_id
stringlengths 24
24
| id
stringlengths 5
121
| author
stringlengths 2
42
| cardData
stringlengths 2
1.07M
⌀ | disabled
bool 2
classes | gated
null | lastModified
timestamp[ns] | likes
int64 0
7.62k
| trendingScore
float64 -1
77
| private
bool 1
class | sha
stringlengths 40
40
| description
stringlengths 0
6.67k
⌀ | downloads
int64 0
4.9M
| downloadsAllTime
int64 0
142M
| tags
sequencelengths 1
7.92k
| createdAt
timestamp[ns] | citation
stringlengths 0
10.7k
⌀ | paperswithcode_id
stringclasses 652
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
679c0b5c32cf4c58bdcba8eb | facebook/natural_reasoning | facebook | {"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]} | false | null | 2025-02-21T06:02:40 | 389 | 77 | false | 99eea5dc6bfa45a925eb42600e81dc90377ba237 | NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning. | 10,128 | 10,128 | [
"task_categories:text-generation",
"language:en",
"license:cc-by-nc-4.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.13124",
"region:us"
] | 2025-01-30T23:29:32 | null | null |
676f70846bf205795346d2be | FreedomIntelligence/medical-o1-reasoning-SFT | FreedomIntelligence | {"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]} | false | null | 2025-02-22T05:15:38 | 435 | 75 | false | 61536c1d80b2c799df6800cc583897b77d2c86d2 |
News
[2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1.
[2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier.
Introduction
This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT. | 27,700 | 33,321 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18925",
"region:us",
"medical",
"biology"
] | 2024-12-28T03:29:08 | null | null |
67b32145bac2756ce9a4a0fe | Congliu/Chinese-DeepSeek-R1-Distill-data-110k | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-21T02:18:08 | 511 | 46 | false | 8520b649430617c2be4490f424d251d09d835ed3 |
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1)
🤗 Hugging Face | 🤖 ModelScope | 🚀 Github | 📑 Blog
注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。
本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。
为什么开源这个数据?
R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。
为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下:
Math:共计36568个样本,
Exam:共计2432个样本,
STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k. | 7,420 | 7,420 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T11:45:09 | null | null |
6532270e829e1dc2f293d6b8 | gaia-benchmark/GAIA | gaia-benchmark | {"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}} | false | null | 2025-02-13T08:36:12 | 253 | 32 | false | 897f2dfbb5c952b5c3c1509e648381f9c7b70316 |
GAIA dataset
GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc).
We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format.
Data and leaderboard
GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA. | 8,928 | 30,075 | [
"language:en",
"arxiv:2311.12983",
"region:us"
] | 2023-10-20T07:06:54 | null |
|
67c248d12a6f7c1f2a448ee4 | KodCode/KodCode-V1 | KodCode | {"language": ["en"], "license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "trials", "struct": [{"name": "trial_gpt4o_0", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_1", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_2", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_3", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_4", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_5", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_6", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_7", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_8", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_9", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}]}, {"name": "chosen_trial", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "benchmark_similarity", "dtype": "float64"}, {"name": "benchmark_instruction", "dtype": "string"}, {"name": "benchmark_task_id", "dtype": "string"}, {"name": "filter_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6936635744, "num_examples": 443543}, {"name": "use_with_caution", "num_bytes": 59596328, "num_examples": 3335}], "download_size": 2472949876, "dataset_size": 6996232072}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}]} | false | null | 2025-03-09T20:50:44 | 60 | 30 | false | bf6420bb3cffcc0d91facb422048d9fc40d23235 |
🐱 KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning.
🕸️… See the full description on the dataset page: https://huggingface.co/datasets/KodCode/KodCode-V1. | 2,727 | 2,727 | [
"language:en",
"license:cc-by-nc-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2503.02951",
"region:us"
] | 2025-02-28T23:37:53 | null | null |
67aa021ced8d8663d42505cc | open-r1/OpenR1-Math-220k | open-r1 | {"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]} | false | null | 2025-02-18T11:45:27 | 491 | 28 | false | e4e141ec9dea9f8326f4d347be56105859b2bd68 |
OpenR1-Math-220k
Dataset description
OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5.
The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer.
The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k. | 51,076 | 51,076 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T13:41:48 | null | null |
67b78333f663232795e6cb29 | SynthLabsAI/Big-Math-RL-Verified | SynthLabsAI | {"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "domain", "sequence": "string"}, {"name": "llama8b_solve_rate", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 76969060, "num_examples": 251122}], "download_size": 32238760, "dataset_size": 76969060}, "task_categories": ["question-answering", "text-generation"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "size_categories": ["100K<n<1M"], "tags": ["mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers"]} | false | null | 2025-03-06T22:23:34 | 147 | 28 | false | 65148ae21b6c0cc3c362aab1b202cd51a47cdd67 |
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models
Big-Math is the largest open-source dataset of high-quality mathematical problems, curated specifically for reinforcement learning (RL) training in language models. With over 250,000 rigorously filtered and verified problems, Big-Math bridges the gap between quality and quantity, establishing a robust foundation for advancing reasoning in LLMs.
Request Early Access to Private… See the full description on the dataset page: https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified. | 5,117 | 5,117 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.17387",
"region:us",
"mathematics",
"math",
"reinforcement-learning",
"RL",
"reasoning",
"verifiable",
"open-ended-questions",
"closed-form-answers"
] | 2025-02-20T19:32:03 | null | null |
67c9ec5572b8f1776ef7f0d4 | madrylab/gsm8k-platinum | madrylab | {"language": ["en"], "license": "mit", "dataset_info": {"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "cleaning_status", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 663954, "num_examples": 1209}], "download_size": 380973, "dataset_size": 663954}, "configs": [{"config_name": "main", "data_files": [{"split": "test", "path": "main/test-*"}]}], "task_categories": ["text2text-generation"], "tags": ["math-word-problems"], "size_categories": ["1K<n<10K"]} | false | null | 2025-03-11T14:48:29 | 25 | 25 | false | e762492455a1cf7967de89f05b6bef72fc713b66 |
Dataset Card for GSM8K-Platinum
🏆 Homepage | 📣 Blog | 🖥️ Code | 📖 Paper | 🔍 Error Viewer
Dataset Summary
GSM8K-Platinum is a revised version of the full test set of GSM8K (Grade School Math 8K), a dataset of grade school math word problems, providing a more accurate assessment of mathematical reasoning capabilities
To revise this dataset, we ran a variety of frontier models each individual example and manually examined any example for which at least one… See the full description on the dataset page: https://huggingface.co/datasets/madrylab/gsm8k-platinum. | 402 | 402 | [
"task_categories:text2text-generation",
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.03461",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2025-03-06T18:41:25 | null | null |
67c58d2e6c6e0371152cf00f | GeneralReasoning/GeneralThought-195K | GeneralReasoning | {"language": ["en"], "license": "mit"} | false | null | 2025-03-10T12:29:49 | 65 | 23 | false | 64f7cb8b086e5e9ae870670092fe37c15bbe1c97 |
GeneralThought-195K
NEWEST RELEASE WITH 323K TRACES IS HERE
Thought wants to be free
Open reasoning data from the General Reasoning resource for March 3 2025.
The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Preview and DeepScaleR-1.5B-Preview. We also include final… See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-195K. | 982 | 982 | [
"language:en",
"license:mit",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-03T11:06:22 | null | null |
67cbdbee416daf2ed9475ea4 | SmallDoge/SmallThoughts | SmallDoge | {"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 92561810.14604151, "num_examples": 25000}, {"name": "test", "num_bytes": 3702472.40584166, "num_examples": 1000}], "download_size": 48763329, "dataset_size": 96264282.55188318}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["biology", "code", "chemistry", "synthetic"], "size_categories": ["10K<n<100K"]} | false | null | 2025-03-12T12:54:12 | 23 | 23 | false | 64ca365c574f257a82bf7f1f5c872623f7dbea67 |
SmallThoughts
Open synthetic reasoning dataset, covering math, science, code, and puzzles.
To address the issue of the existing DeepSeek R1 distilled data being too long, this dataset constrains the reasoning trajectory to be more precise and concise while retaining the reflective nature.
We also open-sourced the pipeline code for distilled data here, with just one command you can generate your own dataset.
How to use
You can load… See the full description on the dataset page: https://huggingface.co/datasets/SmallDoge/SmallThoughts. | 760 | 760 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"biology",
"code",
"chemistry",
"synthetic"
] | 2025-03-08T05:55:58 | null | null |
63990f21cc50af73d29ecfa3 | fka/awesome-chatgpt-prompts | fka | {"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]} | false | null | 2025-01-06T00:02:53 | 7,617 | 19 | false | 68ba7694e23014788dcc8ab5afe613824f45a05c | 🧠 Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts
View All Prompts on GitHub
License
CC-0
| 11,959 | 132,275 | [
"task_categories:question-answering",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"ChatGPT"
] | 2022-12-13T23:47:45 | null | null |
673507a12769638944b34306 | moondream/ia_ocr | moondream | {"dataset_info": [{"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2059721848, "num_examples": 2536}], "download_size": 2450297033, "dataset_size": 2059721848}, {"config_name": "shard_0", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21186010344.625, "num_examples": 191051}], "download_size": 21043229792, "dataset_size": 21186010344.625}, {"config_name": "shard_1", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21600416992.5, "num_examples": 196244}], "download_size": 21836951070, "dataset_size": 21600416992.5}, {"config_name": "shard_2", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21078220480.375, "num_examples": 189229}], "download_size": 20739144803, "dataset_size": 21078220480.375}, {"config_name": "shard_3", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21068340484.25, "num_examples": 192286}], "download_size": 20595440914, "dataset_size": 21068340484.25}, {"config_name": "shard_4", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22028885157.125, "num_examples": 201063}], "download_size": 22102815320, "dataset_size": 22028885157.125}, {"config_name": "shard_5", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21146926545, "num_examples": 190320}], "download_size": 20844243690, "dataset_size": 21146926545}, {"config_name": "shard_6", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20614005377.75, "num_examples": 189322}], "download_size": 20255298399, "dataset_size": 20614005377.75}, {"config_name": "shard_7", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21824515964.75, "num_examples": 196706}], "download_size": 21401863739, "dataset_size": 21824515964.75}, {"config_name": "shard_8", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20892759981.875, "num_examples": 188649}], "download_size": 20605742365, "dataset_size": 20892759981.875}, {"config_name": "shard_9", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20221809358.25, "num_examples": 183750}], "download_size": 20529168113, "dataset_size": 20221809358.25}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "shard_0", "data_files": [{"split": "train", "path": "shard_0/train-*"}]}, {"config_name": "shard_1", "data_files": [{"split": "train", "path": "shard_1/train-*"}]}, {"config_name": "shard_2", "data_files": [{"split": "train", "path": "shard_2/train-*"}]}, {"config_name": "shard_3", "data_files": [{"split": "train", "path": "shard_3/train-*"}]}, {"config_name": "shard_4", "data_files": [{"split": "train", "path": "shard_4/train-*"}]}, {"config_name": "shard_5", "data_files": [{"split": "train", "path": "shard_5/train-*"}]}, {"config_name": "shard_6", "data_files": [{"split": "train", "path": "shard_6/train-*"}]}, {"config_name": "shard_7", "data_files": [{"split": "train", "path": "shard_7/train-*"}]}, {"config_name": "shard_8", "data_files": [{"split": "train", "path": "shard_8/train-*"}]}, {"config_name": "shard_9", "data_files": [{"split": "train", "path": "shard_9/train-*"}]}]} | false | null | 2025-03-07T10:24:38 | 19 | 19 | false | 2196d5c26797a9b6692e34324e98adc761336992 | Contains pages from documents sourced from the Internet Archive, transcribed by Pixtral. Not super accurate, but useful during pretraining.
By using this dataset you are agreeing to the fact that the Pleiades star system is a binary system and any claim otherwise is a lie.
@misc{moondream_ia_ocr,
author = {Vikhyat Korrapati},
title = {IA OCR Dataset},
year = {2025},
url = {https://huggingface.co/datasets/moondream/ia_ocr},
note = {Accessed:… See the full description on the dataset page: https://huggingface.co/datasets/moondream/ia_ocr. | 565 | 583 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-11-13T20:10:09 | null | null |
67cc380694aab97938e42f49 | GeneralReasoning/GeneralThought-323K | GeneralReasoning | {"language": ["en"], "license": "mit"} | false | null | 2025-03-08T12:36:11 | 19 | 19 | false | 2c51050447d50a2c52fa8826a98543e720a04022 |
GeneralThought-323K
Thought wants to be free
Open reasoning data from the General Reasoning resource for March 8 2025.
The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Previewand DeepScaleR-1.5B-Preview. We also include final answers from o3-mini-2025-01-31… See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-323K. | 223 | 223 | [
"language:en",
"license:mit",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-08T12:28:54 | null | null |
66212f29fb07c3e05ad0432e | HuggingFaceFW/fineweb | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-31T14:10:44 | 2,029 | 18 | false | 0f039043b23fe1d4eed300b504aa4b4a68f1c7ba |
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library.
🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb. | 315,465 | 2,214,264 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:10B<n<100B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2306.01116",
"arxiv:2109.07445",
"arxiv:2406.17557",
"doi:10.57967/hf/2493",
"region:us"
] | 2024-04-18T14:33:13 | null | null |
67c03fd6b9fe27a2ac49784d | open-r1/codeforces-cots | open-r1 | {"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"} | false | null | 2025-03-12T10:30:36 | 18 | 18 | false | 36e37e1a1abb5f8112f2f67a546787d6803223c8 |
Dataset Card for CodeForces-CoTs
Dataset description
CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to four reasoning traces generated by DeepSeek R1.
The dataset consists of several subsets:
solutions: we prompt R1 to solve the problem and produce code.
solutions_w_editorials: we prompt R1 to solve the problem/produce code, but also provide it with a human-written… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots. | 196 | 196 | [
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-27T10:35:02 | null | null |
67c81e2b95af22b165bd5ae0 | HuggingFaceTB/dclm-edu | HuggingFaceTB | {"license": "cc-by-4.0", "language": ["en"]} | false | null | 2025-03-07T16:24:22 | 18 | 18 | false | dbad8ad71224482740cd9c9d353591adbf62fe04 |
DCLM-Edu
Description
This is a filtered version of DCLM dataset using FineWeb-Edu educational quality classifier. We annotate each web page based on the educational quality
on a scale from 0 to 5 and only keep samples with a score higher than 2. This dataset is intended for small language models training and was used to train SmolLM2-135M and SmolLM2-360M.
Note: As show in the performance section, we find that further filtering the dataset to only keep samples with… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/dclm-edu. | 4,776 | 4,777 | [
"language:en",
"license:cc-by-4.0",
"size_categories:1B<n<10B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2502.02737",
"region:us"
] | 2025-03-05T09:49:31 | null | null |
625552d2b339bb03abe3432d | openai/gsm8k | openai | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]} | false | null | 2024-01-04T12:05:15 | 632 | 17 | false | e53f048856ff4f594e959d75785d2c2d37b678ee |
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve.
Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k. | 360,711 | 4,050,303 | [
"task_categories:text2text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2022-04-12T10:22:10 | null | gsm8k |
67b20fc10861cec33b3afb8a | Conard/fortune-telling | Conard | {"license": "mit"} | false | null | 2025-02-17T05:13:43 | 50 | 17 | false | 6261fe0d35a75997972bbfcd9828020e340303fb | null | 3,190 | 3,190 | [
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-16T16:18:09 | null | null |
6797e648de960c48ff034e54 | open-thoughts/OpenThoughts-114k | open-thoughts | {"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"} | false | null | 2025-02-20T07:16:57 | 651 | 16 | false | 56b06e3066a8163577ac93b24613a560e685d029 |
Open-Thoughts-114k
Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles!
Inspect the content with rich formatting with Curator Viewer.
Available Subsets
default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models:
ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train")
metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k. | 89,691 | 131,242 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"curator",
"synthetic"
] | 2025-01-27T20:02:16 | null | null |
67aa648e91e6f5eb545e854e | allenai/olmOCR-mix-0225 | allenai | {"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]} | false | null | 2025-02-25T09:36:14 | 87 | 16 | false | a602926844ed47c43439627fd16d3de45b39e494 |
olmOCR-mix-0225
olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special
prompting strategy that preserves any born-digital content from each page.
This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline.
Quick links:
📃 Paper
🤗 Model
🛠️ Code
🎮 Demo
Data Mix
Table 1: Training set composition by source
Source
Unique… See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225. | 3,994 | 3,994 | [
"license:odc-by",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T20:41:50 | null | null |
679a0c302b859e2baea2d6c4 | axxkaya/UVT-Terminological-based-Vision-Tasks | axxkaya | {"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]} | false | null | 2025-02-25T10:46:10 | 41 | 15 | false | e51bfa465ae6d36d9901f4e9f274425c7c203604 |
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization
Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co/datasets/axxkaya/UVT-Terminological-based-Vision-Tasks. | 1,426 | 1,443 | [
"language:en",
"license:mit",
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18525",
"region:us",
"image"
] | 2025-01-29T11:08:32 | null | null |
67b3495a2f3994b7d95dde92 | Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-19T13:24:55 | 130 | 15 | false | 263435dc9a8cc822449b6f3531794486f8141be6 |
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1)
🤗 Hugging Face | 🤖 ModelScope | 🚀 Github | 📑 Blog
注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。
本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。
为什么开源这个数据?
R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。
为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下:
Math:共计36568个样本,
Exam:共计2432个样本,
STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT. | 4,249 | 4,249 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T14:36:10 | null | null |
67bd467a478fa63bfc98f795 | simplescaling/s1K-claude-3-7-sonnet | simplescaling | {"language": "en", "license": "mit", "tags": ["curator"]} | false | null | 2025-02-27T15:02:04 | 26 | 15 | false | f56202cd2a3b1122c6e7aec91a8cab31bd87209a |
Dataset card for s1K-claude-3-7-sonnet
This dataset was made with Curator.
Dataset details
A sample from the dataset:
{
"solution": "1. **Rewrite the function using trigonometric identities:**\n \\[\n f(x) = 1 - a \\cos(x) - b \\sin(x) - A \\cos(2x) - B \\sin(2x)\n \\]\n We can use the angle addition formulas for sine and cosine:\n \\[\n \\cos(x + \\theta) = \\cos(x)\\cos(\\theta) - \\sin(x)\\sin(\\theta)\n \\]\n \\[\n \\sin(x + \\theta) =… See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-claude-3-7-sonnet. | 875 | 875 | [
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"curator"
] | 2025-02-25T04:26:34 | null | null |
67ce2fb269ac5540794d0bf6 | CharlieDreemur/OpenManus-RL | CharlieDreemur | {"language": ["en"], "tags": ["sft", "instruction-tuning", "conversational-ai"], "license": "apache-2.0", "task_categories": ["text-generation"], "pretty_name": "OpenManusRL"} | false | null | 2025-03-10T07:02:55 | 15 | 15 | false | 2b4b3bdfc0f6eae6f719e578af34e8f1b24ef827 |
Dataset Card for OpenManusRL
Dataset Description
Overview
💻 [Github Repo]
OpenManusRL combines agent trajectories from AgentInstruct and Agent-FLAN with features:
🔍 ReAct Framework - Reasoning-Acting integration
🧠 Structured Training - Separate format/reasoning learning
🚫 Anti-Hallucination - Negative samples + environment grounding
🌐 6 Domains - OS, DB, Web, KG, Household, E-commerce
Dataset Composition
Source
Trajectories
Avg… See the full description on the dataset page: https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL. | 188 | 188 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"arxiv:2310.12823",
"arxiv:2403.12881",
"region:us",
"sft",
"instruction-tuning",
"conversational-ai"
] | 2025-03-10T00:17:54 | null | null |
67ac8bed1a53b7bb0d17a0ea | open-r1/codeforces | open-r1 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29928680, "num_examples": 9556}, {"name": "test", "num_bytes": 1711297, "num_examples": 468}], "download_size": 14748335, "dataset_size": 31639977}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "cc-by-4.0"} | false | null | 2025-03-11T20:37:12 | 14 | 14 | false | 39f86f6429856b907b659b37191594a6c6524c57 |
Dataset Card for CodeForces
Dataset description
CodeForces is one of the most popular websites among competitive programmers, hosting regular contests where participants must solve challenging algorithmic optimization problems. The challenging nature of these problems makes them an interesting dataset to improve and test models’ code reasoning capabilities.
While previous efforts such as DeepMind’s CodeContests dataset have compiled a large amount of CodeForces problems… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces. | 214 | 214 | [
"license:cc-by-4.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-12T11:54:21 | null | null |
67c86c8dc9d9b73fb0d64647 | Rapidata/Translation-deepseek-llama-mixtral-v-deepl | Rapidata | {"dataset_info": {"features": [{"name": "original_text", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "total_responses", "dtype": "int64"}, {"name": "weighted_votes_1", "dtype": "float64"}, {"name": "weighted_votes_2", "dtype": "float64"}, {"name": "translation_model_1", "dtype": "string"}, {"name": "translation_model_2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9109276, "num_examples": 845}], "download_size": 1025479, "dataset_size": 9109276}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["translation"], "tags": ["translation", "humanfeedback", "deepseek-r1", "deepl", "llama", "mixtral", "DE", "PT", "ES", "FR"]} | false | null | 2025-03-10T12:25:10 | 14 | 14 | false | 196f2af0327d0dfb19e08b92358332482cd5836c |
If you get value from this dataset and would like to see more in the future, please consider liking it.
Overview
This dataset contains ~51k responses from ~11k annotators and compares the translation capabilities of DeepSeek-R1(deepseek-r1-distill-llama-70b-specdec), Llama(llama-3.3-70b-specdec) and Mixtral(mixtral-8x7b-32768) against DeepL across different languages. The comparison involved 100 distinct questions in 4 languages, with each translation being rated by 51 native… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/Translation-deepseek-llama-mixtral-v-deepl. | 219 | 219 | [
"task_categories:translation",
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"translation",
"humanfeedback",
"deepseek-r1",
"deepl",
"llama",
"mixtral",
"DE",
"PT",
"ES",
"FR"
] | 2025-03-05T15:23:57 | null | null |
66c84764a47b2d6c582bbb02 | amphion/Emilia-Dataset | amphion | {"license": "cc-by-4.0", "task_categories": ["text-to-speech", "automatic-speech-recognition"], "language": ["zh", "en", "ja", "fr", "de", "ko"], "pretty_name": "Emilia", "size_categories": ["10M<n<100M"], "extra_gated_prompt": "Terms of Access: The researcher has requested permission to use the Emilia dataset, the Emilia-Pipe preprocessing pipeline, and the Emilia-Yodas dataset. In exchange for such permission, the researcher hereby agrees to the following terms and conditions:\n1. The researcher shall use the Emilia dataset under the CC-BY-NC license and\n the Emilia-YODAS dataset under the CC-BY license.\n2. The authors make no representations or warranties regarding the datasets,\n including but not limited to warranties of non-infringement or fitness for\n a particular purpose.\n3. The researcher accepts full responsibility for their use of the datasets and\n shall defend and indemnify the authors of Emilia, Emilia-Pipe, and\n Emilia-Yodas, including their employees, trustees, officers, and agents,\n against any and all claims arising from the researcher's use of the datasets,\n including but not limited to the researcher's use of any copies of copyrighted\n content that they may create from the datasets.\n4. The researcher may provide research associates and colleagues with access\n to the datasets, provided that they first agree to be bound by these terms\n and conditions.\n5. The authors reserve the right to terminate the researcher's access to the\n datasets at any time.\n6. If the researcher is employed by a for-profit, commercial entity, the\n researcher's employer shall also be bound by these terms and conditions,\n and the researcher hereby represents that they are fully authorized to enter\n into this agreement on behalf of such employer.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Position": "text", "Your Supervisor/manager/director": "text", "I agree to the Terms of Access": "checkbox"}} | false | null | 2025-02-28T05:41:37 | 267 | 13 | false | d7f2f7340a6385696f3766c8049fa920a4707c07 |
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation
This is the official repository 👑 for the Emilia dataset and the source code for the Emilia-Pipe speech data preprocessing pipeline.
News 🔥
2025/02/26: The Emilia-Large dataset, featuring over 200,000 hours of data, is now available!!! Emilia-Large combines the original 101k-hour Emilia dataset (licensed under CC BY-NC 4.0) with the brand-new 114k-hour Emilia-YODAS… See the full description on the dataset page: https://huggingface.co/datasets/amphion/Emilia-Dataset. | 106,602 | 296,683 | [
"task_categories:text-to-speech",
"task_categories:automatic-speech-recognition",
"language:zh",
"language:en",
"language:ja",
"language:fr",
"language:de",
"language:ko",
"license:cc-by-4.0",
"size_categories:10M<n<100M",
"format:webdataset",
"modality:audio",
"modality:text",
"library:datasets",
"library:webdataset",
"library:mlcroissant",
"arxiv:2407.05361",
"arxiv:2501.15907",
"region:us"
] | 2024-08-23T08:25:08 | null | null |
6793eb18f905bff94600f66f | WarriorMama777/PureDanbooru | WarriorMama777 | {"license": "creativeml-openrail-m", "task_categories": ["image-to-image", "text-to-image"], "tags": ["image", "anime", "danbooru"], "size_categories": ["100M<n<1B"]} | false | null | 2025-02-20T10:32:21 | 14 | 13 | false | 24c1de588173364a9890fe184caf694365faa027 |
PureDanbooru Dataset
WarriorMama777/PureDanbooru
概要
このデータセットはDanbooruをメインに700万枚のイラストで構成された大規模な画像データセットです。
特徴は以下の通りです。
Danbooruのタグを純粋に維持した未検閲のトレーニング用データセット。Danbooruのユーザーたちが地道に長年作業してきたタグ付けの作業がピュアに維持されています。
丁寧な前処理、およびトレーニング用にデータを整形済み。sd-scriptsのFinetuningに準拠した形でトレーニング用Jsonが提供されており、箱から出してすぐに使えます。
データセットの詳細
画像は主にDanbooruのイラストレーションで構成されています(Danbooruの一部のタグは隠されており有料会員しか閲覧できないので、その部分をGelbooru等から補填しています)。
画像の収集… See the full description on the dataset page: https://huggingface.co/datasets/WarriorMama777/PureDanbooru. | 2,085 | 2,091 | [
"task_categories:image-to-image",
"task_categories:text-to-image",
"license:creativeml-openrail-m",
"size_categories:10M<n<100M",
"format:webdataset",
"modality:image",
"modality:text",
"library:datasets",
"library:webdataset",
"library:mlcroissant",
"region:us",
"image",
"anime",
"danbooru"
] | 2025-01-24T19:33:44 | null | null |
67b6e7221a0bf9e8a70c385e | m-a-p/SuperGPQA | m-a-p | {"license": "odc-by", "task_categories": ["text2text-generation"], "language": ["en"], "size_categories": ["10K<n<100K"]} | false | null | 2025-03-04T14:15:56 | 56 | 13 | false | 873da774dd50dd9aac995970a4a81b5162a28f4d | This repository contains the data presented in SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines.
Tutorials for submitting to the official leadboard
coming soon
📜 License
SuperGPQA is a composite dataset that includes both original content and portions of data derived from other sources. The dataset is made available under the Open Data Commons Attribution License (ODC-BY), which asserts no copyright over the underlying content.
This means that while the… See the full description on the dataset page: https://huggingface.co/datasets/m-a-p/SuperGPQA. | 1,264 | 1,264 | [
"task_categories:text2text-generation",
"language:en",
"license:odc-by",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.14739",
"region:us"
] | 2025-02-20T08:26:10 | null | null |
679b2a056779f343574d3c1a | axxkaya/UVT-Explanatory-based-Vision-Tasks | axxkaya | {"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]} | false | null | 2025-02-12T12:41:53 | 43 | 12 | false | 67125f4b5dd7dec6bbe3f59f2261cefa7a51db5f |
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization
Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co/datasets/axxkaya/UVT-Explanatory-based-Vision-Tasks. | 908 | 956 | [
"language:en",
"license:mit",
"size_categories:100K<n<1M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18525",
"region:us",
"image"
] | 2025-01-30T07:28:05 | null | null |
67a49711d5efcf9d941d6e1b | PaDaS-Lab/webfaq | PaDaS-Lab | {"language": ["afr", "amh", "ara", "arz", "aze", "bel", "ben", "bul", "cat", "ces", "cym", "dan", "deu", "ell", "eng", "est", "eus", "fas", "fin", "fra", "gle", "glg", "guj", "hbs", "heb", "hin", "hrv", "hun", "hye", "ind", "isl", "ita", "jpn", "kan", "kat", "kaz", "khm", "kir", "kor", "lav", "lit", "ltz", "mal", "mar", "mkd", "mlt", "mon", "msa", "mya", "nep", "nld", "nor", "pan", "pol", "por", "ron", "rus", "sin", "slk", "slv", "spa", "sqi", "srp", "swe", "tam", "tel", "tgl", "tha", "tur", "ukr", "urd", "uzb", "vie", "yid", "zho"], "multilinguality": ["multilingual"], "task_categories": ["question-answering"], "config_names": ["afr", "amh", "ara", "arz", "aze", "bel", "ben", "bul", "cat", "ces", "cym", "dan", "deu", "ell", "eng", "est", "eus", "fas", "fin", "fra", "gle", "glg", "guj", "hbs", "heb", "hin", "hrv", "hun", "hye", "ind", "isl", "ita", "jpn", "kan", "kat", "kaz", "khm", "kir", "kor", "lav", "lit", "ltz", "mal", "mar", "mkd", "mlt", "mon", "msa", "mya", "nep", "nld", "nor", "pan", "pol", "por", "ron", "rus", "sin", "slk", "slv", "spa", "sqi", "srp", "swe", "tam", "tel", "tgl", "tha", "tur", "ukr", "urd", "uzb", "vie", "yid", "zho"], "tags": ["question-answering"], "license": "cc-by-4.0", "size_categories": ["10M<n<100M"], "dataset_info": [{"config_name": "afr", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1268326, "num_examples": 2565}]}, {"config_name": "amh", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1943034, "num_examples": 1571}]}, {"config_name": "ara", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1631182348, "num_examples": 1159099}]}, {"config_name": "arz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 790003, "num_examples": 1067}]}, {"config_name": "aze", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 13127319, "num_examples": 19738}]}, {"config_name": "bel", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3614979, "num_examples": 2146}]}, {"config_name": "ben", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 86411255, "num_examples": 57943}]}, {"config_name": "bul", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 308591900, "num_examples": 164015}]}, {"config_name": "cat", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 45962799, "num_examples": 80189}]}, {"config_name": "ces", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 353316236, "num_examples": 538343}]}, {"config_name": "cym", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 994319, "num_examples": 1969}]}, {"config_name": "dan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 463981709, "num_examples": 768688}]}, {"config_name": "deu", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4225090961, "num_examples": 6653690}]}, {"config_name": "ell", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 974897688, "num_examples": 494019}]}, {"config_name": "eng", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 27501252118, "num_examples": 49275347}]}, {"config_name": "est", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 40244321, "num_examples": 69643}]}, {"config_name": "eus", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2147305, "num_examples": 4148}]}, {"config_name": "fas", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1487470661, "num_examples": 969748}]}, {"config_name": "fin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 388140313, "num_examples": 641009}]}, {"config_name": "fra", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3054368546, "num_examples": 4612398}]}, {"config_name": "gle", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3733793, "num_examples": 5659}]}, {"config_name": "glg", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2255654, "num_examples": 3418}]}, {"config_name": "guj", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 13153446, "num_examples": 10797}]}, {"config_name": "hbs", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 271652, "num_examples": 1080}]}, {"config_name": "heb", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 501611343, "num_examples": 391084}]}, {"config_name": "hin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 643668108, "num_examples": 537488}]}, {"config_name": "hrv", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 9401718, "num_examples": 17426}]}, {"config_name": "hun", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 245937936, "num_examples": 363866}]}, {"config_name": "hye", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 9834838, "num_examples": 6188}]}, {"config_name": "ind", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 354898727, "num_examples": 652660}]}, {"config_name": "isl", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 60303802, "num_examples": 91630}]}, {"config_name": "ita", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1478634485, "num_examples": 2588024}]}, {"config_name": "jpn", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2833491877, "num_examples": 2512033}]}, {"config_name": "kan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 11211925, "num_examples": 7348}]}, {"config_name": "kat", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 19979454, "num_examples": 14442}]}, {"config_name": "kaz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 21311822, "num_examples": 12510}]}, {"config_name": "khm", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 14346463, "num_examples": 9831}]}, {"config_name": "kir", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 2060181, "num_examples": 1201}]}, {"config_name": "kor", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 637251566, "num_examples": 646996}]}, {"config_name": "lav", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 52229869, "num_examples": 79443}]}, {"config_name": "lit", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 75732368, "num_examples": 119192}]}, {"config_name": "ltz", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1338383, "num_examples": 2248}]}, {"config_name": "mal", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 10000744, "num_examples": 6276}]}, {"config_name": "mar", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 35725073, "num_examples": 30658}]}, {"config_name": "mkd", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 12725055, "num_examples": 8467}]}, {"config_name": "mlt", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 654051, "num_examples": 1040}]}, {"config_name": "mon", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4164087, "num_examples": 2670}]}, {"config_name": "msa", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 11877638, "num_examples": 24448}]}, {"config_name": "mya", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3413120, "num_examples": 1545}]}, {"config_name": "nep", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3269207, "num_examples": 1610}]}, {"config_name": "nld", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1631469573, "num_examples": 2651923}]}, {"config_name": "nor", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 188019595, "num_examples": 316320}]}, {"config_name": "pan", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5465491, "num_examples": 3017}]}, {"config_name": "pol", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1102362206, "num_examples": 1662457}]}, {"config_name": "por", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1032295830, "num_examples": 1648309}]}, {"config_name": "ron", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 334687976, "num_examples": 546709}]}, {"config_name": "rus", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5936192629, "num_examples": 3667473}]}, {"config_name": "sin", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1705426, "num_examples": 1266}]}, {"config_name": "slk", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 116523310, "num_examples": 177748}]}, {"config_name": "slv", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 32304657, "num_examples": 49867}]}, {"config_name": "spa", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 3581507538, "num_examples": 5744678}]}, {"config_name": "sqi", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 5297884, "num_examples": 7323}]}, {"config_name": "srp", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 17646314, "num_examples": 15226}]}, {"config_name": "swe", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 504018049, "num_examples": 832140}]}, {"config_name": "tam", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 24798354, "num_examples": 19815}]}, {"config_name": "tel", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 30040442, "num_examples": 23949}]}, {"config_name": "tgl", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 12567333, "num_examples": 21467}]}, {"config_name": "tha", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 690227786, "num_examples": 502215}]}, {"config_name": "tur", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 884477758, "num_examples": 1449903}]}, {"config_name": "ukr", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1231637206, "num_examples": 805505}]}, {"config_name": "urd", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 10897170, "num_examples": 7159}]}, {"config_name": "uzb", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1903376, "num_examples": 3413}]}, {"config_name": "vie", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 983676933, "num_examples": 1173796}]}, {"config_name": "yid", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 4784925, "num_examples": 2349}]}, {"config_name": "zho", "features": [{"name": "id", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "question_type", "dtype": "string"}], "splits": [{"name": "default", "num_bytes": 1061015788, "num_examples": 1266966}]}], "configs": [{"config_name": "afr", "data_files": [{"split": "default", "path": "data/afr.jsonl"}]}, {"config_name": "amh", "data_files": [{"split": "default", "path": "data/amh.jsonl"}]}, {"config_name": "ara", "data_files": [{"split": "default", "path": "data/ara.jsonl"}]}, {"config_name": "arz", "data_files": [{"split": "default", "path": "data/arz.jsonl"}]}, {"config_name": "aze", "data_files": [{"split": "default", "path": "data/aze.jsonl"}]}, {"config_name": "bel", "data_files": [{"split": "default", "path": "data/bel.jsonl"}]}, {"config_name": "ben", "data_files": [{"split": "default", "path": "data/ben.jsonl"}]}, {"config_name": "bul", "data_files": [{"split": "default", "path": "data/bul.jsonl"}]}, {"config_name": "cat", "data_files": [{"split": "default", "path": "data/cat.jsonl"}]}, {"config_name": "ces", "data_files": [{"split": "default", "path": "data/ces.jsonl"}]}, {"config_name": "cym", "data_files": [{"split": "default", "path": "data/cym.jsonl"}]}, {"config_name": "dan", "data_files": [{"split": "default", "path": "data/dan.jsonl"}]}, {"config_name": "deu", "data_files": [{"split": "default", "path": "data/deu.jsonl"}]}, {"config_name": "ell", "data_files": [{"split": "default", "path": "data/ell.jsonl"}]}, {"config_name": "eng", "data_files": [{"split": "default", "path": "data/eng.jsonl"}]}, {"config_name": "est", "data_files": [{"split": "default", "path": "data/est.jsonl"}]}, {"config_name": "eus", "data_files": [{"split": "default", "path": "data/eus.jsonl"}]}, {"config_name": "fas", "data_files": [{"split": "default", "path": "data/fas.jsonl"}]}, {"config_name": "fin", "data_files": [{"split": "default", "path": "data/fin.jsonl"}]}, {"config_name": "fra", "data_files": [{"split": "default", "path": "data/fra.jsonl"}]}, {"config_name": "gle", "data_files": [{"split": "default", "path": "data/gle.jsonl"}]}, {"config_name": "glg", "data_files": [{"split": "default", "path": "data/glg.jsonl"}]}, {"config_name": "guj", "data_files": [{"split": "default", "path": "data/guj.jsonl"}]}, {"config_name": "hbs", "data_files": [{"split": "default", "path": "data/hbs.jsonl"}]}, {"config_name": "heb", "data_files": [{"split": "default", "path": "data/heb.jsonl"}]}, {"config_name": "hin", "data_files": [{"split": "default", "path": "data/hin.jsonl"}]}, {"config_name": "hrv", "data_files": [{"split": "default", "path": "data/hrv.jsonl"}]}, {"config_name": "hun", "data_files": [{"split": "default", "path": "data/hun.jsonl"}]}, {"config_name": "hye", "data_files": [{"split": "default", "path": "data/hye.jsonl"}]}, {"config_name": "ind", "data_files": [{"split": "default", "path": "data/ind.jsonl"}]}, {"config_name": "isl", "data_files": [{"split": "default", "path": "data/isl.jsonl"}]}, {"config_name": "ita", "data_files": [{"split": "default", "path": "data/ita.jsonl"}]}, {"config_name": "jpn", "data_files": [{"split": "default", "path": "data/jpn.jsonl"}]}, {"config_name": "kan", "data_files": [{"split": "default", "path": "data/kan.jsonl"}]}, {"config_name": "kat", "data_files": [{"split": "default", "path": "data/kat.jsonl"}]}, {"config_name": "kaz", "data_files": [{"split": "default", "path": "data/kaz.jsonl"}]}, {"config_name": "khm", "data_files": [{"split": "default", "path": "data/khm.jsonl"}]}, {"config_name": "kir", "data_files": [{"split": "default", "path": "data/kir.jsonl"}]}, {"config_name": "kor", "data_files": [{"split": "default", "path": "data/kor.jsonl"}]}, {"config_name": "lav", "data_files": [{"split": "default", "path": "data/lav.jsonl"}]}, {"config_name": "lit", "data_files": [{"split": "default", "path": "data/lit.jsonl"}]}, {"config_name": "ltz", "data_files": [{"split": "default", "path": "data/ltz.jsonl"}]}, {"config_name": "mal", "data_files": [{"split": "default", "path": "data/mal.jsonl"}]}, {"config_name": "mar", "data_files": [{"split": "default", "path": "data/mar.jsonl"}]}, {"config_name": "mkd", "data_files": [{"split": "default", "path": "data/mkd.jsonl"}]}, {"config_name": "mlt", "data_files": [{"split": "default", "path": "data/mlt.jsonl"}]}, {"config_name": "mon", "data_files": [{"split": "default", "path": "data/mon.jsonl"}]}, {"config_name": "msa", "data_files": [{"split": "default", "path": "data/msa.jsonl"}]}, {"config_name": "mya", "data_files": [{"split": "default", "path": "data/mya.jsonl"}]}, {"config_name": "nep", "data_files": [{"split": "default", "path": "data/nep.jsonl"}]}, {"config_name": "nld", "data_files": [{"split": "default", "path": "data/nld.jsonl"}]}, {"config_name": "nor", "data_files": [{"split": "default", "path": "data/nor.jsonl"}]}, {"config_name": "pan", "data_files": [{"split": "default", "path": "data/pan.jsonl"}]}, {"config_name": "pol", "data_files": [{"split": "default", "path": "data/pol.jsonl"}]}, {"config_name": "por", "data_files": [{"split": "default", "path": "data/por.jsonl"}]}, {"config_name": "ron", "data_files": [{"split": "default", "path": "data/ron.jsonl"}]}, {"config_name": "rus", "data_files": [{"split": "default", "path": "data/rus.jsonl"}]}, {"config_name": "sin", "data_files": [{"split": "default", "path": "data/sin.jsonl"}]}, {"config_name": "slk", "data_files": [{"split": "default", "path": "data/slk.jsonl"}]}, {"config_name": "slv", "data_files": [{"split": "default", "path": "data/slv.jsonl"}]}, {"config_name": "spa", "data_files": [{"split": "default", "path": "data/spa.jsonl"}]}, {"config_name": "sqi", "data_files": [{"split": "default", "path": "data/sqi.jsonl"}]}, {"config_name": "srp", "data_files": [{"split": "default", "path": "data/srp.jsonl"}]}, {"config_name": "swe", "data_files": [{"split": "default", "path": "data/swe.jsonl"}]}, {"config_name": "tam", "data_files": [{"split": "default", "path": "data/tam.jsonl"}]}, {"config_name": "tel", "data_files": [{"split": "default", "path": "data/tel.jsonl"}]}, {"config_name": "tgl", "data_files": [{"split": "default", "path": "data/tgl.jsonl"}]}, {"config_name": "tha", "data_files": [{"split": "default", "path": "data/tha.jsonl"}]}, {"config_name": "tur", "data_files": [{"split": "default", "path": "data/tur.jsonl"}]}, {"config_name": "ukr", "data_files": [{"split": "default", "path": "data/ukr.jsonl"}]}, {"config_name": "urd", "data_files": [{"split": "default", "path": "data/urd.jsonl"}]}, {"config_name": "uzb", "data_files": [{"split": "default", "path": "data/uzb.jsonl"}]}, {"config_name": "vie", "data_files": [{"split": "default", "path": "data/vie.jsonl"}]}, {"config_name": "yid", "data_files": [{"split": "default", "path": "data/yid.jsonl"}]}, {"config_name": "zho", "data_files": [{"split": "default", "path": "data/zho.jsonl"}]}]} | false | null | 2025-03-05T13:56:29 | 15 | 12 | false | 2f71ffe38af63626ba3590a7281e7aa363d85da8 | WebFAQ Q&A Dataset
Overview |
Details |
Structure |
Examples |
Considerations |
License |
Citation |
Contact |
Acknowledgement
Overview
The WebFAQ Q&A Dataset is a broad-coverage corpus of 96 million natural question-answer (QA) pairs in 75 languages, gathered from FAQ pages on the web. It leverages structured schema.org FAQPage annotations, making it a unique resource for large-scale Question Answering… See the full description on the dataset page: https://huggingface.co/datasets/PaDaS-Lab/webfaq. | 1,226 | 1,723 | [
"task_categories:question-answering",
"multilinguality:multilingual",
"language:afr",
"language:amh",
"language:ara",
"language:arz",
"language:aze",
"language:bel",
"language:ben",
"language:bul",
"language:cat",
"language:ces",
"language:cym",
"language:dan",
"language:deu",
"language:ell",
"language:eng",
"language:est",
"language:eus",
"language:fas",
"language:fin",
"language:fra",
"language:gle",
"language:glg",
"language:guj",
"language:hbs",
"language:heb",
"language:hin",
"language:hrv",
"language:hun",
"language:hye",
"language:ind",
"language:isl",
"language:ita",
"language:jpn",
"language:kan",
"language:kat",
"language:kaz",
"language:khm",
"language:kir",
"language:kor",
"language:lav",
"language:lit",
"language:ltz",
"language:mal",
"language:mar",
"language:mkd",
"language:mlt",
"language:mon",
"language:msa",
"language:mya",
"language:nep",
"language:nld",
"language:nor",
"language:pan",
"language:pol",
"language:por",
"language:ron",
"language:rus",
"language:sin",
"language:slk",
"language:slv",
"language:spa",
"language:sqi",
"language:srp",
"language:swe",
"language:tam",
"language:tel",
"language:tgl",
"language:tha",
"language:tur",
"language:ukr",
"language:urd",
"language:uzb",
"language:vie",
"language:yid",
"language:zho",
"license:cc-by-4.0",
"size_categories:10M<n<100M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.20936",
"region:us",
"question-answering"
] | 2025-02-06T11:03:45 | null | null |
651fbfa3be34a5f2cf6871d1 | a686d380/h-corpus-2023 | a686d380 | {"viewer": false, "language": ["zh"]} | false | null | 2023-10-06T08:38:36 | 150 | 11 | false | 770d79e988706a68df8e2bc9dc37348e109ded59 | 经过清洗和去重过的H小说
共205,028篇文章,解压后17.0 GB
仅用于科学研究!
| 711 | 2,247 | [
"language:zh",
"region:us"
] | 2023-10-06T08:04:51 | null | null |
67c8094f26e7bf4ba0fe31da | Intelligent-Internet/II-Thought-RL-v0 | Intelligent-Internet | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "data_source", "dtype": "string"}, {"name": "domain", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6174050932.483211, "num_examples": 897432}], "download_size": 3192205818, "dataset_size": 6174050932.483211}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-03-10T09:27:15 | 11 | 11 | false | f3ed9d73541704b2a9076e07c60410a4bdc00c04 |
II-Thought RL v0: A Large-Scale Curated Dataset for Reinforcement Learning
We introduce II-Thought RL v0, the first large-scale, multi-task dataset designed for Reinforcement Learning. This dataset consists of high-quality question-answer pairs that have undergone a rigorous multi-step filtering process, leveraging Gemini 2.0 Flash and Qwen 32B as quality evaluators.
In this initial release, we have curated and refined publicly available datasets while also introducing our own… See the full description on the dataset page: https://huggingface.co/datasets/Intelligent-Internet/II-Thought-RL-v0. | 163 | 163 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-05T08:20:31 | null | null |
6784b5bfdacadead50b97553 | microsoft/EpiCoder-func-380k | microsoft | {"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original", "extended|other-arxiv-paper", "extended|other-code-generation", "extended|other-instruction-data"], "pretty_name": "EpiCoder-func-380k", "paperswithcode_id": "Epicoder"} | false | null | 2025-03-05T14:20:12 | 17 | 10 | false | 3bba6a6f9f0081744643023049e8643d5bfd236d |
Dataset Card for EpiCoder-func-380k
Dataset Description
Dataset Summary
The EpiCoder-func-380k is a dataset containing 380k function-level instances of instruction-output pairs. This dataset is designed to fine-tune large language models (LLMs) to improve their code generation capabilities. Each instance includes a detailed programming instruction and a corresponding Python output code that aligns with the instruction.
This dataset is synthesized using methods… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/EpiCoder-func-380k. | 169 | 221 | [
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"source_datasets:original",
"source_datasets:extended|other-arxiv-paper",
"source_datasets:extended|other-code-generation",
"source_datasets:extended|other-instruction-data",
"language:en",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2501.04694",
"region:us"
] | 2025-01-13T06:42:07 | null | Epicoder |
67cd6c25b770987b3f80af97 | a-m-team/AM-DeepSeek-R1-Distilled-1.4M | a-m-team | {"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"]} | false | null | 2025-03-10T18:31:04 | 10 | 10 | false | b3447a25c09f5b67817c0ea01a1d4844fba68884 | AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of
high-quality and challenging reasoning problems. These problems are collected from numerous
open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination.
All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone
rigorous verification: mathematical problems are validated through answer checking, code
problems via… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M. | 233 | 233 | [
"task_categories:text-generation",
"language:zh",
"language:en",
"license:cc-by-nc-4.0",
"size_categories:1M<n<10M",
"region:us",
"code",
"math",
"reasoning",
"thinking",
"deepseek-r1",
"distill"
] | 2025-03-09T10:23:33 | null | null |
667ee649a7d8b1deba8d4f4c | proj-persona/PersonaHub | proj-persona | {"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "text-classification", "token-classification", "fill-mask", "table-question-answering", "text2text-generation"], "language": ["en", "zh"], "tags": ["synthetic", "text", "math", "reasoning", "instruction", "tool"], "size_categories": ["100M<n<1B"], "configs": [{"config_name": "math", "data_files": "math.jsonl"}, {"config_name": "instruction", "data_files": "instruction.jsonl"}, {"config_name": "reasoning", "data_files": "reasoning.jsonl"}, {"config_name": "knowledge", "data_files": "knowledge.jsonl"}, {"config_name": "npc", "data_files": "npc.jsonl"}, {"config_name": "tool", "data_files": "tool.jsonl"}, {"config_name": "persona", "data_files": "persona.jsonl"}, {"config_name": "elite_persona", "data_files": [{"split": "train", "path": "ElitePersonas/*"}]}]} | false | null | 2025-03-04T22:01:42 | 542 | 9 | false | 600b0189027c804fc9373b4de4875c171656a4df |
Scaling Synthetic Data Creation with 1,000,000,000 Personas
This repo releases data introduced in our paper Scaling Synthetic Data Creation with 1,000,000,000 Personas:
We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce PERSONA HUB – a collection of 1 billion diverse personas automatically curated from web data.… See the full description on the dataset page: https://huggingface.co/datasets/proj-persona/PersonaHub. | 11,073 | 40,446 | [
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:fill-mask",
"task_categories:table-question-answering",
"task_categories:text2text-generation",
"language:en",
"language:zh",
"license:cc-by-nc-sa-4.0",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2406.20094",
"region:us",
"synthetic",
"text",
"math",
"reasoning",
"instruction",
"tool"
] | 2024-06-28T16:35:21 | null | null |
End of preview. Expand
in Data Studio
Hugging Face Hub Stats
NEW Changes Feb 27th
Added new fields:
downloadsAllTime
,safetensors
,gguf
Added new split:
papers
which is all of the Daily Papers
Updated Daily
- Downloads last month
- 10,966
Data Sourcing report
powered
by
Spawning.aiNo elements in this dataset have been identified as either opted-out, or opted-in, by their creator.