title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
On the Max-Min Fair Stochastic Allocation of Indivisible Goods
| null |
We study the problem of fairly allocating a set of indivisible goods to risk-neutral agents in a stochastic setting. We propose an (approximation) algorithm to find a stochastic allocation that maximizes the minimum utility among the agents. The algorithm runs by repeatedly finding an (approximate) allocation to maximize the total virtual utility of the agents. This implies that the problem is solvable in polynomial time when the utilities are gross-substitutes (which is a subclass of submodular). When the utilities are submodular, we can find a (1 − 1/e)-approximate solution for the problem and this is best possible unless P=NP. We also extend the problem where a stochastic allocation must satisfy the (ex ante) envy-freeness. Under this condition, we demonstrate that the problem is NP-hard even when every agent has an additive utility with a matroid constraint (which is a subclass of gross-substitutes). Furthermore, we propose a polynomial-time algorithm for the setting with a restriction that the matroid constraint is common to all agents.
|
Yasushi Kawase, Hanna Sumita
| null | null | 2,020 |
aaai
|
Communication, Distortion, and Randomness in Metric Voting
| null |
In distortion-based analysis of social choice rules over metric spaces, voters and candidates are jointly embedded in a metric space. Voters rank candidates by non-decreasing distance. The mechanism, receiving only this ordinal (comparison) information, must select a candidate approximately minimizing the sum of distances from all voters to the chosen candidate. It is known that while the Copeland rule and related rules guarantee distortion at most 5, the distortion of many other standard voting rules, such as Plurality, Veto, or k-approval, grows unboundedly in the number n of candidates.An advantage of Plurality, Veto, or k-approval with small k is that they require less communication from the voters; all deterministic social choice rules known to achieve constant distortion require voters to transmit their complete rankings of all candidates. This motivates our study of the tradeoff between the distortion and the amount of communication in deterministic social choice rules.We show that any one-round deterministic voting mechanism in which each voter communicates only the candidates she ranks in a given set of k positions must have distortion at least 2n-k/k; we give a mechanism achieving an upper bound of O(n/k), which matches the lower bound up to a constant. For more general communication-bounded voting mechanisms, in which each voter communicates b bits of information about her ranking, we show a slightly weaker lower bound of Ω(n/b) on the distortion.For randomized mechanisms, Random Dictatorship achieves expected distortion strictly smaller than 3, almost matching a lower bound of 3 − 2/n for any randomized mechanism that only receives each voter's top choice. We close this gap, by giving a simple randomized social choice rule which only uses each voter's first choice, and achieves expected distortion 3 − 2/n.
|
David Kempe
| null | null | 2,020 |
aaai
|
A Multiarmed Bandit Based Incentive Mechanism for a Subset Selection of Customers for Demand Response in Smart Grids
| null |
Demand response is a crucial tool to maintain the stability of the smart grids. With the upcoming research trends in the area of electricity markets, it has become a possibility to design a dynamic pricing system, and consumers are made aware of what they are going to pay. Though the dynamic pricing system (pricing based on the total demand a distributor company is facing) seems to be one possible solution, the current dynamic pricing approaches are either too complex for a consumer to understand or are too naive leading to inefficiencies in the system (either consumer side or distributor side). Due to these limitations, the recent literature is focusing on the approach to provide incentives to the consumers to reduce the electricity, especially in peak hours. For each round, the goal is to select a subset of consumers to whom the distributor should offer incentives so as to minimize the loss which comprises of cost of buying the electricity from the market, uncertainties at consumer end, and cost incurred to the consumers to reduce the electricity which is a private information to the consumers. Due to the uncertainties in the loss function (arising from renewable energy resources as well as consumption needs), traditional auction theory-based incentives face manipulation challenges. Towards this, we propose a novel combinatorial multi-armed bandit (MAB) algorithm, which we refer to as namemab to learn the uncertainties along with an auction to elicit true costs incurred by the consumers. We prove that our mechanism is regret optimal and is incentive compatible. We further demonstrate efficacy of our algorithms via simulations.
|
Jain Shweta, Gujar Sujit
| null | null | 2,020 |
aaai
|
Repeated Multimarket Contact with Private Monitoring: A Belief-Free Approach
| null |
This paper studies repeated games where two players play multiple duopolistic games simultaneously (multimarket contact). A key assumption is that each player receives a noisy and private signal about the other's actions (private monitoring or observation errors). There has been no game-theoretic support that multimarket contact facilitates collusion or not, in the sense that more collusive equilibria in terms of per-market profits exist than those under a benchmark case of one market. An equilibrium candidate under the benchmark case is belief-free strategies. We are the first to construct a non-trivial class of strategies that exhibits the effect of multimarket contact from the perspectives of simplicity and mild punishment. Strategies must be simple because firms in a cartel must coordinate each other with no communication. Punishment must be mild to an extent that it does not hurt even the minimum required profits in the cartel. We thus focus on two-state automaton strategies such that the players are cooperative in at least one market even when he or she punishes a traitor. Furthermore, we identify an additional condition (partial indifference), under which the collusive equilibrium yields the optimal payoff.
|
Atsushi Iwasaki, Tadashi Sekiguchi, Shun Yamamoto, Makoto Yokoo
| null | null | 2,020 |
aaai
|
Strategyproof Mechanisms for Friends and Enemies Games
| null |
We investigate strategyproof mechanisms for Friends and Enemies Games, a subclass of Hedonic Games in which every agent classifies any other one as a friend or as an enemy. In this setting, we consider the two classical scenarios proposed in the literature, called Friends Appreciation (FA) and Enemies Aversion (EA). Roughly speaking, in the former each agent gives priority to the number of friends in her coalition, while in the latter to the number of enemies.We provide strategyproof mechanisms for both settings. More precisely, for FA we first present a deterministic n-approximation mechanism, and then show that a much better result can be accomplished by resorting to randomization. Namely, we provide a randomized mechanism whose expected approximation ratio is 4, and arbitrarily close to 4 with high probability. For EA, we give a simple (1+√2)n-approximation mechanism, and show that its performance is asymptotically tight by proving that it is NP-hard to approximate the optimal solution within O(n1−ɛ) for any fixed ɛ > 0.Finally, we show how to extend our results in the presence of neutrals, i.e., when agents can also be indifferent about other agents, and we discuss anonymity.
|
Michele Flammini, Bojana Kodric, Giovanna Varricchio
| null | null | 2,020 |
aaai
|
Preventing Arbitrage from Collusion When Eliciting Probabilities
| null |
We consider the design of mechanisms to elicit probabilistic forecasts when agents are strategic and may collude with one another. Chun and Shachter (2011) have shown that when agents may form coalitions, many known mechanisms for elicitation permit arbitrage, allowing the coalition members to guarantee themselves higher payments by misreporting their beliefs. We consider two approaches to protect against colluding agents. First, we present a novel strictly proper mechanism that does not admit arbitrage provided that the reports of the agents are bounded away from 0 and 1, a common assumption in many settings. Second, we discover strictly arbitrage-free mechanisms that satisfy an intermediate guarantee between weak and strict properness.
|
Rupert Freeman, David M. Pennock, Dominik Peters, Bo Waggoner
| null | null | 2,020 |
aaai
|
Strategy-Proof and Non-Wasteful Multi-Unit Auction via Social Network
| null |
Auctions via social network, pioneered by Li et al. (2017), have been attracting considerable attention in the literature of mechanism design for auctions. However, no known mechanism has satisfied strategy-proofness, non-deficit, non-wastefulness, and individual rationality for the multi-unit unit-demand auction, except for some naïve ones. In this paper, we first propose a mechanism that satisfies all the above properties. We then make a comprehensive comparison with two naïve mechanisms, showing that the proposed mechanism dominates them in social surplus, seller's revenue, and incentive of buyers for truth-telling. We also analyze the characteristics of the social surplus and the revenue achieved by the proposed mechanism, including the constant approximability of the worst-case efficiency loss and the complexity of optimizing revenue from the seller's perspective.
|
Takehiro Kawasaki, Nathanael Barrot, Seiji Takanashi, Taiki Todo, Makoto Yokoo
| null | null | 2,020 |
aaai
|
Model and Reinforcement Learning for Markov Games with Risk Preferences
| null |
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic “risk” from both stochastic state transitions (inherent to the game) and randomized mixed strategies (due to all other players). An appropriate risk-aware equilibrium concept is proposed and the existence of such equilibria is demonstrated in stationary strategies by an application of Kakutani's fixed point theorem. We further propose a simulation-based Q-learning type algorithm for risk-aware equilibrium computation. This algorithm works with a special form of minimax risk measures which can naturally be written as saddle-point stochastic optimization problems, and covers many widely investigated risk measures. Finally, the almost sure convergence of this simulation-based algorithm to an equilibrium is demonstrated under some mild conditions. Our numerical experiments on a two player queuing game validate the properties of our model and algorithm, and demonstrate their worth and applicability in real life competitive decision-making.
|
Wenjie Huang, Viet Hai Pham, William Benjamin Haskell
| null | null | 2,020 |
aaai
|
The Complexity of Computing Maximin Share Allocations on Graphs
| null |
Maximin share is a compelling notion of fairness proposed by Buddish as a relaxation of more traditional concepts for fair allocations of indivisible goods. In this paper we consider this notion within a setting where bundles of goods must induce connected subsets over an underlying graph. This setting received much attention in earlier literature, and our study answers a number of questions that were left open. First, we show that computing maximin share allocations is FΔ2P-complete, even when focusing on consistent scenarios, that is, where such allocations are a-priori guaranteed to exist. Moreover, the problem remains intractable if all agents have the same type, i.e., have the same utility functions, and if either the values returned by the utility functions are polynomially bounded, or the underlying graphs have a low degree of cyclicity (more precisely, have bounded treewidth). However, if these conditions hold all together, then computing maximin share allocations (or checking that none exists) becomes tractable. The result is established via machineries based on logspace alternating machines that use partial representations of connected bundles, which are interesting in their own.
|
Gianluigi Greco, Francesco Scarcello
| null | null | 2,020 |
aaai
|
VCG under Sybil (False-Name) Attacks – A Bayesian Analysis
| null |
VCG is a classical combinatorial auction that maximizes social welfare. However, while the standard single-item Vickrey auction is false-name-proof, a major failure of multi-item VCG is its vulnerability to false-name attacks. This occurs already in the natural bare minimum model in which there are two identical items and bidders are single-minded. Previous solutions to this challenge focused on developing alternative mechanisms that compromise social welfare. We re-visit the VCG auction vulnerability and consider the bidder behavior in Bayesian settings. In service of that we introduce a novel notion, termed the granularity threshold, that characterizes VCG Bayesian resilience to false-name attacks as a function of the bidder type distribution. Using this notion we show a large class of cases in which VCG indeed obtains Bayesian resilience for the two-item single-minded setting.
|
Yotam Gafni, Ron Lavi, Moshe Tennenholtz
| null | null | 2,020 |
aaai
|
Strongly Budget Balanced Auctions for Multi-Sided Markets
| null |
In two-sided markets, Myerson and Satterthwaite's impossibility theorem states that one can not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite's result by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee (1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has no surplus — it is strongly-budget-balanced. They consider two categories of agents — buyers and sellers, where each trade set is composed of a single buyer and a single seller.The practical complexity of applications such as supply chain require one to look beyond two-sided markets. Common requirements are for: buyers trading with multiple sellers of different or identical items, buyers trading with sellers through transporters and mediators, and sellers trading with multiple buyers. We attempt to address these settings.We generalize Segal-Halevi et al. (2016)'s strongly-budget-balanced double-sided auction setting to a multilateral market where each trade set is composed of any number of agent categories. Our generalization refines the notion of competition in multi-sided auctions by introducing the concepts of external competition and trade reduction. We also show an obviously-truthful implementation of our auction using multiple ascending prices.Full version, including omitted proofs and simulation experiments, is available at https://arxiv.org/abs/1911.08094.
|
Rica Gonen, Erel Segal-Halevi
| null | null | 2,020 |
aaai
|
Fair Division Through Information Withholding
| null |
Envy-freeness up to one good (EF1) is a well-studied fairness notion for indivisible goods that addresses pairwise envy by the removal of at most one good. In the worst case, each pair of agents might require the (hypothetical) removal of a different good, resulting in a weak aggregate guarantee. We study allocations that are nearly envy-free in aggregate, and define a novel fairness notion based on information withholding. Under this notion, an agent can withhold (or hide) some of the goods in its bundle and reveal the remaining goods to the other agents. We observe that in practice, envy-freeness can be achieved by withholding only a small number of goods overall. We show that finding allocations that withhold an optimal number of goods is computationally hard even for highly restricted classes of valuations. In contrast to the worst-case results, our experiments on synthetic and real-world preference data show that existing algorithms for finding EF1 allocations withhold a close-to-optimal amount of information.
|
Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, Hejun Wang, Lirong Xia
| null | null | 2,020 |
aaai
|
Bidding in Smart Grid PDAs: Theory, Analysis and Strategy
| null |
Periodic Double Auctions (PDAs) are commonly used in the real world for trading, e.g. in stock markets to determine stock opening prices, and energy markets to trade energy in order to balance net demand in smart grids, involving trillions of dollars in the process. A bidder, participating in such PDAs, has to plan for bids in the current auction as well as for the future auctions, which highlights the necessity of good bidding strategies. In this paper, we perform an equilibrium analysis of single unit single-shot double auctions with a certain clearing price and payment rule, which we refer to as ACPR, and find it intractable to analyze as number of participating agents increase. We further derive the best response for a bidder with complete information in a single-shot double auction with ACPR. Leveraging the theory developed for single-shot double auction and taking the PowerTAC wholesale market PDA as our testbed, we proceed by modeling the PDA of PowerTAC as an MDP. We propose a novel bidding strategy, namely MDPLCPBS. We empirically show that MDPLCPBS follows the equilibrium strategy for double auctions that we previously analyze. In addition, we benchmark our strategy against the baseline and the state-of-the-art bidding strategies for the PowerTAC wholesale market PDAs, and show that MDPLCPBS outperforms most of them consistently.
|
Susobhan Ghosh, Sujit Gujar, Praveen Paruchuri, Easwar Subramanian, Sanjay Bhat
| null | null | 2,020 |
aaai
|
Favorite-Candidate Voting for Eliminating the Least Popular Candidate in a Metric Space
| null |
We study single-candidate voting embedded in a metric space, where both voters and candidates are points in the space, and the distances between voters and candidates specify the voters' preferences over candidates. In the voting, each voter is asked to submit her favorite candidate. Given the collection of favorite candidates, a mechanism for eliminating the least popular candidate finds a committee containing all candidates but the one to be eliminated.Each committee is associated with a social value that is the sum of the costs (utilities) it imposes (provides) to the voters. We design mechanisms for finding a committee to optimize the social value. We measure the quality of a mechanism by its distortion, defined as the worst-case ratio between the social value of the committee found by the mechanism and the optimal one. We establish new upper and lower bounds on the distortion of mechanisms in this single-candidate voting, for both general metrics and well-motivated special cases.
|
Xujin Chen, Minming Li, Chenhao Wang
| null | null | 2,020 |
aaai
|
Facility Location Problem with Capacity Constraints: Algorithmic and Mechanism Design Perspectives
| null |
We consider the facility location problem in the one-dimensional setting where each facility can serve a limited number of agents from the algorithmic and mechanism design perspectives. From the algorithmic perspective, we prove that the corresponding optimization problem, where the goal is to locate facilities to minimize either the total cost to all agents or the maximum cost of any agent is NP-hard. However, we show that the problem is fixed-parameter tractable, and the optimal solution can be computed in polynomial time whenever the number of facilities is bounded, or when all facilities have identical capacities. We then consider the problem from a mechanism design perspective where the agents are strategic and need not reveal their true locations. We show that several natural mechanisms studied in the uncapacitated setting either lose strategyproofness or a bound on the solution quality %on the returned solution for the total or maximum cost objective. We then propose new mechanisms that are strategyproof and achieve approximation guarantees that almost match the lower bounds.
|
Haris Aziz, Hau Chan, Barton Lee, Bo Li, Toby Walsh
| null | null | 2,020 |
aaai
|
Multiple Birds with One Stone: Beating 1/2 for EFX and GMMS via Envy Cycle Elimination
| null |
Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most of these concepts, great attention has been paid to establishing approximation guarantees. In this work, we propose a simple algorithm that is universally fair in the sense that it returns allocations that have good approximation guarantees with respect to four such fairness notions at once. In particular, this is the first algorithm achieving a (φ−1)-approximation of envy-freeness up to any good (EFX) and a 2/φ+2 -approximation of groupwise maximin share fairness (GMMS), where φ is the golden ratio. The best known approximation factor, in polynomial time, for either one of these fairness notions prior to this work was 1/2. Moreover, the returned allocation achieves envy-freeness up to one good (EF1) and a 2/3-approximation of pairwise maximin share fairness (PMMS). While EFX is our primary focus, we also exhibit how to fine-tune our algorithm and improve further the guarantees for GMMS or PMMS.Finally, we show that GMMS—and thus PMMS and EFX—allocations always exist when the number of goods does not exceed the number of agents by more than two.
|
Georgios Amanatidis, Evangelos Markakis, Apostolos Ntokos
| null | null | 2,020 |
aaai
|
All-Pay Bidding Games on Graphs
| null |
In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve.
|
Guy Avni, Rasmus Ibsen-Jensen, Josef Tkadlec
| null | null | 2,020 |
aaai
|
Beyond Pairwise Comparisons in Social Choice: A Setwise Kemeny Aggregation Problem
| null |
In this paper, we advocate the use of setwise contests for aggregating a set of input rankings into an output ranking. We propose a generalization of the Kemeny rule where one minimizes the number of k-wise disagreements instead of pairwise disagreements (one counts 1 disagreement each time the top choice in a subset of alternatives of cardinality at most k differs between an input ranking and the output ranking). After an algorithmic study of this k-wise Kemeny aggregation problem, we introduce a k-wise counterpart of the majority graph. It reveals useful to divide the aggregation problem into several sub-problems. We conclude with numerical tests.
|
Hugo Gilbert, Tom Portoleau, Olivier Spanjaard
| null | null | 2,020 |
aaai
|
Fair Division of Mixed Divisible and Indivisible Goods
| null |
We study the problem of fair division when the resources contain both divisible and indivisible goods. Classic fairness notions such as envy-freeness (EF) and envy-freeness up to one good (EF1) cannot be directly applied to the mixed goods setting. In this work, we propose a new fairness notion envy-freeness for mixed goods (EFM), which is a direct generalization of both EF and EF1 to the mixed goods setting. We prove that an EFM allocation always exists for any number of agents. We also propose efficient algorithms to compute an EFM allocation for two agents and for n agents with piecewise linear valuations over the divisible goods. Finally, we relax the envy-free requirement, instead asking for ϵ-envy-freeness for mixed goods (ϵ-EFM), and present an algorithm that finds an ϵ-EFM allocation in time polynomial in the number of agents, the number of indivisible goods, and 1/ϵ.
|
Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, Xinhang Lu
| null | null | 2,020 |
aaai
|
Individual-Based Stability in Hedonic Diversity Games
| null |
In hedonic diversity games (HDGs), recently introduced by Bredereck, Elkind, and Igarashi (2019), each agent belongs to one of two classes (men and women, vegetarians and meat-eaters, junior and senior researchers), and agents' preferences over coalitions are determined by the fraction of agents from their class in each coalition. Bredereck et al. show that while an HDG may fail to have a Nash stable (NS) or a core stable (CS) outcome, every HDG in which all agents have single-peaked preferences admits an individually stable (IS) outcome, which can be computed in polynomial time. In this work, we extend and strengthen these results in several ways. First, we establish that the problem of deciding if an HDG has an NS outcome is NP-complete, but admits an XP algorithm with respect to the size of the smaller class. Second, we show that, in fact, all HDGs admit IS outcomes that can be computed in polynomial time; our algorithm for finding such outcomes is considerably simpler than that of Bredereck et al. We also consider two ways of generalizing the model of Bredereck et al. to k ≥ 2 classes. We complement our theoretical results by empirical analysis, comparing the IS outcomes found by our algorithm, the algorithm of Bredereck et al. and a natural better-response dynamics.
|
Niclas Boehmer, Edith Elkind
| null | null | 2,020 |
aaai
|
Contiguous Cake Cutting: Hardness Results and Approximation Algorithms
| null |
We study the fair allocation of a cake, which serves as a metaphor for a divisible resource, under the requirement that each agent should receive a contiguous piece of the cake. While it is known that no finite envy-free algorithm exists in this setting, we exhibit efficient algorithms that produce allocations with low envy among the agents. We then establish NP-hardness results for various decision problems on the existence of envy-free allocations, such as when we fix the ordering of the agents or constrain the positions of certain cuts. In addition, we consider a discretized setting where indivisible items lie on a line and show a number of hardness results strengthening those from prior work.
|
Paul W. Goldberg, Alexandros Hollender, Warut Suksompong
| null | null | 2,020 |
aaai
|
Adapting Stable Matchings to Evolving Preferences
| null |
Adaptivity to changing environments and constraints is key to success in modern society. We address this by proposing “incrementalized versions” of Stable Marriage and Stable Roommates. That is, we try to answer the following question: for both problems, what is the computational cost of adapting an existing stable matching after some of the preferences of the agents have changed. While doing so, we also model the constraint that the new stable matching shall be not too different from the old one. After formalizing these incremental versions, we provide a fairly comprehensive picture of the computational complexity landscape of Incremental Stable Marriage and Incremental Stable Roommates. To this end, we exploit the parameters “degree of change” both in the input (difference between old and new preference profile) and in the output (difference between old and new stable matching). We obtain both hardness and tractability results, in particular showing a fixed-parameter tractability result with respect to the parameter “distance between old and new stable matching”.
|
Robert Bredereck, Jiehua Chen, Dušan Knop, Junjie Luo, Rolf Niedermeier
| null | null | 2,020 |
aaai
|
Refining Tournament Solutions via Margin of Victory
| null |
Tournament solutions are frequently used to select winners from a set of alternatives based on pairwise comparisons between alternatives. Prior work has shown that several common tournament solutions tend to select large winner sets and therefore have low discriminative power. In this paper, we propose a general framework for refining tournament solutions. In order to distinguish between winning alternatives, and also between non-winning ones, we introduce the notion of margin of victory (MoV) for tournament solutions. MoV is a robustness measure for individual alternatives: For winners, the MoV captures the distance from dropping out of the winner set, and for non-winners, the distance from entering the set. In each case, distance is measured in terms of which pairwise comparisons would have to be reversed in order to achieve the desired outcome. For common tournament solutions, including the top cycle, the uncovered set, and the Banks set, we determine the complexity of computing the MoV and provide worst-case bounds on the MoV for both winners and non-winners. Our results can also be viewed from the perspective of bribery and manipulation.
|
Markus Brill, Ulrike Schmidt-Kraepelin, Warut Suksompong
| null | null | 2,020 |
aaai
|
Electing Successive Committees: Complexity and Algorithms
| null |
We introduce successive committees elections. The point is that our new model additionally takes into account that “committee members” shall have a short term of office possibly over a consecutive time period (e.g., to limit the influence of elitist power cartels or to keep the social costs of overloading committees as small as possible) but at the same time overly frequent elections are to be avoided (e.g., for the sake of long-term planning). Thus, given voter preferences over a set of candidates, a desired committee size, a number of committees to be elected, and an upper bound on the number of committees that each candidate can participate in, the goal is to find a “best possible” series of committees representing the electorate. We show a sharp complexity dichotomy between computing series of committees of size at most two (mostly in polynomial time) and of committees of size at least three (mostly NP-hard). Depending on the voting rule, however, even for larger committee sizes we can spot some tractable cases.
|
Robert Bredereck, Andrzej Kaczmarczyk, Rolf Niedermeier
| null | null | 2,020 |
aaai
|
Approval-Based Apportionment
| null |
In the apportionment problem, a fixed number of seats must be distributed among parties in proportion to the number of voters supporting each party. We study a generalization of this setting, in which voters cast approval ballots over parties, such that each voter can support multiple parties. This approval-based apportionment setting generalizes traditional apportionment and is a natural restriction of approval-based multiwinner elections, where approval ballots range over individual candidates. Using techniques from both apportionment and multiwinner elections, we are able to provide representation guarantees that are currently out of reach in the general setting of multiwinner elections: First, we show that core-stable committees are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that extended justified representation is compatible with committee monotonicity.
|
Markus Brill, Paul Gölz, Dominik Peters, Ulrike Schmidt-Kraepelin, Kai Wilker
| null | null | 2,020 |
aaai
|
Parameterized Algorithms for Finding a Collective Set of Items
| null |
We extend the work of Skowron et al. (AIJ, 2016) by considering the parameterized complexity of the following problem. We are given a set of items and a set of agents, where each agent assigns an integer utility value to each item. The goal is to find a set of k items that these agents would collectively use. For each such collective set of items, each agent provides a score that can be described using an OWA (ordered weighted average) operator and we seek a set with the highest total score. We focus on the parameterization by the number of agents and we find numerous fixed-parameter tractability results (however, we also find some W[1]-hardness results). It turns out that most of our algorithms even apply to the setting where each agent has an integer weight.
|
Robert Bredereck, Piotr Faliszewski, Andrzej Kaczmarczyk, Dušan Knop, Rolf Niedermeier
| null | null | 2,020 |
aaai
|
Persuading Voters: It’s Easy to Whisper, It’s Hard to Speak Loud
| null |
We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the sender's preferred candidate is elected. We resort to the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and focus on, as illustrative examples, k-voting rules and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a k-voting rule and plurality voting. In establishing these results, we provide two contributions applicable to general settings beyond voting. Specifically, we extend a well-known result by Dughmi and Xu (2017) to more general settings and prove that, when the sender's utility function is anonymous, computing an optimal signaling scheme is fixed-parameter tractable in the number of receivers' actions. In the public signaling case, we show that the sender's optimal expected return cannot be approximated to within any factor under a k-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous.
|
Matteo Castiglioni, Andrea Celli, Nicola Gatti
| null | null | 2,020 |
aaai
|
Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms
| null |
We develop a powerful approach that makes modern SAT solving techniques available as a tool to support the axiomatic analysis of economic matching mechanisms. Our central result is a preservation theorem, establishing sufficient conditions under which the possibility of designing a matching mechanism meeting certain axiomatic requirements for a given number of agents carries over to all scenarios with strictly fewer agents. This allows us to obtain general results about matching by verifying claims for specific instances using a SAT solver. We use our approach to automatically derive elementary proofs for two new impossibility theorems: (i) a strong form of Roth's classical result regarding the impossibility of designing mechanisms that are both stable and strategyproof and (ii) a result establishing the impossibility of guaranteeing stability while also respecting a basic notion of cross-group fairness (so-called gender-indifference).
|
Ulle Endriss
| null | null | 2,020 |
aaai
|
Iterative Delegations in Liquid Democracy with Restricted Preferences
| null |
Liquid democracy is a collective decision making paradigm which lies between direct and representative democracy. One main feature of liquid democracy is that voters can delegate their votes in a transitive manner so that: A delegates to B and B delegates to C leads to A delegates to C. Unfortunately, because voters' preferences over delegates may be conflicting, this process may not converge. There may not even exist a stable state (also called equilibrium). In this paper, we investigate the stability of the delegation process in liquid democracy when voters have restricted types of preference on the agent representing them (e.g., single-peaked preferences). We show that various natural structures of preference guarantee the existence of an equilibrium and we obtain both tractability and hardness results for the problem of computing several equilibria with some desirable properties.
|
Bruno Escoffier, Hugo Gilbert, Adèle Pass-Lanneau
| null | null | 2,020 |
aaai
|
Coarse Correlation in Extensive-Form Games
| null |
Coarse correlation models strategic interactions of rational agents complemented by a correlation device which is a mediator that can recommend behavior but not enforce it. Despite being a classical concept in the theory of normal-form games since 1978, not much is known about the merits of coarse correlation in extensive-form settings. In this paper, we consider two instantiations of the idea of coarse correlation in extensive-form games: normal-form coarse-correlated equilibrium (NFCCE), already defined in the literature, and extensive-form coarse-correlated equilibrium (EFCCE), a new solution concept that we introduce. We show that EFCCEs are a subset of NFCCEs and a superset of the related extensive-form correlated equilibria. We also show that, in n-player extensive-form games, social-welfare-maximizing EFCCEs and NFCCEs are bilinear saddle points, and give new efficient algorithms for the special case of two-player games with no chance moves. Experimentally, our proposed algorithm for NFCCE is two to four orders of magnitude faster than the prior state of the art.
|
Gabriele Farina, Tommaso Bianchi, Tuomas Sandholm
| null | null | 2,020 |
aaai
|
The Impact of Selfishness in Hypergraph Hedonic Games
| null |
We consider a class of coalition formation games that can be succinctly represented by means of hypergraphs and properly generalizes symmetric additively separable hedonic games. More precisely, an instance of hypegraph hedonic game consists of a weighted hypergraph, in which each agent is associated to a distinct node and her utility for being in a given coalition is equal to the sum of the weights of all the hyperedges included in the coalition. We study the performance of stable outcomes in such games, investigating the degradation of their social welfare under two different metrics, the k-Nash price of anarchy and k-core price of anarchy, where k is the maximum size of a deviating coalition. Such prices are defined as the worst-case ratio between the optimal social welfare and the social welfare obtained when the agents reach an outcome satisfying the respective stability criteria. We provide asymptotically tight upper and lower bounds on the values of these metrics for several classes of hypergraph hedonic games, parametrized according to the integer k, the hypergraph arity r and the number of agents n. Furthermore, we show that the problem of computing the exact value of such prices for a given instance is computationally hard, even in case of non-negative hyperedge weights.
|
Alessandro Aloisio, Michele Flammini, Cosimo Vinci
| null | null | 2,020 |
aaai
|
Manipulating Districts to Win Elections: Fine-Grained Complexity
| null |
Gerrymandering is a practice of manipulating district boundaries and locations in order to achieve a political advantage for a particular party. Lewenberg, Lev, and Rosenschein [AAMAS 2017] initiated the algorithmic study of a geographically-based manipulation problem, where voters must vote at the ballot box closest to them. In this variant of gerrymandering, for a given set of possible locations of ballot boxes and known political preferences of n voters, the task is to identify locations for k boxes out of m possible locations to guarantee victory of a certain party in at least ℓ districts. Here integers k and ℓ are some selected parameter.It is known that the problem is NP-complete already for 4 political parties and prior to our work only heuristic algorithms for this problem were developed. We initiate the rigorous study of the gerrymandering problem from the perspectives of parameterized and fine-grained complexity and provide asymptotically matching lower and upper bounds on its computational complexity. We prove that the problem is W[1]-hard parameterized by k + n and that it does not admit an f(n,k) · mo(√k) algorithm for any function f of k and n only, unless the Exponential Time Hypothesis (ETH) fails. Our lower bounds hold already for 2 parties. On the other hand, we give an algorithm that solves the problem for a constant number of parties in time (m+n)O(√k).
|
Eduard Eiben, Fedor Fomin, Fahad Panolan, Kirill Simonov
| null | null | 2,020 |
aaai
|
Private Bayesian Persuasion with Sequential Games
| null |
We study an information-structure design problem (a.k.a. a persuasion problem) with a single sender and multiple receivers with actions of a priori unknown types, independently drawn from action-specific marginal probability distributions. As in the standard Bayesian persuasion model, the sender has access to additional information regarding the action types, which she can exploit when committing to a (noisy) signaling scheme through which she sends a private signal to each receiver. The novelty of our model is in considering the much more expressive case in which the receivers interact in a sequential game with imperfect information, with utilities depending on the game outcome and the realized action types. After formalizing the notions of ex ante and ex interim persuasiveness (which differ by the time at which the receivers commit to following the sender's signaling scheme), we investigate the continuous optimization problem of computing a signaling scheme which maximizes the sender's expected revenue. We show that computing an optimal ex ante persuasive signaling scheme is NP-hard when there are three or more receivers. Instead, in contrast with previous hardness results for ex interim persuasion, we show that, for games with two receivers, an optimal ex ante persuasive signaling scheme can be computed in polynomial time thanks to the novel algorithm we propose, based on the ellipsoid method.
|
Andrea Celli, Stefano Coniglio, Nicola Gatti
| null | null | 2,020 |
aaai
|
Designing Committees for Mitigating Biases
| null |
It is widely observed that individuals prefer to interact with others who are more similar to them (this phenomenon is termed homophily). This similarity manifests itself in various ways such as beliefs, values and education. Thus, it should not come as a surprise that when people make hiring choices, for example, their similarity to the candidate plays a role in their choice. In this paper, we suggest that putting the decision in the hands of a committee instead of a single person can reduce this bias.We study a novel model of voting in which a committee of experts is constructed to reduce the biases of its members. We first present voting rules that optimally reduce the biases of a given committee. Our main results include the design of committees, for several settings, that are able to reach a nearly optimal (unbiased) choice. We also provide a thorough analysis of the trade-offs between the committee size and the obtained error. Our model is inherently different from the well-studied models of voting that focus on aggregation of preferences or on aggregation of information due to the introduction of similarity biases.
|
Michal Feldman, Yishay Mansour, Noam Nisan, Sigal Oren, Moshe Tennenholtz
| null | null | 2,020 |
aaai
|
Local Search with Dynamic-Threshold Configuration Checking and Incremental Neighborhood Updating for Maximum k-plex Problem
| null |
The Maximum k-plex Problem is an important combinatorial optimization problem with increasingly wide applications. In this paper, we propose a novel strategy, named Dynamic-threshold Configuration Checking (DCC), to reduce the cycling problem of local search. Due to the complicated neighborhood relations, all the previous local search algorithms for this problem spend a large amount of time in identifying feasible neighbors in each step. To further improve the performance on dense and challenging instances, we propose Double-attributes Incremental Neighborhood Updating (DINU) scheme which reduces the worst-case time complexity per iteration from O(|V|⋅ΔG) to O(k · Δ‾G). Based on DCC strategy and DINU scheme, we develop a local search algorithm named DCCplex. According to the experiment result, DCCplex shows promising result on DIMACS and BHOSLIB benchmark as well as real-world massive graphs. Especially, DCCplex updates the lower bound of the maximum k-plex for most dense and challenging instances.
|
Peilin Chen, Hai Wan, Shaowei Cai, Jia Li, Haicheng Chen
| null | null | 2,020 |
aaai
|
Multiagent Evaluation Mechanisms
| null |
We consider settings where agents are evaluated based on observed features, and assume they seek to achieve feature values that bring about good evaluations. Our goal is to craft evaluation mechanisms that incentivize the agents to invest effort in desirable actions; a notable application is the design of course grading schemes. Previous work has studied this problem in the case of a single agent. By contrast, we investigate the general, multi-agent model, and provide a complete characterization of its computational complexity.
|
Tal Alon, Magdalen Dobson, Ariel Procaccia, Inbal Talgam-Cohen, Jamie Tucker-Foltz
| null | null | 2,020 |
aaai
|
Peeking Behind the Ordinal Curtain: Improving Distortion via Cardinal Queries
| null |
The notion of distortion was introduced by Procaccia and Rosenschein (2006) to quantify the inefficiency of using only ordinal information when trying to maximize the social welfare. Since then, this research area has flourished and bounds on the distortion have been obtained for a wide variety of fundamental scenarios. However, the vast majority of the existing literature is focused on the case where nothing is known beyond the ordinal preferences of the agents over the alternatives. In this paper, we take a more expressive approach, and consider mechanisms that are allowed to further ask a few cardinal queries in order to gain partial access to the underlying values that the agents have for the alternatives. With this extra power, we design new deterministic mechanisms that achieve significantly improved distortion bounds and outperform the best-known randomized ordinal mechanisms. We draw an almost complete picture of the number of queries required to achieve specific distortion bounds.
|
Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Voudouris
| null | null | 2,020 |
aaai
|
Enumerating Maximal k-Plexes with Worst-Case Time Guarantee
| null |
The problem of enumerating all maximal cliques in a graph is a key primitive in a variety of real-world applications such as community detection and so on. However, in practice, communities are rarely formed as cliques due to data noise. Hence, k-plex, a subgraph in which any vertex is adjacent to all but at most k vertices, is introduced as a relaxation of clique. In this paper, we investigate the problem of enumerating all maximal k-plexes and present FaPlexen, an enumeration algorithm which integrates the “pivot” heuristic and new branching schemes. To our best knowledge, for the first time, FaPlexen lists all maximal k-plexes with provably worst-case running time O(n2γn) in a graph with n vertices, where γ < 2. Then, we propose another algorithm CommuPlex which non-trivially extends FaPlexen to find all maximal k-plexes of prescribed size for community detection in massive real-life networks. We finally carry out experiments on both real and synthetic graphs and demonstrate that our algorithms run much faster than the state-of-the-art algorithms.
|
Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, Yan Jin
| null | null | 2,020 |
aaai
|
Distance-Based Equilibria in Normal-Form Games
| null |
We propose a simple uncertainty modification for the agent model in normal-form games; at any given strategy profile, the agent can access only a set of “possible profiles” that are within a certain distance from the actual action profile. We investigate the various instantiations in which the agent chooses her strategy using well-known rationales e.g., considering the worst case, or trying to minimize the regret, to cope with such uncertainty. Any such modification in the behavioral model naturally induces a corresponding notion of equilibrium; a distance-based equilibrium. We characterize the relationships between the various equilibria, and also their connections to well-known existing solution concepts such as Trembling-hand perfection. Furthermore, we deliver existence results, and show that for some class of games, such solution concepts can actually lead to better outcomes.
|
Erman Acar, Reshef Meir
| null | null | 2,020 |
aaai
|
Runtime Analysis of Somatic Contiguous Hypermutation Operators in MOEA/D Framework
| null |
Somatic contiguous hypermutation (CHM) operators are important variation operators in artificial immune systems. The few existing theoretical studies are only concerned with understanding the optimization behavior of CHM operators on solving single-objective optimization problems. The MOEA/D framework is one of the most popular strategies for solving multi-objective optimization problems (MOPs). In this paper, we present a runtime analysis of using two CHM operators in MOEA/D framework for solving five benchmark MOPs, including four bi-objective and one many-objective problems. Our analyses show that the expected runtimes of CHM operators on the four bi-objective problems are better than or as good as that of the well-studied standard bit mutation operator. Moreover, using CHM operators in MOEA/D framework can improve the best known upper bound on the many-objective problem by a factor of n. This paper provides insight into understanding the optimization behavior of CHM operators in the well-known MOEA/D framework, and indicates that using the CHM operator in MOEA/D framework is a promising method for handling MOPs.
|
Zhengxin Huang, Yuren Zhou
| null | null | 2,020 |
aaai
|
On Swap Convexity of Voting Rules
| null |
Obraztsova et al. (2013) have recently proposed an intriguing convexity axiom for voting rules. This axiom imposes conditions on the shape of the sets of elections with a given candidate as a winner. However, this new axiom is both too weak and too strong: it is too weak because it defines a set to be convex if for any two elements of the set some shortest path between them lies within the set, whereas the standard definition of convexity requires all shortest paths between two elements to lie within the set, and it is too strong because common voting rules do not satisfy this axiom. In this paper, we (1) propose several families of voting rules that are convex in the sense of Obraztsova et al.; (2) put forward a weaker notion of convexity that is satisfied by most common voting rules; (3) prove impossibility results for a variant of this definition that considers all, rather than some shortest paths.
|
Svetlana Obraztsova, Edith Elkind, Piotr Faliszewski
| null | null | 2,020 |
aaai
|
Swap Stability in Schelling Games on Graphs
| null |
We study a recently introduced class of strategic games that is motivated by and generalizes Schelling's well-known residential segregation model. These games are played on undirected graphs, with the set of agents partitioned into multiple types; each agent either occupies a node of the graph and never moves away or aims to maximize the fraction of her neighbors who are of her own type. We consider a variant of this model that we call swap Schelling games, where the number of agents is equal to the number of nodes of the graph, and agents may swap positions with other agents to increase their utility. We study the existence, computational complexity and quality of equilibrium assignments in these games, both from a social welfare perspective and from a diversity perspective.
|
Aishwarya Agarwal, Edith Elkind, Jiarui Gan, Alexandros Voudouris
| null | null | 2,020 |
aaai
|
Election Control in Social Networks via Edge Addition or Removal
| null |
We focus on the scenario in which messages pro and/or against one or multiple candidates are spread through a social network in order to affect the votes of the receivers. Several results are known in the literature when the manipulator can make seeding by buying influencers. In this paper, instead, we assume the set of influencers and their messages to be given, and we ask whether a manipulator (e.g., the platform) can alter the outcome of the election by adding or removing edges in the social network. We study a wide range of cases distinguishing for the number of candidates or for the kind of messages spread over the network. We provide a positive result, showing that, except for trivial cases, manipulation is not affordable, the optimization problem being hard even if the manipulator has an unlimited budget (i.e., he can add or remove as many edges as desired). Furthermore, we prove that our hardness results still hold in a reoptimization variant, where the manipulator already knows an optimal solution to the problem and needs to compute a new solution once a local modification occurs (e.g., in bandit scenarios where estimations related to random variables change over time).
|
Matteo Castiglioni, Diodato Ferraioli, Nicola Gatti
| null | null | 2,020 |
aaai
|
Envelope-Based Approaches to Real-Time Heuristic Search
| null |
In real-time heuristic search, the planner must return the next action for the agent within a pre-specified time bound. Many algorithms for this setting are ‘agent-centered’ in that, at every iteration, they only expand states near the agent's current state, discarding the search frontier afterwards. In this paper, we investigate the alternative paradigm in which the search expands a single ever-growing envelope of states. Previous work on envelope-based methods restricts the agent to move along the generated search tree. We propose a more flexible approach in which an auxiliary search is performed within the envelope to guide the agent toward a promising frontier node. Experimental results indicate that intra-envelope search is beneficial in state spaces that are highly interconnected, such as those for grid pathfinding.
|
Kevin Gall, Bence Cserna, Wheeler Ruml
| null | null | 2,020 |
aaai
|
How the Duration of the Learning Period Affects the Performance of Random Gradient Selection Hyper-Heuristics
| null |
Recent analyses have shown that a random gradient hyper-heuristic (HH) using randomised local search (RLSk) low-level heuristics with different neighbourhood sizes k can optimise the unimodal benchmark function LeadingOnes in the best expected time achievable with the available heuristics, if sufficiently long learning periods τ are employed. In this paper, we examine the impact of the learning period on the performance of the hyper-heuristic for standard unimodal benchmark functions with different characteristics: Ridge, where the HH has to learn that RLS1 is always the best low-level heuristic, and OneMax, where different low-level heuristics are preferable in different areas of the search space. We rigorously prove that super-linear learning periods τ are required for the HH to achieve optimal expected runtime for Ridge. Conversely, a sub-logarithmic learning period is the best static choice for OneMax, while using super-linear values for τ increases the expected runtime above the asymptotic unary unbiased black box complexity of the problem. We prove that a random gradient HH which automatically adapts the learning period throughout the run has optimal asymptotic expected runtime for both OneMax and Ridge. Additionally, we show experimentally that it outperforms any static learning period for realistic problem sizes.
|
Andrei Lissovoi, Pietro Oliveto, John Alasdair Warwicker
| null | null | 2,020 |
aaai
|
An Interactive Regret-Based Genetic Algorithm for Solving Multi-Objective Combinatorial Optimization Problems
| null |
We propose a new approach consisting in combining genetic algorithms and regret-based incremental preference elicitation for solving multi-objective combinatorial optimization problems with unknown preferences. For the purpose of elicitation, we assume that the decision maker's preferences can be represented by a parameterized scalarizing function but the parameters are initially not known. Instead, the parameter imprecision is progressively reduced by asking preference queries to the decision maker during the search to help identify the best solutions within a population. Our algorithm, called RIGA, can be applied to any multi-objective combinatorial optimization problem provided that the scalarizing function is linear in its parameters and that a (near-)optimal solution can be efficiently determined when preferences are known. Moreover, RIGA runs in polynomial time while asking no more than a polynomial number of queries. For the multi-objective traveling salesman problem, we provide numerical results showing its practical efficiency in terms of number of queries, computation time and gap to optimality.
|
Nawal Benabbou, Cassandre Leroy, Thibaut Lust
| null | null | 2,020 |
aaai
|
Asymptotically Unambitious Artificial General Intelligence
| null |
General intelligence, the ability to solve arbitrary solvable problems, is supposed by many to be artificially constructible. Narrow intelligence, the ability to solve a given particularly difficult problem, has seen impressive recent development. Notable examples include self-driving cars, Go engines, image classifiers, and translators. Artificial General Intelligence (AGI) presents dangers that narrow intelligence does not: if something smarter than us across every domain were indifferent to our concerns, it would be an existential threat to humanity, just as we threaten many species despite no ill will. Even the theory of how to maintain the alignment of an AGI's goals with our own has proven highly elusive. We present the first algorithm we are aware of for asymptotically unambitious AGI, where “unambitiousness” includes not seeking arbitrary power. Thus, we identify an exception to the Instrumental Convergence Thesis, which is roughly that by default, an AGI would seek power, including over us.
|
Michael Cohen, Badri Vellambi, Marcus Hutter
| null | null | 2,020 |
aaai
|
Subset Selection by Pareto Optimization with Recombination
| null |
Subset selection, i.e., to select a limited number of items optimizing some given objective function, is a fundamental problem with various applications such as unsupervised feature selection and sparse regression. By employing a multi-objective evolutionary algorithm (EA) with mutation only to optimize the given objective function and minimize the number of selected items simultaneously, the recently proposed POSS algorithm achieves state-of-the-art performance for subset selection. In this paper, we propose the PORSS algorithm by incorporating recombination, a characterizing feature of EAs, into POSS. We prove that PORSS can achieve the optimal polynomial-time approximation guarantee as POSS when the objective function is monotone, and can find an optimal solution efficiently in some cases whereas POSS cannot. Extensive experiments on unsupervised feature selection and sparse regression show the superiority of PORSS over POSS. Our analysis also theoretically discloses that recombination from diverse solutions can be more likely than mutation alone to generate various variations, thereby leading to better exploration; this may be of independent interest for understanding the influence of recombination.
|
Chao Qian, Chao Bian, Chao Feng
| null | null | 2,020 |
aaai
|
Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems
| null |
Quantum computing is a computational paradigm with the potential to outperform classical methods for a variety of problems. Proposed recently, the Quantum Approximate Optimization Algorithm (QAOA) is considered as one of the leading candidates for demonstrating quantum advantage in the near term. QAOA is a variational hybrid quantum-classical algorithm for approximately solving combinatorial optimization problems. The quality of the solution obtained by QAOA for a given problem instance depends on the performance of the classical optimizer used to optimize the variational parameters. In this paper, we formulate the problem of finding optimal QAOA parameters as a learning task in which the knowledge gained from solving training instances can be leveraged to find high-quality solutions for unseen test instances. To this end, we develop two machine-learning-based approaches. Our first approach adopts a reinforcement learning (RL) framework to learn a policy network to optimize QAOA circuits. Our second approach adopts a kernel density estimation (KDE) technique to learn a generative model of optimal QAOA parameters. In both approaches, the training procedure is performed on small-sized problem instances that can be simulated on a classical computer; yet the learned RL policy and the generative model can be used to efficiently solve larger problems. Extensive simulations using the IBM Qiskit Aer quantum circuit simulator demonstrate that our proposed RL- and KDE-based approaches reduce the optimality gap by factors up to 30.15 when compared with other commonly used off-the-shelf optimizers.
|
Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash
| null | null | 2,020 |
aaai
|
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
| null |
Scaling Bayesian optimisation (BO) to high-dimensional search spaces is a active and open research problems particularly when no assumptions are made on function structure. The main reason is that at each iteration, BO requires to find global maximisation of acquisition function, which itself is a non-convex optimization problem in the original search space. With growing dimensions, the computational budget for this maximisation gets increasingly short leading to inaccurate solution of the maximisation. This inaccuracy adversely affects both the convergence and the efficiency of BO. We propose a novel approach where the acquisition function only requires maximisation on a discrete set of low dimensional subspaces embedded in the original high-dimensional search space. Our method is free of any low dimensional structure assumption on the function unlike many recent high-dimensional BO methods. Optimising acquisition function in low dimensional subspaces allows our method to obtain accurate solutions within limited computational budget. We show that in spite of this convenience, our algorithm remains convergent. In particular, cumulative regret of our algorithm only grows sub-linearly with the number of iterations. More importantly, as evident from our regret bounds, our algorithm provides a way to trade the convergence rate with the number of subspaces used in the optimisation. Finally, when the number of subspaces is "sufficiently large", our algorithm's cumulative regret is at most O*(√TγT) as opposed to O*(√DTγT) for the GP-UCB of Srinivas et al. (2012), reducing a crucial factor √D where D being the dimensional number of input space. We perform empirical experiments to evaluate our method extensively, showing that its sample efficiency is better than the existing methods for many optimisation problems involving dimensions up to 5000.
|
Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh
| null | null | 2,020 |
aaai
|
A Framework for Engineering Human/Agent Teaming Systems
| null |
The increasing capabilities of autonomous systems offer the potential for more effective teaming with humans. Effective human/agent teaming is facilitated by a mutual understanding of the team objective and how that objective is decomposed into team roles. This paper presents a framework for engineering human/agent teams that delineates the key human/agent teaming components, using TDF-T diagrams to design the agents/teams and then present contextualised team cognition to the human team members at runtime. Our hypothesis is that this facilitates effective human/agent teaming by enhancing the human's understanding of their role in the team and their coordination requirements. To evaluate this hypothesis we conducted a study with human participants using our user interface for the StarCraft strategy game, which presents pertinent, instantiated TDF-T diagrams to the human at runtime. The performance of human participants in the study indicates that their ability to work in concert with the non-player characters in the game is significantly enhanced by the timely presentation of a diagrammatic representation of team cognition.
|
Rick Evertsz, John Thangarajah
| null | null | 2,020 |
aaai
|
Reduction and Local Search for Weighted Graph Coloring Problem
| null |
The weighted graph coloring problem (WGCP) is an important extension of the graph coloring problem (GCP) with wide applications. Compared to GCP, where numerous methods have been developed and even massive graphs with millions of vertices can be solved well, fewer works have been done for WGCP, and no solution is available for solving WGCP for massive graphs. This paper explores techniques for solving WGCP, including a lower bound and a reduction rule based on clique sampling, and a local search algorithm based on two selection rules and a new variant of configuration checking. This results in our algorithm RedLS (Reduction plus Local Search). Experiments are conducted to compare RedLS with the state-of-the-art algorithms on massive graphs as well as conventional benchmarks studied in previous works. RedLS exhibits very good performance and robustness. It significantly outperforms previous algorithms on all benchmarks.
|
Yiyuan Wang, Shaowei Cai, Shiwei Pan, Ximing Li, Monghao Yin
| null | null | 2,020 |
aaai
|
A Unifying View on Individual Bounds and Heuristic Inaccuracies in Bidirectional Search
| null |
In the past few years, new very successful bidirectional heuristic search algorithms have been proposed. Their key novelty is a lower bound on the cost of a solution that includes information from the g values in both directions. Kaindl and Kainz (1997) proposed measuring how inaccurate a heuristic is while expanding nodes in the opposite direction, and using this information to raise the f value of the evaluated nodes. However, this comes with a set of disadvantages and remains yet to be exploited to its full potential. Additionally, Sadhukhan (2013) presented BAE∗, a bidirectional best-first search algorithm based on the accumulated heuristic inaccuracy along a path. However, no complete comparison in regards to other bidirectional algorithms has yet been done, neither theoretical nor empirical. In this paper we define individual bounds within the lower-bound framework and show how both Kaindl and Kainz's and Sadhukhan's methods can be generalized thus creating new bounds. This overcomes previous shortcomings and allows newer algorithms to benefit from these techniques as well. Experimental results show a substantial improvement, up to an order of magnitude in the number of necessarily-expanded nodes compared to state-of-the-art near-optimal algorithms in common benchmarks.
|
Vidal Alcázar, Pat Riddle, Mike Barley
| null | null | 2,020 |
aaai
|
Just Ask: An Interactive Learning Framework for Vision and Language Navigation
| null |
In the vision and language navigation task (Anderson et al. 2018), the agent may encounter ambiguous situations that are hard to interpret by just relying on visual information and natural language instructions. We propose an interactive learning framework to endow the agent with the ability to ask for users' help in such situations. As part of this framework, we investigate multiple learning approaches for the agent with different levels of complexity. The simplest model-confusion-based method lets the agent ask questions based on its confusion, relying on the predefined confidence threshold of a next action prediction model. To build on this confusion-based method, the agent is expected to demonstrate more sophisticated reasoning such that it discovers the timing and locations to interact with a human. We achieve this goal using reinforcement learning (RL) with a proposed reward shaping term, which enables the agent to ask questions only when necessary. The success rate can be boosted by at least 15% with only one question asked on average during the navigation. Furthermore, we show that the RL agent is capable of adjusting dynamically to noisy human responses. Finally, we design a continual learning strategy, which can be viewed as a data augmentation method, for the agent to improve further utilizing its interaction history with a human. We demonstrate the proposed strategy is substantially more realistic and data-efficient compared to previously proposed pre-exploration techniques.
|
Ta-Chung Chi, Minmin Shen, Mihail Eric, Seokhwan Kim, Dilek Hakkani-tur
| null | null | 2,020 |
aaai
|
A Learning Based Branch and Bound for Maximum Common Subgraph Related Problems
| null |
The performance of a branch-and-bound (BnB) algorithm for maximum common subgraph (MCS) problem and its related problems, like maximum common connected subgraph (MCCS) and induced Subgraph Isomorphism (SI), crucially depends on the branching heuristic. We propose a branching heuristic inspired from reinforcement learning with a goal of reaching a tree leaf as early as possible to greatly reduce the search tree size. Experimental results show that the proposed heuristic consistently and significantly improves the current best BnB algorithm for the MCS, MCCS and SI problems. An analysis is carried out to give insight on why and how reinforcement learning is useful in the new branching heuristic.
|
Yanli Liu, Chu-Min Li, Hua Jiang, Kun He
| null | null | 2,020 |
aaai
|
A Human-AI Loop Approach for Joint Keyword Discovery and Expectation Estimation in Micropost Event Detection
| null |
Microblogging platforms such as Twitter are increasingly being used in event detection. Existing approaches mainly use machine learning models and rely on event-related keywords to collect the data for model training. These approaches make strong assumptions on the distribution of the relevant microposts containing the keyword – referred to as the expectation of the distribution – and use it as a posterior regularization parameter during model training. Such approaches are, however, limited as they fail to reliably estimate the informativeness of a keyword and its expectation for model training. This paper introduces a Human-AI loop approach to jointly discover informative keywords for model training while estimating their expectation. Our approach iteratively leverages the crowd to estimate both keyword-specific expectation and the disagreement between the crowd and the model in order to discover new keywords that are most beneficial for model training. These keywords and their expectation not only improve the resulting performance but also make the model training process more transparent. We empirically demonstrate the merits of our approach, both in terms of accuracy and interpretability, on multiple real-world datasets and show that our approach improves the state of the art by 24.3%.
|
Akansha Bhardwaj, Jie Yang, Philippe Cudré-Mauroux
| null | null | 2,020 |
aaai
|
Asymptotic Risk of Bézier Simplex Fitting
| null |
The B'ezier simplex fitting is a novel data modeling technique which utilizes geometric structures of data to approximate the Pareto set of multi-objective optimization problems. There are two fitting methods based on different sampling strategies. The inductive skeleton fitting employs a stratified subsampling from skeletons of a simplex, whereas the all-at-once fitting uses a non-stratified sampling which treats a simplex as a single object. In this paper, we analyze the asymptotic risks of those B'ezier simplex fitting methods and derive the optimal subsample ratio for the inductive skeleton fitting. It is shown that the inductive skeleton fitting with the optimal ratio has a smaller risk when the degree of a B'ezier simplex is less than three. Those results are verified numerically under small to moderate sample sizes. In addition, we provide two complementary applications of our theory: a generalized location problem and a multi-objective hyper-parameter tuning of the group lasso. The former can be represented by a B'ezier simplex of degree two where the inductive skeleton fitting outperforms. The latter can be represented by a B'ezier simplex of degree three where the all-at-once fitting gets an advantage.
|
Akinori Tanaka, Akiyoshi Sannai, Ken Kobayashi, Naoki Hamada
| null | null | 2,020 |
aaai
|
What Is It You Really Want of Me? Generalized Reward Learning with Biased Beliefs about Domain Dynamics
| null |
Reward learning as a method for inferring human intent and preferences has been studied extensively. Prior approaches make an implicit assumption that the human maintains a correct belief about the robot's domain dynamics. However, this may not always hold since the human's belief may be biased, which can ultimately lead to a misguided estimation of the human's intent and preferences, which is often derived from human feedback on the robot's behaviors. In this paper, we remove this restrictive assumption by considering that the human may have an inaccurate understanding of the robot. We propose a method called Generalized Reward Learning with biased beliefs about domain dynamics (GeReL) to infer both the reward function and human's belief about the robot in a Bayesian setting based on human ratings. Due to the complex forms of the posteriors, we formulate it as a variational inference problem to infer the posteriors of the parameters that govern the reward function and human's belief about the robot simultaneously. We evaluate our method in a simulated domain and with a user study where the user has a bias based on the robot's appearances. The results show that our method can recover the true human preferences while subject to such biased beliefs, in contrast to prior approaches that could have misinterpreted them completely.
|
Ze Gong, Yu Zhang
| null | null | 2,020 |
aaai
|
Explainable Reinforcement Learning through a Causal Lens
| null |
Prominent theories in cognitive science propose that humans understand and represent the knowledge of the world through causal relationships. In making sense of the world, we build causal models in our mind to encode cause-effect relations of events and use these to explain why new events happen by referring to counterfactuals — things that did not happen. In this paper, we use causal models to derive causal explanations of the behaviour of model-free reinforcement learning agents. We present an approach that learns a structural causal model during reinforcement learning and encodes causal relationships between variables of interest. This model is then used to generate explanations of behaviour based on counterfactual analysis of the causal model. We computationally evaluate the model in 6 domains and measure performance and task prediction accuracy. We report on a study with 120 participants who observe agents playing a real-time strategy game (Starcraft II) and then receive explanations of the agents' behaviour. We investigate: 1) participants' understanding gained by explanations through task prediction; 2) explanation satisfaction and 3) trust. Our results show that causal model explanations perform better on these measures compared to two other baseline explanation models.
|
Prashan Madumal, Tim Miller, Liz Sonenberg, Frank Vetere
| null | null | 2,020 |
aaai
|
Human-Machine Collaboration for Fast Land Cover Mapping
| null |
We propose incorporating human labelers in a model fine-tuning system that provides immediate user feedback. In our framework, human labelers can interactively query model predictions on unlabeled data, choose which data to label, and see the resulting effect on the model's predictions. This bi-directional feedback loop allows humans to learn how the model responds to new data. We implement this framework for fine-tuning high-resolution land cover segmentation models and compare human-selected points to points selected using standard active learning methods. Specifically, we fine-tune a deep neural network – trained to segment high-resolution aerial imagery into different land cover classes in Maryland, USA – to a new spatial area in New York, USA using both our human-in-the-loop method and traditional active learning methods. The tight loop in our proposed system turns the algorithm and the human operator into a hybrid system that can produce land cover maps of large areas more efficiently than the traditional workflows. Our framework has applications in machine learning settings where there is a practically limitless supply of unlabeled data, of which only a small fraction can feasibly be labeled through human efforts, such as geospatial and medical image-based applications.
|
Caleb Robinson, Anthony Ortiz, Kolya Malkin, Blake Elias, Andi Peng, Dan Morris, Bistra Dilkina, Nebojsa Jojic
| null | null | 2,020 |
aaai
|
Regression under Human Assistance
| null |
Decisions are increasingly taken by both humans and machine learning models. However, machine learning models are currently trained for full automation—they are not aware that some of the decisions may still be taken by humans. In this paper, we take a first step towards the development of machine learning models that are optimized to operate under different automation levels. More specifically, we first introduce the problem of ridge regression under human assistance and show that it is NP-hard. Then, we derive an alternative representation of the corresponding objective function as a difference of nondecreasing submodular functions. Building on this representation, we further show that the objective is nondecreasing and satisfies α-submodularity, a recently introduced notion of approximate submodularity. These properties allow a simple and efficient greedy algorithm to enjoy approximation guarantees at solving the problem. Experiments on synthetic and real-world data from two important applications—medical diagnosis and content moderation—demonstrate that the greedy algorithm beats several competitive baselines.
|
Abir De, Paramita Koley, Niloy Ganguly, Manuel Gomez-Rodriguez
| null | null | 2,020 |
aaai
|
GaSPing for Utility
| null |
High-consequence decisions often require a detailed investigation of a decision maker's preferences, as represented by a utility function. Inferring a decision maker's utility function through assessments typically involves an elicitation phase where the decision maker responds to a series of elicitation queries, followed by an estimation phase where the state-of-the-art for direct elicitation approaches in practice is to either fit responses to a parametric form or perform linear interpolation. We introduce a Bayesian nonparametric method involving Gaussian stochastic processes for estimating a utility function from direct elicitation responses. Advantages include the flexibility to fit a large class of functions, favorable theoretical properties, and a fully probabilistic view of the decision maker's preference properties including risk attitude. Through extensive simulation experiments as well as two real datasets from management science, we demonstrate that the proposed approach results in better function fitting.
|
Mengyang Gu, Debarun Bhattacharjya, Dharmashankar Subramanian
| null | null | 2,020 |
aaai
|
Corpus-Level End-to-End Exploration for Interactive Systems
| null |
A core interest in building Artificial Intelligence (AI) agents is to let them interact with and assist humans. One example is Dynamic Search (DS), which models the process that a human works with a search engine agent to accomplish a complex and goal-oriented task. Early DS agents using Reinforcement Learning (RL) have only achieved limited success for (1) their lack of direct control over which documents to return and (2) the difficulty to recover from wrong search trajectories. In this paper, we present a novel corpus-level end-to-end exploration (CE3) method to address these issues. In our method, an entire text corpus is compressed into a global low-dimensional representation, which enables the agent to gain access to the full state and action spaces, including the under-explored areas. We also propose a new form of retrieval function, whose linear approximation allows end-to-end manipulation of documents. Experiments on the Text REtrieval Conference (TREC) Dynamic Domain (DD) Track show that CE3 outperforms the state-of-the-art DS systems.
|
Zhiwen Tang, Grace Hui Yang
| null | null | 2,020 |
aaai
|
CG-GAN: An Interactive Evolutionary GAN-Based Approach for Facial Composite Generation
| null |
Facial composites are graphical representations of an eyewitness's memory of a face. Many digital systems are available for the creation of such composites but are either unable to reproduce features unless previously designed or do not allow holistic changes to the image. In this paper, we improve the efficiency of composite creation by removing the reliance on expert knowledge and letting the system learn to represent faces from examples. The novel approach, Composite Generating GAN (CG-GAN), applies generative and evolutionary computation to allow casual users to easily create facial composites. Specifically, CG-GAN utilizes the generator network of a pg-GAN to create high-resolution human faces. Users are provided with several functions to interactively breed and edit faces. CG-GAN offers a novel way of generating and handling static and animated photo-realistic facial composites, with the possibility of combining multiple representations of the same perpetrator, generated by different eyewitnesses.
|
Nicola Zaltron, Luisa Zurlo, Sebastian Risi
| null | null | 2,020 |
aaai
|
Relative Attributing Propagation: Interpreting the Comparative Contributions of Individual Units in Deep Neural Networks
| null |
As Deep Neural Networks (DNNs) have demonstrated superhuman performance in a variety of fields, there is an increasing interest in understanding the complex internal mechanisms of DNNs. In this paper, we propose Relative Attributing Propagation (RAP), which decomposes the output predictions of DNNs with a new perspective of separating the relevant (positive) and irrelevant (negative) attributions according to the relative influence between the layers. The relevance of each neuron is identified with respect to its degree of contribution, separated into positive and negative, while preserving the conservation rule. Considering the relevance assigned to neurons in terms of relative priority, RAP allows each neuron to be assigned with a bi-polar importance score concerning the output: from highly relevant to highly irrelevant. Therefore, our method makes it possible to interpret DNNs with much clearer and attentive visualizations of the separated attributions than the conventional explaining methods. To verify that the attributions propagated by RAP correctly account for each meaning, we utilize the evaluation metrics: (i) Outside-inside relevance ratio, (ii) Segmentation mIOU and (iii) Region perturbation. In all experiments and metrics, we present a sizable gap in comparison to the existing literature.
|
Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, Seong-Whan Lee
| null | null | 2,020 |
aaai
|
Expectation-Aware Planning: A Unifying Framework for Synthesizing and Executing Self-Explaining Plans for Human-Aware Planning
| null |
In this work, we present a new planning formalism called Expectation-Aware planning for decision making with humans in the loop where the human's expectations about an agent may differ from the agent's own model. We show how this formulation allows agents to not only leverage existing strategies for handling model differences like explanations (Chakraborti et al. 2017) and explicability (Kulkarni et al. 2019), but can also exhibit novel behaviors that are generated through the combination of these different strategies. Our formulation also reveals a deep connection to existing approaches in epistemic planning. Specifically, we show how we can leverage classical planning compilations for epistemic planning to solve Expectation-Aware planning problems. To the best of our knowledge, the proposed formulation is the first complete solution to planning with diverging user expectations that is amenable to a classical planning compilation while successfully combining previous works on explanation and explicability. We empirically show how our approach provides a computational advantage over our earlier approaches that rely on search in the space of models.
|
Sarath Sreedharan, Tathagata Chakraborti, Christian Muise, Subbarao Kambhampati
| null | null | 2,020 |
aaai
|
BAR — A Reinforcement Learning Agent for Bounding-Box Automated Refinement
| null |
Research has shown that deep neural networks are able to help and assist human workers throughout the industrial sector via different computer vision applications. However, such data-driven learning approaches require a very large number of labeled training images in order to generalize well and achieve high accuracies that meet industry standards. Gathering and labeling large amounts of images is both expensive and time consuming, specifically for industrial use-cases. In this work, we introduce BAR (Bounding-box Automated Refinement), a reinforcement learning agent that learns to correct inaccurate bounding-boxes that are weakly generated by certain detection methods, or wrongly annotated by a human, using either an offline training method with Deep Reinforcement Learning (BAR-DRL), or an online one using Contextual Bandits (BAR-CB). Our agent limits the human intervention to correcting or verifying a subset of bounding-boxes instead of re-drawing new ones. Results on a car industry-related dataset and on the PASCAL VOC dataset show a consistent increase of up to 0.28 in the Intersection-over-Union of bounding-boxes with their desired ground-truths, while saving 30%-82% of human intervention time in either correcting or re-drawing inaccurate proposals.
|
Morgane Ayle, Jimmy Tekli, Julia El-Zini, Boulos El-Asmar, Mariette Awad
| null | null | 2,020 |
aaai
|
HirePeer: Impartial Peer-Assessed Hiring at Scale in Expert Crowdsourcing Markets
| null |
Expert crowdsourcing (e.g., Upwork.com) provides promising benefits such as productivity improvements for employers, and flexible working arrangements for workers. Yet to realize these benefits, a key persistent challenge is effective hiring at scale. Current approaches, such as reputation systems and standardized competency tests, develop weaknesses such as score inflation over time, thus degrading market quality. This paper presents HirePeer, a novel alternative approach to hiring at scale that leverages peer assessment to elicit honest assessments of fellow workers' job application materials, which it then aggregates using an impartial ranking algorithm. This paper reports on three studies that investigate both the costs and the benefits to workers and employers of impartial peer-assessed hiring. We find, to solicit honest assessments, algorithms must be communicated in terms of their impartial effects. Second, in practice, peer assessment is highly accurate, and impartial rank aggregation algorithms incur a small accuracy cost for their impartiality guarantee. Third, workers report finding peer-assessed hiring useful for receiving targeted feedback on their job materials.
|
Yasmine Kotturi, Anson Kahng, Ariel Procaccia, Chinmay Kulkarni
| null | null | 2,020 |
aaai
|
Querying to Find a Safe Policy under Uncertain Safety Constraints in Markov Decision Processes
| null |
An autonomous agent acting on behalf of a human user has the potential of causing side-effects that surprise the user in unsafe ways. When the agent cannot formulate a policy with only side-effects it knows are safe, it needs to selectively query the user about whether other useful side-effects are safe. Our goal is an algorithm that queries about as few potential side-effects as possible to find a safe policy, or to prove that none exists. We extend prior work on irreducible infeasible sets to also handle our problem's complication that a constraint to avoid a side-effect cannot be relaxed without user permission. By proving that our objectives are also adaptive submodular, we devise a querying algorithm that we empirically show finds nearly-optimal queries with much less computation than a guaranteed-optimal approach, and outperforms competing approximate approaches.
|
Shun Zhang, Edmund Durfee, Satinder Singh
| null | null | 2,020 |
aaai
|
MIMAMO Net: Integrating Micro- and Macro-Motion for Video Emotion Recognition
| null |
Spatial-temporal feature learning is of vital importance for video emotion recognition. Previous deep network structures often focused on macro-motion which extends over long time scales, e.g., on the order of seconds. We believe integrating structures capturing information about both micro- and macro-motion will benefit emotion prediction, because human perceive both micro- and macro-expressions. In this paper, we propose to combine micro- and macro-motion features to improve video emotion recognition with a two-stream recurrent network, named MIMAMO (Micro-Macro-Motion) Net. Specifically, smaller and shorter micro-motions are analyzed by a two-stream network, while larger and more sustained macro-motions can be well captured by a subsequent recurrent network. Assigning specific interpretations to the roles of different parts of the network enables us to make choice of parameters based on prior knowledge: choices that turn out to be optimal. One of the important innovations in our model is the use of interframe phase differences rather than optical flow as input to the temporal stream. Compared with the optical flow, phase differences require less computation and are more robust to illumination changes. Our proposed network achieves state of the art performance on two video emotion datasets, the OMG emotion dataset and the Aff-Wild dataset. The most significant gains are for arousal prediction, for which motion information is intuitively more informative. Source code is available at https://github.com/wtomin/MIMAMO-Net.
|
Didan Deng, Zhaokang Chen, Yuqian Zhou, Bertram Shi
| null | null | 2,020 |
aaai
|
Fine-Grained Machine Teaching with Attention Modeling
| null |
The state-of-the-art machine teaching techniques overestimate the ability of learners in grasping a complex concept. On one side, since a complicated concept always contains multiple fine-grained concepts, students can only grasp parts of them during a practical teaching process. On the other side, because a single teaching sample contains unequal information in terms of various fine-grained concepts, learners accept them at different levels. Thus, with more and more complicated dataset, it is challenging for us to rethink the machine teaching frameworks. In this work, we propose a new machine teaching framework called Attentive Machine Teaching (AMT). Specifically, we argue that a complicated concept always consists of multiple features, which we call fine-grained concepts. We define attention to represent the learning level of a learner in studying a fine-grained concept. Afterwards, we propose AMT, an adaptive teaching framework to construct the personalized optimal teaching dataset for learners. During each iteration, we estimate the workers' ability with Graph Neural Network (GNN) and select the best sample using a pool-based searching approach. For corroborating our theoretical findings, we conduct extensive experiments with both synthetic datasets and real datasets. Our experimental results verify the effectiveness of AMT algorithms.
|
Jiacheng Liu, Xiaofeng Hou, Feilong Tang
| null | null | 2,020 |
aaai
|
Harnessing GANs for Zero-Shot Learning of New Classes in Visual Speech Recognition
| null |
Visual Speech Recognition (VSR) is the process of recognizing or interpreting speech by watching the lip movements of the speaker. Recent machine learning based approaches model VSR as a classification problem; however, the scarcity of training data leads to error-prone systems with very low accuracies in predicting unseen classes. To solve this problem, we present a novel approach to zero-shot learning by generating new classes using Generative Adversarial Networks (GANs), and show how the addition of unseen class samples increases the accuracy of a VSR system by a significant margin of 27% and allows it to handle speaker-independent out-of-vocabulary phrases. We also show that our models are language agnostic and therefore capable of seamlessly generating, using English training data, videos for a new language (Hindi). To the best of our knowledge, this is the first work to show empirical evidence of the use of GANs for generating training samples of unseen classes in the domain of VSR, hence facilitating zero-shot learning. We make the added videos for new classes publicly available along with our code1.
|
Yaman Kumar, Dhruva Sahrawat, Shubham Maheshwari, Debanjan Mahata, Amanda Stent, Yifang Yin, Rajiv Ratn Shah, Roger Zimmermann
| null | null | 2,020 |
aaai
|
Conditional Generative Neural Decoding with Structured CNN Feature Prediction
| null |
Decoding visual contents from human brain activity is a challenging task with great scientific value. Two main facts that hinder existing methods from producing satisfactory results are 1) typically small paired training data; 2) under-exploitation of the structural information underlying the data. In this paper, we present a novel conditional deep generative neural decoding approach with structured intermediate feature prediction. Specifically, our approach first decodes the brain activity to the multilayer intermediate features of a pretrained convolutional neural network (CNN) with a structured multi-output regression (SMR) model, and then inverts the decoded CNN features to the visual images with an introspective conditional generation (ICG) model. The proposed SMR model can simultaneously leverage the covariance structures underlying the brain activities, the CNN features and the prediction tasks to improve the decoding accuracy and interpretability. Further, our ICG model can 1) leverage abundant unpaired images to augment the training data; 2) self-evaluate the quality of its conditionally generated images; and 3) adversarially improve itself without extra discriminator. Experimental results show that our approach yields state-of-the-art visual reconstructions from brain activities.
|
Changde Du, Changying Du, Lijie Huang, Huiguang He
| null | null | 2,020 |
aaai
|
Reinforcing an Image Caption Generator Using Off-Line Human Feedback
| null |
Human ratings are currently the most accurate way to assess the quality of an image captioning model, yet most often the only used outcome of an expensive human rating evaluation is a few overall statistics over the evaluation dataset. In this paper, we show that the signal from instance-level human caption ratings can be leveraged to improve captioning models, even when the amount of caption ratings is several orders of magnitude less than the caption training data. We employ a policy gradient method to maximize the human ratings as rewards in an off-policy reinforcement learning setting, where policy gradients are estimated by samples from a distribution that focuses on the captions in a caption ratings dataset. Our empirical evidence indicates that the proposed method learns to generalize the human raters' judgments to a previously unseen set of images, as judged by a different set of human judges, and additionally on a different, multi-dimensional side-by-side human evaluation procedure.
|
Paul Hongsuck Seo, Piyush Sharma, Tomer Levinboim, Bohyung Han, Radu Soricut
| null | null | 2,020 |
aaai
|
Towards Socially Responsible AI: Cognitive Bias-Aware Multi-Objective Learning
| null |
Human society had a long history of suffering from cognitive biases leading to social prejudices and mass injustice. The prevalent existence of cognitive biases in large volumes of historical data can pose a threat of being manifested as unethical and seemingly inhumane predictions as outputs of AI systems trained on such data. To alleviate this problem, we propose a bias-aware multi-objective learning framework that given a set of identity attributes (e.g. gender, ethnicity etc.) and a subset of sensitive categories of the possible classes of prediction outputs, learns to reduce the frequency of predicting certain combinations of them, e.g. predicting stereotypes such as ‘most blacks use abusive language’, or ‘fear is a virtue of women’. Our experiments conducted on an emotion prediction task with balanced class priors shows that a set of baseline bias-agnostic models exhibit cognitive biases with respect to gender, such as women are prone to be afraid whereas men are more prone to be angry. In contrast, our proposed bias-aware multi-objective learning methodology is shown to reduce such biases in the predictid emotions.
|
Procheta Sen, Debasis Ganguly
| null | null | 2,020 |
aaai
|
Multi-Source Domain Adaptation for Visual Sentiment Classification
| null |
Existing domain adaptation methods on visual sentiment classification typically are investigated under the single-source scenario, where the knowledge learned from a source domain of sufficient labeled data is transferred to the target domain of loosely labeled or unlabeled data. However, in practice, data from a single source domain usually have a limited volume and can hardly cover the characteristics of the target domain. In this paper, we propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN), for visual sentiment classification. To handle data from multiple source domains, it learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution. This is achieved via cycle consistent adversarial learning in an end-to-end manner. Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
|
Chuang Lin, Sicheng Zhao, Lei Meng, Tat-Seng Chua
| null | null | 2,020 |
aaai
|
Crowd-Assisted Disaster Scene Assessment with Human-AI Interactive Attention
| null |
The recent advances of mobile sensing and artificial intelligence (AI) have brought new revolutions in disaster response applications. One example is disaster scene assessment (DSA) which leverages computer vision techniques to assess the level of damage severity of the disaster events from images provided by eyewitnesses on social media. The assessment results are critical in prioritizing the rescue operations of the response teams. While AI algorithms can significantly reduce the detection time and manual labeling cost in such applications, their performance often falls short of the desired accuracy. Our work is motivated by the emergence of crowdsourcing platforms (e.g., Amazon Mechanic Turk, Waze) that provide unprecedented opportunities for acquiring human intelligence for AI applications. In this paper, we develop an interactive Disaster Scene Assessment (iDSA) scheme that allows AI algorithms to directly interact with humans to identify the salient regions of the disaster images in DSA applications. We also develop new incentive designs and active learning techniques to ensure reliable, timely, and cost-efficient responses from the crowdsourcing platforms. Our evaluation results on real-world case studies during Nepal and Ecuador earthquake events demonstrate that iDSA can significantly outperform state-of-the-art baselines in accurately assessing the damage of disaster scenes.
|
Daniel (Yue) Zhang, Yifeng Huang, Yang Zhang, Dong Wang
| null | null | 2,020 |
aaai
|
Instance-Adaptive Graph for EEG Emotion Recognition
| null |
To tackle the individual differences and characterize the dynamic relationships among different EEG regions for EEG emotion recognition, in this paper, we propose a novel instance-adaptive graph method (IAG), which employs a more flexible way to construct graphic connections so as to present different graphic representations determined by different input instances. To fit the different EEG pattern, we employ an additional branch to characterize the intrinsic dynamic relationships between different EEG channels. To give a more precise graphic representation, we design the multi-level and multi-graph convolutional operation and the graph coarsening. Furthermore, we present a type of sparse graphic representation to extract more discriminative features. Experiments on two widely-used EEG emotion recognition datasets are conducted to evaluate the proposed model and the experimental results show that our method achieves the state-of-the-art performance.
|
Tengfei Song, Suyuan Liu, Wenming Zheng, Yuan Zong, Zhen Cui
| null | null | 2,020 |
aaai
|
UCF-STAR: A Large Scale Still Image Dataset for Understanding Human Actions
| null |
Action recognition in still images poses a great challenge due to (i) fewer available training data, (ii) absence of temporal information. To address the first challenge, we introduce a dataset for STill image Action Recognition (STAR), containing over $1M$ images across 50 different human body-motion action categories. UCF-STAR is the largest dataset in the literature for action recognition in still images. The key characteristics of UCF-STAR include (1) focusing on human body-motion rather than relatively static human-object interaction categories, (2) collecting images from the wild to benefit from a varied set of action representations, (3) appending multiple human-annotated labels per image rather than just the action label, and (4) inclusion of rich, structured and multi-modal set of metadata for each image. This departs from existing datasets, which typically provide single annotation in a smaller number of images and categories, with no metadata. UCF-STAR exposes the intrinsic difficulty of action recognition through its realistic scene and action complexity. To benchmark and demonstrate the benefits of UCF-STAR as a large-scale dataset, and to show the role of “latent” motion information in recognizing human actions in still images, we present a novel approach relying on predicting temporal information, yielding higher accuracy on 5 widely-used datasets.
|
Marjaneh Safaei, Pooyan Balouchian, Hassan Foroosh
| null | null | 2,020 |
aaai
|
Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching
| null |
Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.
|
Wei Peng, Xiaopeng Hong, Haoyu Chen, Guoying Zhao
| null | null | 2,020 |
aaai
|
CoCoX: Generating Conceptual and Counterfactual Explanations via Fault-Lines
| null |
We present CoCoX (short for Conceptual and Counterfactual Explanations), a model for explaining decisions made by a deep convolutional neural network (CNN). In Cognitive Psychology, the factors (or semantic-level features) that humans zoom in on when they imagine an alternative to a model prediction are often referred to as fault-lines. Motivated by this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically, given an input image I for which a CNN classification model M predicts class cpred, our fault-line based explanation identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class calt. We argue that, due to the conceptual and counterfactual nature of fault-lines, our CoCoX explanations are practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, showing that CoCoX significantly outperforms the state-of-the-art explainable AI models. Our implementation is available at https://github.com/arjunakula/CoCoX
|
Arjun Akula, Shuai Wang, Song-Chun Zhu
| null | null | 2,020 |
aaai
|
Towards Awareness of Human Relational Strategies in Virtual Agents
| null |
As Intelligent Virtual Agents (IVAs) increase in adoption and further emulate human personalities, we are interested in how humans apply relational strategies to them compared to other humans in a service environment. Human-computer data from three live customer service IVAs was collected, and annotators marked all text that was deemed unnecessary to the determination of user intention as well as the presence of multiple intents. After merging the selections of multiple annotators, a second round of annotation determined the classes of relational language present in the unnecessary sections such as Greetings, Backstory, Justification, Gratitude, Rants, or Expressing Emotions. We compare the usage of such language in human-human service interactions. We show that removal of this language from task-based inputs has a positive effect by both an increase in confidence and improvement in responses, as evaluated by humans, demonstrating the need for IVAs to anticipate relational language injection. This work provides a methodology to identify relational segments and a baseline of human performance in this task as well as laying the groundwork for IVAs to reciprocate relational strategies in order to improve their believeability.
|
Ian Beaver, Cynthia Freeman, Abdullah Mueen
| null | null | 2,020 |
aaai
|
LTLƒ Synthesis with Fairness and Stability Assumptions
| null |
In synthesis, assumptions are constraints on the environment that rule out certain environment behaviors. A key observation here is that even if we consider systems with LTLƒ goals on finite traces, environment assumptions need to be expressed over infinite traces, since accomplishing the agent goals may require an unbounded number of environment action. To solve synthesis with respect to finite-trace LTLƒ goals under infinite-trace assumptions, we could reduce the problem to LTL synthesis. Unfortunately, while synthesis in LTLƒ and in LTL have the same worst-case complexity (both 2EXPTIME-complete), the algorithms available for LTL synthesis are much more difficult in practice than those for LTLƒ synthesis. In this work we show that in interesting cases we can avoid such a detour to LTL synthesis and keep the simplicity of LTLƒ synthesis. Specifically, we develop a BDD-based fixpoint-based technique for handling basic forms of fairness and of stability assumptions. We show, empirically, that this technique performs much better than standard LTL synthesis.
|
Shufang Zhu, Giuseppe De Giacomo, Geguang Pu, Moshe Y. Vardi
| null | null | 2,020 |
aaai
|
Graph-Based Decoding Model for Functional Alignment of Unaligned fMRI Data
| null |
Aggregating multi-subject functional magnetic resonance imaging (fMRI) data is indispensable for generating valid and general inferences from patterns distributed across human brains. The disparities in anatomical structures and functional topographies of human brains warrant aligning fMRI data across subjects. However, the existing functional alignment methods cannot handle well various kinds of fMRI datasets today, especially when they are not temporally-aligned, i.e., some of the subjects probably lack the responses to some stimuli, or different subjects might follow different sequences of stimuli. In this paper, a cross-subject graph that depicts the (dis)similarities between samples across subjects is used as a priori for developing a more flexible framework that suits an assortment of fMRI datasets. However, the high dimension of fMRI data and the use of multiple subjects makes the crude framework time-consuming or unpractical. To address this issue, we further regularize the framework, so that a novel feasible kernel-based optimization, which permits non-linear feature extraction, could be theoretically developed. Specifically, a low-dimension assumption is imposed on each new feature space to avoid overfitting caused by the high-spatial-low-temporal resolution of fMRI data. Experimental results on five datasets suggest that the proposed method is not only superior to several state-of-the-art methods on temporally-aligned fMRI data, but also suitable for dealing with temporally-unaligned fMRI data.
|
Weida Li, Mingxia Liu, Fang Chen, Daoqiang Zhang
| null | null | 2,020 |
aaai
|
Variational Pathway Reasoning for EEG Emotion Recognition
| null |
Research on human emotion cognition revealed that connections and pathways exist between spatially-adjacent and functional-related areas during emotion expression (Adolphs 2002a; Bullmore and Sporns 2009). Deeply inspired by this mechanism, we propose a heuristic Variational Pathway Reasoning (VPR) method to deal with EEG-based emotion recognition. We introduce random walk to generate a large number of candidate pathways along electrodes. To encode each pathway, the dynamic sequence model is further used to learn between-electrode dependencies. The encoded pathways around each electrode are aggregated to produce a pseudo maximum-energy pathway, which consists of the most important pair-wise connections. To find those most salient connections, we propose a sparse variational scaling (SVS) module to learn scaling factors of pseudo pathways by using the Bayesian probabilistic process and sparsity constraint, where the former endows good generalization ability while the latter favors adaptive pathway selection. Finally, the salient pathways from those candidates are jointly decided by the pseudo pathways and scaling factors. Extensive experiments on EEG emotion recognition demonstrate that the proposed VPR is superior to those state-of-the-art methods, and could find some interesting pathways w.r.t. different emotions.
|
Tong Zhang, Zhen Cui, Chunyan Xu, Wenming Zheng, Jian Yang
| null | null | 2,020 |
aaai
|
Blameworthiness in Security Games
| null |
Security games are an example of a successful real-world application of game theory. The paper defines blameworthiness of the defender and the attacker in security games using the principle of alternative possibilities and provides a sound and complete logical system for reasoning about blameworthiness in such games. Two of the axioms of this system capture the asymmetry of information in security games.
|
Pavel Naumov, Jia Tao
| null | null | 2,020 |
aaai
|
A Framework for Measuring Information Asymmetry
| null |
Information asymmetry occurs when an imbalance of knowledge exists between two parties, such as a buyer and a seller, a regulator and an operator, and an employer and an employee. It is a key concept in several domains, in particular, in economics. We propose in this work a general logic-based framework for measuring the information asymmetry between two parties. A situation of information asymmetry is represented by a knowledge base and a set of questions. We define the notion of information asymmetry measure through rationality postulates. We further introduce a syntactic concept, called minimal question subset (MQS), to take into consideration the fact that answering some questions allows avoiding others. This concept is used for defining rationality postulates and measures. Finally, we propose a method for computing the MQSes of a given situation of information asymmetry.
|
Yakoub Salhi
| null | null | 2,020 |
aaai
|
Contextual Parameter Generation for Knowledge Graph Link Prediction
| null |
We consider the task of knowledge graph link prediction. Given a question consisting of a source entity and a relation (e.g., Shakespeare and BornIn), the objective is to predict the most likely answer entity (e.g., England). Recent approaches tackle this problem by learning entity and relation embeddings. However, they often constrain the relationship between these embeddings to be additive (i.e., the embeddings are concatenated and then processed by a sequence of linear functions and element-wise non-linearities). We show that this type of interaction significantly limits representational power. For example, such models cannot handle cases where a different projection of the source entity is used for each relation. We propose to use contextual parameter generation to address this limitation. More specifically, we treat relations as the context in which source entities are processed to produce predictions, by using relation embeddings to generate the parameters of a model operating over source entity embeddings. This allows models to represent more complex interactions between entities and relations. We apply our method on two existing link prediction methods, including the current state-of-the-art, resulting in significant performance gains and establishing a new state-of-the-art for this task. These gains are achieved while also reducing convergence time by up to 28 times.
|
George Stoica, Otilia Stretcu, Emmanouil Antonios Platanios, Tom Mitchell, Barnabás Póczos
| null | null | 2,020 |
aaai
|
Deciding Acceptance in Incomplete Argumentation Frameworks
| null |
Expressing incomplete knowledge in abstract argumentation frameworks (AFs) through incomplete AFs has recently received noticeable attention. However, algorithmic aspects of deciding acceptance in incomplete AFs are still under-developed. We address this current shortcoming by developing algorithms for NP-hard and coNP-hard variants of acceptance problems over incomplete AFs via harnessing Boolean satisfiability (SAT) solvers. Focusing on nonempty conflict-free or admissible sets and on stable extensions, we also provide new complexity results for a refined variant of skeptical acceptance in incomplete AFs, ranging from polynomial-time computability to hardness for the second level of the polynomial hierarchy. Furthermore, central to the proposed SAT-based counterexample-guided abstraction refinement approach for the second-level problem variants, we establish conditions for redundant atomic changes to incomplete AFs from the perspective of preserving extensions. We show empirically that the resulting SAT-based approach for incomplete AFs scales at least as well as existing SAT-based approaches to deciding acceptance in AFs.
|
Andreas Niskanen, Daniel Neugebauer, Matti Järvisalo, Jörg Rothe
| null | null | 2,020 |
aaai
|
Learning Query Inseparable εℒℋ Ontologies
| null |
We investigate the complexity of learning query inseparable εℒℋ ontologies in a variant of Angluin's exact learning model. Given a fixed data instance A* and a query language
|
Ana Ozaki, Cosimo Persia, Andrea Mazzullo
| null | null | 2,020 |
aaai
|
Adversarial Deep Network Embedding for Cross-Network Node Classification
| null |
In this paper, the task of cross-network node classification, which leverages the abundant labeled nodes from a source network to help classify unlabeled nodes in a target network, is studied. The existing domain adaptation algorithms generally fail to model the network structural information, and the current network embedding models mainly focus on single-network applications. Thus, both of them cannot be directly applied to solve the cross-network node classification problem. This motivates us to propose an adversarial cross-network deep network embedding (ACDNE) model to integrate adversarial domain adaptation with deep network embedding so as to learn network-invariant node representations that can also well preserve the network structural information. In ACDNE, the deep network embedding module utilizes two feature extractors to jointly preserve attributed affinity and topological proximities between nodes. In addition, a node classifier is incorporated to make node representations label-discriminative. Moreover, an adversarial domain adaptation technique is employed to make node representations network-invariant. Extensive experimental results demonstrate that the proposed ACDNE model achieves the state-of-the-art performance in cross-network node classification.
|
Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, Kup-Sze Choi
| null | null | 2,020 |
aaai
|
InteractE: Improving Convolution-Based Knowledge Graph Embeddings by Increasing Feature Interactions
| null |
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas – feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis – that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
|
Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, Partha Talukdar
| null | null | 2,020 |
aaai
|
Relatedness and TBox-Driven Rule Learning in Large Knowledge Bases
| null |
We present RARL, an approach to discover rules of the form body ⇒ head in large knowledge bases (KBs) that typically include a set of terminological facts (TBox) and a set of TBox-compliant assertional facts (ABox). RARL's main intuition is to learn rules by leveraging TBox-information and the semantic relatedness between the predicate(s) in the atoms of the body and the predicate in the head. RARL uses an efficient relatedness-driven TBox traversal algorithm, which given an input rule head, generates the set of most semantically related candidate rule bodies. Then, rule confidence is computed in the ABox based on a set of positive and negative examples. Decoupling candidate generation and rule quality assessment offers greater flexibility than previous work.
|
Giuseppe Pirrò
| null | null | 2,020 |
aaai
|
Ranking-Based Semantics for Sets of Attacking Arguments
| null |
Argumentation is a process of evaluating and comparing sets of arguments. Ranking-based semantics received a lot of attention recently. All of the semantics introduced so far are applicable to binary attack relations. In this paper, we study a more general case when sets of arguments can jointly attack an argument. We generalise existing postulates for ranking-based semantics to fit this framework, define a general variant of h-categoriser, prove that it converges for every argumentation framework and study the postulates it satisfies. We also study the link between binary and hypergraph version of h-categoriser.
|
Bruno Yun, Srdjan Vesic, Madalina Croitoru
| null | null | 2,020 |
aaai
|
On the Expressivity of ASK Queries in SPARQL
| null |
As a major query type in SPARQL, ASK queries are boolean queries and have found applications in several domains such as semantic SPARQL optimization. This paper is a first systematic study of the relative expressive power of various fragments of ASK queries in SPARQL. Among many new results, a surprising one is that the operator UNION is redundant for ASK queries. The results in this paper as a whole paint a rich picture for the expressivity of fragments of ASK queries with the four basic operators of SPARQL 1.0 possibly together with a negation. The work in this paper provides a guideline for future SPARQL query optimization and implementation.
|
Xiaowang Zhang, Jan Van den Bussche, Kewen Wang, Heng Zhang, Xuanxing Yang, Zhiyong Feng
| null | null | 2,020 |
aaai
|
Query Answering with Guarded Existential Rules under Stable Model Semantics
| null |
In this paper, we study the problem of query answering with guarded existential rules (also called GNTGDs) under stable model semantics. Our goal is to use existing answer set programming (ASP) solvers. However, ASP solvers handle only finitely-ground logic programs while the program translated from GNTGDs by Skolemization is not in general. To address this challenge, we introduce two novel notions of (1) guarded instantiation forest to describe the instantiation of GNTGDs and (2) prime block to characterize the repeated infinitely-ground program translated from GNTGDs. Using these notions, we prove that the ground termination problem for GNTGDs is decidable. We also devise an algorithm for query answering with GNTGDs using ASP solvers. We have implemented our approach in a prototype system. The evaluation over a set of benchmarks shows encouraging results.
|
Hai Wan, Guohui Xiao, Chenglin Wang, Xianqiao Liu, Junhong Chen, Zhe Wang
| null | null | 2,020 |
aaai
|
Towards Universal Languages for Tractable Ontology Mediated Query Answering
| null |
An ontology language for ontology mediated query answering (OMQA-language) is universal for a family of OMQA-languages if it is the most expressive one among this family. In this paper, we focus on three families of tractable OMQA-languages, including first-order rewritable languages and languages whose data complexity of the query answering is in AC0 or PTIME. On the negative side, we prove that there is, in general, no universal language for each of these families of languages. On the positive side, we propose a novel property, the locality, to approximate the first-order rewritability, and show that there exists a language of disjunctive embedded dependencies that is universal for the family of OMQA-languages with locality. All of these results apply to OMQA with query languages such as conjunctive queries, unions of conjunctive queries and acyclic conjunctive queries.
|
Heng Zhang, Yan Zhang, Jia-Huai You, Zhiyong Feng, Guifei Jiang
| null | null | 2,020 |
aaai
|
COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment
| null |
Entity alignment is a fundamental and vital task in Knowledge Graph (KG) construction and fusion. Previous works mainly focus on capturing the structural semantics of entities by learning the entity embeddings on the relational triples and pre-aligned "seed entities". Some works also seek to incorporate the attribute information to assist refining the entity embeddings. However, there are still many problems not considered, which dramatically limits the utilization of attribute information in the entity alignment. Different KGs may have lots of different attribute types, and even the same attribute may have diverse data structures and value granularities. Most importantly, attributes may have various "contributions" to the entity alignment. To solve these problems, we propose COTSAE that combines the structure and attribute information of entities by co-training two embedding learning components, respectively. We also propose a joint attention method in our model to learn the attentions of attribute types and values cooperatively. We verified our COTSAE on several datasets from real-world KGs, and the results showed that it is significantly better than the latest entity alignment methods. The structure and attribute information can complement each other and both contribute to performance improvement.
|
Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, Bing Xie
| null | null | 2,020 |
aaai
|
Deciding the Loosely Guarded Fragment and Querying Its Horn Fragment Using Resolution
| null |
We consider the following query answering problem: Given a Boolean conjunctive query and a theory in the Horn loosely guarded fragment, the aim is to determine whether the query is entailed by the theory. In this paper, we present a resolution decision procedure for the loosely guarded fragment, and use such a procedure to answer Boolean conjunctive queries against the Horn loosely guarded fragment. The Horn loosely guarded fragment subsumes classes of rules that are prevalent in ontology-based query answering, such as Horn ALCHOI and guarded existential rules. Additionally, we identify star queries and cloud queries, which using our procedure, can be answered against the loosely guarded fragment.
|
Sen Zheng, Renate Schmidt
| null | null | 2,020 |
aaai
|
Resilient Logic Programs: Answer Set Programs Challenged by Ontologies
| null |
We introduce resilient logic programs (RLPs) that couple a non-monotonic logic program and a first-order (FO) theory or description logic (DL) ontology. Unlike previous hybrid languages, where the interaction between the program and the theory is limited to consistency or query entailment tests, in RLPs answer sets must be ‘resilient’ to the models of the theory, allowing non-output predicates of the program to respond differently to different models. RLPs can elegantly express ∃∀∃-QBFs, disjunctive ASP, and configuration problems under incompleteness of information. RLPs are decidable when a couple of natural assumptions are made: (i) satisfiability of FO theories in the presence of closed predicates is decidable, and (ii) rules are safe in the style of the well-known DL-safeness. We further show that a large fragment of such RLPs can be translated into standard (disjunctive) ASP, for which efficient implementations exist. For RLPs with theories expressed in DLs, we use a novel relaxation of safeness that safeguards rules via predicates whose extensions can be inferred to have a finite bound. We present several complexity results for the case where ontologies are written in some standard DLs.
|
Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus
| null | null | 2,020 |
aaai
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.