Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
7.62k
trendingScore
float64
-1
77
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
4.9M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
citation
stringlengths
0
10.7k
paperswithcode_id
stringclasses
652 values
679c0b5c32cf4c58bdcba8eb
facebook/natural_reasoning
facebook
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]}
false
null
2025-02-21T06:02:40
389
77
false
99eea5dc6bfa45a925eb42600e81dc90377ba237
NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning.
10,128
10,128
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us" ]
2025-01-30T23:29:32
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
435
75
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
27,700
33,321
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
511
46
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
7,420
7,420
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
253
32
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
8,928
30,075
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
67c248d12a6f7c1f2a448ee4
KodCode/KodCode-V1
KodCode
{"language": ["en"], "license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "trials", "struct": [{"name": "trial_gpt4o_0", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_1", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_2", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_3", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_4", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_5", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_6", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_7", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_8", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_9", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}]}, {"name": "chosen_trial", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "benchmark_similarity", "dtype": "float64"}, {"name": "benchmark_instruction", "dtype": "string"}, {"name": "benchmark_task_id", "dtype": "string"}, {"name": "filter_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6936635744, "num_examples": 443543}, {"name": "use_with_caution", "num_bytes": 59596328, "num_examples": 3335}], "download_size": 2472949876, "dataset_size": 6996232072}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}]}
false
null
2025-03-09T20:50:44
60
30
false
bf6420bb3cffcc0d91facb422048d9fc40d23235
🐱 KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning. 🕸️… See the full description on the dataset page: https://huggingface.co/datasets/KodCode/KodCode-V1.
2,727
2,727
[ "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.02951", "region:us" ]
2025-02-28T23:37:53
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
491
28
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
51,076
51,076
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67b78333f663232795e6cb29
SynthLabsAI/Big-Math-RL-Verified
SynthLabsAI
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "domain", "sequence": "string"}, {"name": "llama8b_solve_rate", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 76969060, "num_examples": 251122}], "download_size": 32238760, "dataset_size": 76969060}, "task_categories": ["question-answering", "text-generation"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "size_categories": ["100K<n<1M"], "tags": ["mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers"]}
false
null
2025-03-06T22:23:34
147
28
false
65148ae21b6c0cc3c362aab1b202cd51a47cdd67
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models Big-Math is the largest open-source dataset of high-quality mathematical problems, curated specifically for reinforcement learning (RL) training in language models. With over 250,000 rigorously filtered and verified problems, Big-Math bridges the gap between quality and quantity, establishing a robust foundation for advancing reasoning in LLMs. Request Early Access to Private… See the full description on the dataset page: https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified.
5,117
5,117
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.17387", "region:us", "mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers" ]
2025-02-20T19:32:03
null
null
67c9ec5572b8f1776ef7f0d4
madrylab/gsm8k-platinum
madrylab
{"language": ["en"], "license": "mit", "dataset_info": {"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "cleaning_status", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 663954, "num_examples": 1209}], "download_size": 380973, "dataset_size": 663954}, "configs": [{"config_name": "main", "data_files": [{"split": "test", "path": "main/test-*"}]}], "task_categories": ["text2text-generation"], "tags": ["math-word-problems"], "size_categories": ["1K<n<10K"]}
false
null
2025-03-11T14:48:29
25
25
false
e762492455a1cf7967de89f05b6bef72fc713b66
Dataset Card for GSM8K-Platinum 🏆 Homepage  |  📣 Blog  |  🖥️ Code  |  📖 Paper  |  🔍 Error Viewer Dataset Summary GSM8K-Platinum is a revised version of the full test set of GSM8K (Grade School Math 8K), a dataset of grade school math word problems, providing a more accurate assessment of mathematical reasoning capabilities To revise this dataset, we ran a variety of frontier models each individual example and manually examined any example for which at least one… See the full description on the dataset page: https://huggingface.co/datasets/madrylab/gsm8k-platinum.
402
402
[ "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.03461", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2025-03-06T18:41:25
null
null
67c58d2e6c6e0371152cf00f
GeneralReasoning/GeneralThought-195K
GeneralReasoning
{"language": ["en"], "license": "mit"}
false
null
2025-03-10T12:29:49
65
23
false
64f7cb8b086e5e9ae870670092fe37c15bbe1c97
GeneralThought-195K NEWEST RELEASE WITH 323K TRACES IS HERE Thought wants to be free Open reasoning data from the General Reasoning resource for March 3 2025. The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Preview and DeepScaleR-1.5B-Preview. We also include final… See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-195K.
982
982
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-03T11:06:22
null
null
67cbdbee416daf2ed9475ea4
SmallDoge/SmallThoughts
SmallDoge
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 92561810.14604151, "num_examples": 25000}, {"name": "test", "num_bytes": 3702472.40584166, "num_examples": 1000}], "download_size": 48763329, "dataset_size": 96264282.55188318}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["biology", "code", "chemistry", "synthetic"], "size_categories": ["10K<n<100K"]}
false
null
2025-03-12T12:54:12
23
23
false
64ca365c574f257a82bf7f1f5c872623f7dbea67
SmallThoughts Open synthetic reasoning dataset, covering math, science, code, and puzzles. To address the issue of the existing DeepSeek R1 distilled data being too long, this dataset constrains the reasoning trajectory to be more precise and concise while retaining the reflective nature. We also open-sourced the pipeline code for distilled data here, with just one command you can generate your own dataset. How to use You can load… See the full description on the dataset page: https://huggingface.co/datasets/SmallDoge/SmallThoughts.
760
760
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "biology", "code", "chemistry", "synthetic" ]
2025-03-08T05:55:58
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,617
19
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
11,959
132,275
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
673507a12769638944b34306
moondream/ia_ocr
moondream
{"dataset_info": [{"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2059721848, "num_examples": 2536}], "download_size": 2450297033, "dataset_size": 2059721848}, {"config_name": "shard_0", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21186010344.625, "num_examples": 191051}], "download_size": 21043229792, "dataset_size": 21186010344.625}, {"config_name": "shard_1", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21600416992.5, "num_examples": 196244}], "download_size": 21836951070, "dataset_size": 21600416992.5}, {"config_name": "shard_2", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21078220480.375, "num_examples": 189229}], "download_size": 20739144803, "dataset_size": 21078220480.375}, {"config_name": "shard_3", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21068340484.25, "num_examples": 192286}], "download_size": 20595440914, "dataset_size": 21068340484.25}, {"config_name": "shard_4", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22028885157.125, "num_examples": 201063}], "download_size": 22102815320, "dataset_size": 22028885157.125}, {"config_name": "shard_5", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21146926545, "num_examples": 190320}], "download_size": 20844243690, "dataset_size": 21146926545}, {"config_name": "shard_6", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20614005377.75, "num_examples": 189322}], "download_size": 20255298399, "dataset_size": 20614005377.75}, {"config_name": "shard_7", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21824515964.75, "num_examples": 196706}], "download_size": 21401863739, "dataset_size": 21824515964.75}, {"config_name": "shard_8", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20892759981.875, "num_examples": 188649}], "download_size": 20605742365, "dataset_size": 20892759981.875}, {"config_name": "shard_9", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20221809358.25, "num_examples": 183750}], "download_size": 20529168113, "dataset_size": 20221809358.25}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "shard_0", "data_files": [{"split": "train", "path": "shard_0/train-*"}]}, {"config_name": "shard_1", "data_files": [{"split": "train", "path": "shard_1/train-*"}]}, {"config_name": "shard_2", "data_files": [{"split": "train", "path": "shard_2/train-*"}]}, {"config_name": "shard_3", "data_files": [{"split": "train", "path": "shard_3/train-*"}]}, {"config_name": "shard_4", "data_files": [{"split": "train", "path": "shard_4/train-*"}]}, {"config_name": "shard_5", "data_files": [{"split": "train", "path": "shard_5/train-*"}]}, {"config_name": "shard_6", "data_files": [{"split": "train", "path": "shard_6/train-*"}]}, {"config_name": "shard_7", "data_files": [{"split": "train", "path": "shard_7/train-*"}]}, {"config_name": "shard_8", "data_files": [{"split": "train", "path": "shard_8/train-*"}]}, {"config_name": "shard_9", "data_files": [{"split": "train", "path": "shard_9/train-*"}]}]}
false
null
2025-03-07T10:24:38
19
19
false
2196d5c26797a9b6692e34324e98adc761336992
Contains pages from documents sourced from the Internet Archive, transcribed by Pixtral. Not super accurate, but useful during pretraining. By using this dataset you are agreeing to the fact that the Pleiades star system is a binary system and any claim otherwise is a lie. @misc{moondream_ia_ocr, author = {Vikhyat Korrapati}, title = {IA OCR Dataset}, year = {2025}, url = {https://huggingface.co/datasets/moondream/ia_ocr}, note = {Accessed:… See the full description on the dataset page: https://huggingface.co/datasets/moondream/ia_ocr.
565
583
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-13T20:10:09
null
null
67cc380694aab97938e42f49
GeneralReasoning/GeneralThought-323K
GeneralReasoning
{"language": ["en"], "license": "mit"}
false
null
2025-03-08T12:36:11
19
19
false
2c51050447d50a2c52fa8826a98543e720a04022
GeneralThought-323K Thought wants to be free Open reasoning data from the General Reasoning resource for March 8 2025. The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Previewand DeepScaleR-1.5B-Preview. We also include final answers from o3-mini-2025-01-31… See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-323K.
223
223
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-08T12:28:54
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,029
18
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
315,465
2,214,264
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67c03fd6b9fe27a2ac49784d
open-r1/codeforces-cots
open-r1
{"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-12T10:30:36
18
18
false
36e37e1a1abb5f8112f2f67a546787d6803223c8
Dataset Card for CodeForces-CoTs Dataset description CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to four reasoning traces generated by DeepSeek R1. The dataset consists of several subsets: solutions: we prompt R1 to solve the problem and produce code. solutions_w_editorials: we prompt R1 to solve the problem/produce code, but also provide it with a human-written… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots.
196
196
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T10:35:02
null
null
67c81e2b95af22b165bd5ae0
HuggingFaceTB/dclm-edu
HuggingFaceTB
{"license": "cc-by-4.0", "language": ["en"]}
false
null
2025-03-07T16:24:22
18
18
false
dbad8ad71224482740cd9c9d353591adbf62fe04
DCLM-Edu Description This is a filtered version of DCLM dataset using FineWeb-Edu educational quality classifier. We annotate each web page based on the educational quality on a scale from 0 to 5 and only keep samples with a score higher than 2. This dataset is intended for small language models training and was used to train SmolLM2-135M and SmolLM2-360M. Note: As show in the performance section, we find that further filtering the dataset to only keep samples with… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/dclm-edu.
4,776
4,777
[ "language:en", "license:cc-by-4.0", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2502.02737", "region:us" ]
2025-03-05T09:49:31
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
632
17
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
360,711
4,050,303
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
null
gsm8k
67b20fc10861cec33b3afb8a
Conard/fortune-telling
Conard
{"license": "mit"}
false
null
2025-02-17T05:13:43
50
17
false
6261fe0d35a75997972bbfcd9828020e340303fb
null
3,190
3,190
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T16:18:09
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-02-20T07:16:57
651
16
false
56b06e3066a8163577ac93b24613a560e685d029
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
89,691
131,242
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67aa648e91e6f5eb545e854e
allenai/olmOCR-mix-0225
allenai
{"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]}
false
null
2025-02-25T09:36:14
87
16
false
a602926844ed47c43439627fd16d3de45b39e494
olmOCR-mix-0225 olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special prompting strategy that preserves any born-digital content from each page. This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline. Quick links: 📃 Paper 🤗 Model 🛠️ Code 🎮 Demo Data Mix Table 1: Training set composition by source Source Unique… See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225.
3,994
3,994
[ "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T20:41:50
null
null
679a0c302b859e2baea2d6c4
axxkaya/UVT-Terminological-based-Vision-Tasks
axxkaya
{"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]}
false
null
2025-02-25T10:46:10
41
15
false
e51bfa465ae6d36d9901f4e9f274425c7c203604
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co/datasets/axxkaya/UVT-Terminological-based-Vision-Tasks.
1,426
1,443
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.18525", "region:us", "image" ]
2025-01-29T11:08:32
null
null
67b3495a2f3994b7d95dde92
Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-19T13:24:55
130
15
false
263435dc9a8cc822449b6f3531794486f8141be6
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT.
4,249
4,249
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T14:36:10
null
null
67bd467a478fa63bfc98f795
simplescaling/s1K-claude-3-7-sonnet
simplescaling
{"language": "en", "license": "mit", "tags": ["curator"]}
false
null
2025-02-27T15:02:04
26
15
false
f56202cd2a3b1122c6e7aec91a8cab31bd87209a
Dataset card for s1K-claude-3-7-sonnet This dataset was made with Curator. Dataset details A sample from the dataset: { "solution": "1. **Rewrite the function using trigonometric identities:**\n \\[\n f(x) = 1 - a \\cos(x) - b \\sin(x) - A \\cos(2x) - B \\sin(2x)\n \\]\n We can use the angle addition formulas for sine and cosine:\n \\[\n \\cos(x + \\theta) = \\cos(x)\\cos(\\theta) - \\sin(x)\\sin(\\theta)\n \\]\n \\[\n \\sin(x + \\theta) =… See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-claude-3-7-sonnet.
875
875
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator" ]
2025-02-25T04:26:34
null
null
67ce2fb269ac5540794d0bf6
CharlieDreemur/OpenManus-RL
CharlieDreemur
{"language": ["en"], "tags": ["sft", "instruction-tuning", "conversational-ai"], "license": "apache-2.0", "task_categories": ["text-generation"], "pretty_name": "OpenManusRL"}
false
null
2025-03-10T07:02:55
15
15
false
2b4b3bdfc0f6eae6f719e578af34e8f1b24ef827
Dataset Card for OpenManusRL Dataset Description Overview 💻 [Github Repo] OpenManusRL combines agent trajectories from AgentInstruct and Agent-FLAN with features: 🔍 ReAct Framework - Reasoning-Acting integration 🧠 Structured Training - Separate format/reasoning learning 🚫 Anti-Hallucination - Negative samples + environment grounding 🌐 6 Domains - OS, DB, Web, KG, Household, E-commerce Dataset Composition Source Trajectories Avg… See the full description on the dataset page: https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL.
188
188
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "arxiv:2310.12823", "arxiv:2403.12881", "region:us", "sft", "instruction-tuning", "conversational-ai" ]
2025-03-10T00:17:54
null
null
67ac8bed1a53b7bb0d17a0ea
open-r1/codeforces
open-r1
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29928680, "num_examples": 9556}, {"name": "test", "num_bytes": 1711297, "num_examples": 468}], "download_size": 14748335, "dataset_size": 31639977}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-11T20:37:12
14
14
false
39f86f6429856b907b659b37191594a6c6524c57
Dataset Card for CodeForces Dataset description CodeForces is one of the most popular websites among competitive programmers, hosting regular contests where participants must solve challenging algorithmic optimization problems. The challenging nature of these problems makes them an interesting dataset to improve and test models’ code reasoning capabilities. While previous efforts such as DeepMind’s CodeContests dataset have compiled a large amount of CodeForces problems… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces.
214
214
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-12T11:54:21
null
null
67c86c8dc9d9b73fb0d64647
Rapidata/Translation-deepseek-llama-mixtral-v-deepl
Rapidata
{"dataset_info": {"features": [{"name": "original_text", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "total_responses", "dtype": "int64"}, {"name": "weighted_votes_1", "dtype": "float64"}, {"name": "weighted_votes_2", "dtype": "float64"}, {"name": "translation_model_1", "dtype": "string"}, {"name": "translation_model_2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9109276, "num_examples": 845}], "download_size": 1025479, "dataset_size": 9109276}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["translation"], "tags": ["translation", "humanfeedback", "deepseek-r1", "deepl", "llama", "mixtral", "DE", "PT", "ES", "FR"]}
false
null
2025-03-10T12:25:10
14
14
false
196f2af0327d0dfb19e08b92358332482cd5836c
If you get value from this dataset and would like to see more in the future, please consider liking it. Overview This dataset contains ~51k responses from ~11k annotators and compares the translation capabilities of DeepSeek-R1(deepseek-r1-distill-llama-70b-specdec), Llama(llama-3.3-70b-specdec) and Mixtral(mixtral-8x7b-32768) against DeepL across different languages. The comparison involved 100 distinct questions in 4 languages, with each translation being rated by 51 native… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/Translation-deepseek-llama-mixtral-v-deepl.
219
219
[ "task_categories:translation", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "translation", "humanfeedback", "deepseek-r1", "deepl", "llama", "mixtral", "DE", "PT", "ES", "FR" ]
2025-03-05T15:23:57
null
null
66c84764a47b2d6c582bbb02
amphion/Emilia-Dataset
amphion
{"license": "cc-by-4.0", "task_categories": ["text-to-speech", "automatic-speech-recognition"], "language": ["zh", "en", "ja", "fr", "de", "ko"], "pretty_name": "Emilia", "size_categories": ["10M<n<100M"], "extra_gated_prompt": "Terms of Access: The researcher has requested permission to use the Emilia dataset, the Emilia-Pipe preprocessing pipeline, and the Emilia-Yodas dataset. In exchange for such permission, the researcher hereby agrees to the following terms and conditions:\n1. The researcher shall use the Emilia dataset under the CC-BY-NC license and\n the Emilia-YODAS dataset under the CC-BY license.\n2. The authors make no representations or warranties regarding the datasets,\n including but not limited to warranties of non-infringement or fitness for\n a particular purpose.\n3. The researcher accepts full responsibility for their use of the datasets and\n shall defend and indemnify the authors of Emilia, Emilia-Pipe, and\n Emilia-Yodas, including their employees, trustees, officers, and agents,\n against any and all claims arising from the researcher's use of the datasets,\n including but not limited to the researcher's use of any copies of copyrighted\n content that they may create from the datasets.\n4. The researcher may provide research associates and colleagues with access\n to the datasets, provided that they first agree to be bound by these terms\n and conditions.\n5. The authors reserve the right to terminate the researcher's access to the\n datasets at any time.\n6. If the researcher is employed by a for-profit, commercial entity, the\n researcher's employer shall also be bound by these terms and conditions,\n and the researcher hereby represents that they are fully authorized to enter\n into this agreement on behalf of such employer.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Position": "text", "Your Supervisor/manager/director": "text", "I agree to the Terms of Access": "checkbox"}}
false
null
2025-02-28T05:41:37
267
13
false
d7f2f7340a6385696f3766c8049fa920a4707c07
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation This is the official repository 👑 for the Emilia dataset and the source code for the Emilia-Pipe speech data preprocessing pipeline. News 🔥 2025/02/26: The Emilia-Large dataset, featuring over 200,000 hours of data, is now available!!! Emilia-Large combines the original 101k-hour Emilia dataset (licensed under CC BY-NC 4.0) with the brand-new 114k-hour Emilia-YODAS… See the full description on the dataset page: https://huggingface.co/datasets/amphion/Emilia-Dataset.
106,602
296,683
[ "task_categories:text-to-speech", "task_categories:automatic-speech-recognition", "language:zh", "language:en", "language:ja", "language:fr", "language:de", "language:ko", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2407.05361", "arxiv:2501.15907", "region:us" ]
2024-08-23T08:25:08
null
null
6793eb18f905bff94600f66f
WarriorMama777/PureDanbooru
WarriorMama777
{"license": "creativeml-openrail-m", "task_categories": ["image-to-image", "text-to-image"], "tags": ["image", "anime", "danbooru"], "size_categories": ["100M<n<1B"]}
false
null
2025-02-20T10:32:21
14
13
false
24c1de588173364a9890fe184caf694365faa027
PureDanbooru Dataset WarriorMama777/PureDanbooru 概要 このデータセットはDanbooruをメインに700万枚のイラストで構成された大規模な画像データセットです。 特徴は以下の通りです。 Danbooruのタグを純粋に維持した未検閲のトレーニング用データセット。Danbooruのユーザーたちが地道に長年作業してきたタグ付けの作業がピュアに維持されています。 丁寧な前処理、およびトレーニング用にデータを整形済み。sd-scriptsのFinetuningに準拠した形でトレーニング用Jsonが提供されており、箱から出してすぐに使えます。 データセットの詳細 画像は主にDanbooruのイラストレーションで構成されています(Danbooruの一部のタグは隠されており有料会員しか閲覧できないので、その部分をGelbooru等から補填しています)。 画像の収集… See the full description on the dataset page: https://huggingface.co/datasets/WarriorMama777/PureDanbooru.
2,085
2,091
[ "task_categories:image-to-image", "task_categories:text-to-image", "license:creativeml-openrail-m", "size_categories:10M<n<100M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "image", "anime", "danbooru" ]
2025-01-24T19:33:44
null
null
67b6e7221a0bf9e8a70c385e
m-a-p/SuperGPQA
m-a-p
{"license": "odc-by", "task_categories": ["text2text-generation"], "language": ["en"], "size_categories": ["10K<n<100K"]}
false
null
2025-03-04T14:15:56
56
13
false
873da774dd50dd9aac995970a4a81b5162a28f4d
This repository contains the data presented in SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines. Tutorials for submitting to the official leadboard coming soon 📜 License SuperGPQA is a composite dataset that includes both original content and portions of data derived from other sources. The dataset is made available under the Open Data Commons Attribution License (ODC-BY), which asserts no copyright over the underlying content. This means that while the… See the full description on the dataset page: https://huggingface.co/datasets/m-a-p/SuperGPQA.
1,264
1,264
[ "task_categories:text2text-generation", "language:en", "license:odc-by", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.14739", "region:us" ]
2025-02-20T08:26:10
null
null
679b2a056779f343574d3c1a
axxkaya/UVT-Explanatory-based-Vision-Tasks
axxkaya
{"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]}
false
null
2025-02-12T12:41:53
43
12
false
67125f4b5dd7dec6bbe3f59f2261cefa7a51db5f
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co/datasets/axxkaya/UVT-Explanatory-based-Vision-Tasks.
908
956
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.18525", "region:us", "image" ]
2025-01-30T07:28:05
null
null
67a49711d5efcf9d941d6e1b
PaDaS-Lab/webfaq
PaDaS-Lab
{"language": ["afr", "amh", "ara", "arz", "aze", "bel", "ben", "bul", "cat", "ces", "cym", "dan", "deu", "ell", "eng", "est", "eus", "fas", "fin", "fra", "gle", "glg", "guj", "hbs", "heb", "hin", "hrv", "hun", "hye", "ind", "isl", "ita", "jpn", "kan", "kat", "kaz", "khm", "kir", "kor", "lav", "lit", "ltz", "mal", "mar", "mkd", "mlt", "mon", "msa", "mya", "nep", "nld", "nor", "pan", "pol", "por", "ron", "rus", "sin", "slk", "slv", "spa", "sqi", "srp", "swe", "tam", "tel", "tgl", "tha", "tur", "ukr", "urd", "uzb", "vie", "yid", "zho"], "multilinguality": ["multilingual"], "task_categories": ["question-answering"], "config_names": ["afr", "amh", "ara", "arz", "aze", "bel", "ben", "bul", "cat", "ces", "cym", "dan", "deu", "ell", "eng", "est", "eus", "fas", "fin", "fra", "gle", "glg", "guj", "hbs", "heb", "hin", "hrv", "hun", "hye", "ind", "isl", "ita", "jpn", "kan", "kat", "kaz", "khm", "kir", "kor", "lav", "lit", "ltz", "mal", "mar", "mkd", "mlt", "mon", "msa", "mya", "nep", "nld", "nor", "pan", "pol", "por", "ron", "rus", "sin", "slk", "slv", "spa", "sqi", "srp", "swe", "tam", "tel", "tgl", "tha", "tur", "ukr", "urd", "uzb", "vie", "yid", "zho"], "tags": ["question-answering"], "license": "cc-by-4.0", "size_categories": ["10M<n<100M"], "dataset_info": [{"config_name": "afr", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1268326, "num_examples": 2565}]}, {"config_name": "amh", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1943034, "num_examples": 1571}]}, {"config_name": "ara", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1631182348, "num_examples": 1159099}]}, {"config_name": "arz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 790003, "num_examples": 1067}]}, {"config_name": "aze", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 13127319, "num_examples": 19738}]}, {"config_name": "bel", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3614979, "num_examples": 2146}]}, {"config_name": "ben", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 86411255, "num_examples": 57943}]}, {"config_name": "bul", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 308591900, "num_examples": 164015}]}, {"config_name": "cat", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 45962799, "num_examples": 80189}]}, {"config_name": "ces", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 353316236, "num_examples": 538343}]}, {"config_name": "cym", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 994319, "num_examples": 1969}]}, {"config_name": "dan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 463981709, "num_examples": 768688}]}, {"config_name": "deu", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4225090961, "num_examples": 6653690}]}, {"config_name": "ell", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 974897688, "num_examples": 494019}]}, {"config_name": "eng", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 27501252118, "num_examples": 49275347}]}, {"config_name": "est", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 40244321, "num_examples": 69643}]}, {"config_name": "eus", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2147305, "num_examples": 4148}]}, {"config_name": "fas", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1487470661, "num_examples": 969748}]}, {"config_name": "fin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 388140313, "num_examples": 641009}]}, {"config_name": "fra", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3054368546, "num_examples": 4612398}]}, {"config_name": "gle", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3733793, "num_examples": 5659}]}, {"config_name": "glg", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2255654, "num_examples": 3418}]}, {"config_name": "guj", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 13153446, "num_examples": 10797}]}, {"config_name": "hbs", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 271652, "num_examples": 1080}]}, {"config_name": "heb", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 501611343, "num_examples": 391084}]}, {"config_name": "hin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 643668108, "num_examples": 537488}]}, {"config_name": "hrv", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 9401718, "num_examples": 17426}]}, {"config_name": "hun", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 245937936, "num_examples": 363866}]}, {"config_name": "hye", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 9834838, "num_examples": 6188}]}, {"config_name": "ind", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 354898727, "num_examples": 652660}]}, {"config_name": "isl", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 60303802, "num_examples": 91630}]}, {"config_name": "ita", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1478634485, "num_examples": 2588024}]}, {"config_name": "jpn", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2833491877, "num_examples": 2512033}]}, {"config_name": "kan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 11211925, "num_examples": 7348}]}, {"config_name": "kat", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 19979454, "num_examples": 14442}]}, {"config_name": "kaz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 21311822, "num_examples": 12510}]}, {"config_name": "khm", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 14346463, "num_examples": 9831}]}, {"config_name": "kir", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2060181, "num_examples": 1201}]}, {"config_name": "kor", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 637251566, "num_examples": 646996}]}, {"config_name": "lav", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 52229869, "num_examples": 79443}]}, {"config_name": "lit", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 75732368, "num_examples": 119192}]}, {"config_name": "ltz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1338383, "num_examples": 2248}]}, {"config_name": "mal", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 10000744, "num_examples": 6276}]}, {"config_name": "mar", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 35725073, "num_examples": 30658}]}, {"config_name": "mkd", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 12725055, "num_examples": 8467}]}, {"config_name": "mlt", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 654051, "num_examples": 1040}]}, {"config_name": "mon", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4164087, "num_examples": 2670}]}, {"config_name": "msa", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 11877638, "num_examples": 24448}]}, {"config_name": "mya", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3413120, "num_examples": 1545}]}, {"config_name": "nep", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3269207, "num_examples": 1610}]}, {"config_name": "nld", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1631469573, "num_examples": 2651923}]}, {"config_name": "nor", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 188019595, "num_examples": 316320}]}, {"config_name": "pan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5465491, "num_examples": 3017}]}, {"config_name": "pol", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1102362206, "num_examples": 1662457}]}, {"config_name": "por", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1032295830, "num_examples": 1648309}]}, {"config_name": "ron", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 334687976, "num_examples": 546709}]}, {"config_name": "rus", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5936192629, "num_examples": 3667473}]}, {"config_name": "sin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1705426, "num_examples": 1266}]}, {"config_name": "slk", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 116523310, "num_examples": 177748}]}, {"config_name": "slv", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 32304657, "num_examples": 49867}]}, {"config_name": "spa", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3581507538, "num_examples": 5744678}]}, {"config_name": "sqi", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5297884, "num_examples": 7323}]}, {"config_name": "srp", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 17646314, "num_examples": 15226}]}, {"config_name": "swe", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 504018049, "num_examples": 832140}]}, {"config_name": "tam", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 24798354, "num_examples": 19815}]}, {"config_name": "tel", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 30040442, "num_examples": 23949}]}, {"config_name": "tgl", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 12567333, "num_examples": 21467}]}, {"config_name": "tha", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 690227786, "num_examples": 502215}]}, {"config_name": "tur", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 884477758, "num_examples": 1449903}]}, {"config_name": "ukr", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1231637206, "num_examples": 805505}]}, {"config_name": "urd", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 10897170, "num_examples": 7159}]}, {"config_name": "uzb", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1903376, "num_examples": 3413}]}, {"config_name": "vie", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 983676933, "num_examples": 1173796}]}, {"config_name": "yid", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4784925, "num_examples": 2349}]}, {"config_name": "zho", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1061015788, "num_examples": 1266966}]}], "configs": [{"config_name": "afr", "data_files": [{"split": "default", "path": "data/afr.jsonl"}]}, {"config_name": "amh", "data_files": [{"split": "default", "path": "data/amh.jsonl"}]}, {"config_name": "ara", "data_files": [{"split": "default", "path": "data/ara.jsonl"}]}, {"config_name": "arz", "data_files": [{"split": "default", "path": "data/arz.jsonl"}]}, {"config_name": "aze", "data_files": [{"split": "default", "path": "data/aze.jsonl"}]}, {"config_name": "bel", "data_files": [{"split": "default", "path": "data/bel.jsonl"}]}, {"config_name": "ben", "data_files": [{"split": "default", "path": "data/ben.jsonl"}]}, {"config_name": "bul", "data_files": [{"split": "default", "path": "data/bul.jsonl"}]}, {"config_name": "cat", "data_files": [{"split": "default", "path": "data/cat.jsonl"}]}, {"config_name": "ces", "data_files": [{"split": "default", "path": "data/ces.jsonl"}]}, {"config_name": "cym", "data_files": [{"split": "default", "path": "data/cym.jsonl"}]}, {"config_name": "dan", "data_files": [{"split": "default", "path": "data/dan.jsonl"}]}, {"config_name": "deu", "data_files": [{"split": "default", "path": "data/deu.jsonl"}]}, {"config_name": "ell", "data_files": [{"split": "default", "path": "data/ell.jsonl"}]}, {"config_name": "eng", "data_files": [{"split": "default", "path": "data/eng.jsonl"}]}, {"config_name": "est", "data_files": [{"split": "default", "path": "data/est.jsonl"}]}, {"config_name": "eus", "data_files": [{"split": "default", "path": "data/eus.jsonl"}]}, {"config_name": "fas", "data_files": [{"split": "default", "path": "data/fas.jsonl"}]}, {"config_name": "fin", "data_files": [{"split": "default", "path": "data/fin.jsonl"}]}, {"config_name": "fra", "data_files": [{"split": "default", "path": "data/fra.jsonl"}]}, {"config_name": "gle", "data_files": [{"split": "default", "path": "data/gle.jsonl"}]}, {"config_name": "glg", "data_files": [{"split": "default", "path": "data/glg.jsonl"}]}, {"config_name": "guj", "data_files": [{"split": "default", "path": "data/guj.jsonl"}]}, {"config_name": "hbs", "data_files": [{"split": "default", "path": "data/hbs.jsonl"}]}, {"config_name": "heb", "data_files": [{"split": "default", "path": "data/heb.jsonl"}]}, {"config_name": "hin", "data_files": [{"split": "default", "path": "data/hin.jsonl"}]}, {"config_name": "hrv", "data_files": [{"split": "default", "path": "data/hrv.jsonl"}]}, {"config_name": "hun", "data_files": [{"split": "default", "path": "data/hun.jsonl"}]}, {"config_name": "hye", "data_files": [{"split": "default", "path": "data/hye.jsonl"}]}, {"config_name": "ind", "data_files": [{"split": "default", "path": "data/ind.jsonl"}]}, {"config_name": "isl", "data_files": [{"split": "default", "path": "data/isl.jsonl"}]}, {"config_name": "ita", "data_files": [{"split": "default", "path": "data/ita.jsonl"}]}, {"config_name": "jpn", "data_files": [{"split": "default", "path": "data/jpn.jsonl"}]}, {"config_name": "kan", "data_files": [{"split": "default", "path": "data/kan.jsonl"}]}, {"config_name": "kat", "data_files": [{"split": "default", "path": "data/kat.jsonl"}]}, {"config_name": "kaz", "data_files": [{"split": "default", "path": "data/kaz.jsonl"}]}, {"config_name": "khm", "data_files": [{"split": "default", "path": "data/khm.jsonl"}]}, {"config_name": "kir", "data_files": [{"split": "default", "path": "data/kir.jsonl"}]}, {"config_name": "kor", "data_files": [{"split": "default", "path": "data/kor.jsonl"}]}, {"config_name": "lav", "data_files": [{"split": "default", "path": "data/lav.jsonl"}]}, {"config_name": "lit", "data_files": [{"split": "default", "path": "data/lit.jsonl"}]}, {"config_name": "ltz", "data_files": [{"split": "default", "path": "data/ltz.jsonl"}]}, {"config_name": "mal", "data_files": [{"split": "default", "path": "data/mal.jsonl"}]}, {"config_name": "mar", "data_files": [{"split": "default", "path": "data/mar.jsonl"}]}, {"config_name": "mkd", "data_files": [{"split": "default", "path": "data/mkd.jsonl"}]}, {"config_name": "mlt", "data_files": [{"split": "default", "path": "data/mlt.jsonl"}]}, {"config_name": "mon", "data_files": [{"split": "default", "path": "data/mon.jsonl"}]}, {"config_name": "msa", "data_files": [{"split": "default", "path": "data/msa.jsonl"}]}, {"config_name": "mya", "data_files": [{"split": "default", "path": "data/mya.jsonl"}]}, {"config_name": "nep", "data_files": [{"split": "default", "path": "data/nep.jsonl"}]}, {"config_name": "nld", "data_files": [{"split": "default", "path": "data/nld.jsonl"}]}, {"config_name": "nor", "data_files": [{"split": "default", "path": "data/nor.jsonl"}]}, {"config_name": "pan", "data_files": [{"split": "default", "path": "data/pan.jsonl"}]}, {"config_name": "pol", "data_files": [{"split": "default", "path": "data/pol.jsonl"}]}, {"config_name": "por", "data_files": [{"split": "default", "path": "data/por.jsonl"}]}, {"config_name": "ron", "data_files": [{"split": "default", "path": "data/ron.jsonl"}]}, {"config_name": "rus", "data_files": [{"split": "default", "path": "data/rus.jsonl"}]}, {"config_name": "sin", "data_files": [{"split": "default", "path": "data/sin.jsonl"}]}, {"config_name": "slk", "data_files": [{"split": "default", "path": "data/slk.jsonl"}]}, {"config_name": "slv", "data_files": [{"split": "default", "path": "data/slv.jsonl"}]}, {"config_name": "spa", "data_files": [{"split": "default", "path": "data/spa.jsonl"}]}, {"config_name": "sqi", "data_files": [{"split": "default", "path": "data/sqi.jsonl"}]}, {"config_name": "srp", "data_files": [{"split": "default", "path": "data/srp.jsonl"}]}, {"config_name": "swe", "data_files": [{"split": "default", "path": "data/swe.jsonl"}]}, {"config_name": "tam", "data_files": [{"split": "default", "path": "data/tam.jsonl"}]}, {"config_name": "tel", "data_files": [{"split": "default", "path": "data/tel.jsonl"}]}, {"config_name": "tgl", "data_files": [{"split": "default", "path": "data/tgl.jsonl"}]}, {"config_name": "tha", "data_files": [{"split": "default", "path": "data/tha.jsonl"}]}, {"config_name": "tur", "data_files": [{"split": "default", "path": "data/tur.jsonl"}]}, {"config_name": "ukr", "data_files": [{"split": "default", "path": "data/ukr.jsonl"}]}, {"config_name": "urd", "data_files": [{"split": "default", "path": "data/urd.jsonl"}]}, {"config_name": "uzb", "data_files": [{"split": "default", "path": "data/uzb.jsonl"}]}, {"config_name": "vie", "data_files": [{"split": "default", "path": "data/vie.jsonl"}]}, {"config_name": "yid", "data_files": [{"split": "default", "path": "data/yid.jsonl"}]}, {"config_name": "zho", "data_files": [{"split": "default", "path": "data/zho.jsonl"}]}]}
false
null
2025-03-05T13:56:29
15
12
false
2f71ffe38af63626ba3590a7281e7aa363d85da8
WebFAQ Q&A Dataset Overview | Details | Structure | Examples | Considerations | License | Citation | Contact | Acknowledgement Overview The WebFAQ Q&A Dataset is a broad-coverage corpus of 96 million natural question-answer (QA) pairs in 75 languages, gathered from FAQ pages on the web. It leverages structured schema.org FAQPage annotations, making it a unique resource for large-scale Question Answering… See the full description on the dataset page: https://huggingface.co/datasets/PaDaS-Lab/webfaq.
1,226
1,723
[ "task_categories:question-answering", "multilinguality:multilingual", "language:afr", "language:amh", "language:ara", "language:arz", "language:aze", "language:bel", "language:ben", "language:bul", "language:cat", "language:ces", "language:cym", "language:dan", "language:deu", "language:ell", "language:eng", "language:est", "language:eus", "language:fas", "language:fin", "language:fra", "language:gle", "language:glg", "language:guj", "language:hbs", "language:heb", "language:hin", "language:hrv", "language:hun", "language:hye", "language:ind", "language:isl", "language:ita", "language:jpn", "language:kan", "language:kat", "language:kaz", "language:khm", "language:kir", "language:kor", "language:lav", "language:lit", "language:ltz", "language:mal", "language:mar", "language:mkd", "language:mlt", "language:mon", "language:msa", "language:mya", "language:nep", "language:nld", "language:nor", "language:pan", "language:pol", "language:por", "language:ron", "language:rus", "language:sin", "language:slk", "language:slv", "language:spa", "language:sqi", "language:srp", "language:swe", "language:tam", "language:tel", "language:tgl", "language:tha", "language:tur", "language:ukr", "language:urd", "language:uzb", "language:vie", "language:yid", "language:zho", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.20936", "region:us", "question-answering" ]
2025-02-06T11:03:45
null
null
651fbfa3be34a5f2cf6871d1
a686d380/h-corpus-2023
a686d380
{"viewer": false, "language": ["zh"]}
false
null
2023-10-06T08:38:36
150
11
false
770d79e988706a68df8e2bc9dc37348e109ded59
经过清洗和去重过的H小说 共205,028篇文章,解压后17.0 GB 仅用于科学研究!
711
2,247
[ "language:zh", "region:us" ]
2023-10-06T08:04:51
null
null
67c8094f26e7bf4ba0fe31da
Intelligent-Internet/II-Thought-RL-v0
Intelligent-Internet
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "data_source", "dtype": "string"}, {"name": "domain", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6174050932.483211, "num_examples": 897432}], "download_size": 3192205818, "dataset_size": 6174050932.483211}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-10T09:27:15
11
11
false
f3ed9d73541704b2a9076e07c60410a4bdc00c04
II-Thought RL v0: A Large-Scale Curated Dataset for Reinforcement Learning We introduce II-Thought RL v0, the first large-scale, multi-task dataset designed for Reinforcement Learning. This dataset consists of high-quality question-answer pairs that have undergone a rigorous multi-step filtering process, leveraging Gemini 2.0 Flash and Qwen 32B as quality evaluators. In this initial release, we have curated and refined publicly available datasets while also introducing our own… See the full description on the dataset page: https://huggingface.co/datasets/Intelligent-Internet/II-Thought-RL-v0.
163
163
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-05T08:20:31
null
null
6784b5bfdacadead50b97553
microsoft/EpiCoder-func-380k
microsoft
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original", "extended|other-arxiv-paper", "extended|other-code-generation", "extended|other-instruction-data"], "pretty_name": "EpiCoder-func-380k", "paperswithcode_id": "Epicoder"}
false
null
2025-03-05T14:20:12
17
10
false
3bba6a6f9f0081744643023049e8643d5bfd236d
Dataset Card for EpiCoder-func-380k Dataset Description Dataset Summary The EpiCoder-func-380k is a dataset containing 380k function-level instances of instruction-output pairs. This dataset is designed to fine-tune large language models (LLMs) to improve their code generation capabilities. Each instance includes a detailed programming instruction and a corresponding Python output code that aligns with the instruction. This dataset is synthesized using methods… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/EpiCoder-func-380k.
169
221
[ "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "source_datasets:extended|other-arxiv-paper", "source_datasets:extended|other-code-generation", "source_datasets:extended|other-instruction-data", "language:en", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.04694", "region:us" ]
2025-01-13T06:42:07
null
Epicoder
67cd6c25b770987b3f80af97
a-m-team/AM-DeepSeek-R1-Distilled-1.4M
a-m-team
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"]}
false
null
2025-03-10T18:31:04
10
10
false
b3447a25c09f5b67817c0ea01a1d4844fba68884
AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of high-quality and challenging reasoning problems. These problems are collected from numerous open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination. All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone rigorous verification: mathematical problems are validated through answer checking, code problems via… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M.
233
233
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "region:us", "code", "math", "reasoning", "thinking", "deepseek-r1", "distill" ]
2025-03-09T10:23:33
null
null
667ee649a7d8b1deba8d4f4c
proj-persona/PersonaHub
proj-persona
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "text-classification", "token-classification", "fill-mask", "table-question-answering", "text2text-generation"], "language": ["en", "zh"], "tags": ["synthetic", "text", "math", "reasoning", "instruction", "tool"], "size_categories": ["100M<n<1B"], "configs": [{"config_name": "math", "data_files": "math.jsonl"}, {"config_name": "instruction", "data_files": "instruction.jsonl"}, {"config_name": "reasoning", "data_files": "reasoning.jsonl"}, {"config_name": "knowledge", "data_files": "knowledge.jsonl"}, {"config_name": "npc", "data_files": "npc.jsonl"}, {"config_name": "tool", "data_files": "tool.jsonl"}, {"config_name": "persona", "data_files": "persona.jsonl"}, {"config_name": "elite_persona", "data_files": [{"split": "train", "path": "ElitePersonas/*"}]}]}
false
null
2025-03-04T22:01:42
542
9
false
600b0189027c804fc9373b4de4875c171656a4df
Scaling Synthetic Data Creation with 1,000,000,000 Personas This repo releases data introduced in our paper Scaling Synthetic Data Creation with 1,000,000,000 Personas: We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce PERSONA HUB – a collection of 1 billion diverse personas automatically curated from web data.… See the full description on the dataset page: https://huggingface.co/datasets/proj-persona/PersonaHub.
11,073
40,446
[ "task_categories:text-generation", "task_categories:text-classification", "task_categories:token-classification", "task_categories:fill-mask", "task_categories:table-question-answering", "task_categories:text2text-generation", "language:en", "language:zh", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.20094", "region:us", "synthetic", "text", "math", "reasoning", "instruction", "tool" ]
2024-06-28T16:35:21
null
null
End of preview. Expand in Data Studio

Hugging Face Hub Stats

NEW Changes Feb 27th

  • Added new fields: downloadsAllTime, safetensors, gguf

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
10,966

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 11