeken
| null | null | 2,022 |
aaai
|
Deeply Tensor Compressed Transformers for End-to-End Object Detection
| null |
DEtection TRansformer (DETR) is a recently proposed method that streamlines the detection pipeline and achieves competitive results against two-stage detectors such as Faster-RCNN. The DETR models get rid of complex anchor generation and post-processing procedures thereby making the detection pipeline more intuitive. However, the numerous redundant parameters in transformers make the DETR models computation and storage intensive, which seriously hinder them to be deployed on the resources-constrained devices. In this paper, to obtain a compact end-to-end detection framework, we propose to deeply compress the transformers with low-rank tensor decomposition. The basic idea of the tensor-based compression is to represent the large-scale weight matrix in one network layer with a chain of low-order matrices. Furthermore, we propose a gated multi-head attention (GMHA) module to mitigate the accuracy drop of the tensor-compressed DETR models. In GMHA, each attention head has an independent gate to determine the passed attention value. The redundant attention information can be suppressed by adopting the normalized gates. Lastly, to obtain fully compressed DETR models, a low-bitwidth quantization technique is introduced for further reducing the model storage size. Based on the proposed methods, we can achieve significant parameter and model size reduction while maintaining high detection performance. We conduct extensive experiments on the COCO dataset to validate the effectiveness of our tensor-compressed (tensorized) DETR models. The experimental results show that we can attain 3.7 times full model compression with 482 times feed forward network (FFN) parameter reduction and only 0.6 points accuracy drop.
|
Peining Zhen, Ziyang Gao, Tianshu Hou, Yuan Cheng, Hai-Bao Chen
| null | null | 2,022 |
aaai
|
Hierarchical Multi-Supervision Multi-Interaction Graph Attention Network for Multi-Camera Pedestrian Trajectory Prediction
| null |
Pedestrian trajectory prediction has become an essential underpinning in various human-centric applications including but not limited to autonomous vehicles, intelligent surveillance system and social robotics. Previous research endeavors mainly focus on single camera trajectory prediction (SCTP), while the problem of multi-camera trajectory prediction (MCTP) is often overly simplified into predicting presence in the next camera. This paper addresses MCTP from a more realistic yet challenging perspective, by redefining the task as a joint estimation of both future destination and possible trajectory. As such, two major efforts are devoted to facilitating related research and advancing modeling techniques. Firstly, we establish a comprehensive multi-camera Scenes Pedestrian Trajectory Dataset (mcScenes), which is collected from a real-world multi-camera space combined with thorough human interaction annotations and carefully designed evaluation metrics. Secondly, we propose a novel joint prediction framework, namely HM3GAT, for the MCTP task by building a tailored network architecture. The core idea behind HM3GAT is a fusion of topological and trajectory information that are mutually beneficial to the prediction of each task, achieved by deeply customized networks. The proposed framework is comprehensively evaluated on the mcScenes dataset with multiple ablation experiments. Status-of-the-art SCTP models are adopted as baselines to further validate the advantages of our method in terms of both information fusion and technical improvement. The mcScenes dataset, the HM3GAT, and alternative models are made publicly available for interested readers.
|
Guoliang Zhao, Yuxun Zhou, Zhanbo Xu, Yadong Zhou, Jiang Wu
| null | null | 2,022 |
aaai
|
ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations
| null |
Single-cell RNA sequencing (scRNA-seq) provides high-throughput information about the genome-wide gene expression levels at the single-cell resolution, bringing a precise understanding on the transcriptome of individual cells. Unfortunately, the rapidly growing scRNA-seq data and the prevalence of dropout events pose substantial challenges for cell type annotation. Here, we propose a single-cell model-based deep graph embedding clustering (scTAG) method, which simultaneously learns cell–cell topology representations and identifies cell clusters based on deep graph convolutional network. scTAG integrates the zero-inflated negative binomial (ZINB) model into a topology adaptive graph convolutional autoencoder to learn the low-dimensional latent representation and adopts Kullback–Leibler (KL) divergence for the clustering tasks. By simultaneously optimizing the clustering loss, ZINB loss, and the cell graph reconstruction loss, scTAG jointly optimizes cluster label assignment and feature learning with the topological structures preserved in an end-to-end manner. Extensive experiments on 16 single-cell RNA-seq datasets from diverse yet representative single-cell sequencing platforms demonstrate the superiority of scTAG over various state-of-the-art clustering methods.
|
Zhuohan Yu, Yifu Lu, Yunhe Wang, Fan Tang, Ka-Chun Wong, Xiangtao Li
| null | null | 2,022 |
aaai
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.