title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Knowledge Distillation from A Stronger Teacher
null
Unlike existing knowledge distillation methods focus on the baseline settings, where the teacher models and training strategies are not that strong and competing as state-of-the-art approaches, this paper presents a method dubbed DIST to distill better from a stronger teacher. We empirically find that the discrepancy of predictions between the student and a stronger teacher may tend to be fairly severer. As a result, the exact match of predictions in KL divergence would disturb the training and make existing methods perform poorly. In this paper, we show that simply preserving the relations between the predictions of teacher and student would suffice, and propose a correlation-based loss to capture the intrinsic inter-class relations from the teacher explicitly. Besides, considering that different instances have different semantic similarities to each class, we also extend this relational match to the intra-class level. Our method is simple yet practical, and extensive experiments demonstrate that it adapts well to various architectures, model sizes and training strategies, and can achieve state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code is available at: https://github.com/hunto/DIST_KD.
Tao Huang, Shan You, Fei Wang, Chen Qian, Chang Xu
null
null
2,022
neurips
A Simple and Optimal Policy Design for Online Learning with Safety against Heavy-tailed Risk
null
We consider the classical multi-armed bandit problem and design simple-to-implement new policies that simultaneously enjoy two properties: worst-case optimality for the expected regret, and safety against heavy-tailed risk for the regret distribution. Recently, Fan and Glynn (2021) showed that information-theoretic optimized bandit policies as well as standard UCB policies suffer from some serious heavy-tailed risk; that is, the probability of incurring a linear regret slowly decays at a polynomial rate of $1/T$, as $T$ (the time horizon) increases. Inspired by their result, we further show that any policy that incurs an instance-dependent $O(\ln T)$ regret must incur a linear regret with probability $\Omega(\mathrm{poly}(1/T))$ and that the heavy-tailed risk actually exists for all "instance-dependent consistent" policies. Next, for the two-armed bandit setting, we provide a simple policy design that (i) has the worst-case optimality for the expected regret at order $\tilde O(\sqrt{T})$ and (ii) has the worst-case tail probability of incurring a linear regret decay at an exponential rate $\exp(-\Omega(\sqrt{T}))$. We further prove that this exponential decaying rate of the tail probability is optimal across all policies that have worst-case optimality for the expected regret. Finally, we generalize the policy design and analysis to the general setting with an arbitrary $K$ number of arms. We provide detailed characterization of the tail probability bound for any regret threshold under our policy design. Numerical experiments are conducted to illustrate the theoretical findings. Our results reveal insights on the incompatibility between consistency and light-tailed risk, whereas indicate that worst-case optimality on expected regret and light-tailed risk are compatible.
David Simchi-Levi, Zeyu Zheng, Feng Zhu
null
null
2,022
neurips
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
null
Equivariances provide useful inductive biases in neural network modeling, with the translation equivariance of convolutional neural networks being a canonical example. Equivariances can be embedded in architectures through weight-sharing and place symmetry constraints on the functions a neural network can represent. The type of symmetry is typically fixed and has to be chosen in advance. Although some tasks are inherently equivariant, many tasks do not strictly follow such symmetries. In such cases, equivariance constraints can be overly restrictive. In this work, we propose a parameter-efficient relaxation of equivariance that can effectively interpolate between a (i) non-equivariant linear product, (ii) a strict-equivariant convolution, and (iii) a strictly-invariant mapping. The proposed parameterisation can be thought of as a building block to allow adjustable symmetry structure in neural networks. In addition, we demonstrate that the amount of equivariance can be learned from the training data using backpropagation. Gradient-based learning of equivariance achieves similar or improved performance compared to the best value found by cross-validation and outperforms baselines with partial or strict equivariance on CIFAR-10 and CIFAR-100 image classification tasks.
Tycho van der Ouderaa, David W. Romero, Mark van der Wilk
null
null
2,022
neurips
When are Local Queries Useful for Robust Learning?
null
Distributional assumptions have been shown to be necessary for the robust learnability of concept classes when considering the exact-in-the-ball robust risk and access to random examples by Gourdeau et al. (2019). In this paper, we study learning models where the learner is given more power through the use of local queries, and give the first distribution-free algorithms that perform robust empirical risk minimization (ERM) for this notion of robustness. The first learning model we consider uses local membership queries (LMQ), where the learner can query the label of points near the training sample. We show that, under the uniform distribution, LMQs do not increase the robustness threshold of conjunctions and any superclass, e.g., decision lists and halfspaces. Faced with this negative result, we introduce the local equivalence query (LEQ) oracle, which returns whether the hypothesis and target concept agree in the perturbation region around a point in the training sample, as well as a counterexample if it exists. We show a separation result: on one hand, if the query radius $\lambda$ is strictly smaller than the adversary's perturbation budget $\rho$, then distribution-free robust learning is impossible for a wide variety of concept classes; on the other hand, the setting $\lambda=\rho$ allows us to develop robust ERM algorithms. We then bound the query complexity of these algorithms based on online learning guarantees and further improve these bounds for the special case of conjunctions. We finish by giving robust learning algorithms for halfspaces with margins on both $\{0,1\}^n$ and $\mathbb{R}^n$.
Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, James Worrell
null
null
2,022
neurips
Near-Optimal Correlation Clustering with Privacy
null
Correlation clustering is a central problem in unsupervised learning, with applications spanning community detection, duplicate detection, automated labeling and many more. In the correlation clustering problem one receives as input a set of nodes and for each node a list of co-clustering preferences, and the goal is to output a clustering that minimizes the disagreement with the specified nodes' preferences. In this paper, we introduce a simple and computationally efficient algorithm for the correlation clustering problem with provable privacy guarantees. Our additive error is stronger than those obtained in prior work and is optimal up to polylogarithmic factors for fixed privacy parameters.
Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis, Jakub M. Tarnawski
null
null
2,022
neurips
Optimal Transport of Classifiers to Fairness
null
In past work on fairness in machine learning, the focus has been on forcing the prediction of classifiers to have similar statistical properties for people of different demographics. To reduce the violation of these properties, fairness methods usually simply rescale the classifier scores, ignoring similarities and dissimilarities between members of different groups. Yet, we hypothesize that such information is relevant in quantifying the unfairness of a given classifier. To validate this hypothesis, we introduce Optimal Transport to Fairness (OTF), a method that quantifies the violation of fairness constraints as the smallest Optimal Transport cost between a probabilistic classifier and any score function that satisfies these constraints. For a flexible class of linear fairness constraints, we construct a practical way to compute OTF as a differentiable fairness regularizer that can be added to any standard classification setting. Experiments show that OTF can be used to achieve an improved trade-off between predictive power and fairness.
Maarten Buyl, Tijl De Bie
null
null
2,022
neurips
ReCo: Retrieve and Co-segment for Zero-shot Transfer
null
Semantic segmentation has a broad range of applications, but its real-world impact has been significantly limited by the prohibitive annotation costs necessary to enable deployment. Segmentation methods that forgo supervision can side-step these costs, but exhibit the inconvenient requirement to provide labelled examples from the target distribution to assign concept names to predictions. An alternative line of work in language-image pre-training has recently demonstrated the potential to produce models that can both assign names across large vocabularies of concepts and enable zero-shot transfer for classification, but do not demonstrate commensurate segmentation abilities.We leverage the retrieval abilities of one such language-image pre-trained model, CLIP, to dynamically curate training sets from unlabelled images for arbitrary collections of concept names, and leverage the robust correspondences offered by modern image representations to co-segment entities among the resulting collections. The synthetic segment collections are then employed to construct a segmentation model (without requiring pixel labels) whose knowledge of concepts is inherited from the scalable pre-training process of CLIP. We demonstrate that our approach, termed Retrieve and Co-segment (ReCo) performs favourably to conventional unsupervised segmentation approaches while inheriting the convenience of nameable predictions and zero-shot transfer. We also demonstrate ReCo’s ability to generate specialist segmenters for extremely rare objects.
Gyungin Shin, Weidi Xie, Samuel Albanie
null
null
2,022
neurips
Why do We Need Large Batchsizes in Contrastive Learning? A Gradient-Bias Perspective
null
Contrastive learning (CL) has been the de facto technique for self-supervised representation learning (SSL), with impressive empirical success such as multi-modal representation learning. However, traditional CL loss only considers negative samples from a minibatch, which could cause biased gradients due to the non-decomposibility of the loss. For the first time, we consider optimizing a more generalized contrastive loss, where each data sample is associated with an infinite number of negative samples. We show that directly using minibatch stochastic optimization could lead to gradient bias. To remedy this, we propose an efficient Bayesian data augmentation technique to augment the contrastive loss into a decomposable one, where standard stochastic optimization can be directly applied without gradient bias. Specifically, our augmented loss defines a joint distribution over the model parameters and the augmented parameters, which can be conveniently optimized by a proposed stochastic expectation-maximization algorithm. Our framework is more general and is related to several popular SSL algorithms. We verify our framework on both small scale models and several large foundation models, including SSL of ImageNet and SSL for vision-language representation learning. Experiment results indicate the existence of gradient bias in all cases, and demonstrate the effectiveness of the proposed method on improving previous state of the arts. Remarkably, our method can outperform the strong MoCo-v3 under the same hyper-parameter setting with only around half of the minibatch size; and also obtains strong results in the recent public benchmark ELEVATER for few-shot image classification.
Changyou Chen, Jianyi Zhang, Yi Xu, Liqun Chen, Jiali Duan, Yiran Chen, Son Tran, Belinda Zeng, Trishul Chilimbi
null
null
2,022
neurips
Randomized Channel Shuffling: Minimal-Overhead Backdoor Attack Detection without Clean Datasets
null
Deep neural networks (DNNs) typically require massive data to train on, which is a hurdle for numerous practical domains. Facing the data shortfall, one viable option is to acquire domain-specific training data from external uncensored sources, such as open webs or third-party data collectors. However, the quality of such acquired data is often not rigorously scrutinized, and one cannot easily rule out the risk of `"poisoned" examples being included in such unreliable datasets, resulting in unreliable trained models which pose potential risks to many high-stake applications. While existing options usually suffer from high computational costs or assumptions on clean data access, this paper attempts to detect backdoors for potential victim models with minimal prior knowledge. In particular, provided with a trained model, users are assumed to (1) have no prior knowledge of whether it is already poisoned, or what the target class/percentage of samples is poisoned, and (2) have no access to a clean sample set from the same training distribution, nor any trusted model trained on such clean data. To tackle this challenging scenario, we first observe the contrasting channel-level statistics between the backdoor trigger and clean image features, and consequently, how they can be differentiated by progressive channel shuffling. We then propose the randomized channel shuffling method for backdoor-targeted class detection, which requires only a few feed-forward passes. It thus incurs minimal overheads and demands no clean sample nor prior knowledge. We further explore a “full” clean data-free setting, where neither the target class detection nor the trigger recovery can access the clean data. Extensive experiments are conducted with three datasets (CIFAR-10, GTSRB, Tiny ImageNet), three architectures (AlexNet, ResNet-20, SENet-18), and three attacks (BadNets, clean label attack, and WaNet). Results consistently endorse the effectiveness of our proposed technique in backdoor model detection, with margins of 0.291 ~ 0.640 AUROC over the current state-of-the-arts. Codes are available at https://github.com/VITA-Group/Random-Shuffling-BackdoorDetect.
Ruisi Cai, Zhenyu Zhang, Tianlong Chen, Xiaohan Chen, Zhangyang Wang
null
null
2,022
neurips
The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics
null
Many high-dimensional statistical inference problems are believed to possess inherent computational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness, including lower bounds against restricted models of computation (such as low-degree functions), as well as methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a rigorous connection between the seemingly different low-degree and free-energy based approaches. We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for Gaussian additive models the "algebraic" notion of low-degree hardness implies failure of "geometric" local MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult to prove directly. These results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower bounds.
Afonso S Bandeira, Ahmed El Alaoui, Samuel Hopkins, Tselil Schramm, Alexander S Wein, Ilias Zadik
null
null
2,022
neurips
Monocular Dynamic View Synthesis: A Reality Check
null
We study the recent progress on dynamic view synthesis (DVS) from monocular video. Though existing approaches have demonstrated impressive results, we show a discrepancy between the practical capture process and the existing experimental protocols, which effectively leaks in multi-view signals during training. We define effective multi-view factors (EMFs) to quantify the amount of multi-view signal present in the input capture sequence based on the relative camera-scene motion. We introduce two new metrics: co-visibility masked image metrics and correspondence accuracy, which overcome the issue in existing protocols. We also propose a new iPhone dataset that includes more diverse real-life deformation sequences. Using our proposed experimental protocol, we show that the state-of-the-art approaches observe a 1-2 dB drop in masked PSNR in the absence of multi-view cues and 4-5 dB drop when modeling complex motion. Code and data can be found at http://hangg7.com/dycheck.
Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, Angjoo Kanazawa
null
null
2,022
neurips
Robust Neural Posterior Estimation and Statistical Model Criticism
null
Computer simulations have proven a valuable tool for understanding complex phenomena across the sciences. However, the utility of simulators for modelling and forecasting purposes is often restricted by low data quality, as well as practical limits to model fidelity. In order to circumvent these difficulties, we argue that modellers must treat simulators as idealistic representations of the true data generating process, and consequently should thoughtfully consider the risk of model misspecification. In this work we revisit neural posterior estimation (NPE), a class of algorithms that enable black-box parameter inference in simulation models, and consider the implication of a simulation-to-reality gap. While recent works have demonstrated reliable performance of these methods, the analyses have been performed using synthetic data generated by the simulator model itself, and have therefore only addressed the well-specified case. In this paper, we find that the presence of misspecification, in contrast, leads to unreliable inference when NPE is used naïvely. As a remedy we argue that principled scientific inquiry with simulators should incorporate a model criticism component, to facilitate interpretable identification of misspecification and a robust inference component, to fit ‘wrong but useful’ models. We propose robust neural posterior estimation (RNPE), an extension of NPE to simultaneously achieve both these aims, through explicitly modelling the discrepancies between simulations and the observed data. We assess the approach on a range of artificially misspecified examples, and find RNPE performs well across the tasks, whereas naïvely using NPE leads to misleading and erratic posteriors.
Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, Sebastian Schmon
null
null
2,022
neurips
Finite-Time Last-Iterate Convergence for Learning in Multi-Player Games
null
We study the question of last-iterate convergence rate of the extragradient algorithm by Korpelevich [1976] and the optimistic gradient algorithm by Popov [1980] in multi-player games. We show that both algorithms with constant step-size have last-iterate convergence rate of $O(\frac{1}{\sqrt{T}})$ to a Nash equilibrium in terms of the gap function in smooth monotone games, where each player's action set is an arbitrary convex set. Previous results only study the unconstrained setting, where each player's action set is the entire Euclidean space. Our results address an open question raised in several recent work by Hsieh et al. [2019], Golowich et al. [2020a,b], who ask for last-iterate convergence rate of either the extragradient or the optimistic gradient algorithm in the constrained setting. Our convergence rates for both algorithms are tight and match the lower bounds by Golowich et al. [2020a,b]. At the core of our results lies a new notion -- the tangent residual, which we use to measure the proximity to equilibrium. We use the tangent residual (or a slight variation of the tangent residual) as the the potential function in our analysis of the extragradient algorithm (or the optimistic gradient algorithm) and prove that it is non-increasing between two consecutive iterates.
Yang Cai, Argyris Oikonomou, Weiqiang Zheng
null
null
2,022
neurips
SPoVT: Semantic-Prototype Variational Transformer for Dense Point Cloud Semantic Completion
null
Point cloud completion is an active research topic for 3D vision and has been widelystudied in recent years. Instead of directly predicting missing point cloud fromthe partial input, we introduce a Semantic-Prototype Variational Transformer(SPoVT) in this work, which takes both partial point cloud and their semanticlabels as the inputs for semantic point cloud object completion. By observingand attending at geometry and semantic information as input features, our SPoVTwould derive point cloud features and their semantic prototypes for completionpurposes. As a result, our SPoVT not only performs point cloud completion withvarying resolution, it also allows manipulation of different semantic parts of anobject. Experiments on benchmark datasets would quantitatively and qualitativelyverify the effectiveness and practicality of our proposed model.
Sheng Yu Huang, Hao-Yu Hsu, Frank Wang
null
null
2,022
neurips
Learning dynamics of deep linear networks with multiple pathways
null
Not only have deep networks become standard in machine learning, they are increasingly of interest in neuroscience as models of cortical computation that capture relationships between structural and functional properties. In addition they are a useful target of theoretical research into the properties of network computation. Deep networks typically have a serial or approximately serial organization across layers, and this is often mirrored in models that purport to represent computation in mammalian brains. There are, however, multiple examples of parallel pathways in mammalian brains. In some cases, such as the mouse, the entire visual system appears arranged in a largely parallel, rather than serial fashion. While these pathways may be formed by differing cost functions that drive different computations, here we present a new mathematical analysis of learning dynamics in networks that have parallel computational pathways driven by the same cost function. We use the approximation of deep linear networks with large hidden layer sizes to show that, as the depth of the parallel pathways increases, different features of the training set (defined by the singular values of the input-output correlation) will typically concentrate in one of the pathways. This result is derived analytically and demonstrated with numerical simulation. Thus, rather than sharing stimulus and task features across multiple pathways, parallel network architectures learn to produce sharply diversified representations with specialized and specific pathways, a mechanism which may hold important consequences for codes in both biological and artificial systems.
Jianghong Shi, Eric Shea-Brown, Michael Buice
null
null
2,022
neurips
Improving Intrinsic Exploration with Language Abstractions
null
Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 47-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.
Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, Edward Grefenstette
null
null
2,022
neurips
Explainable Reinforcement Learning via Model Transforms
null
Understanding emerging behaviors of reinforcement learning (RL) agents may be difficult since such agents are often trained in complex environments using highly complex decision making procedures. This has given rise to a variety of approaches to explainability in RL that aim to reconcile discrepancies that may arise between the behavior of an agent and the behavior that is anticipated by an observer. Most recent approaches have relied either on domain knowledge, that may not always be available, on an analysis of the agent’s policy, or on an analysis of specific elements of the underlying environment, typically modeled as a Markov Decision Process (MDP). Our key claim is that even if the underlying model is not fully known (e.g., the transition probabilities have not been accurately learned) or is not maintained by the agent (i.e., when using model-free methods), the model can nevertheless be exploited to automatically generate explanations. For this purpose, we suggest using formal MDP abstractions and transforms, previously used in the literature for expediting the search for optimal policies, to automatically produce explanations. Since such transforms are typically based on a symbolic representation of the environment, they can provide meaningful explanations for gaps between the anticipated and actual agent behavior. We formally define the explainability problem, suggest a class of transforms that can be used for explaining emergent behaviors, and suggest methods that enable efficient search for an explanation. We demonstrate the approach on a set of standard benchmarks.
Mira Finkelstein, Nitsan levy, Lucy Liu, Yoav Kolumbus, David C. Parkes, Jeffrey S Rosenschein, Sarah Keren
null
null
2,022
neurips
The trade-offs of model size in large recommendation models : 100GB to 10MB Criteo-tb DLRM model
null
Embedding tables dominate industrial-scale recommendation model sizes, using up to terabytes of memory. A popular and the largest publicly available machine learning MLPerf benchmark on recommendation data is a Deep Learning Recommendation Model (DLRM) trained on a terabyte of click-through data. It contains 100GB of embedding memory (25+Billion parameters). DLRMs, due to their sheer size and the associated volume of data, face difficulty in training, deploying for inference, and memory bottlenecks due to large embedding tables. This paper analyzes and extensively evaluates a generic parameter-sharing setup (PSS) for compressing DLRM models. We show theoretical upper bounds on the learnable memory requirements for achieving approximations to the embedding table. Our bounds indicate exponentially fewer parameters suffice for a good approximation. To this end, we demonstrate a PSS DLRM reaching 10000$\times$ compression on criteo-tb without losing quality. Such a compression, however, comes with a caveat. It requires 4.5 $\times$ more iterations to achieve the same saturation quality. The paper argues that this tradeoff needs more investigation as it might be significantly favorable. Leveraging the small size of the compressed model, we show a 4.3$\times$ improvement in training latency leading to similar overall training times. Thus, in the tradeoff between the system advantage of a small DLRM model vs. slower convergence, we show that scales are tipped towards having a smaller DLRM model, leading to the same quality, faster inference, easier deployment, and similar training times.
Aditya Desai, Anshumali Shrivastava
null
null
2,022
neurips
A Unified Framework for Deep Symbolic Regression
null
The last few years have witnessed a surge in methods for symbolic regression, from advances in traditional evolutionary approaches to novel deep learning-based systems. Individual works typically focus on advancing the state-of-the-art for one particular class of solution strategies, and there have been few attempts to investigate the benefits of hybridizing or integrating multiple strategies. In this work, we identify five classes of symbolic regression solution strategies---recursive problem simplification, neural-guided search, large-scale pre-training, genetic programming, and linear models---and propose a strategy to hybridize them into a single modular, unified symbolic regression framework. Based on empirical evaluation using SRBench, a new community tool for benchmarking symbolic regression methods, our unified framework achieves state-of-the-art performance in its ability to (1) symbolically recover analytical expressions, (2) fit datasets with high accuracy, and (3) balance accuracy-complexity trade-offs, across 252 ground-truth and black-box benchmark problems, in both noiseless settings and across various noise levels. Finally, we provide practical use case-based guidance for constructing hybrid symbolic regression algorithms, supported by extensive, combinatorial ablation studies.
Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena, Terrell Mundhenk, Garrett Mulcahy, Brenden K Petersen
null
null
2,022
neurips
On Learning Fairness and Accuracy on Multiple Subgroups
null
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of group sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
Changjian Shui, Gezheng Xu, Qi CHEN, Jiaqi Li, Charles X. Ling, Tal Arbel, Boyu Wang, Christian Gagné
null
null
2,022
neurips
Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments
null
We initiate the study of dynamic regret minimization for goal-oriented reinforcement learning modeled by a non-stationary stochastic shortest path problem with changing cost and transition functions.We start by establishing a lower bound $\Omega((B_{\star} SAT_{\star}(\Delta_c + B_{\star}^2\Delta_P))^{1/3}K^{2/3})$, where $B_{\star}$ is the maximum expected cost of the optimal policy of any episode starting from any state, $T_{\star}$ is the maximum hitting time of the optimal policy of any episode starting from the initial state, $SA$ is the number of state-action pairs, $\Delta_c$ and $\Delta_P$ are the amount of changes of the cost and transition functions respectively, and $K$ is the number of episodes.The different roles of $\Delta_c$ and $\Delta_P$ in this lower bound inspire us to design algorithms that estimate costs and transitions separately.Specifically, assuming the knowledge of $\Delta_c$ and $\Delta_P$, we develop a simple but sub-optimal algorithm and another more involved minimax optimal algorithm (up to logarithmic terms).These algorithms combine the ideas of finite-horizon approximation [Chen et al., 2021b], special Bernstein-style bonuses of the MVP algorithm [Zhang et al., 2020], adaptive confidence widening [Wei and Luo, 2021], as well as some new techniques such as properly penalizing long-horizon policies.Finally, when $\Delta_c$ and $\Delta_P$ are unknown, we develop a variant of the MASTER algorithm [Wei and Luo, 2021] and integrate the aforementioned ideas into it to achieve $\widetilde{O}(\min\{B_{\star} S\sqrt{ALK}, (B_{\star}^2S^2AT_{\star}(\Delta_c+B_{\star}\Delta_P))^{1/3}K^{2/3}\})$ regret, where $L$ is the unknown number of changes of the environment.
Liyu Chen, Haipeng Luo
null
null
2,022
neurips
Understanding Non-linearity in Graph Neural Networks from the Bayesian-Inference Perspective
null
Graph neural networks (GNNs) have shown superiority in many prediction tasks over graphs due to their impressive capability of capturing nonlinear relations in graph-structured data. However, for node classification tasks, often, only marginal improvement of GNNs has been observed in practice over their linear counterparts. Previous works provide very few understandings of this phenomenon. In this work, we resort to Bayesian learning to give an in-depth investigation of the functions of non-linearity in GNNs for node classification tasks. Given a graph generated from the statistical model CSBM, we observe that the max-a-posterior estimation of a node label given its own and neighbors' attributes consists of two types of non-linearity, the transformation of node attributes and a ReLU-activated feature aggregation from neighbors. The latter surprisingly matches the type of non-linearity used in many GNN models. By further imposing Gaussian assumption on node attributes, we prove that the superiority of those ReLU activations is only significant when the node attributes are far more informative than the graph structure, which nicely explains previous empirical observations. A similar argument is derived when there is a distribution shift of node attributes between the training and testing datasets. Finally, we verify our theory on both synthetic and real-world networks. Our code is available at https://github.com/Graph-COM/Bayesian_inference_based_GNN.git.
Rongzhe Wei, Haoteng YIN, Junteng Jia, Austin R. Benson, Pan Li
null
null
2,022
neurips
Self-Supervised Learning via Maximum Entropy Coding
null
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at https://github.com/xinliu20/MEC.
Xin Liu, Zhongdao Wang, Ya-Li Li, Shengjin Wang
null
null
2,022
neurips
Sparse Hypergraph Community Detection Thresholds in Stochastic Block Model
null
Community detection in random graphs or hypergraphs is an interesting fundamental problem in statistics, machine learning and computer vision. When the hypergraphs are generated by a {\em stochastic block model}, the existence of a sharp threshold on the model parameters for community detection was conjectured by Angelini et al. 2015. In this paper, we confirm the positive part of the conjecture, the possibility of non-trivial reconstruction above the threshold, for the case of two blocks. We do so by comparing the hypergraph stochastic block model with its Erd{\"o}s-R{\'e}nyi counterpart. We also obtain estimates for the parameters of the hypergraph stochastic block model. The methods developed in this paper are generalised from the study of sparse random graphs by Mossel et al. 2015 and are motivated by the work of Yuan et al. 2022. Furthermore, we present some discussion on the negative part of the conjecture, i.e., non-reconstruction of community structures.
Erchuan Zhang, David Suter, Giang Truong, Syed Zulqarnain Gilani
null
null
2,022
neurips
Real-Valued Backpropagation is Unsuitable for Complex-Valued Neural Networks
null
Recently complex-valued neural networks have received increasing attention due to successful applications in various tasks and the potential advantages of better theoretical properties and richer representational capacity. However, the training dynamics of complex networks compared to real networks remains an open problem. In this paper, we investigate the dynamics of deep complex networks during real-valued backpropagation in the infinite-width limit via neural tangent kernel (NTK). We first extend the Tensor Program to the complex domain, to show that the dynamics of any basic complex network architecture is governed by its NTK under real-valued backpropagation. Then we propose a way to investigate the comparison of training dynamics between complex and real networks by studying their NTKs. As a result, we surprisingly prove that for most complex activation functions, the commonly used real-valued backpropagation reduces the training dynamics of complex networks to that of ordinary real networks as the widths tend to infinity, thus eliminating the characteristics of complex-valued neural networks. Finally, the experiments validate our theoretical findings numerically.
Zhi-Hao Tan, Yi Xie, Yuan Jiang, Zhi-Hua Zhou
null
null
2,022
neurips
Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition
null
Existing long-tailed recognition methods, aiming to train class-balanced models from long-tailed data, generally assume the models would be evaluated on the uniform test class distribution. However, practical test class distributions often violate this assumption (e.g., being either long-tailed or even inversely long-tailed), which may lead existing methods to fail in real applications. In this paper, we study a more practical yet challenging task, called test-agnostic long-tailed recognition, where the training class distribution is long-tailed while the test class distribution is agnostic and not necessarily uniform. In addition to the issue of class imbalance, this task poses another challenge: the class distribution shift between the training and test data is unknown. To tackle this task, we propose a novel approach, called Self-supervised Aggregation of Diverse Experts, which consists of two strategies: (i) a new skill-diverse expert learning strategy that trains multiple experts from a single and stationary long-tailed dataset to separately handle different class distributions; (ii) a novel test-time expert aggregation strategy that leverages self-supervision to aggregate the learned multiple experts for handling unknown test class distributions. We theoretically show that our self-supervised strategy has a provable ability to simulate test-agnostic class distributions. Promising empirical results demonstrate the effectiveness of our method on both vanilla and test-agnostic long-tailed recognition. The source code is available at https://github.com/Vanint/SADE-AgnosticLT.
Yifan Zhang, Bryan Hooi, Lanqing Hong, Jiashi Feng
null
null
2,022
neurips
VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids
null
State-of-the-art 3D-aware generative models rely on coordinate-based MLPs to parameterize 3D radiance fields. While demonstrating impressive results, querying an MLP for every sample along each ray leads to slow rendering.Therefore, existing approaches often render low-resolution feature maps and process them with an upsampling network to obtain the final image. Albeit efficient, neural rendering often entangles viewpoint and content such that changing the camera pose results in unwanted changes of geometry or appearance.Motivated by recent results in voxel-based novel view synthesis, we investigate the utility of sparse voxel grid representations for fast and 3D-consistent generative modeling in this paper.Our results demonstrate that monolithic MLPs can indeed be replaced by 3D convolutions when combining sparse voxel grids with progressive growing, free space pruning and appropriate regularization.To obtain a compact representation of the scene and allow for scaling to higher voxel resolutions, our model disentangles the foreground object (modeled in 3D) from the background (modeled in 2D).In contrast to existing approaches, our method requires only a single forward pass to generate a full 3D scene. It hence allows for efficient rendering from arbitrary viewpoints while yielding 3D consistent results with high visual fidelity. Code and models are available at https://github.com/autonomousvision/voxgraf.
Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao, Andreas Geiger
null
null
2,022
neurips
A Quantitative Geometric Approach to Neural-Network Smoothness
null
Fast and precise Lipschitz constant estimation of neural networks is an important task for deep learning. Researchers have recently found an intrinsic trade-off between the accuracy and smoothness of neural networks, so training a network with a loose Lipschitz constant estimation imposes a strong regularization, and can hurt the model accuracy significantly. In this work, we provide a unified theoretical framework, a quantitative geometric approach, to address the Lipschitz constant estimation. By adopting this framework, we can immediately obtain several theoretical results, including the computational hardness of Lipschitz constant estimation and its approximability. We implement the algorithms induced from this quantitative geometric approach, which are based on semidefinite programming (SDP). Our empirical evaluation demonstrates that they are more scalable and precise than existing tools on Lipschitz constant estimation for $\ell_\infty$-perturbations. Furthermore, we also show their intricate relations with other recent SDP-based techniques, both theoretically and empirically. We believe that this unified quantitative geometric perspective can bring new insights and theoretical tools to the investigation of neural-network smoothness and robustness.
Zi Wang, Gautam Prakriya, Somesh Jha
null
null
2,022
neurips
Black-box coreset variational inference
null
Recent advances in coreset methods have shown that a selection of representative datapoints can replace massive volumes of data for Bayesian inference, preserving the relevant statistical information and significantly accelerating subsequent downstream tasks. Existing variational coreset constructions rely on either selecting subsets of the observed datapoints, or jointly performing approximate inference and optimizing pseudodata in the observed space akin to inducing points methods in Gaussian Processes. So far, both approaches are limited by complexities in evaluating their objectives for general purpose models, and require generating samples from a typically intractable posterior over the coreset throughout inference and testing. In this work, we present a black-box variational inference framework for coresets that overcomes these constraints and enables principled application of variational coresets to intractable models, such as Bayesian neural networks. We apply our techniques to supervised learning problems, and compare them with existing approaches in the literature for data summarization and inference.
Dionysis Manousakas, Hippolyt Ritter, Theofanis Karaletsos
null
null
2,022
neurips
Structuring Representations Using Group Invariants
null
A finite set of invariants can identify many interesting transformation groups. For example, distances, inner products and angles are preserved by Euclidean, Orthogonal and Conformal transformations, respectively. In an equivariant representation, the group invariants should remain constant on the embedding as we transform the input. This gives a procedure for learning equivariant representations without knowing the possibly nonlinear action of the group in the input space. Rather than enforcing such hard invariance constraints on the latent space, we show how to use invariants for "symmetry regularization" of the latent, while guaranteeing equivariance through other means. We also show the feasibility of learning disentangled representations using this approach and provide favorable qualitative and quantitative results on downstream tasks, including world modeling and reinforcement learning.
Mehran Shakerinava, Arnab Kumar Mondal, Siamak Ravanbakhsh
null
null
2,022
neurips
Understanding Aesthetics with Language: A Photo Critique Dataset for Aesthetic Assessment
null
Computational inference of aesthetics is an ill-defined task due to its subjective nature. Many datasets have been proposed to tackle the problem by providing pairs of images and aesthetic scores based on human ratings. However, humans are better at expressing their opinion, taste, and emotions by means of language rather than summarizing them in a single number. In fact, photo critiques provide much richer information as they reveal how and why users rate the aesthetics of visual stimuli. In this regard, we propose the Reddit Photo Critique Dataset (RPCD), which contains tuples of image and photo critiques. RPCD consists of 74K images and 220K comments and is collected from a Reddit community used by hobbyists and professional photographers to improve their photography skills by leveraging constructive community feedback. The proposed dataset differs from previous aesthetics datasets mainly in three aspects, namely (i) the large scale of the dataset and the extension of the comments criticizing different aspects of the image, (ii) it contains mostly UltraHD images, and (iii) it can easily be extended to new data as it is collected through an automatic pipeline. To the best of our knowledge, in this work, we propose the first attempt to estimate the aesthetic quality of visual stimuli from the critiques. To this end, we exploit the polarity of the sentiment of criticism as an indicator of aesthetic judgment. We demonstrate how sentiment polarity correlates positively with the aesthetic judgment available for two aesthetic assessment benchmarks. Finally, we experiment with several models by using the sentiment scores as a target for ranking images. Dataset and baselines are available https://github.com/mediatechnologycenter/aestheval.
Daniel Vera Nieto, Luigi Celona, Clara Fernandez Labrador
null
null
2,022
neurips
On Image Segmentation With Noisy Labels: Characterization and Volume Properties of the Optimal Solutions to Accuracy and Dice
null
We study two of the most popular performance metrics in medical image segmentation, Accuracy and Dice, when the target labels are noisy. For both metrics, several statements related to characterization and volume properties of the set of optimal segmentations are proved, and associated experiments are provided. Our main insights are: (i) the volume of the solutions to both metrics may deviate significantly from the expected volume of the target, (ii) the volume of a solution to Accuracy is always less than or equal to the volume of a solution to Dice and (iii) the optimal solutions to both of these metrics coincide when the set of feasible segmentations is constrained to the set of segmentations with the volume equal to the expected volume of the target.
Marcus Nordstrom, Henrik Hult, Fredrik Löfman, Jonas Söderberg
null
null
2,022
neurips
Distilling Representations from GAN Generator via Squeeze and Span
null
In recent years, generative adversarial networks (GANs) have been an actively studied topic and shown to successfully produce high-quality realistic images in various domains. The controllable synthesis ability of GAN generators suggests that they maintain informative, disentangled, and explainable image representations, but leveraging and transferring their representations to downstream tasks is largely unexplored. In this paper, we propose to distill knowledge from GAN generators by squeezing and spanning their representations. We \emph{squeeze} the generator features into representations that are invariant to semantic-preserving transformations through a network before they are distilled into the student network. We \emph{span} the distilled representation of the synthetic domain to the real domain by also using real training data to remedy the mode collapse of GANs and boost the student network performance in a real domain. Experiments justify the efficacy of our method and reveal its great significance in self-supervised representation learning. Code is available at https://github.com/yangyu12/squeeze-and-span.
Yu Yang, Xiaotian Cheng, Chang Liu, Hakan Bilen, Xiangyang Ji
null
null
2,022
neurips
Log-Concave and Multivariate Canonical Noise Distributions for Differential Privacy
null
A canonical noise distribution (CND) is an additive mechanism designed to satisfy $f$-differential privacy ($f$-DP), without any wasted privacy budget. $f$-DP is a hypothesis testing-based formulation of privacy phrased in terms of tradeoff functions, which captures the difficulty of a hypothesis test. In this paper, we consider the existence and construction of both log-concave CNDs and multivariate CNDs. Log-concave distributions are important to ensure that higher outputs of the mechanism correspond to higher input values, whereas multivariate noise distributions are important to ensure that a joint release of multiple outputs has a tight privacy characterization. We show that the existence and construction of CNDs for both types of problems is related to whether the tradeoff function can be decomposed by functional composition (related to group privacy) or mechanism composition. In particular, we show that pure $\epsilon$-DP cannot be decomposed in either way and that there is neither a log-concave CND nor any multivariate CND for $\epsilon$-DP. On the other hand, we show that Gaussian-DP, $(0,\delta)$-DP, and Laplace-DP each have both log-concave and multivariate CNDs.
Jordan Awan, Jinshuo Dong
null
null
2,022
neurips
Fairness Reprogramming
null
Despite a surge of recent advances in promoting machine Learning (ML) fairness, the existing mainstream approaches mostly require training or finetuning the entire weights of the neural network to meet the fairness criteria. However, this is often infeasible in practice for those large-scale trained models due to large computational and storage costs, low data efficiency, and model privacy issues. In this paper, we propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique. Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger, which is tuned towards the fairness criteria under a min-max formulation. We further introduce an information-theoretic framework that explains why and under what conditions fairness goals can be achieved using the fairness trigger. We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models by providing false demographic information that hinders the model from utilizing the correct demographic information to make the prediction. Extensive experiments on both NLP and CV datasets demonstrate that our method can achieve better fairness improvements than retraining-based methods with far less data dependency under two widely-used fairness criteria. Codes are available at https://github.com/UCSB-NLP-Chang/Fairness-Reprogramming.git.
Guanhua Zhang, Yihua Zhang, Yang Zhang, Wenqi Fan, Qing Li, Sijia Liu, Shiyu Chang
null
null
2,022
neurips
Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare
null
Many reinforcement learning (RL) applications have combinatorial action spaces, where each action is a composition of sub-actions. A standard RL approach ignores this inherent factorization structure, resulting in a potential failure to make meaningful inferences about rarely observed sub-action combinations; this is particularly problematic for offline settings, where data may be limited. In this work, we propose a form of linear Q-function decomposition induced by factored action spaces. We study the theoretical properties of our approach, identifying scenarios where it is guaranteed to lead to zero bias when used to approximate the Q-function. Outside the regimes with theoretical guarantees, we show that our approach can still be useful because it leads to better sample efficiency without necessarily sacrificing policy optimality, allowing us to achieve a better bias-variance trade-off. Across several offline RL problems using simulators and real-world datasets motivated by healthcare, we demonstrate that incorporating factored action spaces into value-based RL can result in better-performing policies. Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space when applying RL to observational datasets.
Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, Jenna Wiens
null
null
2,022
neurips
Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face Recognition
null
Deep learning models have shown their vulnerability when dealing with adversarial attacks. Existing attacks almost perform on low-level instances, such as pixels and super-pixels, and rarely exploit semantic clues. For face recognition attacks, existing methods typically generate the l_p-norm perturbations on pixels, however, resulting in low attack transferability and high vulnerability to denoising defense models. In this work, instead of performing perturbations on the low-level pixels, we propose to generate attacks through perturbing on the high-level semantics to improve attack transferability. Specifically, a unified flexible framework, Adversarial Attributes (Adv-Attribute), is designed to generate inconspicuous and transferable attacks on face recognition, which crafts the adversarial noise and adds it into different attributes based on the guidance of the difference in face recognition features from the target. Moreover, the importance-aware attribute selection and the multi-objective optimization strategy are introduced to further ensure the balance of stealthiness and attacking strength. Extensive experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates while maintaining better visual effects against recent attack methods.
Shuai Jia, Bangjie Yin, Taiping Yao, Shouhong Ding, Chunhua Shen, Xiaokang Yang, Chao Ma
null
null
2,022
neurips
Invariance-Aware Randomized Smoothing Certificates
null
Building models that comply with the invariances inherent to different domains, such as invariance under translation or rotation, is a key aspect of applying machine learning to real world problems like molecular property prediction, medical imaging, protein folding or LiDAR classification. For the first time, we study how the invariances of a model can be leveraged to provably guarantee the robustness of its predictions. We propose a gray-box approach, enhancing the powerful black-box randomized smoothing technique with white-box knowledge about invariances. First, we develop gray-box certificates based on group orbits, which can be applied to arbitrary models with invariance under permutation and Euclidean isometries. Then, we derive provably tight gray-box certificates. We experimentally demonstrate that the provably tight certificates can offer much stronger guarantees, but that in practical scenarios the orbit-based method is a good approximation.
Jan Schuchardt, Stephan Günnemann
null
null
2,022
neurips
Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution
null
This work characterizes the effect of depth on the optimization landscape of linear regression, showing that, despite their nonconvexity, deeper models have more desirable optimization landscape. We consider a robust and over-parameterized setting, where a subset of measurements are grossly corrupted with noise, and the true linear model is captured via an $N$-layer diagonal linear neural network. On the negative side, we show that this problem does not have a benign landscape: given any $N\geq 1$, with constant probability, there exists a solution corresponding to the ground truth that is neither local nor global minimum. However, on the positive side, we prove that, for any $N$-layer model with $N\geq 2$, a simple sub-gradient method becomes oblivious to such “problematic” solutions; instead, it converges to a balanced solution that is not only close to the ground truth but also enjoys a flat local landscape, thereby eschewing the need for “early stopping”. Lastly, we empirically verify that the desirable optimization landscape of deeper models extends to other robust learning tasks, including deep matrix recovery and deep ReLU networks with $\ell_1$-loss.
Jianhao Ma, Salar Fattahi
null
null
2,022
neurips
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
null
Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stake applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of explainable image classifiers that first explain, and then predict (as opposed to post-hoc explanation methods). Our models first rank the training-set images by their distance with the query in an image-level deep feature space. And then, we re-rank the top-50 shortlisted candidates using patch-wise similarity of 5 highest-similarity pairs of patches between the query and every candidate. On ImageNet, our models improve (by 1-4 points) the out-of-distribution accuracy on several datasets including Adversarial Patch and ImageNet-R while performing marginally worse (by 1-2 points) on ImageNet to the baselines (ResNet-50 pre-trained ImageNet). A consistent trend is observed on CUB. Via a large-scale, human study (~60 users per method per dataset) on ImageNet and CUB, we find our proposed correspondence-based explanations led to human-alone image classification accuracy and human-AI team accuracy that are consistently better than those of k-NN. Our correspondence-based explanations help users better correctly reject AI's wrong decisions than all other tested methods.Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e. that is higher than either AI-alone or human-alone), in both image classification tasks.
Mohammad Reza Taesiri, Giang Nguyen, Anh Nguyen
null
null
2,022
neurips
A Practical, Progressively-Expressive GNN
null
Message passing neural networks (MPNNs) have become a dominant flavor of graph neural networks (GNNs) in recent years. Yet, MPNNs come with notable limitations; namely, they are at most as powerful as the 1-dimensional Weisfeiler-Leman (1-WL) test in distinguishing graphs in a graph isomorphism testing frame-work. To this end, researchers have drawn inspiration from the k-WL hierarchy to develop more expressive GNNs. However, current k-WL-equivalent GNNs are not practical for even small values of k, as k-WL becomes combinatorially more complex as k grows. At the same time, several works have found great empirical success in graph learning tasks without highly expressive models, implying that chasing expressiveness with a “coarse-grained ruler” of expressivity like k-WL is often unneeded in practical tasks. To truly understand the expressiveness-complexity tradeoff, one desires a more “fine-grained ruler,” which can more gradually increase expressiveness. Our work puts forth such a proposal: Namely, we first propose the (k, c)(≤)-SETWL hierarchy with greatly reduced complexity from k-WL, achieved by moving from k-tuples of nodes to sets with ≤k nodes defined over ≤c connected components in the induced original graph. We show favorable theoretical results for this model in relation to k-WL, and concretize it via (k, c)(≤)-SETGNN, which is as expressive as (k, c)(≤)-SETWL. Our model is practical and progressively-expressive, increasing in power with k and c. We demonstrate effectiveness on several benchmark datasets, achieving several state-of-the-art results with runtime and memory usage applicable to practical graphs. We open source our implementation at https://github.com/LingxiaoShawn/KCSetGNN.
Lingxiao Zhao, Neil Shah, Leman Akoglu
null
null
2,022
neurips
AutoMTL: A Programming Framework for Automating Efficient Multi-Task Learning
null
Multi-task learning (MTL) jointly learns a set of tasks by sharing parameters among tasks. It is a promising approach for reducing storage costs while improving task accuracy for many computer vision tasks. The effective adoption of MTL faces two main challenges. The first challenge is to determine what parameters to share across tasks to optimize for both memory efficiency and task accuracy. The second challenge is to automatically apply MTL algorithms to an arbitrary CNN backbone without requiring time-consuming manual re-implementation and significant domain expertise. This paper addresses the challenges by developing the first programming framework AutoMTL that automates efficient MTL model development for vision tasks. AutoMTL takes as inputs an arbitrary backbone convolutional neural network (CNN) and a set of tasks to learn, and automatically produces a multi-task model that achieves high accuracy and small memory footprint simultaneously. Experiments on three popular MTL benchmarks (CityScapes, NYUv2, Tiny-Taskonomy) demonstrate the effectiveness of AutoMTL over state-of-the-art approaches as well as the generalizability of AutoMTL across CNNs. AutoMTL is open-sourced and available at https://github.com/zhanglijun95/AutoMTL.
Lijun Zhang, Xiao Liu, Hui Guan
null
null
2,022
neurips
PALMER: Perception - Action Loop with Memory for Long-Horizon Planning
null
To achieve autonomy in a priori unknown real-world scenarios, agents should be able to: i) act from high-dimensional sensory observations (e.g., images), ii) learn from past experience to adapt and improve, and iii) be capable of long horizon planning. Classical planning algorithms (e.g. PRM, RRT) are proficient at handling long-horizon planning. Deep learning based methods in turn can provide the necessary representations to address the others, by modeling statistical contingencies between observations. In this direction, we introduce a general-purpose planning algorithm called PALMER that combines classical sampling-based planning algorithms with learning-based perceptual representations. For training these perceptual representations, we combine Q-learning with contrastive representation learning to create a latent space where the distance between the embeddings of two states captures how easily an optimal policy can traverse between them. For planning with these perceptual representations, we re-purpose classical sampling-based planning algorithms to retrieve previously observed trajectory segments from a replay buffer and restitch them into approximately optimal paths that connect any given pair of start and goal states. This creates a tight feedback loop between representation learning, memory, reinforcement learning, and sampling-based planning. The end result is an experiential framework for long-horizon planning that is significantly more robust and sample efficient compared to existing methods.
Onur Beker, Mohammad Mohammadi, Amir Zamir
null
null
2,022
neurips
PatchComplete: Learning Multi-Resolution Patch Priors for 3D Shape Completion on Unseen Categories
null
While 3D shape representations enable powerful reasoning in many visual and perception applications, learning 3D shape priors tends to be constrained to the specific categories trained on, leading to an inefficient learning process, particularly for general applications with unseen categories. Thus, we propose PatchComplete, which learns effective shape priors based on multi-resolution local patches, which are often more general than full shapes (e.g., chairs and tables often both share legs) and thus enable geometric reasoning about unseen class categories. To learn these shared substructures, we learn multi-resolution patch priors across all train categories, which are then associated to input partial shape observations by attention across the patch priors, and finally decoded into a complete shape reconstruction. Such patch-based priors avoid overfitting to specific train categories and enable reconstruction on entirely unseen categories at test time. We demonstrate the effectiveness of our approach on synthetic ShapeNet data as well as challenging real-scanned objects from ScanNet, which include noise and clutter, improving over state of the art in novel-category shape completion by 19.3% in chamfer distance on ShapeNet, and 9.0% for ScanNet.
Yuchen Rao, Yinyu Nie, Angela Dai
null
null
2,022
neurips
On the generalization of learning algorithms that do not converge
null
Generalization analyses of deep learning typically assume that the training converges to a fixed point. But, recent results indicate that in practice, the weights of deep neural networks optimized with stochastic gradient descent often oscillate indefinitely. To reduce this discrepancy between theory and practice, this paper focuses on the generalization of neural networks whose training dynamics do not necessarily converge to fixed points. Our main contribution is to propose a notion of statistical algorithmic stability (SAS) that extends classical algorithmic stability to non-convergent algorithms and to study its connection to generalization. This ergodic-theoretic approach leads to new insights when compared to the traditional optimization and learning theory perspectives. We prove that the stability of the time-asymptotic behavior of a learning algorithm relates to its generalization and empirically demonstrate how loss dynamics can provide clues to generalization performance. Our findings provide evidence that networks that ``train stably generalize better'' even when the training continues indefinitely and the weights do not converge.
Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, Stefanie Jegelka
null
null
2,022
neurips
WeightedSHAP: analyzing and improving Shapley based feature attributions
null
Shapley value is a popular approach for measuring the influence of individual features. While Shapley feature attribution is built upon desiderata from game theory, some of its constraints may be less natural in certain machine learning settings, leading to unintuitive model interpretation. In particular, the Shapley value uses the same weight for all marginal contributions---i.e. it gives the same importance when a large number of other features are given versus when a small number of other features are given. This property can be problematic if larger feature sets are more or less informative than smaller feature sets. Our work performs a rigorous analysis of the potential limitations of Shapley feature attribution. We identify simple settings where the Shapley value is mathematically suboptimal by assigning larger attributions for less influential features. Motivated by this observation, we propose WeightedSHAP, which generalizes the Shapley value and learns which marginal contributions to focus directly from data. On several real-world datasets, we demonstrate that the influential features identified by WeightedSHAP are better able to recapitulate the model's predictions compared to the features identified by the Shapley value.
Yongchan Kwon, James Y. Zou
null
null
2,022
neurips
Distributed Online Convex Optimization with Compressed Communication
null
We consider a distributed online convex optimization problem when streaming data are distributed among computing agents over a connected communication network. Since the data are high-dimensional or the network is large-scale, communication load can be a bottleneck for the efficiency of distributed algorithms. To tackle this bottleneck, we apply the state-of-art data compression scheme to the fundamental GD-based distributed online algorithms. Three algorithms with difference-compressed communication are proposed for full information feedback (DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit feedback (DC-DO2BD), respectively. We obtain regret bounds explicitly in terms of time horizon, compression ratio, decision dimension, agent number, and network parameters. Our algorithms are proved to be no-regret and match the same regret bounds, w.r.t. time horizon, with their uncompressed versions for both convex and strongly convex losses. Numerical experiments are given to validate the theoretical findings and illustrate that the proposed algorithms can effectively reduce the total transmitted bits for distributed online training compared with the uncompressed baseline.
Zhipeng Tu, Xi Wang, Yiguang Hong, Lei Wang, Deming Yuan, Guodong Shi
null
null
2,022
neurips
Robustness Analysis of Video-Language Models Against Visual and Language Perturbations
null
Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are more robust when text is perturbed versus when video is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.
Madeline Schiappa, Shruti Vyas, Hamid Palangi, Yogesh Rawat, Vibhav Vineet
null
null
2,022
neurips
Hyperbolic Feature Augmentation via Distribution Estimation and Infinite Sampling on Manifolds
null
Learning in hyperbolic spaces has attracted growing attention recently, owing to their capabilities in capturing hierarchical structures of data. However, existing learning algorithms in the hyperbolic space tend to overfit when limited data is given. In this paper, we propose a hyperbolic feature augmentation method that generates diverse and discriminative features in the hyperbolic space to combat overfitting. We employ a wrapped hyperbolic normal distribution to model augmented features, and use a neural ordinary differential equation module that benefits from meta-learning to estimate the distribution. This is to reduce the bias of estimation caused by the scarcity of data. We also derive an upper bound of the augmentation loss, which enables us to train a hyperbolic model by using an infinite number of augmentations. Experiments on few-shot learning and continual learning tasks show that our method significantly improves the performance of hyperbolic algorithms in scarce data regimes.
Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi
null
null
2,022
neurips
Temporal Effective Batch Normalization in Spiking Neural Networks
null
Spiking Neural Networks (SNNs) are promising in neuromorphic hardware owing to utilizing spatio-temporal information and sparse event-driven signal processing. However, it is challenging to train SNNs due to the non-differentiable nature of the binary firing function. The surrogate gradients alleviate the training problem and make SNNs obtain comparable performance as Artificial Neural Networks (ANNs) with the same structure. Unfortunately, batch normalization, contributing to the success of ANNs, does not play a prominent role in SNNs because of the additional temporal dimension. To this end, we propose an effective normalization method called temporal effective batch normalization (TEBN). By rescaling the presynaptic inputs with different weights at every time-step, temporal distributions become smoother and uniform. Theoretical analysis shows that TEBN can be viewed as a smoother of SNN's optimization landscape and could help stabilize the gradient norm. Experimental results on both static and neuromorphic datasets show that SNNs with TEBN outperform the state-of-the-art accuracy with fewer time-steps, and achieve better robustness to hyper-parameters than other normalizations.
Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, Tiejun Huang
null
null
2,022
neurips
Remember the Past: Distilling Datasets into Addressable Memories for Neural Networks
null
We propose an algorithm that compresses the critical information of a large dataset into compact addressable memories. These memories can then be recalled to quickly re-train a neural network and recover the performance (instead of storing and re-training on the full original dataset). Building upon the dataset distillation framework, we make a key observation that a shared common representation allows for more efficient and effective distillation. Concretely, we learn a set of bases (aka ``memories'') which are shared between classes and combined through learned flexible addressing functions to generate a diverse set of training examples. This leads to several benefits: 1) the size of compressed data does not necessarily grow linearly with the number of classes; 2) an overall higher compression rate with more effective distillation is achieved; and 3) more generalized queries are allowed beyond recalling the original classes. We demonstrate state-of-the-art results on the dataset distillation task across five benchmarks, including up to 16.5% and 9.7% accuracy improvement when distilling CIFAR10 and CIFAR100 respectively. We then leverage our framework to perform continual learning, achieving state-of-the-art results on four benchmarks, with 23.2% accuracy improvement on MANY.
Zhiwei Deng, Olga Russakovsky
null
null
2,022
neurips
Enhancing Safe Exploration Using Safety State Augmentation
null
Safe exploration is a challenging and important problem in model-free reinforcement learning (RL). Often the safety cost is sparse and unknown, which unavoidably leads to constraint violations - a phenomenon ideally to be avoided in safety-critical applications. We tackle this problem by augmenting the state-space with a safety state, which is nonnegative if and only if the constraint is satisfied. The value of this state also serves as a distance toward constraint violation, while its initial value indicates the available safety budget. This idea allows us to derive policies for scheduling the safety budget during training. We call our approach Simmer (Safe policy IMproveMEnt for RL) to reflect the careful nature of these schedules. We apply this idea to two safe RL problems: RL with constraints imposed on an average cost, and RL with constraints imposed on a cost with probability one. Our experiments suggest that "simmering" a safe algorithm can improve safety during training for both settings. We further show that Simmer can stabilize training and improve the performance of safe RL with average constraints.
Aivar Sootla, Alexander Cowen-Rivers, Jun Wang, Haitham Bou Ammar
null
null
2,022
neurips
Local Latent Space Bayesian Optimization over Structured Inputs
null
Bayesian optimization over the latent spaces of deep autoencoder models (DAEs) has recently emerged as a promising new approach for optimizing challenging black-box functions over structured, discrete, hard-to-enumerate search spaces (e.g., molecules). Here the DAE dramatically simplifies the search space by mapping inputs into a continuous latent space where familiar Bayesian optimization tools can be more readily applied. Despite this simplification, the latent space typically remains high-dimensional. Thus, even with a well-suited latent space, these approaches do not necessarily provide a complete solution, but may rather shift the structured optimization problem to a high-dimensional one. In this paper, we propose LOL-BO, which adapts the notion of trust regions explored in recent work on high-dimensional Bayesian optimization to the structured setting. By reformulating the encoder to function as both an encoder for the DAE globally and as a deep kernel for the surrogate model within a trust region, we better align the notion of local optimization in the latent space with local optimization in the input space. LOL-BO achieves as much as 20 times improvement over state-of-the-art latent space Bayesian optimization methods across six real-world benchmarks, demonstrating that improvement in optimization strategies is as important as developing better DAE models.
Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, Jacob Gardner
null
null
2,022
neurips
Unsupervised Reinforcement Learning with Contrastive Intrinsic Control
null
We introduce Contrastive Intrinsic Control (CIC), an unsupervised reinforcement learning (RL) algorithm that maximizes the mutual information between state-transitions and latent skill vectors. CIC utilizes contrastive learning between state-transitions and skills vectors to learn behaviour embeddings and maximizes the entropy of these embeddings as an intrinsic reward to encourage behavioural diversity. We evaluate our algorithm on the Unsupervised RL Benchmark (URLB) in the asymptotic state-based setting, which consists of a long reward-free pre-training phase followed by a short adaptation phase to downstream tasks with extrinsic rewards. We find that CIC improves over prior exploration algorithms in terms of adaptation efficiency to downstream tasks on state-based URLB.
Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, Pieter Abbeel
null
null
2,022
neurips
Graph Neural Network Bandits
null
We consider the bandit optimization problem with the reward function defined over graph-structured data. This problem has important applications in molecule design and drug discovery, where the reward is naturally invariant to graph permutations. The key challenges in this setting are scaling to large domains, and to graphs with many nodes. We resolve these challenges by embedding the permutation invariance into our model. In particular, we show that graph neural networks (GNNs) can be used to estimate the reward function, assuming it resides in the Reproducing Kernel Hilbert Space of a permutation-invariant additive kernel. By establishing a novel connection between such kernels and the graph neural tangent kernel (GNTK), we introduce the first GNN confidence bound and use it to design a phased-elimination algorithm with sublinear regret. Our regret bound depends on the GNTK's maximum information gain, which we also provide a bound for. Perhaps surprisingly, even though the reward function depends on all $N$ node features, our guarantees are independent of the number of graph nodes $N$. Empirically, our approach exhibits competitive performance and scales well on graph-structured domains.
Parnian Kassraie, Andreas Krause, Ilija Bogunovic
null
null
2,022
neurips
CS-Shapley: Class-wise Shapley Values for Data Valuation in Classification
null
Data valuation, or the valuation of individual datum contributions, has seen growing interest in machine learning due to its demonstrable efficacy for tasks such as noisy label detection. In particular, due to the desirable axiomatic properties, several Shapley value approximations have been proposed. In these methods, the value function is usually defined as the predictive accuracy over the entire development set. However, this limits the ability to differentiate between training instances that are helpful or harmful to their own classes. Intuitively, instances that harm their own classes may be noisy or mislabeled and should receive a lower valuation than helpful instances. In this work, we propose CS-Shapley, a Shapley value with a new value function that discriminates between training instances’ in-class and out-of-class contributions. Our theoretical analysis shows the proposed value function is (essentially) the unique function that satisfies two desirable properties for evaluating data values in classification. Further, our experiments on two benchmark evaluation tasks (data removal and noisy label detection) and four classifiers demonstrate the effectiveness of CS-Shapley over existing methods. Lastly, we evaluate the “transferability” of data values estimated from one classifier to others, and our results suggest Shapley-based data valuation is transferable for application across different models.
Stephanie Schoch, Haifeng Xu, Yangfeng Ji
null
null
2,022
neurips
Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer
null
The large pre-trained vision transformers (ViTs) have demonstrated remarkable performance on various visual tasks, but suffer from expensive computational and memory cost problems when deployed on resource-constrained devices. Among the powerful compression approaches, quantization extremely reduces the computation and memory consumption by low-bit parameters and bit-wise operations. However, low-bit ViTs remain largely unexplored and usually suffer from a significant performance drop compared with the real-valued counterparts. In this work, through extensive empirical analysis, we first identify the bottleneck for severe performance drop comes from the information distortion of the low-bit quantized self-attention map. We then develop an information rectification module (IRM) and a distribution guided distillation (DGD) scheme for fully quantized vision transformers (Q-ViT) to effectively eliminate such distortion, leading to a fully quantized ViTs. We evaluate our methods on popular DeiT and Swin backbones. Extensive experimental results show that our method achieves a much better performance than the prior arts. For example, our Q-ViT can theoretically accelerates the ViT-S by 6.14x and achieves about 80.9% Top-1 accuracy, even surpassing the full-precision counterpart by 1.0% on ImageNet dataset. Our codes and models are attached on https://github.com/YanjingLi0202/Q-ViT
Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, Guodong Guo
null
null
2,022
neurips
Regularized Gradient Descent Ascent for Two-Player Zero-Sum Markov Games
null
We study the problem of finding the Nash equilibrium in a two-player zero-sum Markov game. Due to its formulation as a minimax optimization program, a natural approach to solve the problem is to perform gradient descent/ascent with respect to each player in an alternating fashion. However, due to the non-convexity/non-concavity of the underlying objective function, theoretical understandings of this method are limited. In our paper, we consider solving an entropy-regularized variant of the Markov game. The regularization introduces structures into the optimization landscape that make the solutions more identifiable and allow the problem to be solved more efficiently. Our main contribution is to show that under proper choices of the regularization parameter, the gradient descent ascent algorithm converges to the Nash equilibrium of the original unregularized problem. We explicitly characterize the finite-time performance of the last iterate of our algorithm, which vastly improves over the existing convergence bound of the gradient descent ascent algorithm without regularization. Finally, we complement the analysis with numerical simulations that illustrate the accelerated convergence of the algorithm.
Sihan Zeng, Thinh Doan, Justin Romberg
null
null
2,022
neurips
Concrete Score Matching: Generalized Score Matching for Discrete Data
null
Representing probability distributions by the gradient of their density functions has proven effective in modeling a wide range of continuous data modalities. However, this representation is not applicable in discrete domains where the gradient is undefined. To this end, we propose an analogous score function called the “Concrete score”, a generalization of the (Stein) score for discrete settings. Given a predefined neighborhood structure, the Concrete score of any input is defined by the rate of change of the probabilities with respect to local directional changes of the input. This formulation allows us to recover the (Stein) score in continuous domains when measuring such changes by the Euclidean distance, while using the Manhattan distance leads to our novel score function in discrete domains. Finally, we introduce a new framework to learn such scores from samples called Concrete Score Matching (CSM), and propose an efficient training objective to scale our approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets, and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.
Chenlin Meng, Kristy Choi, Jiaming Song, Stefano Ermon
null
null
2,022
neurips
On the Representation Collapse of Sparse Mixture of Experts
null
Sparse mixture of experts provides larger model capacity while requiring a constant computational overhead. It employs the routing mechanism to distribute input tokens to the best-matched experts according to their hidden representations. However, learning such a routing mechanism encourages token clustering around expert centroids, implying a trend toward representation collapse. In this work, we propose to estimate the routing scores between tokens and experts on a low-dimensional hypersphere. We conduct extensive experiments on cross-lingual language model pre-training and fine-tuning on downstream tasks. Experimental results across seven multilingual benchmarks show that our method achieves consistent gains. We also present a comprehensive analysis on the representation and routing behaviors of our models. Our method alleviates the representation collapse issue and achieves more consistent routing than the baseline mixture-of-experts methods.
Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal, Payal Bajaj, XIA SONG, Xian-Ling Mao, Heyan Huang, Furu Wei
null
null
2,022
neurips
Chefs' Random Tables: Non-Trigonometric Random Features
null
We introduce chefs' random tables (CRTs), a new class of non-trigonometric random features (RFs) to approximate Gaussian and softmax kernels. CRTs are an alternative to standard random kitchen sink (RKS) methods, which inherently rely on the trigonometric maps. We present variants of CRTs where RFs are positive, a key requirement for applications in recent low-rank Transformers. Further variance reduction is possible by leveraging statistics which are simple to compute. One instantiation of CRTs, the optimal positive random features (OPRFs), is to our knowledge the first RF method for unbiased softmax kernel estimation with positive and bounded RFs, resulting in exponentially small tails and much lower variance than its counterparts. As we show, orthogonal random features applied in OPRFs provide additional variance reduction for any dimensionality $d$ (not only asymptotically for sufficiently large $d$, as for RKS). We test CRTs on many tasks ranging from non-parametric classification to training Transformers for text, speech and image data, obtaining new state-of-the-art results for low-rank text Transformers, while providing linear space and time complexity.
Valerii Likhosherstov, Krzysztof M Choromanski, Kumar Avinava Dubey, Frederick Liu, Tamas Sarlos, Adrian Weller
null
null
2,022
neurips
HYPRO: A Hybridly Normalized Probabilistic Model for Long-Horizon Prediction of Event Sequences
null
In this paper, we tackle the important yet under-investigated problem of making long-horizon prediction of event sequences. Existing state-of-the-art models do not perform well at this task due to their autoregressive structure. We propose HYPRO, a hybridly normalized probabilistic model that naturally fits this task: its first part is an autoregressive base model that learns to propose predictions; its second part is an energy function that learns to reweight the proposals such that more realistic predictions end up with higher probabilities. We also propose efficient training and inference algorithms for this model. Experiments on multiple real-world datasets demonstrate that our proposed HYPRO model can significantly outperform previous models at making long-horizon predictions of future events. We also conduct a range of ablation studies to investigate the effectiveness of each component of our proposed methods.
Siqiao Xue, Xiaoming Shi, James Zhang, Hongyuan Mei
null
null
2,022
neurips
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
null
As part of the effort to understand implicit bias of gradient descent in overparametrized models, several results have shown how the training trajectory on the overparametrized model can be understood as mirror descent on a different objective. The main result here is a complete characterization of this phenomenon under a notion termed commuting parametrization, which encompasses all the previous results in this setting. It is shown that gradient flow with any commuting parametrization is equivalent to continuous mirror descent with a related mirror map. Conversely, continuous mirror descent with any mirror map can be viewed as gradient flow with a related commuting parametrization. The latter result relies upon Nash's embedding theorem.
Zhiyuan Li, Tianhao Wang, Jason D. Lee, Sanjeev Arora
null
null
2,022
neurips
Factuality Enhanced Language Models for Open-Ended Text Generation
null
Pretrained language models (LMs) are susceptible to generate text with nonfactual information. In this work, we measure and improve the factual accuracy of large-scale LMs for open-ended text generation. We design the FactualityPrompts test set and metrics to measure the factuality of LM generations. Based on that, we study the factual accuracy of LMs with parameter sizes ranging from 126M to 530B. Interestingly, we find that larger LMs are more factual than smaller ones, although a previous study suggests that larger LMs can be less truthful in terms of misconceptions. In addition, popular sampling algorithms (e.g., top-p) in open-ended text generation can harm the factuality due to the ``uniform randomness'' introduced at every sampling step. We propose the factual-nucleus sampling algorithm that dynamically adapts the randomness to improve the factuality of generation while maintaining quality. Furthermore, we analyze the inefficiencies of the standard training method in learning correct associations between entities from factual text corpus (e.g., Wikipedia). We propose a factuality-enhanced training method that uses TopicPrefix for better awareness of facts and sentence completion as the training objective, which can vastly reduce the factual errors.
Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N Fung, Mohammad Shoeybi, Bryan Catanzaro
null
null
2,022
neurips
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
null
We study the linear contextual bandit problem in the presence of adversarial corruption, where the reward at each round is corrupted by an adversary, and the corruption level (i.e., the sum of corruption magnitudes over the horizon) is $C\geq 0$. The best-known algorithms in this setting are limited in that they either are computationally inefficient or require a strong assumption on the corruption, or their regret is at least $C$ times worse than the regret without corruption. In this paper, to overcome these limitations, we propose a new algorithm based on the principle of optimism in the face of uncertainty. At the core of our algorithm is a weighted ridge regression where the weight of each chosen action depends on its confidence up to some threshold. We show that for both known $C$ and unknown $C$ cases, our algorithm with proper choice of hyperparameter achieves a regret that nearly matches the lower bounds. Thus, our algorithm is nearly optimal up to logarithmic factors for both cases. Notably, our algorithm achieves the near-optimal regret for both corrupted and uncorrupted cases ($C=0$) simultaneously.
Jiafan He, Dongruo Zhou, Tong Zhang, Quanquan Gu
null
null
2,022
neurips
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
null
Normalization layers (e.g., Batch Normalization, Layer Normalization) were introduced to help with optimization difficulties in very deep nets, but they clearly also help generalization, even in not-so-deep nets. Motivated by the long-held belief that flatter minima lead to better generalization, this paper gives mathematical analysis and supporting experiments suggesting that normalization (together with accompanying weight-decay) encourages GD to reduce the sharpness of loss surface. Here ``sharpness'' is carefully defined given that the loss is scale-invariant, a known consequence of normalization. Specifically, for a fairly broad class of neural nets with normalization, our theory explains how GD with a finite learning rate enters the so-called Edge of Stability (EoS) regime, and characterizes the trajectory of GD in this regime via a continuous sharpness-reduction flow.
Kaifeng Lyu, Zhiyuan Li, Sanjeev Arora
null
null
2,022
neurips
Towards Understanding Grokking: An Effective Theory of Representation Learning
null
We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations, whose training dynamics and dependence on training set size can be predicted by our effective theory (in a toy setting). We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. Compared to the comprehension phase, the grokking phase stays closer to the memorization phase, leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, Mike Williams
null
null
2,022
neurips
Towards Practical Few-shot Query Sets: Transductive Minimum Description Length Inference
null
Standard few-shot benchmarks are often built upon simplifying assumptions on the query sets, which may not always hold in practice. In particular, for each task at testing time, the classes effectively present in the unlabeled query set are known a priori, and correspond exactly to the set of classes represented in the labeled support set. We relax these assumptions and extend current benchmarks, so that the query-set classes of a given task are unknown, but just belong to a much larger set of possible classes. Our setting could be viewed as an instance of the challenging yet practical problem of extremely imbalanced $K$-way classification, $K$ being much larger than the values typically used in standard benchmarks, and with potentially irrelevant supervision from the support set. Expectedly, our setting incurs drops in the performances of state-of-the-art methods. Motivated by these observations, we introduce a \textbf{P}rim\textbf{A}l \textbf{D}ual Minimum \textbf{D}escription \textbf{LE}ngth (\textbf{PADDLE}) formulation, which balances data-fitting accuracy and model complexity for a given few-shot task, under supervision constraints from the support set. Our constrained MDL-like objective promotes competition among a large set of possible classes, preserving only effective classes that befit better the data of a few-shot task. It is hyper-parameter free, and could be applied on top of any base-class training. Furthermore, we derive a fast block coordinate descent algorithm for optimizing our objective, with convergence guarantee, and a linear computational complexity at each iteration. Comprehensive experiments over the standard few-shot datasets and the more realistic and challenging \textit{i-Nat} dataset show highly competitive performances of our method, more so when the numbers of possible classes in the tasks increase. Our code is publicly available at \url{https://github.com/SegoleneMartin/PADDLE}.
Ségolène Martin, Malik Boudiaf, Emilie Chouzenoux, Jean-Christophe Pesquet, Ismail Ayed
null
null
2,022
neurips
Bootstrapped Transformer for Offline Reinforcement Learning
null
Offline reinforcement learning (RL) aims at learning policies from previously collected static trajectory data without interacting with the real environment. Recent works provide a novel perspective by viewing offline RL as a generic sequence generation problem, adopting sequence models such as Transformer architecture to model distributions over trajectories and repurposing beam search as a planning algorithm. However, the training datasets utilized in general offline RL tasks are quite limited and often suffering from insufficient distribution coverage, which could me harmful to training sequence generation models yet has not drawn enough attention in the previous works. In this paper, we propose a novel algorithm named Bootstrapped Transformer, which incorporates the idea of bootstrapping and leverages the learned model to self-generate more offline data to further boost the training of sequence model. We conduct extensive experiments on two offline RL benchmarks and demonstrate that our model can largely remedy the limitations of the existing offline RL training and beat other strong baseline methods. We also analyze the generated pseudo data and the revealed characteristics may shed some light on offline RL training.
Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, Dongsheng Li
null
null
2,022
neurips
Optimal-er Auctions through Attention
null
RegretNet is a recent breakthrough in the automated design of revenue-maximizing auctions. It combines the flexibility of deep learning with the regret-based approach to relax the Incentive Compatibility (IC) constraint (that participants prefer to bid truthfully) in order to approximate optimal auctions. We propose two independent improvements of RegretNet. The first is a neural architecture denoted as RegretFormer that is based on attention layers. The second is a loss function that requires explicit specification of an acceptable IC violation denoted as regret budget. We investigate both modifications in an extensive experimental study that includes settings with constant and inconstant numbers of items and participants, as well as novel validation procedures tailored to regret-based approaches. We find that RegretFormer consistently outperforms RegretNet in revenue (i.e. is optimal-er) and that our loss function both simplifies hyperparameter tuning and allows to unambiguously control the revenue-regret trade-off by selecting the regret budget.
Dmitry Ivanov, Iskander Safiulin, Igor Filippov, Ksenia Balabaeva
null
null
2,022
neurips
Multi-modal Grouping Network for Weakly-Supervised Audio-Visual Video Parsing
null
The audio-visual video parsing task aims to parse a video into modality- and category-aware temporal segments. Previous work mainly focuses on weakly-supervised approaches, which learn from video-level event labels. During training, they do not know which modality perceives and meanwhile which temporal segment contains the video event. Since there is no explicit grouping in the existing frameworks, the modality and temporal uncertainties make these methods suffer from false predictions. For instance, segments in the same category could be predicted in different event classes. Learning compact and discriminative multi-modal subspaces is essential for mitigating the issue. To this end, in this paper, we propose a novel Multi-modal Grouping Network, namely MGN, for explicitly semantic-aware grouping. Specifically, MGN aggregates event-aware unimodal features through unimodal grouping in terms of learnable categorical embedding tokens. Furthermore, it leverages the cross-modal grouping for modality-aware prediction to match the video-level target. Our simple framework achieves improving results against previous baselines on weakly-supervised audio-visual video parsing. In addition, our MGN is much more lightweight, using only 47.2% of the parameters of baselines (17 MB vs. 36 MB). Code is available at https://github.com/stoneMo/MGN.
Shentong Mo, Yapeng Tian
null
null
2,022
neurips
Globally Gated Deep Linear Networks
null
Recently proposed Gated Linear Networks (GLNs) present a tractable nonlinear network architecture, and exhibit interesting capabilities such as learning with local error signals and reduced forgetting in sequential learning. In this work, we introduce a novel gating architecture, named Globally Gated Deep Linear Networks (GGDLNs) where gating units are shared among all processing units in each layer, thereby decoupling the architectures of the nonlinear but unlearned gating and the learned linear processing motifs. We derive exact equations for the generalization properties of Bayesian Learning in these networks in the finite-width thermodynamic limit, defined by $N, P\rightarrow\infty$ while $P/N=O(1)$ where $N$ and $P$ are the hidden layers' width and size of training data sets respectfully. We find that the statistics of the network predictor can be expressed in terms of kernels that undergo shape renormalization through a data-dependent order-parameter matrix compared to the infinite-width Gaussian Process (GP) kernels. Our theory accurately captures the behavior of finite width GGDLNs trained with gradient descent (GD) dynamics. We show that kernel shape renormalization gives rise to rich generalization properties w.r.t. network width, depth, and $L_2$ regularization amplitude. Interestingly, networks with a large number of gating units behave similarly to standard ReLU architectures. Although gating units in the model do not participate in supervised learning, we show the utility of unsupervised learning of the gating parameters. Additionally, our theory allows the evaluation of the network capacity for learning multiple tasks by incorporating task-relevant information into the gating units. In summary, our work is the first exact theoretical solution of learning in a family of nonlinear networks with finite width. The rich and diverse behavior of the GGDLNs suggests that they are helpful analytically tractable models of learning single and multiple tasks, in finite-width nonlinear deep networks.
Qianyi Li, Haim Sompolinsky
null
null
2,022
neurips
Understanding Robust Learning through the Lens of Representation Similarities
null
Representation learning, \textit{i.e.} the generation of representations useful for downstream applications, is a task of fundamental importance that underlies much of the success of deep neural networks (DNNs). Recently, \emph{robustness to adversarial examples} has emerged as a desirable property for DNNs, spurring the development of robust training methods that account for adversarialexamples. In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training. This is critical to diagnosing numerous salient pitfalls in robust networks, such as, degradation of performance on benign inputs, poor generalization of robustness, and increase in over-fitting. We utilize a powerful set of tools known as representation similarity metrics, across 3 vision datasets, to obtain layer-wise comparisons between robust and non-robust DNNs with different architectures, training procedures and adversarial constraints. Our experiments highlight hitherto unseen properties of robust representations that we posit underlie the behavioral differences of robust networks. We discover a lack of specialization in robust networks' representations along with a disappearance of `block structure'. We also find overfitting during robust training largely impacts deeper layers. These, along with other findings, suggest ways forward for the design and training of better robust networks.
Christian Cianfarani, Arjun Nitin Bhagoji, Vikash Sehwag, Ben Zhao, Heather Zheng, Prateek Mittal
null
null
2,022
neurips
How to talk so AI will learn: Instructions, descriptions, and autonomy
null
From the earliest years of our lives, humans use language to express our beliefs and desires. Being able to talk to artificial agents about our preferences would thus fulfill a central goal of value alignment. Yet today, we lack computational models explaining such language use. To address this challenge, we formalize learning from language in a contextual bandit setting and ask how a human might communicate preferences over behaviors. We study two distinct types of language: instructions, which provide information about the desired policy, and descriptions, which provide information about the reward function. We show that the agent's degree of autonomy determines which form of language is optimal: instructions are better in low-autonomy settings, but descriptions are better when the agent will need to act independently. We then define a pragmatic listener agent that robustly infers the speaker's reward function by reasoning about how the speaker expresses themselves. We validate our models with a behavioral experiment, demonstrating that (1) our speaker model predicts human behavior, and (2) our pragmatic listener successfully recovers humans' reward functions. Finally, we show that this form of social learning can integrate with and reduce regret in traditional reinforcement learning. We hope these insights facilitate a shift from developing agents that obey language to agents that learn from it.
Theodore Sumers, Robert Hawkins, Mark K. Ho, Tom Griffiths, Dylan Hadfield-Menell
null
null
2,022
neurips
Learning Manifold Dimensions with Conditional Variational Autoencoders
null
Although the variational autoencoder (VAE) and its conditional extension (CVAE) are capable of state-of-the-art results across multiple domains, their precise behavior is still not fully understood, particularly in the context of data (like images) that lie on or near a low-dimensional manifold. For example, while prior work has suggested that the globally optimal VAE solution can learn the correct manifold dimension, a necessary (but not sufficient) condition for producing samples from the true data distribution, this has never been rigorously proven. Moreover, it remains unclear how such considerations would change when various types of conditioning variables are introduced, or when the data support is extended to a union of manifolds (e.g., as is likely the case for MNIST digits and related). In this work, we address these points by first proving that VAE global minima are indeed capable of recovering the correct manifold dimension. We then extend this result to more general CVAEs, demonstrating practical scenarios whereby the conditioning variables allow the model to adaptively learn manifolds of varying dimension across samples. Our analyses, which have practical implications for various CVAE design choices, are also supported by numerical results on both synthetic and real-world datasets.
Yijia Zheng, Tong He, Yixuan Qiu, David P Wipf
null
null
2,022
neurips
Asymptotic Behaviors of Projected Stochastic Approximation: A Jump Diffusion Perspective
null
In this paper, we consider linearly constrained stochastic approximation problems with federated learning (FL) as a special case. We propose a stochastic approximation algorithm named by LPSA with probabilistic projections to ensure feasibility so that projections are performed with probability $p_n$ at the $n$-th iteration. Considering a specific family of the probability $p_n$ and step size $\eta_n$, we analyze our algorithm from an asymptotic and continuous perspective. Using a novel jump diffusion approximation, we show that the trajectories consisting of properly rescaled last iterates weakly converge to the solution of specific SDEs. By analyzing the SDEs, we identify the asymptotic behaviors of LPSA for different choices of $(p_n, \eta_n)$. We find the algorithm presents an intriguing asymptotic bias-variance trade-off according to the relative magnitude of $p_n$ w.r.t. $\eta_n$. It provides insights on how to choose appropriate $\{(p_n, \eta_n)\}_{n \geq 1}$ to minimize the projection complexity.
Jiadong Liang, Yuze Han, Xiang Li, Zhihua Zhang
null
null
2,022
neurips
Learning on the Edge: Online Learning with Stochastic Feedback Graphs
null
The framework of feedback graphs is a generalization of sequential decision-making with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erdős-Rényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order $\min\bigl\{\min_{\varepsilon} \sqrt{(\alpha_\varepsilon/\varepsilon) T},\, \min_{\varepsilon} (\delta_\varepsilon/\varepsilon)^{1/3} T^{2/3}\bigr\}$ (ignoring logarithmic factors), where $\alpha_{\varepsilon}$ and $\delta_{\varepsilon}$ are graph-theoretic quantities measured on the support of the stochastic feedback graph $\mathcal{G}$ with edge probabilities thresholded at $\varepsilon$. Our result, which holds without any preliminary knowledge about $\mathcal{G}$, requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.
Emmanuel Esposito, Federico Fusco, Dirk van der Hoeven, Nicolò Cesa-Bianchi
null
null
2,022
neurips
Improving Certified Robustness via Statistical Learning with Logical Reasoning
null
Intensive algorithmic efforts have been made to enable the rapid improvements of certificated robustness for complex ML models recently. However, current robustness certification methods are only able to certify under a limited perturbation radius. Given that existing pure data-driven statistical approaches have reached a bottleneck, in this paper, we propose to integrate statistical ML models with knowledge (expressed as logical rules) as a reasoning component using Markov logic networks (MLN), so as to further improve the overall certified robustness. This opens new research questions about certifying the robustness of such a paradigm, especially the reasoning component (e.g., MLN). As the first step towards understanding these questions, we first prove that the computational complexity of certifying the robustness of MLN is #P-hard. Guided by this hardness result, we then derive the first certified robustness bound for MLN by carefully analyzing different model regimes. Finally, we conduct extensive experiments on five datasets including both high-dimensional images and natural language texts, and we show that the certified robustness with knowledge-based logical reasoning indeed significantly outperforms that of the state-of-the-arts.
Zhuolin Yang, Zhikuan Zhao, Boxin Wang, Jiawei Zhang, Linyi Li, Hengzhi Pei, Bojan Karlaš, Ji Liu, Heng Guo, Ce Zhang, Bo Li
null
null
2,022
neurips
Doubly Robust Counterfactual Classification
null
We study counterfactual classification as a new tool for decision-making under hypothetical (contrary to fact) scenarios. We propose a doubly-robust nonparametric estimator for a general counterfactual classifier, where we can incorporate flexible constraints by casting the classification problem as a nonlinear mathematical program involving counterfactuals. We go on to analyze the rates of convergence of the estimator and provide a closed-form expression for its asymptotic distribution. Our analysis shows that the proposed estimator is robust against nuisance model misspecification, and can attain fast $\sqrt{n}$ rates with tractable inference even when using nonparametric machine learning approaches. We study the empirical performance of our methods by simulation and apply them for recidivism risk prediction.
Kwangho Kim, Edward Kennedy, Jose Zubizarreta
null
null
2,022
neurips
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
null
Minimizing the inclusive Kullback-Leibler (KL) divergence with stochastic gradient descent (SGD) is challenging since its gradient is defined as an integral over the posterior. Recently, multiple methods have been proposed to run SGD with biased gradient estimates obtained from a Markov chain. This paper provides the first non-asymptotic convergence analysis of these methods by establishing their mixing rate and gradient variance. To do this, we demonstrate that these methods—which we collectively refer to as Markov chain score ascent (MCSA) methods—can be cast as special cases of the Markov chain gradient descent framework. Furthermore, by leveraging this new understanding, we develop a novel MCSA scheme, parallel MCSA (pMCSA), that achieves a tighter bound on the gradient variance. We demonstrate that this improved theoretical result translates to superior empirical performance.
Kyurae Kim, Jisu Oh, Jacob Gardner, Adji Bousso Dieng, Hongseok Kim
null
null
2,022
neurips
Recruitment Strategies That Take a Chance
null
In academic recruitment settings, including faculty hiring and PhD admissions, committees aim to maximize the overall quality of recruited candidates, but there is uncertainty about whether a candidate would accept an offer if given one. Previous work has considered algorithms that make offers sequentially and are subject to a hard budget constraint. We argue that these modeling choices may be inconsistent with the practice of academic recruitment. Instead, we restrict ourselves to a single batch of offers, and we treat the target number of positions as a soft constraint, so we risk overshooting or undershooting the target. Specifically, our objective is to select a subset of candidates that maximizes the overall expected value associated with candidates who accept, minus an expected penalty for deviating from the target. We first analyze the guarantees provided by natural greedy heuristics, showing their desirable properties despite the simplicity. Depending on the structure of the penalty function, we further develop algorithms that provide fully polynomial-time approximation schemes and constant-factor approximations to this objective. Empirical evaluation of our algorithms corroborates these theoretical results.
Gregory Kehne, Ariel D. Procaccia, Jingyan Wang
null
null
2,022
neurips
Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever
null
Recommender retrievers aim to rapidly retrieve a fraction of items from the entire item corpus when a user query requests, with the representative two-tower model trained with the log softmax loss. For efficiently training recommender retrievers on modern hardwares, inbatch sampling, where the items in the mini-batch are shared as negatives to estimate the softmax function, has attained growing interest. However, existing inbatch sampling based strategies just correct the sampling bias of inbatch items with item frequency, being unable to distinguish the user queries within the mini-batch and still incurring significant bias from the softmax. In this paper, we propose a Cache-Augmented Inbatch Importance Resampling (XIR) for training recommender retrievers, which not only offers different negatives to user queries with inbatch items, but also adaptively achieves a more accurate estimation of the softmax distribution. Specifically, XIR resamples items from the given mini-batch training pairs based on certain probabilities, where a cache with more frequently sampled items is adopted to augment the candidate item set, with the purpose of reusing the historical informative samples. XIR enables to sample query-dependent negatives based on inbatch items and to capture dynamic changes of model training, which leads to a better approximation of the softmax and further contributes to better convergence. Finally, we conduct experiments to validate the superior performance of the proposed XIR compared with competitive approaches.
Jin Chen, Defu Lian, Yucheng Li, Baoyun Wang, Kai Zheng, Enhong Chen
null
null
2,022
neurips
Transformer-based Working Memory for Multiagent Reinforcement Learning with Action Parsing
null
Learning in real-world multiagent tasks is challenging due to the usual partial observability of each agent. Previous efforts alleviate the partial observability by historical hidden states with Recurrent Neural Networks, however, they do not consider the multiagent characters that either the multiagent observation consists of a number of object entities or the action space shows clear entity interactions. To tackle these issues, we propose the Agent Transformer Memory (ATM) network with a transformer-based memory. First, ATM utilizes the transformer to enable the unified processing of the factored environmental entities and memory. Inspired by the human’s working memory process where a limited capacity of information temporarily held in mind can effectively guide the decision-making, ATM updates its fixed-capacity memory with the working memory updating schema. Second, as agents' each action has its particular interaction entities in the environment, ATM parses the action space to introduce this action’s semantic inductive bias by binding each action with its specified involving entity to predict the state-action value or logit. Extensive experiments on the challenging SMAC and Level-Based Foraging environments validate that ATM could boost existing multiagent RL algorithms with impressive learning acceleration and performance improvement.
Yaodong Yang, Guangyong Chen, Weixun Wang, Xiaotian Hao, Jianye Hao, Pheng-Ann Heng
null
null
2,022
neurips
Chartalist: Labeled Graph Datasets for UTXO and Account-based Blockchains
null
Machine learning on blockchain graphs is an emerging field with many applications such as ransomware payment tracking, price manipulation analysis, and money laundering detection. However, analyzing blockchain data requires domain expertise and computational resources, which pose a significant barrier and hinder advancement in this field. We introduce Chartalist, the first comprehensive platform to methodically access and use machine learning across a large selection of blockchains to address this challenge. Chartalist contains ML-ready datasets from unspent transaction output (UTXO) (e.g., Bitcoin) and account-based blockchains (e.g., Ethereum). We envision that Chartalist can facilitate data modeling, analysis, and representation of blockchain data and attract a wider community of scientists to analyze blockchains. Chartalist is an open-science initiative at https://github.com/cakcora/Chartalist.
Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, Cuneyt G Akcora
null
null
2,022
neurips
Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images
null
We present a simple yet effective fully convolutional one-stage 3D object detector for LiDAR point clouds of autonomous driving scenes, termed FCOS-LiDAR. Unlike the dominant methods that use the bird-eye view (BEV), our proposed detector detects objects from the range view (RV, a.k.a. range image) of the LiDAR points. Due to the range view's compactness and compatibility with the LiDAR sensors' sampling process on self-driving cars, the range view-based object detector can be realized by solely exploiting the vanilla 2D convolutions, departing from the BEV-based methods which often involve complicated voxelization operations and sparse convolutions. For the first time, we show that an RV-based 3D detector with standard 2D convolutions alone can achieve comparable performance to state-of-the-art BEV-based detectors while being significantly faster and simpler. More importantly, almost all previous range view-based detectors only focus on single-frame point clouds since it is challenging to fuse multi-frame point clouds into a single range view. In this work, we tackle this challenging issue with a novel range view projection mechanism, and for the first time demonstrate the benefits of fusing multi-frame point clouds for a range-view based detector. Extensive experiments on nuScenes show the superiority of our proposed method and we believe that our work can be strong evidence that an RV-based 3D detector can compare favourably with the current mainstream BEV-based detectors. Code will be made publicly available.
Zhi Tian, Xiangxiang Chu, Xiaoming Wang, Xiaolin Wei, Chunhua Shen
null
null
2,022
neurips
PerfectDou: Dominating DouDizhu with Perfect Information Distillation
null
As a challenging multi-player card game, DouDizhu has recently drawn much attention for analyzing competition and collaboration in imperfect-information games. In this paper, we propose PerfectDou, a state-of-the-art Doudizhu AI system that summits the game, in an actor-critic framework with a proposed technique named perfect information distillation.In detail, we adopt a perfect-training-imperfection-execution framework that allows the agents to utilize the global information to guide the training of the policies as if it is a perfect information game and the trained policies can be used to play the imperfect information game during the actual gameplay. Correspondingly, we characterize card and game features for DouDizhu to represent the perfect and imperfect information. To train our system, we adopt proximal policy optimization with generalized advantage estimation in a parallel training paradigm. In experiments we show how and why PerfectDou beats all existing programs, and achieves state-of-the-art performance.
Guan Yang, Minghuan Liu, Weijun Hong, Weinan Zhang, Fei Fang, Guangjun Zeng, Yue Lin
null
null
2,022
neurips
Learning Neural Set Functions Under the Optimal Subset Oracle
null
Learning set functions becomes increasingly important in many applications like product recommendation and compound selection in AI-aided drug discovery. The majority of existing works study methodologies of set function learning under the function value oracle, which, however, requires expensive supervision signals. This renders it impractical for applications with only weak supervisions under the Optimal Subset (OS) oracle, the study of which is surprisingly overlooked. In this work, we present a principled yet practical maximum likelihood learning framework, termed as EquiVSet, that simultaneously meets the following desiderata of learning neural set functions under the OS oracle: i) permutation invariance of the set mass function being modeled; ii) permission of varying ground set; iii) minimum prior and iv) scalability. The main components of our framework involve: an energy-based treatment of the set mass function, DeepSet-style architectures to handle permutation invariance, mean-field variational inference, and its amortized variants. Thanks to the delicate combination of these advanced architectures, empirical studies on three real-world applications (including Amazon product recommendation, set anomaly detection, and compound selection for virtual screening) demonstrate that EquiVSet outperforms the baselines by a large margin.
Zijing Ou, Tingyang Xu, Qinliang Su, Yingzhen Li, Peilin Zhao, Yatao Bian
null
null
2,022
neurips
Learning to Attack Federated Learning: A Model-based Reinforcement Learning Attack Framework
null
We propose a model-based reinforcement learning framework to derive untargeted poisoning attacks against federated learning (FL) systems. Our framework first approximates the distribution of the clients' aggregated data using model updates from the server. The learned distribution is then used to build a simulator of the FL environment, which is utilized to learn an adaptive attack policy through reinforcement learning. Our framework is capable of learning strong attacks automatically even when the server adopts a robust aggregation rule. We further derive an upper bound on the attacker's performance loss due to inaccurate distribution estimation. Experimental results on real-world datasets demonstrate that the proposed attack framework significantly outperforms state-of-the-art poisoning attacks. This indicates the importance of developing adaptive defenses for FL systems.
Henger Li, Xiaolin Sun, Zizhan Zheng
null
null
2,022
neurips
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
null
Multi-instance learning (MIL) deals with objects represented as bags of instances and can predict instance labels from bag-level supervision. However, significant performance gaps exist between instance-level MIL algorithms and supervised learners since the instance labels are unavailable in MIL. Most existing MIL algorithms tackle the problem by treating multi-instance bags as harmful ambiguities and predicting instance labels by reducing the supervision inexactness. This work studies MIL from a new perspective by considering bags as auxiliary information, and utilize it to identify instance-level causal representations from bag-level weak supervision. We propose the CausalMIL algorithm, which not only excels at instance label prediction but also provides robustness to distribution change by synergistically integrating MIL with identifiable variational autoencoder. Our approach is based on a practical and general assumption: the prior distribution over the instance latent representations belongs to the non-factorized exponential family conditioning on the multi-instance bags. Experiments on synthetic and real-world datasets demonstrate that our approach significantly outperforms various baselines on instance label prediction and out-of-distribution generalization tasks.
Weijia Zhang, Xuanhui Zhang, hanwen deng, Min-Ling Zhang
null
null
2,022
neurips
Optimal Query Complexities for Dynamic Trace Estimation
null
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly, such as during an optimization process. Specifically, for any $m$ matrices $\mathbf{A}_1,...,\mathbf{A}_m$ with consecutive differences bounded in Schatten-$1$ norm by $\alpha$, we provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $\epsilon$ error with $\delta$ failure probability with an optimal query complexity of $\widetilde{O}(m \alpha\sqrt{\log(1/\delta)}/\epsilon + m\log(1/\delta))$, improving the dependence on both $\alpha$ and $\delta$ from Dharangutte and Musco (NeurIPS, 2021). Our procedure works without additional norm bounds on $\mathbf{A}_i$ and can be generalized to a bound for the $p$-th Schatten norm for $p \in [1,2]$, giving a complexity of $\widetilde{O}(m \alpha(\sqrt{\log(1/\delta)}/\epsilon)^p +m \log(1/\delta))$. By using novel reductions to communication complexity and information-theoretic analyses of Gaussian matrices, we provide matching lower bounds for static and dynamic trace estimation in all relevant parameters, including the failure probability. Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error {\it even in the static setting}, and (2) are the first unconditional lower bounds for dynamic trace estimation, resolving open questions of prior work.
David Woodruff, Fred Zhang, Richard Zhang
null
null
2,022
neurips
A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs
null
We consider online learning with feedback graphs, a sequential decision-making framework where the learner's feedback is determined by a directed graph over the action set. We present a computationally-efficient algorithm for learning in this framework that simultaneously achieves near-optimal regret bounds in both stochastic and adversarial environments. The bound against oblivious adversaries is $\tilde{O} (\sqrt{\alpha T})$, where $T$ is the time horizon and $\alpha$ is the independence number of the feedback graph. The bound against stochastic environments is $O\big((\ln T)^2 \max_{S\in \mathcal I(G)} \sum_{i \in S} \Delta_i^{-1}\big)$ where $\mathcal I(G)$ is the family of all independent sets in a suitably defined undirected version of the graph and $\Delta_i$ are the suboptimality gaps.The algorithm combines ideas from the EXP3++ algorithm for stochastic and adversarial bandits and the EXP3.G algorithm for feedback graphs with a novel exploration scheme. The scheme, which exploits the structure of the graph to reduce exploration, is key to obtain best-of-both-worlds guarantees with feedback graphs. We also extend our algorithm and results to a setting where the feedback graphs are allowed to change over time.
Chloé Rouyer, Dirk van der Hoeven, Nicolò Cesa-Bianchi, Yevgeny Seldin
null
null
2,022
neurips
Rethinking Value Function Learning for Generalization in Reinforcement Learning
null
Our work focuses on training RL agents on multiple visually diverse environments to improve observational generalization performance. In prior methods, policy and value networks are separately optimized using a disjoint network architecture to avoid interference and obtain a more accurate value function. We identify that a value network in the multi-environment setting is more challenging to optimize and prone to memorizing the training data than in the conventional single-environment setting. In addition, we find that appropriate regularization on the value network is necessary to improve both training and test performance. To this end, we propose Delayed-Critic Policy Gradient (DCPG), a policy gradient algorithm that implicitly penalizes value estimates by optimizing the value network less frequently with more training data than the policy network. This can be implemented using a single unified network architecture. Furthermore, we introduce a simple self-supervised task that learns the forward and inverse dynamics of environments using a single discriminator, which can be jointly optimized with the value network. Our proposed algorithms significantly improve observational generalization performance and sample efficiency on the Procgen Benchmark.
Seungyong Moon, JunYeong Lee, Hyun Oh Song
null
null
2,022
neurips
Variable-rate hierarchical CPC leads to acoustic unit discovery in speech
null
The success of deep learning comes from its ability to capture the hierarchical structure of data by learning high-level representations defined in terms of low-level ones. In this paper we explore self-supervised learning of hierarchical representations of speech by applying multiple levels of Contrastive Predictive Coding (CPC). We observe that simply stacking two CPC models does not yield significant improvements over single-level architectures. Inspired by the fact that speech is often described as a sequence of discrete units unevenly distributed in time, we propose a model in which the output of a low-level CPC module is non-uniformly downsampled to directly minimize the loss of a high-level CPC module. The latter is designed to also enforce a prior of separability and discreteness in its representations by enforcing dissimilarity of successive high-level representations through focused negative sampling, and by quantization of the prediction targets. Accounting for the structure of the speech signal improves upon single-level CPC features and enhances the disentanglement of the learned representations, as measured by downstream speech recognition tasks, while resulting in a meaningful segmentation of the signal that closely resembles phone boundaries.
Santiago Cuervo, Adrian Lancucki, Ricard Marxer, Paweł Rychlikowski, Jan K. Chorowski
null
null
2,022
neurips
Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization
null
We study differentially private (DP) algorithms for smooth stochastic minimax optimization, with stochastic minimization as a byproduct. The holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss, using an algorithm with a linear time-complexity in the number of training samples. We provide a general framework for solving differentially private stochastic minimax optimization (DP-SMO) problems, which enables the practitioners to bring their own base optimization algorithm and use it as a black-box to obtain the near-optimal privacy-loss trade-off. Our framework is inspired from the recently proposed Phased-ERM method [22] for nonsmooth differentially private stochastic convex optimization (DP-SCO), which exploits the stability of the empirical risk minimization (ERM) for the privacy guarantee. The flexibility of our approach enables us to sidestep the requirement that the base algorithm needs to have bounded sensitivity, and allows the use of sophisticated variance-reduced accelerated methods to achieve near-linear time-complexity. To the best of our knowledge, these are the first near-linear time algorithms with near-optimal guarantees on the population duality gap for smooth DP-SMO, when the objective is (strongly-)convex--(strongly-)concave. Additionally, based on our flexible framework, we enrich the family of near-linear time algorithms for smooth DP-SCO with the near-optimal privacy-loss trade-off.
Liang Zhang, Kiran K. Thekumparampil, Sewoong Oh, Niao He
null
null
2,022
neurips
SALSA: Attacking Lattice Cryptography with Transformers
null
Currently deployed public-key cryptosystems will be vulnerable to attacks by full-scale quantum computers. Consequently, "quantum resistant" cryptosystems are in high demand, and lattice-based cryptosystems, based on a hard problem known as Learning With Errors (LWE), have emerged as strong contenders for standardization. In this work, we train transformers to perform modular arithmetic and mix half-trained models and statistical cryptanalysis techniques to propose SALSA: a machine learning attack on LWE-based cryptographic schemes. SALSA can fully recover secrets for small-to-mid size LWE instances with sparse binary secrets, and may scale to attack real world LWE-based cryptosystems.
Emily Wenger, Mingjie Chen, Francois Charton, Kristin E. Lauter
null
null
2,022
neurips
Learning from Stochastically Revealed Preference
null
We study the learning problem of revealed preference in a stochastic setting: a learner observes the utility-maximizing actions of a set of agents whose utility follows some unknown distribution, and the learner aims to infer the distribution through the observations of actions. The problem can be viewed as a single-constraint special case of the inverse linear optimization problem. Existing works all assume that all the agents share one common utility which can easily be violated under practical contexts. In this paper, we consider two settings for the underlying utility distribution: a Gaussian setting where the customer utility follows the von Mises-Fisher distribution, and a $\delta$-corruption setting where the customer utility distribution concentrates on one fixed vector with high probability and is arbitrarily corrupted otherwise. We devise Bayesian approaches for parameter estimation and develop theoretical guarantees for the recovery of the true parameter. We illustrate the algorithm performance through numerical experiments.
John Birge, Xiaocheng Li, Chunlin Sun
null
null
2,022
neurips
OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression
null
This paper presents a language-powered paradigm for ordinal regression. Existing methods usually treat each rank as a category and employ a set of weights to learn these concepts. These methods are easy to overfit and usually attain unsatisfactory performance as the learned concepts are mainly derived from the training set. Recent large pre-trained vision-language models like CLIP have shown impressive performance on various visual tasks. In this paper, we propose to learn the rank concepts from the rich semantic CLIP latent space. Specifically, we reformulate this task as an image-language matching problem with a contrastive objective, which regards labels as text and obtains a language prototype from a text encoder for each rank. While prompt engineering for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists of learnable context tokens and learnable rank embeddings. The learnable rank embeddings are constructed by explicitly modeling numerical continuity, resulting in well-ordered, compact language prototypes in the CLIP space. Once learned, we can only save the language prototypes and discard the huge language model, resulting in zero additional computational overhead compared with the linear head counterpart. Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks, and gains improvements in few-shot and distribution shift settings for age estimation. The code is available at https://github.com/xk-huang/OrdinalCLIP.
Wanhua Li, Xiaoke Huang, Zheng Zhu, Yansong Tang, Xiu Li, Jie Zhou, Jiwen Lu
null
null
2,022
neurips
The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization
null
In this paper, we study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems. Arjevani et al. (2019) established the lower bound $\Omega\left(\epsilon^{-2/(3p+1)}\right)$ on the number of the $p$-th order oracle calls required by an algorithm to find an $\epsilon$-accurate solution to the problem, where the $p$-th order oracle stands for the computation of the objective function value and the derivatives up to the order $p$. However, the existing state-of-the-art high-order methods of Gasnikov et al. (2019b); Bubeck et al. (2019); Jiang et al. (2019) achieve the oracle complexity $\mathcal{O}\left(\epsilon^{-2/(3p+1)} \log (1/\epsilon)\right)$, which does not match the lower bound. The reason for this is that these algorithms require performing a complex binary search procedure, which makes them neither optimal nor practical. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\epsilon^{-2/(3p+1)}\right)$ $p$-th order oracle complexity.
Dmitry Kovalev, Alexander Gasnikov
null
null
2,022
neurips
TwiBot-22: Towards Graph-Based Twitter Bot Detection
null
Twitter bot detection has become an increasingly important task to combat misinformation, facilitate social media moderation, and preserve the integrity of the online discourse. State-of-the-art bot detection methods generally leverage the graph structure of the Twitter network, and they exhibit promising performance when confronting novel Twitter bots that traditional methods fail to detect. However, very few of the existing Twitter bot detection datasets are graph-based, and even these few graph-based datasets suffer from limited dataset scale, incomplete graph structure, as well as low annotation quality. In fact, the lack of a large-scale graph-based Twitter bot detection benchmark that addresses these issues has seriously hindered the development and evaluation of novel graph-based bot detection approaches. In this paper, we propose TwiBot-22, a comprehensive graph-based Twitter bot detection benchmark that presents the largest dataset to date, provides diversified entities and relations on the Twitter network, and has considerably better annotation quality than existing datasets. In addition, we re-implement 35 representative Twitter bot detection baselines and evaluate them on 9 datasets, including TwiBot-22, to promote a fair comparison of model performance and a holistic understanding of research progress. To facilitate further research, we consolidate all implemented codes and datasets into the TwiBot-22 evaluation framework, where researchers could consistently evaluate new models and datasets. The TwiBot-22 Twitter bot detection benchmark and evaluation framework are publicly available at \url{https://twibot22.github.io/}.
Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan Wang, Zilong Chen, Binchi Zhang, Qinghua Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, Xinshun Feng, Qingyue Zhang, Hongrui Wang, Yuhan Liu, Yuyang Bai, Heng Wang, Zijian Cai, Yanbo Wang, Lijing Zheng, Zihan Ma, Jundong Li, Minnan Luo
null
null
2,022
neurips
Confidence-based Reliable Learning under Dual Noises
null
Deep neural networks (DNNs) have achieved remarkable success in a variety of computer vision tasks, where massive labeled images are routinely required for model optimization. Yet, the data collected from the open world are unavoidably polluted by noise, which may significantly undermine the efficacy of the learned models. Various attempts have been made to reliably train DNNs under data noise, but they separately account for either the noise existing in the labels or that existing in the images. A naive combination of the two lines of works would suffer from the limitations in both sides, and miss the opportunities to handle the two kinds of noise in parallel. This works provides a first, unified framework for reliable learning under the joint (image, label)-noise. Technically, we develop a confidence-based sample filter to progressively filter out noisy data without the need of pre-specifying noise ratio. Then, we penalize the model uncertainty of the detected noisy data instead of letting the model continue over-fitting the misleading information in them. Experimental results on various challenging synthetic and real-world noisy datasets verify that the proposed method can outperform competing baselines in the aspect of classification performance.
Peng Cui, Yang Yue, Zhijie Deng, Jun Zhu
null
null
2,022
neurips