Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/GenericDomTree.h | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a set of templates that efficiently compute a dominator
/// tree over a generic graph. This is used typically in LLVM for fast
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
/// graph types.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
#define LLVM_SUPPORT_GENERICDOMTREE_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
/// \brief Base class that other, more interesting dominator analyses
/// inherit from.
template <class NodeT> class DominatorBase {
protected:
std::vector<NodeT *> Roots;
bool IsPostDominators;
explicit DominatorBase(bool isPostDom)
: Roots(), IsPostDominators(isPostDom) {}
DominatorBase(DominatorBase &&Arg)
: Roots(std::move(Arg.Roots)),
IsPostDominators(std::move(Arg.IsPostDominators)) {
Arg.Roots.clear();
}
DominatorBase &operator=(DominatorBase &&RHS) {
Roots = std::move(RHS.Roots);
IsPostDominators = std::move(RHS.IsPostDominators);
RHS.Roots.clear();
return *this;
}
public:
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
const std::vector<NodeT *> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
};
template <class NodeT> class DominatorTreeBase;
struct PostDominatorTree;
/// \brief Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase {
NodeT *TheBB;
DomTreeNodeBase<NodeT> *IDom;
std::vector<DomTreeNodeBase<NodeT> *> Children;
mutable int DFSNumIn, DFSNumOut;
template <class N> friend class DominatorTreeBase;
friend struct PostDominatorTree;
public:
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
const_iterator;
iterator begin() { return Children.begin(); }
iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
const_iterator end() const { return Children.end(); }
NodeT *getBlock() const { return TheBB; }
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
return Children;
}
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
: TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
std::unique_ptr<DomTreeNodeBase<NodeT>>
addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
Children.push_back(C.get());
return C;
}
size_t getNumChildren() const { return Children.size(); }
void clearAllChildren() { Children.clear(); }
bool compare(const DomTreeNodeBase<NodeT> *Other) const {
if (getNumChildren() != Other->getNumChildren())
return true;
SmallPtrSet<const NodeT *, 4> OtherChildren;
for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
const NodeT *Nd = (*I)->getBlock();
OtherChildren.insert(Nd);
}
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const NodeT *N = (*I)->getBlock();
if (OtherChildren.count(N) == 0)
return true;
}
return false;
}
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom != NewIDom) {
typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
}
}
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
/// not call them.
unsigned getDFSNumIn() const { return DFSNumIn; }
unsigned getDFSNumOut() const { return DFSNumOut; }
private:
// Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
return this->DFSNumIn >= other->DFSNumIn &&
this->DFSNumOut <= other->DFSNumOut;
}
};
template <class NodeT>
raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
if (Node->getBlock())
Node->getBlock()->printAsOperand(o, false);
else
o << " <<exit node>>";
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
return o << "\n";
}
template <class NodeT>
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
unsigned Lev) {
o.indent(2 * Lev) << "[" << Lev << "] " << N;
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
E = N->end();
I != E; ++I)
PrintDomTree<NodeT>(*I, o, Lev + 1);
}
// The calculate routine is provided in a separate header but referenced here.
template <class FuncT, class N>
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
FuncT &F);
/// \brief Core dominator tree base class.
///
/// This class is a generic template over graph nodes. It is instantiated for
/// various graphs in the LLVM IR or in the code generator.
template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
DominatorTreeBase(const DominatorTreeBase &) = delete;
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
assert(A != B);
assert(isReachableFromEntry(B));
assert(isReachableFromEntry(A));
const DomTreeNodeBase<NodeT> *IDom;
while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
B = IDom; // Walk up the tree
return IDom != nullptr;
}
/// \brief Wipe this tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DomTreeNodes.clear();
IDoms.clear();
Vertex.clear();
Info.clear();
RootNode = nullptr;
}
protected:
typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
DomTreeNodeMapType;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode;
mutable bool DFSInfoValid;
mutable unsigned int SlowQueries;
// Information record used during immediate dominators computation.
struct InfoRec {
unsigned DFSNum;
unsigned Parent;
unsigned Semi;
NodeT *Label;
InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
};
DenseMap<NodeT *, NodeT *> IDoms;
// Vertex - Map the DFS number to the NodeT*
std::vector<NodeT *> Vertex;
// Info - Collection of information used during the computation of idoms.
DenseMap<NodeT *, InfoRec> Info;
void reset() {
DomTreeNodes.clear();
IDoms.clear();
this->Roots.clear();
Vertex.clear();
RootNode = nullptr;
DFSInfoValid = false;
SlowQueries = 0;
}
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
template <class N, class GraphT>
void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
typename GraphT::NodeType *NewBB) {
assert(std::distance(GraphT::child_begin(NewBB),
GraphT::child_end(NewBB)) == 1 &&
"NewBB should have a single successor!");
typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
std::vector<typename GraphT::NodeType *> PredBlocks;
typedef GraphTraits<Inverse<N>> InvTraits;
for (typename InvTraits::ChildIteratorType
PI = InvTraits::child_begin(NewBB),
PE = InvTraits::child_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true;
for (typename InvTraits::ChildIteratorType
PI = InvTraits::child_begin(NewBBSucc),
E = InvTraits::child_end(NewBBSucc);
PI != E; ++PI) {
typename InvTraits::NodeType *ND = *PI;
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
DT.isReachableFromEntry(ND)) {
NewBBDominatesNewBBSucc = false;
break;
}
}
// Find NewBB's immediate dominator and create new dominator tree node for
// NewBB.
NodeT *NewBBIDom = nullptr;
unsigned i = 0;
for (i = 0; i < PredBlocks.size(); ++i)
if (DT.isReachableFromEntry(PredBlocks[i])) {
NewBBIDom = PredBlocks[i];
break;
}
// It's possible that none of the predecessors of NewBB are reachable;
// in that case, NewBB itself is unreachable, so nothing needs to be
// changed.
if (!NewBBIDom)
return;
for (i = i + 1; i < PredBlocks.size(); ++i) {
if (DT.isReachableFromEntry(PredBlocks[i]))
NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
}
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) {
DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
public:
explicit DominatorTreeBase(bool isPostDom)
: DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
DominatorTreeBase(DominatorTreeBase &&Arg)
: DominatorBase<NodeT>(
std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
DomTreeNodes(std::move(Arg.DomTreeNodes)),
RootNode(std::move(Arg.RootNode)),
DFSInfoValid(std::move(Arg.DFSInfoValid)),
SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
Arg.wipe();
}
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
DominatorBase<NodeT>::operator=(
std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
DomTreeNodes = std::move(RHS.DomTreeNodes);
RootNode = std::move(RHS.RootNode);
DFSInfoValid = std::move(RHS.DFSInfoValid);
SlowQueries = std::move(RHS.SlowQueries);
IDoms = std::move(RHS.IDoms);
Vertex = std::move(RHS.Vertex);
Info = std::move(RHS.Info);
RHS.wipe();
return *this;
}
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool compare(const DominatorTreeBase &Other) const {
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
return true;
for (typename DomTreeNodeMapType::const_iterator
I = this->DomTreeNodes.begin(),
E = this->DomTreeNodes.end();
I != E; ++I) {
NodeT *BB = I->first;
typename DomTreeNodeMapType::const_iterator OI =
OtherDomTreeNodes.find(BB);
if (OI == OtherDomTreeNodes.end())
return true;
DomTreeNodeBase<NodeT> &MyNd = *I->second;
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
if (MyNd.compare(&OtherNd))
return true;
}
return false;
}
void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
auto I = DomTreeNodes.find(BB);
if (I != DomTreeNodes.end())
return I->second.get();
return nullptr;
}
DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
/// Get all nodes dominated by R, including R itself.
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
Result.clear();
const DomTreeNodeBase<NodeT> *RN = getNode(R);
if (!RN)
return; // If R is unreachable, it will not be present in the DOM tree.
SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
WL.push_back(RN);
while (!WL.empty()) {
const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
Result.push_back(N->getBlock());
WL.append(N->begin(), N->end());
}
}
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
if (!A || !B)
return false;
if (A == B)
return false;
return dominates(A, B);
}
bool properlyDominates(const NodeT *A, const NodeT *B) const;
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(const NodeT *A) const {
assert(!this->isPostDominator() &&
"This is not implemented for post dominators");
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
}
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
bool dominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
// A node trivially dominates itself.
if (B == A)
return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B))
return true;
// And dominates nothing.
if (!isReachableFromEntry(A))
return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef XDEBUG
assert((!DFSInfoValid ||
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
"Tree walk disagrees with dfs numbers!");
#endif
if (DFSInfoValid)
return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return B->DominatedBy(A);
}
return dominatedBySlowTreeWalk(A, B);
}
bool dominates(const NodeT *A, const NodeT *B) const;
NodeT *getRoot() const {
assert(this->Roots.size() == 1 && "Should always have entry node!");
return this->Roots[0];
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
assert(A->getParent() == B->getParent() &&
"Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator
// (for forward-dominators).
if (!this->isPostDominator()) {
NodeT &Entry = A->getParent()->front();
if (A == &Entry || B == &Entry)
return &Entry;
}
// If B dominates A then B is nearest common dominator.
if (dominates(B, A))
return B;
// If A dominates B then A is nearest common dominator.
if (dominates(A, B))
return A;
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
// If we have DFS info, then we can avoid all allocations by just querying
// it from each IDom. Note that because we call 'dominates' twice above, we
// expect to call through this code at most 16 times in a row without
// building valid DFS information. This is important as below is a *very*
// slow tree walk.
if (DFSInfoValid) {
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
while (IDomA) {
if (NodeB->DominatedBy(IDomA))
return IDomA->getBlock();
IDomA = IDomA->getIDom();
}
return nullptr;
}
// Collect NodeA dominators set.
SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
NodeADoms.insert(NodeA);
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
while (IDomA) {
NodeADoms.insert(IDomA);
IDomA = IDomA->getIDom();
}
// Walk NodeB immediate dominators chain and find common dominator node.
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
while (IDomB) {
if (NodeADoms.count(IDomB) != 0)
return IDomB->getBlock();
IDomB = IDomB->getIDom();
}
return nullptr;
}
const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
// Cast away the const qualifiers here. This is ok since
// const is re-introduced on the return type.
return findNearestCommonDominator(const_cast<NodeT *>(A),
const_cast<NodeT *>(B));
}
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
assert(IDomNode && "Not immediate dominator specified for block!");
DFSInfoValid = false;
return (DomTreeNodes[BB] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
DomTreeNodeBase<NodeT> *NewIDom) {
assert(N && NewIDom && "Cannot change null node pointers!");
DFSInfoValid = false;
N->setIDom(NewIDom);
}
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
changeImmediateDominator(getNode(BB), getNode(NewBB));
}
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
void eraseNode(NodeT *BB) {
DomTreeNodeBase<NodeT> *Node = getNode(BB);
assert(Node && "Removing node that isn't in dominator tree.");
assert(Node->getChildren().empty() && "Node is not a leaf node.");
// Remove node from immediate dominator's children list.
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
if (IDom) {
typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
}
DomTreeNodes.erase(BB);
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
void splitBlock(NodeT *NewBB) {
if (this->IsPostDominators)
this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
NewBB);
else
this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
}
/// print - Convert to human readable form
///
void print(raw_ostream &o) const {
o << "=============================--------------------------------\n";
if (this->isPostDominator())
o << "Inorder PostDominator Tree: ";
else
o << "Inorder Dominator Tree: ";
if (!this->DFSInfoValid)
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
o << "\n";
// The postdom tree can have a null root if there are no returns.
if (getRootNode())
PrintDomTree<NodeT>(getRootNode(), o, 1);
}
protected:
template <class GraphT>
friend typename GraphT::NodeType *
Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
typename GraphT::NodeType *V, unsigned LastLinked);
template <class GraphT>
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
typename GraphT::NodeType *V, unsigned N);
template <class FuncT, class N>
friend void
Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
return Node;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
NodeT *IDom = getIDom(BB);
assert(IDom || this->DomTreeNodes[nullptr]);
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
return (this->DomTreeNodes[BB] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
public:
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() const {
if (DFSInfoValid) {
SlowQueries = 0;
return;
}
unsigned DFSNum = 0;
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
typename DomTreeNodeBase<NodeT>::const_iterator>,
32> WorkStack;
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
if (!ThisRoot)
return;
// Even in the case of multiple exits that form the post dominator root
// nodes, do not iterate over all exits, but start from the virtual root
// node. Otherwise bbs, that are not post dominated by any exit but by the
// virtual root node, will never be assigned a DFS number.
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) {
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) {
Node->DFSNumOut = DFSNum++;
WorkStack.pop_back();
} else {
// Otherwise, recursively visit this child.
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
++WorkStack.back().second;
WorkStack.push_back(std::make_pair(Child, Child->begin()));
Child->DFSNumIn = DFSNum++;
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
/// recalculate - compute a dominator tree for the given function
template <class FT> void recalculate(FT &F) {
typedef GraphTraits<FT *> TraitsTy;
reset();
this->Vertex.push_back(nullptr);
if (!this->IsPostDominators) {
// Initialize root
NodeT *entry = TraitsTy::getEntryNode(&F);
this->Roots.push_back(entry);
this->IDoms[entry] = nullptr;
this->DomTreeNodes[entry] = nullptr;
Calculate<FT, NodeT *>(*this, F);
} else {
// Initialize the roots list
for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
E = TraitsTy::nodes_end(&F);
I != E; ++I) {
if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
addRoot(I);
// Prepopulate maps so that we don't get iterator invalidation issues
// later.
this->IDoms[I] = nullptr;
this->DomTreeNodes[I] = nullptr;
}
Calculate<FT, Inverse<NodeT *>>(*this, F);
}
}
};
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template <class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
if (A == B)
return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
template <class NodeT>
bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
const NodeT *B) const {
if (A == B)
return false;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/FileUtilities.h | //===- llvm/Support/FileUtilities.h - File System Utilities -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a family of utility functions which are useful for doing
// various things with files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_FILEUTILITIES_H
#define LLVM_SUPPORT_FILEUTILITIES_H
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
namespace llvm {
/// DiffFilesWithTolerance - Compare the two files specified, returning 0 if
/// the files match, 1 if they are different, and 2 if there is a file error.
/// This function allows you to specify an absolute and relative FP error that
/// is allowed to exist. If you specify a string to fill in for the error
/// option, it will set the string to an error message if an error occurs, or
/// if the files are different.
///
int DiffFilesWithTolerance(StringRef FileA,
StringRef FileB,
double AbsTol, double RelTol,
std::string *Error = nullptr);
/// FileRemover - This class is a simple object meant to be stack allocated.
/// If an exception is thrown from a region, the object removes the filename
/// specified (if deleteIt is true).
///
class FileRemover {
SmallString<128> Filename;
bool DeleteIt;
public:
FileRemover() : DeleteIt(false) {}
explicit FileRemover(const Twine& filename, bool deleteIt = true)
: DeleteIt(deleteIt) {
filename.toVector(Filename);
}
~FileRemover() {
if (DeleteIt) {
// Ignore problems deleting the file.
sys::fs::remove(Filename);
}
}
/// setFile - Give ownership of the file to the FileRemover so it will
/// be removed when the object is destroyed. If the FileRemover already
/// had ownership of a file, remove it first.
void setFile(const Twine& filename, bool deleteIt = true) {
if (DeleteIt) {
// Ignore problems deleting the file.
sys::fs::remove(Filename);
}
Filename.clear();
filename.toVector(Filename);
DeleteIt = deleteIt;
}
/// releaseFile - Take ownership of the file away from the FileRemover so it
/// will not be removed when the object is destroyed.
void releaseFile() { DeleteIt = false; }
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/MSFileSystem.h | ///////////////////////////////////////////////////////////////////////////////
// //
// MSFileSystem.h //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// Provides error code values for the DirectX compiler. //
// //
///////////////////////////////////////////////////////////////////////////////
#ifndef LLVM_SUPPORT_MSFILESYSTEM_H
#define LLVM_SUPPORT_MSFILESYSTEM_H
///////////////////////////////////////////////////////////////////////////////////////////////////
// MSFileSystem interface.
struct stat;
namespace llvm {
namespace sys {
namespace fs {
class MSFileSystem {
public:
virtual ~MSFileSystem(){};
virtual BOOL FindNextFileW(HANDLE hFindFile,
LPWIN32_FIND_DATAW lpFindFileData) throw() = 0;
virtual HANDLE FindFirstFileW(LPCWSTR lpFileName,
LPWIN32_FIND_DATAW lpFindFileData) throw() = 0;
virtual void FindClose(HANDLE findHandle) throw() = 0;
virtual HANDLE CreateFileW(LPCWSTR lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode, DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes) throw() = 0;
virtual BOOL SetFileTime(HANDLE hFile, const FILETIME *lpCreationTime,
const FILETIME *lpLastAccessTime,
const FILETIME *lpLastWriteTime) throw() = 0;
virtual BOOL GetFileInformationByHandle(
HANDLE hFile, LPBY_HANDLE_FILE_INFORMATION lpFileInformation) throw() = 0;
virtual DWORD GetFileType(HANDLE hFile) throw() = 0;
virtual BOOL CreateHardLinkW(LPCWSTR lpFileName,
LPCWSTR lpExistingFileName) throw() = 0;
virtual BOOL MoveFileExW(LPCWSTR lpExistingFileName, LPCWSTR lpNewFileName,
DWORD dwFlags) throw() = 0;
virtual DWORD GetFileAttributesW(LPCWSTR lpFileName) throw() = 0;
virtual BOOL CloseHandle(HANDLE hObject) throw() = 0;
virtual BOOL DeleteFileW(LPCWSTR lpFileName) throw() = 0;
virtual BOOL RemoveDirectoryW(LPCWSTR lpFileName) throw() = 0;
virtual BOOL CreateDirectoryW(LPCWSTR lpPathName) throw() = 0;
virtual DWORD GetCurrentDirectoryW(DWORD nBufferLength,
LPWSTR lpBuffer) throw() = 0;
virtual DWORD GetMainModuleFileNameW(LPWSTR lpFilename,
DWORD nSize) throw() = 0;
virtual DWORD GetTempPathW(DWORD nBufferLength, LPWSTR lpBuffer) throw() = 0;
virtual BOOLEAN CreateSymbolicLinkW(LPCWSTR lpSymlinkFileName,
LPCWSTR lpTargetFileName,
DWORD dwFlags) throw() = 0;
virtual bool SupportsCreateSymbolicLink() throw() = 0;
virtual BOOL ReadFile(HANDLE hFile, LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead) throw() = 0;
virtual HANDLE CreateFileMappingW(HANDLE hFile, DWORD flProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow) throw() = 0;
virtual LPVOID MapViewOfFile(HANDLE hFileMappingObject, DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh, DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap) throw() = 0;
virtual BOOL UnmapViewOfFile(LPCVOID lpBaseAddress) throw() = 0;
// Console APIs.
virtual bool FileDescriptorIsDisplayed(int fd) throw() = 0;
virtual unsigned GetColumnCount(DWORD nStdHandle) throw() = 0;
virtual unsigned GetConsoleOutputTextAttributes() throw() = 0;
virtual void SetConsoleOutputTextAttributes(unsigned) throw() = 0;
virtual void ResetConsoleOutputTextAttributes() throw() = 0;
// CRT APIs.
virtual int open_osfhandle(intptr_t osfhandle, int flags) throw() = 0;
virtual intptr_t get_osfhandle(int fd) throw() = 0;
virtual int close(int fd) throw() = 0;
virtual long lseek(int fd, long offset, int origin) throw() = 0;
virtual int setmode(int fd, int mode) throw() = 0;
virtual errno_t resize_file(LPCWSTR path, uint64_t size) throw() = 0;
virtual int Read(int fd, void *buffer, unsigned int count) throw() = 0;
virtual int Write(int fd, const void *buffer, unsigned int count) throw() = 0;
// Unix interface
#ifndef _WIN32
virtual int Open(const char *lpFileName, int flags,
mode_t mode = 0) throw() = 0;
virtual int Stat(const char *lpFileName, struct stat *Status) throw() = 0;
virtual int Fstat(int FD, struct stat *Status) throw() = 0;
#endif
};
} // end namespace fs
} // end namespace sys
} // end namespace llvm
/// <summary>Creates a Win32/CRT-based implementation with full fidelity for a
/// console program.</summary> <remarks>This requires the LLVM MS Support
/// library to be linked in.</remarks>
HRESULT
CreateMSFileSystemForDisk(::llvm::sys::fs::MSFileSystem **pResult) throw();
struct IUnknown;
/// <summary>Creates an implementation based on IDxcSystemAccess.</summary>
HRESULT
CreateMSFileSystemForIface(IUnknown *pService,
::llvm::sys::fs::MSFileSystem **pResult) throw();
#endif // LLVM_SUPPORT_MSFILESYSTEM_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Recycler.h | //==- llvm/Support/Recycler.h - Recycling Allocator --------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Recycler class template. See the doxygen comment for
// Recycler for more details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_RECYCLER_H
#define LLVM_SUPPORT_RECYCLER_H
#include "llvm/ADT/ilist.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
namespace llvm {
/// PrintRecyclingAllocatorStats - Helper for RecyclingAllocator for
/// printing statistics.
///
void PrintRecyclerStats(size_t Size, size_t Align, size_t FreeListSize);
/// RecyclerStruct - Implementation detail for Recycler. This is a
/// class that the recycler imposes on free'd memory to carve out
/// next/prev pointers.
struct RecyclerStruct {
RecyclerStruct *Prev, *Next;
};
template<>
struct ilist_traits<RecyclerStruct> :
public ilist_default_traits<RecyclerStruct> {
static RecyclerStruct *getPrev(const RecyclerStruct *t) { return t->Prev; }
static RecyclerStruct *getNext(const RecyclerStruct *t) { return t->Next; }
static void setPrev(RecyclerStruct *t, RecyclerStruct *p) { t->Prev = p; }
static void setNext(RecyclerStruct *t, RecyclerStruct *n) { t->Next = n; }
mutable RecyclerStruct Sentinel;
RecyclerStruct *createSentinel() const {
return &Sentinel;
}
static void destroySentinel(RecyclerStruct *) {}
RecyclerStruct *provideInitialHead() const { return createSentinel(); }
RecyclerStruct *ensureHead(RecyclerStruct*) const { return createSentinel(); }
static void noteHead(RecyclerStruct*, RecyclerStruct*) {}
static void deleteNode(RecyclerStruct *) {
llvm_unreachable("Recycler's ilist_traits shouldn't see a deleteNode call!");
}
};
/// Recycler - This class manages a linked-list of deallocated nodes
/// and facilitates reusing deallocated memory in place of allocating
/// new memory.
///
template<class T, size_t Size = sizeof(T), size_t Align = AlignOf<T>::Alignment>
class Recycler {
/// FreeList - Doubly-linked list of nodes that have deleted contents and
/// are not in active use.
///
iplist<RecyclerStruct> FreeList;
public:
~Recycler() {
// If this fails, either the callee has lost track of some allocation,
// or the callee isn't tracking allocations and should just call
// clear() before deleting the Recycler.
assert(FreeList.empty() && "Non-empty recycler deleted!");
}
/// clear - Release all the tracked allocations to the allocator. The
/// recycler must be free of any tracked allocations before being
/// deleted; calling clear is one way to ensure this.
template<class AllocatorType>
void clear(AllocatorType &Allocator) {
while (!FreeList.empty()) {
T *t = reinterpret_cast<T *>(FreeList.remove(FreeList.begin()));
Allocator.Deallocate(t);
}
}
/// Special case for BumpPtrAllocator which has an empty Deallocate()
/// function.
///
/// There is no need to traverse the free list, pulling all the objects into
/// cache.
void clear(BumpPtrAllocator&) {
FreeList.clearAndLeakNodesUnsafely();
}
template<class SubClass, class AllocatorType>
SubClass *Allocate(AllocatorType &Allocator) {
static_assert(AlignOf<SubClass>::Alignment <= Align,
"Recycler allocation alignment is less than object align!");
static_assert(sizeof(SubClass) <= Size,
"Recycler allocation size is less than object size!");
return !FreeList.empty() ?
reinterpret_cast<SubClass *>(FreeList.remove(FreeList.begin())) :
static_cast<SubClass *>(Allocator.Allocate(Size, Align));
}
template<class AllocatorType>
T *Allocate(AllocatorType &Allocator) {
return Allocate<T>(Allocator);
}
template<class SubClass, class AllocatorType>
void Deallocate(AllocatorType & /*Allocator*/, SubClass* Element) {
FreeList.push_front(reinterpret_cast<RecyclerStruct *>(Element));
}
void PrintStats() {
PrintRecyclerStats(Size, Align, FreeList.size());
}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/circular_raw_ostream.h | //===-- llvm/Support/circular_raw_ostream.h - Buffered streams --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains raw_ostream implementations for streams to do circular
// buffering of their output.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CIRCULAR_RAW_OSTREAM_H
#define LLVM_SUPPORT_CIRCULAR_RAW_OSTREAM_H
#include "llvm/Support/raw_ostream.h"
namespace llvm
{
/// circular_raw_ostream - A raw_ostream which *can* save its data
/// to a circular buffer, or can pass it through directly to an
/// underlying stream if specified with a buffer of zero.
///
class circular_raw_ostream : public raw_ostream {
public:
/// TAKE_OWNERSHIP - Tell this stream that it owns the underlying
/// stream and is responsible for cleanup, memory management
/// issues, etc.
///
static const bool TAKE_OWNERSHIP = true;
/// REFERENCE_ONLY - Tell this stream it should not manage the
/// held stream.
///
static const bool REFERENCE_ONLY = false;
private:
/// TheStream - The real stream we output to. We set it to be
/// unbuffered, since we're already doing our own buffering.
///
raw_ostream *TheStream;
/// OwnsStream - Are we responsible for managing the underlying
/// stream?
///
bool OwnsStream;
/// BufferSize - The size of the buffer in bytes.
///
size_t BufferSize;
/// BufferArray - The actual buffer storage.
///
char *BufferArray;
/// Cur - Pointer to the current output point in BufferArray.
///
char *Cur;
/// Filled - Indicate whether the buffer has been completely
/// filled. This helps avoid garbage output.
///
bool Filled;
/// Banner - A pointer to a banner to print before dumping the
/// log.
///
const char *Banner;
/// flushBuffer - Dump the contents of the buffer to Stream.
///
void flushBuffer() {
if (Filled)
// Write the older portion of the buffer.
TheStream->write(Cur, BufferArray + BufferSize - Cur);
// Write the newer portion of the buffer.
TheStream->write(BufferArray, Cur - BufferArray);
Cur = BufferArray;
Filled = false;
}
void write_impl(const char *Ptr, size_t Size) override;
/// current_pos - Return the current position within the stream,
/// not counting the bytes currently in the buffer.
///
uint64_t current_pos() const override {
// This has the same effect as calling TheStream.current_pos(),
// but that interface is private.
return TheStream->tell() - TheStream->GetNumBytesInBuffer();
}
public:
/// circular_raw_ostream - Construct an optionally
/// circular-buffered stream, handing it an underlying stream to
/// do the "real" output.
///
/// As a side effect, if BuffSize is nonzero, the given Stream is
/// set to be Unbuffered. This is because circular_raw_ostream
/// does its own buffering, so it doesn't want another layer of
/// buffering to be happening underneath it.
///
/// "Owns" tells the circular_raw_ostream whether it is
/// responsible for managing the held stream, doing memory
/// management of it, etc.
///
circular_raw_ostream(raw_ostream &Stream, const char *Header,
size_t BuffSize = 0, bool Owns = REFERENCE_ONLY)
: raw_ostream(/*unbuffered*/ true), TheStream(nullptr),
OwnsStream(Owns), BufferSize(BuffSize), BufferArray(nullptr),
Filled(false), Banner(Header) {
if (BufferSize != 0)
BufferArray = new char[BufferSize];
Cur = BufferArray;
setStream(Stream, Owns);
}
~circular_raw_ostream() override {
flush();
flushBufferWithBanner();
releaseStream();
delete[] BufferArray;
}
/// setStream - Tell the circular_raw_ostream to output a
/// different stream. "Owns" tells circular_raw_ostream whether
/// it should take responsibility for managing the underlying
/// stream.
///
void setStream(raw_ostream &Stream, bool Owns = REFERENCE_ONLY) {
releaseStream();
TheStream = &Stream;
OwnsStream = Owns;
}
/// flushBufferWithBanner - Force output of the buffer along with
/// a small header.
///
void flushBufferWithBanner();
private:
/// releaseStream - Delete the held stream if needed. Otherwise,
/// transfer the buffer settings from this circular_raw_ostream
/// back to the underlying stream.
///
void releaseStream() {
if (!TheStream)
return;
if (OwnsStream)
delete TheStream;
}
};
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Casting.h | //===-- llvm/Support/Casting.h - Allow flexible, checked, casts -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
// and dyn_cast_or_null<X>() templates.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CASTING_H
#define LLVM_SUPPORT_CASTING_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
namespace llvm {
//===----------------------------------------------------------------------===//
// isa<x> Support Templates
//===----------------------------------------------------------------------===//
// Define a template that can be specialized by smart pointers to reflect the
// fact that they are automatically dereferenced, and are not involved with the
// template selection process... the default implementation is a noop.
//
template<typename From> struct simplify_type {
typedef From SimpleType; // The real type this represents...
// An accessor to get the real value...
static SimpleType &getSimplifiedValue(From &Val) { return Val; }
};
template<typename From> struct simplify_type<const From> {
typedef typename simplify_type<From>::SimpleType NonConstSimpleType;
typedef typename add_const_past_pointer<NonConstSimpleType>::type
SimpleType;
typedef typename add_lvalue_reference_if_not_pointer<SimpleType>::type
RetType;
static RetType getSimplifiedValue(const From& Val) {
return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
}
};
// The core of the implementation of isa<X> is here; To and From should be
// the names of classes. This template can be specialized to customize the
// implementation of isa<> without rewriting it from scratch.
template <typename To, typename From, typename Enabler = void>
struct isa_impl {
static inline bool doit(const From &Val) {
return To::classof(&Val);
}
};
/// \brief Always allow upcasts, and perform no dynamic check for them.
template <typename To, typename From>
struct isa_impl<
To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
static inline bool doit(const From &) { return true; }
};
template <typename To, typename From> struct isa_impl_cl {
static inline bool doit(const From &Val) {
return isa_impl<To, From>::doit(Val);
}
};
template <typename To, typename From> struct isa_impl_cl<To, const From> {
static inline bool doit(const From &Val) {
return isa_impl<To, From>::doit(Val);
}
};
template <typename To, typename From> struct isa_impl_cl<To, From*> {
static inline bool doit(const From *Val) {
assert(Val && "isa<> used on a null pointer");
return isa_impl<To, From>::doit(*Val);
}
};
template <typename To, typename From> struct isa_impl_cl<To, From*const> {
static inline bool doit(const From *Val) {
assert(Val && "isa<> used on a null pointer");
return isa_impl<To, From>::doit(*Val);
}
};
template <typename To, typename From> struct isa_impl_cl<To, const From*> {
static inline bool doit(const From *Val) {
assert(Val && "isa<> used on a null pointer");
return isa_impl<To, From>::doit(*Val);
}
};
template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
static inline bool doit(const From *Val) {
assert(Val && "isa<> used on a null pointer");
return isa_impl<To, From>::doit(*Val);
}
};
template<typename To, typename From, typename SimpleFrom>
struct isa_impl_wrap {
// When From != SimplifiedType, we can simplify the type some more by using
// the simplify_type template.
static bool doit(const From &Val) {
return isa_impl_wrap<To, SimpleFrom,
typename simplify_type<SimpleFrom>::SimpleType>::doit(
simplify_type<const From>::getSimplifiedValue(Val));
}
};
template<typename To, typename FromTy>
struct isa_impl_wrap<To, FromTy, FromTy> {
// When From == SimpleType, we are as simple as we are going to get.
static bool doit(const FromTy &Val) {
return isa_impl_cl<To,FromTy>::doit(Val);
}
};
// isa<X> - Return true if the parameter to the template is an instance of the
// template type argument. Used like this:
//
// if (isa<Type>(myVal)) { ... }
//
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline bool isa(const Y &Val) {
return isa_impl_wrap<X, const Y,
typename simplify_type<const Y>::SimpleType>::doit(Val);
}
//===----------------------------------------------------------------------===//
// cast<x> Support Templates
// //
///////////////////////////////////////////////////////////////////////////////
template<class To, class From> struct cast_retty;
// Calculate what type the 'cast' function should return, based on a requested
// type of To and a source type of From.
template<class To, class From> struct cast_retty_impl {
typedef To& ret_type; // Normal case, return Ty&
};
template<class To, class From> struct cast_retty_impl<To, const From> {
typedef const To &ret_type; // Normal case, return Ty&
};
template<class To, class From> struct cast_retty_impl<To, From*> {
typedef To* ret_type; // Pointer arg case, return Ty*
};
template<class To, class From> struct cast_retty_impl<To, const From*> {
typedef const To* ret_type; // Constant pointer arg case, return const Ty*
};
template<class To, class From> struct cast_retty_impl<To, const From*const> {
typedef const To* ret_type; // Constant pointer arg case, return const Ty*
};
template<class To, class From, class SimpleFrom>
struct cast_retty_wrap {
// When the simplified type and the from type are not the same, use the type
// simplifier to reduce the type, then reuse cast_retty_impl to get the
// resultant type.
typedef typename cast_retty<To, SimpleFrom>::ret_type ret_type;
};
template<class To, class FromTy>
struct cast_retty_wrap<To, FromTy, FromTy> {
// When the simplified type is equal to the from type, use it directly.
typedef typename cast_retty_impl<To,FromTy>::ret_type ret_type;
};
template<class To, class From>
struct cast_retty {
typedef typename cast_retty_wrap<To, From,
typename simplify_type<From>::SimpleType>::ret_type ret_type;
};
// Ensure the non-simple values are converted using the simplify_type template
// that may be specialized by smart pointers...
//
template<class To, class From, class SimpleFrom> struct cast_convert_val {
// This is not a simple type, use the template to simplify it...
static typename cast_retty<To, From>::ret_type doit(From &Val) {
return cast_convert_val<To, SimpleFrom,
typename simplify_type<SimpleFrom>::SimpleType>::doit(
simplify_type<From>::getSimplifiedValue(Val));
}
};
template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
// This _is_ a simple type, just cast it.
static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
typename cast_retty<To, FromTy>::ret_type Res2
= (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
return Res2;
}
};
template <class X> struct is_simple_type {
static const bool value =
std::is_same<X, typename simplify_type<X>::SimpleType>::value;
};
// cast<X> - Return the argument parameter cast to the specified type. This
// casting operator asserts that the type is correct, so it does not return null
// on failure. It does not allow a null argument (use cast_or_null for that).
// It is typically used like this:
//
// cast<Instruction>(myVal)->getParent()
//
template <class X, class Y>
inline typename std::enable_if<!is_simple_type<Y>::value,
typename cast_retty<X, const Y>::ret_type>::type
cast(const Y &Val) {
llvm_cast_assert(X, Val); // HLSL change
return cast_convert_val<
X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
}
template <class X, class Y>
inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
llvm_cast_assert(X, Val); // HLSL change
return cast_convert_val<X, Y,
typename simplify_type<Y>::SimpleType>::doit(Val);
}
template <class X, class Y>
inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
llvm_cast_assert(X, Val); // HLSL change
return cast_convert_val<X, Y*,
typename simplify_type<Y*>::SimpleType>::doit(Val);
}
// cast_or_null<X> - Functionally identical to cast, except that a null value is
// accepted.
//
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename std::enable_if<
!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type
cast_or_null(const Y &Val) {
if (!Val)
return nullptr;
llvm_cast_assert(X, Val); // HLSL change
return cast<X>(Val);
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename std::enable_if<
!is_simple_type<Y>::value, typename cast_retty<X, Y>::ret_type>::type
cast_or_null(Y &Val) {
if (!Val)
return nullptr;
llvm_cast_assert(X, Val); // HLSL change
return cast<X>(Val);
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename cast_retty<X, Y *>::ret_type
cast_or_null(Y *Val) {
if (!Val) return nullptr;
llvm_cast_assert(X, Val); // HLSL change
return cast<X>(Val);
}
// dyn_cast<X> - Return the argument parameter cast to the specified type. This
// casting operator returns null if the argument is of the wrong type, so it can
// be used to test for a type as well as cast if successful. This should be
// used in the context of an if statement like this:
//
// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
//
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename std::enable_if<
!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type
dyn_cast(const Y &Val) {
return isa<X>(Val) ? cast<X>(Val) : nullptr;
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename cast_retty<X, Y>::ret_type
dyn_cast(Y &Val) {
return isa<X>(Val) ? cast<X>(Val) : nullptr;
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename cast_retty<X, Y *>::ret_type
dyn_cast(Y *Val) {
return isa<X>(Val) ? cast<X>(Val) : nullptr;
}
// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
// value is accepted.
//
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename std::enable_if<
!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type
dyn_cast_or_null(const Y &Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename std::enable_if<
!is_simple_type<Y>::value, typename cast_retty<X, Y>::ret_type>::type
dyn_cast_or_null(Y &Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}
template <class X, class Y>
LLVM_ATTRIBUTE_UNUSED_RESULT inline typename cast_retty<X, Y *>::ret_type
dyn_cast_or_null(Y *Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Solaris.h | /*===- llvm/Support/Solaris.h ------------------------------------*- C++ -*-===*
*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*
*===----------------------------------------------------------------------===*
*
* This file contains portability fixes for Solaris hosts.
*
*===----------------------------------------------------------------------===*/
#ifndef LLVM_SUPPORT_SOLARIS_H
#define LLVM_SUPPORT_SOLARIS_H
#include <sys/types.h>
#include <sys/regset.h>
/* Solaris doesn't have endian.h. SPARC is the only supported big-endian ISA. */
#define BIG_ENDIAN 4321
#define LITTLE_ENDIAN 1234
#if defined(__sparc) || defined(__sparc__)
#define BYTE_ORDER BIG_ENDIAN
#else
#define BYTE_ORDER LITTLE_ENDIAN
#endif
#undef CS
#undef DS
#undef ES
#undef FS
#undef GS
#undef SS
#undef EAX
#undef ECX
#undef EDX
#undef EBX
#undef ESP
#undef EBP
#undef ESI
#undef EDI
#undef EIP
#undef UESP
#undef EFL
#undef ERR
#undef TRAPNO
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Format.h | //===- Format.h - Efficient printf-style formatting for streams -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the format() function, which can be used with other
// LLVM subsystems to provide printf-style formatting. This gives all the power
// and risk of printf. This can be used like this (with raw_ostreams as an
// example):
//
// OS << "mynumber: " << format("%4.5f", 1234.412) << '\n';
//
// Or if you prefer:
//
// OS << format("mynumber: %4.5f\n", 1234.412);
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_FORMAT_H
#define LLVM_SUPPORT_FORMAT_H
#include "dxc/WinAdapter.h" // HLSL Change
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <cstdio>
#include <tuple>
namespace llvm {
/// This is a helper class used for handling formatted output. It is the
/// abstract base class of a templated derived class.
class format_object_base {
protected:
const char *Fmt;
~format_object_base() = default; // Disallow polymorphic deletion.
format_object_base(const format_object_base &) = default;
virtual void home(); // Out of line virtual method.
/// Call snprintf() for this object, on the given buffer and size.
virtual int snprint(char *Buffer, unsigned BufferSize) const = 0;
public:
format_object_base(const char *fmt) : Fmt(fmt) {}
/// Format the object into the specified buffer. On success, this returns
/// the length of the formatted string. If the buffer is too small, this
/// returns a length to retry with, which will be larger than BufferSize.
unsigned print(char *Buffer, unsigned BufferSize) const {
assert(BufferSize && "Invalid buffer size!");
// Print the string, leaving room for the terminating null.
int N = snprint(Buffer, BufferSize);
// VC++ and old GlibC return negative on overflow, just double the size.
if (N < 0)
return BufferSize * 2;
// Other implementations yield number of bytes needed, not including the
// final '\0'.
if (unsigned(N) >= BufferSize)
return N + 1;
// Otherwise N is the length of output (not including the final '\0').
return N;
}
};
/// These are templated helper classes used by the format function that
/// capture the object to be formated and the format string. When actually
/// printed, this synthesizes the string into a temporary buffer provided and
/// returns whether or not it is big enough.
template <typename... Ts>
class format_object final : public format_object_base {
std::tuple<Ts...> Vals;
template <std::size_t... Is>
int snprint_tuple(char *Buffer, unsigned BufferSize,
index_sequence<Is...>) const {
#ifdef _MSC_VER
// Use _TRUNCATE as the buffer size; truncation will still return -1 as
// a result, thereby triggering the 'double on VC++' behavior in
// caller, for example llvm::format_object_base::print(char * Buffer, unsigned int BufferSize)
return _snprintf_s(Buffer, BufferSize, _TRUNCATE, Fmt, std::get<Is>(Vals)...);
#else
return snprintf(Buffer, BufferSize, Fmt, std::get<Is>(Vals)...);
#endif
}
public:
format_object(const char *fmt, const Ts &... vals)
: format_object_base(fmt), Vals(vals...) {}
int snprint(char *Buffer, unsigned BufferSize) const override {
return snprint_tuple(Buffer, BufferSize, index_sequence_for<Ts...>());
}
};
/// These are helper functions used to produce formatted output. They use
/// template type deduction to construct the appropriate instance of the
/// format_object class to simplify their construction.
///
/// This is typically used like:
/// \code
/// OS << format("%0.4f", myfloat) << '\n';
/// \endcode
template <typename... Ts>
inline format_object<Ts...> format(const char *Fmt, const Ts &... Vals) {
return format_object<Ts...>(Fmt, Vals...);
}
/// This is a helper class used for left_justify() and right_justify().
class FormattedString {
StringRef Str;
unsigned Width;
bool RightJustify;
friend class raw_ostream;
public:
FormattedString(StringRef S, unsigned W, bool R)
: Str(S), Width(W), RightJustify(R) { }
};
/// left_justify - append spaces after string so total output is
/// \p Width characters. If \p Str is larger that \p Width, full string
/// is written with no padding.
inline FormattedString left_justify(StringRef Str, unsigned Width) {
return FormattedString(Str, Width, false);
}
/// right_justify - add spaces before string so total output is
/// \p Width characters. If \p Str is larger that \p Width, full string
/// is written with no padding.
inline FormattedString right_justify(StringRef Str, unsigned Width) {
return FormattedString(Str, Width, true);
}
/// This is a helper class used for format_hex() and format_decimal().
class FormattedNumber {
uint64_t HexValue;
int64_t DecValue;
unsigned Width;
bool Hex;
bool Upper;
bool HexPrefix;
friend class raw_ostream;
public:
FormattedNumber(uint64_t HV, int64_t DV, unsigned W, bool H, bool U,
bool Prefix)
: HexValue(HV), DecValue(DV), Width(W), Hex(H), Upper(U),
HexPrefix(Prefix) {}
};
/// format_hex - Output \p N as a fixed width hexadecimal. If number will not
/// fit in width, full number is still printed. Examples:
/// OS << format_hex(255, 4) => 0xff
/// OS << format_hex(255, 4, true) => 0xFF
/// OS << format_hex(255, 6) => 0x00ff
/// OS << format_hex(255, 2) => 0xff
inline FormattedNumber format_hex(uint64_t N, unsigned Width,
bool Upper = false) {
assert(Width <= 18 && "hex width must be <= 18");
return FormattedNumber(N, 0, Width, true, Upper, true);
}
/// format_hex_no_prefix - Output \p N as a fixed width hexadecimal. Does not
/// prepend '0x' to the outputted string. If number will not fit in width,
/// full number is still printed. Examples:
/// OS << format_hex_no_prefix(255, 4) => ff
/// OS << format_hex_no_prefix(255, 4, true) => FF
/// OS << format_hex_no_prefix(255, 6) => 00ff
/// OS << format_hex_no_prefix(255, 2) => ff
inline FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width,
bool Upper = false) {
assert(Width <= 18 && "hex width must be <= 18");
return FormattedNumber(N, 0, Width, true, Upper, false);
}
/// format_decimal - Output \p N as a right justified, fixed-width decimal. If
/// number will not fit in width, full number is still printed. Examples:
/// OS << format_decimal(0, 5) => " 0"
/// OS << format_decimal(255, 5) => " 255"
/// OS << format_decimal(-1, 3) => " -1"
/// OS << format_decimal(12345, 3) => "12345"
inline FormattedNumber format_decimal(int64_t N, unsigned Width) {
return FormattedNumber(0, N, Width, false, false, false);
}
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/MD5.h | /*
* This code is derived from (original license follows):
*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* See md5.c for more information.
*/
#ifndef LLVM_SUPPORT_MD5_H
#define LLVM_SUPPORT_MD5_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class MD5 {
// Any 32-bit or wider unsigned integer data type will do.
typedef uint32_t MD5_u32plus;
MD5_u32plus a, b, c, d;
MD5_u32plus hi, lo;
uint8_t buffer[64];
MD5_u32plus block[16];
public:
typedef uint8_t MD5Result[16];
MD5();
/// \brief Updates the hash for the byte stream provided.
void update(ArrayRef<uint8_t> Data);
/// \brief Updates the hash for the StringRef provided.
void update(StringRef Str);
/// \brief Finishes off the hash and puts the result in result.
void final(MD5Result &Result);
/// \brief Translates the bytes in \p Res to a hex string that is
/// deposited into \p Str. The result will be of length 32.
static void stringifyResult(MD5Result &Result, SmallString<32> &Str);
private:
const uint8_t *body(ArrayRef<uint8_t> Data);
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Errc.h | //===- llvm/Support/Errc.h - Defines the llvm::errc enum --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// While std::error_code works OK on all platforms we use, there are some
// some problems with std::errc that can be avoided by using our own
// enumeration:
//
// * std::errc is a namespace in some implementations. That meas that ADL
// doesn't work and it is sometimes necessary to write std::make_error_code
// or in templates:
// using std::make_error_code;
// make_error_code(...);
//
// with this enum it is safe to always just use make_error_code.
//
// * Some implementations define fewer names than others. This header has
// the intersection of all the ones we support.
//
// * std::errc is just marked with is_error_condition_enum. This means that
// common patters like AnErrorCode == errc::no_such_file_or_directory take
// 4 virtual calls instead of two comparisons.
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ERRC_H
#define LLVM_SUPPORT_ERRC_H
#include <system_error>
namespace llvm {
enum class errc {
argument_list_too_long = int(std::errc::argument_list_too_long),
argument_out_of_domain = int(std::errc::argument_out_of_domain),
bad_address = int(std::errc::bad_address),
bad_file_descriptor = int(std::errc::bad_file_descriptor),
broken_pipe = int(std::errc::broken_pipe),
device_or_resource_busy = int(std::errc::device_or_resource_busy),
directory_not_empty = int(std::errc::directory_not_empty),
executable_format_error = int(std::errc::executable_format_error),
file_exists = int(std::errc::file_exists),
file_too_large = int(std::errc::file_too_large),
filename_too_long = int(std::errc::filename_too_long),
function_not_supported = int(std::errc::function_not_supported),
illegal_byte_sequence = int(std::errc::illegal_byte_sequence),
inappropriate_io_control_operation =
int(std::errc::inappropriate_io_control_operation),
interrupted = int(std::errc::interrupted),
invalid_argument = int(std::errc::invalid_argument),
invalid_seek = int(std::errc::invalid_seek),
io_error = int(std::errc::io_error),
is_a_directory = int(std::errc::is_a_directory),
no_child_process = int(std::errc::no_child_process),
no_lock_available = int(std::errc::no_lock_available),
no_space_on_device = int(std::errc::no_space_on_device),
no_such_device_or_address = int(std::errc::no_such_device_or_address),
no_such_device = int(std::errc::no_such_device),
no_such_file_or_directory = int(std::errc::no_such_file_or_directory),
no_such_process = int(std::errc::no_such_process),
not_a_directory = int(std::errc::not_a_directory),
not_enough_memory = int(std::errc::not_enough_memory),
operation_not_permitted = int(std::errc::operation_not_permitted),
permission_denied = int(std::errc::permission_denied),
read_only_file_system = int(std::errc::read_only_file_system),
resource_deadlock_would_occur = int(std::errc::resource_deadlock_would_occur),
resource_unavailable_try_again =
int(std::errc::resource_unavailable_try_again),
result_out_of_range = int(std::errc::result_out_of_range),
too_many_files_open_in_system = int(std::errc::too_many_files_open_in_system),
too_many_files_open = int(std::errc::too_many_files_open),
too_many_links = int(std::errc::too_many_links)
};
inline std::error_code make_error_code(errc E) {
return std::error_code(static_cast<int>(E), std::generic_category());
}
}
namespace std {
template <> struct is_error_code_enum<llvm::errc> : std::true_type {};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/DOTGraphTraits.h | //===-- llvm/Support/DotGraphTraits.h - Customize .dot output ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a template class that can be used to customize dot output
// graphs generated by the GraphWriter.h file. The default implementation of
// this file will produce a simple, but not very polished graph. By
// specializing this template, lots of customization opportunities are possible.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_DOTGRAPHTRAITS_H
#define LLVM_SUPPORT_DOTGRAPHTRAITS_H
#include <string>
namespace llvm {
/// DefaultDOTGraphTraits - This class provides the default implementations of
/// all of the DOTGraphTraits methods. If a specialization does not need to
/// override all methods here it should inherit so that it can get the default
/// implementations.
///
struct DefaultDOTGraphTraits {
private:
bool IsSimple;
protected:
bool isSimple() {
return IsSimple;
}
public:
explicit DefaultDOTGraphTraits(bool simple=false) : IsSimple (simple) {}
/// getGraphName - Return the label for the graph as a whole. Printed at the
/// top of the graph.
///
template<typename GraphType>
static std::string getGraphName(const GraphType &) { return ""; }
/// getGraphProperties - Return any custom properties that should be included
/// in the top level graph structure for dot.
///
template<typename GraphType>
static std::string getGraphProperties(const GraphType &) {
return "";
}
/// renderGraphFromBottomUp - If this function returns true, the graph is
/// emitted bottom-up instead of top-down. This requires graphviz 2.0 to work
/// though.
static bool renderGraphFromBottomUp() {
return false;
}
/// isNodeHidden - If the function returns true, the given node is not
/// displayed in the graph.
static bool isNodeHidden(const void *) {
return false;
}
/// getNodeLabel - Given a node and a pointer to the top level graph, return
/// the label to print in the node.
template<typename GraphType>
std::string getNodeLabel(const void *, const GraphType &) {
return "";
}
/// hasNodeAddressLabel - If this method returns true, the address of the node
/// is added to the label of the node.
template<typename GraphType>
static bool hasNodeAddressLabel(const void *, const GraphType &) {
return false;
}
template<typename GraphType>
static std::string getNodeDescription(const void *, const GraphType &) {
return "";
}
/// If you want to specify custom node attributes, this is the place to do so
///
template<typename GraphType>
static std::string getNodeAttributes(const void *,
const GraphType &) {
return "";
}
/// If you want to override the dot attributes printed for a particular edge,
/// override this method.
template<typename EdgeIter, typename GraphType>
static std::string getEdgeAttributes(const void *, EdgeIter,
const GraphType &) {
return "";
}
/// getEdgeSourceLabel - If you want to label the edge source itself,
/// implement this method.
template<typename EdgeIter>
static std::string getEdgeSourceLabel(const void *, EdgeIter) {
return "";
}
/// edgeTargetsEdgeSource - This method returns true if this outgoing edge
/// should actually target another edge source, not a node. If this method is
/// implemented, getEdgeTarget should be implemented.
template<typename EdgeIter>
static bool edgeTargetsEdgeSource(const void *, EdgeIter) {
return false;
}
/// getEdgeTarget - If edgeTargetsEdgeSource returns true, this method is
/// called to determine which outgoing edge of Node is the target of this
/// edge.
template<typename EdgeIter>
static EdgeIter getEdgeTarget(const void *, EdgeIter I) {
return I;
}
/// hasEdgeDestLabels - If this function returns true, the graph is able
/// to provide labels for edge destinations.
static bool hasEdgeDestLabels() {
return false;
}
/// numEdgeDestLabels - If hasEdgeDestLabels, this function returns the
/// number of incoming edge labels the given node has.
static unsigned numEdgeDestLabels(const void *) {
return 0;
}
/// getEdgeDestLabel - If hasEdgeDestLabels, this function returns the
/// incoming edge label with the given index in the given node.
static std::string getEdgeDestLabel(const void *, unsigned) {
return "";
}
/// addCustomGraphFeatures - If a graph is made up of more than just
/// straight-forward nodes and edges, this is the place to put all of the
/// custom stuff necessary. The GraphWriter object, instantiated with your
/// GraphType is passed in as an argument. You may call arbitrary methods on
/// it to add things to the output graph.
///
template<typename GraphType, typename GraphWriter>
static void addCustomGraphFeatures(const GraphType &, GraphWriter &) {}
};
/// DOTGraphTraits - Template class that can be specialized to customize how
/// graphs are converted to 'dot' graphs. When specializing, you may inherit
/// from DefaultDOTGraphTraits if you don't need to override everything.
///
template <typename Ty>
struct DOTGraphTraits : public DefaultDOTGraphTraits {
DOTGraphTraits (bool simple=false) : DefaultDOTGraphTraits (simple) {}
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Mutex.h | //===- llvm/Support/Mutex.h - Mutex Operating System Concept -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the llvm::sys::Mutex class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MUTEX_H
#define LLVM_SUPPORT_MUTEX_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Threading.h"
#include <cassert>
namespace llvm
{
namespace sys
{
/// @brief Platform agnostic Mutex class.
class MutexImpl
{
/// @name Constructors
/// @{
public:
/// Initializes the lock but doesn't acquire it. if \p recursive is set
/// to false, the lock will not be recursive which makes it cheaper but
/// also more likely to deadlock (same thread can't acquire more than
/// once).
/// @brief Default Constructor.
explicit MutexImpl(bool recursive = true);
/// Releases and removes the lock
/// @brief Destructor
~MutexImpl();
/// @}
/// @name Methods
/// @{
public:
/// Attempts to unconditionally acquire the lock. If the lock is held by
/// another thread, this method will wait until it can acquire the lock.
/// @returns false if any kind of error occurs, true otherwise.
/// @brief Unconditionally acquire the lock.
bool acquire();
/// Attempts to release the lock. If the lock is held by the current
/// thread, the lock is released allowing other threads to acquire the
/// lock.
/// @returns false if any kind of error occurs, true otherwise.
/// @brief Unconditionally release the lock.
bool release();
/// Attempts to acquire the lock without blocking. If the lock is not
/// available, this function returns false quickly (without blocking). If
/// the lock is available, it is acquired.
/// @returns false if any kind of error occurs or the lock is not
/// available, true otherwise.
/// @brief Try to acquire the lock.
bool tryacquire();
//@}
/// @name Platform Dependent Data
/// @{
private:
#if defined(LLVM_ENABLE_THREADS) && LLVM_ENABLE_THREADS != 0
#if LLVM_ON_WIN32 // HLSL Change
char data_[sizeof(void*) == 8 ? 40 : 24]; // C_ASSERT this is CRITICAL_SECTION-sized
#else
void* data_; ///< We don't know what the data will be
#endif // HLSL Change
#endif
/// @}
/// @name Do Not Implement
/// @{
private:
MutexImpl(const MutexImpl &) = delete;
void operator=(const MutexImpl &) = delete;
/// @}
};
/// SmartMutex - A mutex with a compile time constant parameter that
/// indicates whether this mutex should become a no-op when we're not
/// running in multithreaded mode.
template<bool mt_only>
class SmartMutex {
MutexImpl impl;
unsigned acquired;
bool recursive;
public:
explicit SmartMutex(bool rec = true) :
impl(rec), acquired(0), recursive(rec) { }
bool lock() {
if (!mt_only || llvm_is_multithreaded()) {
return impl.acquire();
} else {
// Single-threaded debugging code. This would be racy in
// multithreaded mode, but provides not sanity checks in single
// threaded mode.
assert((recursive || acquired == 0) && "Lock already acquired!!");
++acquired;
return true;
}
}
bool unlock() {
if (!mt_only || llvm_is_multithreaded()) {
return impl.release();
} else {
// Single-threaded debugging code. This would be racy in
// multithreaded mode, but provides not sanity checks in single
// threaded mode.
assert(((recursive && acquired) || (acquired == 1)) &&
"Lock not acquired before release!");
--acquired;
return true;
}
}
bool try_lock() {
if (!mt_only || llvm_is_multithreaded())
return impl.tryacquire();
else return true;
}
private:
SmartMutex(const SmartMutex<mt_only> & original);
void operator=(const SmartMutex<mt_only> &);
};
/// Mutex - A standard, always enforced mutex.
typedef SmartMutex<false> Mutex;
template<bool mt_only>
class SmartScopedLock {
SmartMutex<mt_only>& mtx;
public:
SmartScopedLock(SmartMutex<mt_only>& m) : mtx(m) {
mtx.lock();
}
~SmartScopedLock() {
mtx.unlock();
}
};
typedef SmartScopedLock<false> ScopedLock;
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Signals.h | //===- llvm/Support/Signals.h - Signal Handling support ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some helpful functions for dealing with the possibility of
// unix signals occurring while your program is running.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SIGNALS_H
#define LLVM_SUPPORT_SIGNALS_H
#include <string>
#include <llvm/ADT/StringRef.h> // HLSL Change - StringRef is, in fact, referenced directly
namespace llvm {
class StringRef;
class raw_ostream;
namespace sys {
/// This function runs all the registered interrupt handlers, including the
/// removal of files registered by RemoveFileOnSignal.
void RunInterruptHandlers();
/// This function registers signal handlers to ensure that if a signal gets
/// delivered that the named file is removed.
/// @brief Remove a file if a fatal signal occurs.
bool RemoveFileOnSignal(StringRef Filename, std::string* ErrMsg = nullptr);
/// This function removes a file from the list of files to be removed on
/// signal delivery.
void DontRemoveFileOnSignal(StringRef Filename);
/// When an error signal (such as SIBABRT or SIGSEGV) is delivered to the
/// process, print a stack trace and then exit.
/// @brief Print a stack trace if a fatal signal occurs.
void PrintStackTraceOnErrorSignal(bool DisableCrashReporting = false);
/// Disable all system dialog boxes that appear when the process crashes.
void DisableSystemDialogsOnCrash();
/// \brief Print the stack trace using the given \c raw_ostream object.
void PrintStackTrace(raw_ostream &OS);
/// AddSignalHandler - Add a function to be called when an abort/kill signal
/// is delivered to the process. The handler can have a cookie passed to it
/// to identify what instance of the handler it is.
void AddSignalHandler(void (*FnPtr)(void *), void *Cookie);
/// This function registers a function to be called when the user "interrupts"
/// the program (typically by pressing ctrl-c). When the user interrupts the
/// program, the specified interrupt function is called instead of the program
/// being killed, and the interrupt function automatically disabled. Note
/// that interrupt functions are not allowed to call any non-reentrant
/// functions. An null interrupt function pointer disables the current
/// installed function. Note also that the handler may be executed on a
/// different thread on some platforms.
/// @brief Register a function to be called when ctrl-c is pressed.
void SetInterruptFunction(void (*IF)());
} // End sys namespace
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/GenericDomTreeConstruction.h | //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// algorithm described in this document:
///
/// A Fast Algorithm for Finding Dominators in a Flowgraph
/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/GenericDomTree.h"
namespace llvm {
template<class GraphT>
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType* V, unsigned N) {
// This is more understandable as a recursive algorithm, but we can't use the
// recursive algorithm due to stack depth issues. Keep it here for
// documentation purposes.
#if 0
InfoRec &VInfo = DT.Info[DT.Roots[i]];
VInfo.DFSNum = VInfo.Semi = ++N;
VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
InfoRec &SuccVInfo = DT.Info[*SI];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = V;
N = DTDFSPass(DT, *SI, N);
}
}
#else
bool IsChildOfArtificialExit = (N != 0);
SmallVector<std::pair<typename GraphT::NodeType*,
typename GraphT::ChildIteratorType>, 32> Worklist;
Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
while (!Worklist.empty()) {
typename GraphT::NodeType* BB = Worklist.back().first;
typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
DT.Info[BB];
// First time we visited this BB?
if (NextSucc == GraphT::child_begin(BB)) {
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = BB;
DT.Vertex.push_back(BB); // Vertex[n] = V;
if (IsChildOfArtificialExit)
BBInfo.Parent = 1;
IsChildOfArtificialExit = false;
}
// store the DFS number of the current BB - the reference to BBInfo might
// get invalidated when processing the successors.
unsigned BBDFSNum = BBInfo.DFSNum;
// If we are done with this block, remove it from the worklist.
if (NextSucc == GraphT::child_end(BB)) {
Worklist.pop_back();
continue;
}
// Increment the successor number for the next time we get to it.
++Worklist.back().second;
// Visit the successor next, if it isn't already visited.
typename GraphT::NodeType* Succ = *NextSucc;
// For clang, CFG successors can be optimized-out nullptrs. Skip those.
if (!Succ)
continue;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
DT.Info[Succ];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = BBDFSNum;
Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
}
}
#endif
return N;
}
template<class GraphT>
typename GraphT::NodeType*
Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType *VIn, unsigned LastLinked) {
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
DT.Info[VIn];
if (VInInfo.DFSNum < LastLinked)
return VIn;
SmallVector<typename GraphT::NodeType*, 32> Work;
SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
if (VInInfo.Parent >= LastLinked)
Work.push_back(VIn);
while (!Work.empty()) {
typename GraphT::NodeType* V = Work.back();
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
DT.Info[V];
typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VInfo.Parent < LastLinked)
continue;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
DT.Info[VAncestor];
typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
typename GraphT::NodeType* VLabel = VInfo.Label;
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Parent = VAInfo.Parent;
}
return VInInfo.Label;
}
template<class FuncT, class NodeT>
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
FuncT& F) {
typedef GraphTraits<NodeT> GraphT;
unsigned N = 0;
bool MultipleRoots = (DT.Roots.size() > 1);
if (MultipleRoots) {
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
DT.Info[nullptr];
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = nullptr;
DT.Vertex.push_back(nullptr); // Vertex[n] = V;
}
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
i != e; ++i)
N = DFSPass<GraphT>(DT, DT.Roots[i], N);
// it might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
// When naively implemented, the Lengauer-Tarjan algorithm requires a separate
// bucket for each vertex. However, this is unnecessary, because each vertex
// is only placed into a single bucket (that of its semidominator), and each
// vertex's bucket is processed before it is added to any bucket itself.
//
// Instead of using a bucket per vertex, we use a single array Buckets that
// has two purposes. Before the vertex V with preorder number i is processed,
// Buckets[i] stores the index of the first element in V's bucket. After V's
// bucket is processed, Buckets[i] stores the index of the next element in the
// bucket containing V, if any.
SmallVector<unsigned, 32> Buckets;
Buckets.resize(N + 1);
for (unsigned i = 1; i <= N; ++i)
Buckets[i] = i;
for (unsigned i = N; i >= 2; --i) {
typename GraphT::NodeType* W = DT.Vertex[i];
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
DT.Info[W];
// Step #2: Implicitly define the immediate dominator of vertices
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
}
// Step #3: Calculate the semidominators of all vertices
// initialize the semi dominator to point to the parent node
WInfo.Semi = WInfo.Parent;
typedef GraphTraits<Inverse<NodeT> > InvTraits;
for (typename InvTraits::ChildIteratorType CI =
InvTraits::child_begin(W),
E = InvTraits::child_end(W); CI != E; ++CI) {
typename InvTraits::NodeType *N = *CI;
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
}
// If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
// necessarily parent(V). In this case, set idom(V) here and avoid placing
// V into a bucket.
if (WInfo.Semi == WInfo.Parent) {
DT.IDoms[W] = DT.Vertex[WInfo.Parent];
} else {
Buckets[i] = Buckets[WInfo.Semi];
Buckets[WInfo.Semi] = i;
}
}
if (N >= 1) {
typename GraphT::NodeType* Root = DT.Vertex[1];
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
DT.IDoms[V] = Root;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeType* W = DT.Vertex[i];
typename GraphT::NodeType*& WIDom = DT.IDoms[W];
if (WIDom != DT.Vertex[DT.Info[W].Semi])
WIDom = DT.IDoms[WIDom];
}
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks, or
// an infinite loop.
typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;
DT.RootNode =
(DT.DomTreeNodes[Root] =
llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
Root, nullptr)).get();
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeType* W = DT.Vertex[i];
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W])
continue; // Haven't calculated this node yet?
typename GraphT::NodeType* ImmDom = DT.getIDom(W);
assert(ImmDom || DT.DomTreeNodes[nullptr]);
// Get or calculate the node for the immediate dominator
DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
DT.getNodeForBlock(ImmDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DT.DomTreeNodes[W] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
W, IDomNode));
}
// Free temporary memory used to construct idom's
DT.IDoms.clear();
DT.Info.clear();
DT.Vertex.clear();
DT.Vertex.shrink_to_fit();
DT.updateDFSNumbers();
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/MutexGuard.h | //===-- Support/MutexGuard.h - Acquire/Release Mutex In Scope ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a guard for a block of code that ensures a Mutex is locked
// upon construction and released upon destruction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MUTEXGUARD_H
#define LLVM_SUPPORT_MUTEXGUARD_H
#include "llvm/Support/Mutex.h"
namespace llvm {
/// Instances of this class acquire a given Mutex Lock when constructed and
/// hold that lock until destruction. The intention is to instantiate one of
/// these on the stack at the top of some scope to be assured that C++
/// destruction of the object will always release the Mutex and thus avoid
/// a host of nasty multi-threading problems in the face of exceptions, etc.
/// @brief Guard a section of code with a Mutex.
class MutexGuard {
sys::Mutex &M;
MutexGuard(const MutexGuard &) = delete;
void operator=(const MutexGuard &) = delete;
public:
MutexGuard(sys::Mutex &m) : M(m) { M.lock(); }
~MutexGuard() { M.unlock(); }
/// holds - Returns true if this locker instance holds the specified lock.
/// This is mostly used in assertions to validate that the correct mutex
/// is held.
bool holds(const sys::Mutex& lock) const { return &M == &lock; }
};
}
#endif // LLVM_SUPPORT_MUTEXGUARD_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/CommandLine.h | //===- llvm/Support/CommandLine.h - Command line handler --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements a command line argument processor that is useful when
// creating a tool. It provides a simple, minimalistic interface that is easily
// extensible and supports nonlocal (library) command line options.
//
// Note that rather than trying to figure out what this code does, you should
// read the library documentation located in docs/CommandLine.html or looks at
// the many example usages in tools/*/*.cpp
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_COMMANDLINE_H
#define LLVM_SUPPORT_COMMANDLINE_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <climits>
#include <cstdarg>
#include <utility>
#include <vector>
namespace llvm {
class BumpPtrStringSaver;
class StringSaver;
/// cl Namespace - This namespace contains all of the command line option
/// processing machinery. It is intentionally a short name to make qualified
/// usage concise.
namespace cl {
//===----------------------------------------------------------------------===//
// ParseCommandLineOptions - Command line option processing entry point.
//
void ParseCommandLineOptions(int argc, const char *const *argv,
const char *Overview = nullptr);
//===----------------------------------------------------------------------===//
// ParseEnvironmentOptions - Environment variable option processing alternate
// entry point.
//
void ParseEnvironmentOptions(const char *progName, const char *envvar,
const char *Overview = nullptr);
///===---------------------------------------------------------------------===//
/// SetVersionPrinter - Override the default (LLVM specific) version printer
/// used to print out the version when --version is given
/// on the command line. This allows other systems using the
/// CommandLine utilities to print their own version string.
void SetVersionPrinter(void (*func)());
///===---------------------------------------------------------------------===//
/// AddExtraVersionPrinter - Add an extra printer to use in addition to the
/// default one. This can be called multiple times,
/// and each time it adds a new function to the list
/// which will be called after the basic LLVM version
/// printing is complete. Each can then add additional
/// information specific to the tool.
void AddExtraVersionPrinter(void (*func)());
// PrintOptionValues - Print option values.
// With -print-options print the difference between option values and defaults.
// With -print-all-options print all option values.
// (Currently not perfect, but best-effort.)
void PrintOptionValues();
// Forward declaration - AddLiteralOption needs to be up here to make gcc happy.
class Option;
/// \brief Adds a new option for parsing and provides the option it refers to.
///
/// \param O pointer to the option
/// \param Name the string name for the option to handle during parsing
///
/// Literal options are used by some parsers to register special option values.
/// This is how the PassNameParser registers pass names for opt.
void AddLiteralOption(Option &O, const char *Name);
//===----------------------------------------------------------------------===//
// Flags permitted to be passed to command line arguments
//
enum NumOccurrencesFlag { // Flags for the number of occurrences allowed
Optional = 0x00, // Zero or One occurrence
ZeroOrMore = 0x01, // Zero or more occurrences allowed
Required = 0x02, // One occurrence required
OneOrMore = 0x03, // One or more occurrences required
// ConsumeAfter - Indicates that this option is fed anything that follows the
// last positional argument required by the application (it is an error if
// there are zero positional arguments, and a ConsumeAfter option is used).
// Thus, for example, all arguments to LLI are processed until a filename is
// found. Once a filename is found, all of the succeeding arguments are
// passed, unprocessed, to the ConsumeAfter option.
//
ConsumeAfter = 0x04
};
enum ValueExpected { // Is a value required for the option?
// zero reserved for the unspecified value
ValueOptional = 0x01, // The value can appear... or not
ValueRequired = 0x02, // The value is required to appear!
ValueDisallowed = 0x03 // A value may not be specified (for flags)
};
enum OptionHidden { // Control whether -help shows this option
NotHidden = 0x00, // Option included in -help & -help-hidden
Hidden = 0x01, // -help doesn't, but -help-hidden does
ReallyHidden = 0x02 // Neither -help nor -help-hidden show this arg
};
// Formatting flags - This controls special features that the option might have
// that cause it to be parsed differently...
//
// Prefix - This option allows arguments that are otherwise unrecognized to be
// matched by options that are a prefix of the actual value. This is useful for
// cases like a linker, where options are typically of the form '-lfoo' or
// '-L../../include' where -l or -L are the actual flags. When prefix is
// enabled, and used, the value for the flag comes from the suffix of the
// argument.
//
// Grouping - With this option enabled, multiple letter options are allowed to
// bunch together with only a single hyphen for the whole group. This allows
// emulation of the behavior that ls uses for example: ls -la === ls -l -a
//
enum FormattingFlags {
NormalFormatting = 0x00, // Nothing special
Positional = 0x01, // Is a positional argument, no '-' required
Prefix = 0x02, // Can this option directly prefix its value?
Grouping = 0x03 // Can this option group with other options?
};
enum MiscFlags { // Miscellaneous flags to adjust argument
CommaSeparated = 0x01, // Should this cl::list split between commas?
PositionalEatsArgs = 0x02, // Should this positional cl::list eat -args?
Sink = 0x04 // Should this cl::list eat all unknown options?
};
//===----------------------------------------------------------------------===//
// Option Category class
//
class OptionCategory {
private:
const char *const Name;
const char *const Description;
void registerCategory();
public:
OptionCategory(const char *const Name,
const char *const Description = nullptr)
: Name(Name), Description(Description) {
registerCategory();
}
const char *getName() const { return Name; }
const char *getDescription() const { return Description; }
};
// The general Option Category (used as default category).
extern OptionCategory *GeneralCategory; // HLSL Change - GeneralCategory is now a pointer
//===----------------------------------------------------------------------===//
// Option Base class
//
class alias;
class Option {
friend class alias;
// handleOccurrences - Overriden by subclasses to handle the value passed into
// an argument. Should return true if there was an error processing the
// argument and the program should exit.
//
virtual bool handleOccurrence(unsigned pos, StringRef ArgName,
StringRef Arg) = 0;
virtual enum ValueExpected getValueExpectedFlagDefault() const {
return ValueOptional;
}
// Out of line virtual function to provide home for the class.
virtual void anchor();
int NumOccurrences; // The number of times specified
// Occurrences, HiddenFlag, and Formatting are all enum types but to avoid
// problems with signed enums in bitfields.
unsigned Occurrences : 3; // enum NumOccurrencesFlag
// not using the enum type for 'Value' because zero is an implementation
// detail representing the non-value
unsigned Value : 2;
unsigned HiddenFlag : 2; // enum OptionHidden
unsigned Formatting : 2; // enum FormattingFlags
unsigned Misc : 3;
unsigned Position; // Position of last occurrence of the option
unsigned AdditionalVals; // Greater than 0 for multi-valued option.
public:
const char *ArgStr; // The argument string itself (ex: "help", "o")
const char *HelpStr; // The descriptive text message for -help
const char *ValueStr; // String describing what the value of this option is
OptionCategory *Category; // The Category this option belongs to
bool FullyInitialized; // Has addArguemnt been called?
inline enum NumOccurrencesFlag getNumOccurrencesFlag() const {
return (enum NumOccurrencesFlag)Occurrences;
}
inline enum ValueExpected getValueExpectedFlag() const {
return Value ? ((enum ValueExpected)Value) : getValueExpectedFlagDefault();
}
inline enum OptionHidden getOptionHiddenFlag() const {
return (enum OptionHidden)HiddenFlag;
}
inline enum FormattingFlags getFormattingFlag() const {
return (enum FormattingFlags)Formatting;
}
inline unsigned getMiscFlags() const { return Misc; }
inline unsigned getPosition() const { return Position; }
inline unsigned getNumAdditionalVals() const { return AdditionalVals; }
// hasArgStr - Return true if the argstr != ""
bool hasArgStr() const { return ArgStr[0] != 0; }
//-------------------------------------------------------------------------===
// Accessor functions set by OptionModifiers
//
void setArgStr(const char *S);
void setDescription(const char *S) { HelpStr = S; }
void setValueStr(const char *S) { ValueStr = S; }
void setNumOccurrencesFlag(enum NumOccurrencesFlag Val) { Occurrences = Val; }
void setValueExpectedFlag(enum ValueExpected Val) { Value = Val; }
void setHiddenFlag(enum OptionHidden Val) { HiddenFlag = Val; }
void setFormattingFlag(enum FormattingFlags V) { Formatting = V; }
void setMiscFlag(enum MiscFlags M) { Misc |= M; }
void setPosition(unsigned pos) { Position = pos; }
void setCategory(OptionCategory &C) { Category = &C; }
protected:
explicit Option(enum NumOccurrencesFlag OccurrencesFlag,
enum OptionHidden Hidden)
: NumOccurrences(0), Occurrences(OccurrencesFlag), Value(0),
HiddenFlag(Hidden), Formatting(NormalFormatting), Misc(0), Position(0),
AdditionalVals(0), ArgStr(""), HelpStr(""), ValueStr(""),
Category(GeneralCategory), FullyInitialized(false) {} // HLSL Change - not GeneralCategory
inline void setNumAdditionalVals(unsigned n) { AdditionalVals = n; }
public:
// addArgument - Register this argument with the commandline system.
//
void addArgument();
/// Unregisters this option from the CommandLine system.
///
/// This option must have been the last option registered.
/// For testing purposes only.
void removeArgument();
// Return the width of the option tag for printing...
virtual size_t getOptionWidth() const = 0;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
virtual void printOptionInfo(size_t GlobalWidth) const = 0;
virtual void printOptionValue(size_t GlobalWidth, bool Force) const = 0;
virtual void getExtraOptionNames(SmallVectorImpl<const char *> &) {}
// addOccurrence - Wrapper around handleOccurrence that enforces Flags.
//
virtual bool addOccurrence(unsigned pos, StringRef ArgName, StringRef Value,
bool MultiArg = false);
// Prints option name followed by message. Always returns true.
bool error(const Twine &Message, StringRef ArgName = StringRef());
public:
inline int getNumOccurrences() const { return NumOccurrences; }
virtual ~Option() {}
};
//===----------------------------------------------------------------------===//
// Command line option modifiers that can be used to modify the behavior of
// command line option parsers...
//
// desc - Modifier to set the description shown in the -help output...
struct desc {
const char *Desc;
desc(const char *Str) : Desc(Str) {}
void apply(Option &O) const { O.setDescription(Desc); }
};
// value_desc - Modifier to set the value description shown in the -help
// output...
struct value_desc {
const char *Desc;
value_desc(const char *Str) : Desc(Str) {}
void apply(Option &O) const { O.setValueStr(Desc); }
};
// init - Specify a default (initial) value for the command line argument, if
// the default constructor for the argument type does not give you what you
// want. This is only valid on "opt" arguments, not on "list" arguments.
//
template <class Ty> struct initializer {
const Ty &Init;
initializer(const Ty &Val) : Init(Val) {}
template <class Opt> void apply(Opt &O) const { O.setInitialValue(Init); }
};
template <class Ty> initializer<Ty> init(const Ty &Val) {
return initializer<Ty>(Val);
}
// location - Allow the user to specify which external variable they want to
// store the results of the command line argument processing into, if they don't
// want to store it in the option itself.
//
template <class Ty> struct LocationClass {
Ty &Loc;
LocationClass(Ty &L) : Loc(L) {}
template <class Opt> void apply(Opt &O) const { O.setLocation(O, Loc); }
};
template <class Ty> LocationClass<Ty> location(Ty &L) {
return LocationClass<Ty>(L);
}
// cat - Specifiy the Option category for the command line argument to belong
// to.
struct cat {
OptionCategory &Category;
cat(OptionCategory &c) : Category(c) {}
template <class Opt> void apply(Opt &O) const { O.setCategory(Category); }
};
//===----------------------------------------------------------------------===//
// OptionValue class
// Support value comparison outside the template.
struct GenericOptionValue {
virtual bool compare(const GenericOptionValue &V) const = 0;
protected:
~GenericOptionValue() = default;
GenericOptionValue() = default;
GenericOptionValue(const GenericOptionValue&) = default;
GenericOptionValue &operator=(const GenericOptionValue &) = default;
private:
virtual void anchor();
};
template <class DataType> struct OptionValue;
// The default value safely does nothing. Option value printing is only
// best-effort.
template <class DataType, bool isClass>
struct OptionValueBase : public GenericOptionValue {
// Temporary storage for argument passing.
typedef OptionValue<DataType> WrapperType;
bool hasValue() const { return false; }
const DataType &getValue() const { llvm_unreachable("no default value"); }
// Some options may take their value from a different data type.
template <class DT> void setValue(const DT & /*V*/) {}
bool compare(const DataType & /*V*/) const { return false; }
bool compare(const GenericOptionValue & /*V*/) const override {
return false;
}
protected:
~OptionValueBase() = default;
};
// Simple copy of the option value.
template <class DataType> class OptionValueCopy : public GenericOptionValue {
DataType Value;
bool Valid;
protected:
~OptionValueCopy() = default;
OptionValueCopy(const OptionValueCopy&) = default;
OptionValueCopy &operator=(const OptionValueCopy&) = default;
public:
OptionValueCopy() : Valid(false) {}
bool hasValue() const { return Valid; }
const DataType &getValue() const {
assert(Valid && "invalid option value");
return Value;
}
void setValue(const DataType &V) {
Valid = true;
Value = V;
}
bool compare(const DataType &V) const { return Valid && (Value != V); }
bool compare(const GenericOptionValue &V) const override {
const OptionValueCopy<DataType> &VC =
static_cast<const OptionValueCopy<DataType> &>(V);
if (!VC.hasValue())
return false;
return compare(VC.getValue());
}
};
// Non-class option values.
template <class DataType>
struct OptionValueBase<DataType, false> : OptionValueCopy<DataType> {
typedef DataType WrapperType;
protected:
~OptionValueBase() = default;
OptionValueBase() = default;
OptionValueBase(const OptionValueBase&) = default;
OptionValueBase &operator=(const OptionValueBase&) = default;
};
// Top-level option class.
template <class DataType>
struct OptionValue final
: OptionValueBase<DataType, std::is_class<DataType>::value> {
OptionValue() = default;
OptionValue(const DataType &V) { this->setValue(V); }
// Some options may take their value from a different data type.
template <class DT> OptionValue<DataType> &operator=(const DT &V) {
this->setValue(V);
return *this;
}
};
// Other safe-to-copy-by-value common option types.
enum boolOrDefault { BOU_UNSET, BOU_TRUE, BOU_FALSE };
template <>
struct OptionValue<cl::boolOrDefault> final
: OptionValueCopy<cl::boolOrDefault> {
typedef cl::boolOrDefault WrapperType;
OptionValue() {}
OptionValue(const cl::boolOrDefault &V) { this->setValue(V); }
OptionValue<cl::boolOrDefault> &operator=(const cl::boolOrDefault &V) {
setValue(V);
return *this;
}
private:
void anchor() override;
};
template <>
struct OptionValue<std::string> final : OptionValueCopy<std::string> {
typedef StringRef WrapperType;
OptionValue() {}
OptionValue(const std::string &V) { this->setValue(V); }
OptionValue<std::string> &operator=(const std::string &V) {
setValue(V);
return *this;
}
private:
void anchor() override;
};
//===----------------------------------------------------------------------===//
// Enum valued command line option
//
#define clEnumVal(ENUMVAL, DESC) #ENUMVAL, int(ENUMVAL), DESC
#define clEnumValN(ENUMVAL, FLAGNAME, DESC) FLAGNAME, int(ENUMVAL), DESC
#define clEnumValEnd (reinterpret_cast<void *>(0))
// values - For custom data types, allow specifying a group of values together
// as the values that go into the mapping that the option handler uses. Note
// that the values list must always have a 0 at the end of the list to indicate
// that the list has ended.
//
template <class DataType> class ValuesClass {
// Use a vector instead of a map, because the lists should be short,
// the overhead is less, and most importantly, it keeps them in the order
// inserted so we can print our option out nicely.
SmallVector<std::pair<const char *, std::pair<int, const char *>>, 4> Values;
void processValues(va_list Vals);
public:
ValuesClass(const char *EnumName, DataType Val, const char *Desc,
va_list ValueArgs) {
// Insert the first value, which is required.
Values.push_back(std::make_pair(EnumName, std::make_pair(Val, Desc)));
// Process the varargs portion of the values...
while (const char *enumName = va_arg(ValueArgs, const char *)) {
DataType EnumVal = static_cast<DataType>(va_arg(ValueArgs, int));
const char *EnumDesc = va_arg(ValueArgs, const char *);
Values.push_back(std::make_pair(enumName, // Add value to value map
std::make_pair(EnumVal, EnumDesc)));
}
}
template <class Opt> void apply(Opt &O) const {
for (size_t i = 0, e = Values.size(); i != e; ++i)
O.getParser().addLiteralOption(Values[i].first, Values[i].second.first,
Values[i].second.second);
}
};
template <class DataType>
ValuesClass<DataType> LLVM_END_WITH_NULL
values(const char *Arg, DataType Val, const char *Desc, ...) {
va_list ValueArgs;
va_start(ValueArgs, Desc);
ValuesClass<DataType> Vals(Arg, Val, Desc, ValueArgs);
va_end(ValueArgs);
return Vals;
}
//===----------------------------------------------------------------------===//
// parser class - Parameterizable parser for different data types. By default,
// known data types (string, int, bool) have specialized parsers, that do what
// you would expect. The default parser, used for data types that are not
// built-in, uses a mapping table to map specific options to values, which is
// used, among other things, to handle enum types.
//--------------------------------------------------
// generic_parser_base - This class holds all the non-generic code that we do
// not need replicated for every instance of the generic parser. This also
// allows us to put stuff into CommandLine.cpp
//
class generic_parser_base {
protected:
class GenericOptionInfo {
public:
GenericOptionInfo(const char *name, const char *helpStr)
: Name(name), HelpStr(helpStr) {}
const char *Name;
const char *HelpStr;
};
public:
generic_parser_base(Option &O) : Owner(O) {}
virtual ~generic_parser_base() {} // Base class should have virtual-dtor
// getNumOptions - Virtual function implemented by generic subclass to
// indicate how many entries are in Values.
//
virtual unsigned getNumOptions() const = 0;
// getOption - Return option name N.
virtual const char *getOption(unsigned N) const = 0;
// getDescription - Return description N
virtual const char *getDescription(unsigned N) const = 0;
// Return the width of the option tag for printing...
virtual size_t getOptionWidth(const Option &O) const;
virtual const GenericOptionValue &getOptionValue(unsigned N) const = 0;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
virtual void printOptionInfo(const Option &O, size_t GlobalWidth) const;
void printGenericOptionDiff(const Option &O, const GenericOptionValue &V,
const GenericOptionValue &Default,
size_t GlobalWidth) const;
// printOptionDiff - print the value of an option and it's default.
//
// Template definition ensures that the option and default have the same
// DataType (via the same AnyOptionValue).
template <class AnyOptionValue>
void printOptionDiff(const Option &O, const AnyOptionValue &V,
const AnyOptionValue &Default,
size_t GlobalWidth) const {
printGenericOptionDiff(O, V, Default, GlobalWidth);
}
void initialize() {}
void getExtraOptionNames(SmallVectorImpl<const char *> &OptionNames) {
// If there has been no argstr specified, that means that we need to add an
// argument for every possible option. This ensures that our options are
// vectored to us.
if (!Owner.hasArgStr())
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
OptionNames.push_back(getOption(i));
}
enum ValueExpected getValueExpectedFlagDefault() const {
// If there is an ArgStr specified, then we are of the form:
//
// -opt=O2 or -opt O2 or -optO2
//
// In which case, the value is required. Otherwise if an arg str has not
// been specified, we are of the form:
//
// -O2 or O2 or -la (where -l and -a are separate options)
//
// If this is the case, we cannot allow a value.
//
if (Owner.hasArgStr())
return ValueRequired;
else
return ValueDisallowed;
}
// findOption - Return the option number corresponding to the specified
// argument string. If the option is not found, getNumOptions() is returned.
//
unsigned findOption(const char *Name);
protected:
Option &Owner;
};
// Default parser implementation - This implementation depends on having a
// mapping of recognized options to values of some sort. In addition to this,
// each entry in the mapping also tracks a help message that is printed with the
// command line option for -help. Because this is a simple mapping parser, the
// data type can be any unsupported type.
//
template <class DataType> class parser : public generic_parser_base {
protected:
class OptionInfo : public GenericOptionInfo {
public:
OptionInfo(const char *name, DataType v, const char *helpStr)
: GenericOptionInfo(name, helpStr), V(v) {}
OptionValue<DataType> V;
};
SmallVector<OptionInfo, 8> Values;
public:
parser(Option &O) : generic_parser_base(O) {}
typedef DataType parser_data_type;
// Implement virtual functions needed by generic_parser_base
unsigned getNumOptions() const override { return unsigned(Values.size()); }
const char *getOption(unsigned N) const override { return Values[N].Name; }
const char *getDescription(unsigned N) const override {
return Values[N].HelpStr;
}
// getOptionValue - Return the value of option name N.
const GenericOptionValue &getOptionValue(unsigned N) const override {
return Values[N].V;
}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, DataType &V) {
StringRef ArgVal;
if (Owner.hasArgStr())
ArgVal = Arg;
else
ArgVal = ArgName;
for (size_t i = 0, e = Values.size(); i != e; ++i)
if (Values[i].Name == ArgVal) {
V = Values[i].V.getValue();
return false;
}
return O.error("Cannot find option named '" + ArgVal + "'!");
}
/// addLiteralOption - Add an entry to the mapping table.
///
template <class DT>
void addLiteralOption(const char *Name, const DT &V, const char *HelpStr) {
assert(findOption(Name) == Values.size() && "Option already exists!");
OptionInfo X(Name, static_cast<DataType>(V), HelpStr);
Values.push_back(X);
AddLiteralOption(Owner, Name);
}
/// removeLiteralOption - Remove the specified option.
///
void removeLiteralOption(const char *Name) {
unsigned N = findOption(Name);
assert(N != Values.size() && "Option not found!");
Values.erase(Values.begin() + N);
}
};
//--------------------------------------------------
// basic_parser - Super class of parsers to provide boilerplate code
//
class basic_parser_impl { // non-template implementation of basic_parser<t>
public:
basic_parser_impl(Option &O) {}
enum ValueExpected getValueExpectedFlagDefault() const {
return ValueRequired;
}
void getExtraOptionNames(SmallVectorImpl<const char *> &) {}
void initialize() {}
// Return the width of the option tag for printing...
size_t getOptionWidth(const Option &O) const;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
void printOptionInfo(const Option &O, size_t GlobalWidth) const;
// printOptionNoValue - Print a placeholder for options that don't yet support
// printOptionDiff().
void printOptionNoValue(const Option &O, size_t GlobalWidth) const;
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "value"; }
// An out-of-line virtual method to provide a 'home' for this class.
virtual void anchor();
protected:
~basic_parser_impl() = default;
// A helper for basic_parser::printOptionDiff.
void printOptionName(const Option &O, size_t GlobalWidth) const;
};
// basic_parser - The real basic parser is just a template wrapper that provides
// a typedef for the provided data type.
//
template <class DataType> class basic_parser : public basic_parser_impl {
public:
basic_parser(Option &O) : basic_parser_impl(O) {}
typedef DataType parser_data_type;
typedef OptionValue<DataType> OptVal;
protected:
// Workaround Clang PR22793
~basic_parser() {}
};
//--------------------------------------------------
// parser<bool>
//
template <> class parser<bool> final : public basic_parser<bool> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, bool &Val);
void initialize() {}
enum ValueExpected getValueExpectedFlagDefault() const {
return ValueOptional;
}
// getValueName - Do not print =<value> at all.
const char *getValueName() const override { return nullptr; }
void printOptionDiff(const Option &O, bool V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<bool>;
//--------------------------------------------------
// parser<boolOrDefault>
template <>
class parser<boolOrDefault> final : public basic_parser<boolOrDefault> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, boolOrDefault &Val);
enum ValueExpected getValueExpectedFlagDefault() const {
return ValueOptional;
}
// getValueName - Do not print =<value> at all.
const char *getValueName() const override { return nullptr; }
void printOptionDiff(const Option &O, boolOrDefault V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<boolOrDefault>;
//--------------------------------------------------
// parser<int>
//
template <> class parser<int> final : public basic_parser<int> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, int &Val);
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "int"; }
void printOptionDiff(const Option &O, int V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<int>;
//--------------------------------------------------
// parser<unsigned>
//
template <> class parser<unsigned> final : public basic_parser<unsigned> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, unsigned &Val);
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "uint"; }
void printOptionDiff(const Option &O, unsigned V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<unsigned>;
//--------------------------------------------------
// parser<unsigned long long>
//
template <>
class parser<unsigned long long> final
: public basic_parser<unsigned long long> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg,
unsigned long long &Val);
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "uint"; }
void printOptionDiff(const Option &O, unsigned long long V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<unsigned long long>;
//--------------------------------------------------
// parser<double>
//
template <> class parser<double> final : public basic_parser<double> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, double &Val);
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "number"; }
void printOptionDiff(const Option &O, double V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<double>;
//--------------------------------------------------
// parser<float>
//
template <> class parser<float> final : public basic_parser<float> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &O, StringRef ArgName, StringRef Arg, float &Val);
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "number"; }
void printOptionDiff(const Option &O, float V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<float>;
//--------------------------------------------------
// parser<std::string>
//
template <> class parser<std::string> final : public basic_parser<std::string> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &, StringRef, StringRef Arg, std::string &Value) {
Value = Arg.str();
return false;
}
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "string"; }
void printOptionDiff(const Option &O, StringRef V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<std::string>;
//--------------------------------------------------
// parser<char>
//
template <> class parser<char> final : public basic_parser<char> {
public:
parser(Option &O) : basic_parser(O) {}
// parse - Return true on error.
bool parse(Option &, StringRef, StringRef Arg, char &Value) {
Value = Arg[0];
return false;
}
// getValueName - Overload in subclass to provide a better default value.
const char *getValueName() const override { return "char"; }
void printOptionDiff(const Option &O, char V, OptVal Default,
size_t GlobalWidth) const;
// An out-of-line virtual method to provide a 'home' for this class.
void anchor() override;
};
extern template class basic_parser<char>;
//--------------------------------------------------
// PrintOptionDiff
//
// This collection of wrappers is the intermediary between class opt and class
// parser to handle all the template nastiness.
// This overloaded function is selected by the generic parser.
template <class ParserClass, class DT>
void printOptionDiff(const Option &O, const generic_parser_base &P, const DT &V,
const OptionValue<DT> &Default, size_t GlobalWidth) {
OptionValue<DT> OV = V;
P.printOptionDiff(O, OV, Default, GlobalWidth);
}
// This is instantiated for basic parsers when the parsed value has a different
// type than the option value. e.g. HelpPrinter.
template <class ParserDT, class ValDT> struct OptionDiffPrinter {
void print(const Option &O, const parser<ParserDT> &P, const ValDT & /*V*/,
const OptionValue<ValDT> & /*Default*/, size_t GlobalWidth) {
P.printOptionNoValue(O, GlobalWidth);
}
};
// This is instantiated for basic parsers when the parsed value has the same
// type as the option value.
template <class DT> struct OptionDiffPrinter<DT, DT> {
void print(const Option &O, const parser<DT> &P, const DT &V,
const OptionValue<DT> &Default, size_t GlobalWidth) {
P.printOptionDiff(O, V, Default, GlobalWidth);
}
};
// This overloaded function is selected by the basic parser, which may parse a
// different type than the option type.
template <class ParserClass, class ValDT>
void printOptionDiff(
const Option &O,
const basic_parser<typename ParserClass::parser_data_type> &P,
const ValDT &V, const OptionValue<ValDT> &Default, size_t GlobalWidth) {
OptionDiffPrinter<typename ParserClass::parser_data_type, ValDT> printer;
printer.print(O, static_cast<const ParserClass &>(P), V, Default,
GlobalWidth);
}
//===----------------------------------------------------------------------===//
// applicator class - This class is used because we must use partial
// specialization to handle literal string arguments specially (const char* does
// not correctly respond to the apply method). Because the syntax to use this
// is a pain, we have the 'apply' method below to handle the nastiness...
//
template <class Mod> struct applicator {
template <class Opt> static void opt(const Mod &M, Opt &O) { M.apply(O); }
};
// Handle const char* as a special case...
template <unsigned n> struct applicator<char[n]> {
template <class Opt> static void opt(const char *Str, Opt &O) {
O.setArgStr(Str);
}
};
template <unsigned n> struct applicator<const char[n]> {
template <class Opt> static void opt(const char *Str, Opt &O) {
O.setArgStr(Str);
}
};
template <> struct applicator<const char *> {
template <class Opt> static void opt(const char *Str, Opt &O) {
O.setArgStr(Str);
}
};
template <> struct applicator<NumOccurrencesFlag> {
static void opt(NumOccurrencesFlag N, Option &O) {
O.setNumOccurrencesFlag(N);
}
};
template <> struct applicator<ValueExpected> {
static void opt(ValueExpected VE, Option &O) { O.setValueExpectedFlag(VE); }
};
template <> struct applicator<OptionHidden> {
static void opt(OptionHidden OH, Option &O) { O.setHiddenFlag(OH); }
};
template <> struct applicator<FormattingFlags> {
static void opt(FormattingFlags FF, Option &O) { O.setFormattingFlag(FF); }
};
template <> struct applicator<MiscFlags> {
static void opt(MiscFlags MF, Option &O) { O.setMiscFlag(MF); }
};
// apply method - Apply modifiers to an option in a type safe way.
template <class Opt, class Mod, class... Mods>
void apply(Opt *O, const Mod &M, const Mods &... Ms) {
applicator<Mod>::opt(M, *O);
apply(O, Ms...);
}
template <class Opt, class Mod> void apply(Opt *O, const Mod &M) {
applicator<Mod>::opt(M, *O);
}
//===----------------------------------------------------------------------===//
// opt_storage class
// Default storage class definition: external storage. This implementation
// assumes the user will specify a variable to store the data into with the
// cl::location(x) modifier.
//
template <class DataType, bool ExternalStorage, bool isClass>
class opt_storage {
DataType *Location; // Where to store the object...
OptionValue<DataType> Default;
void check_location() const {
assert(Location && "cl::location(...) not specified for a command "
"line option with external storage, "
"or cl::init specified before cl::location()!!");
}
public:
opt_storage() : Location(nullptr) {}
bool setLocation(Option &O, DataType &L) {
if (Location)
return O.error("cl::location(x) specified more than once!");
Location = &L;
Default = L;
return false;
}
template <class T> void setValue(const T &V, bool initial = false) {
check_location();
*Location = V;
if (initial)
Default = V;
}
DataType &getValue() {
check_location();
return *Location;
}
const DataType &getValue() const {
check_location();
return *Location;
}
operator DataType() const { return this->getValue(); }
const OptionValue<DataType> &getDefault() const { return Default; }
};
// Define how to hold a class type object, such as a string. Since we can
// inherit from a class, we do so. This makes us exactly compatible with the
// object in all cases that it is used.
//
template <class DataType>
class opt_storage<DataType, false, true> : public DataType {
public:
OptionValue<DataType> Default;
template <class T> void setValue(const T &V, bool initial = false) {
DataType::operator=(V);
if (initial)
Default = V;
}
DataType &getValue() { return *this; }
const DataType &getValue() const { return *this; }
const OptionValue<DataType> &getDefault() const { return Default; }
};
// Define a partial specialization to handle things we cannot inherit from. In
// this case, we store an instance through containment, and overload operators
// to get at the value.
//
template <class DataType> class opt_storage<DataType, false, false> {
public:
DataType Value;
OptionValue<DataType> Default;
// Make sure we initialize the value with the default constructor for the
// type.
opt_storage() : Value(DataType()), Default(DataType()) {}
template <class T> void setValue(const T &V, bool initial = false) {
Value = V;
if (initial)
Default = V;
}
DataType &getValue() { return Value; }
DataType getValue() const { return Value; }
const OptionValue<DataType> &getDefault() const { return Default; }
operator DataType() const { return getValue(); }
// If the datatype is a pointer, support -> on it.
DataType operator->() const { return Value; }
};
//===----------------------------------------------------------------------===//
// opt - A scalar command line option.
//
template <class DataType, bool ExternalStorage = false,
class ParserClass = parser<DataType>>
class opt : public Option,
public opt_storage<DataType, ExternalStorage,
std::is_class<DataType>::value> {
ParserClass Parser;
bool handleOccurrence(unsigned pos, StringRef ArgName,
StringRef Arg) override {
typename ParserClass::parser_data_type Val =
typename ParserClass::parser_data_type();
if (Parser.parse(*this, ArgName, Arg, Val))
return true; // Parse error!
this->setValue(Val);
this->setPosition(pos);
return false;
}
enum ValueExpected getValueExpectedFlagDefault() const override {
return Parser.getValueExpectedFlagDefault();
}
void
getExtraOptionNames(SmallVectorImpl<const char *> &OptionNames) override {
return Parser.getExtraOptionNames(OptionNames);
}
// Forward printing stuff to the parser...
size_t getOptionWidth() const override {
return Parser.getOptionWidth(*this);
}
void printOptionInfo(size_t GlobalWidth) const override {
Parser.printOptionInfo(*this, GlobalWidth);
}
void printOptionValue(size_t GlobalWidth, bool Force) const override {
if (Force || this->getDefault().compare(this->getValue())) {
cl::printOptionDiff<ParserClass>(*this, Parser, this->getValue(),
this->getDefault(), GlobalWidth);
}
}
void done() {
addArgument();
Parser.initialize();
}
// Command line options should not be copyable
opt(const opt &) = delete;
opt &operator=(const opt &) = delete;
public:
// setInitialValue - Used by the cl::init modifier...
void setInitialValue(const DataType &V) { this->setValue(V, true); }
ParserClass &getParser() { return Parser; }
template <class T> DataType &operator=(const T &Val) {
this->setValue(Val);
return this->getValue();
}
template <class... Mods>
explicit opt(const Mods &... Ms)
: Option(Optional, NotHidden), Parser(*this) {
apply(this, Ms...);
done();
}
};
extern template class opt<unsigned>;
extern template class opt<int>;
extern template class opt<std::string>;
extern template class opt<char>;
extern template class opt<bool>;
//===----------------------------------------------------------------------===//
// list_storage class
// Default storage class definition: external storage. This implementation
// assumes the user will specify a variable to store the data into with the
// cl::location(x) modifier.
//
template <class DataType, class StorageClass> class list_storage {
StorageClass *Location; // Where to store the object...
public:
list_storage() : Location(0) {}
bool setLocation(Option &O, StorageClass &L) {
if (Location)
return O.error("cl::location(x) specified more than once!");
Location = &L;
return false;
}
template <class T> void addValue(const T &V) {
assert(Location != 0 && "cl::location(...) not specified for a command "
"line option with external storage!");
Location->push_back(V);
}
};
// Define how to hold a class type object, such as a string.
// Originally this code inherited from std::vector. In transitioning to a new
// API for command line options we should change this. The new implementation
// of this list_storage specialization implements the minimum subset of the
// std::vector API required for all the current clients.
//
// FIXME: Reduce this API to a more narrow subset of std::vector
//
template <class DataType> class list_storage<DataType, bool> {
std::vector<DataType> Storage;
public:
typedef typename std::vector<DataType>::iterator iterator;
iterator begin() { return Storage.begin(); }
iterator end() { return Storage.end(); }
typedef typename std::vector<DataType>::const_iterator const_iterator;
const_iterator begin() const { return Storage.begin(); }
const_iterator end() const { return Storage.end(); }
typedef typename std::vector<DataType>::size_type size_type;
size_type size() const { return Storage.size(); }
bool empty() const { return Storage.empty(); }
void push_back(const DataType &value) { Storage.push_back(value); }
void push_back(DataType &&value) { Storage.push_back(value); }
typedef typename std::vector<DataType>::reference reference;
typedef typename std::vector<DataType>::const_reference const_reference;
reference operator[](size_type pos) { return Storage[pos]; }
const_reference operator[](size_type pos) const { return Storage[pos]; }
iterator erase(const_iterator pos) { return Storage.erase(pos); }
iterator erase(const_iterator first, const_iterator last) {
return Storage.erase(first, last);
}
iterator erase(iterator pos) { return Storage.erase(pos); }
iterator erase(iterator first, iterator last) {
return Storage.erase(first, last);
}
iterator insert(const_iterator pos, const DataType &value) {
return Storage.insert(pos, value);
}
iterator insert(const_iterator pos, DataType &&value) {
return Storage.insert(pos, value);
}
iterator insert(iterator pos, const DataType &value) {
return Storage.insert(pos, value);
}
iterator insert(iterator pos, DataType &&value) {
return Storage.insert(pos, value);
}
reference front() { return Storage.front(); }
const_reference front() const { return Storage.front(); }
operator std::vector<DataType>&() { return Storage; }
operator ArrayRef<DataType>() { return Storage; }
std::vector<DataType> *operator&() { return &Storage; }
const std::vector<DataType> *operator&() const { return &Storage; }
template <class T> void addValue(const T &V) { Storage.push_back(V); }
};
//===----------------------------------------------------------------------===//
// list - A list of command line options.
//
template <class DataType, class StorageClass = bool,
class ParserClass = parser<DataType>>
class list : public Option, public list_storage<DataType, StorageClass> {
std::vector<unsigned> Positions;
ParserClass Parser;
enum ValueExpected getValueExpectedFlagDefault() const override {
return Parser.getValueExpectedFlagDefault();
}
void
getExtraOptionNames(SmallVectorImpl<const char *> &OptionNames) override {
return Parser.getExtraOptionNames(OptionNames);
}
bool handleOccurrence(unsigned pos, StringRef ArgName,
StringRef Arg) override {
typename ParserClass::parser_data_type Val =
typename ParserClass::parser_data_type();
if (Parser.parse(*this, ArgName, Arg, Val))
return true; // Parse Error!
list_storage<DataType, StorageClass>::addValue(Val);
setPosition(pos);
Positions.push_back(pos);
return false;
}
// Forward printing stuff to the parser...
size_t getOptionWidth() const override {
return Parser.getOptionWidth(*this);
}
void printOptionInfo(size_t GlobalWidth) const override {
Parser.printOptionInfo(*this, GlobalWidth);
}
// Unimplemented: list options don't currently store their default value.
void printOptionValue(size_t /*GlobalWidth*/, bool /*Force*/) const override {
}
void done() {
addArgument();
Parser.initialize();
}
// Command line options should not be copyable
list(const list &) = delete;
list &operator=(const list &) = delete;
public:
ParserClass &getParser() { return Parser; }
unsigned getPosition(unsigned optnum) const {
assert(optnum < this->size() && "Invalid option index");
return Positions[optnum];
}
void setNumAdditionalVals(unsigned n) { Option::setNumAdditionalVals(n); }
template <class... Mods>
explicit list(const Mods &... Ms)
: Option(ZeroOrMore, NotHidden), Parser(*this) {
apply(this, Ms...);
done();
}
};
// multi_val - Modifier to set the number of additional values.
struct multi_val {
unsigned AdditionalVals;
explicit multi_val(unsigned N) : AdditionalVals(N) {}
template <typename D, typename S, typename P>
void apply(list<D, S, P> &L) const {
L.setNumAdditionalVals(AdditionalVals);
}
};
//===----------------------------------------------------------------------===//
// bits_storage class
// Default storage class definition: external storage. This implementation
// assumes the user will specify a variable to store the data into with the
// cl::location(x) modifier.
//
template <class DataType, class StorageClass> class bits_storage {
unsigned *Location; // Where to store the bits...
template <class T> static unsigned Bit(const T &V) {
unsigned BitPos = reinterpret_cast<unsigned>(V);
assert(BitPos < sizeof(unsigned) * CHAR_BIT &&
"enum exceeds width of bit vector!");
return 1 << BitPos;
}
public:
bits_storage() : Location(nullptr) {}
bool setLocation(Option &O, unsigned &L) {
if (Location)
return O.error("cl::location(x) specified more than once!");
Location = &L;
return false;
}
template <class T> void addValue(const T &V) {
assert(Location != 0 && "cl::location(...) not specified for a command "
"line option with external storage!");
*Location |= Bit(V);
}
unsigned getBits() { return *Location; }
template <class T> bool isSet(const T &V) {
return (*Location & Bit(V)) != 0;
}
};
// Define how to hold bits. Since we can inherit from a class, we do so.
// This makes us exactly compatible with the bits in all cases that it is used.
//
template <class DataType> class bits_storage<DataType, bool> {
unsigned Bits; // Where to store the bits...
template <class T> static unsigned Bit(const T &V) {
unsigned BitPos = (unsigned)V;
assert(BitPos < sizeof(unsigned) * CHAR_BIT &&
"enum exceeds width of bit vector!");
return 1 << BitPos;
}
public:
template <class T> void addValue(const T &V) { Bits |= Bit(V); }
unsigned getBits() { return Bits; }
template <class T> bool isSet(const T &V) { return (Bits & Bit(V)) != 0; }
};
//===----------------------------------------------------------------------===//
// bits - A bit vector of command options.
//
template <class DataType, class Storage = bool,
class ParserClass = parser<DataType>>
class bits : public Option, public bits_storage<DataType, Storage> {
std::vector<unsigned> Positions;
ParserClass Parser;
enum ValueExpected getValueExpectedFlagDefault() const override {
return Parser.getValueExpectedFlagDefault();
}
void
getExtraOptionNames(SmallVectorImpl<const char *> &OptionNames) override {
return Parser.getExtraOptionNames(OptionNames);
}
bool handleOccurrence(unsigned pos, StringRef ArgName,
StringRef Arg) override {
typename ParserClass::parser_data_type Val =
typename ParserClass::parser_data_type();
if (Parser.parse(*this, ArgName, Arg, Val))
return true; // Parse Error!
this->addValue(Val);
setPosition(pos);
Positions.push_back(pos);
return false;
}
// Forward printing stuff to the parser...
size_t getOptionWidth() const override {
return Parser.getOptionWidth(*this);
}
void printOptionInfo(size_t GlobalWidth) const override {
Parser.printOptionInfo(*this, GlobalWidth);
}
// Unimplemented: bits options don't currently store their default values.
void printOptionValue(size_t /*GlobalWidth*/, bool /*Force*/) const override {
}
void done() {
addArgument();
Parser.initialize();
}
// Command line options should not be copyable
bits(const bits &) = delete;
bits &operator=(const bits &) = delete;
public:
ParserClass &getParser() { return Parser; }
unsigned getPosition(unsigned optnum) const {
assert(optnum < this->size() && "Invalid option index");
return Positions[optnum];
}
template <class... Mods>
explicit bits(const Mods &... Ms)
: Option(ZeroOrMore, NotHidden), Parser(*this) {
apply(this, Ms...);
done();
}
};
//===----------------------------------------------------------------------===//
// Aliased command line option (alias this name to a preexisting name)
//
class alias : public Option {
Option *AliasFor;
bool handleOccurrence(unsigned pos, StringRef /*ArgName*/,
StringRef Arg) override {
return AliasFor->handleOccurrence(pos, AliasFor->ArgStr, Arg);
}
bool addOccurrence(unsigned pos, StringRef /*ArgName*/, StringRef Value,
bool MultiArg = false) override {
return AliasFor->addOccurrence(pos, AliasFor->ArgStr, Value, MultiArg);
}
// Handle printing stuff...
size_t getOptionWidth() const override;
void printOptionInfo(size_t GlobalWidth) const override;
// Aliases do not need to print their values.
void printOptionValue(size_t /*GlobalWidth*/, bool /*Force*/) const override {
}
ValueExpected getValueExpectedFlagDefault() const override {
return AliasFor->getValueExpectedFlag();
}
void done() {
if (!hasArgStr())
error("cl::alias must have argument name specified!");
if (!AliasFor)
error("cl::alias must have an cl::aliasopt(option) specified!");
addArgument();
}
// Command line options should not be copyable
alias(const alias &) = delete;
alias &operator=(const alias &) = delete;
public:
void setAliasFor(Option &O) {
if (AliasFor)
error("cl::alias must only have one cl::aliasopt(...) specified!");
AliasFor = &O;
}
template <class... Mods>
explicit alias(const Mods &... Ms)
: Option(Optional, Hidden), AliasFor(nullptr) {
apply(this, Ms...);
done();
}
};
// aliasfor - Modifier to set the option an alias aliases.
struct aliasopt {
Option &Opt;
explicit aliasopt(Option &O) : Opt(O) {}
void apply(alias &A) const { A.setAliasFor(Opt); }
};
// extrahelp - provide additional help at the end of the normal help
// output. All occurrences of cl::extrahelp will be accumulated and
// printed to stderr at the end of the regular help, just before
// exit is called.
struct extrahelp {
const char *morehelp;
explicit extrahelp(const char *help);
};
void PrintVersionMessage();
/// This function just prints the help message, exactly the same way as if the
/// -help or -help-hidden option had been given on the command line.
///
/// NOTE: THIS FUNCTION TERMINATES THE PROGRAM!
///
/// \param Hidden if true will print hidden options
/// \param Categorized if true print options in categories
void PrintHelpMessage(bool Hidden = false, bool Categorized = false);
//===----------------------------------------------------------------------===//
// Public interface for accessing registered options.
//
/// \brief Use this to get a StringMap to all registered named options
/// (e.g. -help). Note \p Map Should be an empty StringMap.
///
/// \return A reference to the StringMap used by the cl APIs to parse options.
///
/// Access to unnamed arguments (i.e. positional) are not provided because
/// it is expected that the client already has access to these.
///
/// Typical usage:
/// \code
/// main(int argc,char* argv[]) {
/// StringMap<llvm::cl::Option*> &opts = llvm::cl::getRegisteredOptions();
/// assert(opts.count("help") == 1)
/// opts["help"]->setDescription("Show alphabetical help information")
/// // More code
/// llvm::cl::ParseCommandLineOptions(argc,argv);
/// //More code
/// }
/// \endcode
///
/// This interface is useful for modifying options in libraries that are out of
/// the control of the client. The options should be modified before calling
/// llvm::cl::ParseCommandLineOptions().
///
/// Hopefully this API can be depricated soon. Any situation where options need
/// to be modified by tools or libraries should be handled by sane APIs rather
/// than just handing around a global list.
StringMap<Option *> &getRegisteredOptions();
// //
///////////////////////////////////////////////////////////////////////////////
// Standalone command line processing utilities.
//
/// \brief Tokenizes a command line that can contain escapes and quotes.
//
/// The quoting rules match those used by GCC and other tools that use
/// libiberty's buildargv() or expandargv() utilities, and do not match bash.
/// They differ from buildargv() on treatment of backslashes that do not escape
/// a special character to make it possible to accept most Windows file paths.
///
/// \param [in] Source The string to be split on whitespace with quotes.
/// \param [in] Saver Delegates back to the caller for saving parsed strings.
/// \param [in] MarkEOLs true if tokenizing a response file and you want end of
/// lines and end of the response file to be marked with a nullptr string.
/// \param [out] NewArgv All parsed strings are appended to NewArgv.
void TokenizeGNUCommandLine(StringRef Source, StringSaver &Saver,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs = false);
/// \brief Tokenizes a Windows command line which may contain quotes and escaped
/// quotes.
///
/// See MSDN docs for CommandLineToArgvW for information on the quoting rules.
/// http://msdn.microsoft.com/en-us/library/windows/desktop/17w5ykft(v=vs.85).aspx
///
/// \param [in] Source The string to be split on whitespace with quotes.
/// \param [in] Saver Delegates back to the caller for saving parsed strings.
/// \param [in] MarkEOLs true if tokenizing a response file and you want end of
/// lines and end of the response file to be marked with a nullptr string.
/// \param [out] NewArgv All parsed strings are appended to NewArgv.
void TokenizeWindowsCommandLine(StringRef Source, StringSaver &Saver,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs = false);
/// \brief String tokenization function type. Should be compatible with either
/// Windows or Unix command line tokenizers.
typedef void (*TokenizerCallback)(StringRef Source, StringSaver &Saver,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs);
/// \brief Expand response files on a command line recursively using the given
/// StringSaver and tokenization strategy. Argv should contain the command line
/// before expansion and will be modified in place. If requested, Argv will
/// also be populated with nullptrs indicating where each response file line
/// ends, which is useful for the "/link" argument that needs to consume all
/// remaining arguments only until the next end of line, when in a response
/// file.
///
/// \param [in] Saver Delegates back to the caller for saving parsed strings.
/// \param [in] Tokenizer Tokenization strategy. Typically Unix or Windows.
/// \param [in,out] Argv Command line into which to expand response files.
/// \param [in] MarkEOLs Mark end of lines and the end of the response file
/// with nullptrs in the Argv vector.
/// \return true if all @files were expanded successfully or there were none.
bool ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer,
SmallVectorImpl<const char *> &Argv,
bool MarkEOLs = false);
/// \brief Mark all options not part of this category as cl::ReallyHidden.
///
/// \param Category the category of options to keep displaying
///
/// Some tools (like clang-format) like to be able to hide all options that are
/// not specific to the tool. This function allows a tool to specify a single
/// option category to display in the -help output.
void HideUnrelatedOptions(cl::OptionCategory &Category);
/// \brief Mark all options not part of the categories as cl::ReallyHidden.
///
/// \param Categories the categories of options to keep displaying.
///
/// Some tools (like clang-format) like to be able to hide all options that are
/// not specific to the tool. This function allows a tool to specify a single
/// option category to display in the -help output.
void HideUnrelatedOptions(ArrayRef<const cl::OptionCategory *> Categories);
} // End namespace cl
} // End namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/GCOV.h | //===- GCOV.h - LLVM coverage tool ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header provides the interface to read and write coverage files that
// use 'gcov' format.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GCOV_H
#define LLVM_SUPPORT_GCOV_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
class GCOVFunction;
class GCOVBlock;
class FileInfo;
namespace GCOV {
enum GCOVVersion { V402, V404 };
} // end GCOV namespace
/// GCOVOptions - A struct for passing gcov options between functions.
struct GCOVOptions {
GCOVOptions(bool A, bool B, bool C, bool F, bool P, bool U, bool L, bool N)
: AllBlocks(A), BranchInfo(B), BranchCount(C), FuncCoverage(F),
PreservePaths(P), UncondBranch(U), LongFileNames(L), NoOutput(N) {}
bool AllBlocks;
bool BranchInfo;
bool BranchCount;
bool FuncCoverage;
bool PreservePaths;
bool UncondBranch;
bool LongFileNames;
bool NoOutput;
};
/// GCOVBuffer - A wrapper around MemoryBuffer to provide GCOV specific
/// read operations.
class GCOVBuffer {
public:
GCOVBuffer(MemoryBuffer *B) : Buffer(B), Cursor(0) {}
/// readGCNOFormat - Check GCNO signature is valid at the beginning of buffer.
bool readGCNOFormat() {
StringRef File = Buffer->getBuffer().slice(0, 4);
if (File != "oncg") {
errs() << "Unexpected file type: " << File << ".\n";
return false;
}
Cursor = 4;
return true;
}
/// readGCDAFormat - Check GCDA signature is valid at the beginning of buffer.
bool readGCDAFormat() {
StringRef File = Buffer->getBuffer().slice(0, 4);
if (File != "adcg") {
errs() << "Unexpected file type: " << File << ".\n";
return false;
}
Cursor = 4;
return true;
}
/// readGCOVVersion - Read GCOV version.
bool readGCOVVersion(GCOV::GCOVVersion &Version) {
StringRef VersionStr = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (VersionStr == "*204") {
Cursor += 4;
Version = GCOV::V402;
return true;
}
if (VersionStr == "*404") {
Cursor += 4;
Version = GCOV::V404;
return true;
}
errs() << "Unexpected version: " << VersionStr << ".\n";
return false;
}
/// readFunctionTag - If cursor points to a function tag then increment the
/// cursor and return true otherwise return false.
bool readFunctionTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\1') {
return false;
}
Cursor += 4;
return true;
}
/// readBlockTag - If cursor points to a block tag then increment the
/// cursor and return true otherwise return false.
bool readBlockTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x41' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readEdgeTag - If cursor points to an edge tag then increment the
/// cursor and return true otherwise return false.
bool readEdgeTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x43' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readLineTag - If cursor points to a line tag then increment the
/// cursor and return true otherwise return false.
bool readLineTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x45' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readArcTag - If cursor points to an gcda arc tag then increment the
/// cursor and return true otherwise return false.
bool readArcTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\xa1' ||
Tag[3] != '\1') {
return false;
}
Cursor += 4;
return true;
}
/// readObjectTag - If cursor points to an object summary tag then increment
/// the cursor and return true otherwise return false.
bool readObjectTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\xa1') {
return false;
}
Cursor += 4;
return true;
}
/// readProgramTag - If cursor points to a program summary tag then increment
/// the cursor and return true otherwise return false.
bool readProgramTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\xa3') {
return false;
}
Cursor += 4;
return true;
}
bool readInt(uint32_t &Val) {
if (Buffer->getBuffer().size() < Cursor + 4) {
errs() << "Unexpected end of memory buffer: " << Cursor + 4 << ".\n";
return false;
}
StringRef Str = Buffer->getBuffer().slice(Cursor, Cursor + 4);
Cursor += 4;
Val = *(const uint32_t *)(Str.data());
return true;
}
bool readInt64(uint64_t &Val) {
uint32_t Lo, Hi;
if (!readInt(Lo) || !readInt(Hi))
return false;
Val = ((uint64_t)Hi << 32) | Lo;
return true;
}
bool readString(StringRef &Str) {
uint32_t Len = 0;
// Keep reading until we find a non-zero length. This emulates gcov's
// behaviour, which appears to do the same.
while (Len == 0)
if (!readInt(Len))
return false;
Len *= 4;
if (Buffer->getBuffer().size() < Cursor + Len) {
errs() << "Unexpected end of memory buffer: " << Cursor + Len << ".\n";
return false;
}
Str = Buffer->getBuffer().slice(Cursor, Cursor + Len).split('\0').first;
Cursor += Len;
return true;
}
uint64_t getCursor() const { return Cursor; }
void advanceCursor(uint32_t n) { Cursor += n * 4; }
private:
MemoryBuffer *Buffer;
uint64_t Cursor;
};
/// GCOVFile - Collects coverage information for one pair of coverage file
/// (.gcno and .gcda).
class GCOVFile {
public:
GCOVFile()
: GCNOInitialized(false), Checksum(0), Functions(), RunCount(0),
ProgramCount(0) {}
bool readGCNO(GCOVBuffer &Buffer);
bool readGCDA(GCOVBuffer &Buffer);
uint32_t getChecksum() const { return Checksum; }
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
bool GCNOInitialized;
GCOV::GCOVVersion Version;
uint32_t Checksum;
SmallVector<std::unique_ptr<GCOVFunction>, 16> Functions;
uint32_t RunCount;
uint32_t ProgramCount;
};
/// GCOVEdge - Collects edge information.
struct GCOVEdge {
GCOVEdge(GCOVBlock &S, GCOVBlock &D) : Src(S), Dst(D), Count(0) {}
GCOVBlock &Src;
GCOVBlock &Dst;
uint64_t Count;
};
/// GCOVFunction - Collects function information.
class GCOVFunction {
public:
typedef pointee_iterator<SmallVectorImpl<
std::unique_ptr<GCOVBlock>>::const_iterator> BlockIterator;
GCOVFunction(GCOVFile &P) : Parent(P), Ident(0), LineNumber(0) {}
bool readGCNO(GCOVBuffer &Buffer, GCOV::GCOVVersion Version);
bool readGCDA(GCOVBuffer &Buffer, GCOV::GCOVVersion Version);
StringRef getName() const { return Name; }
StringRef getFilename() const { return Filename; }
size_t getNumBlocks() const { return Blocks.size(); }
uint64_t getEntryCount() const;
uint64_t getExitCount() const;
BlockIterator block_begin() const { return Blocks.begin(); }
BlockIterator block_end() const { return Blocks.end(); }
iterator_range<BlockIterator> blocks() const {
return make_range(block_begin(), block_end());
}
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
GCOVFile &Parent;
uint32_t Ident;
uint32_t Checksum;
uint32_t LineNumber;
StringRef Name;
StringRef Filename;
SmallVector<std::unique_ptr<GCOVBlock>, 16> Blocks;
SmallVector<std::unique_ptr<GCOVEdge>, 16> Edges;
};
/// GCOVBlock - Collects block information.
class GCOVBlock {
struct EdgeWeight {
EdgeWeight(GCOVBlock *D) : Dst(D), Count(0) {}
GCOVBlock *Dst;
uint64_t Count;
};
struct SortDstEdgesFunctor {
bool operator()(const GCOVEdge *E1, const GCOVEdge *E2) {
return E1->Dst.Number < E2->Dst.Number;
}
};
public:
typedef SmallVectorImpl<GCOVEdge *>::const_iterator EdgeIterator;
GCOVBlock(GCOVFunction &P, uint32_t N)
: Parent(P), Number(N), Counter(0), DstEdgesAreSorted(true), SrcEdges(),
DstEdges(), Lines() {}
~GCOVBlock();
const GCOVFunction &getParent() const { return Parent; }
void addLine(uint32_t N) { Lines.push_back(N); }
uint32_t getLastLine() const { return Lines.back(); }
void addCount(size_t DstEdgeNo, uint64_t N);
uint64_t getCount() const { return Counter; }
void addSrcEdge(GCOVEdge *Edge) {
assert(&Edge->Dst == this); // up to caller to ensure edge is valid
SrcEdges.push_back(Edge);
}
void addDstEdge(GCOVEdge *Edge) {
assert(&Edge->Src == this); // up to caller to ensure edge is valid
// Check if adding this edge causes list to become unsorted.
if (DstEdges.size() && DstEdges.back()->Dst.Number > Edge->Dst.Number)
DstEdgesAreSorted = false;
DstEdges.push_back(Edge);
}
size_t getNumSrcEdges() const { return SrcEdges.size(); }
size_t getNumDstEdges() const { return DstEdges.size(); }
void sortDstEdges();
EdgeIterator src_begin() const { return SrcEdges.begin(); }
EdgeIterator src_end() const { return SrcEdges.end(); }
iterator_range<EdgeIterator> srcs() const {
return make_range(src_begin(), src_end());
}
EdgeIterator dst_begin() const { return DstEdges.begin(); }
EdgeIterator dst_end() const { return DstEdges.end(); }
iterator_range<EdgeIterator> dsts() const {
return make_range(dst_begin(), dst_end());
}
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
GCOVFunction &Parent;
uint32_t Number;
uint64_t Counter;
bool DstEdgesAreSorted;
SmallVector<GCOVEdge *, 16> SrcEdges;
SmallVector<GCOVEdge *, 16> DstEdges;
SmallVector<uint32_t, 16> Lines;
};
class FileInfo {
// It is unlikely--but possible--for multiple functions to be on the same
// line.
// Therefore this typedef allows LineData.Functions to store multiple
// functions
// per instance. This is rare, however, so optimize for the common case.
typedef SmallVector<const GCOVFunction *, 1> FunctionVector;
typedef DenseMap<uint32_t, FunctionVector> FunctionLines;
typedef SmallVector<const GCOVBlock *, 4> BlockVector;
typedef DenseMap<uint32_t, BlockVector> BlockLines;
struct LineData {
LineData() : LastLine(0) {}
BlockLines Blocks;
FunctionLines Functions;
uint32_t LastLine;
};
struct GCOVCoverage {
GCOVCoverage(StringRef Name)
: Name(Name), LogicalLines(0), LinesExec(0), Branches(0),
BranchesExec(0), BranchesTaken(0) {}
StringRef Name;
uint32_t LogicalLines;
uint32_t LinesExec;
uint32_t Branches;
uint32_t BranchesExec;
uint32_t BranchesTaken;
};
public:
FileInfo(const GCOVOptions &Options)
: Options(Options), LineInfo(), RunCount(0), ProgramCount(0) {}
void addBlockLine(StringRef Filename, uint32_t Line, const GCOVBlock *Block) {
if (Line > LineInfo[Filename].LastLine)
LineInfo[Filename].LastLine = Line;
LineInfo[Filename].Blocks[Line - 1].push_back(Block);
}
void addFunctionLine(StringRef Filename, uint32_t Line,
const GCOVFunction *Function) {
if (Line > LineInfo[Filename].LastLine)
LineInfo[Filename].LastLine = Line;
LineInfo[Filename].Functions[Line - 1].push_back(Function);
}
void setRunCount(uint32_t Runs) { RunCount = Runs; }
void setProgramCount(uint32_t Programs) { ProgramCount = Programs; }
void print(raw_ostream &OS, StringRef MainFilename, StringRef GCNOFile,
StringRef GCDAFile);
private:
std::string getCoveragePath(StringRef Filename, StringRef MainFilename);
std::unique_ptr<raw_ostream> openCoveragePath(StringRef CoveragePath);
void printFunctionSummary(raw_ostream &OS, const FunctionVector &Funcs) const;
void printBlockInfo(raw_ostream &OS, const GCOVBlock &Block,
uint32_t LineIndex, uint32_t &BlockNo) const;
void printBranchInfo(raw_ostream &OS, const GCOVBlock &Block,
GCOVCoverage &Coverage, uint32_t &EdgeNo);
void printUncondBranchInfo(raw_ostream &OS, uint32_t &EdgeNo,
uint64_t Count) const;
void printCoverage(raw_ostream &OS, const GCOVCoverage &Coverage) const;
void printFuncCoverage(raw_ostream &OS) const;
void printFileCoverage(raw_ostream &OS) const;
const GCOVOptions &Options;
StringMap<LineData> LineInfo;
uint32_t RunCount;
uint32_t ProgramCount;
typedef SmallVector<std::pair<std::string, GCOVCoverage>, 4> FileCoverageList;
typedef MapVector<const GCOVFunction *, GCOVCoverage> FuncCoverageMap;
FileCoverageList FileCoverages;
FuncCoverageMap FuncCoverages;
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/ThreadLocal.h | //===- llvm/Support/ThreadLocal.h - Thread Local Data ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the llvm::sys::ThreadLocal class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_THREADLOCAL_H
#define LLVM_SUPPORT_THREADLOCAL_H
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Threading.h"
#include <cassert>
namespace llvm {
namespace sys {
// ThreadLocalImpl - Common base class of all ThreadLocal instantiations.
// YOU SHOULD NEVER USE THIS DIRECTLY.
class ThreadLocalImpl {
typedef uint64_t ThreadLocalDataTy;
/// \brief Platform-specific thread local data.
///
/// This is embedded in the class and we avoid malloc'ing/free'ing it,
/// to make this class more safe for use along with CrashRecoveryContext.
union {
char data[sizeof(ThreadLocalDataTy)];
ThreadLocalDataTy align_data;
};
public:
ThreadLocalImpl();
virtual ~ThreadLocalImpl();
void setInstance(const void* d);
void *getInstance();
void removeInstance();
};
/// ThreadLocal - A class used to abstract thread-local storage. It holds,
/// for each thread, a pointer a single object of type T.
template<class T>
class ThreadLocal : public ThreadLocalImpl {
public:
ThreadLocal() : ThreadLocalImpl() { }
/// get - Fetches a pointer to the object associated with the current
/// thread. If no object has yet been associated, it returns NULL;
T* get() { return static_cast<T*>(getInstance()); }
// set - Associates a pointer to an object with the current thread.
void set(T* d) { setInstance(d); }
// erase - Removes the pointer associated with the current thread.
void erase() { removeInstance(); }
};
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/SwapByteOrder.h | //===- SwapByteOrder.h - Generic and optimized byte swaps -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares generic and optimized functions to swap the byte order of
// an integral type.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SWAPBYTEORDER_H
#define LLVM_SUPPORT_SWAPBYTEORDER_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
#include <cstddef>
#include <limits>
namespace llvm {
namespace sys {
/// SwapByteOrder_16 - This function returns a byte-swapped representation of
/// the 16-bit argument.
inline uint16_t SwapByteOrder_16(uint16_t value) {
#if defined(_MSC_VER) && !defined(_DEBUG)
// The DLL version of the runtime lacks these functions (bug!?), but in a
// release build they're replaced with BSWAP instructions anyway.
return _byteswap_ushort(value);
#else
uint16_t Hi = value << 8;
uint16_t Lo = value >> 8;
return Hi | Lo;
#endif
}
/// SwapByteOrder_32 - This function returns a byte-swapped representation of
/// the 32-bit argument.
inline uint32_t SwapByteOrder_32(uint32_t value) {
#if defined(__llvm__) || (LLVM_GNUC_PREREQ(4, 3, 0) && !defined(__ICC))
return __builtin_bswap32(value);
#elif defined(_MSC_VER) && !defined(_DEBUG)
return _byteswap_ulong(value);
#else
uint32_t Byte0 = value & 0x000000FF;
uint32_t Byte1 = value & 0x0000FF00;
uint32_t Byte2 = value & 0x00FF0000;
uint32_t Byte3 = value & 0xFF000000;
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
#endif
}
/// SwapByteOrder_64 - This function returns a byte-swapped representation of
/// the 64-bit argument.
inline uint64_t SwapByteOrder_64(uint64_t value) {
#if defined(__llvm__) || (LLVM_GNUC_PREREQ(4, 3, 0) && !defined(__ICC))
return __builtin_bswap64(value);
#elif defined(_MSC_VER) && !defined(_DEBUG)
return _byteswap_uint64(value);
#else
uint64_t Hi = SwapByteOrder_32(uint32_t(value));
uint32_t Lo = SwapByteOrder_32(uint32_t(value >> 32));
return (Hi << 32) | Lo;
#endif
}
inline unsigned char getSwappedBytes(unsigned char C) { return C; }
inline signed char getSwappedBytes(signed char C) { return C; }
inline char getSwappedBytes(char C) { return C; }
inline unsigned short getSwappedBytes(unsigned short C) { return SwapByteOrder_16(C); }
inline signed short getSwappedBytes( signed short C) { return SwapByteOrder_16(C); }
inline unsigned int getSwappedBytes(unsigned int C) { return SwapByteOrder_32(C); }
inline signed int getSwappedBytes( signed int C) { return SwapByteOrder_32(C); }
#if __LONG_MAX__ == __INT_MAX__
inline unsigned long getSwappedBytes(unsigned long C) { return SwapByteOrder_32(C); }
inline signed long getSwappedBytes( signed long C) { return SwapByteOrder_32(C); }
#elif __LONG_MAX__ == __LONG_LONG_MAX__
inline unsigned long getSwappedBytes(unsigned long C) { return SwapByteOrder_64(C); }
inline signed long getSwappedBytes( signed long C) { return SwapByteOrder_64(C); }
#else
#error "Unknown long size!"
#endif
inline unsigned long long getSwappedBytes(unsigned long long C) {
return SwapByteOrder_64(C);
}
inline signed long long getSwappedBytes(signed long long C) {
return SwapByteOrder_64(C);
}
inline float getSwappedBytes(float C) {
union {
uint32_t i;
float f;
} in, out;
in.f = C;
out.i = SwapByteOrder_32(in.i);
return out.f;
}
inline double getSwappedBytes(double C) {
union {
uint64_t i;
double d;
} in, out;
in.d = C;
out.i = SwapByteOrder_64(in.i);
return out.d;
}
template<typename T>
inline void swapByteOrder(T &Value) {
Value = getSwappedBytes(Value);
}
} // end namespace sys
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/FormattedStream.h | //===-- llvm/Support/FormattedStream.h - Formatted streams ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains raw_ostream implementations for streams to do
// things like pretty-print comments.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_FORMATTEDSTREAM_H
#define LLVM_SUPPORT_FORMATTEDSTREAM_H
#include "llvm/Support/raw_ostream.h"
#include <utility>
namespace llvm {
/// formatted_raw_ostream - A raw_ostream that wraps another one and keeps track
/// of line and column position, allowing padding out to specific column
/// boundaries and querying the number of lines written to the stream.
///
class formatted_raw_ostream : public raw_ostream {
/// TheStream - The real stream we output to. We set it to be
/// unbuffered, since we're already doing our own buffering.
///
raw_ostream *TheStream;
/// Position - The current output column and line of the data that's
/// been flushed and the portion of the buffer that's been
/// scanned. The line and column scheme is zero-based.
///
std::pair<unsigned, unsigned> Position;
/// Scanned - This points to one past the last character in the
/// buffer we've scanned.
///
const char *Scanned;
void write_impl(const char *Ptr, size_t Size) override;
/// current_pos - Return the current position within the stream,
/// not counting the bytes currently in the buffer.
uint64_t current_pos() const override {
// Our current position in the stream is all the contents which have been
// written to the underlying stream (*not* the current position of the
// underlying stream).
return TheStream->tell();
}
/// ComputePosition - Examine the given output buffer and figure out the new
/// position after output.
///
void ComputePosition(const char *Ptr, size_t size);
void setStream(raw_ostream &Stream) {
releaseStream();
TheStream = &Stream;
// This formatted_raw_ostream inherits from raw_ostream, so it'll do its
// own buffering, and it doesn't need or want TheStream to do another
// layer of buffering underneath. Resize the buffer to what TheStream
// had been using, and tell TheStream not to do its own buffering.
if (size_t BufferSize = TheStream->GetBufferSize())
SetBufferSize(BufferSize);
else
SetUnbuffered();
TheStream->SetUnbuffered();
Scanned = nullptr;
}
public:
/// formatted_raw_ostream - Open the specified file for
/// writing. If an error occurs, information about the error is
/// put into ErrorInfo, and the stream should be immediately
/// destroyed; the string will be empty if no error occurred.
///
/// As a side effect, the given Stream is set to be Unbuffered.
/// This is because formatted_raw_ostream does its own buffering,
/// so it doesn't want another layer of buffering to be happening
/// underneath it.
///
formatted_raw_ostream(raw_ostream &Stream)
: TheStream(nullptr), Position(0, 0) {
setStream(Stream);
}
explicit formatted_raw_ostream() : TheStream(nullptr), Position(0, 0) {
Scanned = nullptr;
}
~formatted_raw_ostream() override {
flush();
releaseStream();
}
/// PadToColumn - Align the output to some column number. If the current
/// column is already equal to or more than NewCol, PadToColumn inserts one
/// space.
///
/// \param NewCol - The column to move to.
formatted_raw_ostream &PadToColumn(unsigned NewCol);
/// getColumn - Return the column number
unsigned getColumn() { return Position.first; }
/// getLine - Return the line number
unsigned getLine() { return Position.second; }
raw_ostream &resetColor() override {
TheStream->resetColor();
return *this;
}
raw_ostream &reverseColor() override {
TheStream->reverseColor();
return *this;
}
raw_ostream &changeColor(enum Colors Color, bool Bold, bool BG) override {
TheStream->changeColor(Color, Bold, BG);
return *this;
}
bool is_displayed() const override {
return TheStream->is_displayed();
}
private:
void releaseStream() {
// Transfer the buffer settings from this raw_ostream back to the underlying
// stream.
if (!TheStream)
return;
if (size_t BufferSize = GetBufferSize())
TheStream->SetBufferSize(BufferSize);
else
TheStream->SetUnbuffered();
}
};
/// fouts() - This returns a reference to a formatted_raw_ostream for
/// standard output. Use it like: fouts() << "foo" << "bar";
formatted_raw_ostream &fouts();
/// ferrs() - This returns a reference to a formatted_raw_ostream for
/// standard error. Use it like: ferrs() << "foo" << "bar";
formatted_raw_ostream &ferrs();
/// fdbgs() - This returns a reference to a formatted_raw_ostream for
/// debug output. Use it like: fdbgs() << "foo" << "bar";
formatted_raw_ostream &fdbgs();
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/COFF.h | //===-- llvm/Support/COFF.h -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains an definitions used in Windows COFF Files.
//
// Structures and enums defined within this file where created using
// information from Microsoft's publicly available PE/COFF format document:
//
// Microsoft Portable Executable and Common Object File Format Specification
// Revision 8.1 - February 15, 2008
//
// As of 5/2/2010, hosted by Microsoft at:
// http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_COFF_H
#define LLVM_SUPPORT_COFF_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <cstring>
namespace llvm {
namespace COFF {
// The maximum number of sections that a COFF object can have (inclusive).
const int32_t MaxNumberOfSections16 = 65279;
// The PE signature bytes that follows the DOS stub header.
static const char PEMagic[] = { 'P', 'E', '\0', '\0' };
static const char BigObjMagic[] = {
'\xc7', '\xa1', '\xba', '\xd1', '\xee', '\xba', '\xa9', '\x4b',
'\xaf', '\x20', '\xfa', '\xf6', '\x6a', '\xa4', '\xdc', '\xb8',
};
// Sizes in bytes of various things in the COFF format.
enum {
Header16Size = 20,
Header32Size = 56,
NameSize = 8,
Symbol16Size = 18,
Symbol32Size = 20,
SectionSize = 40,
RelocationSize = 10
};
struct header {
uint16_t Machine;
int32_t NumberOfSections;
uint32_t TimeDateStamp;
uint32_t PointerToSymbolTable;
uint32_t NumberOfSymbols;
uint16_t SizeOfOptionalHeader;
uint16_t Characteristics;
};
struct BigObjHeader {
enum : uint16_t { MinBigObjectVersion = 2 };
uint16_t Sig1; ///< Must be IMAGE_FILE_MACHINE_UNKNOWN (0).
uint16_t Sig2; ///< Must be 0xFFFF.
uint16_t Version;
uint16_t Machine;
uint32_t TimeDateStamp;
uint8_t UUID[16];
uint32_t unused1;
uint32_t unused2;
uint32_t unused3;
uint32_t unused4;
uint32_t NumberOfSections;
uint32_t PointerToSymbolTable;
uint32_t NumberOfSymbols;
};
enum MachineTypes {
MT_Invalid = 0xffff,
IMAGE_FILE_MACHINE_UNKNOWN = 0x0,
IMAGE_FILE_MACHINE_AM33 = 0x13,
IMAGE_FILE_MACHINE_AMD64 = 0x8664,
IMAGE_FILE_MACHINE_ARM = 0x1C0,
IMAGE_FILE_MACHINE_ARMNT = 0x1C4,
IMAGE_FILE_MACHINE_EBC = 0xEBC,
IMAGE_FILE_MACHINE_I386 = 0x14C,
IMAGE_FILE_MACHINE_IA64 = 0x200,
IMAGE_FILE_MACHINE_M32R = 0x9041,
IMAGE_FILE_MACHINE_MIPS16 = 0x266,
IMAGE_FILE_MACHINE_MIPSFPU = 0x366,
IMAGE_FILE_MACHINE_MIPSFPU16 = 0x466,
IMAGE_FILE_MACHINE_POWERPC = 0x1F0,
IMAGE_FILE_MACHINE_POWERPCFP = 0x1F1,
IMAGE_FILE_MACHINE_R4000 = 0x166,
IMAGE_FILE_MACHINE_SH3 = 0x1A2,
IMAGE_FILE_MACHINE_SH3DSP = 0x1A3,
IMAGE_FILE_MACHINE_SH4 = 0x1A6,
IMAGE_FILE_MACHINE_SH5 = 0x1A8,
IMAGE_FILE_MACHINE_THUMB = 0x1C2,
IMAGE_FILE_MACHINE_WCEMIPSV2 = 0x169
};
enum Characteristics {
C_Invalid = 0,
/// The file does not contain base relocations and must be loaded at its
/// preferred base. If this cannot be done, the loader will error.
IMAGE_FILE_RELOCS_STRIPPED = 0x0001,
/// The file is valid and can be run.
IMAGE_FILE_EXECUTABLE_IMAGE = 0x0002,
/// COFF line numbers have been stripped. This is deprecated and should be
/// 0.
IMAGE_FILE_LINE_NUMS_STRIPPED = 0x0004,
/// COFF symbol table entries for local symbols have been removed. This is
/// deprecated and should be 0.
IMAGE_FILE_LOCAL_SYMS_STRIPPED = 0x0008,
/// Aggressively trim working set. This is deprecated and must be 0.
IMAGE_FILE_AGGRESSIVE_WS_TRIM = 0x0010,
/// Image can handle > 2GiB addresses.
IMAGE_FILE_LARGE_ADDRESS_AWARE = 0x0020,
/// Little endian: the LSB precedes the MSB in memory. This is deprecated
/// and should be 0.
IMAGE_FILE_BYTES_REVERSED_LO = 0x0080,
/// Machine is based on a 32bit word architecture.
IMAGE_FILE_32BIT_MACHINE = 0x0100,
/// Debugging info has been removed.
IMAGE_FILE_DEBUG_STRIPPED = 0x0200,
/// If the image is on removable media, fully load it and copy it to swap.
IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP = 0x0400,
/// If the image is on network media, fully load it and copy it to swap.
IMAGE_FILE_NET_RUN_FROM_SWAP = 0x0800,
/// The image file is a system file, not a user program.
IMAGE_FILE_SYSTEM = 0x1000,
/// The image file is a DLL.
IMAGE_FILE_DLL = 0x2000,
/// This file should only be run on a uniprocessor machine.
IMAGE_FILE_UP_SYSTEM_ONLY = 0x4000,
/// Big endian: the MSB precedes the LSB in memory. This is deprecated
/// and should be 0.
IMAGE_FILE_BYTES_REVERSED_HI = 0x8000
};
struct symbol {
char Name[NameSize];
uint32_t Value;
int32_t SectionNumber;
uint16_t Type;
uint8_t StorageClass;
uint8_t NumberOfAuxSymbols;
};
enum SymbolSectionNumber : int32_t {
IMAGE_SYM_DEBUG = -2,
IMAGE_SYM_ABSOLUTE = -1,
IMAGE_SYM_UNDEFINED = 0
};
/// Storage class tells where and what the symbol represents
enum SymbolStorageClass {
SSC_Invalid = 0xff,
IMAGE_SYM_CLASS_END_OF_FUNCTION = -1, ///< Physical end of function
IMAGE_SYM_CLASS_NULL = 0, ///< No symbol
IMAGE_SYM_CLASS_AUTOMATIC = 1, ///< Stack variable
IMAGE_SYM_CLASS_EXTERNAL = 2, ///< External symbol
IMAGE_SYM_CLASS_STATIC = 3, ///< Static
IMAGE_SYM_CLASS_REGISTER = 4, ///< Register variable
IMAGE_SYM_CLASS_EXTERNAL_DEF = 5, ///< External definition
IMAGE_SYM_CLASS_LABEL = 6, ///< Label
IMAGE_SYM_CLASS_UNDEFINED_LABEL = 7, ///< Undefined label
IMAGE_SYM_CLASS_MEMBER_OF_STRUCT = 8, ///< Member of structure
IMAGE_SYM_CLASS_ARGUMENT = 9, ///< Function argument
IMAGE_SYM_CLASS_STRUCT_TAG = 10, ///< Structure tag
IMAGE_SYM_CLASS_MEMBER_OF_UNION = 11, ///< Member of union
IMAGE_SYM_CLASS_UNION_TAG = 12, ///< Union tag
IMAGE_SYM_CLASS_TYPE_DEFINITION = 13, ///< Type definition
IMAGE_SYM_CLASS_UNDEFINED_STATIC = 14, ///< Undefined static
IMAGE_SYM_CLASS_ENUM_TAG = 15, ///< Enumeration tag
IMAGE_SYM_CLASS_MEMBER_OF_ENUM = 16, ///< Member of enumeration
IMAGE_SYM_CLASS_REGISTER_PARAM = 17, ///< Register parameter
IMAGE_SYM_CLASS_BIT_FIELD = 18, ///< Bit field
/// ".bb" or ".eb" - beginning or end of block
IMAGE_SYM_CLASS_BLOCK = 100,
/// ".bf" or ".ef" - beginning or end of function
IMAGE_SYM_CLASS_FUNCTION = 101,
IMAGE_SYM_CLASS_END_OF_STRUCT = 102, ///< End of structure
IMAGE_SYM_CLASS_FILE = 103, ///< File name
/// Line number, reformatted as symbol
IMAGE_SYM_CLASS_SECTION = 104,
IMAGE_SYM_CLASS_WEAK_EXTERNAL = 105, ///< Duplicate tag
/// External symbol in dmert public lib
IMAGE_SYM_CLASS_CLR_TOKEN = 107
};
enum SymbolBaseType {
IMAGE_SYM_TYPE_NULL = 0, ///< No type information or unknown base type.
IMAGE_SYM_TYPE_VOID = 1, ///< Used with void pointers and functions.
IMAGE_SYM_TYPE_CHAR = 2, ///< A character (signed byte).
IMAGE_SYM_TYPE_SHORT = 3, ///< A 2-byte signed integer.
IMAGE_SYM_TYPE_INT = 4, ///< A natural integer type on the target.
IMAGE_SYM_TYPE_LONG = 5, ///< A 4-byte signed integer.
IMAGE_SYM_TYPE_FLOAT = 6, ///< A 4-byte floating-point number.
IMAGE_SYM_TYPE_DOUBLE = 7, ///< An 8-byte floating-point number.
IMAGE_SYM_TYPE_STRUCT = 8, ///< A structure.
IMAGE_SYM_TYPE_UNION = 9, ///< An union.
IMAGE_SYM_TYPE_ENUM = 10, ///< An enumerated type.
IMAGE_SYM_TYPE_MOE = 11, ///< A member of enumeration (a specific value).
IMAGE_SYM_TYPE_BYTE = 12, ///< A byte; unsigned 1-byte integer.
IMAGE_SYM_TYPE_WORD = 13, ///< A word; unsigned 2-byte integer.
IMAGE_SYM_TYPE_UINT = 14, ///< An unsigned integer of natural size.
IMAGE_SYM_TYPE_DWORD = 15 ///< An unsigned 4-byte integer.
};
enum SymbolComplexType {
IMAGE_SYM_DTYPE_NULL = 0, ///< No complex type; simple scalar variable.
IMAGE_SYM_DTYPE_POINTER = 1, ///< A pointer to base type.
IMAGE_SYM_DTYPE_FUNCTION = 2, ///< A function that returns a base type.
IMAGE_SYM_DTYPE_ARRAY = 3, ///< An array of base type.
/// Type is formed as (base + (derived << SCT_COMPLEX_TYPE_SHIFT))
SCT_COMPLEX_TYPE_SHIFT = 4
};
enum AuxSymbolType {
IMAGE_AUX_SYMBOL_TYPE_TOKEN_DEF = 1
};
struct section {
char Name[NameSize];
uint32_t VirtualSize;
uint32_t VirtualAddress;
uint32_t SizeOfRawData;
uint32_t PointerToRawData;
uint32_t PointerToRelocations;
uint32_t PointerToLineNumbers;
uint16_t NumberOfRelocations;
uint16_t NumberOfLineNumbers;
uint32_t Characteristics;
};
enum SectionCharacteristics : uint32_t {
SC_Invalid = 0xffffffff,
IMAGE_SCN_TYPE_NO_PAD = 0x00000008,
IMAGE_SCN_CNT_CODE = 0x00000020,
IMAGE_SCN_CNT_INITIALIZED_DATA = 0x00000040,
IMAGE_SCN_CNT_UNINITIALIZED_DATA = 0x00000080,
IMAGE_SCN_LNK_OTHER = 0x00000100,
IMAGE_SCN_LNK_INFO = 0x00000200,
IMAGE_SCN_LNK_REMOVE = 0x00000800,
IMAGE_SCN_LNK_COMDAT = 0x00001000,
IMAGE_SCN_GPREL = 0x00008000,
IMAGE_SCN_MEM_PURGEABLE = 0x00020000,
IMAGE_SCN_MEM_16BIT = 0x00020000,
IMAGE_SCN_MEM_LOCKED = 0x00040000,
IMAGE_SCN_MEM_PRELOAD = 0x00080000,
IMAGE_SCN_ALIGN_1BYTES = 0x00100000,
IMAGE_SCN_ALIGN_2BYTES = 0x00200000,
IMAGE_SCN_ALIGN_4BYTES = 0x00300000,
IMAGE_SCN_ALIGN_8BYTES = 0x00400000,
IMAGE_SCN_ALIGN_16BYTES = 0x00500000,
IMAGE_SCN_ALIGN_32BYTES = 0x00600000,
IMAGE_SCN_ALIGN_64BYTES = 0x00700000,
IMAGE_SCN_ALIGN_128BYTES = 0x00800000,
IMAGE_SCN_ALIGN_256BYTES = 0x00900000,
IMAGE_SCN_ALIGN_512BYTES = 0x00A00000,
IMAGE_SCN_ALIGN_1024BYTES = 0x00B00000,
IMAGE_SCN_ALIGN_2048BYTES = 0x00C00000,
IMAGE_SCN_ALIGN_4096BYTES = 0x00D00000,
IMAGE_SCN_ALIGN_8192BYTES = 0x00E00000,
IMAGE_SCN_LNK_NRELOC_OVFL = 0x01000000,
IMAGE_SCN_MEM_DISCARDABLE = 0x02000000,
IMAGE_SCN_MEM_NOT_CACHED = 0x04000000,
IMAGE_SCN_MEM_NOT_PAGED = 0x08000000,
IMAGE_SCN_MEM_SHARED = 0x10000000,
IMAGE_SCN_MEM_EXECUTE = 0x20000000,
IMAGE_SCN_MEM_READ = 0x40000000,
IMAGE_SCN_MEM_WRITE = 0x80000000
};
struct relocation {
uint32_t VirtualAddress;
uint32_t SymbolTableIndex;
uint16_t Type;
};
enum RelocationTypeI386 {
IMAGE_REL_I386_ABSOLUTE = 0x0000,
IMAGE_REL_I386_DIR16 = 0x0001,
IMAGE_REL_I386_REL16 = 0x0002,
IMAGE_REL_I386_DIR32 = 0x0006,
IMAGE_REL_I386_DIR32NB = 0x0007,
IMAGE_REL_I386_SEG12 = 0x0009,
IMAGE_REL_I386_SECTION = 0x000A,
IMAGE_REL_I386_SECREL = 0x000B,
IMAGE_REL_I386_TOKEN = 0x000C,
IMAGE_REL_I386_SECREL7 = 0x000D,
IMAGE_REL_I386_REL32 = 0x0014
};
enum RelocationTypeAMD64 {
IMAGE_REL_AMD64_ABSOLUTE = 0x0000,
IMAGE_REL_AMD64_ADDR64 = 0x0001,
IMAGE_REL_AMD64_ADDR32 = 0x0002,
IMAGE_REL_AMD64_ADDR32NB = 0x0003,
IMAGE_REL_AMD64_REL32 = 0x0004,
IMAGE_REL_AMD64_REL32_1 = 0x0005,
IMAGE_REL_AMD64_REL32_2 = 0x0006,
IMAGE_REL_AMD64_REL32_3 = 0x0007,
IMAGE_REL_AMD64_REL32_4 = 0x0008,
IMAGE_REL_AMD64_REL32_5 = 0x0009,
IMAGE_REL_AMD64_SECTION = 0x000A,
IMAGE_REL_AMD64_SECREL = 0x000B,
IMAGE_REL_AMD64_SECREL7 = 0x000C,
IMAGE_REL_AMD64_TOKEN = 0x000D,
IMAGE_REL_AMD64_SREL32 = 0x000E,
IMAGE_REL_AMD64_PAIR = 0x000F,
IMAGE_REL_AMD64_SSPAN32 = 0x0010
};
enum RelocationTypesARM {
IMAGE_REL_ARM_ABSOLUTE = 0x0000,
IMAGE_REL_ARM_ADDR32 = 0x0001,
IMAGE_REL_ARM_ADDR32NB = 0x0002,
IMAGE_REL_ARM_BRANCH24 = 0x0003,
IMAGE_REL_ARM_BRANCH11 = 0x0004,
IMAGE_REL_ARM_TOKEN = 0x0005,
IMAGE_REL_ARM_BLX24 = 0x0008,
IMAGE_REL_ARM_BLX11 = 0x0009,
IMAGE_REL_ARM_SECTION = 0x000E,
IMAGE_REL_ARM_SECREL = 0x000F,
IMAGE_REL_ARM_MOV32A = 0x0010,
IMAGE_REL_ARM_MOV32T = 0x0011,
IMAGE_REL_ARM_BRANCH20T = 0x0012,
IMAGE_REL_ARM_BRANCH24T = 0x0014,
IMAGE_REL_ARM_BLX23T = 0x0015
};
enum COMDATType {
IMAGE_COMDAT_SELECT_NODUPLICATES = 1,
IMAGE_COMDAT_SELECT_ANY,
IMAGE_COMDAT_SELECT_SAME_SIZE,
IMAGE_COMDAT_SELECT_EXACT_MATCH,
IMAGE_COMDAT_SELECT_ASSOCIATIVE,
IMAGE_COMDAT_SELECT_LARGEST,
IMAGE_COMDAT_SELECT_NEWEST
};
// Auxiliary Symbol Formats
struct AuxiliaryFunctionDefinition {
uint32_t TagIndex;
uint32_t TotalSize;
uint32_t PointerToLinenumber;
uint32_t PointerToNextFunction;
char unused[2];
};
struct AuxiliarybfAndefSymbol {
uint8_t unused1[4];
uint16_t Linenumber;
uint8_t unused2[6];
uint32_t PointerToNextFunction;
uint8_t unused3[2];
};
struct AuxiliaryWeakExternal {
uint32_t TagIndex;
uint32_t Characteristics;
uint8_t unused[10];
};
/// These are not documented in the spec, but are located in WinNT.h.
enum WeakExternalCharacteristics {
IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY = 1,
IMAGE_WEAK_EXTERN_SEARCH_LIBRARY = 2,
IMAGE_WEAK_EXTERN_SEARCH_ALIAS = 3
};
struct AuxiliarySectionDefinition {
uint32_t Length;
uint16_t NumberOfRelocations;
uint16_t NumberOfLinenumbers;
uint32_t CheckSum;
uint32_t Number;
uint8_t Selection;
char unused;
};
struct AuxiliaryCLRToken {
uint8_t AuxType;
uint8_t unused1;
uint32_t SymbolTableIndex;
char unused2[12];
};
union Auxiliary {
AuxiliaryFunctionDefinition FunctionDefinition;
AuxiliarybfAndefSymbol bfAndefSymbol;
AuxiliaryWeakExternal WeakExternal;
AuxiliarySectionDefinition SectionDefinition;
};
/// @brief The Import Directory Table.
///
/// There is a single array of these and one entry per imported DLL.
struct ImportDirectoryTableEntry {
uint32_t ImportLookupTableRVA;
uint32_t TimeDateStamp;
uint32_t ForwarderChain;
uint32_t NameRVA;
uint32_t ImportAddressTableRVA;
};
/// @brief The PE32 Import Lookup Table.
///
/// There is an array of these for each imported DLL. It represents either
/// the ordinal to import from the target DLL, or a name to lookup and import
/// from the target DLL.
///
/// This also happens to be the same format used by the Import Address Table
/// when it is initially written out to the image.
struct ImportLookupTableEntry32 {
uint32_t data;
/// @brief Is this entry specified by ordinal, or name?
bool isOrdinal() const { return data & 0x80000000; }
/// @brief Get the ordinal value of this entry. isOrdinal must be true.
uint16_t getOrdinal() const {
assert(isOrdinal() && "ILT entry is not an ordinal!");
return data & 0xFFFF;
}
/// @brief Set the ordinal value and set isOrdinal to true.
void setOrdinal(uint16_t o) {
data = o;
data |= 0x80000000;
}
/// @brief Get the Hint/Name entry RVA. isOrdinal must be false.
uint32_t getHintNameRVA() const {
assert(!isOrdinal() && "ILT entry is not a Hint/Name RVA!");
return data;
}
/// @brief Set the Hint/Name entry RVA and set isOrdinal to false.
void setHintNameRVA(uint32_t rva) { data = rva; }
};
/// @brief The DOS compatible header at the front of all PEs.
struct DOSHeader {
uint16_t Magic;
uint16_t UsedBytesInTheLastPage;
uint16_t FileSizeInPages;
uint16_t NumberOfRelocationItems;
uint16_t HeaderSizeInParagraphs;
uint16_t MinimumExtraParagraphs;
uint16_t MaximumExtraParagraphs;
uint16_t InitialRelativeSS;
uint16_t InitialSP;
uint16_t Checksum;
uint16_t InitialIP;
uint16_t InitialRelativeCS;
uint16_t AddressOfRelocationTable;
uint16_t OverlayNumber;
uint16_t Reserved[4];
uint16_t OEMid;
uint16_t OEMinfo;
uint16_t Reserved2[10];
uint32_t AddressOfNewExeHeader;
};
struct PE32Header {
enum {
PE32 = 0x10b,
PE32_PLUS = 0x20b
};
uint16_t Magic;
uint8_t MajorLinkerVersion;
uint8_t MinorLinkerVersion;
uint32_t SizeOfCode;
uint32_t SizeOfInitializedData;
uint32_t SizeOfUninitializedData;
uint32_t AddressOfEntryPoint; // RVA
uint32_t BaseOfCode; // RVA
uint32_t BaseOfData; // RVA
uint32_t ImageBase;
uint32_t SectionAlignment;
uint32_t FileAlignment;
uint16_t MajorOperatingSystemVersion;
uint16_t MinorOperatingSystemVersion;
uint16_t MajorImageVersion;
uint16_t MinorImageVersion;
uint16_t MajorSubsystemVersion;
uint16_t MinorSubsystemVersion;
uint32_t Win32VersionValue;
uint32_t SizeOfImage;
uint32_t SizeOfHeaders;
uint32_t CheckSum;
uint16_t Subsystem;
// FIXME: This should be DllCharacteristics to match the COFF spec.
uint16_t DLLCharacteristics;
uint32_t SizeOfStackReserve;
uint32_t SizeOfStackCommit;
uint32_t SizeOfHeapReserve;
uint32_t SizeOfHeapCommit;
uint32_t LoaderFlags;
// FIXME: This should be NumberOfRvaAndSizes to match the COFF spec.
uint32_t NumberOfRvaAndSize;
};
struct DataDirectory {
uint32_t RelativeVirtualAddress;
uint32_t Size;
};
enum DataDirectoryIndex {
EXPORT_TABLE = 0,
IMPORT_TABLE,
RESOURCE_TABLE,
EXCEPTION_TABLE,
CERTIFICATE_TABLE,
BASE_RELOCATION_TABLE,
DEBUG,
ARCHITECTURE,
GLOBAL_PTR,
TLS_TABLE,
LOAD_CONFIG_TABLE,
BOUND_IMPORT,
IAT,
DELAY_IMPORT_DESCRIPTOR,
CLR_RUNTIME_HEADER,
NUM_DATA_DIRECTORIES
};
enum WindowsSubsystem {
IMAGE_SUBSYSTEM_UNKNOWN = 0, ///< An unknown subsystem.
IMAGE_SUBSYSTEM_NATIVE = 1, ///< Device drivers and native Windows processes
IMAGE_SUBSYSTEM_WINDOWS_GUI = 2, ///< The Windows GUI subsystem.
IMAGE_SUBSYSTEM_WINDOWS_CUI = 3, ///< The Windows character subsystem.
IMAGE_SUBSYSTEM_OS2_CUI = 5, ///< The OS/2 character subsytem.
IMAGE_SUBSYSTEM_POSIX_CUI = 7, ///< The POSIX character subsystem.
IMAGE_SUBSYSTEM_NATIVE_WINDOWS = 8, ///< Native Windows 9x driver.
IMAGE_SUBSYSTEM_WINDOWS_CE_GUI = 9, ///< Windows CE.
IMAGE_SUBSYSTEM_EFI_APPLICATION = 10, ///< An EFI application.
IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER = 11, ///< An EFI driver with boot
/// services.
IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER = 12, ///< An EFI driver with run-time
/// services.
IMAGE_SUBSYSTEM_EFI_ROM = 13, ///< An EFI ROM image.
IMAGE_SUBSYSTEM_XBOX = 14, ///< XBOX.
IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION = 16 ///< A BCD application.
};
enum DLLCharacteristics {
/// ASLR with 64 bit address space.
IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA = 0x0020,
/// DLL can be relocated at load time.
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE = 0x0040,
/// Code integrity checks are enforced.
IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY = 0x0080,
///< Image is NX compatible.
IMAGE_DLL_CHARACTERISTICS_NX_COMPAT = 0x0100,
/// Isolation aware, but do not isolate the image.
IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION = 0x0200,
/// Does not use structured exception handling (SEH). No SEH handler may be
/// called in this image.
IMAGE_DLL_CHARACTERISTICS_NO_SEH = 0x0400,
/// Do not bind the image.
IMAGE_DLL_CHARACTERISTICS_NO_BIND = 0x0800,
///< Image should execute in an AppContainer.
IMAGE_DLL_CHARACTERISTICS_APPCONTAINER = 0x1000,
///< A WDM driver.
IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER = 0x2000,
///< Image supports Control Flow Guard.
IMAGE_DLL_CHARACTERISTICS_GUARD_CF = 0x4000,
/// Terminal Server aware.
IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE = 0x8000
};
enum DebugType {
IMAGE_DEBUG_TYPE_UNKNOWN = 0,
IMAGE_DEBUG_TYPE_COFF = 1,
IMAGE_DEBUG_TYPE_CODEVIEW = 2,
IMAGE_DEBUG_TYPE_FPO = 3,
IMAGE_DEBUG_TYPE_MISC = 4,
IMAGE_DEBUG_TYPE_EXCEPTION = 5,
IMAGE_DEBUG_TYPE_FIXUP = 6,
IMAGE_DEBUG_TYPE_OMAP_TO_SRC = 7,
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC = 8,
IMAGE_DEBUG_TYPE_BORLAND = 9,
IMAGE_DEBUG_TYPE_CLSID = 11
};
enum BaseRelocationType {
IMAGE_REL_BASED_ABSOLUTE = 0,
IMAGE_REL_BASED_HIGH = 1,
IMAGE_REL_BASED_LOW = 2,
IMAGE_REL_BASED_HIGHLOW = 3,
IMAGE_REL_BASED_HIGHADJ = 4,
IMAGE_REL_BASED_MIPS_JMPADDR = 5,
IMAGE_REL_BASED_ARM_MOV32A = 5,
IMAGE_REL_BASED_ARM_MOV32T = 7,
IMAGE_REL_BASED_MIPS_JMPADDR16 = 9,
IMAGE_REL_BASED_DIR64 = 10
};
enum ImportType {
IMPORT_CODE = 0,
IMPORT_DATA = 1,
IMPORT_CONST = 2
};
enum ImportNameType {
/// Import is by ordinal. This indicates that the value in the Ordinal/Hint
/// field of the import header is the import's ordinal. If this constant is
/// not specified, then the Ordinal/Hint field should always be interpreted
/// as the import's hint.
IMPORT_ORDINAL = 0,
/// The import name is identical to the public symbol name
IMPORT_NAME = 1,
/// The import name is the public symbol name, but skipping the leading ?,
/// @, or optionally _.
IMPORT_NAME_NOPREFIX = 2,
/// The import name is the public symbol name, but skipping the leading ?,
/// @, or optionally _, and truncating at the first @.
IMPORT_NAME_UNDECORATE = 3
};
struct ImportHeader {
uint16_t Sig1; ///< Must be IMAGE_FILE_MACHINE_UNKNOWN (0).
uint16_t Sig2; ///< Must be 0xFFFF.
uint16_t Version;
uint16_t Machine;
uint32_t TimeDateStamp;
uint32_t SizeOfData;
uint16_t OrdinalHint;
uint16_t TypeInfo;
ImportType getType() const {
return static_cast<ImportType>(TypeInfo & 0x3);
}
ImportNameType getNameType() const {
return static_cast<ImportNameType>((TypeInfo & 0x1C) >> 3);
}
};
enum CodeViewIdentifiers {
DEBUG_LINE_TABLES_HAVE_COLUMN_RECORDS = 0x1,
DEBUG_SECTION_MAGIC = 0x4,
DEBUG_SYMBOL_SUBSECTION = 0xF1,
DEBUG_LINE_TABLE_SUBSECTION = 0xF2,
DEBUG_STRING_TABLE_SUBSECTION = 0xF3,
DEBUG_INDEX_SUBSECTION = 0xF4,
// Symbol subsections are split into records of different types.
DEBUG_SYMBOL_TYPE_PROC_START = 0x1147,
DEBUG_SYMBOL_TYPE_PROC_END = 0x114F
};
inline bool isReservedSectionNumber(int32_t SectionNumber) {
return SectionNumber <= 0;
}
} // End namespace COFF.
} // End namespace llvm.
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/ArrayRecycler.h | //==- llvm/Support/ArrayRecycler.h - Recycling of Arrays ---------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ArrayRecycler class template which can recycle small
// arrays allocated from one of the allocators in Allocator.h
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ARRAYRECYCLER_H
#define LLVM_SUPPORT_ARRAYRECYCLER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
/// Recycle small arrays allocated from a BumpPtrAllocator.
///
/// Arrays are allocated in a small number of fixed sizes. For each supported
/// array size, the ArrayRecycler keeps a free list of available arrays.
///
template<class T, size_t Align = AlignOf<T>::Alignment>
class ArrayRecycler {
// The free list for a given array size is a simple singly linked list.
// We can't use iplist or Recycler here since those classes can't be copied.
struct FreeList {
FreeList *Next;
};
static_assert(Align >= AlignOf<FreeList>::Alignment, "Object underaligned");
static_assert(sizeof(T) >= sizeof(FreeList), "Objects are too small");
// Keep a free list for each array size.
SmallVector<FreeList*, 8> Bucket;
// Remove an entry from the free list in Bucket[Idx] and return it.
// Return NULL if no entries are available.
T *pop(unsigned Idx) {
if (Idx >= Bucket.size())
return nullptr;
FreeList *Entry = Bucket[Idx];
if (!Entry)
return nullptr;
Bucket[Idx] = Entry->Next;
return reinterpret_cast<T*>(Entry);
}
// Add an entry to the free list at Bucket[Idx].
void push(unsigned Idx, T *Ptr) {
assert(Ptr && "Cannot recycle NULL pointer");
FreeList *Entry = reinterpret_cast<FreeList*>(Ptr);
if (Idx >= Bucket.size())
Bucket.resize(size_t(Idx) + 1);
Entry->Next = Bucket[Idx];
Bucket[Idx] = Entry;
}
public:
/// The size of an allocated array is represented by a Capacity instance.
///
/// This class is much smaller than a size_t, and it provides methods to work
/// with the set of legal array capacities.
class Capacity {
uint8_t Index;
explicit Capacity(uint8_t idx) : Index(idx) {}
public:
Capacity() : Index(0) {}
/// Get the capacity of an array that can hold at least N elements.
static Capacity get(size_t N) {
return Capacity(N ? Log2_64_Ceil(N) : 0);
}
/// Get the number of elements in an array with this capacity.
size_t getSize() const { return size_t(1u) << Index; }
/// Get the bucket number for this capacity.
unsigned getBucket() const { return Index; }
/// Get the next larger capacity. Large capacities grow exponentially, so
/// this function can be used to reallocate incrementally growing vectors
/// in amortized linear time.
Capacity getNext() const { return Capacity(Index + 1); }
};
~ArrayRecycler() {
// The client should always call clear() so recycled arrays can be returned
// to the allocator.
assert(Bucket.empty() && "Non-empty ArrayRecycler deleted!");
}
/// Release all the tracked allocations to the allocator. The recycler must
/// be free of any tracked allocations before being deleted.
template<class AllocatorType>
void clear(AllocatorType &Allocator) {
for (; !Bucket.empty(); Bucket.pop_back())
while (T *Ptr = pop(Bucket.size() - 1))
Allocator.Deallocate(Ptr);
}
/// Special case for BumpPtrAllocator which has an empty Deallocate()
/// function.
///
/// There is no need to traverse the free lists, pulling all the objects into
/// cache.
void clear(BumpPtrAllocator&) {
Bucket.clear();
}
/// Allocate an array of at least the requested capacity.
///
/// Return an existing recycled array, or allocate one from Allocator if
/// none are available for recycling.
///
template<class AllocatorType>
T *allocate(Capacity Cap, AllocatorType &Allocator) {
// Try to recycle an existing array.
if (T *Ptr = pop(Cap.getBucket()))
return Ptr;
// Nope, get more memory.
return static_cast<T*>(Allocator.Allocate(sizeof(T)*Cap.getSize(), Align));
}
/// Deallocate an array with the specified Capacity.
///
/// Cap must be the same capacity that was given to allocate().
///
void deallocate(Capacity Cap, T *Ptr) {
push(Cap.getBucket(), Ptr);
}
};
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Threading.h | //===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares helper functions for running LLVM in a multi-threaded
// environment.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_THREADING_H
#define LLVM_SUPPORT_THREADING_H
namespace llvm {
/// Returns true if LLVM is compiled with support for multi-threading, and
/// false otherwise.
bool llvm_is_multithreaded();
/// llvm_execute_on_thread - Execute the given \p UserFn on a separate
/// thread, passing it the provided \p UserData and waits for thread
/// completion.
///
/// This function does not guarantee that the code will actually be executed
/// on a separate thread or honoring the requested stack size, but tries to do
/// so where system support is available.
///
/// \param UserFn - The callback to execute.
/// \param UserData - An argument to pass to the callback function.
/// \param RequestedStackSize - If non-zero, a requested size (in bytes) for
/// the thread stack.
void llvm_execute_on_thread(void (*UserFn)(void*), void *UserData,
unsigned RequestedStackSize = 0);
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Compression.h | //===-- llvm/Support/Compression.h ---Compression----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains basic functions for compression/uncompression.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_COMPRESSION_H
#define LLVM_SUPPORT_COMPRESSION_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
template <typename T> class SmallVectorImpl;
class StringRef;
namespace zlib {
enum CompressionLevel {
NoCompression,
DefaultCompression,
BestSpeedCompression,
BestSizeCompression
};
enum Status {
StatusOK,
StatusUnsupported, // zlib is unavailable
StatusOutOfMemory, // there was not enough memory
StatusBufferTooShort, // there was not enough room in the output buffer
StatusInvalidArg, // invalid input parameter
StatusInvalidData // data was corrupted or incomplete
};
bool isAvailable();
Status compress(StringRef InputBuffer, SmallVectorImpl<char> &CompressedBuffer,
CompressionLevel Level = DefaultCompression);
Status uncompress(StringRef InputBuffer,
SmallVectorImpl<char> &UncompressedBuffer,
size_t UncompressedSize);
uint32_t crc32(StringRef Buffer);
} // End of namespace zlib
} // End of namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/OutputBuffer.h | //=== OutputBuffer.h - Output Buffer ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Methods to output values to a data buffer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_OUTPUTBUFFER_H
#define LLVM_SUPPORT_OUTPUTBUFFER_H
#include <cassert>
#include <string>
#include <vector>
namespace llvm {
class OutputBuffer {
/// Output buffer.
std::vector<unsigned char> &Output;
/// is64Bit/isLittleEndian - This information is inferred from the target
/// machine directly, indicating what header values and flags to set.
bool is64Bit, isLittleEndian;
public:
OutputBuffer(std::vector<unsigned char> &Out,
bool is64bit, bool le)
: Output(Out), is64Bit(is64bit), isLittleEndian(le) {}
// align - Emit padding into the file until the current output position is
// aligned to the specified power of two boundary.
void align(unsigned Boundary) {
assert(Boundary && (Boundary & (Boundary - 1)) == 0 &&
"Must align to 2^k boundary");
size_t Size = Output.size();
if (Size & (Boundary - 1)) {
// Add padding to get alignment to the correct place.
size_t Pad = Boundary - (Size & (Boundary - 1));
Output.resize(Size + Pad);
}
}
//===------------------------------------------------------------------===//
// Out Functions - Output the specified value to the data buffer.
void outbyte(unsigned char X) {
Output.push_back(X);
}
void outhalf(unsigned short X) {
if (isLittleEndian) {
Output.push_back(X & 255);
Output.push_back(X >> 8);
} else {
Output.push_back(X >> 8);
Output.push_back(X & 255);
}
}
void outword(unsigned X) {
if (isLittleEndian) {
Output.push_back((X >> 0) & 255);
Output.push_back((X >> 8) & 255);
Output.push_back((X >> 16) & 255);
Output.push_back((X >> 24) & 255);
} else {
Output.push_back((X >> 24) & 255);
Output.push_back((X >> 16) & 255);
Output.push_back((X >> 8) & 255);
Output.push_back((X >> 0) & 255);
}
}
void outxword(uint64_t X) {
if (isLittleEndian) {
Output.push_back(unsigned(X >> 0) & 255);
Output.push_back(unsigned(X >> 8) & 255);
Output.push_back(unsigned(X >> 16) & 255);
Output.push_back(unsigned(X >> 24) & 255);
Output.push_back(unsigned(X >> 32) & 255);
Output.push_back(unsigned(X >> 40) & 255);
Output.push_back(unsigned(X >> 48) & 255);
Output.push_back(unsigned(X >> 56) & 255);
} else {
Output.push_back(unsigned(X >> 56) & 255);
Output.push_back(unsigned(X >> 48) & 255);
Output.push_back(unsigned(X >> 40) & 255);
Output.push_back(unsigned(X >> 32) & 255);
Output.push_back(unsigned(X >> 24) & 255);
Output.push_back(unsigned(X >> 16) & 255);
Output.push_back(unsigned(X >> 8) & 255);
Output.push_back(unsigned(X >> 0) & 255);
}
}
void outaddr32(unsigned X) {
outword(X);
}
void outaddr64(uint64_t X) {
outxword(X);
}
void outaddr(uint64_t X) {
if (!is64Bit)
outword((unsigned)X);
else
outxword(X);
}
void outstring(const std::string &S, unsigned Length) {
unsigned len_to_copy = static_cast<unsigned>(S.length()) < Length
? static_cast<unsigned>(S.length()) : Length;
unsigned len_to_fill = static_cast<unsigned>(S.length()) < Length
? Length - static_cast<unsigned>(S.length()) : 0;
for (unsigned i = 0; i < len_to_copy; ++i)
outbyte(S[i]);
for (unsigned i = 0; i < len_to_fill; ++i)
outbyte(0);
}
//===------------------------------------------------------------------===//
// Fix Functions - Replace an existing entry at an offset.
void fixhalf(unsigned short X, unsigned Offset) {
unsigned char *P = &Output[Offset];
P[0] = (X >> (isLittleEndian ? 0 : 8)) & 255;
P[1] = (X >> (isLittleEndian ? 8 : 0)) & 255;
}
void fixword(unsigned X, unsigned Offset) {
unsigned char *P = &Output[Offset];
P[0] = (X >> (isLittleEndian ? 0 : 24)) & 255;
P[1] = (X >> (isLittleEndian ? 8 : 16)) & 255;
P[2] = (X >> (isLittleEndian ? 16 : 8)) & 255;
P[3] = (X >> (isLittleEndian ? 24 : 0)) & 255;
}
void fixxword(uint64_t X, unsigned Offset) {
unsigned char *P = &Output[Offset];
P[0] = (X >> (isLittleEndian ? 0 : 56)) & 255;
P[1] = (X >> (isLittleEndian ? 8 : 48)) & 255;
P[2] = (X >> (isLittleEndian ? 16 : 40)) & 255;
P[3] = (X >> (isLittleEndian ? 24 : 32)) & 255;
P[4] = (X >> (isLittleEndian ? 32 : 24)) & 255;
P[5] = (X >> (isLittleEndian ? 40 : 16)) & 255;
P[6] = (X >> (isLittleEndian ? 48 : 8)) & 255;
P[7] = (X >> (isLittleEndian ? 56 : 0)) & 255;
}
void fixaddr(uint64_t X, unsigned Offset) {
if (!is64Bit)
fixword((unsigned)X, Offset);
else
fixxword(X, Offset);
}
unsigned char &operator[](unsigned Index) {
return Output[Index];
}
const unsigned char &operator[](unsigned Index) const {
return Output[Index];
}
};
} // end llvm namespace
#endif // LLVM_SUPPORT_OUTPUTBUFFER_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/RegistryParser.h | //=== RegistryParser.h - Linker-supported plugin registries -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines a command-line parser for a registry.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_REGISTRYPARSER_H
#define LLVM_SUPPORT_REGISTRYPARSER_H
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Registry.h"
namespace llvm {
/// A command-line parser for a registry. Use like such:
///
/// static cl::opt<Registry<Collector>::entry, false,
/// RegistryParser<Collector> >
/// GCOpt("gc", cl::desc("Garbage collector to use."),
/// cl::value_desc());
///
/// To make use of the value:
///
/// Collector *TheCollector = GCOpt->instantiate();
///
template <typename T, typename U = RegistryTraits<T> >
class RegistryParser :
public cl::parser<const typename U::entry*>,
public Registry<T, U>::listener {
typedef U traits;
typedef typename U::entry entry;
typedef typename Registry<T, U>::listener listener;
protected:
void registered(const entry &E) {
addLiteralOption(traits::nameof(E), &E, traits::descof(E));
}
public:
void initialize(cl::Option &O) {
listener::init();
cl::parser<const typename U::entry*>::initialize(O);
}
};
}
#endif // LLVM_SUPPORT_REGISTRYPARSER_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/PrettyStackTrace.h | //===- llvm/Support/PrettyStackTrace.h - Pretty Crash Handling --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PrettyStackTraceEntry class, which is used to make
// crashes give more contextual information about what the program was doing
// when it crashed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_PRETTYSTACKTRACE_H
#define LLVM_SUPPORT_PRETTYSTACKTRACE_H
#include "llvm/Support/Compiler.h"
namespace llvm {
class raw_ostream;
void EnablePrettyStackTrace();
/// PrettyStackTraceEntry - This class is used to represent a frame of the
/// "pretty" stack trace that is dumped when a program crashes. You can define
/// subclasses of this and declare them on the program stack: when they are
/// constructed and destructed, they will add their symbolic frames to a
/// virtual stack trace. This gets dumped out if the program crashes.
class PrettyStackTraceEntry {
const PrettyStackTraceEntry *NextEntry;
PrettyStackTraceEntry(const PrettyStackTraceEntry &) = delete;
void operator=(const PrettyStackTraceEntry&) = delete;
public:
PrettyStackTraceEntry();
virtual ~PrettyStackTraceEntry();
/// print - Emit information about this stack frame to OS.
virtual void print(raw_ostream &OS) const = 0;
/// getNextEntry - Return the next entry in the list of frames.
const PrettyStackTraceEntry *getNextEntry() const { return NextEntry; }
};
/// PrettyStackTraceString - This object prints a specified string (which
/// should not contain newlines) to the stream as the stack trace when a crash
/// occurs.
class PrettyStackTraceString : public PrettyStackTraceEntry {
const char *Str;
public:
PrettyStackTraceString(const char *str) : Str(str) {}
void print(raw_ostream &OS) const override;
};
/// PrettyStackTraceProgram - This object prints a specified program arguments
/// to the stream as the stack trace when a crash occurs.
class PrettyStackTraceProgram : public PrettyStackTraceEntry {
int ArgC;
const char *const *ArgV;
public:
PrettyStackTraceProgram(int argc, const char * const*argv)
: ArgC(argc), ArgV(argv) {
EnablePrettyStackTrace();
}
void print(raw_ostream &OS) const override;
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/MathExtras.h | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "dxc/WinAdapter.h" // HLSL Change
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SwapByteOrder.h"
#include <cassert>
#include <cstring>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef __ANDROID_NDK__
#include <android/api-level.h>
#endif
namespace llvm {
/// \brief The behavior an operation has on an input of 0.
enum ZeroBehavior {
/// \brief The returned value is undefined.
ZB_Undefined,
/// \brief The returned value is numeric_limits<T>::max()
ZB_Max,
/// \brief The returned value is numeric_limits<T>::digits
ZB_Width
};
namespace detail {
template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
static std::size_t count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
if (Val & 0x1)
return 0;
// Bisection method.
std::size_t ZeroBits = 0;
T Shift = std::numeric_limits<T>::digits >> 1;
T Mask = std::numeric_limits<T>::max() >> Shift;
while (Shift) {
if ((Val & Mask) == 0) {
Val >>= Shift;
ZeroBits |= Shift;
}
Shift >>= 1;
Mask >>= Shift;
}
return ZeroBits;
}
};
#if __GNUC__ >= 4 || _MSC_VER
template <typename T> struct TrailingZerosCounter<T, 4> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_ctz(Val);
#elif _MSC_VER
unsigned long Index;
_BitScanForward(&Index, Val);
return Index;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T> struct TrailingZerosCounter<T, 8> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_ctzll(Val);
#elif _MSC_VER
unsigned long Index;
_BitScanForward64(&Index, Val);
return Index;
#endif
}
};
#endif
#endif
} // namespace detail
/// \brief Count number of 0's from the least significant bit to the most
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
static std::size_t count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
// Bisection method.
std::size_t ZeroBits = 0;
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
T Tmp = Val >> Shift;
if (Tmp)
Val = Tmp;
else
ZeroBits |= Shift;
}
return ZeroBits;
}
};
#if __GNUC__ >= 4 || _MSC_VER
template <typename T> struct LeadingZerosCounter<T, 4> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_clz(Val);
#elif _MSC_VER
unsigned long Index;
_BitScanReverse(&Index, Val);
return Index ^ 31;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T> struct LeadingZerosCounter<T, 8> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_clzll(Val);
#elif _MSC_VER
unsigned long Index;
_BitScanReverse64(&Index, Val);
return Index ^ 63;
#endif
}
};
#endif
#endif
} // namespace detail
/// \brief Count number of 0's from the most significant bit to the least
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
/// \brief Get the index of the first set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
return countTrailingZeros(Val, ZB_Undefined);
}
/// \brief Get the index of the last set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
// Use ^ instead of - because both gcc and llvm can remove the associated ^
// in the __builtin_clz intrinsic on x86.
return countLeadingZeros(Val, ZB_Undefined) ^
(std::numeric_limits<T>::digits - 1);
}
/// \brief Macro compressed bit reversal table for 256 bits.
///
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
static const unsigned char BitReverseTable256[256] = {
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
R6(0), R6(2), R6(1), R6(3)
#undef R2
#undef R4
#undef R6
};
/// \brief Reverse the bits in \p Val.
template <typename T>
T reverseBits(T Val) {
unsigned char in[sizeof(Val)];
unsigned char out[sizeof(Val)];
std::memcpy(in, &Val, sizeof(Val));
for (unsigned i = 0; i < sizeof(Val); ++i)
out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
std::memcpy(&Val, out, sizeof(Val));
return Val;
}
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32);
}
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value);
}
/// Make_64 - This functions makes a 64-bit integer from a high / low pair of
/// 32-bit integers.
inline uint64_t Make_64(uint32_t High, uint32_t Low) {
return ((uint64_t)High << 32) | (uint64_t)Low;
}
/// isInt - Checks if an integer fits into the given bit width.
template<unsigned N>
inline bool isInt(int64_t x) {
return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
}
// Template specializations to get better code for common cases.
template<>
inline bool isInt<8>(int64_t x) {
return static_cast<int8_t>(x) == x;
}
template<>
inline bool isInt<16>(int64_t x) {
return static_cast<int16_t>(x) == x;
}
template<>
inline bool isInt<32>(int64_t x) {
return static_cast<int32_t>(x) == x;
}
/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
/// left by S.
template<unsigned N, unsigned S>
inline bool isShiftedInt(int64_t x) {
return isInt<N+S>(x) && (x % (1<<S) == 0);
}
/// isUInt - Checks if an unsigned integer fits into the given bit width.
template<unsigned N>
inline bool isUInt(uint64_t x) {
return N >= 64 || x < (UINT64_C(1)<<(N));
}
// Template specializations to get better code for common cases.
template<>
inline bool isUInt<8>(uint64_t x) {
return static_cast<uint8_t>(x) == x;
}
template<>
inline bool isUInt<16>(uint64_t x) {
return static_cast<uint16_t>(x) == x;
}
template<>
inline bool isUInt<32>(uint64_t x) {
return static_cast<uint32_t>(x) == x;
}
/// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
/// left by S.
template<unsigned N, unsigned S>
inline bool isShiftedUInt(uint64_t x) {
return isUInt<N+S>(x) && (x % (1<<S) == 0);
}
/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
/// bit width.
inline bool isUIntN(unsigned N, uint64_t x) {
return x == (x & (~0ULL >> (64 - N)));
}
/// isIntN - Checks if an signed integer fits into the given (dynamic)
/// bit width.
inline bool isIntN(unsigned N, int64_t x) {
return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
}
/// isMask_32 - This function returns true if the argument is a non-empty
/// sequence of ones starting at the least significant bit with the remainder
/// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true.
inline bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isMask_64 - This function returns true if the argument is a non-empty
/// sequence of ones starting at the least significant bit with the remainder
/// zero (64 bit version).
inline bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isShiftedMask_32 - This function returns true if the argument contains a
/// non-empty sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline bool isShiftedMask_32(uint32_t Value) {
return Value && isMask_32((Value - 1) | Value);
}
/// isShiftedMask_64 - This function returns true if the argument contains a
/// non-empty sequence of ones with the remainder zero (64 bit version.)
inline bool isShiftedMask_64(uint64_t Value) {
return Value && isMask_64((Value - 1) | Value);
}
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1));
}
/// isPowerOf2_64 - This function returns true if the argument is a power of two
/// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - int64_t(1L)));
}
/// ByteSwap_16 - This function returns a byte-swapped representation of the
/// 16-bit argument, Value.
inline uint16_t ByteSwap_16(uint16_t Value) {
return sys::SwapByteOrder_16(Value);
}
/// ByteSwap_32 - This function returns a byte-swapped representation of the
/// 32-bit argument, Value.
inline uint32_t ByteSwap_32(uint32_t Value) {
return sys::SwapByteOrder_32(Value);
}
/// ByteSwap_64 - This function returns a byte-swapped representation of the
/// 64-bit argument, Value.
inline uint64_t ByteSwap_64(uint64_t Value) {
return sys::SwapByteOrder_64(Value);
}
/// \brief Count the number of ones from the most significant bit to the first
/// zero bit.
///
/// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countLeadingZeros(~Value, ZB);
}
/// \brief Count the number of ones from the least significant bit to the first
/// zero bit.
///
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countTrailingZeros(~Value, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT> struct PopulationCounter {
static unsigned count(T Value) {
// Generic version, forward to 32 bits.
static_assert(SizeOfT <= 4, "Not implemented!");
#if __GNUC__ >= 4
return __builtin_popcount(Value);
#else
uint32_t v = Value;
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
#endif
}
};
template <typename T> struct PopulationCounter<T, 8> {
static unsigned count(T Value) {
#if __GNUC__ >= 4
return __builtin_popcountll(Value);
#else
uint64_t v = Value;
v = v - ((v >> 1) & 0x5555555555555555ULL);
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
#endif
}
};
} // namespace detail
/// \brief Count the number of set bits in a value.
/// Ex. countPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
template <typename T>
inline unsigned countPopulation(T Value) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return detail::PopulationCounter<T, sizeof(T)>::count(Value);
}
/// Log2 - This function returns the log base 2 of the specified value
inline double __cdecl Log2(double Value) { // HLSL Change - __cdecl
#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
return __builtin_log(Value) / __builtin_log(2.0);
#else
return log2(Value);
#endif
}
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(uint32_t Value) {
return 31 - (unsigned)countLeadingZeros(Value); // HLSL Change (unsigned)
}
/// Log2_64 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return 63 - (unsigned)countLeadingZeros(Value); // HLSL Change (unsigned)
}
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(uint32_t Value) {
return 32 - (unsigned)countLeadingZeros(Value - 1); // HLSL Change (unsigned)
}
/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
/// value, 64 if the value is zero. (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) {
return 64 - (unsigned)countLeadingZeros(Value - 1); // HLSL Change (unsigned)
}
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
/// values using Euclid's algorithm.
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
while (B) {
uint64_t T = B;
B = A % B;
A = T;
}
return A;
}
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
/// equivalent double.
inline double BitsToDouble(uint64_t Bits) {
union {
uint64_t L;
double D;
} T;
T.L = Bits;
return T.D;
}
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
/// equivalent float.
inline float BitsToFloat(uint32_t Bits) {
union {
uint32_t I;
float F;
} T;
T.I = Bits;
return T.F;
}
/// DoubleToBits - This function takes a double and returns the bit
/// equivalent 64-bit integer. Note that copying doubles around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
inline uint64_t DoubleToBits(double Double) {
union {
uint64_t L;
double D;
} T;
T.D = Double;
return T.L;
}
/// FloatToBits - This function takes a float and returns the bit
/// equivalent 32-bit integer. Note that copying floats around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
inline uint32_t FloatToBits(float Float) {
union {
uint32_t I;
float F;
} T;
T.F = Float;
return T.I;
}
/// MinAlign - A and B are either alignments or offsets. Return the minimum
/// alignment that may be assumed after adding the two together.
inline uint64_t MinAlign(uint64_t A, uint64_t B) {
// The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return (A | B) & -(A | B);
return (A | B) & (1 + ~(A | B));
}
/// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
///
/// Alignment should be a power of two. This method rounds up, so
/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!");
assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
}
/// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
/// bytes, rounding up.
inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
}
/// NextPowerOf2 - Returns the next power of two (in 64-bits)
/// that is strictly greater than A. Returns zero on overflow.
inline uint64_t NextPowerOf2(uint64_t A) {
A |= (A >> 1);
A |= (A >> 2);
A |= (A >> 4);
A |= (A >> 8);
A |= (A >> 16);
A |= (A >> 32);
return A + 1;
}
/// Returns the power of two which is less than or equal to the given value.
/// Essentially, it is a floor operation across the domain of powers of two.
inline uint64_t PowerOf2Floor(uint64_t A) {
if (!A) return 0;
return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// Examples:
/// \code
/// RoundUpToAlignment(5, 8) = 8
/// RoundUpToAlignment(17, 8) = 24
/// RoundUpToAlignment(~0LL, 8) = 0
/// RoundUpToAlignment(321, 255) = 510
/// \endcode
inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
return (Value + Align - 1) / Align * Align;
}
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align. \p Align must be
/// non-zero.
inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
return RoundUpToAlignment(Value, Align) - Value;
}
/// SignExtend32 - Sign extend B-bit number x to 32-bit int.
/// Usage int32_t r = SignExtend32<5>(x);
template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
return int32_t(x << (32 - B)) >> (32 - B);
}
/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
/// Requires 0 < B <= 32.
inline int32_t SignExtend32(uint32_t X, unsigned B) {
return int32_t(X << (32 - B)) >> (32 - B);
}
/// SignExtend64 - Sign extend B-bit number x to 64-bit int.
/// Usage int64_t r = SignExtend64<5>(x);
template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
return int64_t(x << (64 - B)) >> (64 - B);
}
/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
/// Requires 0 < B <= 64.
inline int64_t SignExtend64(uint64_t X, unsigned B) {
return int64_t(X << (64 - B)) >> (64 - B);
}
extern const float huge_valf;
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/DynamicLibrary.h | //===-- llvm/Support/DynamicLibrary.h - Portable Dynamic Library -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the sys::DynamicLibrary class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_DYNAMICLIBRARY_H
#define LLVM_SUPPORT_DYNAMICLIBRARY_H
#include <string>
namespace llvm {
class StringRef;
namespace sys {
/// This class provides a portable interface to dynamic libraries which also
/// might be known as shared libraries, shared objects, dynamic shared
/// objects, or dynamic link libraries. Regardless of the terminology or the
/// operating system interface, this class provides a portable interface that
/// allows dynamic libraries to be loaded and searched for externally
/// defined symbols. This is typically used to provide "plug-in" support.
/// It also allows for symbols to be defined which don't live in any library,
/// but rather the main program itself, useful on Windows where the main
/// executable cannot be searched.
///
/// Note: there is currently no interface for temporarily loading a library,
/// or for unloading libraries when the LLVM library is unloaded.
class DynamicLibrary {
// Placeholder whose address represents an invalid library.
// We use this instead of NULL or a pointer-int pair because the OS library
// might define 0 or 1 to be "special" handles, such as "search all".
static char Invalid;
// Opaque data used to interface with OS-specific dynamic library handling.
void *Data;
public:
explicit DynamicLibrary(void *data = &Invalid) : Data(data) {}
/// Returns true if the object refers to a valid library.
bool isValid() const { return Data != &Invalid; }
/// Searches through the library for the symbol \p symbolName. If it is
/// found, the address of that symbol is returned. If not, NULL is returned.
/// Note that NULL will also be returned if the library failed to load.
/// Use isValid() to distinguish these cases if it is important.
/// Note that this will \e not search symbols explicitly registered by
/// AddSymbol().
void *getAddressOfSymbol(const char *symbolName);
/// This function permanently loads the dynamic library at the given path.
/// The library will only be unloaded when the program terminates.
/// This returns a valid DynamicLibrary instance on success and an invalid
/// instance on failure (see isValid()). \p *errMsg will only be modified
/// if the library fails to load.
///
/// It is safe to call this function multiple times for the same library.
/// @brief Open a dynamic library permanently.
static DynamicLibrary getPermanentLibrary(const char *filename,
std::string *errMsg = nullptr);
/// This function permanently loads the dynamic library at the given path.
/// Use this instead of getPermanentLibrary() when you won't need to get
/// symbols from the library itself.
///
/// It is safe to call this function multiple times for the same library.
static bool LoadLibraryPermanently(const char *Filename,
std::string *ErrMsg = nullptr) {
return !getPermanentLibrary(Filename, ErrMsg).isValid();
}
/// This function will search through all previously loaded dynamic
/// libraries for the symbol \p symbolName. If it is found, the address of
/// that symbol is returned. If not, null is returned. Note that this will
/// search permanently loaded libraries (getPermanentLibrary()) as well
/// as explicitly registered symbols (AddSymbol()).
/// @throws std::string on error.
/// @brief Search through libraries for address of a symbol
static void *SearchForAddressOfSymbol(const char *symbolName);
/// @brief Convenience function for C++ophiles.
static void *SearchForAddressOfSymbol(const std::string &symbolName) {
return SearchForAddressOfSymbol(symbolName.c_str());
}
/// This functions permanently adds the symbol \p symbolName with the
/// value \p symbolValue. These symbols are searched before any
/// libraries.
/// @brief Add searchable symbol/value pair.
static void AddSymbol(StringRef symbolName, void *symbolValue);
};
} // End sys namespace
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/ARMEHABI.h | //===--- ARMEHABI.h - ARM Exception Handling ABI ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the constants for the ARM unwind opcodes and exception
// handling table entry kinds.
//
// The enumerations and constants in this file reflect the ARM EHABI
// Specification as published by ARM.
//
// Exception Handling ABI for the ARM Architecture r2.09 - November 30, 2012
//
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ARMEHABI_H
#define LLVM_SUPPORT_ARMEHABI_H
namespace llvm {
namespace ARM {
namespace EHABI {
/// ARM exception handling table entry kinds
enum EHTEntryKind {
EHT_GENERIC = 0x00,
EHT_COMPACT = 0x80
};
enum {
/// Special entry for the function never unwind
EXIDX_CANTUNWIND = 0x1
};
/// ARM-defined frame unwinding opcodes
enum UnwindOpcodes {
// Format: 00xxxxxx
// Purpose: vsp = vsp + ((x << 2) + 4)
UNWIND_OPCODE_INC_VSP = 0x00,
// Format: 01xxxxxx
// Purpose: vsp = vsp - ((x << 2) + 4)
UNWIND_OPCODE_DEC_VSP = 0x40,
// Format: 10000000 00000000
// Purpose: refuse to unwind
UNWIND_OPCODE_REFUSE = 0x8000,
// Format: 1000xxxx xxxxxxxx
// Purpose: pop r[15:12], r[11:4]
// Constraint: x != 0
UNWIND_OPCODE_POP_REG_MASK_R4 = 0x8000,
// Format: 1001xxxx
// Purpose: vsp = r[x]
// Constraint: x != 13 && x != 15
UNWIND_OPCODE_SET_VSP = 0x90,
// Format: 10100xxx
// Purpose: pop r[(4+x):4]
UNWIND_OPCODE_POP_REG_RANGE_R4 = 0xa0,
// Format: 10101xxx
// Purpose: pop r14, r[(4+x):4]
UNWIND_OPCODE_POP_REG_RANGE_R4_R14 = 0xa8,
// Format: 10110000
// Purpose: finish
UNWIND_OPCODE_FINISH = 0xb0,
// Format: 10110001 0000xxxx
// Purpose: pop r[3:0]
// Constraint: x != 0
UNWIND_OPCODE_POP_REG_MASK = 0xb100,
// Format: 10110010 x(uleb128)
// Purpose: vsp = vsp + ((x << 2) + 0x204)
UNWIND_OPCODE_INC_VSP_ULEB128 = 0xb2,
// Format: 10110011 xxxxyyyy
// Purpose: pop d[(x+y):x]
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDX = 0xb300,
// Format: 10111xxx
// Purpose: pop d[(8+x):8]
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDX_D8 = 0xb8,
// Format: 11000xxx
// Purpose: pop wR[(10+x):10]
UNWIND_OPCODE_POP_WIRELESS_MMX_REG_RANGE_WR10 = 0xc0,
// Format: 11000110 xxxxyyyy
// Purpose: pop wR[(x+y):x]
UNWIND_OPCODE_POP_WIRELESS_MMX_REG_RANGE = 0xc600,
// Format: 11000111 0000xxxx
// Purpose: pop wCGR[3:0]
// Constraint: x != 0
UNWIND_OPCODE_POP_WIRELESS_MMX_REG_MASK = 0xc700,
// Format: 11001000 xxxxyyyy
// Purpose: pop d[(16+x+y):(16+x)]
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 = 0xc800,
// Format: 11001001 xxxxyyyy
// Purpose: pop d[(x+y):x]
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD = 0xc900,
// Format: 11010xxx
// Purpose: pop d[(8+x):8]
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D8 = 0xd0
};
/// ARM-defined Personality Routine Index
enum PersonalityRoutineIndex {
// To make the exception handling table become more compact, ARM defined
// several personality routines in EHABI. There are 3 different
// personality routines in ARM EHABI currently. It is possible to have 16
// pre-defined personality routines at most.
AEABI_UNWIND_CPP_PR0 = 0,
AEABI_UNWIND_CPP_PR1 = 1,
AEABI_UNWIND_CPP_PR2 = 2,
NUM_PERSONALITY_INDEX
};
}
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/LockFileManager.h | //===--- LockFileManager.h - File-level locking utility ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_LOCKFILEMANAGER_H
#define LLVM_SUPPORT_LOCKFILEMANAGER_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include <system_error>
#include <utility> // for std::pair
namespace llvm {
/// \brief Class that manages the creation of a lock file to aid
/// implicit coordination between different processes.
///
/// The implicit coordination works by creating a ".lock" file alongside
/// the file that we're coordinating for, using the atomicity of the file
/// system to ensure that only a single process can create that ".lock" file.
/// When the lock file is removed, the owning process has finished the
/// operation.
class LockFileManager {
public:
/// \brief Describes the state of a lock file.
enum LockFileState {
/// \brief The lock file has been created and is owned by this instance
/// of the object.
LFS_Owned,
/// \brief The lock file already exists and is owned by some other
/// instance.
LFS_Shared,
/// \brief An error occurred while trying to create or find the lock
/// file.
LFS_Error
};
/// \brief Describes the result of waiting for the owner to release the lock.
enum WaitForUnlockResult {
/// \brief The lock was released successfully.
Res_Success,
/// \brief Owner died while holding the lock.
Res_OwnerDied,
/// \brief Reached timeout while waiting for the owner to release the lock.
Res_Timeout
};
private:
SmallString<128> FileName;
SmallString<128> LockFileName;
SmallString<128> UniqueLockFileName;
Optional<std::pair<std::string, int> > Owner;
Optional<std::error_code> Error;
LockFileManager(const LockFileManager &) = delete;
LockFileManager &operator=(const LockFileManager &) = delete;
static Optional<std::pair<std::string, int> >
readLockFile(StringRef LockFileName);
static bool processStillExecuting(StringRef Hostname, int PID);
public:
LockFileManager(StringRef FileName);
~LockFileManager();
/// \brief Determine the state of the lock file.
LockFileState getState() const;
operator LockFileState() const { return getState(); }
/// \brief For a shared lock, wait until the owner releases the lock.
WaitForUnlockResult waitForUnlock();
/// \brief Remove the lock file. This may delete a different lock file than
/// the one previously read if there is a race.
std::error_code unsafeRemoveLockFile();
};
} // end namespace llvm
#endif // LLVM_SUPPORT_LOCKFILEMANAGER_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/MemoryObject.h | //===- MemoryObject.h - Abstract memory interface ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MEMORYOBJECT_H
#define LLVM_SUPPORT_MEMORYOBJECT_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
/// Interface to data which might be streamed. Streamability has 2 important
/// implications/restrictions. First, the data might not yet exist in memory
/// when the request is made. This just means that readByte/readBytes might have
/// to block or do some work to get it. More significantly, the exact size of
/// the object might not be known until it has all been fetched. This means that
/// to return the right result, getExtent must also wait for all the data to
/// arrive; therefore it should not be called on objects which are actually
/// streamed (this would defeat the purpose of streaming). Instead,
/// isValidAddress can be used to test addresses without knowing the exact size
/// of the stream. Finally, getPointer can be used instead of readBytes to avoid
/// extra copying.
class MemoryObject {
public:
virtual ~MemoryObject();
/// Returns the size of the region in bytes. (The region is contiguous, so
/// the highest valid address of the region is getExtent() - 1).
///
/// @result - The size of the region.
virtual uint64_t getExtent() const = 0;
/// Tries to read a contiguous range of bytes from the region, up to the end
/// of the region.
///
/// @param Buf - A pointer to a buffer to be filled in. Must be non-NULL
/// and large enough to hold size bytes.
/// @param Size - The number of bytes to copy.
/// @param Address - The address of the first byte, in the same space as
/// getBase().
/// @result - The number of bytes read.
virtual uint64_t readBytes(uint8_t *Buf, uint64_t Size,
uint64_t Address) const = 0;
/// Ensures that the requested data is in memory, and returns a pointer to it.
/// More efficient than using readBytes if the data is already in memory. May
/// block until (address - base + size) bytes have been read
/// @param address - address of the byte, in the same space as getBase()
/// @param size - amount of data that must be available on return
/// @result - valid pointer to the requested data
virtual const uint8_t *getPointer(uint64_t address, uint64_t size) const = 0;
/// Returns true if the address is within the object (i.e. between base and
/// base + extent - 1 inclusive). May block until (address - base) bytes have
/// been read
/// @param address - address of the byte, in the same space as getBase()
/// @result - true if the address may be read with readByte()
virtual bool isValidAddress(uint64_t address) const = 0;
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/ErrorOr.h | //===- llvm/Support/ErrorOr.h - Error Smart Pointer -----------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Provides ErrorOr<T> smart pointer.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ERROROR_H
#define LLVM_SUPPORT_ERROROR_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/AlignOf.h"
#include <cassert>
#include <system_error>
#include <type_traits>
namespace llvm {
template<class T, class V>
typename std::enable_if< std::is_constructible<T, V>::value
, typename std::remove_reference<V>::type>::type &&
moveIfMoveConstructible(V &Val) {
return std::move(Val);
}
template<class T, class V>
typename std::enable_if< !std::is_constructible<T, V>::value
, typename std::remove_reference<V>::type>::type &
moveIfMoveConstructible(V &Val) {
return Val;
}
/// \brief Stores a reference that can be changed.
template <typename T>
class ReferenceStorage {
T *Storage;
public:
ReferenceStorage(T &Ref) : Storage(&Ref) {}
operator T &() const { return *Storage; }
T &get() const { return *Storage; }
};
/// \brief Represents either an error or a value T.
///
/// ErrorOr<T> is a pointer-like class that represents the result of an
/// operation. The result is either an error, or a value of type T. This is
/// designed to emulate the usage of returning a pointer where nullptr indicates
/// failure. However instead of just knowing that the operation failed, we also
/// have an error_code and optional user data that describes why it failed.
///
/// It is used like the following.
/// \code
/// ErrorOr<Buffer> getBuffer();
///
/// auto buffer = getBuffer();
/// if (error_code ec = buffer.getError())
/// return ec;
/// buffer->write("adena");
/// \endcode
///
///
/// Implicit conversion to bool returns true if there is a usable value. The
/// unary * and -> operators provide pointer like access to the value. Accessing
/// the value when there is an error has undefined behavior.
///
/// When T is a reference type the behaivor is slightly different. The reference
/// is held in a std::reference_wrapper<std::remove_reference<T>::type>, and
/// there is special handling to make operator -> work as if T was not a
/// reference.
///
/// T cannot be a rvalue reference.
template<class T>
class ErrorOr {
template <class OtherT> friend class ErrorOr;
static const bool isRef = std::is_reference<T>::value;
typedef ReferenceStorage<typename std::remove_reference<T>::type> wrap;
public:
typedef typename std::conditional<isRef, wrap, T>::type storage_type;
private:
typedef typename std::remove_reference<T>::type &reference;
typedef const typename std::remove_reference<T>::type &const_reference;
typedef typename std::remove_reference<T>::type *pointer;
public:
template <class E>
ErrorOr(E ErrorCode,
typename std::enable_if<std::is_error_code_enum<E>::value ||
std::is_error_condition_enum<E>::value,
void *>::type = 0)
: HasError(true) {
new (getErrorStorage()) std::error_code(make_error_code(ErrorCode));
}
ErrorOr(std::error_code EC) : HasError(true) {
new (getErrorStorage()) std::error_code(EC);
}
ErrorOr(T Val) : HasError(false) {
new (getStorage()) storage_type(moveIfMoveConstructible<storage_type>(Val));
}
ErrorOr(const ErrorOr &Other) {
copyConstruct(Other);
}
template <class OtherT>
ErrorOr(
const ErrorOr<OtherT> &Other,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
nullptr) {
copyConstruct(Other);
}
template <class OtherT>
explicit ErrorOr(
const ErrorOr<OtherT> &Other,
typename std::enable_if<
!std::is_convertible<OtherT, const T &>::value>::type * = nullptr) {
copyConstruct(Other);
}
ErrorOr(ErrorOr &&Other) {
moveConstruct(std::move(Other));
}
template <class OtherT>
ErrorOr(
ErrorOr<OtherT> &&Other,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
nullptr) {
moveConstruct(std::move(Other));
}
// This might eventually need SFINAE but it's more complex than is_convertible
// & I'm too lazy to write it right now.
template <class OtherT>
explicit ErrorOr(
ErrorOr<OtherT> &&Other,
typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
nullptr) {
moveConstruct(std::move(Other));
}
ErrorOr &operator=(const ErrorOr &Other) {
copyAssign(Other);
return *this;
}
ErrorOr &operator=(ErrorOr &&Other) {
moveAssign(std::move(Other));
return *this;
}
~ErrorOr() {
if (!HasError)
getStorage()->~storage_type();
}
/// \brief Return false if there is an error.
explicit operator bool() const {
return !HasError;
}
reference get() { return *getStorage(); }
const_reference get() const { return const_cast<ErrorOr<T> *>(this)->get(); }
std::error_code getError() const {
return HasError ? *getErrorStorage() : std::error_code();
}
pointer operator ->() {
return toPointer(getStorage());
}
reference operator *() {
return *getStorage();
}
private:
template <class OtherT>
void copyConstruct(const ErrorOr<OtherT> &Other) {
if (!Other.HasError) {
// Get the other value.
HasError = false;
new (getStorage()) storage_type(*Other.getStorage());
} else {
// Get other's error.
HasError = true;
new (getErrorStorage()) std::error_code(Other.getError());
}
}
template <class T1>
static bool compareThisIfSameType(const T1 &a, const T1 &b) {
return &a == &b;
}
template <class T1, class T2>
static bool compareThisIfSameType(const T1 &a, const T2 &b) {
return false;
}
template <class OtherT>
void copyAssign(const ErrorOr<OtherT> &Other) {
if (compareThisIfSameType(*this, Other))
return;
this->~ErrorOr();
new (this) ErrorOr(Other);
}
template <class OtherT>
void moveConstruct(ErrorOr<OtherT> &&Other) {
if (!Other.HasError) {
// Get the other value.
HasError = false;
new (getStorage()) storage_type(std::move(*Other.getStorage()));
} else {
// Get other's error.
HasError = true;
new (getErrorStorage()) std::error_code(Other.getError());
}
}
template <class OtherT>
void moveAssign(ErrorOr<OtherT> &&Other) {
if (compareThisIfSameType(*this, Other))
return;
this->~ErrorOr();
new (this) ErrorOr(std::move(Other));
}
pointer toPointer(pointer Val) {
return Val;
}
pointer toPointer(wrap *Val) {
return &Val->get();
}
storage_type *getStorage() {
assert(!HasError && "Cannot get value when an error exists!");
return reinterpret_cast<storage_type*>(TStorage.buffer);
}
const storage_type *getStorage() const {
assert(!HasError && "Cannot get value when an error exists!");
return reinterpret_cast<const storage_type*>(TStorage.buffer);
}
std::error_code *getErrorStorage() {
assert(HasError && "Cannot get error when a value exists!");
return reinterpret_cast<std::error_code *>(ErrorStorage.buffer);
}
const std::error_code *getErrorStorage() const {
return const_cast<ErrorOr<T> *>(this)->getErrorStorage();
}
union {
AlignedCharArrayUnion<storage_type> TStorage;
AlignedCharArrayUnion<std::error_code> ErrorStorage;
};
bool HasError : 1;
};
template <class T, class E>
typename std::enable_if<std::is_error_code_enum<E>::value ||
std::is_error_condition_enum<E>::value,
bool>::type
operator==(const ErrorOr<T> &Err, E Code) {
return Err.getError() == Code;
}
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/SourceMgr.h | //===- SourceMgr.h - Manager for Source Buffers & Diagnostics ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SMDiagnostic and SourceMgr classes. This
// provides a simple substrate for diagnostics, #include handling, and other low
// level things for simple parsers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SOURCEMGR_H
#define LLVM_SUPPORT_SOURCEMGR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SMLoc.h"
#include <string>
namespace llvm {
class SourceMgr;
class SMDiagnostic;
class SMFixIt;
class Twine;
class raw_ostream;
/// This owns the files read by a parser, handles include stacks,
/// and handles diagnostic wrangling.
class SourceMgr {
public:
enum DiagKind {
DK_Error,
DK_Warning,
DK_Note
};
/// Clients that want to handle their own diagnostics in a custom way can
/// register a function pointer+context as a diagnostic handler.
/// It gets called each time PrintMessage is invoked.
typedef void (*DiagHandlerTy)(const SMDiagnostic &, void *Context);
private:
struct SrcBuffer {
/// The memory buffer for the file.
std::unique_ptr<MemoryBuffer> Buffer;
/// This is the location of the parent include, or null if at the top level.
SMLoc IncludeLoc;
SrcBuffer() {}
SrcBuffer(SrcBuffer &&O)
: Buffer(std::move(O.Buffer)), IncludeLoc(O.IncludeLoc) {}
};
/// This is all of the buffers that we are reading from.
std::vector<SrcBuffer> Buffers;
// This is the list of directories we should search for include files in.
std::vector<std::string> IncludeDirectories;
/// This is a cache for line number queries, its implementation is really
/// private to SourceMgr.cpp.
mutable void *LineNoCache;
DiagHandlerTy DiagHandler;
void *DiagContext;
bool isValidBufferID(unsigned i) const { return i && i <= Buffers.size(); }
SourceMgr(const SourceMgr&) = delete;
void operator=(const SourceMgr&) = delete;
public:
SourceMgr()
: LineNoCache(nullptr), DiagHandler(nullptr), DiagContext(nullptr) {}
~SourceMgr();
void Reset(); // HLSL Change - add a Reset version to clean up explicitly
void setIncludeDirs(const std::vector<std::string> &Dirs) {
IncludeDirectories = Dirs;
}
/// Specify a diagnostic handler to be invoked every time PrintMessage is
/// called. \p Ctx is passed into the handler when it is invoked.
void setDiagHandler(DiagHandlerTy DH, void *Ctx = nullptr) {
DiagHandler = DH;
DiagContext = Ctx;
}
DiagHandlerTy getDiagHandler() const { return DiagHandler; }
void *getDiagContext() const { return DiagContext; }
const SrcBuffer &getBufferInfo(unsigned i) const {
assert(isValidBufferID(i));
return Buffers[i - 1];
}
const MemoryBuffer *getMemoryBuffer(unsigned i) const {
assert(isValidBufferID(i));
return Buffers[i - 1].Buffer.get();
}
unsigned getNumBuffers() const {
return Buffers.size();
}
unsigned getMainFileID() const {
assert(getNumBuffers());
return 1;
}
SMLoc getParentIncludeLoc(unsigned i) const {
assert(isValidBufferID(i));
return Buffers[i - 1].IncludeLoc;
}
/// Add a new source buffer to this source manager. This takes ownership of
/// the memory buffer.
unsigned AddNewSourceBuffer(std::unique_ptr<MemoryBuffer> F,
SMLoc IncludeLoc) {
SrcBuffer NB;
NB.Buffer = std::move(F);
NB.IncludeLoc = IncludeLoc;
Buffers.push_back(std::move(NB));
return Buffers.size();
}
/// Search for a file with the specified name in the current directory or in
/// one of the IncludeDirs.
///
/// If no file is found, this returns 0, otherwise it returns the buffer ID
/// of the stacked file. The full path to the included file can be found in
/// \p IncludedFile.
unsigned AddIncludeFile(const std::string &Filename, SMLoc IncludeLoc,
std::string &IncludedFile);
/// Return the ID of the buffer containing the specified location.
///
/// 0 is returned if the buffer is not found.
unsigned FindBufferContainingLoc(SMLoc Loc) const;
/// Find the line number for the specified location in the specified file.
/// This is not a fast method.
unsigned FindLineNumber(SMLoc Loc, unsigned BufferID = 0) const {
return getLineAndColumn(Loc, BufferID).first;
}
/// Find the line and column number for the specified location in the
/// specified file. This is not a fast method.
std::pair<unsigned, unsigned> getLineAndColumn(SMLoc Loc,
unsigned BufferID = 0) const;
/// Emit a message about the specified location with the specified string.
///
/// \param ShowColors Display colored messages if output is a terminal and
/// the default error handler is used.
void PrintMessage(raw_ostream &OS, SMLoc Loc, DiagKind Kind,
const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
ArrayRef<SMFixIt> FixIts = None,
bool ShowColors = true) const;
/// Emits a diagnostic to llvm::errs().
void PrintMessage(SMLoc Loc, DiagKind Kind, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
ArrayRef<SMFixIt> FixIts = None,
bool ShowColors = true) const;
/// Emits a manually-constructed diagnostic to the given output stream.
///
/// \param ShowColors Display colored messages if output is a terminal and
/// the default error handler is used.
void PrintMessage(raw_ostream &OS, const SMDiagnostic &Diagnostic,
bool ShowColors = true) const;
/// Return an SMDiagnostic at the specified location with the specified
/// string.
///
/// \param Msg If non-null, the kind of message (e.g., "error") which is
/// prefixed to the message.
SMDiagnostic GetMessage(SMLoc Loc, DiagKind Kind, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
ArrayRef<SMFixIt> FixIts = None) const;
/// Prints the names of included files and the line of the file they were
/// included from. A diagnostic handler can use this before printing its
/// custom formatted message.
///
/// \param IncludeLoc The location of the include.
/// \param OS the raw_ostream to print on.
void PrintIncludeStack(SMLoc IncludeLoc, raw_ostream &OS) const;
};
/// Represents a single fixit, a replacement of one range of text with another.
class SMFixIt {
SMRange Range;
std::string Text;
public:
// FIXME: Twine.str() is not very efficient.
SMFixIt(SMLoc Loc, const Twine &Insertion)
: Range(Loc, Loc), Text(Insertion.str()) {
assert(Loc.isValid());
}
// FIXME: Twine.str() is not very efficient.
SMFixIt(SMRange R, const Twine &Replacement)
: Range(R), Text(Replacement.str()) {
assert(R.isValid());
}
StringRef getText() const { return Text; }
SMRange getRange() const { return Range; }
bool operator<(const SMFixIt &Other) const {
if (Range.Start.getPointer() != Other.Range.Start.getPointer())
return Range.Start.getPointer() < Other.Range.Start.getPointer();
if (Range.End.getPointer() != Other.Range.End.getPointer())
return Range.End.getPointer() < Other.Range.End.getPointer();
return Text < Other.Text;
}
};
/// Instances of this class encapsulate one diagnostic report, allowing
/// printing to a raw_ostream as a caret diagnostic.
class SMDiagnostic {
const SourceMgr *SM;
SMLoc Loc;
std::string Filename;
int LineNo, ColumnNo;
SourceMgr::DiagKind Kind;
std::string Message, LineContents;
std::vector<std::pair<unsigned, unsigned> > Ranges;
SmallVector<SMFixIt, 4> FixIts;
public:
// Null diagnostic.
SMDiagnostic()
: SM(nullptr), LineNo(0), ColumnNo(0), Kind(SourceMgr::DK_Error) {}
// Diagnostic with no location (e.g. file not found, command line arg error).
SMDiagnostic(StringRef filename, SourceMgr::DiagKind Knd, StringRef Msg)
: SM(nullptr), Filename(filename), LineNo(-1), ColumnNo(-1), Kind(Knd),
Message(Msg) {}
// Diagnostic with a location.
SMDiagnostic(const SourceMgr &sm, SMLoc L, StringRef FN,
int Line, int Col, SourceMgr::DiagKind Kind,
StringRef Msg, StringRef LineStr,
ArrayRef<std::pair<unsigned,unsigned> > Ranges,
ArrayRef<SMFixIt> FixIts = None);
const SourceMgr *getSourceMgr() const { return SM; }
SMLoc getLoc() const { return Loc; }
StringRef getFilename() const { return Filename; }
int getLineNo() const { return LineNo; }
int getColumnNo() const { return ColumnNo; }
SourceMgr::DiagKind getKind() const { return Kind; }
StringRef getMessage() const { return Message; }
StringRef getLineContents() const { return LineContents; }
ArrayRef<std::pair<unsigned, unsigned> > getRanges() const {
return Ranges;
}
void addFixIt(const SMFixIt &Hint) {
FixIts.push_back(Hint);
}
ArrayRef<SMFixIt> getFixIts() const {
return FixIts;
}
void print(const char *ProgName, raw_ostream &S, bool ShowColors = true,
bool ShowKindLabel = true) const;
};
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/GraphWriter.h | //===-- llvm/Support/GraphWriter.h - Write graph to a .dot file -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple interface that can be used to print out generic
// LLVM graphs to ".dot" files. "dot" is a tool that is part of the AT&T
// graphviz package (http://www.research.att.com/sw/tools/graphviz/) which can
// be used to turn the files output by this interface into a variety of
// different graphics formats.
//
// Graphs do not need to implement any interface past what is already required
// by the GraphTraits template, but they can choose to implement specializations
// of the DOTGraphTraits template if they want to customize the graphs output in
// any way.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GRAPHWRITER_H
#define LLVM_SUPPORT_GRAPHWRITER_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
namespace llvm {
namespace DOT { // Private functions...
std::string EscapeString(const std::string &Label);
/// \brief Get a color string for this node number. Simply round-robin selects
/// from a reasonable number of colors.
StringRef getColorString(unsigned NodeNumber);
}
namespace GraphProgram {
enum Name {
DOT,
FDP,
NEATO,
TWOPI,
CIRCO
};
}
bool DisplayGraph(StringRef Filename, bool wait = true,
GraphProgram::Name program = GraphProgram::DOT);
template<typename GraphType>
class GraphWriter {
raw_ostream &O;
const GraphType &G;
typedef DOTGraphTraits<GraphType> DOTTraits;
typedef GraphTraits<GraphType> GTraits;
typedef typename GTraits::NodeType NodeType;
typedef typename GTraits::nodes_iterator node_iterator;
typedef typename GTraits::ChildIteratorType child_iterator;
DOTTraits DTraits;
// Writes the edge labels of the node to O and returns true if there are any
// edge labels not equal to the empty string "".
bool getEdgeSourceLabels(raw_ostream &O, NodeType *Node) {
child_iterator EI = GTraits::child_begin(Node);
child_iterator EE = GTraits::child_end(Node);
bool hasEdgeSourceLabels = false;
for (unsigned i = 0; EI != EE && i != 64; ++EI, ++i) {
std::string label = DTraits.getEdgeSourceLabel(Node, EI);
if (label.empty())
continue;
hasEdgeSourceLabels = true;
if (i)
O << "|";
O << "<s" << i << ">" << DOT::EscapeString(label);
}
if (EI != EE && hasEdgeSourceLabels)
O << "|<s64>truncated...";
return hasEdgeSourceLabels;
}
public:
GraphWriter(raw_ostream &o, const GraphType &g, bool SN) : O(o), G(g) {
DTraits = DOTTraits(SN);
}
void writeGraph(const std::string &Title = "") {
// Output the header for the graph...
writeHeader(Title);
// Emit all of the nodes in the graph...
writeNodes();
// Output any customizations on the graph
DOTGraphTraits<GraphType>::addCustomGraphFeatures(G, *this);
// Output the end of the graph
writeFooter();
}
void writeHeader(const std::string &Title) {
std::string GraphName = DTraits.getGraphName(G);
if (!Title.empty())
O << "digraph \"" << DOT::EscapeString(Title) << "\" {\n";
else if (!GraphName.empty())
O << "digraph \"" << DOT::EscapeString(GraphName) << "\" {\n";
else
O << "digraph unnamed {\n";
if (DTraits.renderGraphFromBottomUp())
O << "\trankdir=\"BT\";\n";
if (!Title.empty())
O << "\tlabel=\"" << DOT::EscapeString(Title) << "\";\n";
else if (!GraphName.empty())
O << "\tlabel=\"" << DOT::EscapeString(GraphName) << "\";\n";
O << DTraits.getGraphProperties(G);
O << "\n";
}
void writeFooter() {
// Finish off the graph
O << "}\n";
}
void writeNodes() {
// Loop over the graph, printing it out...
for (node_iterator I = GTraits::nodes_begin(G), E = GTraits::nodes_end(G);
I != E; ++I)
if (!isNodeHidden(*I))
writeNode(*I);
}
bool isNodeHidden(NodeType &Node) {
return isNodeHidden(&Node);
}
bool isNodeHidden(NodeType *const *Node) {
return isNodeHidden(*Node);
}
bool isNodeHidden(NodeType *Node) {
return DTraits.isNodeHidden(Node);
}
void writeNode(NodeType& Node) {
writeNode(&Node);
}
void writeNode(NodeType *const *Node) {
writeNode(*Node);
}
void writeNode(NodeType *Node) {
std::string NodeAttributes = DTraits.getNodeAttributes(Node, G);
O << "\tNode" << static_cast<const void*>(Node) << " [shape=record,";
if (!NodeAttributes.empty()) O << NodeAttributes << ",";
O << "label=\"{";
if (!DTraits.renderGraphFromBottomUp()) {
O << DOT::EscapeString(DTraits.getNodeLabel(Node, G));
// If we should include the address of the node in the label, do so now.
if (DTraits.hasNodeAddressLabel(Node, G))
O << "|" << static_cast<const void*>(Node);
std::string NodeDesc = DTraits.getNodeDescription(Node, G);
if (!NodeDesc.empty())
O << "|" << DOT::EscapeString(NodeDesc);
}
std::string edgeSourceLabels;
raw_string_ostream EdgeSourceLabels(edgeSourceLabels);
bool hasEdgeSourceLabels = getEdgeSourceLabels(EdgeSourceLabels, Node);
if (hasEdgeSourceLabels) {
if (!DTraits.renderGraphFromBottomUp()) O << "|";
O << "{" << EdgeSourceLabels.str() << "}";
if (DTraits.renderGraphFromBottomUp()) O << "|";
}
if (DTraits.renderGraphFromBottomUp()) {
O << DOT::EscapeString(DTraits.getNodeLabel(Node, G));
// If we should include the address of the node in the label, do so now.
if (DTraits.hasNodeAddressLabel(Node, G))
O << "|" << static_cast<const void*>(Node);
std::string NodeDesc = DTraits.getNodeDescription(Node, G);
if (!NodeDesc.empty())
O << "|" << DOT::EscapeString(NodeDesc);
}
if (DTraits.hasEdgeDestLabels()) {
O << "|{";
unsigned i = 0, e = DTraits.numEdgeDestLabels(Node);
for (; i != e && i != 64; ++i) {
if (i) O << "|";
O << "<d" << i << ">"
<< DOT::EscapeString(DTraits.getEdgeDestLabel(Node, i));
}
if (i != e)
O << "|<d64>truncated...";
O << "}";
}
O << "}\"];\n"; // Finish printing the "node" line
// Output all of the edges now
child_iterator EI = GTraits::child_begin(Node);
child_iterator EE = GTraits::child_end(Node);
for (unsigned i = 0; EI != EE && i != 64; ++EI, ++i)
if (!DTraits.isNodeHidden(*EI))
writeEdge(Node, i, EI);
for (; EI != EE; ++EI)
if (!DTraits.isNodeHidden(*EI))
writeEdge(Node, 64, EI);
}
void writeEdge(NodeType *Node, unsigned edgeidx, child_iterator EI) {
if (NodeType *TargetNode = *EI) {
int DestPort = -1;
if (DTraits.edgeTargetsEdgeSource(Node, EI)) {
child_iterator TargetIt = DTraits.getEdgeTarget(Node, EI);
// Figure out which edge this targets...
unsigned Offset =
(unsigned)std::distance(GTraits::child_begin(TargetNode), TargetIt);
DestPort = static_cast<int>(Offset);
}
if (DTraits.getEdgeSourceLabel(Node, EI).empty())
edgeidx = -1;
emitEdge(static_cast<const void*>(Node), edgeidx,
static_cast<const void*>(TargetNode), DestPort,
DTraits.getEdgeAttributes(Node, EI, G));
}
}
/// emitSimpleNode - Outputs a simple (non-record) node
void emitSimpleNode(const void *ID, const std::string &Attr,
const std::string &Label, unsigned NumEdgeSources = 0,
const std::vector<std::string> *EdgeSourceLabels = nullptr) {
O << "\tNode" << ID << "[ ";
if (!Attr.empty())
O << Attr << ",";
O << " label =\"";
if (NumEdgeSources) O << "{";
O << DOT::EscapeString(Label);
if (NumEdgeSources) {
O << "|{";
for (unsigned i = 0; i != NumEdgeSources; ++i) {
if (i) O << "|";
O << "<s" << i << ">";
if (EdgeSourceLabels) O << DOT::EscapeString((*EdgeSourceLabels)[i]);
}
O << "}}";
}
O << "\"];\n";
}
/// emitEdge - Output an edge from a simple node into the graph...
void emitEdge(const void *SrcNodeID, int SrcNodePort,
const void *DestNodeID, int DestNodePort,
const std::string &Attrs) {
if (SrcNodePort > 64) return; // Eminating from truncated part?
if (DestNodePort > 64) DestNodePort = 64; // Targeting the truncated part?
O << "\tNode" << SrcNodeID;
if (SrcNodePort >= 0)
O << ":s" << SrcNodePort;
O << " -> Node" << DestNodeID;
if (DestNodePort >= 0 && DTraits.hasEdgeDestLabels())
O << ":d" << DestNodePort;
if (!Attrs.empty())
O << "[" << Attrs << "]";
O << ";\n";
}
/// getOStream - Get the raw output stream into the graph file. Useful to
/// write fancy things using addCustomGraphFeatures().
raw_ostream &getOStream() {
return O;
}
};
template<typename GraphType>
raw_ostream &WriteGraph(raw_ostream &O, const GraphType &G,
bool ShortNames = false,
const Twine &Title = "") {
// Start the graph emission process...
GraphWriter<GraphType> W(O, G, ShortNames);
// Emit the graph.
W.writeGraph(Title.str());
return O;
}
std::string createGraphFilename(const Twine &Name, int &FD);
template <typename GraphType>
std::string WriteGraph(const GraphType &G, const Twine &Name,
bool ShortNames = false, const Twine &Title = "") {
int FD;
// Windows can't always handle long paths, so limit the length of the name.
std::string N = Name.str();
N = N.substr(0, std::min<std::size_t>(N.size(), 140));
std::string Filename = createGraphFilename(N, FD);
raw_fd_ostream O(FD, /*shouldClose=*/ true);
if (FD == -1) {
errs() << "error opening file '" << Filename << "' for writing!\n";
return "";
}
llvm::WriteGraph(O, G, ShortNames, Title);
errs() << " done. \n";
return Filename;
}
/// ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file,
/// then cleanup. For use from the debugger.
///
template<typename GraphType>
void ViewGraph(const GraphType &G, const Twine &Name,
bool ShortNames = false, const Twine &Title = "",
GraphProgram::Name Program = GraphProgram::DOT) {
std::string Filename = llvm::WriteGraph(G, Name, ShortNames, Title);
if (Filename.empty())
return;
DisplayGraph(Filename, false, Program);
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/COM.h | //===- llvm/Support/COM.h ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Provides a library for accessing COM functionality of the Host OS.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_COM_H
#define LLVM_SUPPORT_COM_H
namespace llvm {
namespace sys {
enum class COMThreadingMode { SingleThreaded, MultiThreaded };
class InitializeCOMRAII {
public:
explicit InitializeCOMRAII(COMThreadingMode Threading,
bool SpeedOverMemory = false);
~InitializeCOMRAII();
private:
InitializeCOMRAII(const InitializeCOMRAII &) = delete;
void operator=(const InitializeCOMRAII &) = delete;
};
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/CodeGen.h | //===-- llvm/Support/CodeGen.h - CodeGen Concepts ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file define some types which define code generation concepts. For
// example, relocation model.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CODEGEN_H
#define LLVM_SUPPORT_CODEGEN_H
#include "llvm-c/TargetMachine.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
// Relocation model types.
namespace Reloc {
enum Model { Default, Static, PIC_, DynamicNoPIC };
}
// Code model types.
namespace CodeModel {
enum Model { Default, JITDefault, Small, Kernel, Medium, Large };
}
namespace PICLevel {
enum Level { Default=0, Small=1, Large=2 };
}
// TLS models.
namespace TLSModel {
enum Model {
GeneralDynamic,
LocalDynamic,
InitialExec,
LocalExec
};
}
// Code generation optimization level.
namespace CodeGenOpt {
enum Level {
None, // -O0
Less, // -O1
Default, // -O2, -Os
Aggressive // -O3
};
}
// Create wrappers for C Binding types (see CBindingWrapping.h).
inline CodeModel::Model unwrap(LLVMCodeModel Model) {
switch (Model) {
case LLVMCodeModelDefault:
return CodeModel::Default;
case LLVMCodeModelJITDefault:
return CodeModel::JITDefault;
case LLVMCodeModelSmall:
return CodeModel::Small;
case LLVMCodeModelKernel:
return CodeModel::Kernel;
case LLVMCodeModelMedium:
return CodeModel::Medium;
case LLVMCodeModelLarge:
return CodeModel::Large;
}
return CodeModel::Default;
}
inline LLVMCodeModel wrap(CodeModel::Model Model) {
switch (Model) {
case CodeModel::Default:
return LLVMCodeModelDefault;
case CodeModel::JITDefault:
return LLVMCodeModelJITDefault;
case CodeModel::Small:
return LLVMCodeModelSmall;
case CodeModel::Kernel:
return LLVMCodeModelKernel;
case CodeModel::Medium:
return LLVMCodeModelMedium;
case CodeModel::Large:
return LLVMCodeModelLarge;
}
llvm_unreachable("Bad CodeModel!");
}
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Atomic.h | //===- llvm/Support/Atomic.h - Atomic Operations -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the llvm::sys atomic operations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ATOMIC_H
#define LLVM_SUPPORT_ATOMIC_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
namespace sys {
void MemoryFence();
#ifdef _MSC_VER
typedef long cas_flag;
#else
typedef uint32_t cas_flag;
#endif
cas_flag CompareAndSwap(volatile cas_flag* ptr,
cas_flag new_value,
cas_flag old_value);
cas_flag AtomicIncrement(volatile cas_flag* ptr);
cas_flag AtomicDecrement(volatile cas_flag* ptr);
cas_flag AtomicAdd(volatile cas_flag* ptr, cas_flag val);
cas_flag AtomicMul(volatile cas_flag* ptr, cas_flag val);
cas_flag AtomicDiv(volatile cas_flag* ptr, cas_flag val);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Program.h | //===- llvm/Support/Program.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the llvm::sys::Program class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_PROGRAM_H
#define LLVM_SUPPORT_PROGRAM_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorOr.h"
#include <system_error>
namespace llvm {
class StringRef;
namespace sys {
/// This is the OS-specific separator for PATH like environment variables:
// a colon on Unix or a semicolon on Windows.
#if defined(LLVM_ON_UNIX)
const char EnvPathSeparator = ':';
#elif defined (LLVM_ON_WIN32)
const char EnvPathSeparator = ';';
#endif
/// @brief This struct encapsulates information about a process.
struct ProcessInfo {
#if defined(LLVM_ON_UNIX)
typedef pid_t ProcessId;
#elif defined(LLVM_ON_WIN32)
typedef unsigned long ProcessId; // Must match the type of DWORD on Windows.
typedef void * HANDLE; // Must match the type of HANDLE on Windows.
/// The handle to the process (available on Windows only).
HANDLE ProcessHandle;
#else
#error "ProcessInfo is not defined for this platform!"
#endif
enum : ProcessId { InvalidPid = 0 };
/// The process identifier.
ProcessId Pid;
/// The return code, set after execution.
int ReturnCode;
ProcessInfo();
};
/// \brief Find the first executable file \p Name in \p Paths.
///
/// This does not perform hashing as a shell would but instead stats each PATH
/// entry individually so should generally be avoided. Core LLVM library
/// functions and options should instead require fully specified paths.
///
/// \param Name name of the executable to find. If it contains any system
/// slashes, it will be returned as is.
/// \param Paths optional list of paths to search for \p Name. If empty it
/// will use the system PATH environment instead.
///
/// \returns The fully qualified path to the first \p Name in \p Paths if it
/// exists. \p Name if \p Name has slashes in it. Otherwise an error.
ErrorOr<std::string>
findProgramByName(StringRef Name,
ArrayRef<StringRef> Paths = ArrayRef<StringRef>());
// These functions change the specified standard stream (stdin or stdout) to
// binary mode. They return errc::success if the specified stream
// was changed. Otherwise a platform dependent error is returned.
std::error_code ChangeStdinToBinary();
std::error_code ChangeStdoutToBinary();
/// This function executes the program using the arguments provided. The
/// invoked program will inherit the stdin, stdout, and stderr file
/// descriptors, the environment and other configuration settings of the
/// invoking program.
/// This function waits for the program to finish, so should be avoided in
/// library functions that aren't expected to block. Consider using
/// ExecuteNoWait() instead.
/// @returns an integer result code indicating the status of the program.
/// A zero or positive value indicates the result code of the program.
/// -1 indicates failure to execute
/// -2 indicates a crash during execution or timeout
int ExecuteAndWait(
StringRef Program, ///< Path of the program to be executed. It is
/// presumed this is the result of the findProgramByName method.
const char **args, ///< A vector of strings that are passed to the
///< program. The first element should be the name of the program.
///< The list *must* be terminated by a null char* entry.
const char **env = nullptr, ///< An optional vector of strings to use for
///< the program's environment. If not provided, the current program's
///< environment will be used.
const StringRef **redirects = nullptr, ///< An optional array of pointers
///< to paths. If the array is null, no redirection is done. The array
///< should have a size of at least three. The inferior process's
///< stdin(0), stdout(1), and stderr(2) will be redirected to the
///< corresponding paths.
///< When an empty path is passed in, the corresponding file
///< descriptor will be disconnected (ie, /dev/null'd) in a portable
///< way.
unsigned secondsToWait = 0, ///< If non-zero, this specifies the amount
///< of time to wait for the child process to exit. If the time
///< expires, the child is killed and this call returns. If zero,
///< this function will wait until the child finishes or forever if
///< it doesn't.
unsigned memoryLimit = 0, ///< If non-zero, this specifies max. amount
///< of memory can be allocated by process. If memory usage will be
///< higher limit, the child is killed and this call returns. If zero
///< - no memory limit.
std::string *ErrMsg = nullptr, ///< If non-zero, provides a pointer to a
///< string instance in which error messages will be returned. If the
///< string is non-empty upon return an error occurred while invoking the
///< program.
bool *ExecutionFailed = nullptr);
/// Similar to ExecuteAndWait, but returns immediately.
/// @returns The \see ProcessInfo of the newly launced process.
/// \note On Microsoft Windows systems, users will need to either call \see
/// Wait until the process finished execution or win32 CloseHandle() API on
/// ProcessInfo.ProcessHandle to avoid memory leaks.
ProcessInfo
ExecuteNoWait(StringRef Program, const char **args, const char **env = nullptr,
const StringRef **redirects = nullptr, unsigned memoryLimit = 0,
std::string *ErrMsg = nullptr, bool *ExecutionFailed = nullptr);
/// Return true if the given arguments fit within system-specific
/// argument length limits.
bool argumentsFitWithinSystemLimits(ArrayRef<const char*> Args);
/// File encoding options when writing contents that a non-UTF8 tool will
/// read (on Windows systems). For UNIX, we always use UTF-8.
enum WindowsEncodingMethod {
/// UTF-8 is the LLVM native encoding, being the same as "do not perform
/// encoding conversion".
WEM_UTF8,
WEM_CurrentCodePage,
WEM_UTF16
};
/// Saves the UTF8-encoded \p contents string into the file \p FileName
/// using a specific encoding.
///
/// This write file function adds the possibility to choose which encoding
/// to use when writing a text file. On Windows, this is important when
/// writing files with internationalization support with an encoding that is
/// different from the one used in LLVM (UTF-8). We use this when writing
/// response files, since GCC tools on MinGW only understand legacy code
/// pages, and VisualStudio tools only understand UTF-16.
/// For UNIX, using different encodings is silently ignored, since all tools
/// work well with UTF-8.
/// This function assumes that you only use UTF-8 *text* data and will convert
/// it to your desired encoding before writing to the file.
///
/// FIXME: We use EM_CurrentCodePage to write response files for GNU tools in
/// a MinGW/MinGW-w64 environment, which has serious flaws but currently is
/// our best shot to make gcc/ld understand international characters. This
/// should be changed as soon as binutils fix this to support UTF16 on mingw.
///
/// \returns non-zero error_code if failed
std::error_code
writeFileWithEncoding(StringRef FileName, StringRef Contents,
WindowsEncodingMethod Encoding = WEM_UTF8);
/// This function waits for the process specified by \p PI to finish.
/// \returns A \see ProcessInfo struct with Pid set to:
/// \li The process id of the child process if the child process has changed
/// state.
/// \li 0 if the child process has not changed state.
/// \note Users of this function should always check the ReturnCode member of
/// the \see ProcessInfo returned from this function.
ProcessInfo Wait(
const ProcessInfo &PI, ///< The child process that should be waited on.
unsigned SecondsToWait, ///< If non-zero, this specifies the amount of
///< time to wait for the child process to exit. If the time expires, the
///< child is killed and this function returns. If zero, this function
///< will perform a non-blocking wait on the child process.
bool WaitUntilTerminates, ///< If true, ignores \p SecondsToWait and waits
///< until child has terminated.
std::string *ErrMsg = nullptr ///< If non-zero, provides a pointer to a
///< string instance in which error messages will be returned. If the
///< string is non-empty upon return an error occurred while invoking the
///< program.
);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/SystemUtils.h | //===- SystemUtils.h - Utilities to do low-level system stuff ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains functions used to do a variety of low-level, often
// system-specific, tasks.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SYSTEMUTILS_H
#define LLVM_SUPPORT_SYSTEMUTILS_H
namespace llvm {
class raw_ostream;
/// Determine if the raw_ostream provided is connected to a terminal. If so,
/// generate a warning message to errs() advising against display of bitcode
/// and return true. Otherwise just return false.
/// @brief Check for output written to a console
bool CheckBitcodeOutputToConsole(
raw_ostream &stream_to_check, ///< The stream to be checked
bool print_warning = true ///< Control whether warnings are printed
);
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Regex.h | //===-- Regex.h - Regular Expression matcher implementation -*- C++ -*-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a POSIX regular expression matcher. Both Basic and
// Extended POSIX regular expressions (ERE) are supported. EREs were extended
// to support backreferences in matches.
// This implementation also supports matching strings with embedded NUL chars.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_REGEX_H
#define LLVM_SUPPORT_REGEX_H
#include <string>
struct llvm_regex;
namespace llvm {
class StringRef;
template<typename T> class SmallVectorImpl;
class Regex {
public:
enum {
NoFlags=0,
/// Compile for matching that ignores upper/lower case distinctions.
IgnoreCase=1,
/// Compile for newline-sensitive matching. With this flag '[^' bracket
/// expressions and '.' never match newline. A ^ anchor matches the
/// null string after any newline in the string in addition to its normal
/// function, and the $ anchor matches the null string before any
/// newline in the string in addition to its normal function.
Newline=2,
/// By default, the POSIX extended regular expression (ERE) syntax is
/// assumed. Pass this flag to turn on basic regular expressions (BRE)
/// instead.
BasicRegex=4
};
/// Compiles the given regular expression \p Regex.
Regex(StringRef Regex, unsigned Flags = NoFlags);
Regex(const Regex &) = delete;
Regex &operator=(Regex regex) {
std::swap(preg, regex.preg);
std::swap(error, regex.error);
return *this;
}
Regex(Regex &®ex) {
preg = regex.preg;
error = regex.error;
regex.preg = nullptr;
}
~Regex();
/// isValid - returns the error encountered during regex compilation, or
/// matching, if any.
bool isValid(std::string &Error);
/// getNumMatches - In a valid regex, return the number of parenthesized
/// matches it contains. The number filled in by match will include this
/// many entries plus one for the whole regex (as element 0).
unsigned getNumMatches() const;
/// matches - Match the regex against a given \p String.
///
/// \param Matches - If given, on a successful match this will be filled in
/// with references to the matched group expressions (inside \p String),
/// the first group is always the entire pattern.
///
/// This returns true on a successful match.
bool match(StringRef String, SmallVectorImpl<StringRef> *Matches = nullptr);
/// sub - Return the result of replacing the first match of the regex in
/// \p String with the \p Repl string. Backreferences like "\0" in the
/// replacement string are replaced with the appropriate match substring.
///
/// Note that the replacement string has backslash escaping performed on
/// it. Invalid backreferences are ignored (replaced by empty strings).
///
/// \param Error If non-null, any errors in the substitution (invalid
/// backreferences, trailing backslashes) will be recorded as a non-empty
/// string.
std::string sub(StringRef Repl, StringRef String,
std::string *Error = nullptr);
/// \brief If this function returns true, ^Str$ is an extended regular
/// expression that matches Str and only Str.
static bool isLiteralERE(StringRef Str);
/// \brief Turn String into a regex by escaping its special characters.
static std::string escape(StringRef String);
private:
struct llvm_regex *preg;
int error;
};
}
#endif // LLVM_SUPPORT_REGEX_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/StringSaver.h | //===- llvm/Support/StringSaver.h -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_STRINGSAVER_H
#define LLVM_SUPPORT_STRINGSAVER_H
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
/// \brief Saves strings in the inheritor's stable storage and returns a stable
/// raw character pointer.
class StringSaver {
protected:
~StringSaver() {}
virtual const char *saveImpl(StringRef S);
public:
StringSaver(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
const char *save(const char *S) { return save(StringRef(S)); }
const char *save(StringRef S) { return saveImpl(S); }
const char *save(const Twine &S) { return save(StringRef(S.str())); }
const char *save(std::string &S) { return save(StringRef(S)); }
private:
BumpPtrAllocator &Alloc;
};
class BumpPtrStringSaver final : public StringSaver {
public:
BumpPtrStringSaver(BumpPtrAllocator &Alloc) : StringSaver(Alloc) {}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/Valgrind.h | //===- llvm/Support/Valgrind.h - Communication with Valgrind -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Methods for communicating with a valgrind instance this program is running
// under. These are all no-ops unless LLVM was configured on a system with the
// valgrind headers installed and valgrind is controlling this process.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_VALGRIND_H
#define LLVM_SUPPORT_VALGRIND_H
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Compiler.h"
#include <stddef.h>
#if LLVM_ENABLE_THREADS != 0 && !defined(NDEBUG)
// tsan (Thread Sanitizer) is a valgrind-based tool that detects these exact
// functions by name.
extern "C" {
void AnnotateHappensAfter(const char *file, int line, const volatile void *cv);
void AnnotateHappensBefore(const char *file, int line, const volatile void *cv);
void AnnotateIgnoreWritesBegin(const char *file, int line);
void AnnotateIgnoreWritesEnd(const char *file, int line);
}
#endif
namespace llvm {
namespace sys {
// True if Valgrind is controlling this process.
bool RunningOnValgrind();
// Discard valgrind's translation of code in the range [Addr .. Addr + Len).
// Otherwise valgrind may continue to execute the old version of the code.
void ValgrindDiscardTranslations(const void *Addr, size_t Len);
#if LLVM_ENABLE_THREADS != 0 && !defined(NDEBUG)
// Thread Sanitizer is a valgrind tool that finds races in code.
// See http://code.google.com/p/data-race-test/wiki/DynamicAnnotations .
// This marker is used to define a happens-before arc. The race detector will
// infer an arc from the begin to the end when they share the same pointer
// argument.
#define TsanHappensBefore(cv) \
AnnotateHappensBefore(__FILE__, __LINE__, cv)
// This marker defines the destination of a happens-before arc.
#define TsanHappensAfter(cv) \
AnnotateHappensAfter(__FILE__, __LINE__, cv)
// Ignore any races on writes between here and the next TsanIgnoreWritesEnd.
#define TsanIgnoreWritesBegin() \
AnnotateIgnoreWritesBegin(__FILE__, __LINE__)
// Resume checking for racy writes.
#define TsanIgnoreWritesEnd() \
AnnotateIgnoreWritesEnd(__FILE__, __LINE__)
#else
#define TsanHappensBefore(cv)
#define TsanHappensAfter(cv)
#define TsanIgnoreWritesBegin()
#define TsanIgnoreWritesEnd()
#endif
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/Support/ARMBuildAttributes.h | //===-- ARMBuildAttributes.h - ARM Build Attributes -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains enumerations and support routines for ARM build attributes
// as defined in ARM ABI addenda document (ABI release 2.08).
//
// ELF for the ARM Architecture r2.09 - November 30, 2012
//
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ARMBUILDATTRIBUTES_H
#define LLVM_SUPPORT_ARMBUILDATTRIBUTES_H
namespace llvm {
class StringRef;
namespace ARMBuildAttrs {
enum SpecialAttr {
// This is for the .cpu asm attr. It translates into one or more
// AttrType (below) entries in the .ARM.attributes section in the ELF.
SEL_CPU
};
enum AttrType {
// Rest correspond to ELF/.ARM.attributes
File = 1,
CPU_raw_name = 4,
CPU_name = 5,
CPU_arch = 6,
CPU_arch_profile = 7,
ARM_ISA_use = 8,
THUMB_ISA_use = 9,
FP_arch = 10,
WMMX_arch = 11,
Advanced_SIMD_arch = 12,
PCS_config = 13,
ABI_PCS_R9_use = 14,
ABI_PCS_RW_data = 15,
ABI_PCS_RO_data = 16,
ABI_PCS_GOT_use = 17,
ABI_PCS_wchar_t = 18,
ABI_FP_rounding = 19,
ABI_FP_denormal = 20,
ABI_FP_exceptions = 21,
ABI_FP_user_exceptions = 22,
ABI_FP_number_model = 23,
ABI_align_needed = 24,
ABI_align_preserved = 25,
ABI_enum_size = 26,
ABI_HardFP_use = 27,
ABI_VFP_args = 28,
ABI_WMMX_args = 29,
ABI_optimization_goals = 30,
ABI_FP_optimization_goals = 31,
compatibility = 32,
CPU_unaligned_access = 34,
FP_HP_extension = 36,
ABI_FP_16bit_format = 38,
MPextension_use = 42, // recoded from 70 (ABI r2.08)
DIV_use = 44,
also_compatible_with = 65,
conformance = 67,
Virtualization_use = 68,
/// Legacy Tags
Section = 2, // deprecated (ABI r2.09)
Symbol = 3, // deprecated (ABI r2.09)
ABI_align8_needed = 24, // renamed to ABI_align_needed (ABI r2.09)
ABI_align8_preserved = 25, // renamed to ABI_align_preserved (ABI r2.09)
nodefaults = 64, // deprecated (ABI r2.09)
T2EE_use = 66, // deprecated (ABI r2.09)
MPextension_use_old = 70 // recoded to MPextension_use (ABI r2.08)
};
StringRef AttrTypeAsString(unsigned Attr, bool HasTagPrefix = true);
StringRef AttrTypeAsString(AttrType Attr, bool HasTagPrefix = true);
int AttrTypeFromString(StringRef Tag);
// Magic numbers for .ARM.attributes
enum AttrMagic {
Format_Version = 0x41
};
// Legal Values for CPU_arch, (=6), uleb128
enum CPUArch {
Pre_v4 = 0,
v4 = 1, // e.g. SA110
v4T = 2, // e.g. ARM7TDMI
v5T = 3, // e.g. ARM9TDMI
v5TE = 4, // e.g. ARM946E_S
v5TEJ = 5, // e.g. ARM926EJ_S
v6 = 6, // e.g. ARM1136J_S
v6KZ = 7, // e.g. ARM1176JZ_S
v6T2 = 8, // e.g. ARM1156T2_S
v6K = 9, // e.g. ARM1176JZ_S
v7 = 10, // e.g. Cortex A8, Cortex M3
v6_M = 11, // e.g. Cortex M1
v6S_M = 12, // v6_M with the System extensions
v7E_M = 13, // v7_M with DSP extensions
v8 = 14, // v8,v8.1a AArch32
};
enum CPUArchProfile { // (=7), uleb128
Not_Applicable = 0, // pre v7, or cross-profile code
ApplicationProfile = (0x41), // 'A' (e.g. for Cortex A8)
RealTimeProfile = (0x52), // 'R' (e.g. for Cortex R4)
MicroControllerProfile = (0x4D), // 'M' (e.g. for Cortex M3)
SystemProfile = (0x53) // 'S' Application or real-time profile
};
// The following have a lot of common use cases
enum {
Not_Allowed = 0,
Allowed = 1,
// Tag_ARM_ISA_use (=8), uleb128
// Tag_THUMB_ISA_use, (=9), uleb128
AllowThumb32 = 2, // 32-bit Thumb (implies 16-bit instructions)
// Tag_FP_arch (=10), uleb128 (formerly Tag_VFP_arch = 10)
AllowFPv2 = 2, // v2 FP ISA permitted (implies use of the v1 FP ISA)
AllowFPv3A = 3, // v3 FP ISA permitted (implies use of the v2 FP ISA)
AllowFPv3B = 4, // v3 FP ISA permitted, but only D0-D15, S0-S31
AllowFPv4A = 5, // v4 FP ISA permitted (implies use of v3 FP ISA)
AllowFPv4B = 6, // v4 FP ISA was permitted, but only D0-D15, S0-S31
AllowFPARMv8A = 7, // Use of the ARM v8-A FP ISA was permitted
AllowFPARMv8B = 8, // Use of the ARM v8-A FP ISA was permitted, but only
// D0-D15, S0-S31
// Tag_WMMX_arch, (=11), uleb128
AllowWMMXv1 = 1, // The user permitted this entity to use WMMX v1
AllowWMMXv2 = 2, // The user permitted this entity to use WMMX v2
// Tag_Advanced_SIMD_arch, (=12), uleb128
AllowNeon = 1, // SIMDv1 was permitted
AllowNeon2 = 2, // SIMDv2 was permitted (Half-precision FP, MAC operations)
AllowNeonARMv8 = 3, // ARM v8-A SIMD was permitted
AllowNeonARMv8_1a = 4,// ARM v8.1-A SIMD was permitted (RDMA)
// Tag_ABI_PCS_R9_use, (=14), uleb128
R9IsGPR = 0, // R9 used as v6 (just another callee-saved register)
R9IsSB = 1, // R9 used as a global static base rgister
R9IsTLSPointer = 2, // R9 used as a thread local storage pointer
R9Reserved = 3, // R9 not used by code associated with attributed entity
// Tag_ABI_PCS_RW_data, (=15), uleb128
AddressRWPCRel = 1, // Address RW static data PC-relative
AddressRWSBRel = 2, // Address RW static data SB-relative
AddressRWNone = 3, // No RW static data permitted
// Tag_ABI_PCS_RO_data, (=14), uleb128
AddressROPCRel = 1, // Address RO static data PC-relative
AddressRONone = 2, // No RO static data permitted
// Tag_ABI_PCS_GOT_use, (=17), uleb128
AddressDirect = 1, // Address imported data directly
AddressGOT = 2, // Address imported data indirectly (via GOT)
// Tag_ABI_PCS_wchar_t, (=18), uleb128
WCharProhibited = 0, // wchar_t is not used
WCharWidth2Bytes = 2, // sizeof(wchar_t) == 2
WCharWidth4Bytes = 4, // sizeof(wchar_t) == 4
// Tag_ABI_FP_denormal, (=20), uleb128
PositiveZero = 0,
IEEEDenormals = 1,
PreserveFPSign = 2, // sign when flushed-to-zero is preserved
// Tag_ABI_FP_number_model, (=23), uleb128
AllowRTABI = 2, // numbers, infinities, and one quiet NaN (see [RTABI])
AllowIEE754 = 3, // this code to use all the IEEE 754-defined FP encodings
// Tag_ABI_enum_size, (=26), uleb128
EnumProhibited = 0, // The user prohibited the use of enums when building
// this entity.
EnumSmallest = 1, // Enum is smallest container big enough to hold all
// values.
Enum32Bit = 2, // Enum is at least 32 bits.
Enum32BitABI = 3, // Every enumeration visible across an ABI-complying
// interface contains a value needing 32 bits to encode
// it; other enums can be containerized.
// Tag_ABI_HardFP_use, (=27), uleb128
HardFPImplied = 0, // FP use should be implied by Tag_FP_arch
HardFPSinglePrecision = 1, // Single-precision only
// Tag_ABI_VFP_args, (=28), uleb128
BaseAAPCS = 0,
HardFPAAPCS = 1,
// Tag_FP_HP_extension, (=36), uleb128
AllowHPFP = 1, // Allow use of Half Precision FP
// Tag_FP_16bit_format, (=38), uleb128
FP16FormatIEEE = 1,
// Tag_MPextension_use, (=42), uleb128
AllowMP = 1, // Allow use of MP extensions
// Tag_DIV_use, (=44), uleb128
// Note: AllowDIVExt must be emitted if and only if the permission to use
// hardware divide cannot be conveyed using AllowDIVIfExists or DisallowDIV
AllowDIVIfExists = 0, // Allow hardware divide if available in arch, or no
// info exists.
DisallowDIV = 1, // Hardware divide explicitly disallowed.
AllowDIVExt = 2, // Allow hardware divide as optional architecture
// extension above the base arch specified by
// Tag_CPU_arch and Tag_CPU_arch_profile.
// Tag_Virtualization_use, (=68), uleb128
AllowTZ = 1,
AllowVirtualization = 2,
AllowTZVirtualization = 3
};
} // namespace ARMBuildAttrs
} // namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/Hexagon.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
// Release 5 ABI
ELF_RELOC(R_HEX_NONE, 0)
ELF_RELOC(R_HEX_B22_PCREL, 1)
ELF_RELOC(R_HEX_B15_PCREL, 2)
ELF_RELOC(R_HEX_B7_PCREL, 3)
ELF_RELOC(R_HEX_LO16, 4)
ELF_RELOC(R_HEX_HI16, 5)
ELF_RELOC(R_HEX_32, 6)
ELF_RELOC(R_HEX_16, 7)
ELF_RELOC(R_HEX_8, 8)
ELF_RELOC(R_HEX_GPREL16_0, 9)
ELF_RELOC(R_HEX_GPREL16_1, 10)
ELF_RELOC(R_HEX_GPREL16_2, 11)
ELF_RELOC(R_HEX_GPREL16_3, 12)
ELF_RELOC(R_HEX_HL16, 13)
ELF_RELOC(R_HEX_B13_PCREL, 14)
ELF_RELOC(R_HEX_B9_PCREL, 15)
ELF_RELOC(R_HEX_B32_PCREL_X, 16)
ELF_RELOC(R_HEX_32_6_X, 17)
ELF_RELOC(R_HEX_B22_PCREL_X, 18)
ELF_RELOC(R_HEX_B15_PCREL_X, 19)
ELF_RELOC(R_HEX_B13_PCREL_X, 20)
ELF_RELOC(R_HEX_B9_PCREL_X, 21)
ELF_RELOC(R_HEX_B7_PCREL_X, 22)
ELF_RELOC(R_HEX_16_X, 23)
ELF_RELOC(R_HEX_12_X, 24)
ELF_RELOC(R_HEX_11_X, 25)
ELF_RELOC(R_HEX_10_X, 26)
ELF_RELOC(R_HEX_9_X, 27)
ELF_RELOC(R_HEX_8_X, 28)
ELF_RELOC(R_HEX_7_X, 29)
ELF_RELOC(R_HEX_6_X, 30)
ELF_RELOC(R_HEX_32_PCREL, 31)
ELF_RELOC(R_HEX_COPY, 32)
ELF_RELOC(R_HEX_GLOB_DAT, 33)
ELF_RELOC(R_HEX_JMP_SLOT, 34)
ELF_RELOC(R_HEX_RELATIVE, 35)
ELF_RELOC(R_HEX_PLT_B22_PCREL, 36)
ELF_RELOC(R_HEX_GOTREL_LO16, 37)
ELF_RELOC(R_HEX_GOTREL_HI16, 38)
ELF_RELOC(R_HEX_GOTREL_32, 39)
ELF_RELOC(R_HEX_GOT_LO16, 40)
ELF_RELOC(R_HEX_GOT_HI16, 41)
ELF_RELOC(R_HEX_GOT_32, 42)
ELF_RELOC(R_HEX_GOT_16, 43)
ELF_RELOC(R_HEX_DTPMOD_32, 44)
ELF_RELOC(R_HEX_DTPREL_LO16, 45)
ELF_RELOC(R_HEX_DTPREL_HI16, 46)
ELF_RELOC(R_HEX_DTPREL_32, 47)
ELF_RELOC(R_HEX_DTPREL_16, 48)
ELF_RELOC(R_HEX_GD_PLT_B22_PCREL, 49)
ELF_RELOC(R_HEX_GD_GOT_LO16, 50)
ELF_RELOC(R_HEX_GD_GOT_HI16, 51)
ELF_RELOC(R_HEX_GD_GOT_32, 52)
ELF_RELOC(R_HEX_GD_GOT_16, 53)
ELF_RELOC(R_HEX_IE_LO16, 54)
ELF_RELOC(R_HEX_IE_HI16, 55)
ELF_RELOC(R_HEX_IE_32, 56)
ELF_RELOC(R_HEX_IE_GOT_LO16, 57)
ELF_RELOC(R_HEX_IE_GOT_HI16, 58)
ELF_RELOC(R_HEX_IE_GOT_32, 59)
ELF_RELOC(R_HEX_IE_GOT_16, 60)
ELF_RELOC(R_HEX_TPREL_LO16, 61)
ELF_RELOC(R_HEX_TPREL_HI16, 62)
ELF_RELOC(R_HEX_TPREL_32, 63)
ELF_RELOC(R_HEX_TPREL_16, 64)
ELF_RELOC(R_HEX_6_PCREL_X, 65)
ELF_RELOC(R_HEX_GOTREL_32_6_X, 66)
ELF_RELOC(R_HEX_GOTREL_16_X, 67)
ELF_RELOC(R_HEX_GOTREL_11_X, 68)
ELF_RELOC(R_HEX_GOT_32_6_X, 69)
ELF_RELOC(R_HEX_GOT_16_X, 70)
ELF_RELOC(R_HEX_GOT_11_X, 71)
ELF_RELOC(R_HEX_DTPREL_32_6_X, 72)
ELF_RELOC(R_HEX_DTPREL_16_X, 73)
ELF_RELOC(R_HEX_DTPREL_11_X, 74)
ELF_RELOC(R_HEX_GD_GOT_32_6_X, 75)
ELF_RELOC(R_HEX_GD_GOT_16_X, 76)
ELF_RELOC(R_HEX_GD_GOT_11_X, 77)
ELF_RELOC(R_HEX_IE_32_6_X, 78)
ELF_RELOC(R_HEX_IE_16_X, 79)
ELF_RELOC(R_HEX_IE_GOT_32_6_X, 80)
ELF_RELOC(R_HEX_IE_GOT_16_X, 81)
ELF_RELOC(R_HEX_IE_GOT_11_X, 82)
ELF_RELOC(R_HEX_TPREL_32_6_X, 83)
ELF_RELOC(R_HEX_TPREL_16_X, 84)
ELF_RELOC(R_HEX_TPREL_11_X, 85)
ELF_RELOC(R_HEX_LD_PLT_B22_PCREL, 86)
ELF_RELOC(R_HEX_LD_GOT_LO16, 87)
ELF_RELOC(R_HEX_LD_GOT_HI16, 88)
ELF_RELOC(R_HEX_LD_GOT_32, 89)
ELF_RELOC(R_HEX_LD_GOT_16, 90)
ELF_RELOC(R_HEX_LD_GOT_32_6_X, 91)
ELF_RELOC(R_HEX_LD_GOT_16_X, 92)
ELF_RELOC(R_HEX_LD_GOT_11_X, 93)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/Mips.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_MIPS_NONE, 0)
ELF_RELOC(R_MIPS_16, 1)
ELF_RELOC(R_MIPS_32, 2)
ELF_RELOC(R_MIPS_REL32, 3)
ELF_RELOC(R_MIPS_26, 4)
ELF_RELOC(R_MIPS_HI16, 5)
ELF_RELOC(R_MIPS_LO16, 6)
ELF_RELOC(R_MIPS_GPREL16, 7)
ELF_RELOC(R_MIPS_LITERAL, 8)
ELF_RELOC(R_MIPS_GOT16, 9)
ELF_RELOC(R_MIPS_PC16, 10)
ELF_RELOC(R_MIPS_CALL16, 11)
ELF_RELOC(R_MIPS_GPREL32, 12)
ELF_RELOC(R_MIPS_UNUSED1, 13)
ELF_RELOC(R_MIPS_UNUSED2, 14)
ELF_RELOC(R_MIPS_UNUSED3, 15)
ELF_RELOC(R_MIPS_SHIFT5, 16)
ELF_RELOC(R_MIPS_SHIFT6, 17)
ELF_RELOC(R_MIPS_64, 18)
ELF_RELOC(R_MIPS_GOT_DISP, 19)
ELF_RELOC(R_MIPS_GOT_PAGE, 20)
ELF_RELOC(R_MIPS_GOT_OFST, 21)
ELF_RELOC(R_MIPS_GOT_HI16, 22)
ELF_RELOC(R_MIPS_GOT_LO16, 23)
ELF_RELOC(R_MIPS_SUB, 24)
ELF_RELOC(R_MIPS_INSERT_A, 25)
ELF_RELOC(R_MIPS_INSERT_B, 26)
ELF_RELOC(R_MIPS_DELETE, 27)
ELF_RELOC(R_MIPS_HIGHER, 28)
ELF_RELOC(R_MIPS_HIGHEST, 29)
ELF_RELOC(R_MIPS_CALL_HI16, 30)
ELF_RELOC(R_MIPS_CALL_LO16, 31)
ELF_RELOC(R_MIPS_SCN_DISP, 32)
ELF_RELOC(R_MIPS_REL16, 33)
ELF_RELOC(R_MIPS_ADD_IMMEDIATE, 34)
ELF_RELOC(R_MIPS_PJUMP, 35)
ELF_RELOC(R_MIPS_RELGOT, 36)
ELF_RELOC(R_MIPS_JALR, 37)
ELF_RELOC(R_MIPS_TLS_DTPMOD32, 38)
ELF_RELOC(R_MIPS_TLS_DTPREL32, 39)
ELF_RELOC(R_MIPS_TLS_DTPMOD64, 40)
ELF_RELOC(R_MIPS_TLS_DTPREL64, 41)
ELF_RELOC(R_MIPS_TLS_GD, 42)
ELF_RELOC(R_MIPS_TLS_LDM, 43)
ELF_RELOC(R_MIPS_TLS_DTPREL_HI16, 44)
ELF_RELOC(R_MIPS_TLS_DTPREL_LO16, 45)
ELF_RELOC(R_MIPS_TLS_GOTTPREL, 46)
ELF_RELOC(R_MIPS_TLS_TPREL32, 47)
ELF_RELOC(R_MIPS_TLS_TPREL64, 48)
ELF_RELOC(R_MIPS_TLS_TPREL_HI16, 49)
ELF_RELOC(R_MIPS_TLS_TPREL_LO16, 50)
ELF_RELOC(R_MIPS_GLOB_DAT, 51)
ELF_RELOC(R_MIPS_PC21_S2, 60)
ELF_RELOC(R_MIPS_PC26_S2, 61)
ELF_RELOC(R_MIPS_PC18_S3, 62)
ELF_RELOC(R_MIPS_PC19_S2, 63)
ELF_RELOC(R_MIPS_PCHI16, 64)
ELF_RELOC(R_MIPS_PCLO16, 65)
ELF_RELOC(R_MIPS16_26, 100)
ELF_RELOC(R_MIPS16_GPREL, 101)
ELF_RELOC(R_MIPS16_GOT16, 102)
ELF_RELOC(R_MIPS16_CALL16, 103)
ELF_RELOC(R_MIPS16_HI16, 104)
ELF_RELOC(R_MIPS16_LO16, 105)
ELF_RELOC(R_MIPS16_TLS_GD, 106)
ELF_RELOC(R_MIPS16_TLS_LDM, 107)
ELF_RELOC(R_MIPS16_TLS_DTPREL_HI16, 108)
ELF_RELOC(R_MIPS16_TLS_DTPREL_LO16, 109)
ELF_RELOC(R_MIPS16_TLS_GOTTPREL, 110)
ELF_RELOC(R_MIPS16_TLS_TPREL_HI16, 111)
ELF_RELOC(R_MIPS16_TLS_TPREL_LO16, 112)
ELF_RELOC(R_MIPS_COPY, 126)
ELF_RELOC(R_MIPS_JUMP_SLOT, 127)
ELF_RELOC(R_MICROMIPS_26_S1, 133)
ELF_RELOC(R_MICROMIPS_HI16, 134)
ELF_RELOC(R_MICROMIPS_LO16, 135)
ELF_RELOC(R_MICROMIPS_GPREL16, 136)
ELF_RELOC(R_MICROMIPS_LITERAL, 137)
ELF_RELOC(R_MICROMIPS_GOT16, 138)
ELF_RELOC(R_MICROMIPS_PC7_S1, 139)
ELF_RELOC(R_MICROMIPS_PC10_S1, 140)
ELF_RELOC(R_MICROMIPS_PC16_S1, 141)
ELF_RELOC(R_MICROMIPS_CALL16, 142)
ELF_RELOC(R_MICROMIPS_GOT_DISP, 145)
ELF_RELOC(R_MICROMIPS_GOT_PAGE, 146)
ELF_RELOC(R_MICROMIPS_GOT_OFST, 147)
ELF_RELOC(R_MICROMIPS_GOT_HI16, 148)
ELF_RELOC(R_MICROMIPS_GOT_LO16, 149)
ELF_RELOC(R_MICROMIPS_SUB, 150)
ELF_RELOC(R_MICROMIPS_HIGHER, 151)
ELF_RELOC(R_MICROMIPS_HIGHEST, 152)
ELF_RELOC(R_MICROMIPS_CALL_HI16, 153)
ELF_RELOC(R_MICROMIPS_CALL_LO16, 154)
ELF_RELOC(R_MICROMIPS_SCN_DISP, 155)
ELF_RELOC(R_MICROMIPS_JALR, 156)
ELF_RELOC(R_MICROMIPS_HI0_LO16, 157)
ELF_RELOC(R_MICROMIPS_TLS_GD, 162)
ELF_RELOC(R_MICROMIPS_TLS_LDM, 163)
ELF_RELOC(R_MICROMIPS_TLS_DTPREL_HI16, 164)
ELF_RELOC(R_MICROMIPS_TLS_DTPREL_LO16, 165)
ELF_RELOC(R_MICROMIPS_TLS_GOTTPREL, 166)
ELF_RELOC(R_MICROMIPS_TLS_TPREL_HI16, 169)
ELF_RELOC(R_MICROMIPS_TLS_TPREL_LO16, 170)
ELF_RELOC(R_MICROMIPS_GPREL7_S2, 172)
ELF_RELOC(R_MICROMIPS_PC23_S2, 173)
ELF_RELOC(R_MICROMIPS_PC21_S2, 174)
ELF_RELOC(R_MICROMIPS_PC26_S2, 175)
ELF_RELOC(R_MICROMIPS_PC18_S3, 176)
ELF_RELOC(R_MICROMIPS_PC19_S2, 177)
ELF_RELOC(R_MIPS_NUM, 218)
ELF_RELOC(R_MIPS_PC32, 248)
ELF_RELOC(R_MIPS_EH, 249)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/x86_64.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_X86_64_NONE, 0)
ELF_RELOC(R_X86_64_64, 1)
ELF_RELOC(R_X86_64_PC32, 2)
ELF_RELOC(R_X86_64_GOT32, 3)
ELF_RELOC(R_X86_64_PLT32, 4)
ELF_RELOC(R_X86_64_COPY, 5)
ELF_RELOC(R_X86_64_GLOB_DAT, 6)
ELF_RELOC(R_X86_64_JUMP_SLOT, 7)
ELF_RELOC(R_X86_64_RELATIVE, 8)
ELF_RELOC(R_X86_64_GOTPCREL, 9)
ELF_RELOC(R_X86_64_32, 10)
ELF_RELOC(R_X86_64_32S, 11)
ELF_RELOC(R_X86_64_16, 12)
ELF_RELOC(R_X86_64_PC16, 13)
ELF_RELOC(R_X86_64_8, 14)
ELF_RELOC(R_X86_64_PC8, 15)
ELF_RELOC(R_X86_64_DTPMOD64, 16)
ELF_RELOC(R_X86_64_DTPOFF64, 17)
ELF_RELOC(R_X86_64_TPOFF64, 18)
ELF_RELOC(R_X86_64_TLSGD, 19)
ELF_RELOC(R_X86_64_TLSLD, 20)
ELF_RELOC(R_X86_64_DTPOFF32, 21)
ELF_RELOC(R_X86_64_GOTTPOFF, 22)
ELF_RELOC(R_X86_64_TPOFF32, 23)
ELF_RELOC(R_X86_64_PC64, 24)
ELF_RELOC(R_X86_64_GOTOFF64, 25)
ELF_RELOC(R_X86_64_GOTPC32, 26)
ELF_RELOC(R_X86_64_GOT64, 27)
ELF_RELOC(R_X86_64_GOTPCREL64, 28)
ELF_RELOC(R_X86_64_GOTPC64, 29)
ELF_RELOC(R_X86_64_GOTPLT64, 30)
ELF_RELOC(R_X86_64_PLTOFF64, 31)
ELF_RELOC(R_X86_64_SIZE32, 32)
ELF_RELOC(R_X86_64_SIZE64, 33)
ELF_RELOC(R_X86_64_GOTPC32_TLSDESC, 34)
ELF_RELOC(R_X86_64_TLSDESC_CALL, 35)
ELF_RELOC(R_X86_64_TLSDESC, 36)
ELF_RELOC(R_X86_64_IRELATIVE, 37)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/Sparc.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_SPARC_NONE, 0)
ELF_RELOC(R_SPARC_8, 1)
ELF_RELOC(R_SPARC_16, 2)
ELF_RELOC(R_SPARC_32, 3)
ELF_RELOC(R_SPARC_DISP8, 4)
ELF_RELOC(R_SPARC_DISP16, 5)
ELF_RELOC(R_SPARC_DISP32, 6)
ELF_RELOC(R_SPARC_WDISP30, 7)
ELF_RELOC(R_SPARC_WDISP22, 8)
ELF_RELOC(R_SPARC_HI22, 9)
ELF_RELOC(R_SPARC_22, 10)
ELF_RELOC(R_SPARC_13, 11)
ELF_RELOC(R_SPARC_LO10, 12)
ELF_RELOC(R_SPARC_GOT10, 13)
ELF_RELOC(R_SPARC_GOT13, 14)
ELF_RELOC(R_SPARC_GOT22, 15)
ELF_RELOC(R_SPARC_PC10, 16)
ELF_RELOC(R_SPARC_PC22, 17)
ELF_RELOC(R_SPARC_WPLT30, 18)
ELF_RELOC(R_SPARC_COPY, 19)
ELF_RELOC(R_SPARC_GLOB_DAT, 20)
ELF_RELOC(R_SPARC_JMP_SLOT, 21)
ELF_RELOC(R_SPARC_RELATIVE, 22)
ELF_RELOC(R_SPARC_UA32, 23)
ELF_RELOC(R_SPARC_PLT32, 24)
ELF_RELOC(R_SPARC_HIPLT22, 25)
ELF_RELOC(R_SPARC_LOPLT10, 26)
ELF_RELOC(R_SPARC_PCPLT32, 27)
ELF_RELOC(R_SPARC_PCPLT22, 28)
ELF_RELOC(R_SPARC_PCPLT10, 29)
ELF_RELOC(R_SPARC_10, 30)
ELF_RELOC(R_SPARC_11, 31)
ELF_RELOC(R_SPARC_64, 32)
ELF_RELOC(R_SPARC_OLO10, 33)
ELF_RELOC(R_SPARC_HH22, 34)
ELF_RELOC(R_SPARC_HM10, 35)
ELF_RELOC(R_SPARC_LM22, 36)
ELF_RELOC(R_SPARC_PC_HH22, 37)
ELF_RELOC(R_SPARC_PC_HM10, 38)
ELF_RELOC(R_SPARC_PC_LM22, 39)
ELF_RELOC(R_SPARC_WDISP16, 40)
ELF_RELOC(R_SPARC_WDISP19, 41)
ELF_RELOC(R_SPARC_7, 43)
ELF_RELOC(R_SPARC_5, 44)
ELF_RELOC(R_SPARC_6, 45)
ELF_RELOC(R_SPARC_DISP64, 46)
ELF_RELOC(R_SPARC_PLT64, 47)
ELF_RELOC(R_SPARC_HIX22, 48)
ELF_RELOC(R_SPARC_LOX10, 49)
ELF_RELOC(R_SPARC_H44, 50)
ELF_RELOC(R_SPARC_M44, 51)
ELF_RELOC(R_SPARC_L44, 52)
ELF_RELOC(R_SPARC_REGISTER, 53)
ELF_RELOC(R_SPARC_UA64, 54)
ELF_RELOC(R_SPARC_UA16, 55)
ELF_RELOC(R_SPARC_TLS_GD_HI22, 56)
ELF_RELOC(R_SPARC_TLS_GD_LO10, 57)
ELF_RELOC(R_SPARC_TLS_GD_ADD, 58)
ELF_RELOC(R_SPARC_TLS_GD_CALL, 59)
ELF_RELOC(R_SPARC_TLS_LDM_HI22, 60)
ELF_RELOC(R_SPARC_TLS_LDM_LO10, 61)
ELF_RELOC(R_SPARC_TLS_LDM_ADD, 62)
ELF_RELOC(R_SPARC_TLS_LDM_CALL, 63)
ELF_RELOC(R_SPARC_TLS_LDO_HIX22, 64)
ELF_RELOC(R_SPARC_TLS_LDO_LOX10, 65)
ELF_RELOC(R_SPARC_TLS_LDO_ADD, 66)
ELF_RELOC(R_SPARC_TLS_IE_HI22, 67)
ELF_RELOC(R_SPARC_TLS_IE_LO10, 68)
ELF_RELOC(R_SPARC_TLS_IE_LD, 69)
ELF_RELOC(R_SPARC_TLS_IE_LDX, 70)
ELF_RELOC(R_SPARC_TLS_IE_ADD, 71)
ELF_RELOC(R_SPARC_TLS_LE_HIX22, 72)
ELF_RELOC(R_SPARC_TLS_LE_LOX10, 73)
ELF_RELOC(R_SPARC_TLS_DTPMOD32, 74)
ELF_RELOC(R_SPARC_TLS_DTPMOD64, 75)
ELF_RELOC(R_SPARC_TLS_DTPOFF32, 76)
ELF_RELOC(R_SPARC_TLS_DTPOFF64, 77)
ELF_RELOC(R_SPARC_TLS_TPOFF32, 78)
ELF_RELOC(R_SPARC_TLS_TPOFF64, 79)
ELF_RELOC(R_SPARC_GOTDATA_HIX22, 80)
ELF_RELOC(R_SPARC_GOTDATA_LOX10, 81)
ELF_RELOC(R_SPARC_GOTDATA_OP_HIX22, 82)
ELF_RELOC(R_SPARC_GOTDATA_OP_LOX10, 83)
ELF_RELOC(R_SPARC_GOTDATA_OP, 84)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/i386.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
// TODO: this is just a subset
ELF_RELOC(R_386_NONE, 0)
ELF_RELOC(R_386_32, 1)
ELF_RELOC(R_386_PC32, 2)
ELF_RELOC(R_386_GOT32, 3)
ELF_RELOC(R_386_PLT32, 4)
ELF_RELOC(R_386_COPY, 5)
ELF_RELOC(R_386_GLOB_DAT, 6)
ELF_RELOC(R_386_JUMP_SLOT, 7)
ELF_RELOC(R_386_RELATIVE, 8)
ELF_RELOC(R_386_GOTOFF, 9)
ELF_RELOC(R_386_GOTPC, 10)
ELF_RELOC(R_386_32PLT, 11)
ELF_RELOC(R_386_TLS_TPOFF, 14)
ELF_RELOC(R_386_TLS_IE, 15)
ELF_RELOC(R_386_TLS_GOTIE, 16)
ELF_RELOC(R_386_TLS_LE, 17)
ELF_RELOC(R_386_TLS_GD, 18)
ELF_RELOC(R_386_TLS_LDM, 19)
ELF_RELOC(R_386_16, 20)
ELF_RELOC(R_386_PC16, 21)
ELF_RELOC(R_386_8, 22)
ELF_RELOC(R_386_PC8, 23)
ELF_RELOC(R_386_TLS_GD_32, 24)
ELF_RELOC(R_386_TLS_GD_PUSH, 25)
ELF_RELOC(R_386_TLS_GD_CALL, 26)
ELF_RELOC(R_386_TLS_GD_POP, 27)
ELF_RELOC(R_386_TLS_LDM_32, 28)
ELF_RELOC(R_386_TLS_LDM_PUSH, 29)
ELF_RELOC(R_386_TLS_LDM_CALL, 30)
ELF_RELOC(R_386_TLS_LDM_POP, 31)
ELF_RELOC(R_386_TLS_LDO_32, 32)
ELF_RELOC(R_386_TLS_IE_32, 33)
ELF_RELOC(R_386_TLS_LE_32, 34)
ELF_RELOC(R_386_TLS_DTPMOD32, 35)
ELF_RELOC(R_386_TLS_DTPOFF32, 36)
ELF_RELOC(R_386_TLS_TPOFF32, 37)
ELF_RELOC(R_386_TLS_GOTDESC, 39)
ELF_RELOC(R_386_TLS_DESC_CALL, 40)
ELF_RELOC(R_386_TLS_DESC, 41)
ELF_RELOC(R_386_IRELATIVE, 42)
ELF_RELOC(R_386_NUM, 43)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/AArch64.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
// ABI release 1.0
ELF_RELOC(R_AARCH64_NONE, 0)
ELF_RELOC(R_AARCH64_ABS64, 0x101)
ELF_RELOC(R_AARCH64_ABS32, 0x102)
ELF_RELOC(R_AARCH64_ABS16, 0x103)
ELF_RELOC(R_AARCH64_PREL64, 0x104)
ELF_RELOC(R_AARCH64_PREL32, 0x105)
ELF_RELOC(R_AARCH64_PREL16, 0x106)
ELF_RELOC(R_AARCH64_MOVW_UABS_G0, 0x107)
ELF_RELOC(R_AARCH64_MOVW_UABS_G0_NC, 0x108)
ELF_RELOC(R_AARCH64_MOVW_UABS_G1, 0x109)
ELF_RELOC(R_AARCH64_MOVW_UABS_G1_NC, 0x10a)
ELF_RELOC(R_AARCH64_MOVW_UABS_G2, 0x10b)
ELF_RELOC(R_AARCH64_MOVW_UABS_G2_NC, 0x10c)
ELF_RELOC(R_AARCH64_MOVW_UABS_G3, 0x10d)
ELF_RELOC(R_AARCH64_MOVW_SABS_G0, 0x10e)
ELF_RELOC(R_AARCH64_MOVW_SABS_G1, 0x10f)
ELF_RELOC(R_AARCH64_MOVW_SABS_G2, 0x110)
ELF_RELOC(R_AARCH64_LD_PREL_LO19, 0x111)
ELF_RELOC(R_AARCH64_ADR_PREL_LO21, 0x112)
ELF_RELOC(R_AARCH64_ADR_PREL_PG_HI21, 0x113)
ELF_RELOC(R_AARCH64_ADR_PREL_PG_HI21_NC, 0x114)
ELF_RELOC(R_AARCH64_ADD_ABS_LO12_NC, 0x115)
ELF_RELOC(R_AARCH64_LDST8_ABS_LO12_NC, 0x116)
ELF_RELOC(R_AARCH64_TSTBR14, 0x117)
ELF_RELOC(R_AARCH64_CONDBR19, 0x118)
ELF_RELOC(R_AARCH64_JUMP26, 0x11a)
ELF_RELOC(R_AARCH64_CALL26, 0x11b)
ELF_RELOC(R_AARCH64_LDST16_ABS_LO12_NC, 0x11c)
ELF_RELOC(R_AARCH64_LDST32_ABS_LO12_NC, 0x11d)
ELF_RELOC(R_AARCH64_LDST64_ABS_LO12_NC, 0x11e)
ELF_RELOC(R_AARCH64_MOVW_PREL_G0, 0x11f)
ELF_RELOC(R_AARCH64_MOVW_PREL_G0_NC, 0x120)
ELF_RELOC(R_AARCH64_MOVW_PREL_G1, 0x121)
ELF_RELOC(R_AARCH64_MOVW_PREL_G1_NC, 0x122)
ELF_RELOC(R_AARCH64_MOVW_PREL_G2, 0x123)
ELF_RELOC(R_AARCH64_MOVW_PREL_G2_NC, 0x124)
ELF_RELOC(R_AARCH64_MOVW_PREL_G3, 0x125)
ELF_RELOC(R_AARCH64_LDST128_ABS_LO12_NC, 0x12b)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G0, 0x12c)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G0_NC, 0x12d)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G1, 0x12e)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G1_NC, 0x12f)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G2, 0x130)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G2_NC, 0x131)
ELF_RELOC(R_AARCH64_MOVW_GOTOFF_G3, 0x132)
ELF_RELOC(R_AARCH64_GOTREL64, 0x133)
ELF_RELOC(R_AARCH64_GOTREL32, 0x134)
ELF_RELOC(R_AARCH64_GOT_LD_PREL19, 0x135)
ELF_RELOC(R_AARCH64_LD64_GOTOFF_LO15, 0x136)
ELF_RELOC(R_AARCH64_ADR_GOT_PAGE, 0x137)
ELF_RELOC(R_AARCH64_LD64_GOT_LO12_NC, 0x138)
ELF_RELOC(R_AARCH64_LD64_GOTPAGE_LO15, 0x139)
ELF_RELOC(R_AARCH64_TLSGD_ADR_PREL21, 0x200)
ELF_RELOC(R_AARCH64_TLSGD_ADR_PAGE21, 0x201)
ELF_RELOC(R_AARCH64_TLSGD_ADD_LO12_NC, 0x202)
ELF_RELOC(R_AARCH64_TLSGD_MOVW_G1, 0x203)
ELF_RELOC(R_AARCH64_TLSGD_MOVW_G0_NC, 0x204)
ELF_RELOC(R_AARCH64_TLSLD_ADR_PREL21, 0x205)
ELF_RELOC(R_AARCH64_TLSLD_ADR_PAGE21, 0x206)
ELF_RELOC(R_AARCH64_TLSLD_ADD_LO12_NC, 0x207)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_G1, 0x208)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_G0_NC, 0x209)
ELF_RELOC(R_AARCH64_TLSLD_LD_PREL19, 0x20a)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G2, 0x20b)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G1, 0x20c)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC, 0x20d)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G0, 0x20e)
ELF_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC, 0x20f)
ELF_RELOC(R_AARCH64_TLSLD_ADD_DTPREL_HI12, 0x210)
ELF_RELOC(R_AARCH64_TLSLD_ADD_DTPREL_LO12, 0x211)
ELF_RELOC(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC, 0x212)
ELF_RELOC(R_AARCH64_TLSLD_LDST8_DTPREL_LO12, 0x213)
ELF_RELOC(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC, 0x214)
ELF_RELOC(R_AARCH64_TLSLD_LDST16_DTPREL_LO12, 0x215)
ELF_RELOC(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC, 0x216)
ELF_RELOC(R_AARCH64_TLSLD_LDST32_DTPREL_LO12, 0x217)
ELF_RELOC(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC, 0x218)
ELF_RELOC(R_AARCH64_TLSLD_LDST64_DTPREL_LO12, 0x219)
ELF_RELOC(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC, 0x21a)
ELF_RELOC(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1, 0x21b)
ELF_RELOC(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC, 0x21c)
ELF_RELOC(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, 0x21d)
ELF_RELOC(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, 0x21e)
ELF_RELOC(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19, 0x21f)
ELF_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G2, 0x220)
ELF_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G1, 0x221)
ELF_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC, 0x222)
ELF_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G0, 0x223)
ELF_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC, 0x224)
ELF_RELOC(R_AARCH64_TLSLE_ADD_TPREL_HI12, 0x225)
ELF_RELOC(R_AARCH64_TLSLE_ADD_TPREL_LO12, 0x226)
ELF_RELOC(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC, 0x227)
ELF_RELOC(R_AARCH64_TLSLE_LDST8_TPREL_LO12, 0x228)
ELF_RELOC(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC, 0x229)
ELF_RELOC(R_AARCH64_TLSLE_LDST16_TPREL_LO12, 0x22a)
ELF_RELOC(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC, 0x22b)
ELF_RELOC(R_AARCH64_TLSLE_LDST32_TPREL_LO12, 0x22c)
ELF_RELOC(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC, 0x22d)
ELF_RELOC(R_AARCH64_TLSLE_LDST64_TPREL_LO12, 0x22e)
ELF_RELOC(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC, 0x22f)
ELF_RELOC(R_AARCH64_TLSDESC_LD_PREL19, 0x230)
ELF_RELOC(R_AARCH64_TLSDESC_ADR_PREL21, 0x231)
ELF_RELOC(R_AARCH64_TLSDESC_ADR_PAGE21, 0x232)
ELF_RELOC(R_AARCH64_TLSDESC_LD64_LO12_NC, 0x233)
ELF_RELOC(R_AARCH64_TLSDESC_ADD_LO12_NC, 0x234)
ELF_RELOC(R_AARCH64_TLSDESC_OFF_G1, 0x235)
ELF_RELOC(R_AARCH64_TLSDESC_OFF_G0_NC, 0x236)
ELF_RELOC(R_AARCH64_TLSDESC_LDR, 0x237)
ELF_RELOC(R_AARCH64_TLSDESC_ADD, 0x238)
ELF_RELOC(R_AARCH64_TLSDESC_CALL, 0x239)
ELF_RELOC(R_AARCH64_TLSLE_LDST128_TPREL_LO12, 0x23a)
ELF_RELOC(R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC, 0x23b)
ELF_RELOC(R_AARCH64_TLSLD_LDST128_DTPREL_LO12, 0x23c)
ELF_RELOC(R_AARCH64_TLSLD_LDST128_DTPREL_LO12_NC, 0x23d)
ELF_RELOC(R_AARCH64_COPY, 0x400)
ELF_RELOC(R_AARCH64_GLOB_DAT, 0x401)
ELF_RELOC(R_AARCH64_JUMP_SLOT, 0x402)
ELF_RELOC(R_AARCH64_RELATIVE, 0x403)
ELF_RELOC(R_AARCH64_TLS_DTPREL64, 0x404)
ELF_RELOC(R_AARCH64_TLS_DTPMOD64, 0x405)
ELF_RELOC(R_AARCH64_TLS_TPREL64, 0x406)
ELF_RELOC(R_AARCH64_TLSDESC, 0x407)
ELF_RELOC(R_AARCH64_IRELATIVE, 0x408)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/ARM.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
// Meets 2.09 ABI Specs.
ELF_RELOC(R_ARM_NONE, 0x00)
ELF_RELOC(R_ARM_PC24, 0x01)
ELF_RELOC(R_ARM_ABS32, 0x02)
ELF_RELOC(R_ARM_REL32, 0x03)
ELF_RELOC(R_ARM_LDR_PC_G0, 0x04)
ELF_RELOC(R_ARM_ABS16, 0x05)
ELF_RELOC(R_ARM_ABS12, 0x06)
ELF_RELOC(R_ARM_THM_ABS5, 0x07)
ELF_RELOC(R_ARM_ABS8, 0x08)
ELF_RELOC(R_ARM_SBREL32, 0x09)
ELF_RELOC(R_ARM_THM_CALL, 0x0a)
ELF_RELOC(R_ARM_THM_PC8, 0x0b)
ELF_RELOC(R_ARM_BREL_ADJ, 0x0c)
ELF_RELOC(R_ARM_TLS_DESC, 0x0d)
ELF_RELOC(R_ARM_THM_SWI8, 0x0e)
ELF_RELOC(R_ARM_XPC25, 0x0f)
ELF_RELOC(R_ARM_THM_XPC22, 0x10)
ELF_RELOC(R_ARM_TLS_DTPMOD32, 0x11)
ELF_RELOC(R_ARM_TLS_DTPOFF32, 0x12)
ELF_RELOC(R_ARM_TLS_TPOFF32, 0x13)
ELF_RELOC(R_ARM_COPY, 0x14)
ELF_RELOC(R_ARM_GLOB_DAT, 0x15)
ELF_RELOC(R_ARM_JUMP_SLOT, 0x16)
ELF_RELOC(R_ARM_RELATIVE, 0x17)
ELF_RELOC(R_ARM_GOTOFF32, 0x18)
ELF_RELOC(R_ARM_BASE_PREL, 0x19)
ELF_RELOC(R_ARM_GOT_BREL, 0x1a)
ELF_RELOC(R_ARM_PLT32, 0x1b)
ELF_RELOC(R_ARM_CALL, 0x1c)
ELF_RELOC(R_ARM_JUMP24, 0x1d)
ELF_RELOC(R_ARM_THM_JUMP24, 0x1e)
ELF_RELOC(R_ARM_BASE_ABS, 0x1f)
ELF_RELOC(R_ARM_ALU_PCREL_7_0, 0x20)
ELF_RELOC(R_ARM_ALU_PCREL_15_8, 0x21)
ELF_RELOC(R_ARM_ALU_PCREL_23_15, 0x22)
ELF_RELOC(R_ARM_LDR_SBREL_11_0_NC, 0x23)
ELF_RELOC(R_ARM_ALU_SBREL_19_12_NC, 0x24)
ELF_RELOC(R_ARM_ALU_SBREL_27_20_CK, 0x25)
ELF_RELOC(R_ARM_TARGET1, 0x26)
ELF_RELOC(R_ARM_SBREL31, 0x27)
ELF_RELOC(R_ARM_V4BX, 0x28)
ELF_RELOC(R_ARM_TARGET2, 0x29)
ELF_RELOC(R_ARM_PREL31, 0x2a)
ELF_RELOC(R_ARM_MOVW_ABS_NC, 0x2b)
ELF_RELOC(R_ARM_MOVT_ABS, 0x2c)
ELF_RELOC(R_ARM_MOVW_PREL_NC, 0x2d)
ELF_RELOC(R_ARM_MOVT_PREL, 0x2e)
ELF_RELOC(R_ARM_THM_MOVW_ABS_NC, 0x2f)
ELF_RELOC(R_ARM_THM_MOVT_ABS, 0x30)
ELF_RELOC(R_ARM_THM_MOVW_PREL_NC, 0x31)
ELF_RELOC(R_ARM_THM_MOVT_PREL, 0x32)
ELF_RELOC(R_ARM_THM_JUMP19, 0x33)
ELF_RELOC(R_ARM_THM_JUMP6, 0x34)
ELF_RELOC(R_ARM_THM_ALU_PREL_11_0, 0x35)
ELF_RELOC(R_ARM_THM_PC12, 0x36)
ELF_RELOC(R_ARM_ABS32_NOI, 0x37)
ELF_RELOC(R_ARM_REL32_NOI, 0x38)
ELF_RELOC(R_ARM_ALU_PC_G0_NC, 0x39)
ELF_RELOC(R_ARM_ALU_PC_G0, 0x3a)
ELF_RELOC(R_ARM_ALU_PC_G1_NC, 0x3b)
ELF_RELOC(R_ARM_ALU_PC_G1, 0x3c)
ELF_RELOC(R_ARM_ALU_PC_G2, 0x3d)
ELF_RELOC(R_ARM_LDR_PC_G1, 0x3e)
ELF_RELOC(R_ARM_LDR_PC_G2, 0x3f)
ELF_RELOC(R_ARM_LDRS_PC_G0, 0x40)
ELF_RELOC(R_ARM_LDRS_PC_G1, 0x41)
ELF_RELOC(R_ARM_LDRS_PC_G2, 0x42)
ELF_RELOC(R_ARM_LDC_PC_G0, 0x43)
ELF_RELOC(R_ARM_LDC_PC_G1, 0x44)
ELF_RELOC(R_ARM_LDC_PC_G2, 0x45)
ELF_RELOC(R_ARM_ALU_SB_G0_NC, 0x46)
ELF_RELOC(R_ARM_ALU_SB_G0, 0x47)
ELF_RELOC(R_ARM_ALU_SB_G1_NC, 0x48)
ELF_RELOC(R_ARM_ALU_SB_G1, 0x49)
ELF_RELOC(R_ARM_ALU_SB_G2, 0x4a)
ELF_RELOC(R_ARM_LDR_SB_G0, 0x4b)
ELF_RELOC(R_ARM_LDR_SB_G1, 0x4c)
ELF_RELOC(R_ARM_LDR_SB_G2, 0x4d)
ELF_RELOC(R_ARM_LDRS_SB_G0, 0x4e)
ELF_RELOC(R_ARM_LDRS_SB_G1, 0x4f)
ELF_RELOC(R_ARM_LDRS_SB_G2, 0x50)
ELF_RELOC(R_ARM_LDC_SB_G0, 0x51)
ELF_RELOC(R_ARM_LDC_SB_G1, 0x52)
ELF_RELOC(R_ARM_LDC_SB_G2, 0x53)
ELF_RELOC(R_ARM_MOVW_BREL_NC, 0x54)
ELF_RELOC(R_ARM_MOVT_BREL, 0x55)
ELF_RELOC(R_ARM_MOVW_BREL, 0x56)
ELF_RELOC(R_ARM_THM_MOVW_BREL_NC, 0x57)
ELF_RELOC(R_ARM_THM_MOVT_BREL, 0x58)
ELF_RELOC(R_ARM_THM_MOVW_BREL, 0x59)
ELF_RELOC(R_ARM_TLS_GOTDESC, 0x5a)
ELF_RELOC(R_ARM_TLS_CALL, 0x5b)
ELF_RELOC(R_ARM_TLS_DESCSEQ, 0x5c)
ELF_RELOC(R_ARM_THM_TLS_CALL, 0x5d)
ELF_RELOC(R_ARM_PLT32_ABS, 0x5e)
ELF_RELOC(R_ARM_GOT_ABS, 0x5f)
ELF_RELOC(R_ARM_GOT_PREL, 0x60)
ELF_RELOC(R_ARM_GOT_BREL12, 0x61)
ELF_RELOC(R_ARM_GOTOFF12, 0x62)
ELF_RELOC(R_ARM_GOTRELAX, 0x63)
ELF_RELOC(R_ARM_GNU_VTENTRY, 0x64)
ELF_RELOC(R_ARM_GNU_VTINHERIT, 0x65)
ELF_RELOC(R_ARM_THM_JUMP11, 0x66)
ELF_RELOC(R_ARM_THM_JUMP8, 0x67)
ELF_RELOC(R_ARM_TLS_GD32, 0x68)
ELF_RELOC(R_ARM_TLS_LDM32, 0x69)
ELF_RELOC(R_ARM_TLS_LDO32, 0x6a)
ELF_RELOC(R_ARM_TLS_IE32, 0x6b)
ELF_RELOC(R_ARM_TLS_LE32, 0x6c)
ELF_RELOC(R_ARM_TLS_LDO12, 0x6d)
ELF_RELOC(R_ARM_TLS_LE12, 0x6e)
ELF_RELOC(R_ARM_TLS_IE12GP, 0x6f)
ELF_RELOC(R_ARM_PRIVATE_0, 0x70)
ELF_RELOC(R_ARM_PRIVATE_1, 0x71)
ELF_RELOC(R_ARM_PRIVATE_2, 0x72)
ELF_RELOC(R_ARM_PRIVATE_3, 0x73)
ELF_RELOC(R_ARM_PRIVATE_4, 0x74)
ELF_RELOC(R_ARM_PRIVATE_5, 0x75)
ELF_RELOC(R_ARM_PRIVATE_6, 0x76)
ELF_RELOC(R_ARM_PRIVATE_7, 0x77)
ELF_RELOC(R_ARM_PRIVATE_8, 0x78)
ELF_RELOC(R_ARM_PRIVATE_9, 0x79)
ELF_RELOC(R_ARM_PRIVATE_10, 0x7a)
ELF_RELOC(R_ARM_PRIVATE_11, 0x7b)
ELF_RELOC(R_ARM_PRIVATE_12, 0x7c)
ELF_RELOC(R_ARM_PRIVATE_13, 0x7d)
ELF_RELOC(R_ARM_PRIVATE_14, 0x7e)
ELF_RELOC(R_ARM_PRIVATE_15, 0x7f)
ELF_RELOC(R_ARM_ME_TOO, 0x80)
ELF_RELOC(R_ARM_THM_TLS_DESCSEQ16, 0x81)
ELF_RELOC(R_ARM_THM_TLS_DESCSEQ32, 0x82)
ELF_RELOC(R_ARM_IRELATIVE, 0xa0)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/PowerPC64.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_PPC64_NONE, 0)
ELF_RELOC(R_PPC64_ADDR32, 1)
ELF_RELOC(R_PPC64_ADDR24, 2)
ELF_RELOC(R_PPC64_ADDR16, 3)
ELF_RELOC(R_PPC64_ADDR16_LO, 4)
ELF_RELOC(R_PPC64_ADDR16_HI, 5)
ELF_RELOC(R_PPC64_ADDR16_HA, 6)
ELF_RELOC(R_PPC64_ADDR14, 7)
ELF_RELOC(R_PPC64_ADDR14_BRTAKEN, 8)
ELF_RELOC(R_PPC64_ADDR14_BRNTAKEN, 9)
ELF_RELOC(R_PPC64_REL24, 10)
ELF_RELOC(R_PPC64_REL14, 11)
ELF_RELOC(R_PPC64_REL14_BRTAKEN, 12)
ELF_RELOC(R_PPC64_REL14_BRNTAKEN, 13)
ELF_RELOC(R_PPC64_GOT16, 14)
ELF_RELOC(R_PPC64_GOT16_LO, 15)
ELF_RELOC(R_PPC64_GOT16_HI, 16)
ELF_RELOC(R_PPC64_GOT16_HA, 17)
ELF_RELOC(R_PPC64_JMP_SLOT, 21)
ELF_RELOC(R_PPC64_REL32, 26)
ELF_RELOC(R_PPC64_ADDR64, 38)
ELF_RELOC(R_PPC64_ADDR16_HIGHER, 39)
ELF_RELOC(R_PPC64_ADDR16_HIGHERA, 40)
ELF_RELOC(R_PPC64_ADDR16_HIGHEST, 41)
ELF_RELOC(R_PPC64_ADDR16_HIGHESTA, 42)
ELF_RELOC(R_PPC64_REL64, 44)
ELF_RELOC(R_PPC64_TOC16, 47)
ELF_RELOC(R_PPC64_TOC16_LO, 48)
ELF_RELOC(R_PPC64_TOC16_HI, 49)
ELF_RELOC(R_PPC64_TOC16_HA, 50)
ELF_RELOC(R_PPC64_TOC, 51)
ELF_RELOC(R_PPC64_ADDR16_DS, 56)
ELF_RELOC(R_PPC64_ADDR16_LO_DS, 57)
ELF_RELOC(R_PPC64_GOT16_DS, 58)
ELF_RELOC(R_PPC64_GOT16_LO_DS, 59)
ELF_RELOC(R_PPC64_TOC16_DS, 63)
ELF_RELOC(R_PPC64_TOC16_LO_DS, 64)
ELF_RELOC(R_PPC64_TLS, 67)
ELF_RELOC(R_PPC64_DTPMOD64, 68)
ELF_RELOC(R_PPC64_TPREL16, 69)
ELF_RELOC(R_PPC64_TPREL16_LO, 70)
ELF_RELOC(R_PPC64_TPREL16_HI, 71)
ELF_RELOC(R_PPC64_TPREL16_HA, 72)
ELF_RELOC(R_PPC64_TPREL64, 73)
ELF_RELOC(R_PPC64_DTPREL16, 74)
ELF_RELOC(R_PPC64_DTPREL16_LO, 75)
ELF_RELOC(R_PPC64_DTPREL16_HI, 76)
ELF_RELOC(R_PPC64_DTPREL16_HA, 77)
ELF_RELOC(R_PPC64_DTPREL64, 78)
ELF_RELOC(R_PPC64_GOT_TLSGD16, 79)
ELF_RELOC(R_PPC64_GOT_TLSGD16_LO, 80)
ELF_RELOC(R_PPC64_GOT_TLSGD16_HI, 81)
ELF_RELOC(R_PPC64_GOT_TLSGD16_HA, 82)
ELF_RELOC(R_PPC64_GOT_TLSLD16, 83)
ELF_RELOC(R_PPC64_GOT_TLSLD16_LO, 84)
ELF_RELOC(R_PPC64_GOT_TLSLD16_HI, 85)
ELF_RELOC(R_PPC64_GOT_TLSLD16_HA, 86)
ELF_RELOC(R_PPC64_GOT_TPREL16_DS, 87)
ELF_RELOC(R_PPC64_GOT_TPREL16_LO_DS, 88)
ELF_RELOC(R_PPC64_GOT_TPREL16_HI, 89)
ELF_RELOC(R_PPC64_GOT_TPREL16_HA, 90)
ELF_RELOC(R_PPC64_GOT_DTPREL16_DS, 91)
ELF_RELOC(R_PPC64_GOT_DTPREL16_LO_DS, 92)
ELF_RELOC(R_PPC64_GOT_DTPREL16_HI, 93)
ELF_RELOC(R_PPC64_GOT_DTPREL16_HA, 94)
ELF_RELOC(R_PPC64_TPREL16_DS, 95)
ELF_RELOC(R_PPC64_TPREL16_LO_DS, 96)
ELF_RELOC(R_PPC64_TPREL16_HIGHER, 97)
ELF_RELOC(R_PPC64_TPREL16_HIGHERA, 98)
ELF_RELOC(R_PPC64_TPREL16_HIGHEST, 99)
ELF_RELOC(R_PPC64_TPREL16_HIGHESTA, 100)
ELF_RELOC(R_PPC64_DTPREL16_DS, 101)
ELF_RELOC(R_PPC64_DTPREL16_LO_DS, 102)
ELF_RELOC(R_PPC64_DTPREL16_HIGHER, 103)
ELF_RELOC(R_PPC64_DTPREL16_HIGHERA, 104)
ELF_RELOC(R_PPC64_DTPREL16_HIGHEST, 105)
ELF_RELOC(R_PPC64_DTPREL16_HIGHESTA, 106)
ELF_RELOC(R_PPC64_TLSGD, 107)
ELF_RELOC(R_PPC64_TLSLD, 108)
ELF_RELOC(R_PPC64_REL16, 249)
ELF_RELOC(R_PPC64_REL16_LO, 250)
ELF_RELOC(R_PPC64_REL16_HI, 251)
ELF_RELOC(R_PPC64_REL16_HA, 252)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/PowerPC.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_PPC_NONE, 0) /* No relocation. */
ELF_RELOC(R_PPC_ADDR32, 1)
ELF_RELOC(R_PPC_ADDR24, 2)
ELF_RELOC(R_PPC_ADDR16, 3)
ELF_RELOC(R_PPC_ADDR16_LO, 4)
ELF_RELOC(R_PPC_ADDR16_HI, 5)
ELF_RELOC(R_PPC_ADDR16_HA, 6)
ELF_RELOC(R_PPC_ADDR14, 7)
ELF_RELOC(R_PPC_ADDR14_BRTAKEN, 8)
ELF_RELOC(R_PPC_ADDR14_BRNTAKEN, 9)
ELF_RELOC(R_PPC_REL24, 10)
ELF_RELOC(R_PPC_REL14, 11)
ELF_RELOC(R_PPC_REL14_BRTAKEN, 12)
ELF_RELOC(R_PPC_REL14_BRNTAKEN, 13)
ELF_RELOC(R_PPC_GOT16, 14)
ELF_RELOC(R_PPC_GOT16_LO, 15)
ELF_RELOC(R_PPC_GOT16_HI, 16)
ELF_RELOC(R_PPC_GOT16_HA, 17)
ELF_RELOC(R_PPC_PLTREL24, 18)
ELF_RELOC(R_PPC_JMP_SLOT, 21)
ELF_RELOC(R_PPC_LOCAL24PC, 23)
ELF_RELOC(R_PPC_REL32, 26)
ELF_RELOC(R_PPC_TLS, 67)
ELF_RELOC(R_PPC_DTPMOD32, 68)
ELF_RELOC(R_PPC_TPREL16, 69)
ELF_RELOC(R_PPC_TPREL16_LO, 70)
ELF_RELOC(R_PPC_TPREL16_HI, 71)
ELF_RELOC(R_PPC_TPREL16_HA, 72)
ELF_RELOC(R_PPC_TPREL32, 73)
ELF_RELOC(R_PPC_DTPREL16, 74)
ELF_RELOC(R_PPC_DTPREL16_LO, 75)
ELF_RELOC(R_PPC_DTPREL16_HI, 76)
ELF_RELOC(R_PPC_DTPREL16_HA, 77)
ELF_RELOC(R_PPC_DTPREL32, 78)
ELF_RELOC(R_PPC_GOT_TLSGD16, 79)
ELF_RELOC(R_PPC_GOT_TLSGD16_LO, 80)
ELF_RELOC(R_PPC_GOT_TLSGD16_HI, 81)
ELF_RELOC(R_PPC_GOT_TLSGD16_HA, 82)
ELF_RELOC(R_PPC_GOT_TLSLD16, 83)
ELF_RELOC(R_PPC_GOT_TLSLD16_LO, 84)
ELF_RELOC(R_PPC_GOT_TLSLD16_HI, 85)
ELF_RELOC(R_PPC_GOT_TLSLD16_HA, 86)
ELF_RELOC(R_PPC_GOT_TPREL16, 87)
ELF_RELOC(R_PPC_GOT_TPREL16_LO, 88)
ELF_RELOC(R_PPC_GOT_TPREL16_HI, 89)
ELF_RELOC(R_PPC_GOT_TPREL16_HA, 90)
ELF_RELOC(R_PPC_GOT_DTPREL16, 91)
ELF_RELOC(R_PPC_GOT_DTPREL16_LO, 92)
ELF_RELOC(R_PPC_GOT_DTPREL16_HI, 93)
ELF_RELOC(R_PPC_GOT_DTPREL16_HA, 94)
ELF_RELOC(R_PPC_TLSGD, 95)
ELF_RELOC(R_PPC_TLSLD, 96)
ELF_RELOC(R_PPC_REL16, 249)
ELF_RELOC(R_PPC_REL16_LO, 250)
ELF_RELOC(R_PPC_REL16_HI, 251)
ELF_RELOC(R_PPC_REL16_HA, 252)
|
0 | repos/DirectXShaderCompiler/include/llvm/Support | repos/DirectXShaderCompiler/include/llvm/Support/ELFRelocs/SystemZ.def |
#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif
ELF_RELOC(R_390_NONE, 0)
ELF_RELOC(R_390_8, 1)
ELF_RELOC(R_390_12, 2)
ELF_RELOC(R_390_16, 3)
ELF_RELOC(R_390_32, 4)
ELF_RELOC(R_390_PC32, 5)
ELF_RELOC(R_390_GOT12, 6)
ELF_RELOC(R_390_GOT32, 7)
ELF_RELOC(R_390_PLT32, 8)
ELF_RELOC(R_390_COPY, 9)
ELF_RELOC(R_390_GLOB_DAT, 10)
ELF_RELOC(R_390_JMP_SLOT, 11)
ELF_RELOC(R_390_RELATIVE, 12)
ELF_RELOC(R_390_GOTOFF, 13)
ELF_RELOC(R_390_GOTPC, 14)
ELF_RELOC(R_390_GOT16, 15)
ELF_RELOC(R_390_PC16, 16)
ELF_RELOC(R_390_PC16DBL, 17)
ELF_RELOC(R_390_PLT16DBL, 18)
ELF_RELOC(R_390_PC32DBL, 19)
ELF_RELOC(R_390_PLT32DBL, 20)
ELF_RELOC(R_390_GOTPCDBL, 21)
ELF_RELOC(R_390_64, 22)
ELF_RELOC(R_390_PC64, 23)
ELF_RELOC(R_390_GOT64, 24)
ELF_RELOC(R_390_PLT64, 25)
ELF_RELOC(R_390_GOTENT, 26)
ELF_RELOC(R_390_GOTOFF16, 27)
ELF_RELOC(R_390_GOTOFF64, 28)
ELF_RELOC(R_390_GOTPLT12, 29)
ELF_RELOC(R_390_GOTPLT16, 30)
ELF_RELOC(R_390_GOTPLT32, 31)
ELF_RELOC(R_390_GOTPLT64, 32)
ELF_RELOC(R_390_GOTPLTENT, 33)
ELF_RELOC(R_390_PLTOFF16, 34)
ELF_RELOC(R_390_PLTOFF32, 35)
ELF_RELOC(R_390_PLTOFF64, 36)
ELF_RELOC(R_390_TLS_LOAD, 37)
ELF_RELOC(R_390_TLS_GDCALL, 38)
ELF_RELOC(R_390_TLS_LDCALL, 39)
ELF_RELOC(R_390_TLS_GD32, 40)
ELF_RELOC(R_390_TLS_GD64, 41)
ELF_RELOC(R_390_TLS_GOTIE12, 42)
ELF_RELOC(R_390_TLS_GOTIE32, 43)
ELF_RELOC(R_390_TLS_GOTIE64, 44)
ELF_RELOC(R_390_TLS_LDM32, 45)
ELF_RELOC(R_390_TLS_LDM64, 46)
ELF_RELOC(R_390_TLS_IE32, 47)
ELF_RELOC(R_390_TLS_IE64, 48)
ELF_RELOC(R_390_TLS_IEENT, 49)
ELF_RELOC(R_390_TLS_LE32, 50)
ELF_RELOC(R_390_TLS_LE64, 51)
ELF_RELOC(R_390_TLS_LDO32, 52)
ELF_RELOC(R_390_TLS_LDO64, 53)
ELF_RELOC(R_390_TLS_DTPMOD, 54)
ELF_RELOC(R_390_TLS_DTPOFF, 55)
ELF_RELOC(R_390_TLS_TPOFF, 56)
ELF_RELOC(R_390_20, 57)
ELF_RELOC(R_390_GOT20, 58)
ELF_RELOC(R_390_GOTPLT20, 59)
ELF_RELOC(R_390_TLS_GOTIE20, 60)
ELF_RELOC(R_390_IRELATIVE, 61)
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/PassPrinters/PassPrinters.h | //===- PassPrinters.h - Utilities to print analysis info for passes -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Utilities to print analysis info for various kinds of passes.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_OPT_PASSPRINTERS_H
#define LLVM_TOOLS_OPT_PASSPRINTERS_H
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
namespace llvm {
class BasicBlockPass;
class CallGraphSCCPass;
class FunctionPass;
class ModulePass;
class LoopPass;
class PassInfo;
class RegionPass;
class raw_ostream;
FunctionPass *createFunctionPassPrinter(const PassInfo *PI, raw_ostream &out,
bool Quiet);
CallGraphSCCPass *createCallGraphPassPrinter(const PassInfo *PI,
raw_ostream &out, bool Quiet);
ModulePass *createModulePassPrinter(const PassInfo *PI, raw_ostream &out,
bool Quiet);
LoopPass *createLoopPassPrinter(const PassInfo *PI, raw_ostream &out,
bool Quiet);
RegionPass *createRegionPassPrinter(const PassInfo *PI, raw_ostream &out,
bool Quiet);
BasicBlockPass *createBasicBlockPassPrinter(const PassInfo *PI,
raw_ostream &out, bool Quiet);
} // namespace llvm
#endif // LLVM_TOOLS_OPT_PASSPRINTERS_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/IndexedMap.h | //===- llvm/ADT/IndexedMap.h - An index map implementation ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an indexed map. The index map template takes two
// types. The first is the mapped type and the second is a functor
// that maps its argument to a size_t. On instantiation a "null" value
// can be provided to be used as a "does not exist" indicator in the
// map. A member function grow() is provided that given the value of
// the maximally indexed key (the argument of the functor) makes sure
// the map has enough space for it.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INDEXEDMAP_H
#define LLVM_ADT_INDEXEDMAP_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include <cassert>
#include <functional>
namespace llvm {
template <typename T, typename ToIndexT = llvm::identity<unsigned> >
class IndexedMap {
typedef typename ToIndexT::argument_type IndexT;
// Prefer SmallVector with zero inline storage over std::vector. IndexedMaps
// can grow very large and SmallVector grows more efficiently as long as T
// is trivially copyable.
typedef SmallVector<T, 0> StorageT;
StorageT storage_;
T nullVal_;
ToIndexT toIndex_;
public:
IndexedMap() : nullVal_(T()) { }
explicit IndexedMap(const T& val) : nullVal_(val) { }
typename StorageT::reference operator[](IndexT n) {
assert(toIndex_(n) < storage_.size() && "index out of bounds!");
return storage_[toIndex_(n)];
}
typename StorageT::const_reference operator[](IndexT n) const {
assert(toIndex_(n) < storage_.size() && "index out of bounds!");
return storage_[toIndex_(n)];
}
void reserve(typename StorageT::size_type s) {
storage_.reserve(s);
}
void resize(typename StorageT::size_type s) {
storage_.resize(s, nullVal_);
}
void clear() {
storage_.clear();
}
void grow(IndexT n) {
unsigned NewSize = toIndex_(n) + 1;
if (NewSize > storage_.size())
resize(NewSize);
}
bool inBounds(IndexT n) const {
return toIndex_(n) < storage_.size();
}
typename StorageT::size_type size() const {
return storage_.size();
}
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/IntEqClasses.h | //===-- llvm/ADT/IntEqClasses.h - Equiv. Classes of Integers ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Equivalence classes for small integers. This is a mapping of the integers
// 0 .. N-1 into M equivalence classes numbered 0 .. M-1.
//
// Initially each integer has its own equivalence class. Classes are joined by
// passing a representative member of each class to join().
//
// Once the classes are built, compress() will number them 0 .. M-1 and prevent
// further changes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTEQCLASSES_H
#define LLVM_ADT_INTEQCLASSES_H
#include "llvm/ADT/SmallVector.h"
namespace llvm {
class IntEqClasses {
/// EC - When uncompressed, map each integer to a smaller member of its
/// equivalence class. The class leader is the smallest member and maps to
/// itself.
///
/// When compressed, EC[i] is the equivalence class of i.
SmallVector<unsigned, 8> EC;
/// NumClasses - The number of equivalence classes when compressed, or 0 when
/// uncompressed.
unsigned NumClasses;
public:
/// IntEqClasses - Create an equivalence class mapping for 0 .. N-1.
IntEqClasses(unsigned N = 0) : NumClasses(0) { grow(N); }
/// grow - Increase capacity to hold 0 .. N-1, putting new integers in unique
/// equivalence classes.
/// This requires an uncompressed map.
void grow(unsigned N);
/// clear - Clear all classes so that grow() will assign a unique class to
/// every integer.
void clear() {
EC.clear();
NumClasses = 0;
}
/// join - Join the equivalence classes of a and b. After joining classes,
/// findLeader(a) == findLeader(b).
/// This requires an uncompressed map.
void join(unsigned a, unsigned b);
/// findLeader - Compute the leader of a's equivalence class. This is the
/// smallest member of the class.
/// This requires an uncompressed map.
unsigned findLeader(unsigned a) const;
/// compress - Compress equivalence classes by numbering them 0 .. M.
/// This makes the equivalence class map immutable.
void compress();
/// getNumClasses - Return the number of equivalence classes after compress()
/// was called.
unsigned getNumClasses() const { return NumClasses; }
/// operator[] - Return a's equivalence class number, 0 .. getNumClasses()-1.
/// This requires a compressed map.
unsigned operator[](unsigned a) const {
assert(NumClasses && "operator[] called before compress()");
return EC[a];
}
/// uncompress - Change back to the uncompressed representation that allows
/// editing.
void uncompress();
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/EquivalenceClasses.h | //===-- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Generic implementation of equivalence classes through the use Tarjan's
// efficient union-find algorithm.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
#define LLVM_ADT_EQUIVALENCECLASSES_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <cstddef>
#include <set>
namespace llvm {
/// EquivalenceClasses - This represents a collection of equivalence classes and
/// supports three efficient operations: insert an element into a class of its
/// own, union two classes, and find the class for a given element. In
/// addition to these modification methods, it is possible to iterate over all
/// of the equivalence classes and all of the elements in a class.
///
/// This implementation is an efficient implementation that only stores one copy
/// of the element being indexed per entry in the set, and allows any arbitrary
/// type to be indexed (as long as it can be ordered with operator<).
///
/// Here is a simple example using integers:
///
/// \code
/// EquivalenceClasses<int> EC;
/// EC.unionSets(1, 2); // insert 1, 2 into the same set
/// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets
/// EC.unionSets(5, 1); // merge the set for 1 with 5's set.
///
/// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
/// I != E; ++I) { // Iterate over all of the equivalence sets.
/// if (!I->isLeader()) continue; // Ignore non-leader sets.
/// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
/// MI != EC.member_end(); ++MI) // Loop over members in this set.
/// cerr << *MI << " "; // Print member.
/// cerr << "\n"; // Finish set.
/// }
/// \endcode
///
/// This example prints:
/// 4
/// 5 1 2
///
template <class ElemTy>
class EquivalenceClasses {
/// ECValue - The EquivalenceClasses data structure is just a set of these.
/// Each of these represents a relation for a value. First it stores the
/// value itself, which provides the ordering that the set queries. Next, it
/// provides a "next pointer", which is used to enumerate all of the elements
/// in the unioned set. Finally, it defines either a "end of list pointer" or
/// "leader pointer" depending on whether the value itself is a leader. A
/// "leader pointer" points to the node that is the leader for this element,
/// if the node is not a leader. A "end of list pointer" points to the last
/// node in the list of members of this list. Whether or not a node is a
/// leader is determined by a bit stolen from one of the pointers.
class ECValue {
friend class EquivalenceClasses;
mutable const ECValue *Leader, *Next;
ElemTy Data;
// ECValue ctor - Start out with EndOfList pointing to this node, Next is
// Null, isLeader = true.
ECValue(const ElemTy &Elt)
: Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
const ECValue *getLeader() const {
if (isLeader()) return this;
if (Leader->isLeader()) return Leader;
// Path compression.
return Leader = Leader->getLeader();
}
const ECValue *getEndOfList() const {
assert(isLeader() && "Cannot get the end of a list for a non-leader!");
return Leader;
}
void setNext(const ECValue *NewNext) const {
assert(getNext() == nullptr && "Already has a next pointer!");
Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
}
public:
ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
Data(RHS.Data) {
// Only support copying of singleton nodes.
assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
}
bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
bool isLeader() const { return (intptr_t)Next & 1; }
const ElemTy &getData() const { return Data; }
const ECValue *getNext() const {
return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
}
template<typename T>
bool operator<(const T &Val) const { return Data < Val; }
};
/// TheMapping - This implicitly provides a mapping from ElemTy values to the
/// ECValues, it just keeps the key as part of the value.
std::set<ECValue> TheMapping;
public:
EquivalenceClasses() {}
EquivalenceClasses(const EquivalenceClasses &RHS) {
operator=(RHS);
}
const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
TheMapping.clear();
for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
if (I->isLeader()) {
member_iterator MI = RHS.member_begin(I);
member_iterator LeaderIt = member_begin(insert(*MI));
for (++MI; MI != member_end(); ++MI)
unionSets(LeaderIt, member_begin(insert(*MI)));
}
return *this;
}
//===--------------------------------------------------------------------===//
// Inspection methods
//
/// iterator* - Provides a way to iterate over all values in the set.
typedef typename std::set<ECValue>::const_iterator iterator;
iterator begin() const { return TheMapping.begin(); }
iterator end() const { return TheMapping.end(); }
bool empty() const { return TheMapping.empty(); }
/// member_* Iterate over the members of an equivalence class.
///
class member_iterator;
member_iterator member_begin(iterator I) const {
// Only leaders provide anything to iterate over.
return member_iterator(I->isLeader() ? &*I : nullptr);
}
member_iterator member_end() const {
return member_iterator(nullptr);
}
/// findValue - Return an iterator to the specified value. If it does not
/// exist, end() is returned.
iterator findValue(const ElemTy &V) const {
return TheMapping.find(V);
}
/// getLeaderValue - Return the leader for the specified value that is in the
/// set. It is an error to call this method for a value that is not yet in
/// the set. For that, call getOrInsertLeaderValue(V).
const ElemTy &getLeaderValue(const ElemTy &V) const {
member_iterator MI = findLeader(V);
assert(MI != member_end() && "Value is not in the set!");
return *MI;
}
/// getOrInsertLeaderValue - Return the leader for the specified value that is
/// in the set. If the member is not in the set, it is inserted, then
/// returned.
const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
member_iterator MI = findLeader(insert(V));
assert(MI != member_end() && "Value is not in the set!");
return *MI;
}
/// getNumClasses - Return the number of equivalence classes in this set.
/// Note that this is a linear time operation.
unsigned getNumClasses() const {
unsigned NC = 0;
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->isLeader()) ++NC;
return NC;
}
//===--------------------------------------------------------------------===//
// Mutation methods
/// insert - Insert a new value into the union/find set, ignoring the request
/// if the value already exists.
iterator insert(const ElemTy &Data) {
return TheMapping.insert(ECValue(Data)).first;
}
/// findLeader - Given a value in the set, return a member iterator for the
/// equivalence class it is in. This does the path-compression part that
/// makes union-find "union findy". This returns an end iterator if the value
/// is not in the equivalence class.
///
member_iterator findLeader(iterator I) const {
if (I == TheMapping.end()) return member_end();
return member_iterator(I->getLeader());
}
member_iterator findLeader(const ElemTy &V) const {
return findLeader(TheMapping.find(V));
}
/// union - Merge the two equivalence sets for the specified values, inserting
/// them if they do not already exist in the equivalence set.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
iterator V1I = insert(V1), V2I = insert(V2);
return unionSets(findLeader(V1I), findLeader(V2I));
}
member_iterator unionSets(member_iterator L1, member_iterator L2) {
assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
if (L1 == L2) return L1; // Unifying the same two sets, noop.
// Otherwise, this is a real union operation. Set the end of the L1 list to
// point to the L2 leader node.
const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
L1LV.getEndOfList()->setNext(&L2LV);
// Update L1LV's end of list pointer.
L1LV.Leader = L2LV.getEndOfList();
// Clear L2's leader flag:
L2LV.Next = L2LV.getNext();
// L2's leader is now L1.
L2LV.Leader = &L1LV;
return L1;
}
class member_iterator {
const ECValue *Node;
friend class EquivalenceClasses;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = const ElemTy;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
explicit member_iterator() {}
explicit member_iterator(const ECValue *N) : Node(N) {}
reference operator*() const {
assert(Node != nullptr && "Dereferencing end()!");
return Node->getData();
}
pointer operator->() const { return &operator*(); }
member_iterator &operator++() {
assert(Node != nullptr && "++'d off the end of the list!");
Node = Node->getNext();
return *this;
}
member_iterator operator++(int) { // postincrement operators.
member_iterator tmp = *this;
++*this;
return tmp;
}
bool operator==(const member_iterator &RHS) const {
return Node == RHS.Node;
}
bool operator!=(const member_iterator &RHS) const {
return Node != RHS.Node;
}
};
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/Optional.h | //===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Optional, a template class modeled in the spirit of
// OCaml's 'opt' variant. The idea is to strongly type whether or not
// a value can be optional.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OPTIONAL_H
#define LLVM_ADT_OPTIONAL_H
#include "llvm/ADT/None.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <new>
#include <utility>
namespace llvm {
template<typename T>
class Optional {
AlignedCharArrayUnion<T> storage;
bool hasVal;
public:
typedef T value_type;
Optional(NoneType) : hasVal(false) {}
explicit Optional() : hasVal(false) {}
Optional(const T &y) : hasVal(true) {
new (storage.buffer) T(y);
}
Optional(const Optional &O) : hasVal(O.hasVal) {
if (hasVal)
new (storage.buffer) T(*O);
}
Optional(T &&y) : hasVal(true) {
new (storage.buffer) T(std::forward<T>(y));
}
Optional(Optional<T> &&O) : hasVal(O) {
if (O) {
new (storage.buffer) T(std::move(*O));
O.reset();
}
}
Optional &operator=(T &&y) {
if (hasVal)
**this = std::move(y);
else {
new (storage.buffer) T(std::move(y));
hasVal = true;
}
return *this;
}
Optional &operator=(Optional &&O) {
if (!O)
reset();
else {
*this = std::move(*O);
O.reset();
}
return *this;
}
/// Create a new object by constructing it in place with the given arguments.
template<typename ...ArgTypes>
void emplace(ArgTypes &&...Args) {
reset();
hasVal = true;
new (storage.buffer) T(std::forward<ArgTypes>(Args)...);
}
static inline Optional create(const T* y) {
return y ? Optional(*y) : Optional();
}
// FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
// could be made more efficient by passing by value, possibly unifying them
// with the rvalue versions above - but this could place a different set of
// requirements (notably: the existence of a default ctor) when implemented
// in that way. Careful SFINAE to avoid such pitfalls would be required.
Optional &operator=(const T &y) {
if (hasVal)
**this = y;
else {
new (storage.buffer) T(y);
hasVal = true;
}
return *this;
}
Optional &operator=(const Optional &O) {
if (!O)
reset();
else
*this = *O;
return *this;
}
void reset() {
if (hasVal) {
(**this).~T();
hasVal = false;
}
}
~Optional() {
reset();
}
const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
explicit operator bool() const { return hasVal; }
bool hasValue() const { return hasVal; }
const T* operator->() const { return getPointer(); }
T* operator->() { return getPointer(); }
const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
template <typename U>
LLVM_CONSTEXPR T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
return hasValue() ? getValue() : std::forward<U>(value);
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }
template <typename U>
T getValueOr(U &&value) && {
return hasValue() ? std::move(getValue()) : std::forward<U>(value);
}
#endif
};
template <typename T> struct isPodLike;
template <typename T> struct isPodLike<Optional<T> > {
// An Optional<T> is pod-like if T is.
static const bool value = isPodLike<T>::value;
};
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator==(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator!=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>(const Optional<T> &X, const Optional<U> &Y);
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/APFloat.h | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief
/// This file declares a class to represent arbitrary precision floating point
/// values and provide a variety of arithmetic operations on them.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H
#include "llvm/ADT/APInt.h"
namespace llvm {
struct fltSemantics;
class APSInt;
class StringRef;
/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
enum lostFraction { // Example of truncated bits:
lfExactlyZero, // 000000
lfLessThanHalf, // 0xxxxx x's not all zero
lfExactlyHalf, // 100000
lfMoreThanHalf // 1xxxxx x's not all zero
};
/// \brief A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// APFloat uses bignum integer arithmetic as provided by static functions in
/// the APInt class. The library will work with bignum integers whose parts are
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host. Performance should nonetheless be reasonable,
/// particularly for its intended use. It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations. Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer. New rounding modes
/// (e.g. away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision). Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together. The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller. It also converts
/// floating point numbers to hexadecimal text as per the C99 %a and %A
/// conversions. The output precision (or alternatively the natural minimal
/// precision) can be specified; if the requested precision is less than the
/// natural precision the output is correctly rounded for the specified rounding
/// mode.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Conversion to decimal text is not currently implemented.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer parts. After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit. For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set. The sign of zeroes and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations. The exponent is implicitly all 1 bits.
///
/// APFloat does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand as
/// 0.
///
/// TODO
/// ====
///
/// Some features that may or may not be worth adding:
///
/// Binary to decimal conversion (hard).
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
///
class APFloat {
public:
/// A signed type to represent a floating point numbers unbiased exponent.
typedef signed short ExponentType;
/// \name Floating Point Semantics.
/// @{
static const fltSemantics IEEEhalf;
static const fltSemantics IEEEsingle;
static const fltSemantics IEEEdouble;
static const fltSemantics IEEEquad;
static const fltSemantics PPCDoubleDouble;
static const fltSemantics x87DoubleExtended;
/// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
/// anything real.
static const fltSemantics Bogus;
/// @}
static unsigned int semanticsPrecision(const fltSemantics &);
/// IEEE-754R 5.11: Floating Point Comparison Relations.
enum cmpResult {
cmpLessThan,
cmpEqual,
cmpGreaterThan,
cmpUnordered
};
/// IEEE-754R 4.3: Rounding-direction attributes.
enum roundingMode {
rmNearestTiesToEven,
rmTowardPositive,
rmTowardNegative,
rmTowardZero,
rmNearestTiesToAway
};
/// IEEE-754R 7: Default exception handling.
///
/// opUnderflow or opOverflow are always returned or-ed with opInexact.
enum opStatus {
opOK = 0x00,
opInvalidOp = 0x01,
opDivByZero = 0x02,
opOverflow = 0x04,
opUnderflow = 0x08,
opInexact = 0x10
};
/// Category of internally-represented number.
enum fltCategory {
fcInfinity,
fcNaN,
fcNormal,
fcZero
};
/// Convenience enum used to construct an uninitialized APFloat.
enum uninitializedTag {
uninitialized
};
/// \name Constructors
/// @{
APFloat(const fltSemantics &); // Default construct to 0.0
APFloat(const fltSemantics &, StringRef);
APFloat(const fltSemantics &, integerPart);
APFloat(const fltSemantics &, uninitializedTag);
APFloat(const fltSemantics &, const APInt &);
explicit APFloat(double d);
explicit APFloat(float f);
APFloat(const APFloat &);
APFloat(APFloat &&);
~APFloat();
/// @}
/// \brief Returns whether this instance allocated memory.
bool needsCleanup() const { return partCount() > 1; }
/// \name Convenience "constructors"
/// @{
/// Factory for Positive and Negative Zero.
///
/// \param Negative True iff the number should be negative.
static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
APFloat Val(Sem, uninitialized);
Val.makeZero(Negative);
return Val;
}
/// Factory for Positive and Negative Infinity.
///
/// \param Negative True iff the number should be negative.
static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
APFloat Val(Sem, uninitialized);
Val.makeInf(Negative);
return Val;
}
/// Factory for QNaN values.
///
/// \param Negative - True iff the NaN generated should be negative.
/// \param type - The unspecified fill bits for creating the NaN, 0 by
/// default. The value is truncated as necessary.
static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
unsigned type = 0) {
if (type) {
APInt fill(64, type);
return getQNaN(Sem, Negative, &fill);
} else {
return getQNaN(Sem, Negative, nullptr);
}
}
/// Factory for QNaN values.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
const APInt *payload = nullptr) {
return makeNaN(Sem, false, Negative, payload);
}
/// Factory for SNaN values.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
const APInt *payload = nullptr) {
return makeNaN(Sem, true, Negative, payload);
}
/// Returns the largest finite number in the given semantics.
///
/// \param Negative - True iff the number should be negative
static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
/// Returns the smallest (by magnitude) finite number in the given semantics.
/// Might be denormalized, which implies a relative loss of precision.
///
/// \param Negative - True iff the number should be negative
static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
/// Returns the smallest (by magnitude) normalized finite number in the given
/// semantics.
///
/// \param Negative - True iff the number should be negative
static APFloat getSmallestNormalized(const fltSemantics &Sem,
bool Negative = false);
/// Returns a float which is bitcasted from an all one value int.
///
/// \param BitWidth - Select float type
/// \param isIEEE - If 128 bit number, select between PPC and IEEE
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
/// Returns the size of the floating point number (in bits) in the given
/// semantics.
static unsigned getSizeInBits(const fltSemantics &Sem);
/// @}
/// Used to insert APFloat objects, or objects that contain APFloat objects,
/// into FoldingSets.
void Profile(FoldingSetNodeID &NID) const;
/// \name Arithmetic
/// @{
opStatus add(const APFloat &, roundingMode);
opStatus subtract(const APFloat &, roundingMode);
opStatus multiply(const APFloat &, roundingMode);
opStatus divide(const APFloat &, roundingMode);
/// IEEE remainder.
opStatus remainder(const APFloat &);
/// C fmod, or llvm frem.
opStatus mod(const APFloat &, roundingMode);
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
opStatus roundToIntegral(roundingMode);
/// IEEE-754R 5.3.1: nextUp/nextDown.
opStatus next(bool nextDown);
/// \brief Operator+ overload which provides the default
/// \c nmNearestTiesToEven rounding mode and *no* error checking.
APFloat operator+(const APFloat &RHS) const {
APFloat Result = *this;
Result.add(RHS, rmNearestTiesToEven);
return Result;
}
/// \brief Operator- overload which provides the default
/// \c nmNearestTiesToEven rounding mode and *no* error checking.
APFloat operator-(const APFloat &RHS) const {
APFloat Result = *this;
Result.subtract(RHS, rmNearestTiesToEven);
return Result;
}
/// \brief Operator* overload which provides the default
/// \c nmNearestTiesToEven rounding mode and *no* error checking.
APFloat operator*(const APFloat &RHS) const {
APFloat Result = *this;
Result.multiply(RHS, rmNearestTiesToEven);
return Result;
}
/// \brief Operator/ overload which provides the default
/// \c nmNearestTiesToEven rounding mode and *no* error checking.
APFloat operator/(const APFloat &RHS) const {
APFloat Result = *this;
Result.divide(RHS, rmNearestTiesToEven);
return Result;
}
/// @}
/// \name Sign operations.
/// @{
void changeSign();
void clearSign();
void copySign(const APFloat &);
/// \brief A static helper to produce a copy of an APFloat value with its sign
/// copied from some other APFloat.
static APFloat copySign(APFloat Value, const APFloat &Sign) {
Value.copySign(Sign);
return Value;
}
/// @}
/// \name Conversions
/// @{
opStatus convert(const fltSemantics &, roundingMode, bool *);
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
bool *) const;
opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
opStatus convertFromAPInt(const APInt &, bool, roundingMode);
opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
bool, roundingMode);
opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
bool, roundingMode);
opStatus convertFromString(StringRef, roundingMode);
APInt bitcastToAPInt() const;
double convertToDouble() const;
float convertToFloat() const;
/// @}
/// The definition of equality is not straightforward for floating point, so
/// we won't use operator==. Use one of the following, or write whatever it
/// is you really mean.
bool operator==(const APFloat &) const = delete;
/// IEEE comparison with another floating point number (NaNs compare
/// unordered, 0==-0).
cmpResult compare(const APFloat &) const;
/// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
bool bitwiseIsEqual(const APFloat &) const;
#if 0 // HLSL Change - dst should be _Out_writes_(constant), but this turns out to be unused in any case
/// Write out a hexadecimal representation of the floating point value to DST,
/// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
/// Return the number of characters written, excluding the terminating NUL.
unsigned int convertToHexString(char *dst, unsigned int hexDigits,
bool upperCase, roundingMode) const;
#endif // HLSL Change
/// \name IEEE-754R 5.7.2 General operations.
/// @{
/// IEEE-754R isSignMinus: Returns true if and only if the current value is
/// negative.
///
/// This applies to zeros and NaNs as well.
bool isNegative() const { return sign; }
/// IEEE-754R isNormal: Returns true if and only if the current value is normal.
///
/// This implies that the current value of the float is not zero, subnormal,
/// infinite, or NaN following the definition of normality from IEEE-754R.
bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
/// Returns true if and only if the current value is zero, subnormal, or
/// normal.
///
/// This means that the value is not infinite or NaN.
bool isFinite() const { return !isNaN() && !isInfinity(); }
/// Returns true if and only if the float is plus or minus zero.
bool isZero() const { return category == fcZero; }
/// IEEE-754R isSubnormal(): Returns true if and only if the float is a
/// denormal.
bool isDenormal() const;
/// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
bool isInfinity() const { return category == fcInfinity; }
/// Returns true if and only if the float is a quiet or signaling NaN.
bool isNaN() const { return category == fcNaN; }
/// Returns true if and only if the float is a signaling NaN.
bool isSignaling() const;
/// @}
/// \name Simple Queries
/// @{
fltCategory getCategory() const { return category; }
const fltSemantics &getSemantics() const { return *semantics; }
bool isNonZero() const { return category != fcZero; }
bool isFiniteNonZero() const { return isFinite() && !isZero(); }
bool isPosZero() const { return isZero() && !isNegative(); }
bool isNegZero() const { return isZero() && isNegative(); }
/// Returns true if and only if the number has the smallest possible non-zero
/// magnitude in the current semantics.
bool isSmallest() const;
/// Returns true if and only if the number has the largest possible finite
/// magnitude in the current semantics.
bool isLargest() const;
/// @}
APFloat &operator=(const APFloat &);
APFloat &operator=(APFloat &&);
/// \brief Overload to compute a hash code for an APFloat value.
///
/// Note that the use of hash codes for floating point values is in general
/// frought with peril. Equality is hard to define for these values. For
/// example, should negative and positive zero hash to different codes? Are
/// they equal or not? This hash value implementation specifically
/// emphasizes producing different codes for different inputs in order to
/// be used in canonicalization and memoization. As such, equality is
/// bitwiseIsEqual, and 0 != -0.
friend hash_code hash_value(const APFloat &Arg);
/// Converts this value into a decimal string.
///
/// \param FormatPrecision The maximum number of digits of
/// precision to output. If there are fewer digits available,
/// zero padding will not be used unless the value is
/// integral and small enough to be expressed in
/// FormatPrecision digits. 0 means to use the natural
/// precision of the number.
/// \param FormatMaxPadding The maximum number of zeros to
/// consider inserting before falling back to scientific
/// notation. 0 means to always use scientific notation.
///
/// Number Precision MaxPadding Result
/// ------ --------- ---------- ------
/// 1.01E+4 5 2 10100
/// 1.01E+4 4 2 1.01E+4
/// 1.01E+4 5 1 1.01E+4
/// 1.01E-2 5 2 0.0101
/// 1.01E-2 4 2 0.0101
/// 1.01E-2 4 1 1.01E-2
void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
unsigned FormatMaxPadding = 3) const;
/// If this value has an exact multiplicative inverse, store it in inv and
/// return true.
bool getExactInverse(APFloat *inv) const;
/// \brief Enumeration of \c ilogb error results.
enum IlogbErrorKinds {
IEK_Zero = INT_MIN+1,
IEK_NaN = INT_MIN,
IEK_Inf = INT_MAX
};
/// \brief Returns the exponent of the internal representation of the APFloat.
///
/// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
/// For special APFloat values, this returns special error codes:
///
/// NaN -> \c IEK_NaN
/// 0 -> \c IEK_Zero
/// Inf -> \c IEK_Inf
///
friend int ilogb(const APFloat &Arg) {
if (Arg.isNaN())
return IEK_NaN;
if (Arg.isZero())
return IEK_Zero;
if (Arg.isInfinity())
return IEK_Inf;
return Arg.exponent;
}
/// \brief Returns: X * 2^Exp for integral exponents.
friend APFloat scalbn(APFloat X, int Exp);
private:
/// \name Simple Queries
/// @{
integerPart *significandParts();
const integerPart *significandParts() const;
unsigned int partCount() const;
/// @}
/// \name Significand operations.
/// @{
integerPart addSignificand(const APFloat &);
integerPart subtractSignificand(const APFloat &, integerPart);
lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
lostFraction multiplySignificand(const APFloat &, const APFloat *);
lostFraction divideSignificand(const APFloat &);
void incrementSignificand();
void initialize(const fltSemantics *);
void shiftSignificandLeft(unsigned int);
lostFraction shiftSignificandRight(unsigned int);
unsigned int significandLSB() const;
unsigned int significandMSB() const;
void zeroSignificand();
/// Return true if the significand excluding the integral bit is all ones.
bool isSignificandAllOnes() const;
/// Return true if the significand excluding the integral bit is all zeros.
bool isSignificandAllZeros() const;
/// @}
/// \name Arithmetic on special values.
/// @{
opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
opStatus divideSpecials(const APFloat &);
opStatus multiplySpecials(const APFloat &);
opStatus modSpecials(const APFloat &);
/// @}
/// \name Special value setters.
/// @{
void makeLargest(bool Neg = false);
void makeSmallest(bool Neg = false);
void makeNaN(bool SNaN = false, bool Neg = false,
const APInt *fill = nullptr);
static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
const APInt *fill);
void makeInf(bool Neg = false);
void makeZero(bool Neg = false);
/// @}
/// \name Miscellany
/// @{
bool convertFromStringSpecials(StringRef str);
opStatus normalize(roundingMode, lostFraction);
opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
cmpResult compareAbsoluteValue(const APFloat &) const;
opStatus handleOverflow(roundingMode);
bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
roundingMode, bool *) const;
opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
roundingMode);
opStatus convertFromHexadecimalString(StringRef, roundingMode);
opStatus convertFromDecimalString(StringRef, roundingMode);
#if 0 // HLSL Change - dst should be _Out_writes_(constant), but this turns out to be unused in any case
char *convertNormalToHexString(
char *dst,
unsigned int hexDigits,
bool upperCase,
roundingMode rounding_mode) const;
#endif
opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
roundingMode);
/// @}
APInt convertHalfAPFloatToAPInt() const;
APInt convertFloatAPFloatToAPInt() const;
APInt convertDoubleAPFloatToAPInt() const;
APInt convertQuadrupleAPFloatToAPInt() const;
APInt convertF80LongDoubleAPFloatToAPInt() const;
APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
void initFromAPInt(const fltSemantics *Sem, const APInt &api);
void initFromHalfAPInt(const APInt &api);
void initFromFloatAPInt(const APInt &api);
void initFromDoubleAPInt(const APInt &api);
void initFromQuadrupleAPInt(const APInt &api);
void initFromF80LongDoubleAPInt(const APInt &api);
void initFromPPCDoubleDoubleAPInt(const APInt &api);
void assign(const APFloat &);
void copySignificand(const APFloat &);
void freeSignificand();
/// The semantics that this value obeys.
const fltSemantics *semantics;
/// A binary fraction with an explicit integer bit.
///
/// The significand must be at least one bit wider than the target precision.
union Significand {
integerPart part;
integerPart *parts;
} significand;
/// The signed unbiased exponent of the value.
ExponentType exponent;
/// What kind of floating point number this is.
///
/// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
/// Using the extra bit keeps it from failing under VisualStudio.
fltCategory category : 3;
/// Sign bit of the number.
unsigned int sign : 1;
};
/// See friend declarations above.
///
/// These additional declarations are required in order to compile LLVM with IBM
/// xlC compiler.
hash_code hash_value(const APFloat &Arg);
APFloat scalbn(APFloat X, int Exp);
/// \brief Returns the absolute value of the argument.
inline APFloat abs(APFloat X) {
X.clearSign();
return X;
}
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat minnum(const APFloat &A, const APFloat &B) {
if (A.isNaN())
return B;
if (B.isNaN())
return A;
return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
}
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
if (A.isNaN())
return B;
if (B.isNaN())
return A;
return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
}
} // namespace llvm
#endif // LLVM_ADT_APFLOAT_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/ilist.h | //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes to implement an intrusive doubly linked list class
// (i.e. each node of the list must contain a next and previous field for the
// list.
//
// The ilist_traits trait class is used to gain access to the next and previous
// fields of the node type that the list is instantiated with. If it is not
// specialized, the list defaults to using the getPrev(), getNext() method calls
// to get the next and previous pointers.
//
// The ilist class itself, should be a plug in replacement for list, assuming
// that the nodes contain next/prev pointers. This list replacement does not
// provide a constant time size() method, so be careful to use empty() when you
// really want to know if it's empty.
//
// The ilist class is implemented by allocating a 'tail' node when the list is
// created (using ilist_traits<>::createSentinel()). This tail node is
// absolutely required because the user must be able to compute end()-1. Because
// of this, users of the direct next/prev links will see an extra link on the
// end of the list, which should be ignored.
//
// Requirements for a user of this list:
//
// 1. The user must provide {g|s}et{Next|Prev} methods, or specialize
// ilist_traits to provide an alternate way of getting and setting next and
// prev links.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ILIST_H
#define LLVM_ADT_ILIST_H
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory> // HLSL Change
#include <utility> // HLSL Change
namespace llvm {
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;
/// ilist_nextprev_traits - A fragment for template traits for intrusive list
/// that provides default next/prev implementations for common operations.
///
template<typename NodeTy>
struct ilist_nextprev_traits {
static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
};
template<typename NodeTy>
struct ilist_traits;
/// ilist_sentinel_traits - A fragment for template traits for intrusive list
/// that provides default sentinel implementations for common operations.
///
/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
/// strategy. The sentinel is stored in the prev field of ilist's Head.
///
template<typename NodeTy>
struct ilist_sentinel_traits {
/// createSentinel - create the dynamic sentinel
static NodeTy *createSentinel() { return new NodeTy(); }
/// destroySentinel - deallocate the dynamic sentinel
static void destroySentinel(NodeTy *N) { delete N; }
/// provideInitialHead - when constructing an ilist, provide a starting
/// value for its Head
/// @return null node to indicate that it needs to be allocated later
static NodeTy *provideInitialHead() { return nullptr; }
/// ensureHead - make sure that Head is either already
/// initialized or assigned a fresh sentinel
/// @return the sentinel
static NodeTy *ensureHead(NodeTy *&Head) {
if (!Head) {
Head = ilist_traits<NodeTy>::createSentinel();
ilist_traits<NodeTy>::noteHead(Head, Head);
ilist_traits<NodeTy>::setNext(Head, nullptr);
return Head;
}
return ilist_traits<NodeTy>::getPrev(Head);
}
/// noteHead - stash the sentinel into its default location
static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
}
// HLSL Change Starts
/// setSentinel - Take ownership of a constructed sentinel object.
/// Unused by this implementation.
void setSentinel(std::unique_ptr<NodeTy> &&) {}
// HLSL Change Ends
};
/// ilist_node_traits - A fragment for template traits for intrusive list
/// that provides default node related operations.
///
template<typename NodeTy>
struct ilist_node_traits {
static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
static void deleteNode(NodeTy *V) { delete V; }
void addNodeToList(NodeTy *) {}
void removeNodeFromList(NodeTy *) {}
void transferNodesFromList(ilist_node_traits & /*SrcTraits*/,
ilist_iterator<NodeTy> /*first*/,
ilist_iterator<NodeTy> /*last*/) {}
};
/// ilist_default_traits - Default template traits for intrusive list.
/// By inheriting from this, you can easily use default implementations
/// for all common operations.
///
template<typename NodeTy>
struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
public ilist_sentinel_traits<NodeTy>,
public ilist_node_traits<NodeTy> {
};
// Template traits for intrusive list. By specializing this template class, you
// can change what next/prev fields are used to store the links...
template<typename NodeTy>
struct ilist_traits : public ilist_default_traits<NodeTy> {};
// Const traits are the same as nonconst traits...
template<typename Ty>
struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
//===----------------------------------------------------------------------===//
// ilist_iterator<Node> - Iterator for intrusive list.
//
template<typename NodeTy>
class ilist_iterator {
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = NodeTy;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
typedef ilist_traits<NodeTy> Traits;
private:
pointer NodePtr;
// ilist_iterator is not a random-access iterator, but it has an
// implicit conversion to pointer-type, which is. Declare (but
// don't define) these functions as private to help catch
// accidental misuse.
void operator[](difference_type) const;
void operator+(difference_type) const;
void operator-(difference_type) const;
void operator+=(difference_type) const;
void operator-=(difference_type) const;
template<class T> void operator<(T) const;
template<class T> void operator<=(T) const;
template<class T> void operator>(T) const;
template<class T> void operator>=(T) const;
template<class T> void operator-(T) const;
public:
ilist_iterator(pointer NP) : NodePtr(NP) {}
ilist_iterator(reference NR) : NodePtr(&NR) {}
ilist_iterator() : NodePtr(nullptr) {}
// This is templated so that we can allow constructing a const iterator from
// a nonconst iterator...
template<class node_ty>
ilist_iterator(const ilist_iterator<node_ty> &RHS)
: NodePtr(RHS.getNodePtrUnchecked()) {}
// This is templated so that we can allow assigning to a const iterator from
// a nonconst iterator...
template<class node_ty>
const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
NodePtr = RHS.getNodePtrUnchecked();
return *this;
}
// Accessors...
operator pointer() const {
return NodePtr;
}
reference operator*() const {
return *NodePtr;
}
pointer operator->() const { return &operator*(); }
// Comparison operators
bool operator==(const ilist_iterator &RHS) const {
return NodePtr == RHS.NodePtr;
}
bool operator!=(const ilist_iterator &RHS) const {
return NodePtr != RHS.NodePtr;
}
// Increment and decrement operators...
ilist_iterator &operator--() { // predecrement - Back up
NodePtr = Traits::getPrev(NodePtr);
assert(NodePtr && "--'d off the beginning of an ilist!");
return *this;
}
ilist_iterator &operator++() { // preincrement - Advance
NodePtr = Traits::getNext(NodePtr);
return *this;
}
ilist_iterator operator--(int) { // postdecrement operators...
ilist_iterator tmp = *this;
--*this;
return tmp;
}
ilist_iterator operator++(int) { // postincrement operators...
ilist_iterator tmp = *this;
++*this;
return tmp;
}
// Internal interface, do not use...
pointer getNodePtrUnchecked() const { return NodePtr; }
};
// These are to catch errors when people try to use them as random access
// iterators.
template<typename T>
void operator-(int, ilist_iterator<T>) = delete;
template<typename T>
void operator-(ilist_iterator<T>,int) = delete;
template<typename T>
void operator+(int, ilist_iterator<T>) = delete;
template<typename T>
void operator+(ilist_iterator<T>,int) = delete;
// operator!=/operator== - Allow mixed comparisons without dereferencing
// the iterator, which could very likely be pointing to end().
// HLSL Change Begin: Support for C++20
template<typename T, typename U>
bool operator!=(const T* LHS, const ilist_iterator<const U> &RHS) {
return LHS != RHS.getNodePtrUnchecked();
}
template<typename T, typename U>
bool operator==(const T* LHS, const ilist_iterator<const U> &RHS) {
return LHS == RHS.getNodePtrUnchecked();
}
template<typename T, typename U>
bool operator!=(T* LHS, const ilist_iterator<U> &RHS) {
return LHS != RHS.getNodePtrUnchecked();
}
template<typename T, typename U>
bool operator==(T* LHS, const ilist_iterator<U> &RHS) {
return LHS == RHS.getNodePtrUnchecked();
}
// HLSL Change End
// Allow ilist_iterators to convert into pointers to a node automatically when
// used by the dyn_cast, cast, isa mechanisms...
template<typename From> struct simplify_type;
template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
typedef NodeTy* SimpleType;
static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
return &*Node;
}
};
template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
typedef /*const*/ NodeTy* SimpleType;
static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
return &*Node;
}
};
// //
///////////////////////////////////////////////////////////////////////////////
//
/// iplist - The subset of list functionality that can safely be used on nodes
/// of polymorphic types, i.e. a heterogeneous list with a common base class that
/// holds the next/prev pointers. The only state of the list itself is a single
/// pointer to the head of the list.
///
/// This list can be in one of three interesting states:
/// 1. The list may be completely unconstructed. In this case, the head
/// pointer is null. When in this form, any query for an iterator (e.g.
/// begin() or end()) causes the list to transparently change to state #2.
/// 2. The list may be empty, but contain a sentinel for the end iterator. This
/// sentinel is created by the Traits::createSentinel method and is a link
/// in the list. When the list is empty, the pointer in the iplist points
/// to the sentinel. Once the sentinel is constructed, it
/// is not destroyed until the list is.
/// 3. The list may contain actual objects in it, which are stored as a doubly
/// linked list of nodes. One invariant of the list is that the predecessor
/// of the first node in the list always points to the last node in the list,
/// and the successor pointer for the sentinel (which always stays at the
/// end of the list) is always null.
///
template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
class iplist : public Traits {
mutable NodeTy *Head;
// Use the prev node pointer of 'head' as the tail pointer. This is really a
// circularly linked list where we snip the 'next' link from the sentinel node
// back to the first node in the list (to preserve assertions about going off
// the end of the list).
NodeTy *getTail() { return this->ensureHead(Head); }
const NodeTy *getTail() const { return this->ensureHead(Head); }
void setTail(NodeTy *N) const { this->noteHead(Head, N); }
/// CreateLazySentinel - This method verifies whether the sentinel for the
/// list has been created and lazily makes it if not.
void CreateLazySentinel() const {
this->ensureHead(Head);
}
static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
// No fundamental reason why iplist can't be copyable, but the default
// copy/copy-assign won't do.
iplist(const iplist &) = delete;
void operator=(const iplist &) = delete;
public:
typedef NodeTy *pointer;
typedef const NodeTy *const_pointer;
typedef NodeTy &reference;
typedef const NodeTy &const_reference;
typedef NodeTy value_type;
typedef ilist_iterator<NodeTy> iterator;
typedef ilist_iterator<const NodeTy> const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
// Default constructor. Relies on base classes to create and manage
// the lifetime of the sentinel.
iplist() : Head(this->provideInitialHead()) {}
// HLSL Change Starts
// Construct with a sentinel object, and take ownership of the sentinel.
iplist(std::unique_ptr<NodeTy> initial_head) : Head(initial_head.get()) {
// Transfer ownership to the sentinel traits base class implementation.
this->setSentinel(std::move(initial_head));
}
// HLSL Change Ends
~iplist() {
if (!Head) return;
clear();
Traits::destroySentinel(getTail());
}
// Iterator creation methods.
iterator begin() {
CreateLazySentinel();
return iterator(Head);
}
const_iterator begin() const {
CreateLazySentinel();
return const_iterator(Head);
}
iterator end() {
CreateLazySentinel();
return iterator(getTail());
}
const_iterator end() const {
CreateLazySentinel();
return const_iterator(getTail());
}
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
// Miscellaneous inspection routines.
size_type max_size() const { return size_type(-1); }
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
return !Head || Head == getTail();
}
// Front and back accessor functions...
reference front() {
assert(!empty() && "Called front() on empty list!");
return *Head;
}
const_reference front() const {
assert(!empty() && "Called front() on empty list!");
return *Head;
}
reference back() {
assert(!empty() && "Called back() on empty list!");
return *this->getPrev(getTail());
}
const_reference back() const {
assert(!empty() && "Called back() on empty list!");
return *this->getPrev(getTail());
}
void swap(iplist &RHS) {
assert(0 && "Swap does not use list traits callback correctly yet!");
std::swap(Head, RHS.Head);
}
iterator insert(iterator where, NodeTy *New) {
NodeTy *CurNode = where.getNodePtrUnchecked();
NodeTy *PrevNode = this->getPrev(CurNode);
this->setNext(New, CurNode);
this->setPrev(New, PrevNode);
if (CurNode != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, New);
else
Head = New;
this->setPrev(CurNode, New);
// HLSL Change Begin: Undo insertion if exception
try {
this->addNodeToList(New); // Notify traits that we added a node...
} catch (...) {
// Undo insertion
if (New == Head)
Head = CurNode;
else
this->setNext(PrevNode, CurNode);
this->setPrev(CurNode, PrevNode);
this->setPrev(New, nullptr);
this->setNext(New, nullptr);
throw;
}
// HLSL Change End
return New;
}
iterator insertAfter(iterator where, NodeTy *New) {
if (empty())
return insert(begin(), New);
else
return insert(++where, New);
}
NodeTy *remove(iterator &IT) {
assert(IT != end() && "Cannot remove end of list!");
NodeTy *Node = &*IT;
NodeTy *NextNode = this->getNext(Node);
NodeTy *PrevNode = this->getPrev(Node);
if (Node != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, NextNode);
else
Head = NextNode;
this->setPrev(NextNode, PrevNode);
IT = NextNode;
this->removeNodeFromList(Node); // Notify traits that we removed a node...
// Set the next/prev pointers of the current node to null. This isn't
// strictly required, but this catches errors where a node is removed from
// an ilist (and potentially deleted) with iterators still pointing at it.
// When those iterators are incremented or decremented, they will assert on
// the null next/prev pointer instead of "usually working".
this->setNext(Node, nullptr);
this->setPrev(Node, nullptr);
return Node;
}
NodeTy *remove(const iterator &IT) {
iterator MutIt = IT;
return remove(MutIt);
}
// erase - remove a node from the controlled sequence... and delete it.
iterator erase(iterator where) {
this->deleteNode(remove(where));
return where;
}
/// Remove all nodes from the list like clear(), but do not call
/// removeNodeFromList() or deleteNode().
///
/// This should only be used immediately before freeing nodes in bulk to
/// avoid traversing the list and bringing all the nodes into cache.
void clearAndLeakNodesUnsafely() {
if (Head) {
Head = getTail();
this->setPrev(Head, Head);
}
}
private:
// transfer - The heart of the splice function. Move linked list nodes from
// [first, last) into position.
//
void transfer(iterator position, iplist &L2, iterator first, iterator last) {
assert(first != last && "Should be checked by callers");
// Position cannot be contained in the range to be transferred.
// Check for the most common mistake.
assert(position != first &&
"Insertion point can't be one of the transferred nodes");
if (position != last) {
// Note: we have to be careful about the case when we move the first node
// in the list. This node is the list sentinel node and we can't move it.
NodeTy *ThisSentinel = getTail();
setTail(nullptr);
NodeTy *L2Sentinel = L2.getTail();
L2.setTail(nullptr);
// Remove [first, last) from its old position.
NodeTy *First = &*first, *Prev = this->getPrev(First);
NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
if (Prev)
this->setNext(Prev, Next);
else
L2.Head = Next;
this->setPrev(Next, Prev);
// Splice [first, last) into its new position.
NodeTy *PosNext = position.getNodePtrUnchecked();
NodeTy *PosPrev = this->getPrev(PosNext);
// Fix head of list...
if (PosPrev)
this->setNext(PosPrev, First);
else
Head = First;
this->setPrev(First, PosPrev);
// Fix end of list...
this->setNext(Last, PosNext);
this->setPrev(PosNext, Last);
this->transferNodesFromList(L2, First, PosNext);
// Now that everything is set, restore the pointers to the list sentinels.
L2.setTail(L2Sentinel);
setTail(ThisSentinel);
}
}
public:
//===----------------------------------------------------------------------===
// Functionality derived from other functions defined above...
//
size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
if (!Head) return 0; // Don't require construction of sentinel if empty.
return std::distance(begin(), end());
}
iterator erase(iterator first, iterator last) {
while (first != last)
first = erase(first);
return last;
}
void clear() { if (Head) erase(begin(), end()); }
// Front and back inserters...
void push_front(NodeTy *val) { insert(begin(), val); }
void push_back(NodeTy *val) { insert(end(), val); }
void pop_front() {
assert(!empty() && "pop_front() on empty list!");
erase(begin());
}
void pop_back() {
assert(!empty() && "pop_back() on empty list!");
iterator t = end(); erase(--t);
}
// Special forms of insert...
template<class InIt> void insert(iterator where, InIt first, InIt last) {
for (; first != last; ++first) insert(where, *first);
}
// Splice members - defined in terms of transfer...
void splice(iterator where, iplist &L2) {
if (!L2.empty())
transfer(where, L2, L2.begin(), L2.end());
}
void splice(iterator where, iplist &L2, iterator first) {
iterator last = first; ++last;
if (where == first || where == last) return; // No change
transfer(where, L2, first, last);
}
void splice(iterator where, iplist &L2, iterator first, iterator last) {
if (first != last) transfer(where, L2, first, last);
}
};
template<typename NodeTy>
struct ilist : public iplist<NodeTy> {
typedef typename iplist<NodeTy>::size_type size_type;
typedef typename iplist<NodeTy>::iterator iterator;
ilist() {}
ilist(const ilist &right) {
insert(this->begin(), right.begin(), right.end());
}
explicit ilist(size_type count) {
insert(this->begin(), count, NodeTy());
}
ilist(size_type count, const NodeTy &val) {
insert(this->begin(), count, val);
}
template<class InIt> ilist(InIt first, InIt last) {
insert(this->begin(), first, last);
}
// bring hidden functions into scope
using iplist<NodeTy>::insert;
using iplist<NodeTy>::push_front;
using iplist<NodeTy>::push_back;
// Main implementation here - Insert for a node passed by value...
iterator insert(iterator where, const NodeTy &val) {
return insert(where, this->createNode(val));
}
// Front and back inserters...
void push_front(const NodeTy &val) { insert(this->begin(), val); }
void push_back(const NodeTy &val) { insert(this->end(), val); }
void insert(iterator where, size_type count, const NodeTy &val) {
for (; count != 0; --count) insert(where, val);
}
// Assign special forms...
void assign(size_type count, const NodeTy &val) {
iterator I = this->begin();
for (; I != this->end() && count != 0; ++I, --count)
*I = val;
if (count != 0)
insert(this->end(), val, val);
else
erase(I, this->end());
}
template<class InIt> void assign(InIt first1, InIt last1) {
iterator first2 = this->begin(), last2 = this->end();
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
*first1 = *first2;
if (first2 == last2)
erase(first1, last1);
else
insert(last1, first2, last2);
}
// Resize members...
void resize(size_type newsize, NodeTy val) {
iterator i = this->begin();
size_type len = 0;
for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
if (len == newsize)
erase(i, this->end());
else // i == end()
insert(this->end(), newsize - len, val);
}
void resize(size_type newsize) { resize(newsize, NodeTy()); }
};
} // End llvm namespace
namespace std {
// Ensure that swap uses the fast list swap...
template<class Ty>
void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
Left.swap(Right);
}
} // End 'std' extensions...
#endif // LLVM_ADT_ILIST_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SetOperations.h | //===-- llvm/ADT/SetOperations.h - Generic Set Operations -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines generic set operations that may be used on set's of
// different types, and different element types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SETOPERATIONS_H
#define LLVM_ADT_SETOPERATIONS_H
namespace llvm {
/// set_union(A, B) - Compute A := A u B, return whether A changed.
///
template <class S1Ty, class S2Ty>
bool set_union(S1Ty &S1, const S2Ty &S2) {
bool Changed = false;
for (typename S2Ty::const_iterator SI = S2.begin(), SE = S2.end();
SI != SE; ++SI)
if (S1.insert(*SI).second)
Changed = true;
return Changed;
}
/// set_intersect(A, B) - Compute A := A ^ B
/// Identical to set_intersection, except that it works on set<>'s and
/// is nicer to use. Functionally, this iterates through S1, removing
/// elements that are not contained in S2.
///
template <class S1Ty, class S2Ty>
void set_intersect(S1Ty &S1, const S2Ty &S2) {
for (typename S1Ty::iterator I = S1.begin(); I != S1.end();) {
const typename S1Ty::key_type &E = *I;
++I;
if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
}
}
/// set_difference(A, B) - Return A - B
///
template <class S1Ty, class S2Ty>
S1Ty set_difference(const S1Ty &S1, const S2Ty &S2) {
S1Ty Result;
for (typename S1Ty::const_iterator SI = S1.begin(), SE = S1.end();
SI != SE; ++SI)
if (!S2.count(*SI)) // if the element is not in set2
Result.insert(*SI);
return Result;
}
/// set_subtract(A, B) - Compute A := A - B
///
template <class S1Ty, class S2Ty>
void set_subtract(S1Ty &S1, const S2Ty &S2) {
for (typename S2Ty::const_iterator SI = S2.begin(), SE = S2.end();
SI != SE; ++SI)
S1.erase(*SI);
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/MapVector.h | //===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a map that provides insertion order iteration. The
// interface is purposefully minimal. The key is assumed to be cheap to copy
// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
// a std::vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_MAPVECTOR_H
#define LLVM_ADT_MAPVECTOR_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
namespace llvm {
/// This class implements a map that also provides access to all stored values
/// in a deterministic order. The values are kept in a std::vector and the
/// mapping is done with DenseMap from Keys to indexes in that vector.
template<typename KeyT, typename ValueT,
typename MapType = llvm::DenseMap<KeyT, unsigned>,
typename VectorType = std::vector<std::pair<KeyT, ValueT> > >
class MapVector {
typedef typename VectorType::size_type size_type;
MapType Map;
VectorType Vector;
public:
typedef typename VectorType::iterator iterator;
typedef typename VectorType::const_iterator const_iterator;
typedef typename VectorType::reverse_iterator reverse_iterator;
typedef typename VectorType::const_reverse_iterator const_reverse_iterator;
size_type size() const { return Vector.size(); }
iterator begin() { return Vector.begin(); }
const_iterator begin() const { return Vector.begin(); }
iterator end() { return Vector.end(); }
const_iterator end() const { return Vector.end(); }
reverse_iterator rbegin() { return Vector.rbegin(); }
const_reverse_iterator rbegin() const { return Vector.rbegin(); }
reverse_iterator rend() { return Vector.rend(); }
const_reverse_iterator rend() const { return Vector.rend(); }
bool empty() const {
return Vector.empty();
}
std::pair<KeyT, ValueT> &front() { return Vector.front(); }
const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
std::pair<KeyT, ValueT> &back() { return Vector.back(); }
const std::pair<KeyT, ValueT> &back() const { return Vector.back(); }
void clear() {
Map.clear();
Vector.clear();
}
void swap(MapVector &RHS) {
std::swap(Map, RHS.Map);
std::swap(Vector, RHS.Vector);
}
ValueT &operator[](const KeyT &Key) {
std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
unsigned &I = Result.first->second;
if (Result.second) {
Vector.push_back(std::make_pair(Key, ValueT()));
I = Vector.size() - 1;
}
return Vector[I].second;
}
ValueT lookup(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
}
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
unsigned &I = Result.first->second;
if (Result.second) {
Vector.push_back(std::make_pair(KV.first, KV.second));
I = Vector.size() - 1;
return std::make_pair(std::prev(end()), true);
}
return std::make_pair(begin() + I, false);
}
size_type count(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? 0 : 1;
}
iterator find(const KeyT &Key) {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? Vector.end() :
(Vector.begin() + Pos->second);
}
const_iterator find(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? Vector.end() :
(Vector.begin() + Pos->second);
}
/// \brief Remove the last element from the vector.
void pop_back() {
typename MapType::iterator Pos = Map.find(Vector.back().first);
Map.erase(Pos);
Vector.pop_back();
}
/// \brief Remove the element given by Iterator.
///
/// Returns an iterator to the element following the one which was removed,
/// which may be end().
///
/// \note This is a deceivingly expensive operation (linear time). It's
/// usually better to use \a remove_if() if possible.
typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
Map.erase(Iterator->first);
auto Next = Vector.erase(Iterator);
if (Next == Vector.end())
return Next;
// Update indices in the map.
size_t Index = Next - Vector.begin();
for (auto &I : Map) {
assert(I.second != Index && "Index was already erased!");
if (I.second > Index)
--I.second;
}
return Next;
}
/// \brief Remove all elements with the key value Key.
///
/// Returns the number of elements removed.
size_type erase(const KeyT &Key) {
auto Iterator = find(Key);
if (Iterator == end())
return 0;
erase(Iterator);
return 1;
}
/// \brief Remove the elements that match the predicate.
///
/// Erase all elements that match \c Pred in a single pass. Takes linear
/// time.
template <class Predicate> void remove_if(Predicate Pred);
};
template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
template <class Function>
void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
auto O = Vector.begin();
for (auto I = O, E = Vector.end(); I != E; ++I) {
if (Pred(*I)) {
// Erase from the map.
Map.erase(I->first);
continue;
}
if (I != O) {
// Move the value and update the index in the map.
*O = std::move(*I);
Map[O->first] = O - Vector.begin();
}
++O;
}
// Erase trailing entries in the vector.
Vector.erase(O, Vector.end());
}
/// \brief A MapVector that performs no allocations if smaller than a certain
/// size.
template <typename KeyT, typename ValueT, unsigned N>
struct SmallMapVector
: MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
SmallVector<std::pair<KeyT, ValueT>, N>> {
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/IntervalMap.h | //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a coalescing interval map for small objects.
//
// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
// same value are represented in a compressed form.
//
// Iterators provide ordered access to the compressed intervals rather than the
// individual keys, and insert and erase operations use key intervals as well.
//
// Like SmallVector, IntervalMap will store the first N intervals in the map
// object itself without any allocations. When space is exhausted it switches to
// a B+-tree representation with very small overhead for small key and value
// objects.
//
// A Traits class specifies how keys are compared. It also allows IntervalMap to
// work with both closed and half-open intervals.
//
// Keys and values are not stored next to each other in a std::pair, so we don't
// provide such a value_type. Dereferencing iterators only returns the mapped
// value. The interval bounds are accessible through the start() and stop()
// iterator methods.
//
// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
// is the optimal size. For large objects use std::map instead.
//
//===----------------------------------------------------------------------===//
//
// Synopsis:
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap {
// public:
// typedef KeyT key_type;
// typedef ValT mapped_type;
// typedef RecyclingAllocator<...> Allocator;
// class iterator;
// class const_iterator;
//
// explicit IntervalMap(Allocator&);
// ~IntervalMap():
//
// bool empty() const;
// KeyT start() const;
// KeyT stop() const;
// ValT lookup(KeyT x, Value NotFound = Value()) const;
//
// const_iterator begin() const;
// const_iterator end() const;
// iterator begin();
// iterator end();
// const_iterator find(KeyT x) const;
// iterator find(KeyT x);
//
// void insert(KeyT a, KeyT b, ValT y);
// void clear();
// };
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap::const_iterator {
// public:
// using iterator_category = std::bidirectional_iterator_tag;
// using value_type = ValT;
// using difference_type = std::ptrdiff_t;
// using pointer = value_type *;
// using reference = value_type &;
//
// bool operator==(const const_iterator &) const;
// bool operator!=(const const_iterator &) const;
// bool valid() const;
//
// const KeyT &start() const;
// const KeyT &stop() const;
// const ValT &value() const;
// const ValT &operator*() const;
// const ValT *operator->() const;
//
// const_iterator &operator++();
// const_iterator &operator++(int);
// const_iterator &operator--();
// const_iterator &operator--(int);
// void goToBegin();
// void goToEnd();
// void find(KeyT x);
// void advanceTo(KeyT x);
// };
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap::iterator : public const_iterator {
// public:
// void insert(KeyT a, KeyT b, Value y);
// void erase();
// };
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTERVALMAP_H
#define LLVM_ADT_INTERVALMAP_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <iterator>
namespace llvm {
//===----------------------------------------------------------------------===//
//--- Key traits ---//
//===----------------------------------------------------------------------===//
//
// The IntervalMap works with closed or half-open intervals.
// Adjacent intervals that map to the same value are coalesced.
//
// The IntervalMapInfo traits class is used to determine if a key is contained
// in an interval, and if two intervals are adjacent so they can be coalesced.
// The provided implementation works for closed integer intervals, other keys
// probably need a specialized version.
//
// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
//
// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
// allowed. This is so that stopLess(a, b) can be used to determine if two
// intervals overlap.
//
//===----------------------------------------------------------------------===//
template <typename T>
struct IntervalMapInfo {
/// startLess - Return true if x is not in [a;b].
/// This is x < a both for closed intervals and for [a;b) half-open intervals.
static inline bool startLess(const T &x, const T &a) {
return x < a;
}
/// stopLess - Return true if x is not in [a;b].
/// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
static inline bool stopLess(const T &b, const T &x) {
return b < x;
}
/// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
/// This is a+1 == b for closed intervals, a == b for half-open intervals.
static inline bool adjacent(const T &a, const T &b) {
return a+1 == b;
}
};
template <typename T>
struct IntervalMapHalfOpenInfo {
/// startLess - Return true if x is not in [a;b).
static inline bool startLess(const T &x, const T &a) {
return x < a;
}
/// stopLess - Return true if x is not in [a;b).
static inline bool stopLess(const T &b, const T &x) {
return b <= x;
}
/// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
static inline bool adjacent(const T &a, const T &b) {
return a == b;
}
};
/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
/// It should be considered private to the implementation.
namespace IntervalMapImpl {
// Forward declarations.
template <typename, typename, unsigned, typename> class LeafNode;
template <typename, typename, unsigned, typename> class BranchNode;
typedef std::pair<unsigned,unsigned> IdxPair;
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeBase ---//
//===----------------------------------------------------------------------===//
//
// Both leaf and branch nodes store vectors of pairs.
// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
//
// Keys and values are stored in separate arrays to avoid padding caused by
// different object alignments. This also helps improve locality of reference
// when searching the keys.
//
// The nodes don't know how many elements they contain - that information is
// stored elsewhere. Omitting the size field prevents padding and allows a node
// to fill the allocated cache lines completely.
//
// These are typical key and value sizes, the node branching factor (N), and
// wasted space when nodes are sized to fit in three cache lines (192 bytes):
//
// T1 T2 N Waste Used by
// 4 4 24 0 Branch<4> (32-bit pointers)
// 8 4 16 0 Leaf<4,4>, Branch<4>
// 8 8 12 0 Leaf<4,8>, Branch<8>
// 16 4 9 12 Leaf<8,4>
// 16 8 8 0 Leaf<8,8>
//
//===----------------------------------------------------------------------===//
template <typename T1, typename T2, unsigned N>
class NodeBase {
public:
enum { Capacity = N };
T1 first[N];
T2 second[N];
/// copy - Copy elements from another node.
/// @param Other Node elements are copied from.
/// @param i Beginning of the source range in other.
/// @param j Beginning of the destination range in this.
/// @param Count Number of elements to copy.
template <unsigned M>
void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
unsigned j, unsigned Count) {
assert(i + Count <= M && "Invalid source range");
assert(j + Count <= N && "Invalid dest range");
for (unsigned e = i + Count; i != e; ++i, ++j) {
first[j] = Other.first[i];
second[j] = Other.second[i];
}
}
/// moveLeft - Move elements to the left.
/// @param i Beginning of the source range.
/// @param j Beginning of the destination range.
/// @param Count Number of elements to copy.
void moveLeft(unsigned i, unsigned j, unsigned Count) {
assert(j <= i && "Use moveRight shift elements right");
copy(*this, i, j, Count);
}
/// moveRight - Move elements to the right.
/// @param i Beginning of the source range.
/// @param j Beginning of the destination range.
/// @param Count Number of elements to copy.
void moveRight(unsigned i, unsigned j, unsigned Count) {
assert(i <= j && "Use moveLeft shift elements left");
assert(j + Count <= N && "Invalid range");
while (Count--) {
first[j + Count] = first[i + Count];
second[j + Count] = second[i + Count];
}
}
/// erase - Erase elements [i;j).
/// @param i Beginning of the range to erase.
/// @param j End of the range. (Exclusive).
/// @param Size Number of elements in node.
void erase(unsigned i, unsigned j, unsigned Size) {
moveLeft(j, i, Size - j);
}
/// erase - Erase element at i.
/// @param i Index of element to erase.
/// @param Size Number of elements in node.
void erase(unsigned i, unsigned Size) {
erase(i, i+1, Size);
}
/// shift - Shift elements [i;size) 1 position to the right.
/// @param i Beginning of the range to move.
/// @param Size Number of elements in node.
void shift(unsigned i, unsigned Size) {
moveRight(i, i + 1, Size - i);
}
/// transferToLeftSib - Transfer elements to a left sibling node.
/// @param Size Number of elements in this.
/// @param Sib Left sibling node.
/// @param SSize Number of elements in sib.
/// @param Count Number of elements to transfer.
void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
unsigned Count) {
Sib.copy(*this, 0, SSize, Count);
erase(0, Count, Size);
}
/// transferToRightSib - Transfer elements to a right sibling node.
/// @param Size Number of elements in this.
/// @param Sib Right sibling node.
/// @param SSize Number of elements in sib.
/// @param Count Number of elements to transfer.
void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
unsigned Count) {
Sib.moveRight(0, Count, SSize);
Sib.copy(*this, Size-Count, 0, Count);
}
/// adjustFromLeftSib - Adjust the number if elements in this node by moving
/// elements to or from a left sibling node.
/// @param Size Number of elements in this.
/// @param Sib Right sibling node.
/// @param SSize Number of elements in sib.
/// @param Add The number of elements to add to this node, possibly < 0.
/// @return Number of elements added to this node, possibly negative.
int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
if (Add > 0) {
// We want to grow, copy from sib.
unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
Sib.transferToRightSib(SSize, *this, Size, Count);
return Count;
} else {
// We want to shrink, copy to sib.
unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
transferToLeftSib(Size, Sib, SSize, Count);
return -Count;
}
}
};
/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
/// @param Node Array of pointers to sibling nodes.
/// @param Nodes Number of nodes.
/// @param CurSize Array of current node sizes, will be overwritten.
/// @param NewSize Array of desired node sizes.
template <typename NodeT>
void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
unsigned CurSize[], const unsigned NewSize[]) {
// Move elements right.
for (int n = Nodes - 1; n; --n) {
if (CurSize[n] == NewSize[n])
continue;
for (int m = n - 1; m != -1; --m) {
int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
NewSize[n] - CurSize[n]);
CurSize[m] -= d;
CurSize[n] += d;
// Keep going if the current node was exhausted.
if (CurSize[n] >= NewSize[n])
break;
}
}
if (Nodes == 0)
return;
// Move elements left.
for (unsigned n = 0; n != Nodes - 1; ++n) {
if (CurSize[n] == NewSize[n])
continue;
for (unsigned m = n + 1; m != Nodes; ++m) {
int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
CurSize[n] - NewSize[n]);
CurSize[m] += d;
CurSize[n] -= d;
// Keep going if the current node was exhausted.
if (CurSize[n] >= NewSize[n])
break;
}
}
#ifndef NDEBUG
for (unsigned n = 0; n != Nodes; n++)
assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
#endif
}
/// IntervalMapImpl::distribute - Compute a new distribution of node elements
/// after an overflow or underflow. Reserve space for a new element at Position,
/// and compute the node that will hold Position after redistributing node
/// elements.
///
/// It is required that
///
/// Elements == sum(CurSize), and
/// Elements + Grow <= Nodes * Capacity.
///
/// NewSize[] will be filled in such that:
///
/// sum(NewSize) == Elements, and
/// NewSize[i] <= Capacity.
///
/// The returned index is the node where Position will go, so:
///
/// sum(NewSize[0..idx-1]) <= Position
/// sum(NewSize[0..idx]) >= Position
///
/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
/// before the one holding the Position'th element where there is room for an
/// insertion.
///
/// @param Nodes The number of nodes.
/// @param Elements Total elements in all nodes.
/// @param Capacity The capacity of each node.
/// @param CurSize Array[Nodes] of current node sizes, or NULL.
/// @param NewSize Array[Nodes] to receive the new node sizes.
/// @param Position Insert position.
/// @param Grow Reserve space for a new element at Position.
/// @return (node, offset) for Position.
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
const unsigned *CurSize, unsigned NewSize[],
unsigned Position, bool Grow);
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeSizer ---//
//===----------------------------------------------------------------------===//
//
// Compute node sizes from key and value types.
//
// The branching factors are chosen to make nodes fit in three cache lines.
// This may not be possible if keys or values are very large. Such large objects
// are handled correctly, but a std::map would probably give better performance.
//
//===----------------------------------------------------------------------===//
enum {
// Cache line size. Most architectures have 32 or 64 byte cache lines.
// We use 64 bytes here because it provides good branching factors.
Log2CacheLine = 6,
CacheLineBytes = 1 << Log2CacheLine,
DesiredNodeBytes = 3 * CacheLineBytes
};
template <typename KeyT, typename ValT>
struct NodeSizer {
enum {
// Compute the leaf node branching factor that makes a node fit in three
// cache lines. The branching factor must be at least 3, or some B+-tree
// balancing algorithms won't work.
// LeafSize can't be larger than CacheLineBytes. This is required by the
// PointerIntPair used by NodeRef.
DesiredLeafSize = DesiredNodeBytes /
static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
MinLeafSize = 3,
LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
};
typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
enum {
// Now that we have the leaf branching factor, compute the actual allocation
// unit size by rounding up to a whole number of cache lines.
AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
// Determine the branching factor for branch nodes.
BranchSize = AllocBytes /
static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
};
/// Allocator - The recycling allocator used for both branch and leaf nodes.
/// This typedef is very likely to be identical for all IntervalMaps with
/// reasonably sized entries, so the same allocator can be shared among
/// different kinds of maps.
typedef RecyclingAllocator<BumpPtrAllocator, char,
AllocBytes, CacheLineBytes> Allocator;
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeRef ---//
//===----------------------------------------------------------------------===//
//
// B+-tree nodes can be leaves or branches, so we need a polymorphic node
// pointer that can point to both kinds.
//
// All nodes are cache line aligned and the low 6 bits of a node pointer are
// always 0. These bits are used to store the number of elements in the
// referenced node. Besides saving space, placing node sizes in the parents
// allow tree balancing algorithms to run without faulting cache lines for nodes
// that may not need to be modified.
//
// A NodeRef doesn't know whether it references a leaf node or a branch node.
// It is the responsibility of the caller to use the correct types.
//
// Nodes are never supposed to be empty, and it is invalid to store a node size
// of 0 in a NodeRef. The valid range of sizes is 1-64.
//
//===----------------------------------------------------------------------===//
class NodeRef {
struct CacheAlignedPointerTraits {
static inline void *getAsVoidPointer(void *P) { return P; }
static inline void *getFromVoidPointer(void *P) { return P; }
enum { NumLowBitsAvailable = Log2CacheLine };
};
PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
public:
/// NodeRef - Create a null ref.
NodeRef() {}
/// operator bool - Detect a null ref.
explicit operator bool() const { return pip.getOpaqueValue(); }
/// NodeRef - Create a reference to the node p with n elements.
template <typename NodeT>
NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
assert(n <= NodeT::Capacity && "Size too big for node");
}
/// size - Return the number of elements in the referenced node.
unsigned size() const { return pip.getInt() + 1; }
/// setSize - Update the node size.
void setSize(unsigned n) { pip.setInt(n - 1); }
/// subtree - Access the i'th subtree reference in a branch node.
/// This depends on branch nodes storing the NodeRef array as their first
/// member.
NodeRef &subtree(unsigned i) const {
return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
}
/// get - Dereference as a NodeT reference.
template <typename NodeT>
NodeT &get() const {
return *reinterpret_cast<NodeT*>(pip.getPointer());
}
bool operator==(const NodeRef &RHS) const {
if (pip == RHS.pip)
return true;
assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
return false;
}
bool operator!=(const NodeRef &RHS) const {
return !operator==(RHS);
}
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::LeafNode ---//
//===----------------------------------------------------------------------===//
//
// Leaf nodes store up to N disjoint intervals with corresponding values.
//
// The intervals are kept sorted and fully coalesced so there are no adjacent
// intervals mapping to the same value.
//
// These constraints are always satisfied:
//
// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
//
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
//
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
// - Fully coalesced.
//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
public:
const KeyT &start(unsigned i) const { return this->first[i].first; }
const KeyT &stop(unsigned i) const { return this->first[i].second; }
const ValT &value(unsigned i) const { return this->second[i]; }
KeyT &start(unsigned i) { return this->first[i].first; }
KeyT &stop(unsigned i) { return this->first[i].second; }
ValT &value(unsigned i) { return this->second[i]; }
/// findFrom - Find the first interval after i that may contain x.
/// @param i Starting index for the search.
/// @param Size Number of elements in node.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i].stop, x), or size.
/// This is the first interval that can possibly contain x.
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
assert(i <= Size && Size <= N && "Bad indices");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
return i;
}
/// safeFind - Find an interval that is known to exist. This is the same as
/// findFrom except is it assumed that x is at least within range of the last
/// interval.
/// @param i Starting index for the search.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i].stop, x), never size.
/// This is the first interval that can possibly contain x.
unsigned safeFind(unsigned i, KeyT x) const {
assert(i < N && "Bad index");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (Traits::stopLess(stop(i), x)) ++i;
assert(i < N && "Unsafe intervals");
return i;
}
/// safeLookup - Lookup mapped value for a safe key.
/// It is assumed that x is within range of the last entry.
/// @param x Key to search for.
/// @param NotFound Value to return if x is not in any interval.
/// @return The mapped value at x or NotFound.
ValT safeLookup(KeyT x, ValT NotFound) const {
unsigned i = safeFind(0, x);
return Traits::startLess(x, start(i)) ? NotFound : value(i);
}
unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
};
/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
/// possible. This may cause the node to grow by 1, or it may cause the node
/// to shrink because of coalescing.
/// @param Pos Starting index = insertFrom(0, size, a)
/// @param Size Number of elements in node.
/// @param a Interval start.
/// @param b Interval stop.
/// @param y Value be mapped.
/// @return (insert position, new size), or (i, Capacity+1) on overflow.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
unsigned i = Pos;
assert(i <= Size && Size <= N && "Invalid index");
assert(!Traits::stopLess(b, a) && "Invalid interval");
// Verify the findFrom invariant.
assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
assert((i == Size || !Traits::stopLess(stop(i), a)));
assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
// Coalesce with previous interval.
if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
Pos = i - 1;
// Also coalesce with next interval?
if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
stop(i - 1) = stop(i);
this->erase(i, Size);
return Size - 1;
}
stop(i - 1) = b;
return Size;
}
// Detect overflow.
if (i == N)
return N + 1;
// Add new interval at end.
if (i == Size) {
start(i) = a;
stop(i) = b;
value(i) = y;
return Size + 1;
}
// Try to coalesce with following interval.
if (value(i) == y && Traits::adjacent(b, start(i))) {
start(i) = a;
return Size;
}
// We must insert before i. Detect overflow.
if (Size == N)
return N + 1;
// Insert before i.
this->shift(i, Size);
start(i) = a;
stop(i) = b;
value(i) = y;
return Size + 1;
}
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::BranchNode ---//
//===----------------------------------------------------------------------===//
//
// A branch node stores references to 1--N subtrees all of the same height.
//
// The key array in a branch node holds the rightmost stop key of each subtree.
// It is redundant to store the last stop key since it can be found in the
// parent node, but doing so makes tree balancing a lot simpler.
//
// It is unusual for a branch node to only have one subtree, but it can happen
// in the root node if it is smaller than the normal nodes.
//
// When all of the leaf nodes from all the subtrees are concatenated, they must
// satisfy the same constraints as a single leaf node. They must be sorted,
// sane, and fully coalesced.
//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
public:
const KeyT &stop(unsigned i) const { return this->second[i]; }
const NodeRef &subtree(unsigned i) const { return this->first[i]; }
KeyT &stop(unsigned i) { return this->second[i]; }
NodeRef &subtree(unsigned i) { return this->first[i]; }
/// findFrom - Find the first subtree after i that may contain x.
/// @param i Starting index for the search.
/// @param Size Number of elements in node.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i], x), or size.
/// This is the first subtree that can possibly contain x.
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
assert(i <= Size && Size <= N && "Bad indices");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index to findFrom is past the needed point");
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
return i;
}
/// safeFind - Find a subtree that is known to exist. This is the same as
/// findFrom except is it assumed that x is in range.
/// @param i Starting index for the search.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i], x), never size.
/// This is the first subtree that can possibly contain x.
unsigned safeFind(unsigned i, KeyT x) const {
assert(i < N && "Bad index");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (Traits::stopLess(stop(i), x)) ++i;
assert(i < N && "Unsafe intervals");
return i;
}
/// safeLookup - Get the subtree containing x, Assuming that x is in range.
/// @param x Key to search for.
/// @return Subtree containing x
NodeRef safeLookup(KeyT x) const {
return subtree(safeFind(0, x));
}
/// insert - Insert a new (subtree, stop) pair.
/// @param i Insert position, following entries will be shifted.
/// @param Size Number of elements in node.
/// @param Node Subtree to insert.
/// @param Stop Last key in subtree.
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
assert(Size < N && "branch node overflow");
assert(i <= Size && "Bad insert position");
this->shift(i, Size);
subtree(i) = Node;
stop(i) = Stop;
}
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::Path ---//
//===----------------------------------------------------------------------===//
//
// A Path is used by iterators to represent a position in a B+-tree, and the
// path to get there from the root.
//
// The Path class also contains the tree navigation code that doesn't have to
// be templatized.
//
//===----------------------------------------------------------------------===//
class Path {
/// Entry - Each step in the path is a node pointer and an offset into that
/// node.
struct Entry {
void *node;
unsigned size;
unsigned offset;
Entry(void *Node, unsigned Size, unsigned Offset)
: node(Node), size(Size), offset(Offset) {}
Entry(NodeRef Node, unsigned Offset)
: node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
NodeRef &subtree(unsigned i) const {
return reinterpret_cast<NodeRef*>(node)[i];
}
};
/// path - The path entries, path[0] is the root node, path.back() is a leaf.
SmallVector<Entry, 4> path;
public:
// Node accessors.
template <typename NodeT> NodeT &node(unsigned Level) const {
return *reinterpret_cast<NodeT*>(path[Level].node);
}
unsigned size(unsigned Level) const { return path[Level].size; }
unsigned offset(unsigned Level) const { return path[Level].offset; }
unsigned &offset(unsigned Level) { return path[Level].offset; }
// Leaf accessors.
template <typename NodeT> NodeT &leaf() const {
return *reinterpret_cast<NodeT*>(path.back().node);
}
unsigned leafSize() const { return path.back().size; }
unsigned leafOffset() const { return path.back().offset; }
unsigned &leafOffset() { return path.back().offset; }
/// valid - Return true if path is at a valid node, not at end().
bool valid() const {
return !path.empty() && path.front().offset < path.front().size;
}
/// height - Return the height of the tree corresponding to this path.
/// This matches map->height in a full path.
unsigned height() const { return path.size() - 1; }
/// subtree - Get the subtree referenced from Level. When the path is
/// consistent, node(Level + 1) == subtree(Level).
/// @param Level 0..height-1. The leaves have no subtrees.
NodeRef &subtree(unsigned Level) const {
return path[Level].subtree(path[Level].offset);
}
/// reset - Reset cached information about node(Level) from subtree(Level -1).
/// @param Level 1..height. THe node to update after parent node changed.
void reset(unsigned Level) {
path[Level] = Entry(subtree(Level - 1), offset(Level));
}
/// push - Add entry to path.
/// @param Node Node to add, should be subtree(path.size()-1).
/// @param Offset Offset into Node.
void push(NodeRef Node, unsigned Offset) {
path.push_back(Entry(Node, Offset));
}
/// pop - Remove the last path entry.
void pop() {
path.pop_back();
}
/// setSize - Set the size of a node both in the path and in the tree.
/// @param Level 0..height. Note that setting the root size won't change
/// map->rootSize.
/// @param Size New node size.
void setSize(unsigned Level, unsigned Size) {
path[Level].size = Size;
if (Level)
subtree(Level - 1).setSize(Size);
}
/// setRoot - Clear the path and set a new root node.
/// @param Node New root node.
/// @param Size New root size.
/// @param Offset Offset into root node.
void setRoot(void *Node, unsigned Size, unsigned Offset) {
path.clear();
path.push_back(Entry(Node, Size, Offset));
}
/// replaceRoot - Replace the current root node with two new entries after the
/// tree height has increased.
/// @param Root The new root node.
/// @param Size Number of entries in the new root.
/// @param Offsets Offsets into the root and first branch nodes.
void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
/// @param Level Get the sibling to node(Level).
/// @return Left sibling, or NodeRef().
NodeRef getLeftSibling(unsigned Level) const;
/// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
/// unaltered.
/// @param Level Move node(Level).
void moveLeft(unsigned Level);
/// fillLeft - Grow path to Height by taking leftmost branches.
/// @param Height The target height.
void fillLeft(unsigned Height) {
while (height() < Height)
push(subtree(height()), 0);
}
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
/// @param Level Get the sinbling to node(Level).
/// @return Left sibling, or NodeRef().
NodeRef getRightSibling(unsigned Level) const;
/// moveRight - Move path to the left sibling at Level. Leave nodes below
/// Level unaltered.
/// @param Level Move node(Level).
void moveRight(unsigned Level);
/// atBegin - Return true if path is at begin().
bool atBegin() const {
for (unsigned i = 0, e = path.size(); i != e; ++i)
if (path[i].offset != 0)
return false;
return true;
}
/// atLastEntry - Return true if the path is at the last entry of the node at
/// Level.
/// @param Level Node to examine.
bool atLastEntry(unsigned Level) const {
return path[Level].offset == path[Level].size - 1;
}
/// legalizeForInsert - Prepare the path for an insertion at Level. When the
/// path is at end(), node(Level) may not be a legal node. legalizeForInsert
/// ensures that node(Level) is real by moving back to the last node at Level,
/// and setting offset(Level) to size(Level) if required.
/// @param Level The level where an insertion is about to take place.
void legalizeForInsert(unsigned Level) {
if (valid())
return;
moveLeft(Level);
++path[Level].offset;
}
};
} // namespace IntervalMapImpl
//===----------------------------------------------------------------------===//
//--- IntervalMap ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT,
unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
typename Traits = IntervalMapInfo<KeyT> >
class IntervalMap {
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
Branch;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
typedef IntervalMapImpl::IdxPair IdxPair;
// The RootLeaf capacity is given as a template parameter. We must compute the
// corresponding RootBranch capacity.
enum {
DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
(sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
};
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
RootBranch;
// When branched, we store a global start key as well as the branch node.
struct RootBranchData {
KeyT start;
RootBranch node;
};
public:
typedef typename Sizer::Allocator Allocator;
typedef KeyT KeyType;
typedef ValT ValueType;
typedef Traits KeyTraits;
private:
// The root data is either a RootLeaf or a RootBranchData instance.
AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
// Tree height.
// 0: Leaves in root.
// 1: Root points to leaf.
// 2: root->branch->leaf ...
unsigned height;
// Number of entries in the root node.
unsigned rootSize;
// Allocator used for creating external nodes.
Allocator &allocator;
/// dataAs - Represent data as a node type without breaking aliasing rules.
template <typename T>
T &dataAs() const {
union {
const char *d;
T *t;
} u;
u.d = data.buffer;
return *u.t;
}
const RootLeaf &rootLeaf() const {
assert(!branched() && "Cannot acces leaf data in branched root");
return dataAs<RootLeaf>();
}
RootLeaf &rootLeaf() {
assert(!branched() && "Cannot acces leaf data in branched root");
return dataAs<RootLeaf>();
}
RootBranchData &rootBranchData() const {
assert(branched() && "Cannot access branch data in non-branched root");
return dataAs<RootBranchData>();
}
RootBranchData &rootBranchData() {
assert(branched() && "Cannot access branch data in non-branched root");
return dataAs<RootBranchData>();
}
const RootBranch &rootBranch() const { return rootBranchData().node; }
RootBranch &rootBranch() { return rootBranchData().node; }
KeyT rootBranchStart() const { return rootBranchData().start; }
KeyT &rootBranchStart() { return rootBranchData().start; }
template <typename NodeT> NodeT *newNode() {
return new(allocator.template Allocate<NodeT>()) NodeT();
}
template <typename NodeT> void deleteNode(NodeT *P) {
P->~NodeT();
allocator.Deallocate(P);
}
IdxPair branchRoot(unsigned Position);
IdxPair splitRoot(unsigned Position);
void switchRootToBranch() {
rootLeaf().~RootLeaf();
height = 1;
new (&rootBranchData()) RootBranchData();
}
void switchRootToLeaf() {
rootBranchData().~RootBranchData();
height = 0;
new(&rootLeaf()) RootLeaf();
}
bool branched() const { return height > 0; }
ValT treeSafeLookup(KeyT x, ValT NotFound) const;
void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
unsigned Level));
void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
public:
explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
assert((uintptr_t(data.buffer) & (alignOf<RootLeaf>() - 1)) == 0 &&
"Insufficient alignment");
new(&rootLeaf()) RootLeaf();
}
~IntervalMap() {
clear();
rootLeaf().~RootLeaf();
}
/// empty - Return true when no intervals are mapped.
bool empty() const {
return rootSize == 0;
}
/// start - Return the smallest mapped key in a non-empty map.
KeyT start() const {
assert(!empty() && "Empty IntervalMap has no start");
return !branched() ? rootLeaf().start(0) : rootBranchStart();
}
/// stop - Return the largest mapped key in a non-empty map.
KeyT stop() const {
assert(!empty() && "Empty IntervalMap has no stop");
return !branched() ? rootLeaf().stop(rootSize - 1) :
rootBranch().stop(rootSize - 1);
}
/// lookup - Return the mapped value at x or NotFound.
ValT lookup(KeyT x, ValT NotFound = ValT()) const {
if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
return NotFound;
return branched() ? treeSafeLookup(x, NotFound) :
rootLeaf().safeLookup(x, NotFound);
}
/// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
/// It is assumed that no key in the interval is mapped to another value, but
/// overlapping intervals already mapped to y will be coalesced.
void insert(KeyT a, KeyT b, ValT y) {
if (branched() || rootSize == RootLeaf::Capacity)
return find(a).insert(a, b, y);
// Easy insert into root leaf.
unsigned p = rootLeaf().findFrom(0, rootSize, a);
rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
}
/// clear - Remove all entries.
void clear();
class const_iterator;
class iterator;
friend class const_iterator;
friend class iterator;
const_iterator begin() const {
const_iterator I(*this);
I.goToBegin();
return I;
}
iterator begin() {
iterator I(*this);
I.goToBegin();
return I;
}
const_iterator end() const {
const_iterator I(*this);
I.goToEnd();
return I;
}
iterator end() {
iterator I(*this);
I.goToEnd();
return I;
}
/// find - Return an iterator pointing to the first interval ending at or
/// after x, or end().
const_iterator find(KeyT x) const {
const_iterator I(*this);
I.find(x);
return I;
}
iterator find(KeyT x) {
iterator I(*this);
I.find(x);
return I;
}
};
/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
/// branched root.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x, ValT NotFound) const {
assert(branched() && "treeLookup assumes a branched root");
IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
for (unsigned h = height-1; h; --h)
NR = NR.get<Branch>().safeLookup(x);
return NR.get<Leaf>().safeLookup(x, NotFound);
}
// branchRoot - Switch from a leaf root to a branched root.
// Return the new (root offset, node offset) corresponding to Position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootLeaf+1?
const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
// Compute element distribution among new nodes.
unsigned size[Nodes];
IdxPair NewOffset(0, Position);
// Is is very common for the root node to be smaller than external nodes.
if (Nodes == 1)
size[0] = rootSize;
else
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
Position, true);
// Allocate new nodes.
unsigned pos = 0;
NodeRef node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
Leaf *L = newNode<Leaf>();
L->copy(rootLeaf(), pos, 0, size[n]);
node[n] = NodeRef(L, size[n]);
pos += size[n];
}
// Destroy the old leaf node, construct branch node instead.
switchRootToBranch();
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
rootBranch().subtree(n) = node[n];
}
rootBranchStart() = node[0].template get<Leaf>().start(0);
rootSize = Nodes;
return NewOffset;
}
// splitRoot - Split the current BranchRoot into multiple Branch nodes.
// Return the new (root offset, node offset) corresponding to Position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootBranch+1?
const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
// Compute element distribution among new nodes.
unsigned Size[Nodes];
IdxPair NewOffset(0, Position);
// Is is very common for the root node to be smaller than external nodes.
if (Nodes == 1)
Size[0] = rootSize;
else
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
Position, true);
// Allocate new nodes.
unsigned Pos = 0;
NodeRef Node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
Branch *B = newNode<Branch>();
B->copy(rootBranch(), Pos, 0, Size[n]);
Node[n] = NodeRef(B, Size[n]);
Pos += Size[n];
}
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
rootBranch().subtree(n) = Node[n];
}
rootSize = Nodes;
++height;
return NewOffset;
}
/// visitNodes - Visit each external node.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
if (!branched())
return;
SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
// Collect level 0 nodes from the root.
for (unsigned i = 0; i != rootSize; ++i)
Refs.push_back(rootBranch().subtree(i));
// Visit all branch nodes.
for (unsigned h = height - 1; h; --h) {
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
NextRefs.push_back(Refs[i].subtree(j));
(this->*f)(Refs[i], h);
}
Refs.clear();
Refs.swap(NextRefs);
}
// Visit all leaf nodes.
for (unsigned i = 0, e = Refs.size(); i != e; ++i)
(this->*f)(Refs[i], 0);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
if (Level)
deleteNode(&Node.get<Branch>());
else
deleteNode(&Node.get<Leaf>());
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
clear() {
if (branched()) {
visitNodes(&IntervalMap::deleteNode);
switchRootToLeaf();
}
rootSize = 0;
}
//===----------------------------------------------------------------------===//
//--- IntervalMap::const_iterator ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class IntervalMap<KeyT, ValT, N, Traits>::const_iterator {
friend class IntervalMap;
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = ValT;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
protected:
// The map referred to.
IntervalMap *map;
// We store a full path from the root to the current position.
// The path may be partially filled, but never between iterator calls.
IntervalMapImpl::Path path;
explicit const_iterator(const IntervalMap &map) :
map(const_cast<IntervalMap*>(&map)) {}
bool branched() const {
assert(map && "Invalid iterator");
return map->branched();
}
void setRoot(unsigned Offset) {
if (branched())
path.setRoot(&map->rootBranch(), map->rootSize, Offset);
else
path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
}
void pathFillFind(KeyT x);
void treeFind(KeyT x);
void treeAdvanceTo(KeyT x);
/// unsafeStart - Writable access to start() for iterator.
KeyT &unsafeStart() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
path.leaf<RootLeaf>().start(path.leafOffset());
}
/// unsafeStop - Writable access to stop() for iterator.
KeyT &unsafeStop() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
path.leaf<RootLeaf>().stop(path.leafOffset());
}
/// unsafeValue - Writable access to value() for iterator.
ValT &unsafeValue() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
path.leaf<RootLeaf>().value(path.leafOffset());
}
public:
/// const_iterator - Create an iterator that isn't pointing anywhere.
const_iterator() : map(nullptr) {}
/// setMap - Change the map iterated over. This call must be followed by a
/// call to goToBegin(), goToEnd(), or find()
void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
/// valid - Return true if the current position is valid, false for end().
bool valid() const { return path.valid(); }
/// atBegin - Return true if the current position is the first map entry.
bool atBegin() const { return path.atBegin(); }
/// start - Return the beginning of the current interval.
const KeyT &start() const { return unsafeStart(); }
/// stop - Return the end of the current interval.
const KeyT &stop() const { return unsafeStop(); }
/// value - Return the mapped value at the current interval.
const ValT &value() const { return unsafeValue(); }
const ValT &operator*() const { return value(); }
bool operator==(const const_iterator &RHS) const {
assert(map == RHS.map && "Cannot compare iterators from different maps");
if (!valid())
return !RHS.valid();
if (path.leafOffset() != RHS.path.leafOffset())
return false;
return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
}
bool operator!=(const const_iterator &RHS) const {
return !operator==(RHS);
}
/// goToBegin - Move to the first interval in map.
void goToBegin() {
setRoot(0);
if (branched())
path.fillLeft(map->height);
}
/// goToEnd - Move beyond the last interval in map.
void goToEnd() {
setRoot(map->rootSize);
}
/// preincrement - move to the next interval.
const_iterator &operator++() {
assert(valid() && "Cannot increment end()");
if (++path.leafOffset() == path.leafSize() && branched())
path.moveRight(map->height);
return *this;
}
/// postincrement - Dont do that!
const_iterator operator++(int) {
const_iterator tmp = *this;
operator++();
return tmp;
}
/// predecrement - move to the previous interval.
const_iterator &operator--() {
if (path.leafOffset() && (valid() || !branched()))
--path.leafOffset();
else
path.moveLeft(map->height);
return *this;
}
/// postdecrement - Dont do that!
const_iterator operator--(int) {
const_iterator tmp = *this;
operator--();
return tmp;
}
/// find - Move to the first interval with stop >= x, or end().
/// This is a full search from the root, the current position is ignored.
void find(KeyT x) {
if (branched())
treeFind(x);
else
setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
}
/// advanceTo - Move to the first interval with stop >= x, or end().
/// The search is started from the current position, and no earlier positions
/// can be found. This is much faster than find() for small moves.
void advanceTo(KeyT x) {
if (!valid())
return;
if (branched())
treeAdvanceTo(x);
else
path.leafOffset() =
map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
}
};
/// pathFillFind - Complete path by searching for x.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::pathFillFind(KeyT x) {
IntervalMapImpl::NodeRef NR = path.subtree(path.height());
for (unsigned i = map->height - path.height() - 1; i; --i) {
unsigned p = NR.get<Branch>().safeFind(0, x);
path.push(NR, p);
NR = NR.subtree(p);
}
path.push(NR, NR.get<Leaf>().safeFind(0, x));
}
/// treeFind - Find in a branched tree.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::treeFind(KeyT x) {
setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
if (valid())
pathFillFind(x);
}
/// treeAdvanceTo - Find position after the current one.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::treeAdvanceTo(KeyT x) {
// Can we stay on the same leaf node?
if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
return;
}
// Drop the current leaf.
path.pop();
// Search towards the root for a usable subtree.
if (path.height()) {
for (unsigned l = path.height() - 1; l; --l) {
if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
// The branch node at l+1 is usable
path.offset(l + 1) =
path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
return pathFillFind(x);
}
path.pop();
}
// Is the level-1 Branch usable?
if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
return pathFillFind(x);
}
}
// We reached the root.
setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
if (valid())
pathFillFind(x);
}
//===----------------------------------------------------------------------===//
//--- IntervalMap::iterator ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
friend class IntervalMap;
typedef IntervalMapImpl::IdxPair IdxPair;
explicit iterator(IntervalMap &map) : const_iterator(map) {}
void setNodeStop(unsigned Level, KeyT Stop);
bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
template <typename NodeT> bool overflow(unsigned Level);
void treeInsert(KeyT a, KeyT b, ValT y);
void eraseNode(unsigned Level);
void treeErase(bool UpdateRoot = true);
bool canCoalesceLeft(KeyT Start, ValT x);
bool canCoalesceRight(KeyT Stop, ValT x);
public:
/// iterator - Create null iterator.
iterator() {}
/// setStart - Move the start of the current interval.
/// This may cause coalescing with the previous interval.
/// @param a New start key, must not overlap the previous interval.
void setStart(KeyT a);
/// setStop - Move the end of the current interval.
/// This may cause coalescing with the following interval.
/// @param b New stop key, must not overlap the following interval.
void setStop(KeyT b);
/// setValue - Change the mapped value of the current interval.
/// This may cause coalescing with the previous and following intervals.
/// @param x New value.
void setValue(ValT x);
/// setStartUnchecked - Move the start of the current interval without
/// checking for coalescing or overlaps.
/// This should only be used when it is known that coalescing is not required.
/// @param a New start key.
void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
/// setStopUnchecked - Move the end of the current interval without checking
/// for coalescing or overlaps.
/// This should only be used when it is known that coalescing is not required.
/// @param b New stop key.
void setStopUnchecked(KeyT b) {
this->unsafeStop() = b;
// Update keys in branch nodes as well.
if (this->path.atLastEntry(this->path.height()))
setNodeStop(this->path.height(), b);
}
/// setValueUnchecked - Change the mapped value of the current interval
/// without checking for coalescing.
/// @param x New value.
void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
/// insert - Insert mapping [a;b] -> y before the current position.
void insert(KeyT a, KeyT b, ValT y);
/// erase - Erase the current interval.
void erase();
iterator &operator++() {
const_iterator::operator++();
return *this;
}
iterator operator++(int) {
iterator tmp = *this;
operator++();
return tmp;
}
iterator &operator--() {
const_iterator::operator--();
return *this;
}
iterator operator--(int) {
iterator tmp = *this;
operator--();
return tmp;
}
};
/// canCoalesceLeft - Can the current interval coalesce to the left after
/// changing start or value?
/// @param Start New start of current interval.
/// @param Value New value for current interval.
/// @return True when updating the current interval would enable coalescing.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::canCoalesceLeft(KeyT Start, ValT Value) {
using namespace IntervalMapImpl;
Path &P = this->path;
if (!this->branched()) {
unsigned i = P.leafOffset();
RootLeaf &Node = P.leaf<RootLeaf>();
return i && Node.value(i-1) == Value &&
Traits::adjacent(Node.stop(i-1), Start);
}
// Branched.
if (unsigned i = P.leafOffset()) {
Leaf &Node = P.leaf<Leaf>();
return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
} else if (NodeRef NR = P.getLeftSibling(P.height())) {
unsigned i = NR.size() - 1;
Leaf &Node = NR.get<Leaf>();
return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
}
return false;
}
/// canCoalesceRight - Can the current interval coalesce to the right after
/// changing stop or value?
/// @param Stop New stop of current interval.
/// @param Value New value for current interval.
/// @return True when updating the current interval would enable coalescing.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::canCoalesceRight(KeyT Stop, ValT Value) {
using namespace IntervalMapImpl;
Path &P = this->path;
unsigned i = P.leafOffset() + 1;
if (!this->branched()) {
if (i >= P.leafSize())
return false;
RootLeaf &Node = P.leaf<RootLeaf>();
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
}
// Branched.
if (i < P.leafSize()) {
Leaf &Node = P.leaf<Leaf>();
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
} else if (NodeRef NR = P.getRightSibling(P.height())) {
Leaf &Node = NR.get<Leaf>();
return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
}
return false;
}
/// setNodeStop - Update the stop key of the current node at level and above.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setNodeStop(unsigned Level, KeyT Stop) {
// There are no references to the root node, so nothing to update.
if (!Level)
return;
IntervalMapImpl::Path &P = this->path;
// Update nodes pointing to the current node.
while (--Level) {
P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
if (!P.atLastEntry(Level))
return;
}
// Update root separately since it has a different layout.
P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setStart(KeyT a) {
assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
KeyT &CurStart = this->unsafeStart();
if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
CurStart = a;
return;
}
// Coalesce with the interval to the left.
--*this;
a = this->start();
erase();
setStartUnchecked(a);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setStop(KeyT b) {
assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
if (Traits::startLess(b, this->stop()) ||
!canCoalesceRight(b, this->value())) {
setStopUnchecked(b);
return;
}
// Coalesce with interval to the right.
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setValue(ValT x) {
setValueUnchecked(x);
if (canCoalesceRight(this->stop(), x)) {
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
if (canCoalesceLeft(this->start(), x)) {
--*this;
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
}
/// insertNode - insert a node before the current path at level.
/// Leave the current path pointing at the new node.
/// @param Level path index of the node to be inserted.
/// @param Node The node to be inserted.
/// @param Stop The last index in the new node.
/// @return True if the tree height was increased.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
assert(Level && "Cannot insert next to the root");
bool SplitRoot = false;
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
if (Level == 1) {
// Insert into the root branch node.
if (IM.rootSize < RootBranch::Capacity) {
IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
P.setSize(0, ++IM.rootSize);
P.reset(Level);
return SplitRoot;
}
// We need to split the root while keeping our position.
SplitRoot = true;
IdxPair Offset = IM.splitRoot(P.offset(0));
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
// Fall through to insert at the new higher level.
++Level;
}
// When inserting before end(), make sure we have a valid path.
P.legalizeForInsert(--Level);
// Insert into the branch node at Level-1.
if (P.size(Level) == Branch::Capacity) {
// Branch node is full, handle handle the overflow.
assert(!SplitRoot && "Cannot overflow after splitting the root");
SplitRoot = overflow<Branch>(Level);
Level += SplitRoot;
}
P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
P.setSize(Level, P.size(Level) + 1);
if (P.atLastEntry(Level))
setNodeStop(Level, Stop);
P.reset(Level + 1);
return SplitRoot;
}
// insert
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::insert(KeyT a, KeyT b, ValT y) {
if (this->branched())
return treeInsert(a, b, y);
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
// Try simple root leaf insert.
unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
// Was the root node insert successful?
if (Size <= RootLeaf::Capacity) {
P.setSize(0, IM.rootSize = Size);
return;
}
// Root leaf node is full, we must branch.
IdxPair Offset = IM.branchRoot(P.leafOffset());
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
// Now it fits in the new leaf.
treeInsert(a, b, y);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::treeInsert(KeyT a, KeyT b, ValT y) {
using namespace IntervalMapImpl;
Path &P = this->path;
if (!P.valid())
P.legalizeForInsert(this->map->height);
// Check if this insertion will extend the node to the left.
if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
// Node is growing to the left, will it affect a left sibling node?
if (NodeRef Sib = P.getLeftSibling(P.height())) {
Leaf &SibLeaf = Sib.get<Leaf>();
unsigned SibOfs = Sib.size() - 1;
if (SibLeaf.value(SibOfs) == y &&
Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
// This insertion will coalesce with the last entry in SibLeaf. We can
// handle it in two ways:
// 1. Extend SibLeaf.stop to b and be done, or
// 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
// We prefer 1., but need 2 when coalescing to the right as well.
Leaf &CurLeaf = P.leaf<Leaf>();
P.moveLeft(P.height());
if (Traits::stopLess(b, CurLeaf.start(0)) &&
(y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
// Easy, just extend SibLeaf and we're done.
setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
return;
} else {
// We have both left and right coalescing. Erase the old SibLeaf entry
// and continue inserting the larger interval.
a = SibLeaf.start(SibOfs);
treeErase(/* UpdateRoot= */false);
}
}
} else {
// No left sibling means we are at begin(). Update cached bound.
this->map->rootBranchStart() = a;
}
}
// When we are inserting at the end of a leaf node, we must update stops.
unsigned Size = P.leafSize();
bool Grow = P.leafOffset() == Size;
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
// Leaf insertion unsuccessful? Overflow and try again.
if (Size > Leaf::Capacity) {
overflow<Leaf>(P.height());
Grow = P.leafOffset() == P.leafSize();
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
assert(Size <= Leaf::Capacity && "overflow() didn't make room");
}
// Inserted, update offset and leaf size.
P.setSize(P.height(), Size);
// Insert was the last node entry, update stops.
if (Grow)
setNodeStop(P.height(), b);
}
/// erase - erase the current interval and move to the next position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::erase() {
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
assert(P.valid() && "Cannot erase end()");
if (this->branched())
return treeErase();
IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
P.setSize(0, --IM.rootSize);
}
/// treeErase - erase() for a branched tree.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::treeErase(bool UpdateRoot) {
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
Leaf &Node = P.leaf<Leaf>();
// Nodes are not allowed to become empty.
if (P.leafSize() == 1) {
IM.deleteNode(&Node);
eraseNode(IM.height);
// Update rootBranchStart if we erased begin().
if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
return;
}
// Erase current entry.
Node.erase(P.leafOffset(), P.leafSize());
unsigned NewSize = P.leafSize() - 1;
P.setSize(IM.height, NewSize);
// When we erase the last entry, update stop and move to a legal position.
if (P.leafOffset() == NewSize) {
setNodeStop(IM.height, Node.stop(NewSize - 1));
P.moveRight(IM.height);
} else if (UpdateRoot && P.atBegin())
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
}
/// eraseNode - Erase the current node at Level from its parent and move path to
/// the first entry of the next sibling node.
/// The node must be deallocated by the caller.
/// @param Level 1..height, the root node cannot be erased.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::eraseNode(unsigned Level) {
assert(Level && "Cannot erase root node");
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
if (--Level == 0) {
IM.rootBranch().erase(P.offset(0), IM.rootSize);
P.setSize(0, --IM.rootSize);
// If this cleared the root, switch to height=0.
if (IM.empty()) {
IM.switchRootToLeaf();
this->setRoot(0);
return;
}
} else {
// Remove node ref from branch node at Level.
Branch &Parent = P.node<Branch>(Level);
if (P.size(Level) == 1) {
// Branch node became empty, remove it recursively.
IM.deleteNode(&Parent);
eraseNode(Level);
} else {
// Branch node won't become empty.
Parent.erase(P.offset(Level), P.size(Level));
unsigned NewSize = P.size(Level) - 1;
P.setSize(Level, NewSize);
// If we removed the last branch, update stop and move to a legal pos.
if (P.offset(Level) == NewSize) {
setNodeStop(Level, Parent.stop(NewSize - 1));
P.moveRight(Level);
}
}
}
// Update path cache for the new right sibling position.
if (P.valid()) {
P.reset(Level + 1);
P.offset(Level + 1) = 0;
}
}
/// overflow - Distribute entries of the current node evenly among
/// its siblings and ensure that the current node is not full.
/// This may require allocating a new node.
/// @tparam NodeT The type of node at Level (Leaf or Branch).
/// @param Level path index of the overflowing node.
/// @return True when the tree height was changed.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
template <typename NodeT>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::overflow(unsigned Level) {
using namespace IntervalMapImpl;
Path &P = this->path;
unsigned CurSize[4];
NodeT *Node[4];
unsigned Nodes = 0;
unsigned Elements = 0;
unsigned Offset = P.offset(Level);
// Do we have a left sibling?
NodeRef LeftSib = P.getLeftSibling(Level);
if (LeftSib) {
Offset += Elements = CurSize[Nodes] = LeftSib.size();
Node[Nodes++] = &LeftSib.get<NodeT>();
}
// Current node.
Elements += CurSize[Nodes] = P.size(Level);
Node[Nodes++] = &P.node<NodeT>(Level);
// Do we have a right sibling?
NodeRef RightSib = P.getRightSibling(Level);
if (RightSib) {
Elements += CurSize[Nodes] = RightSib.size();
Node[Nodes++] = &RightSib.get<NodeT>();
}
// Do we need to allocate a new node?
unsigned NewNode = 0;
if (Elements + 1 > Nodes * NodeT::Capacity) {
// Insert NewNode at the penultimate position, or after a single node.
NewNode = Nodes == 1 ? 1 : Nodes - 1;
CurSize[Nodes] = CurSize[NewNode];
Node[Nodes] = Node[NewNode];
CurSize[NewNode] = 0;
Node[NewNode] = this->map->template newNode<NodeT>();
++Nodes;
}
// Compute the new element distribution.
unsigned NewSize[4];
IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
CurSize, NewSize, Offset, true);
adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
// Move current location to the leftmost node.
if (LeftSib)
P.moveLeft(Level);
// Elements have been rearranged, now update node sizes and stops.
bool SplitRoot = false;
unsigned Pos = 0;
for (;;) {
KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
if (NewNode && Pos == NewNode) {
SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
Level += SplitRoot;
} else {
P.setSize(Level, NewSize[Pos]);
setNodeStop(Level, Stop);
}
if (Pos + 1 == Nodes)
break;
P.moveRight(Level);
++Pos;
}
// Where was I? Find NewOffset.
while(Pos != NewOffset.first) {
P.moveLeft(Level);
--Pos;
}
P.offset(Level) = NewOffset.second;
return SplitRoot;
}
//===----------------------------------------------------------------------===//
//--- IntervalMapOverlaps ----//
// //
///////////////////////////////////////////////////////////////////////////////
/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
/// IntervalMaps. The maps may be different, but the KeyT and Traits types
/// should be the same.
///
/// Typical uses:
///
/// 1. Test for overlap:
/// bool overlap = IntervalMapOverlaps(a, b).valid();
///
/// 2. Enumerate overlaps:
/// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
///
template <typename MapA, typename MapB>
class IntervalMapOverlaps {
typedef typename MapA::KeyType KeyType;
typedef typename MapA::KeyTraits Traits;
typename MapA::const_iterator posA;
typename MapB::const_iterator posB;
/// advance - Move posA and posB forward until reaching an overlap, or until
/// either meets end.
/// Don't move the iterators if they are already overlapping.
void advance() {
if (!valid())
return;
if (Traits::stopLess(posA.stop(), posB.start())) {
// A ends before B begins. Catch up.
posA.advanceTo(posB.start());
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
return;
} else if (Traits::stopLess(posB.stop(), posA.start())) {
// B ends before A begins. Catch up.
posB.advanceTo(posA.start());
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
return;
} else
// Already overlapping.
return;
for (;;) {
// Make a.end > b.start.
posA.advanceTo(posB.start());
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
return;
// Make b.end > a.start.
posB.advanceTo(posA.start());
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
return;
}
}
public:
/// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA &a, const MapB &b)
: posA(b.empty() ? a.end() : a.find(b.start())),
posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
/// valid - Return true if iterator is at an overlap.
bool valid() const {
return posA.valid() && posB.valid();
}
/// a - access the left hand side in the overlap.
const typename MapA::const_iterator &a() const { return posA; }
/// b - access the right hand side in the overlap.
const typename MapB::const_iterator &b() const { return posB; }
/// start - Beginning of the overlapping interval.
KeyType start() const {
KeyType ak = a().start();
KeyType bk = b().start();
return Traits::startLess(ak, bk) ? bk : ak;
}
/// stop - End of the overlapping interval.
KeyType stop() const {
KeyType ak = a().stop();
KeyType bk = b().stop();
return Traits::startLess(ak, bk) ? ak : bk;
}
/// skipA - Move to the next overlap that doesn't involve a().
void skipA() {
++posA;
advance();
}
/// skipB - Move to the next overlap that doesn't involve b().
void skipB() {
++posB;
advance();
}
/// Preincrement - Move to the next overlap.
IntervalMapOverlaps &operator++() {
// Bump the iterator that ends first. The other one may have more overlaps.
if (Traits::startLess(posB.stop(), posA.stop()))
skipB();
else
skipA();
return *this;
}
/// advanceTo - Move to the first overlapping interval with
/// stopLess(x, stop()).
void advanceTo(KeyType x) {
if (!valid())
return;
// Make sure advanceTo sees monotonic keys.
if (Traits::stopLess(posA.stop(), x))
posA.advanceTo(x);
if (Traits::stopLess(posB.stop(), x))
posB.advanceTo(x);
advance();
}
};
} // namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/PackedVector.h | //===- llvm/ADT/PackedVector.h - Packed values vector -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PackedVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_PACKEDVECTOR_H
#define LLVM_ADT_PACKEDVECTOR_H
#include "llvm/ADT/BitVector.h"
#include <limits>
namespace llvm {
template <typename T, unsigned BitNum, typename BitVectorTy, bool isSigned>
class PackedVectorBase;
// This won't be necessary if we can specialize members without specializing
// the parent template.
template <typename T, unsigned BitNum, typename BitVectorTy>
class PackedVectorBase<T, BitNum, BitVectorTy, false> {
protected:
static T getValue(const BitVectorTy &Bits, unsigned Idx) {
T val = T();
for (unsigned i = 0; i != BitNum; ++i)
val = T(val | ((Bits[(Idx << (BitNum-1)) + i] ? 1UL : 0UL) << i));
return val;
}
static void setValue(BitVectorTy &Bits, unsigned Idx, T val) {
assert((val >> BitNum) == 0 && "value is too big");
for (unsigned i = 0; i != BitNum; ++i)
Bits[(Idx << (BitNum-1)) + i] = val & (T(1) << i);
}
};
template <typename T, unsigned BitNum, typename BitVectorTy>
class PackedVectorBase<T, BitNum, BitVectorTy, true> {
protected:
static T getValue(const BitVectorTy &Bits, unsigned Idx) {
T val = T();
for (unsigned i = 0; i != BitNum-1; ++i)
val = T(val | ((Bits[(Idx << (BitNum-1)) + i] ? 1UL : 0UL) << i));
if (Bits[(Idx << (BitNum-1)) + BitNum-1])
val = ~val;
return val;
}
static void setValue(BitVectorTy &Bits, unsigned Idx, T val) {
if (val < 0) {
val = ~val;
Bits.set((Idx << (BitNum-1)) + BitNum-1);
}
assert((val >> (BitNum-1)) == 0 && "value is too big");
for (unsigned i = 0; i != BitNum-1; ++i)
Bits[(Idx << (BitNum-1)) + i] = val & (T(1) << i);
}
};
/// \brief Store a vector of values using a specific number of bits for each
/// value. Both signed and unsigned types can be used, e.g
/// @code
/// PackedVector<signed, 2> vec;
/// @endcode
/// will create a vector accepting values -2, -1, 0, 1. Any other value will hit
/// an assertion.
template <typename T, unsigned BitNum, typename BitVectorTy = BitVector>
class PackedVector : public PackedVectorBase<T, BitNum, BitVectorTy,
std::numeric_limits<T>::is_signed> {
BitVectorTy Bits;
typedef PackedVectorBase<T, BitNum, BitVectorTy,
std::numeric_limits<T>::is_signed> base;
public:
class reference {
PackedVector &Vec;
const unsigned Idx;
reference(); // Undefined
public:
reference(PackedVector &vec, unsigned idx) : Vec(vec), Idx(idx) { }
reference &operator=(T val) {
Vec.setValue(Vec.Bits, Idx, val);
return *this;
}
operator T() const {
return Vec.getValue(Vec.Bits, Idx);
}
};
PackedVector() { }
explicit PackedVector(unsigned size) : Bits(size << (BitNum-1)) { }
bool empty() const { return Bits.empty(); }
unsigned size() const { return Bits.size() >> (BitNum-1); }
void clear() { Bits.clear(); }
void resize(unsigned N) { Bits.resize(N << (BitNum-1)); }
void reserve(unsigned N) { Bits.reserve(N << (BitNum-1)); }
PackedVector &reset() {
Bits.reset();
return *this;
}
void push_back(T val) {
resize(size()+1);
(*this)[size()-1] = val;
}
reference operator[](unsigned Idx) {
return reference(*this, Idx);
}
T operator[](unsigned Idx) const {
return base::getValue(Bits, Idx);
}
bool operator==(const PackedVector &RHS) const {
return Bits == RHS.Bits;
}
bool operator!=(const PackedVector &RHS) const {
return Bits != RHS.Bits;
}
PackedVector &operator|=(const PackedVector &RHS) {
Bits |= RHS.Bits;
return *this;
}
void swap(PackedVector &RHS) {
Bits.swap(RHS.Bits);
}
};
// Leave BitNum=0 undefined.
template <typename T>
class PackedVector<T, 0>;
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/ImmutableList.h | //==--- ImmutableList.h - Immutable (functional) list interface --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableList class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLELIST_H
#define LLVM_ADT_IMMUTABLELIST_H
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
template <typename T> class ImmutableListFactory;
template <typename T>
class ImmutableListImpl : public FoldingSetNode {
T Head;
const ImmutableListImpl* Tail;
ImmutableListImpl(const T& head, const ImmutableListImpl* tail = 0)
: Head(head), Tail(tail) {}
friend class ImmutableListFactory<T>;
void operator=(const ImmutableListImpl&) = delete;
ImmutableListImpl(const ImmutableListImpl&) = delete;
public:
const T& getHead() const { return Head; }
const ImmutableListImpl* getTail() const { return Tail; }
static inline void Profile(FoldingSetNodeID& ID, const T& H,
const ImmutableListImpl* L){
ID.AddPointer(L);
ID.Add(H);
}
void Profile(FoldingSetNodeID& ID) {
Profile(ID, Head, Tail);
}
};
/// ImmutableList - This class represents an immutable (functional) list.
/// It is implemented as a smart pointer (wraps ImmutableListImpl), so it
/// it is intended to always be copied by value as if it were a pointer.
/// This interface matches ImmutableSet and ImmutableMap. ImmutableList
/// objects should almost never be created directly, and instead should
/// be created by ImmutableListFactory objects that manage the lifetime
/// of a group of lists. When the factory object is reclaimed, all lists
/// created by that factory are released as well.
template <typename T>
class ImmutableList {
public:
typedef T value_type;
typedef ImmutableListFactory<T> Factory;
private:
const ImmutableListImpl<T>* X;
public:
// This constructor should normally only be called by ImmutableListFactory<T>.
// There may be cases, however, when one needs to extract the internal pointer
// and reconstruct a list object from that pointer.
ImmutableList(const ImmutableListImpl<T>* x = 0) : X(x) {}
const ImmutableListImpl<T>* getInternalPointer() const {
return X;
}
class iterator {
const ImmutableListImpl<T>* L;
public:
iterator() : L(0) {}
iterator(ImmutableList l) : L(l.getInternalPointer()) {}
iterator& operator++() { L = L->getTail(); return *this; }
bool operator==(const iterator& I) const { return L == I.L; }
bool operator!=(const iterator& I) const { return L != I.L; }
const value_type& operator*() const { return L->getHead(); }
ImmutableList getList() const { return L; }
};
/// begin - Returns an iterator referring to the head of the list, or
/// an iterator denoting the end of the list if the list is empty.
iterator begin() const { return iterator(X); }
/// end - Returns an iterator denoting the end of the list. This iterator
/// does not refer to a valid list element.
iterator end() const { return iterator(); }
/// isEmpty - Returns true if the list is empty.
bool isEmpty() const { return !X; }
bool contains(const T& V) const {
for (iterator I = begin(), E = end(); I != E; ++I) {
if (*I == V)
return true;
}
return false;
}
/// isEqual - Returns true if two lists are equal. Because all lists created
/// from the same ImmutableListFactory are uniqued, this has O(1) complexity
/// because it the contents of the list do not need to be compared. Note
/// that you should only compare two lists created from the same
/// ImmutableListFactory.
bool isEqual(const ImmutableList& L) const { return X == L.X; }
bool operator==(const ImmutableList& L) const { return isEqual(L); }
/// getHead - Returns the head of the list.
const T& getHead() {
assert (!isEmpty() && "Cannot get the head of an empty list.");
return X->getHead();
}
/// getTail - Returns the tail of the list, which is another (possibly empty)
/// ImmutableList.
ImmutableList getTail() {
return X ? X->getTail() : 0;
}
void Profile(FoldingSetNodeID& ID) const {
ID.AddPointer(X);
}
};
template <typename T>
class ImmutableListFactory {
typedef ImmutableListImpl<T> ListTy;
typedef FoldingSet<ListTy> CacheTy;
CacheTy Cache;
uintptr_t Allocator;
bool ownsAllocator() const {
return Allocator & 0x1 ? false : true;
}
BumpPtrAllocator& getAllocator() const {
return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
}
public:
ImmutableListFactory()
: Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImmutableListFactory(BumpPtrAllocator& Alloc)
: Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImmutableListFactory() {
if (ownsAllocator()) delete &getAllocator();
}
ImmutableList<T> concat(const T& Head, ImmutableList<T> Tail) {
// Profile the new list to see if it already exists in our cache.
FoldingSetNodeID ID;
void* InsertPos;
const ListTy* TailImpl = Tail.getInternalPointer();
ListTy::Profile(ID, Head, TailImpl);
ListTy* L = Cache.FindNodeOrInsertPos(ID, InsertPos);
if (!L) {
// The list does not exist in our cache. Create it.
BumpPtrAllocator& A = getAllocator();
L = (ListTy*) A.Allocate<ListTy>();
new (L) ListTy(Head, TailImpl);
// Insert the new list into the cache.
Cache.InsertNode(L, InsertPos);
}
return L;
}
ImmutableList<T> add(const T& D, ImmutableList<T> L) {
return concat(D, L);
}
ImmutableList<T> getEmptyList() const {
return ImmutableList<T>(0);
}
ImmutableList<T> create(const T& X) {
return Concat(X, getEmptyList());
}
};
//===----------------------------------------------------------------------===//
// Partially-specialized Traits.
// //
///////////////////////////////////////////////////////////////////////////////
template<typename T> struct DenseMapInfo;
template<typename T> struct DenseMapInfo<ImmutableList<T> > {
static inline ImmutableList<T> getEmptyKey() {
return reinterpret_cast<ImmutableListImpl<T>*>(-1);
}
static inline ImmutableList<T> getTombstoneKey() {
return reinterpret_cast<ImmutableListImpl<T>*>(-2);
}
static unsigned getHashValue(ImmutableList<T> X) {
uintptr_t PtrVal = reinterpret_cast<uintptr_t>(X.getInternalPointer());
return (unsigned((uintptr_t)PtrVal) >> 4) ^
(unsigned((uintptr_t)PtrVal) >> 9);
}
static bool isEqual(ImmutableList<T> X1, ImmutableList<T> X2) {
return X1 == X2;
}
};
template <typename T> struct isPodLike;
template <typename T>
struct isPodLike<ImmutableList<T> > { static const bool value = true; };
} // end llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/APInt.h | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a class to represent arbitrary precision
/// integral constant values and operations on them.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APINT_H
#define LLVM_ADT_APINT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>
namespace llvm {
class FoldingSetNodeID;
class StringRef;
class hash_code;
class raw_ostream;
template <typename T> class SmallVectorImpl;
// An unsigned host type used as a single part of a multi-part
// bignum.
typedef uint64_t integerPart;
const unsigned int host_char_bit = 8;
const unsigned int integerPartWidth =
host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
//===----------------------------------------------------------------------===//
// APInt Class
// //
///////////////////////////////////////////////////////////////////////////////
/// \brief Class for arbitrary precision integers.
///
/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
/// * All bit, byte, and word positions are zero-based.
/// * Once the bit width is set, it doesn't change except by the Truncate,
/// SignExtend, or ZeroExtend operations.
/// * All binary operators must be on APInt instances of the same bit width.
/// Attempting to use these operators on instances with different bit
/// widths will yield an assertion.
/// * The value is stored canonically as an unsigned value. For operations
/// where it makes a difference, there are both signed and unsigned variants
/// of the operation. For example, sdiv and udiv. However, because the bit
/// widths must be the same, operations such as Mul and Add produce the same
/// results regardless of whether the values are interpreted as signed or
/// not.
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
class APInt {
unsigned BitWidth; ///< The number of bits in this APInt.
/// This union is used to store the integer value. When the
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
/// This enum is used to hold the constants we needed for APInt.
enum {
/// Bits in a word
APINT_BITS_PER_WORD =
static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
/// Byte size of a word
APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
};
friend struct DenseMapAPIntKeyInfo;
/// \brief Fast internal constructor
///
/// This constructor is used only internally for speed of construction of
/// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
/// \brief Determine if this APInt just has one word to store value.
///
/// \returns true if the number of bits <= 64, false otherwise.
bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
/// \brief Determine which word a bit is in.
///
/// \returns the word position for the specified bit position.
static unsigned whichWord(unsigned bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
/// \brief Determine which bit in a word a bit is in.
///
/// \returns the bit position in a word for the specified bit position
/// in the APInt.
static unsigned whichBit(unsigned bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
/// \brief Get a single bit mask.
///
/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
/// This method generates and returns a uint64_t (word) mask for a single
/// bit at a specific bit position. This is used to mask the bit in the
/// corresponding word.
static uint64_t maskBit(unsigned bitPosition) {
return 1ULL << whichBit(bitPosition);
}
/// \brief Clear unused high order bits
///
/// This method is used internally to clear the top "N" bits in the high order
/// word that are not used by the APInt. This is needed after the most
/// significant word is assigned a value to ensure that those bits are
/// zero'd out.
APInt &clearUnusedBits() {
// Compute how many bits are used in the final word
unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
if (wordBits == 0)
// If all bits are used, we want to leave the value alone. This also
// avoids the undefined behavior of >> when the shift is the same size as
// the word size (64).
return *this;
// Mask out the high bits.
uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
if (isSingleWord())
VAL &= mask;
else
pVal[getNumWords() - 1] &= mask;
return *this;
}
/// \brief Get the word corresponding to a bit position
/// \returns the corresponding word for the specified bit position.
uint64_t getWord(unsigned bitPosition) const {
return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
}
/// \brief Convert a char array into an APInt
///
/// \param radix 2, 8, 10, 16, or 36
/// Converts a string into a number. The string must be non-empty
/// and well-formed as a number of the given base. The bit-width
/// must be sufficient to hold the result.
///
/// This is used by the constructors that take string arguments.
///
/// StringRef::getAsInteger is superficially similar but (1) does
/// not assume that the string is well-formed and (2) grows the
/// result to hold the input.
void fromString(unsigned numBits, StringRef str, uint8_t radix);
/// \brief An internal division function for dividing APInts.
///
/// This is used by the toString method to divide by the radix. It simply
/// provides a more convenient form of divide for internal use since KnuthDiv
/// has specific constraints on its inputs. If those constraints are not met
/// then it provides a simpler form of divide.
static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
unsigned rhsWords, APInt *Quotient, APInt *Remainder);
/// out-of-line slow case for inline constructor
void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
/// shared code between two array constructors
void initFromArray(ArrayRef<uint64_t> array);
/// out-of-line slow case for inline copy constructor
void initSlowCase(const APInt &that);
/// out-of-line slow case for shl
APInt shlSlowCase(unsigned shiftAmt) const;
/// out-of-line slow case for operator&
APInt AndSlowCase(const APInt &RHS) const;
/// out-of-line slow case for operator|
APInt OrSlowCase(const APInt &RHS) const;
/// out-of-line slow case for operator^
APInt XorSlowCase(const APInt &RHS) const;
/// out-of-line slow case for operator=
APInt &AssignSlowCase(const APInt &RHS);
/// out-of-line slow case for operator==
bool EqualSlowCase(const APInt &RHS) const;
/// out-of-line slow case for operator==
bool EqualSlowCase(uint64_t Val) const;
/// out-of-line slow case for countLeadingZeros
unsigned countLeadingZerosSlowCase() const;
/// out-of-line slow case for countTrailingOnes
unsigned countTrailingOnesSlowCase() const;
/// out-of-line slow case for countPopulation
unsigned countPopulationSlowCase() const;
public:
/// \name Constructors
/// @{
/// \brief Create a new APInt of numBits width, initialized as val.
///
/// If isSigned is true then val is treated as if it were a signed value
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
/// the range of val are zero filled).
///
/// \param numBits the bit width of the constructed APInt
/// \param val the initial value of the APInt
/// \param isSigned how to treat signedness of val
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
: BitWidth(numBits), VAL(0) {
assert(BitWidth && "bitwidth too small");
if (isSingleWord())
VAL = val;
else
initSlowCase(numBits, val, isSigned);
clearUnusedBits();
}
/// \brief Construct an APInt of numBits width, initialized as bigVal[].
///
/// Note that bigVal.size() can be smaller or larger than the corresponding
/// bit width but any extraneous bits will be dropped.
///
/// \param numBits the bit width of the constructed APInt
/// \param bigVal a sequence of words to form the initial value of the APInt
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
/// deprecated because this constructor is prone to ambiguity with the
/// APInt(unsigned, uint64_t, bool) constructor.
///
/// If this overload is ever deleted, care should be taken to prevent calls
/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
/// constructor.
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
/// \brief Construct an APInt from a string representation.
///
/// This constructor interprets the string \p str in the given radix. The
/// interpretation stops when the first character that is not suitable for the
/// radix is encountered, or the end of the string. Acceptable radix values
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
/// string to require more bits than numBits.
///
/// \param numBits the bit width of the constructed APInt
/// \param str the string to be interpreted
/// \param radix the radix to use for the conversion
APInt(unsigned numBits, StringRef str, uint8_t radix);
/// Simply makes *this a copy of that.
/// @brief Copy Constructor.
APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
if (isSingleWord())
VAL = that.VAL;
else
initSlowCase(that);
}
/// \brief Move Constructor.
APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
that.BitWidth = 0;
}
/// \brief Destructor.
~APInt() {
if (needsCleanup())
delete[] pVal;
}
/// \brief Default constructor that creates an uninitialized APInt.
///
/// This is useful for object deserialization (pair this with the static
/// method Read).
explicit APInt() : BitWidth(1) {}
/// \brief Returns whether this instance allocated memory.
bool needsCleanup() const { return !isSingleWord(); }
/// Used to insert APInt objects, or objects that contain APInt objects, into
/// FoldingSets.
void Profile(FoldingSetNodeID &id) const;
/// @}
/// \name Value Tests
/// @{
/// \brief Determine sign of this APInt.
///
/// This tests the high bit of this APInt to determine if it is set.
///
/// \returns true if this APInt is negative, false otherwise
bool isNegative() const { return (*this)[BitWidth - 1]; }
/// \brief Determine if this APInt Value is non-negative (>= 0)
///
/// This tests the high bit of the APInt to determine if it is unset.
bool isNonNegative() const { return !isNegative(); }
/// \brief Determine if this APInt Value is positive.
///
/// This tests if the value of this APInt is positive (> 0). Note
/// that 0 is not a positive value.
///
/// \returns true if this APInt is positive.
bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
/// \brief Determine if all bits are set
///
/// This checks to see if the value has all bits of the APInt are set or not.
bool isAllOnesValue() const {
if (isSingleWord())
return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
return countPopulationSlowCase() == BitWidth;
}
/// \brief Determine if this is the largest unsigned value.
///
/// This checks to see if the value of this APInt is the maximum unsigned
/// value for the APInt's bit width.
bool isMaxValue() const { return isAllOnesValue(); }
/// \brief Determine if this is the largest signed value.
///
/// This checks to see if the value of this APInt is the maximum signed
/// value for the APInt's bit width.
bool isMaxSignedValue() const {
return !isNegative() && countPopulation() == BitWidth - 1;
}
/// \brief Determine if this is the smallest unsigned value.
///
/// This checks to see if the value of this APInt is the minimum unsigned
/// value for the APInt's bit width.
bool isMinValue() const { return !*this; }
/// \brief Determine if this is the smallest signed value.
///
/// This checks to see if the value of this APInt is the minimum signed
/// value for the APInt's bit width.
bool isMinSignedValue() const {
return isNegative() && isPowerOf2();
}
/// \brief Check if this APInt has an N-bits unsigned integer value.
bool isIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getActiveBits() <= N;
}
/// \brief Check if this APInt has an N-bits signed integer value.
bool isSignedIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getMinSignedBits() <= N;
}
/// \brief Check if this APInt's value is a power of two greater than zero.
///
/// \returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const {
if (isSingleWord())
return isPowerOf2_64(VAL);
return countPopulationSlowCase() == 1;
}
/// \brief Check if the APInt's value is returned by getSignBit.
///
/// \returns true if this is the value returned by getSignBit.
bool isSignBit() const { return isMinSignedValue(); }
/// \brief Convert APInt to a boolean value.
///
/// This converts the APInt to a boolean value as a test against zero.
bool getBoolValue() const { return !!*this; }
/// If this value is smaller than the specified limit, return it, otherwise
/// return the limit value. This causes the value to saturate to the limit.
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
: getZExtValue();
}
/// \brief Check if the APInt consists of a repeated bit pattern.
///
/// e.g. 0x01010101 satisfies isSplat(8).
/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
/// width without remainder.
bool isSplat(unsigned SplatSizeInBits) const;
/// @}
/// \name Value Generators
/// @{
/// \brief Gets maximum unsigned value of APInt for specific bit width.
static APInt getMaxValue(unsigned numBits) {
return getAllOnesValue(numBits);
}
/// \brief Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMaxValue(unsigned numBits) {
APInt API = getAllOnesValue(numBits);
API.clearBit(numBits - 1);
return API;
}
/// \brief Gets minimum unsigned value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
/// \brief Gets minimum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits) {
APInt API(numBits, 0);
API.setBit(numBits - 1);
return API;
}
/// \brief Get the SignBit for a specific bit width.
///
/// This is just a wrapper function of getSignedMinValue(), and it helps code
/// readability when we want to get a SignBit.
static APInt getSignBit(unsigned BitWidth) {
return getSignedMinValue(BitWidth);
}
/// \brief Get the all-ones value.
///
/// \returns the all-ones value for an APInt of the specified bit-width.
static APInt getAllOnesValue(unsigned numBits) {
return APInt(numBits, UINT64_MAX, true);
}
/// \brief Get the '0' value.
///
/// \returns the '0' value for an APInt of the specified bit-width.
static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
/// \brief Compute an APInt containing numBits highbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
///
/// \returns the high "numBits" bits of this APInt.
APInt getHiBits(unsigned numBits) const;
/// \brief Compute an APInt containing numBits lowbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
///
/// \returns the low "numBits" bits of this APInt.
APInt getLoBits(unsigned numBits) const;
/// \brief Return an APInt with exactly one bit set in the result.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
APInt Res(numBits, 0);
Res.setBit(BitNo);
return Res;
}
/// \brief Get a value with a block of bits set.
///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
///
/// \param numBits the intended bit width of the result
/// \param loBit the index of the lowest bit set.
/// \param hiBit the index of the highest bit set.
///
/// \returns An APInt value with the requested bits set.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
assert(hiBit <= numBits && "hiBit out of range");
assert(loBit < numBits && "loBit out of range");
if (hiBit < loBit)
return getLowBitsSet(numBits, hiBit) |
getHighBitsSet(numBits, numBits - loBit);
return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
}
/// \brief Get a value with high bits set
///
/// Constructs an APInt value that has the top hiBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param hiBitsSet the number of high-order bits set in the result.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
assert(hiBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
if (hiBitsSet == 0)
return APInt(numBits, 0);
unsigned shiftAmt = numBits - hiBitsSet;
// For small values, return quickly
if (numBits <= APINT_BITS_PER_WORD)
return APInt(numBits, ~0ULL << shiftAmt);
return getAllOnesValue(numBits).shl(shiftAmt);
}
/// \brief Get a value with low bits set
///
/// Constructs an APInt value that has the bottom loBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param loBitsSet the number of low-order bits set in the result.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
assert(loBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
if (loBitsSet == 0)
return APInt(numBits, 0);
if (loBitsSet == APINT_BITS_PER_WORD)
return APInt(numBits, UINT64_MAX);
// For small values, return quickly.
if (loBitsSet <= APINT_BITS_PER_WORD)
return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
}
/// \brief Return a value containing V broadcasted over NewLen bits.
static APInt getSplat(unsigned NewLen, const APInt &V) {
assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
APInt Val = V.zextOrSelf(NewLen);
for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
Val |= Val << I;
return Val;
}
/// \brief Determine if two APInts have the same value, after zero-extending
/// one of them (if needed!) to ensure that the bit-widths match.
static bool isSameValue(const APInt &I1, const APInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == I2.zext(I1.getBitWidth());
return I1.zext(I2.getBitWidth()) == I2;
}
/// \brief Overload to compute a hash_code for an APInt value.
friend hash_code hash_value(const APInt &Arg);
/// This function returns a pointer to the internal storage of the APInt.
/// This is useful for writing out the APInt in binary form without any
/// conversions.
const uint64_t *getRawData() const {
if (isSingleWord())
return &VAL;
return &pVal[0];
}
/// @}
/// \name Unary Operators
/// @{
/// \brief Postfix increment operator.
///
/// \returns a new APInt value representing *this incremented by one
const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
/// \brief Prefix increment operator.
///
/// \returns *this incremented by one
APInt &operator++();
/// \brief Postfix decrement operator.
///
/// \returns a new APInt representing *this decremented by one.
const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
/// \brief Prefix decrement operator.
///
/// \returns *this decremented by one.
APInt &operator--();
/// \brief Unary bitwise complement operator.
///
/// Performs a bitwise complement operation on this APInt.
///
/// \returns an APInt that is the bitwise complement of *this
APInt operator~() const {
APInt Result(*this);
Result.flipAllBits();
return Result;
}
/// \brief Unary negation operator
///
/// Negates *this using two's complement logic.
///
/// \returns An APInt value representing the negation of *this.
APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
/// \brief Logical negation operator.
///
/// Performs logical negation operation on this APInt.
///
/// \returns true if *this is zero, false otherwise.
bool operator!() const {
if (isSingleWord())
return !VAL;
for (unsigned i = 0; i != getNumWords(); ++i)
if (pVal[i])
return false;
return true;
}
/// @}
/// \name Assignment Operators
/// @{
/// \brief Copy assignment operator.
///
/// \returns *this after assignment of RHS.
APInt &operator=(const APInt &RHS) {
// If the bitwidths are the same, we can avoid mucking with memory
if (isSingleWord() && RHS.isSingleWord()) {
VAL = RHS.VAL;
BitWidth = RHS.BitWidth;
return clearUnusedBits();
}
return AssignSlowCase(RHS);
}
/// @brief Move assignment operator.
APInt &operator=(APInt &&that) {
if (!isSingleWord()) {
// The MSVC STL shipped in 2013 requires that self move assignment be a
// no-op. Otherwise algorithms like stable_sort will produce answers
// where half of the output is left in a moved-from state.
if (this == &that)
return *this;
delete[] pVal;
}
// Use memcpy so that type based alias analysis sees both VAL and pVal
// as modified.
memcpy(&VAL, &that.VAL, sizeof(uint64_t));
// If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
// first.
unsigned ThatBitWidth = that.BitWidth;
that.BitWidth = 0;
BitWidth = ThatBitWidth;
return *this;
}
/// \brief Assignment operator.
///
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
/// the bit width, the excess bits are truncated. If the bit width is larger
/// than 64, the value is zero filled in the unspecified high order bits.
///
/// \returns *this after assignment of RHS value.
APInt &operator=(uint64_t RHS);
/// \brief Bitwise AND assignment operator.
///
/// Performs a bitwise AND operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after ANDing with RHS.
APInt &operator&=(const APInt &RHS);
/// \brief Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. The result is
/// assigned *this;
///
/// \returns *this after ORing with RHS.
APInt &operator|=(const APInt &RHS);
/// \brief Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator|=(uint64_t RHS) {
if (isSingleWord()) {
VAL |= RHS;
clearUnusedBits();
} else {
pVal[0] |= RHS;
}
return *this;
}
/// \brief Bitwise XOR assignment operator.
///
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after XORing with RHS.
APInt &operator^=(const APInt &RHS);
/// \brief Multiplication assignment operator.
///
/// Multiplies this APInt by RHS and assigns the result to *this.
///
/// \returns *this
APInt &operator*=(const APInt &RHS);
/// \brief Addition assignment operator.
///
/// Adds RHS to *this and assigns the result to *this.
///
/// \returns *this
APInt &operator+=(const APInt &RHS);
/// \brief Subtraction assignment operator.
///
/// Subtracts RHS from *this and assigns the result to *this.
///
/// \returns *this
APInt &operator-=(const APInt &RHS);
/// \brief Left-shift assignment function.
///
/// Shifts *this left by shiftAmt and assigns the result to *this.
///
/// \returns *this after shifting left by shiftAmt
APInt &operator<<=(unsigned shiftAmt) {
*this = shl(shiftAmt);
return *this;
}
/// @}
/// \name Binary Operators
/// @{
/// \brief Bitwise AND operator.
///
/// Performs a bitwise AND operation on *this and RHS.
///
/// \returns An APInt value representing the bitwise AND of *this and RHS.
APInt operator&(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL & RHS.VAL);
return AndSlowCase(RHS);
}
APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
return this->operator&(RHS);
}
/// \brief Bitwise OR operator.
///
/// Performs a bitwise OR operation on *this and RHS.
///
/// \returns An APInt value representing the bitwise OR of *this and RHS.
APInt operator|(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL | RHS.VAL);
return OrSlowCase(RHS);
}
/// \brief Bitwise OR function.
///
/// Performs a bitwise or on *this and RHS. This is implemented by simply
/// calling operator|.
///
/// \returns An APInt value representing the bitwise OR of *this and RHS.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
return this->operator|(RHS);
}
/// \brief Bitwise XOR operator.
///
/// Performs a bitwise XOR operation on *this and RHS.
///
/// \returns An APInt value representing the bitwise XOR of *this and RHS.
APInt operator^(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL ^ RHS.VAL);
return XorSlowCase(RHS);
}
/// \brief Bitwise XOR function.
///
/// Performs a bitwise XOR operation on *this and RHS. This is implemented
/// through the usage of operator^.
///
/// \returns An APInt value representing the bitwise XOR of *this and RHS.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
return this->operator^(RHS);
}
/// \brief Multiplication operator.
///
/// Multiplies this APInt by RHS and returns the result.
APInt operator*(const APInt &RHS) const;
/// \brief Addition operator.
///
/// Adds RHS to this APInt and returns the result.
APInt operator+(const APInt &RHS) const;
APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
/// \brief Subtraction operator.
///
/// Subtracts RHS from this APInt and returns the result.
APInt operator-(const APInt &RHS) const;
APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
/// \brief Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(unsigned Bits) const { return shl(Bits); }
/// \brief Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(const APInt &Bits) const { return shl(Bits); }
/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
/// \brief Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
/// \brief Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
assert(shiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (shiftAmt >= BitWidth)
return APInt(BitWidth, 0); // avoid undefined shift results
return APInt(BitWidth, VAL << shiftAmt);
}
return shlSlowCase(shiftAmt);
}
/// \brief Rotate left by rotateAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
/// \brief Rotate right by rotateAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
/// \brief Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
/// \brief Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
/// \brief Rotate left by rotateAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
/// \brief Rotate right by rotateAmt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
/// \brief Unsigned division operation.
///
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
/// RHS are treated as unsigned quantities for purposes of this division.
///
/// \returns a new APInt value containing the division result
APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
/// \brief Signed division function for APInt.
///
/// Signed divide this APInt by APInt RHS.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
/// \brief Unsigned remainder operation.
///
/// Perform an unsigned remainder operation on this APInt with RHS being the
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
/// of this operation. Note that this is a true remainder operation and not a
/// modulo operation because the sign follows the sign of the dividend which
/// is *this.
///
/// \returns a new APInt value containing the remainder result
APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
/// \brief Function for signed remainder operation.
///
/// Signed remainder operation on APInt.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
/// \brief Dual division/remainder interface.
///
/// Sometimes it is convenient to divide two APInt values and obtain both the
/// quotient and remainder. This function does both operations in the same
/// computation making it a little more efficient. The pair of input arguments
/// may overlap with the pair of output arguments. It is safe to call
/// udivrem(X, Y, X, Y), for example.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
// Operations that return overflow indicators.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
APInt usub_ov(const APInt &RHS, bool &Overflow) const;
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
APInt smul_ov(const APInt &RHS, bool &Overflow) const;
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
/// \brief Array-indexing support.
///
/// \returns the bit value at bitPosition
bool operator[](unsigned bitPosition) const {
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
0;
}
/// @}
/// \name Comparison Operators
/// @{
/// \brief Equality operator.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
bool operator==(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
if (isSingleWord())
return VAL == RHS.VAL;
return EqualSlowCase(RHS);
}
/// \brief Equality operator.
///
/// Compares this APInt with a uint64_t for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
return EqualSlowCase(Val);
}
/// \brief Equality comparison.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool eq(const APInt &RHS) const { return (*this) == RHS; }
/// \brief Inequality operator.
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
/// \brief Inequality operator.
///
/// Compares this APInt with a uint64_t for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(uint64_t Val) const { return !((*this) == Val); }
/// \brief Inequality comparison
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool ne(const APInt &RHS) const { return !((*this) == RHS); }
/// \brief Unsigned less than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered unsigned.
bool ult(const APInt &RHS) const;
/// \brief Unsigned less than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered unsigned.
bool ult(uint64_t RHS) const {
return getActiveBits() > 64 ? false : getZExtValue() < RHS;
}
/// \brief Signed less than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered signed.
bool slt(const APInt &RHS) const;
/// \brief Signed less than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered signed.
bool slt(int64_t RHS) const {
return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
}
/// \brief Unsigned less or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered unsigned.
bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
/// \brief Unsigned less or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered unsigned.
bool ule(uint64_t RHS) const { return !ugt(RHS); }
/// \brief Signed less or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered signed.
bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
/// \brief Signed less or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for the
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered signed.
bool sle(uint64_t RHS) const { return !sgt(RHS); }
/// \brief Unsigned greather than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered unsigned.
bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
/// \brief Unsigned greater than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered unsigned.
bool ugt(uint64_t RHS) const {
return getActiveBits() > 64 ? true : getZExtValue() > RHS;
}
/// \brief Signed greather than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for the
/// validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered signed.
bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
/// \brief Signed greater than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered signed.
bool sgt(int64_t RHS) const {
return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
}
/// \brief Unsigned greater or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered unsigned.
bool uge(const APInt &RHS) const { return !ult(RHS); }
/// \brief Unsigned greater or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered unsigned.
bool uge(uint64_t RHS) const { return !ult(RHS); }
/// \brief Signed greather or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered signed.
bool sge(const APInt &RHS) const { return !slt(RHS); }
/// \brief Signed greater or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered signed.
bool sge(int64_t RHS) const { return !slt(RHS); }
/// This operation tests if there are any pairs of corresponding bits
/// between this APInt and RHS that are both set.
bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
/// @}
/// \name Resizing Operators
/// @{
/// \brief Truncate to new width.
///
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
/// \brief Sign extend to a new width.
///
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
/// \brief Zero extend to a new width.
///
/// This operation zero extends the APInt to a new width. The high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
/// \brief Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, truncated, or left alone to make it that width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
/// \brief Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, truncated, or left alone to make it that width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
/// \brief Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, or left alone to make it that width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
/// \brief Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, or left alone to make it that width.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
/// @}
/// \name Bit Manipulation Operators
/// @{
/// \brief Set every bit to 1.
void setAllBits() {
if (isSingleWord())
VAL = UINT64_MAX;
else {
// Set all the bits in all the words.
for (unsigned i = 0; i < getNumWords(); ++i)
pVal[i] = UINT64_MAX;
}
// Clear the unused ones
clearUnusedBits();
}
/// \brief Set a given bit to 1.
///
/// Set the given bit to 1 whose position is given as "bitPosition".
void setBit(unsigned bitPosition);
/// \brief Set every bit to 0.
void clearAllBits() {
if (isSingleWord())
VAL = 0;
else
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
}
/// \brief Set a given bit to 0.
///
/// Set the given bit to 0 whose position is given as "bitPosition".
void clearBit(unsigned bitPosition);
/// \brief Toggle every bit to its opposite value.
void flipAllBits() {
if (isSingleWord())
VAL ^= UINT64_MAX;
else {
for (unsigned i = 0; i < getNumWords(); ++i)
pVal[i] ^= UINT64_MAX;
}
clearUnusedBits();
}
/// \brief Toggles a given bit to its opposite value.
///
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
void flipBit(unsigned bitPosition);
/// @}
/// \name Value Characterization Functions
/// @{
/// \brief Return the number of bits in the APInt.
unsigned getBitWidth() const { return BitWidth; }
/// \brief Get the number of words.
///
/// Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value of this APInt.
unsigned getNumWords() const { return getNumWords(BitWidth); }
/// \brief Get the number of words.
///
/// *NOTE* Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value with a given bit
/// width.
static unsigned getNumWords(unsigned BitWidth) {
return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
/// \brief Compute the number of active bits in the value
///
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
/// \brief Compute the number of active words in the value of this APInt.
///
/// This is used in conjunction with getActiveData to extract the raw value of
/// the APInt.
unsigned getActiveWords() const {
unsigned numActiveBits = getActiveBits();
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
}
/// \brief Get the minimum bit size for this signed APInt
///
/// Computes the minimum bit width for this APInt while considering it to be a
/// signed (and probably negative) value. If the value is not negative, this
/// function returns the same value as getActiveBits()+1. Otherwise, it
/// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1.
unsigned getMinSignedBits() const {
if (isNegative())
return BitWidth - countLeadingOnes() + 1;
return getActiveBits() + 1;
}
/// \brief Get zero extended value
///
/// This method attempts to return the value of this APInt as a zero extended
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
/// uint64_t. Otherwise an assertion will result.
uint64_t getZExtValue() const {
if (isSingleWord())
return VAL;
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
return pVal[0];
}
/// \brief Get sign extended value
///
/// This method attempts to return the value of this APInt as a sign extended
/// int64_t. The bit width must be <= 64 or the value must fit within an
/// int64_t. Otherwise an assertion will result.
int64_t getSExtValue() const {
if (isSingleWord())
return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
(APINT_BITS_PER_WORD - BitWidth);
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
return int64_t(pVal[0]);
}
/// \brief Get bits required for string value.
///
/// This method determines how many bits are required to hold the APInt
/// equivalent of the string given by \p str.
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
/// \brief The APInt version of the countLeadingZeros functions in
/// MathExtras.h.
///
/// It counts the number of zeros from the most significant bit to the first
/// one bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the most significant bit to the first one bits.
unsigned countLeadingZeros() const {
if (isSingleWord()) {
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
return llvm::countLeadingZeros(VAL) - unusedBits;
}
return countLeadingZerosSlowCase();
}
/// \brief Count the number of leading one bits.
///
/// This function is an APInt version of the countLeadingOnes
/// functions in MathExtras.h. It counts the number of ones from the most
/// significant bit to the first zero bit.
///
/// \returns 0 if the high order bit is not set, otherwise returns the number
/// of 1 bits from the most significant to the least
unsigned countLeadingOnes() const;
/// Computes the number of leading bits of this APInt that are equal to its
/// sign bit.
unsigned getNumSignBits() const {
return isNegative() ? countLeadingOnes() : countLeadingZeros();
}
/// \brief Count the number of trailing zero bits.
///
/// This function is an APInt version of the countTrailingZeros
/// functions in MathExtras.h. It counts the number of zeros from the least
/// significant bit to the first set bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the least significant bit to the first one bit.
unsigned countTrailingZeros() const;
/// \brief Count the number of trailing one bits.
///
/// This function is an APInt version of the countTrailingOnes
/// functions in MathExtras.h. It counts the number of ones from the least
/// significant bit to the first zero bit.
///
/// \returns BitWidth if the value is all ones, otherwise returns the number
/// of ones from the least significant bit to the first zero bit.
unsigned countTrailingOnes() const {
if (isSingleWord())
return llvm::countTrailingOnes(VAL);
return countTrailingOnesSlowCase();
}
/// \brief Count the number of bits set.
///
/// This function is an APInt version of the countPopulation functions
/// in MathExtras.h. It counts the number of 1 bits in the APInt value.
///
/// \returns 0 if the value is zero, otherwise returns the number of set bits.
unsigned countPopulation() const {
if (isSingleWord())
return llvm::countPopulation(VAL);
return countPopulationSlowCase();
}
/// @}
/// \name Conversion Functions
/// @{
void print(raw_ostream &OS, bool isSigned) const;
/// Converts an APInt to a string and append it to Str. Str is commonly a
/// SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
bool formatAsCLiteral = false) const;
/// Considers the APInt to be unsigned and converts it into a string in the
/// radix given. The radix can be 2, 8, 10 16, or 36.
void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, false, false);
}
/// Considers the APInt to be signed and converts it into a string in the
/// radix given. The radix can be 2, 8, 10, 16, or 36.
void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, true, false);
}
/// \brief Return the APInt as a std::string.
///
/// Note that this is an inefficient method. It is better to pass in a
/// SmallVector/SmallString to the methods above to avoid thrashing the heap
/// for the string.
std::string toString(unsigned Radix, bool Signed) const;
/// \returns a byte-swapped representation of this APInt Value.
APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
/// \brief Converts this APInt to a double value.
double roundToDouble(bool isSigned) const;
/// \brief Converts this unsigned APInt to a double value.
double roundToDouble() const { return roundToDouble(false); }
/// \brief Converts this signed APInt to a double value.
double signedRoundToDouble() const { return roundToDouble(true); }
/// \brief Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to double, it just
/// re-interprets the bits as a double. Note that it is valid to do this on
/// any bit width. Exactly 64 bits will be translated.
double bitsToDouble() const {
union {
uint64_t I;
double D;
} T;
T.I = (isSingleWord() ? VAL : pVal[0]);
return T.D;
}
/// \brief Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to float, it just
/// re-interprets the bits as a float. Note that it is valid to do this on
/// any bit width. Exactly 32 bits will be translated.
float bitsToFloat() const {
union {
unsigned I;
float F;
} T;
T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
return T.F;
}
/// \brief Converts a double to APInt bits.
///
/// The conversion does not do a translation from double to integer, it just
/// re-interprets the bits of the double.
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
union {
uint64_t I;
double D;
} T;
T.D = V;
return APInt(sizeof T * CHAR_BIT, T.I);
}
/// \brief Converts a float to APInt bits.
///
/// The conversion does not do a translation from float to integer, it just
/// re-interprets the bits of the float.
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
union {
unsigned I;
float F;
} T;
T.F = V;
return APInt(sizeof T * CHAR_BIT, T.I);
}
/// @}
/// \name Mathematics Operations
/// @{
/// \returns the floor log base 2 of this APInt.
unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
/// \returns the ceil log base 2 of this APInt.
unsigned ceilLogBase2() const {
return BitWidth - (*this - 1).countLeadingZeros();
}
/// \returns the nearest log base 2 of this APInt. Ties round up.
///
/// NOTE: When we have a BitWidth of 1, we define:
///
/// log2(0) = UINT32_MAX
/// log2(1) = 0
///
/// to get around any mathematical concerns resulting from
/// referencing 2 in a space where 2 does no exist.
unsigned nearestLogBase2() const {
// Special case when we have a bitwidth of 1. If VAL is 1, then we
// get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
// UINT32_MAX.
if (BitWidth == 1)
return VAL - 1;
// Handle the zero case.
if (!getBoolValue())
return UINT32_MAX;
// The non-zero case is handled by computing:
//
// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
//
// where x[i] is referring to the value of the ith bit of x.
unsigned lg = logBase2();
return lg + unsigned((*this)[lg - 1]);
}
/// \returns the log base 2 of this APInt if its an exact power of two, -1
/// otherwise
int32_t exactLogBase2() const {
if (!isPowerOf2())
return -1;
return logBase2();
}
/// \brief Compute the square root
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
/// \brief Get the absolute value;
///
/// If *this is < 0 then return -(*this), otherwise *this;
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
if (isNegative())
return -(*this);
return *this;
}
/// \returns the multiplicative inverse for a given modulo.
APInt multiplicativeInverse(const APInt &modulo) const;
/// @}
/// \name Support for division by constant
/// @{
/// Calculate the magic number for signed division by a constant.
struct ms;
ms magic() const;
/// Calculate the magic number for unsigned division by a constant.
struct mu;
mu magicu(unsigned LeadingZeros = 0) const;
/// @}
/// \name Building-block Operations for APInt and APFloat
/// @{
// These building block operations operate on a representation of arbitrary
// precision, two's-complement, bignum integer values. They should be
// sufficient to implement APInt and APFloat bignum requirements. Inputs are
// generally a pointer to the base of an array of integer parts, representing
// an unsigned bignum, and a count of how many parts there are.
/// Sets the least significant part of a bignum to the input value, and zeroes
/// out higher parts.
static void tcSet(integerPart *, integerPart, unsigned int);
/// Assign one bignum to another.
static void tcAssign(integerPart *, const integerPart *, unsigned int);
/// Returns true if a bignum is zero, false otherwise.
static bool tcIsZero(const integerPart *, unsigned int);
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
static int tcExtractBit(const integerPart *, unsigned int bit);
/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
/// significant bit of DST. All high bits above srcBITS in DST are
/// zero-filled.
static void tcExtract(integerPart *, unsigned int dstCount,
const integerPart *, unsigned int srcBits,
unsigned int srcLSB);
/// Set the given bit of a bignum. Zero-based.
static void tcSetBit(integerPart *, unsigned int bit);
/// Clear the given bit of a bignum. Zero-based.
static void tcClearBit(integerPart *, unsigned int bit);
/// Returns the bit number of the least or most significant set bit of a
/// number. If the input number has no bits set -1U is returned.
static unsigned int tcLSB(const integerPart *, unsigned int);
static unsigned int tcMSB(const integerPart *parts, unsigned int n);
/// Negate a bignum in-place.
static void tcNegate(integerPart *, unsigned int);
/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static integerPart tcAdd(integerPart *, const integerPart *,
integerPart carry, unsigned);
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static integerPart tcSubtract(integerPart *, const integerPart *,
integerPart carry, unsigned);
/// DST += SRC * MULTIPLIER + PART if add is true
/// DST = SRC * MULTIPLIER + PART if add is false
///
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
/// start at the same point, i.e. DST == SRC.
///
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
/// Otherwise DST is filled with the least significant DSTPARTS parts of the
/// result, and if all of the omitted higher parts were zero return zero,
/// otherwise overflow occurred and return one.
static int tcMultiplyPart(integerPart *dst, const integerPart *src,
integerPart multiplier, integerPart carry,
unsigned int srcParts, unsigned int dstParts,
bool add);
/// DST = LHS * RHS, where DST has the same width as the operands and is
/// filled with the least significant parts of the result. Returns one if
/// overflow occurred, otherwise zero. DST must be disjoint from both
/// operands.
static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
unsigned);
/// DST = LHS * RHS, where DST has width the sum of the widths of the
/// operands. No overflow occurs. DST must be disjoint from both
/// operands. Returns the number of parts required to hold the result.
static unsigned int tcFullMultiply(integerPart *, const integerPart *,
const integerPart *, unsigned, unsigned);
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
/// REMAINDER to the remainder, return zero. i.e.
///
/// OLD_LHS = RHS * LHS + REMAINDER
///
/// SCRATCH is a bignum of the same size as the operands and result for use by
/// the routine; its contents need not be initialized and are destroyed. LHS,
/// REMAINDER and SCRATCH must be distinct.
static int tcDivide(integerPart *lhs, const integerPart *rhs,
integerPart *remainder, integerPart *scratch,
unsigned int parts);
/// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
/// restrictions on COUNT.
static void tcShiftLeft(integerPart *, unsigned int parts,
unsigned int count);
/// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
/// restrictions on COUNT.
static void tcShiftRight(integerPart *, unsigned int parts,
unsigned int count);
/// The obvious AND, OR and XOR and complement operations.
static void tcAnd(integerPart *, const integerPart *, unsigned int);
static void tcOr(integerPart *, const integerPart *, unsigned int);
static void tcXor(integerPart *, const integerPart *, unsigned int);
static void tcComplement(integerPart *, unsigned int);
/// Comparison (unsigned) of two bignums.
static int tcCompare(const integerPart *, const integerPart *, unsigned int);
/// Increment a bignum in-place. Return the carry flag.
static integerPart tcIncrement(integerPart *, unsigned int);
/// Decrement a bignum in-place. Return the borrow flag.
static integerPart tcDecrement(integerPart *, unsigned int);
/// Set the least significant BITS and clear the rest.
static void tcSetLeastSignificantBits(integerPart *, unsigned int,
unsigned int bits);
/// \brief debug method
void dump() const;
/// @}
};
/// Magic data for optimising signed division by a constant.
struct APInt::ms {
APInt m; ///< magic number
unsigned s; ///< shift amount
};
/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
APInt m; ///< magic number
bool a; ///< add indicator
unsigned s; ///< shift amount
};
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
I.print(OS, true);
return OS;
}
namespace APIntOps {
/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
/// \brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
/// \brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
/// \brief Check if the specified APInt has a N-bits unsigned integer value.
inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
/// \brief Check if the specified APInt has a N-bits signed integer value.
inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
return APIVal.isSignedIntN(N);
}
/// \returns true if the argument APInt value is a sequence of ones starting at
/// the least significant bit with the remainder zero.
inline bool isMask(unsigned numBits, const APInt &APIVal) {
return numBits <= APIVal.getBitWidth() &&
APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
}
/// \brief Return true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
}
/// \brief Returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
/// \brief Returns the floor log base 2 of the specified APInt value.
inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
/// \brief Compute GCD of two APInt values.
///
/// This function returns the greatest common divisor of the two APInt values
/// using Euclid's algorithm.
///
/// \returns the greatest common divisor of Val1 and Val2
APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as an unsigned value for conversion purposes.
inline double RoundAPIntToDouble(const APInt &APIVal) {
return APIVal.roundToDouble();
}
/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as a signed value for conversion purposes.
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
return APIVal.signedRoundToDouble();
}
/// \brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt &APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
/// \brief Converts the given APInt to a float value.
///
/// Treast the APInt as a signed value for conversion purposes.
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
return float(APIVal.signedRoundToDouble());
}
/// \brief Converts the given double value into a APInt.
///
/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);
/// \brief Converts a float value into a APInt.
///
/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
return RoundDoubleToAPInt(double(Float), width);
}
/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift the APInt by shiftAmt.
inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
return LHS.ashr(shiftAmt);
}
/// \brief Logical right-shift function.
///
/// Logical right-shift the APInt by shiftAmt.
inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
return LHS.lshr(shiftAmt);
}
/// \brief Left-shift function.
///
/// Left-shift the APInt by shiftAmt.
inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
return LHS.shl(shiftAmt);
}
/// \brief Signed division function for APInt.
///
/// Signed divide APInt LHS by APInt RHS.
inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
/// \brief Unsigned division function for APInt.
///
/// Unsigned divide APInt LHS by APInt RHS.
inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
/// \brief Function for signed remainder operation.
///
/// Signed remainder operation on APInt.
inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
/// \brief Function for unsigned remainder operation.
///
/// Unsigned remainder operation on APInt.
inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
/// \brief Function for multiplication operation.
///
/// Performs multiplication on APInt values.
inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
/// \brief Function for addition operation.
///
/// Performs addition on APInt values.
inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
/// \brief Function for subtraction operation.
///
/// Performs subtraction on APInt values.
inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
/// \brief Bitwise AND function for APInt.
///
/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
/// \brief Bitwise OR function for APInt.
///
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
/// \brief Bitwise XOR function for APInt.
///
/// Performs bitwise XOR operation on APInt.
inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
/// \brief Bitwise complement function.
///
/// Performs a bitwise complement operation on APInt.
inline APInt Not(const APInt &APIVal) { return ~APIVal; }
} // End of APIntOps namespace
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APInt &Arg);
} // End of llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/iterator.h | //===- iterator.h - Utilities for using and defining iterators --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ITERATOR_H
#define LLVM_ADT_ITERATOR_H
#include <cstddef>
#include <iterator>
namespace llvm {
/// \brief CRTP base class which implements the entire standard iterator facade
/// in terms of a minimal subset of the interface.
///
/// Use this when it is reasonable to implement most of the iterator
/// functionality in terms of a core subset. If you need special behavior or
/// there are performance implications for this, you may want to override the
/// relevant members instead.
///
/// Note, one abstraction that this does *not* provide is implementing
/// subtraction in terms of addition by negating the difference. Negation isn't
/// always information preserving, and I can see very reasonable iterator
/// designs where this doesn't work well. It doesn't really force much added
/// boilerplate anyways.
///
/// Another abstraction that this doesn't provide is implementing increment in
/// terms of addition of one. These aren't equivalent for all iterator
/// categories, and respecting that adds a lot of complexity for little gain.
template <typename DerivedT, typename IteratorCategoryT, typename T,
typename DifferenceTypeT = std::ptrdiff_t, typename PointerT = T *,
typename ReferenceT = T &>
class iterator_facade_base {
public:
using iterator_category = IteratorCategoryT;
using value_type = T;
using difference_type = DifferenceTypeT;
using pointer = PointerT;
using reference = ReferenceT;
protected:
enum {
IsRandomAccess =
std::is_base_of<std::random_access_iterator_tag, IteratorCategoryT>::value,
IsBidirectional =
std::is_base_of<std::bidirectional_iterator_tag, IteratorCategoryT>::value,
};
public:
DerivedT operator+(DifferenceTypeT n) const {
static_assert(
IsRandomAccess,
"The '+' operator is only defined for random access iterators.");
DerivedT tmp = *static_cast<const DerivedT *>(this);
tmp += n;
return tmp;
}
friend DerivedT operator+(DifferenceTypeT n, const DerivedT &i) {
static_assert(
IsRandomAccess,
"The '+' operator is only defined for random access iterators.");
return i + n;
}
DerivedT operator-(DifferenceTypeT n) const {
static_assert(
IsRandomAccess,
"The '-' operator is only defined for random access iterators.");
DerivedT tmp = *static_cast<const DerivedT *>(this);
tmp -= n;
return tmp;
}
DerivedT &operator++() {
return static_cast<DerivedT *>(this)->operator+=(1);
}
DerivedT operator++(int) {
DerivedT tmp = *static_cast<DerivedT *>(this);
++*static_cast<DerivedT *>(this);
return tmp;
}
DerivedT &operator--() {
static_assert(
IsBidirectional,
"The decrement operator is only defined for bidirectional iterators.");
return static_cast<DerivedT *>(this)->operator-=(1);
}
DerivedT operator--(int) {
static_assert(
IsBidirectional,
"The decrement operator is only defined for bidirectional iterators.");
DerivedT tmp = *static_cast<DerivedT *>(this);
--*static_cast<DerivedT *>(this);
return tmp;
}
bool operator!=(const DerivedT &RHS) const {
return !static_cast<const DerivedT *>(this)->operator==(RHS);
}
bool operator>(const DerivedT &RHS) const {
static_assert(
IsRandomAccess,
"Relational operators are only defined for random access iterators.");
return !static_cast<const DerivedT *>(this)->operator<(RHS) &&
!static_cast<const DerivedT *>(this)->operator==(RHS);
}
bool operator<=(const DerivedT &RHS) const {
static_assert(
IsRandomAccess,
"Relational operators are only defined for random access iterators.");
return !static_cast<const DerivedT *>(this)->operator>(RHS);
}
bool operator>=(const DerivedT &RHS) const {
static_assert(
IsRandomAccess,
"Relational operators are only defined for random access iterators.");
return !static_cast<const DerivedT *>(this)->operator<(RHS);
}
PointerT operator->() const {
return &static_cast<const DerivedT *>(this)->operator*();
}
ReferenceT operator[](DifferenceTypeT n) const {
static_assert(IsRandomAccess,
"Subscripting is only defined for random access iterators.");
return *static_cast<const DerivedT *>(this)->operator+(n);
}
};
/// \brief CRTP base class for adapting an iterator to a different type.
///
/// This class can be used through CRTP to adapt one iterator into another.
/// Typically this is done through providing in the derived class a custom \c
/// operator* implementation. Other methods can be overridden as well.
template <
typename DerivedT, typename WrappedIteratorT,
typename IteratorCategoryT =
typename std::iterator_traits<WrappedIteratorT>::iterator_category,
typename T = typename std::iterator_traits<WrappedIteratorT>::value_type,
typename DifferenceTypeT =
typename std::iterator_traits<WrappedIteratorT>::difference_type,
typename PointerT = T *, typename ReferenceT = T &,
// Don't provide these, they are mostly to act as aliases below.
typename WrappedTraitsT = std::iterator_traits<WrappedIteratorT>>
class iterator_adaptor_base
: public iterator_facade_base<DerivedT, IteratorCategoryT, T,
DifferenceTypeT, PointerT, ReferenceT> {
typedef typename iterator_adaptor_base::iterator_facade_base BaseT;
protected:
WrappedIteratorT I;
iterator_adaptor_base() = default;
explicit iterator_adaptor_base(WrappedIteratorT u) : I(std::move(u)) {}
const WrappedIteratorT &wrapped() const { return I; }
public:
typedef DifferenceTypeT difference_type;
DerivedT &operator+=(difference_type n) {
static_assert(
BaseT::IsRandomAccess,
"The '+=' operator is only defined for random access iterators.");
I += n;
return *static_cast<DerivedT *>(this);
}
DerivedT &operator-=(difference_type n) {
static_assert(
BaseT::IsRandomAccess,
"The '-=' operator is only defined for random access iterators.");
I -= n;
return *static_cast<DerivedT *>(this);
}
using BaseT::operator-;
difference_type operator-(const DerivedT &RHS) const {
static_assert(
BaseT::IsRandomAccess,
"The '-' operator is only defined for random access iterators.");
return I - RHS.I;
}
// We have to explicitly provide ++ and -- rather than letting the facade
// forward to += because WrappedIteratorT might not support +=.
using BaseT::operator++;
DerivedT &operator++() {
++I;
return *static_cast<DerivedT *>(this);
}
using BaseT::operator--;
DerivedT &operator--() {
static_assert(
BaseT::IsBidirectional,
"The decrement operator is only defined for bidirectional iterators.");
--I;
return *static_cast<DerivedT *>(this);
}
bool operator==(const DerivedT &RHS) const { return I == RHS.I; }
bool operator<(const DerivedT &RHS) const {
static_assert(
BaseT::IsRandomAccess,
"Relational operators are only defined for random access iterators.");
return I < RHS.I;
}
ReferenceT operator*() const { return *I; }
};
/// \brief An iterator type that allows iterating over the pointees via some
/// other iterator.
///
/// The typical usage of this is to expose a type that iterates over Ts, but
/// which is implemented with some iterator over T*s:
///
/// \code
/// typedef pointee_iterator<SmallVectorImpl<T *>::iterator> iterator;
/// \endcode
template <typename WrappedIteratorT,
typename T = typename std::remove_reference<
decltype(**std::declval<WrappedIteratorT>())>::type>
struct pointee_iterator
: iterator_adaptor_base<
pointee_iterator<WrappedIteratorT>, WrappedIteratorT,
typename std::iterator_traits<WrappedIteratorT>::iterator_category,
T> {
pointee_iterator() = default;
template <typename U>
pointee_iterator(U &&u)
: pointee_iterator::iterator_adaptor_base(std::forward<U &&>(u)) {}
T &operator*() const { return **this->I; }
};
template <typename WrappedIteratorT,
typename T = decltype(&*std::declval<WrappedIteratorT>())>
class pointer_iterator
: public iterator_adaptor_base<pointer_iterator<WrappedIteratorT>,
WrappedIteratorT, T> {
mutable T Ptr;
public:
pointer_iterator() {}
explicit pointer_iterator(WrappedIteratorT u)
: pointer_iterator::iterator_adaptor_base(std::move(u)) {}
T &operator*() { return Ptr = &*this->I; }
const T &operator*() const { return Ptr = &*this->I; }
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/StringSet.h | //===--- StringSet.h - The LLVM Compiler Driver -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open
// Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// StringSet - A set-like wrapper for the StringMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGSET_H
#define LLVM_ADT_STRINGSET_H
#include "llvm/ADT/StringMap.h"
namespace llvm {
/// StringSet - A wrapper for StringMap that provides set-like functionality.
template <class AllocatorTy = llvm::MallocAllocator>
class StringSet : public llvm::StringMap<char, AllocatorTy> {
typedef llvm::StringMap<char, AllocatorTy> base;
public:
std::pair<typename base::iterator, bool> insert(StringRef Key) {
assert(!Key.empty());
return base::insert(std::make_pair(Key, '\0'));
}
};
}
#endif // LLVM_ADT_STRINGSET_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/DepthFirstIterator.h | //===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build generic depth
// first graph iterator. This file exposes the following functions/types:
//
// df_begin/df_end/df_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
//
// idf_begin/idf_end/idf_iterator
// * Depth-first iteration on the 'inverse' graph.
//
// df_ext_begin/df_ext_end/df_ext_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
// idf_ext_begin/idf_ext_end/idf_ext_iterator
// * Depth-first iteration on the 'inverse' graph.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
#define LLVM_ADT_DEPTHFIRSTITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <set>
#include <vector>
namespace llvm {
// df_iterator_storage - A private class which is used to figure out where to
// store the visited set.
template<class SetType, bool External> // Non-external set
class df_iterator_storage {
public:
SetType Visited;
};
template<class SetType>
class df_iterator_storage<SetType, true> {
public:
df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
SetType &Visited;
};
// Generic Depth First Iterator
template<class GraphT,
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
bool ExtStorage = false, class GT = GraphTraits<GraphT> >
class df_iterator : public df_iterator_storage<SetType, ExtStorage> {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename GT::NodeType;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
private:
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef PointerIntPair<NodeType*, 1> PointerIntTy;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is node pointer, second is the 'next child' to visit
// if the int in PointerIntTy is 0, the 'next child' to visit is invalid
std::vector<std::pair<PointerIntTy, ChildItTy> > VisitStack;
inline df_iterator(NodeType *Node) {
this->Visited.insert(Node);
VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
GT::child_begin(Node)));
}
inline df_iterator() {
// End is when stack is empty
}
inline df_iterator(NodeType *Node, SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
if (!S.count(Node)) {
VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
GT::child_begin(Node)));
this->Visited.insert(Node);
}
}
inline df_iterator(SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
// End is when stack is empty
}
inline void toNext() {
do {
std::pair<PointerIntTy, ChildItTy> &Top = VisitStack.back();
NodeType *Node = Top.first.getPointer();
ChildItTy &It = Top.second;
if (!Top.first.getInt()) {
// now retrieve the real begin of the children before we dive in
It = GT::child_begin(Node);
Top.first.setInt(1);
}
while (It != GT::child_end(Node)) {
NodeType *Next = *It++;
// Has our next sibling been visited?
if (Next && this->Visited.insert(Next).second) {
// No, do it now.
VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0),
GT::child_begin(Next)));
return;
}
}
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop_back();
} while (!VisitStack.empty());
}
public:
// Provide static begin and end methods as our public "constructors"
static df_iterator begin(const GraphT &G) {
return df_iterator(GT::getEntryNode(G));
}
static df_iterator end(const GraphT &G) { return df_iterator(); }
// Static begin and end methods as our public ctors for external iterators
static df_iterator begin(const GraphT &G, SetType &S) {
return df_iterator(GT::getEntryNode(G), S);
}
static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
bool operator==(const df_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const df_iterator &x) const { return !(*this == x); }
pointer operator*() const { return VisitStack.back().first.getPointer(); }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeType *operator->() const { return **this; }
df_iterator &operator++() { // Preincrement
toNext();
return *this;
}
/// \brief Skips all children of the current node and traverses to next node
///
/// Note: This function takes care of incrementing the iterator. If you
/// always increment and call this function, you risk walking off the end.
df_iterator &skipChildren() {
VisitStack.pop_back();
if (!VisitStack.empty())
toNext();
return *this;
}
df_iterator operator++(int) { // Postincrement
df_iterator tmp = *this;
++*this;
return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
bool nodeVisited(NodeType *Node) const {
return this->Visited.count(Node) != 0;
}
/// getPathLength - Return the length of the path from the entry node to the
/// current node, counting both nodes.
unsigned getPathLength() const { return VisitStack.size(); }
/// getPath - Return the n'th node in the path from the entry node to the
/// current node.
NodeType *getPath(unsigned n) const {
return VisitStack[n].first.getPointer();
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(const T& G) {
return df_iterator<T>::begin(G);
}
template <class T>
df_iterator<T> df_end(const T& G) {
return df_iterator<T>::end(G);
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<df_iterator<T>> depth_first(const T& G) {
return make_range(df_begin(G), df_end(G));
}
// Provide global definitions of external depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iterator(const df_iterator<T, SetTy, true> &V)
: df_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::begin(G, S);
}
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::end(G, S);
}
template <class T, class SetTy>
iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
SetTy &S) {
return make_range(df_ext_begin(G, S), df_ext_end(G, S));
}
// Provide global definitions of inverse depth first iterators...
template <class T,
class SetTy = llvm::SmallPtrSet<typename GraphTraits<T>::NodeType*, 8>,
bool External = false>
struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
: df_iterator<Inverse<T>, SetTy, External>(V) {}
};
template <class T>
idf_iterator<T> idf_begin(const T& G) {
return idf_iterator<T>::begin(Inverse<T>(G));
}
template <class T>
idf_iterator<T> idf_end(const T& G){
return idf_iterator<T>::end(Inverse<T>(G));
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
return make_range(idf_begin(G), idf_end(G));
}
// Provide global definitions of external inverse depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
}
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
}
template <class T, class SetTy>
iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
SetTy &S) {
return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/EpochTracker.h | //===- llvm/ADT/EpochTracker.h - ADT epoch tracking --------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DebugEpochBase and DebugEpochBase::HandleBase classes.
// These can be used to write iterators that are fail-fast when LLVM is built
// with asserts enabled.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EPOCH_TRACKER_H
#define LLVM_ADT_EPOCH_TRACKER_H
#include "llvm/Config/abi-breaking.h"
#include "llvm/Config/llvm-config.h"
#include <cstdint>
namespace llvm {
#ifndef LLVM_ENABLE_ABI_BREAKING_CHECKS
class DebugEpochBase {
public:
void incrementEpoch() {}
class HandleBase {
public:
HandleBase() = default;
explicit HandleBase(const DebugEpochBase *) {}
bool isHandleInSync() const { return true; }
const void *getEpochAddress() const { return nullptr; }
};
};
#else
/// \brief A base class for data structure classes wishing to make iterators
/// ("handles") pointing into themselves fail-fast. When building without
/// asserts, this class is empty and does nothing.
///
/// DebugEpochBase does not by itself track handles pointing into itself. The
/// expectation is that routines touching the handles will poll on
/// isHandleInSync at appropriate points to assert that the handle they're using
/// is still valid.
///
class DebugEpochBase {
uint64_t Epoch;
public:
DebugEpochBase() : Epoch(0) {}
/// \brief Calling incrementEpoch invalidates all handles pointing into the
/// calling instance.
void incrementEpoch() { ++Epoch; }
/// \brief The destructor calls incrementEpoch to make use-after-free bugs
/// more likely to crash deterministically.
~DebugEpochBase() { incrementEpoch(); }
/// \brief A base class for iterator classes ("handles") that wish to poll for
/// iterator invalidating modifications in the underlying data structure.
/// When LLVM is built without asserts, this class is empty and does nothing.
///
/// HandleBase does not track the parent data structure by itself. It expects
/// the routines modifying the data structure to call incrementEpoch when they
/// make an iterator-invalidating modification.
///
class HandleBase {
const uint64_t *EpochAddress;
uint64_t EpochAtCreation;
public:
HandleBase() : EpochAddress(nullptr), EpochAtCreation(UINT64_MAX) {}
explicit HandleBase(const DebugEpochBase *Parent)
: EpochAddress(&Parent->Epoch), EpochAtCreation(Parent->Epoch) {}
/// \brief Returns true if the DebugEpochBase this Handle is linked to has
/// not called incrementEpoch on itself since the creation of this
/// HandleBase instance.
bool isHandleInSync() const { return *EpochAddress == EpochAtCreation; }
/// \brief Returns a pointer to the epoch word stored in the data structure
/// this handle points into. Can be used to check if two iterators point
/// into the same data structure.
const void *getEpochAddress() const { return EpochAddress; }
};
};
#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
} // namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SparseMultiSet.h | //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseMultiSet class, which adds multiset behavior to
// the SparseSet.
//
// A sparse multiset holds a small number of objects identified by integer keys
// from a moderately sized universe. The sparse multiset uses more memory than
// other containers in order to provide faster operations. Any key can map to
// multiple values. A SparseMultiSetNode class is provided, which serves as a
// convenient base class for the contents of a SparseMultiSet.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEMULTISET_H
#define LLVM_ADT_SPARSEMULTISET_H
#include "llvm/ADT/SparseSet.h"
namespace llvm {
/// Fast multiset implementation for objects that can be identified by small
/// unsigned keys.
///
/// SparseMultiSet allocates memory proportional to the size of the key
/// universe, so it is not recommended for building composite data structures.
/// It is useful for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
/// fast clear() as fast as a vector. The find(), insert(), and erase()
/// operations are all constant time, and typically faster than a hash table.
/// The iteration order doesn't depend on numerical key values, it only depends
/// on the order of insert() and erase() operations. Iteration order is the
/// insertion order. Iteration is only provided over elements of equivalent
/// keys, but iterators are bidirectional.
///
/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast iteration
/// independent on the size of the universe.
///
/// SparseMultiSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT template
/// parameter provides a space/speed tradeoff for sets holding many elements.
///
/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
/// sparse array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// Multiset behavior is provided by providing doubly linked lists for values
/// that are inlined in the dense vector. SparseMultiSet is a good choice when
/// one desires a growable number of entries per key, as it will retain the
/// SparseSet algorithmic properties despite being growable. Thus, it is often a
/// better choice than a SparseSet of growable containers or a vector of
/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
/// the iterators don't point to the element erased), allowing for more
/// intuitive and fast removal.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = llvm::identity<unsigned>,
typename SparseT = uint8_t>
class SparseMultiSet {
static_assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed,
"SparseT must be an unsigned integer type");
/// The actual data that's stored, as a doubly-linked list implemented via
/// indices into the DenseVector. The doubly linked list is implemented
/// circular in Prev indices, and INVALID-terminated in Next indices. This
/// provides efficient access to list tails. These nodes can also be
/// tombstones, in which case they are actually nodes in a single-linked
/// freelist of recyclable slots.
struct SMSNode {
static const unsigned INVALID = ~0U;
ValueT Data;
unsigned Prev;
unsigned Next;
SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
/// List tails have invalid Nexts.
bool isTail() const {
return Next == INVALID;
}
/// Whether this node is a tombstone node, and thus is in our freelist.
bool isTombstone() const {
return Prev == INVALID;
}
/// Since the list is circular in Prev, all non-tombstone nodes have a valid
/// Prev.
bool isValid() const { return Prev != INVALID; }
};
typedef typename KeyFunctorT::argument_type KeyT;
typedef SmallVector<SMSNode, 8> DenseT;
DenseT Dense;
SparseT *Sparse;
unsigned Universe;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
/// We have a built-in recycler for reusing tombstone slots. This recycler
/// puts a singly-linked free list into tombstone slots, allowing us quick
/// erasure, iterator preservation, and dense size.
unsigned FreelistIdx;
unsigned NumFree;
unsigned sparseIndex(const ValueT &Val) const {
assert(ValIndexOf(Val) < Universe &&
"Invalid key in set. Did object mutate?");
return ValIndexOf(Val);
}
unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
// Disable copy construction and assignment.
// This data structure is not meant to be used that way.
SparseMultiSet(const SparseMultiSet&) = delete;
SparseMultiSet &operator=(const SparseMultiSet&) = delete;
/// Whether the given entry is the head of the list. List heads's previous
/// pointers are to the tail of the list, allowing for efficient access to the
/// list tail. D must be a valid entry node.
bool isHead(const SMSNode &D) const {
assert(D.isValid() && "Invalid node for head");
return Dense[D.Prev].isTail();
}
/// Whether the given entry is a singleton entry, i.e. the only entry with
/// that key.
bool isSingleton(const SMSNode &N) const {
assert(N.isValid() && "Invalid node for singleton");
// Is N its own predecessor?
return &Dense[N.Prev] == &N;
}
/// Add in the given SMSNode. Uses a free entry in our freelist if
/// available. Returns the index of the added node.
unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
if (NumFree == 0) {
Dense.push_back(SMSNode(V, Prev, Next));
return Dense.size() - 1;
}
// Peel off a free slot
unsigned Idx = FreelistIdx;
unsigned NextFree = Dense[Idx].Next;
assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
Dense[Idx] = SMSNode(V, Prev, Next);
FreelistIdx = NextFree;
--NumFree;
return Idx;
}
/// Make the current index a new tombstone. Pushes it onto the freelist.
void makeTombstone(unsigned Idx) {
Dense[Idx].Prev = SMSNode::INVALID;
Dense[Idx].Next = FreelistIdx;
FreelistIdx = Idx;
++NumFree;
}
public:
typedef ValueT value_type;
typedef ValueT &reference;
typedef const ValueT &const_reference;
typedef ValueT *pointer;
typedef const ValueT *const_pointer;
typedef unsigned size_type;
SparseMultiSet()
: Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
~SparseMultiSet() { delete[] Sparse; } // HLSL Change: Use overridable operator new
/// Set the universe size which determines the largest key the set can hold.
/// The universe must be sized before any elements can be added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
// HLSL Change Begin: Use overridable operator new/delete
delete[] Sparse;
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = new SparseT[U];
std::memset(Sparse, 0, U * sizeof(SparseT));
// HLSL Change End
Universe = U;
}
/// Our iterators are iterators over the collection of objects that share a
/// key.
template<typename SMSPtrTy>
class iterator_base {
friend class SparseMultiSet;
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = ValueT;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
private:
SMSPtrTy SMS;
unsigned Idx;
unsigned SparseIdx;
iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
: SMS(P), Idx(I), SparseIdx(SI) { }
/// Whether our iterator has fallen outside our dense vector.
bool isEnd() const {
if (Idx == SMSNode::INVALID)
return true;
assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
return false;
}
/// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
bool isKeyed() const { return SparseIdx < SMS->Universe; }
unsigned Prev() const { return SMS->Dense[Idx].Prev; }
unsigned Next() const { return SMS->Dense[Idx].Next; }
void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
public:
reference operator*() const {
assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
"Dereferencing iterator of invalid key or index");
return SMS->Dense[Idx].Data;
}
pointer operator->() const { return &operator*(); }
/// Comparison operators
bool operator==(const iterator_base &RHS) const {
// end compares equal
if (SMS == RHS.SMS && Idx == RHS.Idx) {
assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
"Same dense entry, but different keys?");
return true;
}
return false;
}
bool operator!=(const iterator_base &RHS) const {
return !operator==(RHS);
}
/// Increment and decrement operators
iterator_base &operator--() { // predecrement - Back up
assert(isKeyed() && "Decrementing an invalid iterator");
assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
"Decrementing head of list");
// If we're at the end, then issue a new find()
if (isEnd())
Idx = SMS->findIndex(SparseIdx).Prev();
else
Idx = Prev();
return *this;
}
iterator_base &operator++() { // preincrement - Advance
assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
Idx = Next();
return *this;
}
iterator_base operator--(int) { // postdecrement
iterator_base I(*this);
--*this;
return I;
}
iterator_base operator++(int) { // postincrement
iterator_base I(*this);
++*this;
return I;
}
};
typedef iterator_base<SparseMultiSet *> iterator;
typedef iterator_base<const SparseMultiSet *> const_iterator;
// Convenience types
typedef std::pair<iterator, iterator> RangePair;
/// Returns an iterator past this container. Note that such an iterator cannot
/// be decremented, but will compare equal to other end iterators.
iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
const_iterator end() const {
return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
}
/// Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return size() == 0; }
/// Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
size_type size() const {
assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
return Dense.size() - NumFree;
}
/// Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
NumFree = 0;
FreelistIdx = SMSNode::INVALID;
}
/// Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
const unsigned FoundIdx = sparseIndex(Dense[i]);
// Check that we're pointing at the correct entry and that it is the head
// of a valid list.
if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
return iterator(this, i, Idx);
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
}
/// Returns the number of elements identified by Key. This will be linear in
/// the number of elements of that key.
size_type count(const KeyT &Key) const {
unsigned Ret = 0;
for (const_iterator It = find(Key); It != end(); ++It)
++Ret;
return Ret;
}
/// Returns true if this set contains an element identified by Key.
bool contains(const KeyT &Key) const {
return find(Key) != end();
}
/// Return the head and tail of the subset's list, otherwise returns end().
iterator getHead(const KeyT &Key) { return find(Key); }
iterator getTail(const KeyT &Key) {
iterator I = find(Key);
if (I != end())
I = iterator(this, I.Prev(), KeyIndexOf(Key));
return I;
}
/// The bounds of the range of items sharing Key K. First member is the head
/// of the list, and the second member is a decrementable end iterator for
/// that key.
RangePair equal_range(const KeyT &K) {
iterator B = find(K);
iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
return std::make_pair(B, E);
}
/// Insert a new element at the tail of the subset list. Returns an iterator
/// to the newly added entry.
iterator insert(const ValueT &Val) {
unsigned Idx = sparseIndex(Val);
iterator I = findIndex(Idx);
unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
if (I == end()) {
// Make a singleton list
Sparse[Idx] = NodeIdx;
Dense[NodeIdx].Prev = NodeIdx;
return iterator(this, NodeIdx, Idx);
}
// Stick it at the end.
unsigned HeadIdx = I.Idx;
unsigned TailIdx = I.Prev();
Dense[TailIdx].Next = NodeIdx;
Dense[HeadIdx].Prev = NodeIdx;
Dense[NodeIdx].Prev = TailIdx;
return iterator(this, NodeIdx, Idx);
}
/// Erases an existing element identified by a valid iterator.
///
/// This invalidates iterators pointing at the same entry, but erase() returns
/// an iterator pointing to the next element in the subset's list. This makes
/// it possible to erase selected elements while iterating over the subset:
///
/// tie(I, E) = Set.equal_range(Key);
/// while (I != E)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that if the last element in the subset list is erased, this will
/// return an end iterator which can be decremented to get the new tail (if it
/// exists):
///
/// tie(B, I) = Set.equal_range(Key);
/// for (bool isBegin = B == I; !isBegin; /* empty */) {
/// isBegin = (--I) == B;
/// if (test(I))
/// break;
/// I = erase(I);
/// }
iterator erase(iterator I) {
assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
"erasing invalid/end/tombstone iterator");
// First, unlink the node from its list. Then swap the node out with the
// dense vector's last entry
iterator NextI = unlink(Dense[I.Idx]);
// Put in a tombstone.
makeTombstone(I.Idx);
return NextI;
}
/// Erase all elements with the given key. This invalidates all
/// iterators of that key.
void eraseAll(const KeyT &K) {
for (iterator I = find(K); I != end(); /* empty */)
I = erase(I);
}
private:
/// Unlink the node from its list. Returns the next node in the list.
iterator unlink(const SMSNode &N) {
if (isSingleton(N)) {
// Singleton is already unlinked
assert(N.Next == SMSNode::INVALID && "Singleton has next?");
return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
}
if (isHead(N)) {
// If we're the head, then update the sparse array and our next.
Sparse[sparseIndex(N)] = N.Next;
Dense[N.Next].Prev = N.Prev;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
if (N.isTail()) {
// If we're the tail, then update our head and our previous.
findIndex(sparseIndex(N)).setPrev(N.Prev);
Dense[N.Prev].Next = N.Next;
// Give back an end iterator that can be decremented
iterator I(this, N.Prev, ValIndexOf(N.Data));
return ++I;
}
// Otherwise, just drop us
Dense[N.Next].Prev = N.Prev;
Dense[N.Prev].Next = N.Next;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/StringRef.h | //===--- StringRef.h - Constant String Reference Wrapper --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGREF_H
#define LLVM_ADT_STRINGREF_H
#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <string>
#include <utility>
namespace llvm {
template <typename T>
class SmallVectorImpl;
class APInt;
class hash_code;
class StringRef;
/// Helper functions for StringRef::getAsInteger.
bool getAsUnsignedInteger(StringRef Str, unsigned Radix,
unsigned long long &Result);
bool getAsSignedInteger(StringRef Str, unsigned Radix, long long &Result);
/// StringRef - Represent a constant reference to a string, i.e. a character
/// array and a length, which need not be null terminated.
///
/// This class does not own the string data, it is expected to be used in
/// situations where the character data resides in some other buffer, whose
/// lifetime extends past that of the StringRef. For this reason, it is not in
/// general safe to store a StringRef.
class StringRef {
public:
typedef const char *iterator;
typedef const char *const_iterator;
static const size_t npos = ~size_t(0);
typedef size_t size_type;
private:
/// The start of the string, in an external buffer.
const char *Data;
/// The length of the string.
size_t Length;
// Workaround memcmp issue with null pointers (undefined behavior)
// by providing a specialized version
static int compareMemory(const char *Lhs, const char *Rhs, size_t Length) {
if (Length == 0) { return 0; }
return ::memcmp(Lhs,Rhs,Length);
}
public:
/// @name Constructors
/// @{
/// Construct an empty string ref.
/*implicit*/ StringRef() : Data(nullptr), Length(0) {}
StringRef(std::nullptr_t) = delete; // HLSL Change - So we don't accidentally pass `false` again
/// Construct a string ref from a cstring.
/*implicit*/ StringRef(const char *Str)
: Data(Str) {
assert(Str && "StringRef cannot be built from a NULL argument");
Length = ::strlen(Str); // invoking strlen(NULL) is undefined behavior
}
/// Construct a string ref from a pointer and length.
/*implicit*/ StringRef(const char *data, size_t length)
: Data(data), Length(length) {
assert((data || length == 0) &&
"StringRef cannot be built from a NULL argument with non-null length");
}
/// Construct a string ref from an std::string.
/*implicit*/ StringRef(const std::string &Str)
: Data(Str.data()), Length(Str.length()) {}
/// @}
/// @name Iterators
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
const unsigned char *bytes_begin() const {
return reinterpret_cast<const unsigned char *>(begin());
}
const unsigned char *bytes_end() const {
return reinterpret_cast<const unsigned char *>(end());
}
/// @}
/// @name String Operations
/// @{
/// data - Get a pointer to the start of the string (which may not be null
/// terminated).
const char *data() const { return Data; }
/// empty - Check if the string is empty.
bool empty() const { return Length == 0; }
/// size - Get the string size.
size_t size() const { return Length; }
/// front - Get the first character in the string.
char front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last character in the string.
char back() const {
assert(!empty());
return Data[Length-1];
}
// copy - Allocate copy in Allocator and return StringRef to it.
template <typename Allocator> StringRef copy(Allocator &A) const {
char *S = A.template Allocate<char>(Length);
std::copy(begin(), end(), S);
return StringRef(S, Length);
}
/// equals - Check for string equality, this is more efficient than
/// compare() when the relative ordering of inequal strings isn't needed.
bool equals(StringRef RHS) const {
return (Length == RHS.Length &&
compareMemory(Data, RHS.Data, RHS.Length) == 0);
}
/// equals_lower - Check for string equality, ignoring case.
bool equals_lower(StringRef RHS) const {
return Length == RHS.Length && compare_lower(RHS) == 0;
}
/// compare - Compare two strings; the result is -1, 0, or 1 if this string
/// is lexicographically less than, equal to, or greater than the \p RHS.
int compare(StringRef RHS) const {
// Check the prefix for a mismatch.
if (int Res = compareMemory(Data, RHS.Data, std::min(Length, RHS.Length)))
return Res < 0 ? -1 : 1;
// Otherwise the prefixes match, so we only need to check the lengths.
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
/// compare_lower - Compare two strings, ignoring case.
int compare_lower(StringRef RHS) const;
/// compare_numeric - Compare two strings, treating sequences of digits as
/// numbers.
int compare_numeric(StringRef RHS) const;
/// \brief Determine the edit distance between this string and another
/// string.
///
/// \param Other the string to compare this string against.
///
/// \param AllowReplacements whether to allow character
/// replacements (change one character into another) as a single
/// operation, rather than as two operations (an insertion and a
/// removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that
/// this routine is allowed to compute. If the edit distance will exceed
/// that maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of character insertions, removals,
/// or (if \p AllowReplacements is \c true) replacements needed to
/// transform one of the given strings into the other. If zero,
/// the strings are identical.
unsigned edit_distance(StringRef Other, bool AllowReplacements = true,
unsigned MaxEditDistance = 0) const;
/// str - Get the contents as an std::string.
std::string str() const {
if (!Data) return std::string();
return std::string(Data, Length);
}
/// @}
/// @name Operator Overloads
/// @{
char operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// @}
/// @name Type Conversions
/// @{
operator std::string() const {
return str();
}
/// @}
/// @name String Predicates
/// @{
/// Check if this string starts with the given \p Prefix.
bool startswith(StringRef Prefix) const {
return Length >= Prefix.Length &&
compareMemory(Data, Prefix.Data, Prefix.Length) == 0;
}
/// Check if this string starts with the given \p Prefix, ignoring case.
bool startswith_lower(StringRef Prefix) const;
/// Check if this string ends with the given \p Suffix.
bool endswith(StringRef Suffix) const {
return Length >= Suffix.Length &&
compareMemory(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
}
/// Check if this string ends with the given \p Suffix, ignoring case.
bool endswith_lower(StringRef Suffix) const;
/// @}
/// @name String Searching
/// @{
/// Search for the first character \p C in the string.
///
/// \returns The index of the first occurrence of \p C, or npos if not
/// found.
size_t find(char C, size_t From = 0) const {
size_t FindBegin = std::min(From, Length);
if (FindBegin < Length) { // Avoid calling memchr with nullptr.
// Just forward to memchr, which is faster than a hand-rolled loop.
if (const void *P = ::memchr(Data + FindBegin, C, Length - FindBegin))
return static_cast<const char *>(P) - Data;
}
return npos;
}
/// Search for the first string \p Str in the string.
///
/// \returns The index of the first occurrence of \p Str, or npos if not
/// found.
size_t find(StringRef Str, size_t From = 0) const;
/// Search for the last character \p C in the string.
///
/// \returns The index of the last occurrence of \p C, or npos if not
/// found.
size_t rfind(char C, size_t From = npos) const {
From = std::min(From, Length);
size_t i = From;
while (i != 0) {
--i;
if (Data[i] == C)
return i;
}
return npos;
}
/// Search for the last string \p Str in the string.
///
/// \returns The index of the last occurrence of \p Str, or npos if not
/// found.
size_t rfind(StringRef Str) const;
/// Find the first character in the string that is \p C, or npos if not
/// found. Same as find.
size_t find_first_of(char C, size_t From = 0) const {
return find(C, From);
}
/// Find the first character in the string that is in \p Chars, or npos if
/// not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_of(StringRef Chars, size_t From = 0) const;
/// Find the first character in the string that is not \p C or npos if not
/// found.
size_t find_first_not_of(char C, size_t From = 0) const;
/// Find the first character in the string that is not in the string
/// \p Chars, or npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_not_of(StringRef Chars, size_t From = 0) const;
/// Find the last character in the string that is \p C, or npos if not
/// found.
size_t find_last_of(char C, size_t From = npos) const {
return rfind(C, From);
}
/// Find the last character in the string that is in \p C, or npos if not
/// found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_of(StringRef Chars, size_t From = npos) const;
/// Find the last character in the string that is not \p C, or npos if not
/// found.
size_t find_last_not_of(char C, size_t From = npos) const;
/// Find the last character in the string that is not in \p Chars, or
/// npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_not_of(StringRef Chars, size_t From = npos) const;
/// @}
/// @name Helpful Algorithms
/// @{
/// Return the number of occurrences of \p C in the string.
size_t count(char C) const {
size_t Count = 0;
for (size_t i = 0, e = Length; i != e; ++i)
if (Data[i] == C)
++Count;
return Count;
}
/// Return the number of non-overlapped occurrences of \p Str in
/// the string.
size_t count(StringRef Str) const;
/// Parse the current string as an integer of the specified radix. If
/// \p Radix is specified as zero, this does radix autosensing using
/// extended C rules: 0 is octal, 0x is hex, 0b is binary.
///
/// If the string is invalid or if only a subset of the string is valid,
/// this returns true to signify the error. The string is considered
/// erroneous if empty or if it overflows T.
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
long long LLVal;
if (getAsSignedInteger(*this, Radix, LLVal) ||
static_cast<T>(LLVal) != LLVal)
return true;
Result = LLVal;
return false;
}
template <typename T>
typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
unsigned long long ULLVal;
// The additional cast to unsigned long long is required to avoid the
// Visual C++ warning C4805: '!=' : unsafe mix of type 'bool' and type
// 'unsigned __int64' when instantiating getAsInteger with T = bool.
if (getAsUnsignedInteger(*this, Radix, ULLVal) ||
static_cast<unsigned long long>(static_cast<T>(ULLVal)) != ULLVal)
return true;
Result = ULLVal;
return false;
}
/// Parse the current string as an integer of the specified \p Radix, or of
/// an autosensed radix if the \p Radix given is 0. The current value in
/// \p Result is discarded, and the storage is changed to be wide enough to
/// store the parsed integer.
///
/// \returns true if the string does not solely consist of a valid
/// non-empty number in the appropriate base.
///
/// APInt::fromString is superficially similar but assumes the
/// string is well-formed in the given radix.
bool getAsInteger(unsigned Radix, APInt &Result) const;
/// @}
/// @name String Operations
/// @{
// Convert the given ASCII string to lowercase.
std::string lower() const;
/// Convert the given ASCII string to uppercase.
std::string upper() const;
/// @}
/// @name Substring Operations
/// @{
/// Return a reference to the substring from [Start, Start + N).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param N The number of characters to included in the substring. If N
/// exceeds the number of characters remaining in the string, the string
/// suffix (starting with \p Start) will be returned.
StringRef substr(size_t Start, size_t N = npos) const {
Start = std::min(Start, Length);
return StringRef(Data + Start, std::min(N, Length - Start));
}
/// Return a StringRef equal to 'this' but with the first \p N elements
/// dropped.
StringRef drop_front(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(N);
}
/// Return a StringRef equal to 'this' but with the last \p N elements
/// dropped.
StringRef drop_back(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(0, size()-N);
}
/// Return a reference to the substring from [Start, End).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param End The index following the last character to include in the
/// substring. If this is npos, or less than \p Start, or exceeds the
/// number of characters remaining in the string, the string suffix
/// (starting with \p Start) will be returned.
StringRef slice(size_t Start, size_t End) const {
Start = std::min(Start, Length);
End = std::min(std::max(Start, End), Length);
return StringRef(Data + Start, End - Start);
}
/// Split into two substrings around the first occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator The character to split on.
/// \returns The split substrings.
std::pair<StringRef, StringRef> split(char Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Split into two substrings around the first occurrence of a separator
/// string.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The string to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> split(StringRef Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx + Separator.size(), npos));
}
/// Split into substrings around the occurrences of a separator string.
///
/// Each substring is stored in \p A. If \p MaxSplit is >= 0, at most
/// \p MaxSplit splits are done and consequently <= \p MaxSplit
/// elements are added to A.
/// If \p KeepEmpty is false, empty strings are not added to \p A. They
/// still count when considering \p MaxSplit
/// An useful invariant is that
/// Separator.join(A) == *this if MaxSplit == -1 and KeepEmpty == true
///
/// \param A - Where to put the substrings.
/// \param Separator - The string to split on.
/// \param MaxSplit - The maximum number of times the string is split.
/// \param KeepEmpty - True if empty substring should be added.
void split(SmallVectorImpl<StringRef> &A,
StringRef Separator, int MaxSplit = -1,
bool KeepEmpty = true) const;
/// Split into two substrings around the last occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// minimal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The character to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> rsplit(char Separator) const {
size_t Idx = rfind(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left removed.
StringRef ltrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_front(std::min(Length, find_first_not_of(Chars)));
}
/// Return string with consecutive characters in \p Chars starting from
/// the right removed.
StringRef rtrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_back(Length - std::min(Length, find_last_not_of(Chars) + 1));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left and right removed.
StringRef trim(StringRef Chars = " \t\n\v\f\r") const {
return ltrim(Chars).rtrim(Chars);
}
/// @}
};
/// @name StringRef Comparison Operators
/// @{
inline bool operator==(StringRef LHS, StringRef RHS) {
return LHS.equals(RHS);
}
inline bool operator!=(StringRef LHS, StringRef RHS) {
return !(LHS == RHS);
}
inline bool operator<(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == -1;
}
inline bool operator<=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != 1;
}
inline bool operator>(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == 1;
}
inline bool operator>=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != -1;
}
inline std::string &operator+=(std::string &buffer, StringRef string) {
return buffer.append(string.data(), string.size());
}
/// @}
/// \brief Compute a hash_code for a StringRef.
hash_code hash_value(StringRef S);
// StringRefs can be treated like a POD type.
template <typename T> struct isPodLike;
template <> struct isPodLike<StringRef> { static const bool value = true; };
}
// HLSL Change Starts
// StringRef provides an operator string; that trips up the std::pair noexcept specification,
// which (a) enables the moves constructor (because conversion is allowed), but (b)
// misclassifies the the construction as nothrow.
namespace std {
template<>
struct is_nothrow_constructible <std::string, llvm::StringRef>
: std::false_type {
};
template<>
struct is_nothrow_constructible <std::string, llvm::StringRef &>
: std::false_type {
};
template<>
struct is_nothrow_constructible <std::string, const llvm::StringRef &>
: std::false_type {
};
}
// HLSL Change Ends
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/PointerIntPair.h | //===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PointerIntPair class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POINTERINTPAIR_H
#define LLVM_ADT_POINTERINTPAIR_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <cassert>
#include <limits>
namespace llvm {
template<typename T>
struct DenseMapInfo;
/// PointerIntPair - This class implements a pair of a pointer and small
/// integer. It is designed to represent this in the space required by one
/// pointer by bitmangling the integer into the low part of the pointer. This
/// can only be done for small integers: typically up to 3 bits, but it depends
/// on the number of bits available according to PointerLikeTypeTraits for the
/// type.
///
/// Note that PointerIntPair always puts the IntVal part in the highest bits
/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
/// the bool into bit #2, not bit #0, which allows the low two bits to be used
/// for something else. For example, this allows:
/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
/// ... and the two bools will land in different bits.
///
template <typename PointerTy, unsigned IntBits, typename IntType=unsigned,
typename PtrTraits = PointerLikeTypeTraits<PointerTy> >
class PointerIntPair {
intptr_t Value;
static_assert(PtrTraits::NumLowBitsAvailable <
std::numeric_limits<uintptr_t>::digits,
"cannot use a pointer type that has all bits free");
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
"PointerIntPair with integer size too large for pointer");
enum : uintptr_t {
/// PointerBitMask - The bits that come from the pointer.
PointerBitMask =
~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable)-1),
/// IntShift - The number of low bits that we reserve for other uses, and
/// keep zero.
IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable-IntBits,
/// IntMask - This is the unshifted mask for valid bits of the int type.
IntMask = (uintptr_t)(((intptr_t)1 << IntBits)-1),
// ShiftedIntMask - This is the bits for the integer shifted in place.
ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
};
public:
PointerIntPair() : Value(0) {}
PointerIntPair(PointerTy PtrVal, IntType IntVal) {
setPointerAndInt(PtrVal, IntVal);
}
explicit PointerIntPair(PointerTy PtrVal) {
initWithPointer(PtrVal);
}
PointerTy getPointer() const {
return PtrTraits::getFromVoidPointer(
reinterpret_cast<void*>(Value & PointerBitMask));
}
IntType getInt() const {
return (IntType)((Value >> IntShift) & IntMask);
}
void setPointer(PointerTy PtrVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ~PointerBitMask) == 0 &&
"Pointer is not sufficiently aligned");
// Preserve all low bits, just update the pointer.
Value = PtrWord | (Value & ~PointerBitMask);
}
void setInt(IntType IntVal) {
intptr_t IntWord = static_cast<intptr_t>(IntVal);
assert((IntWord & ~IntMask) == 0 && "Integer too large for field");
// Preserve all bits other than the ones we are updating.
Value &= ~ShiftedIntMask; // Remove integer field.
Value |= IntWord << IntShift; // Set new integer.
}
void initWithPointer(PointerTy PtrVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ~PointerBitMask) == 0 &&
"Pointer is not sufficiently aligned");
Value = PtrWord;
}
void setPointerAndInt(PointerTy PtrVal, IntType IntVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ~PointerBitMask) == 0 &&
"Pointer is not sufficiently aligned");
intptr_t IntWord = static_cast<intptr_t>(IntVal);
assert((IntWord & ~IntMask) == 0 && "Integer too large for field");
Value = PtrWord | (IntWord << IntShift);
}
PointerTy const *getAddrOfPointer() const {
return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
}
PointerTy *getAddrOfPointer() {
assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer");
return reinterpret_cast<PointerTy *>(&Value);
}
void *getOpaqueValue() const { return reinterpret_cast<void*>(Value); }
void setFromOpaqueValue(void *Val) { Value = reinterpret_cast<intptr_t>(Val);}
static PointerIntPair getFromOpaqueValue(void *V) {
PointerIntPair P; P.setFromOpaqueValue(V); return P;
}
// Allow PointerIntPairs to be created from const void * if and only if the
// pointer type could be created from a const void *.
static PointerIntPair getFromOpaqueValue(const void *V) {
(void)PtrTraits::getFromVoidPointer(V);
return getFromOpaqueValue(const_cast<void *>(V));
}
bool operator==(const PointerIntPair &RHS) const {return Value == RHS.Value;}
bool operator!=(const PointerIntPair &RHS) const {return Value != RHS.Value;}
bool operator<(const PointerIntPair &RHS) const {return Value < RHS.Value;}
bool operator>(const PointerIntPair &RHS) const {return Value > RHS.Value;}
bool operator<=(const PointerIntPair &RHS) const {return Value <= RHS.Value;}
bool operator>=(const PointerIntPair &RHS) const {return Value >= RHS.Value;}
};
template <typename T> struct isPodLike;
template<typename PointerTy, unsigned IntBits, typename IntType>
struct isPodLike<PointerIntPair<PointerTy, IntBits, IntType> > {
static const bool value = true;
};
// Provide specialization of DenseMapInfo for PointerIntPair.
template<typename PointerTy, unsigned IntBits, typename IntType>
struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType> > {
typedef PointerIntPair<PointerTy, IntBits, IntType> Ty;
static Ty getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
}
static Ty getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
}
static unsigned getHashValue(Ty V) {
uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
return unsigned(IV) ^ unsigned(IV >> 9);
}
static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
};
// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
template<typename PointerTy, unsigned IntBits, typename IntType,
typename PtrTraits>
class PointerLikeTypeTraits<PointerIntPair<PointerTy, IntBits, IntType,
PtrTraits> > {
public:
static inline void *
getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
return P.getOpaqueValue();
}
static inline PointerIntPair<PointerTy, IntBits, IntType>
getFromVoidPointer(void *P) {
return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
}
static inline PointerIntPair<PointerTy, IntBits, IntType>
getFromVoidPointer(const void *P) {
return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
}
enum {
NumLowBitsAvailable = PtrTraits::NumLowBitsAvailable - IntBits
};
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/Triple.h | //===-- llvm/ADT/Triple.h - Target triple helper class ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TRIPLE_H
#define LLVM_ADT_TRIPLE_H
#include "llvm/ADT/Twine.h"
// Some system headers or GCC predefined macros conflict with identifiers in
// this file. Undefine them here.
#undef NetBSD
#undef mips
#undef sparc
namespace llvm {
/// Triple - Helper class for working with autoconf configuration names. For
/// historical reasons, we also call these 'triples' (they used to contain
/// exactly three fields).
///
/// Configuration names are strings in the canonical form:
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM
/// or
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
///
/// This class is used for clients which want to support arbitrary
/// configuration names, but also want to implement certain special
/// behavior for particular configurations. This class isolates the mapping
/// from the components of the configuration name to well known IDs.
///
/// At its core the Triple class is designed to be a wrapper for a triple
/// string; the constructor does not change or normalize the triple string.
/// Clients that need to handle the non-canonical triples that users often
/// specify should use the normalize method.
///
/// See autoconf/config.guess for a glimpse into what configuration names
/// look like in practice.
class Triple {
public:
enum ArchType {
UnknownArch,
arm, // ARM (little endian): arm, armv.*, xscale
armeb, // ARM (big endian): armeb
aarch64, // AArch64 (little endian): aarch64
aarch64_be, // AArch64 (big endian): aarch64_be
bpfel, // eBPF or extended BPF or 64-bit BPF (little endian)
bpfeb, // eBPF or extended BPF or 64-bit BPF (big endian)
hexagon, // Hexagon: hexagon
mips, // MIPS: mips, mipsallegrex
mipsel, // MIPSEL: mipsel, mipsallegrexel
mips64, // MIPS64: mips64
mips64el, // MIPS64EL: mips64el
msp430, // MSP430: msp430
ppc, // PPC: powerpc
ppc64, // PPC64: powerpc64, ppu
ppc64le, // PPC64LE: powerpc64le
r600, // R600: AMD GPUs HD2XXX - HD6XXX
amdgcn, // AMDGCN: AMD GCN GPUs
sparc, // Sparc: sparc
sparcv9, // Sparcv9: Sparcv9
sparcel, // Sparc: (endianness = little). NB: 'Sparcle' is a CPU variant
systemz, // SystemZ: s390x
tce, // TCE (http://tce.cs.tut.fi/): tce
thumb, // Thumb (little endian): thumb, thumbv.*
thumbeb, // Thumb (big endian): thumbeb
x86, // X86: i[3-9]86
x86_64, // X86-64: amd64, x86_64
xcore, // XCore: xcore
nvptx, // NVPTX: 32-bit
nvptx64, // NVPTX: 64-bit
le32, // le32: generic little-endian 32-bit CPU (PNaCl / Emscripten)
le64, // le64: generic little-endian 64-bit CPU (PNaCl / Emscripten)
amdil, // AMDIL
amdil64, // AMDIL with 64-bit pointers
hsail, // AMD HSAIL
hsail64, // AMD HSAIL with 64-bit pointers
spir, // SPIR: standard portable IR for OpenCL 32-bit version
spir64, // SPIR: standard portable IR for OpenCL 64-bit version
// HLSL Change Begins
dxil, // DXIL: DirectX Intermediate Language 32-bit
dxil64, // DXIL: DirectX Intermediate Language 64-bit
// HLSL Change Ends
kalimba, // Kalimba: generic kalimba
shave, // SHAVE: Movidius vector VLIW processors
wasm32, // WebAssembly with 32-bit pointers
wasm64, // WebAssembly with 64-bit pointers
LastArchType = wasm64
};
enum SubArchType {
NoSubArch,
ARMSubArch_v8_1a,
ARMSubArch_v8,
ARMSubArch_v7,
ARMSubArch_v7em,
ARMSubArch_v7m,
ARMSubArch_v7s,
ARMSubArch_v6,
ARMSubArch_v6m,
ARMSubArch_v6k,
ARMSubArch_v6t2,
ARMSubArch_v5,
ARMSubArch_v5te,
ARMSubArch_v4t,
KalimbaSubArch_v3,
KalimbaSubArch_v4,
KalimbaSubArch_v5
};
enum VendorType {
UnknownVendor,
Apple,
PC,
SCEI,
BGP,
BGQ,
Freescale,
IBM,
ImaginationTechnologies,
MipsTechnologies,
Microsoft, // HLSL Change
NVIDIA,
CSR,
LastVendorType = CSR
};
enum OSType {
UnknownOS,
CloudABI,
Darwin,
DragonFly,
FreeBSD,
IOS,
KFreeBSD,
Linux,
Lv2, // PS3
MacOSX,
NetBSD,
OpenBSD,
Solaris,
Win32,
Haiku,
Minix,
RTEMS,
NaCl, // Native Client
CNK, // BG/P Compute-Node Kernel
Bitrig,
AIX,
CUDA, // NVIDIA CUDA
NVCL, // NVIDIA OpenCL
AMDHSA, // AMD HSA Runtime
DirectX, // HLSL Change
PS4,
LastOSType = PS4
};
enum EnvironmentType {
UnknownEnvironment,
GNU,
GNUEABI,
GNUEABIHF,
GNUX32,
CODE16,
EABI,
EABIHF,
Android,
MSVC,
Itanium,
Cygnus,
LastEnvironmentType = Cygnus
};
enum ObjectFormatType {
UnknownObjectFormat,
COFF,
ELF,
MachO,
};
private:
std::string Data;
/// The parsed arch type.
ArchType Arch;
/// The parsed subarchitecture type.
SubArchType SubArch;
/// The parsed vendor type.
VendorType Vendor;
/// The parsed OS type.
OSType OS;
/// The parsed Environment type.
EnvironmentType Environment;
/// The object format type.
ObjectFormatType ObjectFormat;
public:
/// @name Constructors
/// @{
/// \brief Default constructor is the same as an empty string and leaves all
/// triple fields unknown.
Triple() : Data(), Arch(), Vendor(), OS(), Environment(), ObjectFormat() {}
explicit Triple(const Twine &Str);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
const Twine &EnvironmentStr);
bool operator==(const Triple &Other) const {
return Arch == Other.Arch && SubArch == Other.SubArch &&
Vendor == Other.Vendor && OS == Other.OS &&
Environment == Other.Environment &&
ObjectFormat == Other.ObjectFormat;
}
/// @}
/// @name Normalization
/// @{
/// normalize - Turn an arbitrary machine specification into the canonical
/// triple form (or something sensible that the Triple class understands if
/// nothing better can reasonably be done). In particular, it handles the
/// common case in which otherwise valid components are in the wrong order.
static std::string normalize(StringRef Str);
/// \brief Return the normalized form of this triple's string.
std::string normalize() const { return normalize(Data); }
/// @}
/// @name Typed Component Access
/// @{
/// getArch - Get the parsed architecture type of this triple.
ArchType getArch() const { return Arch; }
/// getSubArch - get the parsed subarchitecture type for this triple.
SubArchType getSubArch() const { return SubArch; }
/// getVendor - Get the parsed vendor type of this triple.
VendorType getVendor() const { return Vendor; }
/// getOS - Get the parsed operating system type of this triple.
OSType getOS() const { return OS; }
/// hasEnvironment - Does this triple have the optional environment
/// (fourth) component?
bool hasEnvironment() const {
return getEnvironmentName() != "";
}
/// getEnvironment - Get the parsed environment type of this triple.
EnvironmentType getEnvironment() const { return Environment; }
/// \brief Parse the version number from the OS name component of the
/// triple, if present.
///
/// For example, "fooos1.2.3" would return (1, 2, 3).
///
/// If an entry is not defined, it will be returned as 0.
void getEnvironmentVersion(unsigned &Major, unsigned &Minor,
unsigned &Micro) const;
/// getFormat - Get the object format for this triple.
ObjectFormatType getObjectFormat() const { return ObjectFormat; }
/// getOSVersion - Parse the version number from the OS name component of the
/// triple, if present.
///
/// For example, "fooos1.2.3" would return (1, 2, 3).
///
/// If an entry is not defined, it will be returned as 0.
void getOSVersion(unsigned &Major, unsigned &Minor, unsigned &Micro) const;
/// getOSMajorVersion - Return just the major version number, this is
/// specialized because it is a common query.
unsigned getOSMajorVersion() const {
unsigned Maj, Min, Micro;
getOSVersion(Maj, Min, Micro);
return Maj;
}
/// getMacOSXVersion - Parse the version number as with getOSVersion and then
/// translate generic "darwin" versions to the corresponding OS X versions.
/// This may also be called with IOS triples but the OS X version number is
/// just set to a constant 10.4.0 in that case. Returns true if successful.
bool getMacOSXVersion(unsigned &Major, unsigned &Minor,
unsigned &Micro) const;
/// getiOSVersion - Parse the version number as with getOSVersion. This should
/// only be called with IOS triples.
void getiOSVersion(unsigned &Major, unsigned &Minor,
unsigned &Micro) const;
/// @}
/// @name Direct Component Access
/// @{
const std::string &str() const { return Data; }
const std::string &getTriple() const { return Data; }
/// getArchName - Get the architecture (first) component of the
/// triple.
StringRef getArchName() const;
/// getVendorName - Get the vendor (second) component of the triple.
StringRef getVendorName() const;
/// getOSName - Get the operating system (third) component of the
/// triple.
StringRef getOSName() const;
/// getEnvironmentName - Get the optional environment (fourth)
/// component of the triple, or "" if empty.
StringRef getEnvironmentName() const;
/// getOSAndEnvironmentName - Get the operating system and optional
/// environment components as a single string (separated by a '-'
/// if the environment component is present).
StringRef getOSAndEnvironmentName() const;
/// @}
/// @name Convenience Predicates
/// @{
/// \brief Test whether the architecture is 64-bit
///
/// Note that this tests for 64-bit pointer width, and nothing else. Note
/// that we intentionally expose only three predicates, 64-bit, 32-bit, and
/// 16-bit. The inner details of pointer width for particular architectures
/// is not summed up in the triple, and so only a coarse grained predicate
/// system is provided.
bool isArch64Bit() const;
/// \brief Test whether the architecture is 32-bit
///
/// Note that this tests for 32-bit pointer width, and nothing else.
bool isArch32Bit() const;
/// \brief Test whether the architecture is 16-bit
///
/// Note that this tests for 16-bit pointer width, and nothing else.
bool isArch16Bit() const;
/// isOSVersionLT - Helper function for doing comparisons against version
/// numbers included in the target triple.
bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const {
unsigned LHS[3];
getOSVersion(LHS[0], LHS[1], LHS[2]);
if (LHS[0] != Major)
return LHS[0] < Major;
if (LHS[1] != Minor)
return LHS[1] < Minor;
if (LHS[2] != Micro)
return LHS[1] < Micro;
return false;
}
bool isOSVersionLT(const Triple &Other) const {
unsigned RHS[3];
Other.getOSVersion(RHS[0], RHS[1], RHS[2]);
return isOSVersionLT(RHS[0], RHS[1], RHS[2]);
}
/// isMacOSXVersionLT - Comparison function for checking OS X version
/// compatibility, which handles supporting skewed version numbering schemes
/// used by the "darwin" triples.
unsigned isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const {
assert(isMacOSX() && "Not an OS X triple!");
// If this is OS X, expect a sane version number.
if (getOS() == Triple::MacOSX)
return isOSVersionLT(Major, Minor, Micro);
// Otherwise, compare to the "Darwin" number.
assert(Major == 10 && "Unexpected major version");
return isOSVersionLT(Minor + 4, Micro, 0);
}
/// isMacOSX - Is this a Mac OS X triple. For legacy reasons, we support both
/// "darwin" and "osx" as OS X triples.
bool isMacOSX() const {
return getOS() == Triple::Darwin || getOS() == Triple::MacOSX;
}
/// Is this an iOS triple.
bool isiOS() const {
return getOS() == Triple::IOS;
}
/// isOSDarwin - Is this a "Darwin" OS (OS X or iOS).
bool isOSDarwin() const {
return isMacOSX() || isiOS();
}
bool isOSNetBSD() const {
return getOS() == Triple::NetBSD;
}
bool isOSOpenBSD() const {
return getOS() == Triple::OpenBSD;
}
bool isOSFreeBSD() const {
return getOS() == Triple::FreeBSD;
}
bool isOSDragonFly() const { return getOS() == Triple::DragonFly; }
bool isOSSolaris() const {
return getOS() == Triple::Solaris;
}
bool isOSBitrig() const {
return getOS() == Triple::Bitrig;
}
bool isWindowsMSVCEnvironment() const {
return getOS() == Triple::Win32 &&
(getEnvironment() == Triple::UnknownEnvironment ||
getEnvironment() == Triple::MSVC);
}
bool isKnownWindowsMSVCEnvironment() const {
return getOS() == Triple::Win32 && getEnvironment() == Triple::MSVC;
}
bool isWindowsItaniumEnvironment() const {
return getOS() == Triple::Win32 && getEnvironment() == Triple::Itanium;
}
bool isWindowsCygwinEnvironment() const {
return getOS() == Triple::Win32 && getEnvironment() == Triple::Cygnus;
}
bool isWindowsGNUEnvironment() const {
return getOS() == Triple::Win32 && getEnvironment() == Triple::GNU;
}
/// \brief Tests for either Cygwin or MinGW OS
bool isOSCygMing() const {
return isWindowsCygwinEnvironment() || isWindowsGNUEnvironment();
}
/// \brief Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
bool isOSMSVCRT() const {
return isWindowsMSVCEnvironment() || isWindowsGNUEnvironment() ||
isWindowsItaniumEnvironment();
}
/// \brief Tests whether the OS is Windows.
bool isOSWindows() const {
return getOS() == Triple::Win32;
}
/// \brief Tests whether the OS is NaCl (Native Client)
bool isOSNaCl() const {
return getOS() == Triple::NaCl;
}
/// \brief Tests whether the OS is Linux.
bool isOSLinux() const {
return getOS() == Triple::Linux;
}
/// \brief Tests whether the OS uses the ELF binary format.
bool isOSBinFormatELF() const {
return getObjectFormat() == Triple::ELF;
}
/// \brief Tests whether the OS uses the COFF binary format.
bool isOSBinFormatCOFF() const {
return getObjectFormat() == Triple::COFF;
}
/// \brief Tests whether the environment is MachO.
bool isOSBinFormatMachO() const {
return getObjectFormat() == Triple::MachO;
}
/// \brief Tests whether the target is the PS4 CPU
bool isPS4CPU() const {
return getArch() == Triple::x86_64 &&
getVendor() == Triple::SCEI &&
getOS() == Triple::PS4;
}
/// \brief Tests whether the target is the PS4 platform
bool isPS4() const {
return getVendor() == Triple::SCEI &&
getOS() == Triple::PS4;
}
// HLSL Change Begin - Add DXIL Triple.
bool isDXIL() const {
return getArch() == Triple::dxil || getArch() == Triple::dxil64;
}
// HLSL Change End - Add DXIL Triple.
/// @}
/// @name Mutators
/// @{
/// setArch - Set the architecture (first) component of the triple
/// to a known type.
void setArch(ArchType Kind);
/// setVendor - Set the vendor (second) component of the triple to a
/// known type.
void setVendor(VendorType Kind);
/// setOS - Set the operating system (third) component of the triple
/// to a known type.
void setOS(OSType Kind);
/// setEnvironment - Set the environment (fourth) component of the triple
/// to a known type.
void setEnvironment(EnvironmentType Kind);
/// setObjectFormat - Set the object file format
void setObjectFormat(ObjectFormatType Kind);
/// setTriple - Set all components to the new triple \p Str.
void setTriple(const Twine &Str);
/// setArchName - Set the architecture (first) component of the
/// triple by name.
void setArchName(StringRef Str);
/// setVendorName - Set the vendor (second) component of the triple
/// by name.
void setVendorName(StringRef Str);
/// setOSName - Set the operating system (third) component of the
/// triple by name.
void setOSName(StringRef Str);
/// setEnvironmentName - Set the optional environment (fourth)
/// component of the triple by name.
void setEnvironmentName(StringRef Str);
/// setOSAndEnvironmentName - Set the operating system and optional
/// environment components with a single string.
void setOSAndEnvironmentName(StringRef Str);
/// @}
/// @name Helpers to build variants of a particular triple.
/// @{
/// \brief Form a triple with a 32-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 32-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get32BitArchVariant() const;
/// \brief Form a triple with a 64-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 64-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get64BitArchVariant() const;
/// Form a triple with a big endian variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a big endian architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple getBigEndianArchVariant() const;
/// Form a triple with a little endian variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a little endian architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple getLittleEndianArchVariant() const;
/// Get the (LLVM) name of the minimum ARM CPU for the arch we are targeting.
///
/// \param Arch the architecture name (e.g., "armv7s"). If it is an empty
/// string then the triple's arch name is used.
const char* getARMCPUForArch(StringRef Arch = StringRef()) const;
/// @}
/// @name Static helpers for IDs.
/// @{
/// getArchTypeName - Get the canonical name for the \p Kind architecture.
static const char *getArchTypeName(ArchType Kind);
/// getArchTypePrefix - Get the "prefix" canonical name for the \p Kind
/// architecture. This is the prefix used by the architecture specific
/// builtins, and is suitable for passing to \see
/// Intrinsic::getIntrinsicForGCCBuiltin().
///
/// \return - The architecture prefix, or 0 if none is defined.
static const char *getArchTypePrefix(ArchType Kind);
/// getVendorTypeName - Get the canonical name for the \p Kind vendor.
static const char *getVendorTypeName(VendorType Kind);
/// getOSTypeName - Get the canonical name for the \p Kind operating system.
static const char *getOSTypeName(OSType Kind);
/// getEnvironmentTypeName - Get the canonical name for the \p Kind
/// environment.
static const char *getEnvironmentTypeName(EnvironmentType Kind);
/// @}
/// @name Static helpers for converting alternate architecture names.
/// @{
/// getArchTypeForLLVMName - The canonical type for the given LLVM
/// architecture name (e.g., "x86").
static ArchType getArchTypeForLLVMName(StringRef Str);
/// @}
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/GraphTraits.h | //===-- llvm/ADT/GraphTraits.h - Graph traits template ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the little GraphTraits<X> template class that should be
// specialized by classes that want to be iteratable by generic graph iterators.
//
// This file also defines the marker class Inverse that is used to iterate over
// graphs in a graph defined, inverse ordering...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GRAPHTRAITS_H
#define LLVM_ADT_GRAPHTRAITS_H
namespace llvm {
// GraphTraits - This class should be specialized by different graph types...
// which is why the default version is empty.
//
template<class GraphType>
struct GraphTraits {
// Elements to provide:
// typedef NodeType - Type of Node in the graph
// typedef ChildIteratorType - Type used to iterate over children in graph
// static NodeType *getEntryNode(const GraphType &)
// Return the entry node of the graph
// static ChildIteratorType child_begin(NodeType *)
// static ChildIteratorType child_end (NodeType *)
// Return iterators that point to the beginning and ending of the child
// node list for the specified node.
//
// typedef ...iterator nodes_iterator;
// static nodes_iterator nodes_begin(GraphType *G)
// static nodes_iterator nodes_end (GraphType *G)
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
// static unsigned size (GraphType *G)
// Return total number of nodes in the graph
//
// If anyone tries to use this class without having an appropriate
// specialization, make an error. If you get this error, it's because you
// need to include the appropriate specialization of GraphTraits<> for your
// graph, or you need to define it for a new graph type. Either that or
// your argument to XXX_begin(...) is unknown or needs to have the proper .h
// file #include'd.
//
typedef typename GraphType::UnknownGraphTypeError NodeType;
};
// Inverse - This class is used as a little marker class to tell the graph
// iterator to iterate over the graph in a graph defined "Inverse" ordering.
// Not all graphs define an inverse ordering, and if they do, it depends on
// the graph exactly what that is. Here's an example of usage with the
// df_iterator:
//
// idf_iterator<Method*> I = idf_begin(M), E = idf_end(M);
// for (; I != E; ++I) { ... }
//
// Which is equivalent to:
// df_iterator<Inverse<Method*> > I = idf_begin(M), E = idf_end(M);
// for (; I != E; ++I) { ... }
//
template <class GraphType>
struct Inverse {
const GraphType &Graph;
inline Inverse(const GraphType &G) : Graph(G) {}
};
// Provide a partial specialization of GraphTraits so that the inverse of an
// inverse falls back to the original graph.
template<class T>
struct GraphTraits<Inverse<Inverse<T> > > {
typedef typename GraphTraits<T>::NodeType NodeType;
typedef typename GraphTraits<T>::ChildIteratorType ChildIteratorType;
static NodeType *getEntryNode(Inverse<Inverse<T> > *G) {
return GraphTraits<T>::getEntryNode(G->Graph.Graph);
}
static ChildIteratorType child_begin(NodeType* N) {
return GraphTraits<T>::child_begin(N);
}
static ChildIteratorType child_end(NodeType* N) {
return GraphTraits<T>::child_end(N);
}
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SparseSet.h | //===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseSet class derived from the version described in
// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
//
// A sparse set holds a small number of objects identified by integer keys from
// a moderately sized universe. The sparse set uses more memory than other
// containers in order to provide faster operations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSESET_H
#define LLVM_ADT_SPARSESET_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DataTypes.h"
#include <limits>
namespace llvm {
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
/// be uniquely converted to a small integer less than the set's universe. This
/// class allows the set to hold values that differ from the set's key type as
/// long as an index can still be derived from the value. SparseSet never
/// directly compares ValueT, only their indices, so it can map keys to
/// arbitrary values. SparseSetValTraits computes the index from the value
/// object. To compute the index from a key, SparseSet uses a separate
/// KeyFunctorT template argument.
///
/// A simple type declaration, SparseSet<Type>, handles these cases:
/// - unsigned key, identity index, identity value
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
///
/// The type declaration SparseSet<Type, UnaryFunction> handles:
/// - unsigned key, remapped index, identity value (virtual registers)
/// - pointer key, pointer-derived index, identity value (node+ID)
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
///
/// Only other, unexpected cases require specializing SparseSetValTraits.
///
/// For best results, ValueT should not require a destructor.
///
template<typename ValueT>
struct SparseSetValTraits {
static unsigned getValIndex(const ValueT &Val) {
return Val.getSparseSetIndex();
}
};
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
/// generic implementation handles ValueT classes which either provide
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
///
template<typename KeyT, typename ValueT, typename KeyFunctorT>
struct SparseSetValFunctor {
unsigned operator()(const ValueT &Val) const {
return SparseSetValTraits<ValueT>::getValIndex(Val);
}
};
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
/// identity key/value sets.
template<typename KeyT, typename KeyFunctorT>
struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
unsigned operator()(const KeyT &Key) const {
return KeyFunctorT()(Key);
}
};
/// SparseSet - Fast set implmentation for objects that can be identified by
/// small unsigned keys.
///
/// SparseSet allocates memory proportional to the size of the key universe, so
/// it is not recommended for building composite data structures. It is useful
/// for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
/// clear() and iteration as fast as a vector. The find(), insert(), and
/// erase() operations are all constant time, and typically faster than a hash
/// table. The iteration order doesn't depend on numerical key values, it only
/// depends on the order of insert() and erase() operations. When no elements
/// have been erased, the iteration order is the insertion order.
///
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast
/// iteration independent on the size of the universe.
///
/// SparseSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT
/// template parameter provides a space/speed tradeoff for sets holding many
/// elements.
///
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
/// array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = llvm::identity<unsigned>,
typename SparseT = uint8_t>
class SparseSet {
static_assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed,
"SparseT must be an unsigned integer type");
typedef typename KeyFunctorT::argument_type KeyT;
typedef SmallVector<ValueT, 8> DenseT;
typedef unsigned size_type;
DenseT Dense;
SparseT *Sparse;
unsigned Universe;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
// Disable copy construction and assignment.
// This data structure is not meant to be used that way.
SparseSet(const SparseSet&) = delete;
SparseSet &operator=(const SparseSet&) = delete;
public:
typedef ValueT value_type;
typedef ValueT &reference;
typedef const ValueT &const_reference;
typedef ValueT *pointer;
typedef const ValueT *const_pointer;
SparseSet() : Sparse(nullptr), Universe(0) {}
~SparseSet() { delete[] Sparse; } // HLSL Change Begin: Use overridable operator delete
/// setUniverse - Set the universe size which determines the largest key the
/// set can hold. The universe must be sized before any elements can be
/// added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
// HLSL Change Begin: Use overridable operator new/delete
delete[] Sparse;
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = new SparseT[U];
std::memset(Sparse, 0, U * sizeof(SparseT));
// HLSL Change End
Universe = U;
}
// Import trivial vector stuff from DenseT.
typedef typename DenseT::iterator iterator;
typedef typename DenseT::const_iterator const_iterator;
const_iterator begin() const { return Dense.begin(); }
const_iterator end() const { return Dense.end(); }
iterator begin() { return Dense.begin(); }
iterator end() { return Dense.end(); }
/// empty - Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return Dense.empty(); }
/// size - Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
size_type size() const { return Dense.size(); }
/// clear - Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
}
/// findIndex - Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
const unsigned FoundIdx = ValIndexOf(Dense[i]);
assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
if (Idx == FoundIdx)
return begin() + i;
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// find - Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
}
/// count - Returns 1 if this set contains an element identified by Key,
/// 0 otherwise.
///
size_type count(const KeyT &Key) const {
return find(Key) == end() ? 0 : 1;
}
/// insert - Attempts to insert a new element.
///
/// If Val is successfully inserted, return (I, true), where I is an iterator
/// pointing to the newly inserted element.
///
/// If the set already contains an element with the same key as Val, return
/// (I, false), where I is an iterator pointing to the existing element.
///
/// Insertion invalidates all iterators.
///
std::pair<iterator, bool> insert(const ValueT &Val) {
unsigned Idx = ValIndexOf(Val);
iterator I = findIndex(Idx);
if (I != end())
return std::make_pair(I, false);
Sparse[Idx] = size();
Dense.push_back(Val);
return std::make_pair(end() - 1, true);
}
/// array subscript - If an element already exists with this key, return it.
/// Otherwise, automatically construct a new value from Key, insert it,
/// and return the newly inserted element.
ValueT &operator[](const KeyT &Key) {
return *insert(ValueT(Key)).first;
}
/// erase - Erases an existing element identified by a valid iterator.
///
/// This invalidates all iterators, but erase() returns an iterator pointing
/// to the next element. This makes it possible to erase selected elements
/// while iterating over the set:
///
/// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that end() changes when elements are erased, unlike std::list.
///
iterator erase(iterator I) {
assert(unsigned(I - begin()) < size() && "Invalid iterator");
if (I != end() - 1) {
*I = Dense.back();
unsigned BackIdx = ValIndexOf(Dense.back());
assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
Sparse[BackIdx] = I - begin();
}
// This depends on SmallVector::pop_back() not invalidating iterators.
// std::vector::pop_back() doesn't give that guarantee.
Dense.pop_back();
return I;
}
/// erase - Erases an element identified by Key, if it exists.
///
/// @param Key The key identifying the element to erase.
/// @returns True when an element was erased, false if no element was found.
///
bool erase(const KeyT &Key) {
iterator I = find(Key);
if (I == end())
return false;
erase(I);
return true;
}
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/IntrusiveRefCntPtr.h | //== llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer ---*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines IntrusiveRefCntPtr, a template class that
// implements a "smart" pointer for objects that maintain their own
// internal reference count, and RefCountedBase/RefCountedBaseVPTR, two
// generic base classes for objects that wish to have their lifetimes
// managed using reference counting.
//
// IntrusiveRefCntPtr is similar to Boost's intrusive_ptr with added
// LLVM-style casting.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H
#define LLVM_ADT_INTRUSIVEREFCNTPTR_H
#include <atomic>
#include <cassert>
#include <cstddef>
namespace llvm {
template <class T>
class IntrusiveRefCntPtr;
//===----------------------------------------------------------------------===//
/// RefCountedBase - A generic base class for objects that wish to
/// have their lifetimes managed using reference counts. Classes
/// subclass RefCountedBase to obtain such functionality, and are
/// typically handled with IntrusiveRefCntPtr "smart pointers" (see below)
/// which automatically handle the management of reference counts.
/// Objects that subclass RefCountedBase should not be allocated on
/// the stack, as invoking "delete" (which is called when the
/// reference count hits 0) on such objects is an error.
//===----------------------------------------------------------------------===//
template <class Derived>
class RefCountedBase {
mutable unsigned ref_cnt;
public:
RefCountedBase() : ref_cnt(0) {}
RefCountedBase(const RefCountedBase &) : ref_cnt(0) {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete static_cast<const Derived*>(this);
}
};
//===----------------------------------------------------------------------===//
/// RefCountedBaseVPTR - A class that has the same function as
/// RefCountedBase, but with a virtual destructor. Should be used
/// instead of RefCountedBase for classes that already have virtual
/// methods to enforce dynamic allocation via 'new'. Classes that
/// inherit from RefCountedBaseVPTR can't be allocated on stack -
/// attempting to do this will produce a compile error.
//===----------------------------------------------------------------------===//
class RefCountedBaseVPTR {
mutable unsigned ref_cnt;
virtual void anchor();
protected:
RefCountedBaseVPTR() : ref_cnt(0) {}
RefCountedBaseVPTR(const RefCountedBaseVPTR &) : ref_cnt(0) {}
virtual ~RefCountedBaseVPTR() {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete this;
}
template <typename T>
friend struct IntrusiveRefCntPtrInfo;
};
template <typename T> struct IntrusiveRefCntPtrInfo {
static void retain(T *obj) { obj->Retain(); }
static void release(T *obj) { obj->Release(); }
};
/// \brief A thread-safe version of \c llvm::RefCountedBase.
///
/// A generic base class for objects that wish to have their lifetimes managed
/// using reference counts. Classes subclass \c ThreadSafeRefCountedBase to
/// obtain such functionality, and are typically handled with
/// \c IntrusiveRefCntPtr "smart pointers" which automatically handle the
/// management of reference counts.
template <class Derived>
class ThreadSafeRefCountedBase {
mutable std::atomic<int> RefCount;
protected:
ThreadSafeRefCountedBase() : RefCount(0) {}
public:
void Retain() const { ++RefCount; }
void Release() const {
int NewRefCount = --RefCount;
assert(NewRefCount >= 0 && "Reference count was already zero.");
if (NewRefCount == 0)
delete static_cast<const Derived*>(this);
}
};
//===----------------------------------------------------------------------===//
/// IntrusiveRefCntPtr - A template class that implements a "smart pointer"
/// that assumes the wrapped object has a reference count associated
/// with it that can be managed via calls to
/// IntrusivePtrAddRef/IntrusivePtrRelease. The smart pointers
/// manage reference counts via the RAII idiom: upon creation of
/// smart pointer the reference count of the wrapped object is
/// incremented and upon destruction of the smart pointer the
/// reference count is decremented. This class also safely handles
/// wrapping NULL pointers.
///
/// Reference counting is implemented via calls to
/// Obj->Retain()/Obj->Release(). Release() is required to destroy
/// the object when the reference count reaches zero. Inheriting from
/// RefCountedBase/RefCountedBaseVPTR takes care of this
/// automatically.
//===----------------------------------------------------------------------===//
template <typename T>
class IntrusiveRefCntPtr {
T* Obj;
public:
typedef T element_type;
explicit IntrusiveRefCntPtr() : Obj(nullptr) {}
IntrusiveRefCntPtr(T* obj) : Obj(obj) {
retain();
}
IntrusiveRefCntPtr(const IntrusiveRefCntPtr& S) : Obj(S.Obj) {
retain();
}
IntrusiveRefCntPtr(IntrusiveRefCntPtr&& S) : Obj(S.Obj) {
S.Obj = nullptr;
}
template <class X>
IntrusiveRefCntPtr(IntrusiveRefCntPtr<X>&& S) : Obj(S.get()) {
S.Obj = 0;
}
template <class X>
IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X>& S)
: Obj(S.get()) {
retain();
}
IntrusiveRefCntPtr& operator=(IntrusiveRefCntPtr S) {
swap(S);
return *this;
}
~IntrusiveRefCntPtr() { release(); }
T& operator*() const { return *Obj; }
T* operator->() const { return Obj; }
T* get() const { return Obj; }
explicit operator bool() const { return Obj != nullptr; } // HLSL Change
void swap(IntrusiveRefCntPtr& other) {
T* tmp = other.Obj;
other.Obj = Obj;
Obj = tmp;
}
void reset() {
release();
Obj = nullptr;
}
void resetWithoutRelease() {
Obj = 0;
}
private:
void retain() { if (Obj) IntrusiveRefCntPtrInfo<T>::retain(Obj); }
void release() { if (Obj) IntrusiveRefCntPtrInfo<T>::release(Obj); }
template <typename X>
friend class IntrusiveRefCntPtr;
};
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.get() == B.get();
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.get() != B.get();
}
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.get() == B;
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.get() != B;
}
template<class T, class U>
inline bool operator==(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A == B.get();
}
template<class T, class U>
inline bool operator!=(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A != B.get();
}
template <class T>
bool operator==(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) {
return !B;
}
template <class T>
bool operator==(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
return B == A;
}
template <class T>
bool operator!=(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) {
return !(A == B);
}
template <class T>
bool operator!=(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
return !(A == B);
}
//===----------------------------------------------------------------------===//
// LLVM-style downcasting support for IntrusiveRefCntPtr objects
// //
///////////////////////////////////////////////////////////////////////////////
template <typename From> struct simplify_type;
template<class T> struct simplify_type<IntrusiveRefCntPtr<T> > {
typedef T* SimpleType;
static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T>& Val) {
return Val.get();
}
};
template<class T> struct simplify_type<const IntrusiveRefCntPtr<T> > {
typedef /*const*/ T* SimpleType;
static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T>& Val) {
return Val.get();
}
};
} // end namespace llvm
#endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/BitVector.h | //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdlib>
namespace llvm {
class BitVector {
typedef unsigned long BitWord;
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
"Unsupported word size");
BitWord *Bits; // Actual bits.
unsigned Size; // Size of bitvector in bits.
unsigned Capacity; // Size of allocated memory in BitWord.
public:
typedef unsigned size_type;
// Encapsulation of a single bit.
class reference {
friend class BitVector;
BitWord *WordRef;
unsigned BitPos;
reference(); // Undefined
public:
reference(BitVector &b, unsigned Idx) {
WordRef = &b.Bits[Idx / BITWORD_SIZE];
BitPos = Idx % BITWORD_SIZE;
}
reference(const reference&) = default;
reference &operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
*WordRef |= BitWord(1) << BitPos;
else
*WordRef &= ~(BitWord(1) << BitPos);
return *this;
}
operator bool() const {
return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
}
};
/// BitVector default ctor - Creates an empty bitvector.
BitVector() : Size(0), Capacity(0) {
Bits = nullptr;
}
/// BitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit BitVector(unsigned s, bool t = false) : Size(s) {
Capacity = NumBitWords(s);
Bits = new BitWord[Capacity]; // HLSL Change: Use overridable operator new
init_words(Bits, Capacity, t);
if (t)
clear_unused_bits();
}
/// BitVector copy ctor.
BitVector(const BitVector &RHS) : Size(RHS.size()) {
if (Size == 0) {
Bits = nullptr;
Capacity = 0;
return;
}
Capacity = NumBitWords(RHS.size());
Bits = new BitWord[Capacity]; // HLSL Change: Use overridable operator new
std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
}
BitVector(BitVector &&RHS)
: Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
RHS.Bits = nullptr;
}
~BitVector() {
delete[] Bits; // HLSL Change: Use overridable operator new
}
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const { return Size == 0; }
/// size - Returns the number of bits in this bitvector.
size_type size() const { return Size; }
/// count - Returns the number of bits which are set.
size_type count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < NumBitWords(size()); ++i)
NumBits += countPopulation(Bits[i]);
return NumBits;
}
/// any - Returns true if any bit is set.
bool any() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return true;
return false;
}
/// all - Returns true if all bits are set.
bool all() const {
for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
if (Bits[i] != ~0UL)
return false;
// If bits remain check that they are ones. The unused bits are always zero.
if (unsigned Remainder = Size % BITWORD_SIZE)
return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
return true;
}
/// none - Returns true if none of the bits are set.
bool none() const {
return !any();
}
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
return -1;
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
++Prev;
if (Prev >= Size)
return -1;
unsigned WordPos = Prev / BITWORD_SIZE;
unsigned BitPos = Prev % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0)
return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
// Check subsequent words.
for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
return -1;
}
/// clear - Clear all bits.
void clear() {
Size = 0;
}
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (N > Capacity * BITWORD_SIZE) {
unsigned OldCapacity = Capacity;
grow(N);
init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
}
// Set any old unused bits that are now included in the BitVector. This
// may set bits that are not included in the new vector, but we will clear
// them back out below.
if (N > Size)
set_unused_bits(t);
// Update the size, and clear out any bits that are now unused
unsigned OldSize = Size;
Size = N;
if (t || N < OldSize)
clear_unused_bits();
}
void reserve(unsigned N) {
if (N > Capacity * BITWORD_SIZE)
grow(N);
}
// Set, reset, flip
BitVector &set() {
init_words(Bits, Capacity, true);
clear_unused_bits();
return *this;
}
BitVector &set(unsigned Idx) {
assert(Bits && "Bits never allocated");
Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
/// set - Efficiently set a range of bits in [I, E)
BitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] |= Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] |= PrefixMask;
I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = ~0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] |= PostfixMask;
return *this;
}
BitVector &reset() {
init_words(Bits, Capacity, false);
return *this;
}
BitVector &reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
return *this;
}
/// reset - Efficiently reset a range of bits in [I, E)
BitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] &= ~Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] &= ~PrefixMask;
I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = 0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] &= ~PostfixMask;
return *this;
}
BitVector &flip() {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
Bits[i] = ~Bits[i];
clear_unused_bits();
return *this;
}
BitVector &flip(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
// Indexing.
reference operator[](unsigned Idx) {
assert (Idx < Size && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert (Idx < Size && "Out-of-bounds Bit access.");
BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
/// Test if any common bits are set.
bool anyCommon(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
if (Bits[i] & RHS.Bits[i])
return true;
return false;
}
// Comparison operators.
bool operator==(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if (Bits[i] != RHS.Bits[i])
return false;
// Verify that any extra words are all zeros.
if (i != ThisWords) {
for (; i != ThisWords; ++i)
if (Bits[i])
return false;
} else if (i != RHSWords) {
for (; i != RHSWords; ++i)
if (RHS.Bits[i])
return false;
}
return true;
}
bool operator!=(const BitVector &RHS) const {
return !(*this == RHS);
}
/// Intersection, union, disjoint union.
BitVector &operator&=(const BitVector &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= RHS.Bits[i];
// Any bits that are just in this bitvector become zero, because they aren't
// in the RHS bit vector. Any words only in RHS are ignored because they
// are already zero in the LHS.
for (; i != ThisWords; ++i)
Bits[i] = 0;
return *this;
}
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
BitVector &reset(const BitVector &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= ~RHS.Bits[i];
return *this;
}
/// test - Check if (This - RHS) is zero.
/// This is the same as reset(RHS) and any().
bool test(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if ((Bits[i] & ~RHS.Bits[i]) != 0)
return true;
for (; i != ThisWords ; ++i)
if (Bits[i] != 0)
return true;
return false;
}
BitVector &operator|=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] |= RHS.Bits[i];
return *this;
}
BitVector &operator^=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] ^= RHS.Bits[i];
return *this;
}
// Assignment operator.
const BitVector &operator=(const BitVector &RHS) {
if (this == &RHS) return *this;
Size = RHS.size();
unsigned RHSWords = NumBitWords(Size);
if (Size <= Capacity * BITWORD_SIZE) {
if (Size)
std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
clear_unused_bits();
return *this;
}
// Grow the bitvector to have enough elements.
Capacity = RHSWords;
assert(Capacity > 0 && "negative capacity?");
BitWord *NewBits = new BitWord[Capacity]; // HLSL Change: Use overridable operator new
std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
// Destroy the old bits.
delete[] Bits; // HLSL Change: Use overridable operator delete
Bits = NewBits;
return *this;
}
const BitVector &operator=(BitVector &&RHS) {
if (this == &RHS) return *this;
delete[] Bits; // HLSL Change: Use overridable operator delete
Bits = RHS.Bits;
Size = RHS.Size;
Capacity = RHS.Capacity;
RHS.Bits = nullptr;
return *this;
}
void swap(BitVector &RHS) {
std::swap(Bits, RHS.Bits);
std::swap(Size, RHS.Size);
std::swap(Capacity, RHS.Capacity);
}
//===--------------------------------------------------------------------===//
// Portable bit mask operations.
//===--------------------------------------------------------------------===//
//
// These methods all operate on arrays of uint32_t, each holding 32 bits. The
// fixed word size makes it easier to work with literal bit vector constants
// in portable code.
//
// The LSB in each word is the lowest numbered bit. The size of a portable
// bit mask is always a whole multiple of 32 bits. If no bit mask size is
// given, the bit mask is assumed to cover the entire BitVector.
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, false>(Mask, MaskWords);
}
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, false>(Mask, MaskWords);
}
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, true>(Mask, MaskWords);
}
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, true>(Mask, MaskWords);
}
private:
unsigned NumBitWords(unsigned S) const {
return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
}
// Set the unused bits in the high words.
void set_unused_bits(bool t = true) {
// Set high words first.
unsigned UsedWords = NumBitWords(Size);
if (Capacity > UsedWords)
init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
// Then set any stray high bits of the last used word.
unsigned ExtraBits = Size % BITWORD_SIZE;
if (ExtraBits) {
BitWord ExtraBitMask = ~0UL << ExtraBits;
if (t)
Bits[UsedWords-1] |= ExtraBitMask;
else
Bits[UsedWords-1] &= ~ExtraBitMask;
}
}
// Clear the unused bits in the high words.
void clear_unused_bits() {
set_unused_bits(false);
}
void grow(unsigned NewSize) {
Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
assert(Capacity > 0 && "realloc-ing zero space");
// HLSL Change Starts: Use overridable operator new
// Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
BitWord *newBits = new BitWord[Capacity];
if (Bits != nullptr) {
std::memcpy(newBits, Bits, NumBitWords(Size) * sizeof(BitWord));
delete[] Bits;
}
Bits = newBits;
// HLSL Change Ends
clear_unused_bits();
}
void init_words(BitWord *B, unsigned NumWords, bool t) {
memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
}
template<bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
MaskWords = std::min(MaskWords, (size() + 31) / 32);
const unsigned Scale = BITWORD_SIZE / 32;
unsigned i;
for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
BitWord BW = Bits[i];
// This inner loop should unroll completely when BITWORD_SIZE > 32.
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) BW |= BitWord(M) << b;
else BW &= ~(BitWord(M) << b);
}
Bits[i] = BW;
}
for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) Bits[i] |= BitWord(M) << b;
else Bits[i] &= ~(BitWord(M) << b);
}
if (AddBits)
clear_unused_bits();
}
};
} // End llvm namespace
namespace std {
/// Implement std::swap in terms of BitVector swap.
inline void
swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
LHS.swap(RHS);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/None.h | //===-- None.h - Simple null value for implicit construction ------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides None, an enumerator for use in implicit constructors
// of various (usually templated) types to make such construction more
// terse.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_NONE_H
#define LLVM_ADT_NONE_H
namespace llvm {
/// \brief A simple null object to allow implicit construction of Optional<T>
/// and similar types without having to spell out the specialization's name.
enum class NoneType { None };
const NoneType None = None;
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SetVector.h | //===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a set that has insertion order iteration
// characteristics. This is useful for keeping a set of things that need to be
// visited later but in a deterministic order (insertion order). The interface
// is purposefully minimal.
//
// This file defines SetVector and SmallSetVector, which performs no allocations
// if the SetVector has less than a certain number of elements.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SETVECTOR_H
#define LLVM_ADT_SETVECTOR_H
#include "llvm/ADT/SmallSet.h"
#include <algorithm>
#include <cassert>
#include <vector>
namespace llvm {
/// \brief A vector that has set insertion semantics.
///
/// This adapter class provides a way to keep a set of things that also has the
/// property of a deterministic iteration order. The order of iteration is the
/// order of insertion.
template <typename T, typename Vector = std::vector<T>,
typename Set = SmallSet<T, 16> >
class SetVector {
public:
typedef T value_type;
typedef T key_type;
typedef T& reference;
typedef const T& const_reference;
typedef Set set_type;
typedef Vector vector_type;
typedef typename vector_type::const_iterator iterator;
typedef typename vector_type::const_iterator const_iterator;
typedef typename vector_type::size_type size_type;
/// \brief Construct an empty SetVector
SetVector() {}
/// \brief Initialize a SetVector with a range of elements
template<typename It>
SetVector(It Start, It End) {
insert(Start, End);
}
/// \brief Determine if the SetVector is empty or not.
bool empty() const {
return vector_.empty();
}
/// \brief Determine the number of elements in the SetVector.
size_type size() const {
return vector_.size();
}
/// \brief Get an iterator to the beginning of the SetVector.
iterator begin() {
return vector_.begin();
}
/// \brief Get a const_iterator to the beginning of the SetVector.
const_iterator begin() const {
return vector_.begin();
}
/// \brief Get an iterator to the end of the SetVector.
iterator end() {
return vector_.end();
}
/// \brief Get a const_iterator to the end of the SetVector.
const_iterator end() const {
return vector_.end();
}
/// \brief Return the last element of the SetVector.
const T &back() const {
assert(!empty() && "Cannot call back() on empty SetVector!");
return vector_.back();
}
/// \brief Index into the SetVector.
const_reference operator[](size_type n) const {
assert(n < vector_.size() && "SetVector access out of range!");
return vector_[n];
}
/// \brief Insert a new element into the SetVector.
/// \returns true iff the element was inserted into the SetVector.
bool insert(const value_type &X) {
bool result = set_.insert(X).second;
if (result)
vector_.push_back(X);
return result;
}
/// \brief Insert a range of elements into the SetVector.
template<typename It>
void insert(It Start, It End) {
for (; Start != End; ++Start)
if (set_.insert(*Start).second)
vector_.push_back(*Start);
}
/// \brief Remove an item from the set vector.
bool remove(const value_type& X) {
if (set_.erase(X)) {
typename vector_type::iterator I =
std::find(vector_.begin(), vector_.end(), X);
assert(I != vector_.end() && "Corrupted SetVector instances!");
vector_.erase(I);
return true;
}
return false;
}
/// \brief Remove items from the set vector based on a predicate function.
///
/// This is intended to be equivalent to the following code, if we could
/// write it:
///
/// \code
/// V.erase(std::remove_if(V.begin(), V.end(), P), V.end());
/// \endcode
///
/// However, SetVector doesn't expose non-const iterators, making any
/// algorithm like remove_if impossible to use.
///
/// \returns true if any element is removed.
template <typename UnaryPredicate>
bool remove_if(UnaryPredicate P) {
typename vector_type::iterator I
= std::remove_if(vector_.begin(), vector_.end(),
TestAndEraseFromSet<UnaryPredicate>(P, set_));
if (I == vector_.end())
return false;
vector_.erase(I, vector_.end());
return true;
}
/// \brief Count the number of elements of a given key in the SetVector.
/// \returns 0 if the element is not in the SetVector, 1 if it is.
size_type count(const key_type &key) const {
return set_.count(key);
}
/// \brief Completely clear the SetVector
void clear() {
set_.clear();
vector_.clear();
}
/// \brief Remove the last element of the SetVector.
void pop_back() {
assert(!empty() && "Cannot remove an element from an empty SetVector!");
set_.erase(back());
vector_.pop_back();
}
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
T Ret = back();
pop_back();
return Ret;
}
bool operator==(const SetVector &that) const {
return vector_ == that.vector_;
}
bool operator!=(const SetVector &that) const {
return vector_ != that.vector_;
}
private:
/// \brief A wrapper predicate designed for use with std::remove_if.
///
/// This predicate wraps a predicate suitable for use with std::remove_if to
/// call set_.erase(x) on each element which is slated for removal.
template <typename UnaryPredicate>
class TestAndEraseFromSet {
UnaryPredicate P;
set_type &set_;
public:
TestAndEraseFromSet(UnaryPredicate P, set_type &set_) : P(P), set_(set_) {}
template <typename ArgumentT>
bool operator()(const ArgumentT &Arg) {
if (P(Arg)) {
set_.erase(Arg);
return true;
}
return false;
}
};
set_type set_; ///< The set.
vector_type vector_; ///< The vector.
};
/// \brief A SetVector that performs no allocations if smaller than
/// a certain size.
template <typename T, unsigned N>
class SmallSetVector : public SetVector<T, SmallVector<T, N>, SmallSet<T, N> > {
public:
SmallSetVector() {}
/// \brief Initialize a SmallSetVector with a range of elements
template<typename It>
SmallSetVector(It Start, It End) {
this->insert(Start, End);
}
};
} // End llvm namespace
// vim: sw=2 ai
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/DenseMapInfo.h | //===- llvm/ADT/DenseMapInfo.h - Type traits for DenseMap -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines DenseMapInfo traits for DenseMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DENSEMAPINFO_H
#define LLVM_ADT_DENSEMAPINFO_H
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
namespace llvm {
template<typename T>
struct DenseMapInfo {
//static inline T getEmptyKey();
//static inline T getTombstoneKey();
//static unsigned getHashValue(const T &Val);
//static bool isEqual(const T &LHS, const T &RHS);
};
// Provide DenseMapInfo for all pointers.
template<typename T>
struct DenseMapInfo<T*> {
static inline T* getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
return reinterpret_cast<T*>(Val);
}
static inline T* getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
return reinterpret_cast<T*>(Val);
}
static unsigned getHashValue(const T *PtrVal) {
return (unsigned((uintptr_t)PtrVal) >> 4) ^
(unsigned((uintptr_t)PtrVal) >> 9);
}
static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
};
// Provide DenseMapInfo for chars.
template<> struct DenseMapInfo<char> {
static inline char getEmptyKey() { return ~0; }
static inline char getTombstoneKey() { return ~0 - 1; }
static unsigned getHashValue(const char& Val) { return Val * 37U; }
static bool isEqual(const char &LHS, const char &RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned ints.
template<> struct DenseMapInfo<unsigned> {
static inline unsigned getEmptyKey() { return ~0U; }
static inline unsigned getTombstoneKey() { return ~0U - 1; }
static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned longs.
template<> struct DenseMapInfo<unsigned long> {
static inline unsigned long getEmptyKey() { return ~0UL; }
static inline unsigned long getTombstoneKey() { return ~0UL - 1L; }
static unsigned getHashValue(const unsigned long& Val) {
return (unsigned)(Val * 37UL);
}
static bool isEqual(const unsigned long& LHS, const unsigned long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned long longs.
template<> struct DenseMapInfo<unsigned long long> {
static inline unsigned long long getEmptyKey() { return ~0ULL; }
static inline unsigned long long getTombstoneKey() { return ~0ULL - 1ULL; }
static unsigned getHashValue(const unsigned long long& Val) {
return (unsigned)(Val * 37ULL);
}
static bool isEqual(const unsigned long long& LHS,
const unsigned long long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for ints.
template<> struct DenseMapInfo<int> {
static inline int getEmptyKey() { return 0x7fffffff; }
static inline int getTombstoneKey() { return -0x7fffffff - 1; }
static unsigned getHashValue(const int& Val) { return (unsigned)(Val * 37U); }
static bool isEqual(const int& LHS, const int& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for longs.
template<> struct DenseMapInfo<long> {
static inline long getEmptyKey() {
return (1UL << (sizeof(long) * 8 - 1)) - 1UL;
}
static inline long getTombstoneKey() { return getEmptyKey() - 1L; }
static unsigned getHashValue(const long& Val) {
return (unsigned)(Val * 37UL);
}
static bool isEqual(const long& LHS, const long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for long longs.
template<> struct DenseMapInfo<long long> {
static inline long long getEmptyKey() { return 0x7fffffffffffffffLL; }
static inline long long getTombstoneKey() { return -0x7fffffffffffffffLL-1; }
static unsigned getHashValue(const long long& Val) {
return (unsigned)(Val * 37ULL);
}
static bool isEqual(const long long& LHS,
const long long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for all pairs whose members have info.
template<typename T, typename U>
struct DenseMapInfo<std::pair<T, U> > {
typedef std::pair<T, U> Pair;
typedef DenseMapInfo<T> FirstInfo;
typedef DenseMapInfo<U> SecondInfo;
static inline Pair getEmptyKey() {
return std::make_pair(FirstInfo::getEmptyKey(),
SecondInfo::getEmptyKey());
}
static inline Pair getTombstoneKey() {
return std::make_pair(FirstInfo::getTombstoneKey(),
SecondInfo::getTombstoneKey());
}
static unsigned getHashValue(const Pair& PairVal) {
uint64_t key = (uint64_t)FirstInfo::getHashValue(PairVal.first) << 32
| (uint64_t)SecondInfo::getHashValue(PairVal.second);
key += ~(key << 32);
key ^= (key >> 22);
key += ~(key << 13);
key ^= (key >> 8);
key += (key << 3);
key ^= (key >> 15);
key += ~(key << 27);
key ^= (key >> 31);
return (unsigned)key;
}
static bool isEqual(const Pair &LHS, const Pair &RHS) {
return FirstInfo::isEqual(LHS.first, RHS.first) &&
SecondInfo::isEqual(LHS.second, RHS.second);
}
};
// Provide DenseMapInfo for StringRefs.
template <> struct DenseMapInfo<StringRef> {
static inline StringRef getEmptyKey() {
return StringRef(reinterpret_cast<const char *>(~static_cast<uintptr_t>(0)),
0);
}
static inline StringRef getTombstoneKey() {
return StringRef(reinterpret_cast<const char *>(~static_cast<uintptr_t>(1)),
0);
}
static unsigned getHashValue(StringRef Val) {
assert(Val.data() != getEmptyKey().data() && "Cannot hash the empty key!");
assert(Val.data() != getTombstoneKey().data() &&
"Cannot hash the tombstone key!");
return (unsigned)(hash_value(Val));
}
static bool isEqual(StringRef LHS, StringRef RHS) {
if (RHS.data() == getEmptyKey().data())
return LHS.data() == getEmptyKey().data();
if (RHS.data() == getTombstoneKey().data())
return LHS.data() == getTombstoneKey().data();
return LHS == RHS;
}
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SCCIterator.h | //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
/// algorithm.
///
/// The SCC iterator has the important property that if a node in SCC S1 has an
/// edge to a node in SCC S2, then it visits S1 *after* S2.
///
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
/// This requires some simple wrappers and is not supported yet.)
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SCCITERATOR_H
#define LLVM_ADT_SCCITERATOR_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include <vector>
namespace llvm {
/// \brief Enumerate the SCCs of a directed graph in reverse topological order
/// of the SCC DAG.
///
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
/// build up a vector of nodes in a particular SCC. Note that it is a forward
/// iterator and thus you cannot backtrack or re-visit nodes.
template <class GraphT, class GT = GraphTraits<GraphT>>
class scc_iterator
: public iterator_facade_base<
scc_iterator<GraphT, GT>, std::forward_iterator_tag,
const std::vector<typename GT::NodeType *>, ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef std::vector<NodeType *> SccTy;
typedef typename scc_iterator::reference reference;
/// Element of VisitStack during DFS.
struct StackElement {
NodeType *Node; ///< The current node pointer.
ChildItTy NextChild; ///< The next child, modified inplace during DFS.
unsigned MinVisited; ///< Minimum uplink value of all children of Node.
StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
: Node(Node), NextChild(Child), MinVisited(Min) {}
bool operator==(const StackElement &Other) const {
return Node == Other.Node &&
NextChild == Other.NextChild &&
MinVisited == Other.MinVisited;
}
};
/// The visit counters used to detect when a complete SCC is on the stack.
/// visitNum is the global counter.
///
/// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
unsigned visitNum;
DenseMap<NodeType *, unsigned> nodeVisitNumbers;
/// Stack holding nodes of the SCC.
std::vector<NodeType *> SCCNodeStack;
/// The current SCC, retrieved using operator*().
SccTy CurrentSCC;
/// DFS stack, Used to maintain the ordering. The top contains the current
/// node, the next child to visit, and the minimum uplink value of all child
std::vector<StackElement> VisitStack;
/// A single "visit" within the non-recursive DFS traversal.
void DFSVisitOne(NodeType *N);
/// The stack-based DFS traversal; defined below.
void DFSVisitChildren();
/// Compute the next SCC using the DFS traversal.
void GetNextSCC();
scc_iterator(NodeType *entryN) : visitNum(0) {
DFSVisitOne(entryN);
GetNextSCC();
}
/// End is when the DFS stack is empty.
scc_iterator() {}
public:
static scc_iterator begin(const GraphT &G) {
return scc_iterator(GT::getEntryNode(G));
}
static scc_iterator end(const GraphT &) { return scc_iterator(); }
/// \brief Direct loop termination test which is more efficient than
/// comparison with \c end().
bool isAtEnd() const {
assert(!CurrentSCC.empty() || VisitStack.empty());
return CurrentSCC.empty();
}
bool operator==(const scc_iterator &x) const {
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
}
scc_iterator &operator++() {
GetNextSCC();
return *this;
}
reference operator*() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
return CurrentSCC;
}
/// \brief Test if the current SCC has a loop.
///
/// If the SCC has more than one node, this is trivially true. If not, it may
/// still contain a loop if the node has an edge back to itself.
bool hasLoop() const;
/// This informs the \c scc_iterator that the specified \c Old node
/// has been deleted, and \c New is to be used in its place.
void ReplaceNode(NodeType *Old, NodeType *New) {
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
nodeVisitNumbers[New] = nodeVisitNumbers[Old];
nodeVisitNumbers.erase(Old);
}
};
template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
++visitNum;
nodeVisitNumbers[N] = visitNum;
SCCNodeStack.push_back(N);
VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Node " << N <<
" : visitNum = " << visitNum << "\n";
#endif
}
template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
assert(!VisitStack.empty());
while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
// TOS has at least one more child so continue DFS
NodeType *childN = *VisitStack.back().NextChild++;
typename DenseMap<NodeType *, unsigned>::iterator Visited =
nodeVisitNumbers.find(childN);
if (Visited == nodeVisitNumbers.end()) {
// this node has never been seen.
DFSVisitOne(childN);
continue;
}
unsigned childNum = Visited->second;
if (VisitStack.back().MinVisited > childNum)
VisitStack.back().MinVisited = childNum;
}
}
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
// Pop the leaf on top of the VisitStack.
NodeType *visitingN = VisitStack.back().Node;
unsigned minVisitNum = VisitStack.back().MinVisited;
assert(VisitStack.back().NextChild == GT::child_end(visitingN));
VisitStack.pop_back();
// Propagate MinVisitNum to parent so we can detect the SCC starting node.
if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
VisitStack.back().MinVisited = minVisitNum;
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Popped node " << visitingN <<
" : minVisitNum = " << minVisitNum << "; Node visit num = " <<
nodeVisitNumbers[visitingN] << "\n";
#endif
if (minVisitNum != nodeVisitNumbers[visitingN])
continue;
// A full SCC is on the SCCNodeStack! It includes all nodes below
// visitingN on the stack. Copy those nodes to CurrentSCC,
// reset their minVisit values, and return (this suspends
// the DFS traversal till the next ++).
do {
CurrentSCC.push_back(SCCNodeStack.back());
SCCNodeStack.pop_back();
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
} while (CurrentSCC.back() != visitingN);
return;
}
}
template <class GraphT, class GT>
bool scc_iterator<GraphT, GT>::hasLoop() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
if (CurrentSCC.size() > 1)
return true;
NodeType *N = CurrentSCC.front();
for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
++CI)
if (*CI == N)
return true;
return false;
}
/// \brief Construct the begin iterator for a deduced graph type T.
template <class T> scc_iterator<T> scc_begin(const T &G) {
return scc_iterator<T>::begin(G);
}
/// \brief Construct the end iterator for a deduced graph type T.
template <class T> scc_iterator<T> scc_end(const T &G) {
return scc_iterator<T>::end(G);
}
/// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::begin(G);
}
/// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::end(G);
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/ImmutableMap.h | //===--- ImmutableMap.h - Immutable (functional) map interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLEMAP_H
#define LLVM_ADT_IMMUTABLEMAP_H
#include "llvm/ADT/ImmutableSet.h"
namespace llvm {
/// ImutKeyValueInfo -Traits class used by ImmutableMap. While both the first
/// and second elements in a pair are used to generate profile information,
/// only the first element (the key) is used by isEqual and isLess.
template <typename T, typename S>
struct ImutKeyValueInfo {
typedef const std::pair<T,S> value_type;
typedef const value_type& value_type_ref;
typedef const T key_type;
typedef const T& key_type_ref;
typedef const S data_type;
typedef const S& data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref V) {
return V.first;
}
static inline data_type_ref DataOfValue(value_type_ref V) {
return V.second;
}
static inline bool isEqual(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isEqual(L,R);
}
static inline bool isLess(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isLess(L,R);
}
static inline bool isDataEqual(data_type_ref L, data_type_ref R) {
return ImutContainerInfo<S>::isEqual(L,R);
}
static inline void Profile(FoldingSetNodeID& ID, value_type_ref V) {
ImutContainerInfo<T>::Profile(ID, V.first);
ImutContainerInfo<S>::Profile(ID, V.second);
}
};
template <typename KeyT, typename ValT,
typename ValInfo = ImutKeyValueInfo<KeyT,ValT> >
class ImmutableMap {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef typename ValInfo::key_type key_type;
typedef typename ValInfo::key_type_ref key_type_ref;
typedef typename ValInfo::data_type data_type;
typedef typename ValInfo::data_type_ref data_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
protected:
TreeTy* Root;
public:
/// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMap(const TreeTy* R) : Root(const_cast<TreeTy*>(R)) {
if (Root) { Root->retain(); }
}
ImmutableMap(const ImmutableMap &X) : Root(X.Root) {
if (Root) { Root->retain(); }
}
ImmutableMap &operator=(const ImmutableMap &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
}
return *this;
}
~ImmutableMap() {
if (Root) { Root->release(); }
}
class Factory {
typename TreeTy::Factory F;
const bool Canonicalize;
public:
Factory(bool canonicalize = true)
: Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
: F(Alloc), Canonicalize(canonicalize) {}
ImmutableMap getEmptyMap() { return ImmutableMap(F.getEmptyTree()); }
ImmutableMap add(ImmutableMap Old, key_type_ref K, data_type_ref D) {
TreeTy *T = F.add(Old.Root, std::pair<key_type,data_type>(K,D));
return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T);
}
ImmutableMap remove(ImmutableMap Old, key_type_ref K) {
TreeTy *T = F.remove(Old.Root,K);
return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T);
}
typename TreeTy::Factory *getTreeFactory() const {
return const_cast<typename TreeTy::Factory *>(&F);
}
private:
Factory(const Factory& RHS) = delete;
void operator=(const Factory& RHS) = delete;
};
bool contains(key_type_ref K) const {
return Root ? Root->contains(K) : false;
}
bool operator==(const ImmutableMap &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableMap &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
TreeTy *getRoot() const {
if (Root) { Root->retain(); }
return Root;
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
void manualRetain() {
if (Root) Root->retain();
}
void manualRelease() {
if (Root) Root->release();
}
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// Foreach - A limited form of map iteration.
//===--------------------------------------------------===//
private:
template <typename Callback>
struct CBWrapper {
Callback C;
void operator()(value_type_ref V) { C(V.first,V.second); }
};
template <typename Callback>
struct CBWrapperRef {
Callback &C;
CBWrapperRef(Callback& c) : C(c) {}
void operator()(value_type_ref V) { C(V.first,V.second); }
};
public:
template <typename Callback>
void foreach(Callback& C) {
if (Root) {
CBWrapperRef<Callback> CB(C);
Root->foreach(CB);
}
}
template <typename Callback>
void foreach() {
if (Root) {
CBWrapper<Callback> CB;
Root->foreach(CB);
}
}
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator : public ImutAVLValueIterator<ImmutableMap> {
iterator() = default;
explicit iterator(TreeTy *Tree) : iterator::ImutAVLValueIterator(Tree) {}
friend class ImmutableMap;
public:
key_type_ref getKey() const { return (*this)->first; }
data_type_ref getData() const { return (*this)->second; }
};
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
data_type* lookup(key_type_ref K) const {
if (Root) {
TreeTy* T = Root->find(K);
if (T) return &T->getValue().second;
}
return nullptr;
}
/// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const {
return Root ? &(Root->getMaxElement()->getValue()) : nullptr;
}
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableMap& M) {
ID.AddPointer(M.Root);
}
inline void Profile(FoldingSetNodeID& ID) const {
return Profile(ID,*this);
}
};
// NOTE: This will possibly become the new implementation of ImmutableMap some day.
template <typename KeyT, typename ValT,
typename ValInfo = ImutKeyValueInfo<KeyT,ValT> >
class ImmutableMapRef {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef typename ValInfo::key_type key_type;
typedef typename ValInfo::key_type_ref key_type_ref;
typedef typename ValInfo::data_type data_type;
typedef typename ValInfo::data_type_ref data_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
typedef typename TreeTy::Factory FactoryTy;
protected:
TreeTy *Root;
FactoryTy *Factory;
public:
/// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMapRef(const TreeTy* R, FactoryTy *F)
: Root(const_cast<TreeTy*>(R)),
Factory(F) {
if (Root) { Root->retain(); }
}
explicit ImmutableMapRef(const ImmutableMap<KeyT, ValT> &X,
typename ImmutableMap<KeyT, ValT>::Factory &F)
: Root(X.getRootWithoutRetain()),
Factory(F.getTreeFactory()) {
if (Root) { Root->retain(); }
}
ImmutableMapRef(const ImmutableMapRef &X)
: Root(X.Root),
Factory(X.Factory) {
if (Root) { Root->retain(); }
}
ImmutableMapRef &operator=(const ImmutableMapRef &X) {
if (Root != X.Root) {
if (X.Root)
X.Root->retain();
if (Root)
Root->release();
Root = X.Root;
Factory = X.Factory;
}
return *this;
}
~ImmutableMapRef() {
if (Root)
Root->release();
}
static inline ImmutableMapRef getEmptyMap(FactoryTy *F) {
return ImmutableMapRef(0, F);
}
void manualRetain() {
if (Root) Root->retain();
}
void manualRelease() {
if (Root) Root->release();
}
ImmutableMapRef add(key_type_ref K, data_type_ref D) const {
TreeTy *NewT = Factory->add(Root, std::pair<key_type, data_type>(K, D));
return ImmutableMapRef(NewT, Factory);
}
ImmutableMapRef remove(key_type_ref K) const {
TreeTy *NewT = Factory->remove(Root, K);
return ImmutableMapRef(NewT, Factory);
}
bool contains(key_type_ref K) const {
return Root ? Root->contains(K) : false;
}
ImmutableMap<KeyT, ValT> asImmutableMap() const {
return ImmutableMap<KeyT, ValT>(Factory->getCanonicalTree(Root));
}
bool operator==(const ImmutableMapRef &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableMapRef &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator : public ImutAVLValueIterator<ImmutableMapRef> {
iterator() = default;
explicit iterator(TreeTy *Tree) : iterator::ImutAVLValueIterator(Tree) {}
friend class ImmutableMapRef;
public:
key_type_ref getKey() const { return (*this)->first; }
data_type_ref getData() const { return (*this)->second; }
};
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
data_type* lookup(key_type_ref K) const {
if (Root) {
TreeTy* T = Root->find(K);
if (T) return &T->getValue().second;
}
return 0;
}
/// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const {
return Root ? &(Root->getMaxElement()->getValue()) : 0;
}
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableMapRef &M) {
ID.AddPointer(M.Root);
}
inline void Profile(FoldingSetNodeID& ID) const {
return Profile(ID, *this);
}
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SmallBitVector.h | //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallBitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLBITVECTOR_H
#define LLVM_ADT_SMALLBITVECTOR_H
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
/// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array),
/// optimized for the case when the array is small. It contains one
/// pointer-sized field, which is directly used as a plain collection of bits
/// when possible, or as a pointer to a larger heap-allocated array when
/// necessary. This allows normal "small" cases to be fast without losing
/// generality for large inputs.
///
class SmallBitVector {
// TODO: In "large" mode, a pointer to a BitVector is used, leading to an
// unnecessary level of indirection. It would be more efficient to use a
// pointer to memory containing size, allocation size, and the array of bits.
uintptr_t X;
enum {
// The number of bits in this class.
NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
// One bit is used to discriminate between small and large mode. The
// remaining bits are used for the small-mode representation.
SmallNumRawBits = NumBaseBits - 1,
// A few more bits are used to store the size of the bit set in small mode.
// Theoretically this is a ceil-log2. These bits are encoded in the most
// significant bits of the raw bits.
SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
NumBaseBits == 64 ? 6 :
SmallNumRawBits),
// The remaining bits are used to store the actual set in small mode.
SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
};
static_assert(NumBaseBits == 64 || NumBaseBits == 32,
"Unsupported word size");
public:
typedef unsigned size_type;
// Encapsulation of a single bit.
class reference {
SmallBitVector &TheVector;
unsigned BitPos;
public:
reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
reference(const reference&) = default;
reference& operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
TheVector.set(BitPos);
else
TheVector.reset(BitPos);
return *this;
}
operator bool() const {
return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
}
};
private:
bool isSmall() const {
return X & uintptr_t(1);
}
BitVector *getPointer() const {
assert(!isSmall());
return reinterpret_cast<BitVector *>(X);
}
void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
X = 1;
setSmallSize(NewSize);
setSmallBits(NewSmallBits);
}
void switchToLarge(BitVector *BV) {
X = reinterpret_cast<uintptr_t>(BV);
assert(!isSmall() && "Tried to use an unaligned pointer");
}
// Return all the bits used for the "small" representation; this includes
// bits for the size as well as the element bits.
uintptr_t getSmallRawBits() const {
assert(isSmall());
return X >> 1;
}
void setSmallRawBits(uintptr_t NewRawBits) {
assert(isSmall());
X = (NewRawBits << 1) | uintptr_t(1);
}
// Return the size.
size_t getSmallSize() const {
return getSmallRawBits() >> SmallNumDataBits;
}
void setSmallSize(size_t Size) {
setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
}
// Return the element bits.
uintptr_t getSmallBits() const {
return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
}
void setSmallBits(uintptr_t NewBits) {
setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
(getSmallSize() << SmallNumDataBits));
}
public:
/// SmallBitVector default ctor - Creates an empty bitvector.
SmallBitVector() : X(1) {}
/// SmallBitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit SmallBitVector(unsigned s, bool t = false) {
if (s <= SmallNumDataBits)
switchToSmall(t ? ~uintptr_t(0) : 0, s);
else
switchToLarge(new BitVector(s, t));
}
/// SmallBitVector copy ctor.
SmallBitVector(const SmallBitVector &RHS) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
}
SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
RHS.X = 1;
}
~SmallBitVector() {
if (!isSmall())
delete getPointer();
}
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const {
return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
}
/// size - Returns the number of bits in this bitvector.
size_t size() const {
return isSmall() ? getSmallSize() : getPointer()->size();
}
/// count - Returns the number of bits which are set.
size_type count() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
return countPopulation(Bits);
}
return getPointer()->count();
}
/// any - Returns true if any bit is set.
bool any() const {
if (isSmall())
return getSmallBits() != 0;
return getPointer()->any();
}
/// all - Returns true if all bits are set.
bool all() const {
if (isSmall())
return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
return getPointer()->all();
}
/// none - Returns true if none of the bits are set.
bool none() const {
if (isSmall())
return getSmallBits() == 0;
return getPointer()->none();
}
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
if (Bits == 0)
return -1;
return countTrailingZeros(Bits);
}
return getPointer()->find_first();
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
// Mask off previous bits.
Bits &= ~uintptr_t(0) << (Prev + 1);
if (Bits == 0 || Prev + 1 >= getSmallSize())
return -1;
return countTrailingZeros(Bits);
}
return getPointer()->find_next(Prev);
}
/// clear - Clear all bits.
void clear() {
if (!isSmall())
delete getPointer();
switchToSmall(0, 0);
}
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (!isSmall()) {
getPointer()->resize(N, t);
} else if (SmallNumDataBits >= N) {
uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
setSmallSize(N);
setSmallBits(NewBits | getSmallBits());
} else {
BitVector *BV = new BitVector(N, t);
uintptr_t OldBits = getSmallBits();
for (size_t i = 0, e = getSmallSize(); i != e; ++i)
(*BV)[i] = (OldBits >> i) & 1;
switchToLarge(BV);
}
}
void reserve(unsigned N) {
if (isSmall()) {
if (N > SmallNumDataBits) {
uintptr_t OldBits = getSmallRawBits();
size_t SmallSize = getSmallSize();
BitVector *BV = new BitVector(SmallSize);
for (size_t i = 0; i < SmallSize; ++i)
if ((OldBits >> i) & 1)
BV->set(i);
BV->reserve(N);
switchToLarge(BV);
}
} else {
getPointer()->reserve(N);
}
}
// Set, reset, flip
SmallBitVector &set() {
if (isSmall())
setSmallBits(~uintptr_t(0));
else
getPointer()->set();
return *this;
}
SmallBitVector &set(unsigned Idx) {
if (isSmall()) {
assert(Idx <= static_cast<unsigned>(
std::numeric_limits<uintptr_t>::digits) &&
"undefined behavior");
setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
}
else
getPointer()->set(Idx);
return *this;
}
/// set - Efficiently set a range of bits in [I, E)
SmallBitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() | Mask);
} else
getPointer()->set(I, E);
return *this;
}
SmallBitVector &reset() {
if (isSmall())
setSmallBits(0);
else
getPointer()->reset();
return *this;
}
SmallBitVector &reset(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
else
getPointer()->reset(Idx);
return *this;
}
/// reset - Efficiently reset a range of bits in [I, E)
SmallBitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() & ~Mask);
} else
getPointer()->reset(I, E);
return *this;
}
SmallBitVector &flip() {
if (isSmall())
setSmallBits(~getSmallBits());
else
getPointer()->flip();
return *this;
}
SmallBitVector &flip(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
else
getPointer()->flip(Idx);
return *this;
}
// No argument flip.
SmallBitVector operator~() const {
return SmallBitVector(*this).flip();
}
// Indexing.
reference operator[](unsigned Idx) {
assert(Idx < size() && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert(Idx < size() && "Out-of-bounds Bit access.");
if (isSmall())
return ((getSmallBits() >> Idx) & 1) != 0;
return getPointer()->operator[](Idx);
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
/// Test if any common bits are set.
bool anyCommon(const SmallBitVector &RHS) const {
if (isSmall() && RHS.isSmall())
return (getSmallBits() & RHS.getSmallBits()) != 0;
if (!isSmall() && !RHS.isSmall())
return getPointer()->anyCommon(*RHS.getPointer());
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (test(i) && RHS.test(i))
return true;
return false;
}
// Comparison operators.
bool operator==(const SmallBitVector &RHS) const {
if (size() != RHS.size())
return false;
if (isSmall())
return getSmallBits() == RHS.getSmallBits();
else
return *getPointer() == *RHS.getPointer();
}
bool operator!=(const SmallBitVector &RHS) const {
return !(*this == RHS);
}
// Intersection, union, disjoint union.
SmallBitVector &operator&=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() & RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator&=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator&=(*Copy.getPointer());
}
return *this;
}
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
SmallBitVector &reset(const SmallBitVector &RHS) {
if (isSmall() && RHS.isSmall())
setSmallBits(getSmallBits() & ~RHS.getSmallBits());
else if (!isSmall() && !RHS.isSmall())
getPointer()->reset(*RHS.getPointer());
else
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (RHS.test(i))
reset(i);
return *this;
}
/// test - Check if (This - RHS) is zero.
/// This is the same as reset(RHS) and any().
bool test(const SmallBitVector &RHS) const {
if (isSmall() && RHS.isSmall())
return (getSmallBits() & ~RHS.getSmallBits()) != 0;
if (!isSmall() && !RHS.isSmall())
return getPointer()->test(*RHS.getPointer());
unsigned i, e;
for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (test(i) && !RHS.test(i))
return true;
for (e = size(); i != e; ++i)
if (test(i))
return true;
return false;
}
SmallBitVector &operator|=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() | RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator|=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator|=(*Copy.getPointer());
}
return *this;
}
SmallBitVector &operator^=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() ^ RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator^=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator^=(*Copy.getPointer());
}
return *this;
}
// Assignment operator.
const SmallBitVector &operator=(const SmallBitVector &RHS) {
if (isSmall()) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
} else {
if (!RHS.isSmall())
*getPointer() = *RHS.getPointer();
else {
delete getPointer();
X = RHS.X;
}
}
return *this;
}
const SmallBitVector &operator=(SmallBitVector &&RHS) {
if (this != &RHS) {
clear();
swap(RHS);
}
return *this;
}
void swap(SmallBitVector &RHS) {
std::swap(X, RHS.X);
}
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, false>(Mask, MaskWords);
else
getPointer()->setBitsInMask(Mask, MaskWords);
}
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, false>(Mask, MaskWords);
else
getPointer()->clearBitsInMask(Mask, MaskWords);
}
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, true>(Mask, MaskWords);
else
getPointer()->setBitsNotInMask(Mask, MaskWords);
}
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, true>(Mask, MaskWords);
else
getPointer()->clearBitsNotInMask(Mask, MaskWords);
}
private:
template<bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
if (NumBaseBits == 64 && MaskWords >= 2) {
uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32);
if (InvertMask) M = ~M;
if (AddBits) setSmallBits(getSmallBits() | M);
else setSmallBits(getSmallBits() & ~M);
} else {
#pragma warning( push ) // HLSL Change
#pragma warning( disable: 4319 ) // HLSL Change - not a branch in 64-bit - '~': zero extending 'uint32_t' to 'uintptr_t' of greater size
uint32_t M = Mask[0];
if (InvertMask) M = ~M;
if (AddBits) setSmallBits(getSmallBits() | M);
else setSmallBits(getSmallBits() & ~M);
#pragma warning( pop ) // HLSL Change
}
}
};
inline SmallBitVector
operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result &= RHS;
return Result;
}
inline SmallBitVector
operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result |= RHS;
return Result;
}
inline SmallBitVector
operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result ^= RHS;
return Result;
}
} // End llvm namespace
namespace std {
/// Implement std::swap in terms of BitVector swap.
inline void
swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
LHS.swap(RHS);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/VariadicFunction.h | //===--- VariadicFunctions.h - Variadic Functions ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements compile-time type-safe variadic functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_VARIADICFUNCTION_H
#define LLVM_ADT_VARIADICFUNCTION_H
#include "llvm/ADT/ArrayRef.h"
namespace llvm {
// Define macros to aid in expanding a comma separated series with the index of
// the series pasted onto the last token.
#define LLVM_COMMA_JOIN1(x) x ## 0
#define LLVM_COMMA_JOIN2(x) LLVM_COMMA_JOIN1(x), x ## 1
#define LLVM_COMMA_JOIN3(x) LLVM_COMMA_JOIN2(x), x ## 2
#define LLVM_COMMA_JOIN4(x) LLVM_COMMA_JOIN3(x), x ## 3
#define LLVM_COMMA_JOIN5(x) LLVM_COMMA_JOIN4(x), x ## 4
#define LLVM_COMMA_JOIN6(x) LLVM_COMMA_JOIN5(x), x ## 5
#define LLVM_COMMA_JOIN7(x) LLVM_COMMA_JOIN6(x), x ## 6
#define LLVM_COMMA_JOIN8(x) LLVM_COMMA_JOIN7(x), x ## 7
#define LLVM_COMMA_JOIN9(x) LLVM_COMMA_JOIN8(x), x ## 8
#define LLVM_COMMA_JOIN10(x) LLVM_COMMA_JOIN9(x), x ## 9
#define LLVM_COMMA_JOIN11(x) LLVM_COMMA_JOIN10(x), x ## 10
#define LLVM_COMMA_JOIN12(x) LLVM_COMMA_JOIN11(x), x ## 11
#define LLVM_COMMA_JOIN13(x) LLVM_COMMA_JOIN12(x), x ## 12
#define LLVM_COMMA_JOIN14(x) LLVM_COMMA_JOIN13(x), x ## 13
#define LLVM_COMMA_JOIN15(x) LLVM_COMMA_JOIN14(x), x ## 14
#define LLVM_COMMA_JOIN16(x) LLVM_COMMA_JOIN15(x), x ## 15
#define LLVM_COMMA_JOIN17(x) LLVM_COMMA_JOIN16(x), x ## 16
#define LLVM_COMMA_JOIN18(x) LLVM_COMMA_JOIN17(x), x ## 17
#define LLVM_COMMA_JOIN19(x) LLVM_COMMA_JOIN18(x), x ## 18
#define LLVM_COMMA_JOIN20(x) LLVM_COMMA_JOIN19(x), x ## 19
#define LLVM_COMMA_JOIN21(x) LLVM_COMMA_JOIN20(x), x ## 20
#define LLVM_COMMA_JOIN22(x) LLVM_COMMA_JOIN21(x), x ## 21
#define LLVM_COMMA_JOIN23(x) LLVM_COMMA_JOIN22(x), x ## 22
#define LLVM_COMMA_JOIN24(x) LLVM_COMMA_JOIN23(x), x ## 23
#define LLVM_COMMA_JOIN25(x) LLVM_COMMA_JOIN24(x), x ## 24
#define LLVM_COMMA_JOIN26(x) LLVM_COMMA_JOIN25(x), x ## 25
#define LLVM_COMMA_JOIN27(x) LLVM_COMMA_JOIN26(x), x ## 26
#define LLVM_COMMA_JOIN28(x) LLVM_COMMA_JOIN27(x), x ## 27
#define LLVM_COMMA_JOIN29(x) LLVM_COMMA_JOIN28(x), x ## 28
#define LLVM_COMMA_JOIN30(x) LLVM_COMMA_JOIN29(x), x ## 29
#define LLVM_COMMA_JOIN31(x) LLVM_COMMA_JOIN30(x), x ## 30
#define LLVM_COMMA_JOIN32(x) LLVM_COMMA_JOIN31(x), x ## 31
/// \brief Class which can simulate a type-safe variadic function.
///
/// The VariadicFunction class template makes it easy to define
/// type-safe variadic functions where all arguments have the same
/// type.
///
/// Suppose we need a variadic function like this:
///
/// ResultT Foo(const ArgT &A_0, const ArgT &A_1, ..., const ArgT &A_N);
///
/// Instead of many overloads of Foo(), we only need to define a helper
/// function that takes an array of arguments:
///
/// ResultT FooImpl(ArrayRef<const ArgT *> Args) {
/// // 'Args[i]' is a pointer to the i-th argument passed to Foo().
/// ...
/// }
///
/// and then define Foo() like this:
///
/// const VariadicFunction<ResultT, ArgT, FooImpl> Foo;
///
/// VariadicFunction takes care of defining the overloads of Foo().
///
/// Actually, Foo is a function object (i.e. functor) instead of a plain
/// function. This object is stateless and its constructor/destructor
/// does nothing, so it's safe to create global objects and call Foo(...) at
/// any time.
///
/// Sometimes we need a variadic function to have some fixed leading
/// arguments whose types may be different from that of the optional
/// arguments. For example:
///
/// bool FullMatch(const StringRef &S, const RE &Regex,
/// const ArgT &A_0, ..., const ArgT &A_N);
///
/// VariadicFunctionN is for such cases, where N is the number of fixed
/// arguments. It is like VariadicFunction, except that it takes N more
/// template arguments for the types of the fixed arguments:
///
/// bool FullMatchImpl(const StringRef &S, const RE &Regex,
/// ArrayRef<const ArgT *> Args) { ... }
/// const VariadicFunction2<bool, const StringRef&,
/// const RE&, ArgT, FullMatchImpl>
/// FullMatch;
///
/// Currently VariadicFunction and friends support up-to 3
/// fixed leading arguments and up-to 32 optional arguments.
template <typename ResultT, typename ArgT,
ResultT (*Func)(ArrayRef<const ArgT *>)>
struct VariadicFunction {
ResultT operator()() const {
return Func(None);
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename ArgT,
ResultT (*Func)(Param0T, ArrayRef<const ArgT *>)>
struct VariadicFunction1 {
ResultT operator()(Param0T P0) const {
return Func(P0, None);
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename Param1T, typename ArgT,
ResultT (*Func)(Param0T, Param1T, ArrayRef<const ArgT *>)>
struct VariadicFunction2 {
ResultT operator()(Param0T P0, Param1T P1) const {
return Func(P0, P1, None);
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, Param1T P1, \
LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, P1, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename Param1T,
typename Param2T, typename ArgT,
ResultT (*Func)(Param0T, Param1T, Param2T, ArrayRef<const ArgT *>)>
struct VariadicFunction3 {
ResultT operator()(Param0T P0, Param1T P1, Param2T P2) const {
return Func(P0, P1, P2, None);
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, Param1T P1, Param2T P2, \
LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, P1, P2, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
// Cleanup the macro namespace.
#undef LLVM_COMMA_JOIN1
#undef LLVM_COMMA_JOIN2
#undef LLVM_COMMA_JOIN3
#undef LLVM_COMMA_JOIN4
#undef LLVM_COMMA_JOIN5
#undef LLVM_COMMA_JOIN6
#undef LLVM_COMMA_JOIN7
#undef LLVM_COMMA_JOIN8
#undef LLVM_COMMA_JOIN9
#undef LLVM_COMMA_JOIN10
#undef LLVM_COMMA_JOIN11
#undef LLVM_COMMA_JOIN12
#undef LLVM_COMMA_JOIN13
#undef LLVM_COMMA_JOIN14
#undef LLVM_COMMA_JOIN15
#undef LLVM_COMMA_JOIN16
#undef LLVM_COMMA_JOIN17
#undef LLVM_COMMA_JOIN18
#undef LLVM_COMMA_JOIN19
#undef LLVM_COMMA_JOIN20
#undef LLVM_COMMA_JOIN21
#undef LLVM_COMMA_JOIN22
#undef LLVM_COMMA_JOIN23
#undef LLVM_COMMA_JOIN24
#undef LLVM_COMMA_JOIN25
#undef LLVM_COMMA_JOIN26
#undef LLVM_COMMA_JOIN27
#undef LLVM_COMMA_JOIN28
#undef LLVM_COMMA_JOIN29
#undef LLVM_COMMA_JOIN30
#undef LLVM_COMMA_JOIN31
#undef LLVM_COMMA_JOIN32
} // end namespace llvm
#endif // LLVM_ADT_VARIADICFUNCTION_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/UniqueVector.h | //===-- llvm/ADT/UniqueVector.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_UNIQUEVECTOR_H
#define LLVM_ADT_UNIQUEVECTOR_H
#include <cassert>
#include <map>
#include <vector>
namespace llvm {
// //
///////////////////////////////////////////////////////////////////////////////
/// UniqueVector - This class produces a sequential ID number (base 1) for each
/// unique entry that is added. T is the type of entries in the vector. This
/// class should have an implementation of operator== and of operator<.
/// Entries can be fetched using operator[] with the entry ID.
template<class T> class UniqueVector {
public:
typedef typename std::vector<T> VectorType;
typedef typename VectorType::iterator iterator;
typedef typename VectorType::const_iterator const_iterator;
private:
// Map - Used to handle the correspondence of entry to ID.
std::map<T, unsigned> Map;
// Vector - ID ordered vector of entries. Entries can be indexed by ID - 1.
//
VectorType Vector;
public:
/// insert - Append entry to the vector if it doesn't already exist. Returns
/// the entry's index + 1 to be used as a unique ID.
unsigned insert(const T &Entry) {
// Check if the entry is already in the map.
unsigned &Val = Map[Entry];
// See if entry exists, if so return prior ID.
if (Val) return Val;
// Compute ID for entry.
Val = static_cast<unsigned>(Vector.size()) + 1;
// Insert in vector.
Vector.push_back(Entry);
return Val;
}
/// idFor - return the ID for an existing entry. Returns 0 if the entry is
/// not found.
unsigned idFor(const T &Entry) const {
// Search for entry in the map.
typename std::map<T, unsigned>::const_iterator MI = Map.find(Entry);
// See if entry exists, if so return ID.
if (MI != Map.end()) return MI->second;
// No luck.
return 0;
}
/// operator[] - Returns a reference to the entry with the specified ID.
///
const T &operator[](unsigned ID) const {
assert(ID-1 < size() && "ID is 0 or out of range!");
return Vector[ID - 1];
}
/// \brief Return an iterator to the start of the vector.
iterator begin() { return Vector.begin(); }
/// \brief Return an iterator to the start of the vector.
const_iterator begin() const { return Vector.begin(); }
/// \brief Return an iterator to the end of the vector.
iterator end() { return Vector.end(); }
/// \brief Return an iterator to the end of the vector.
const_iterator end() const { return Vector.end(); }
/// size - Returns the number of entries in the vector.
///
size_t size() const { return Vector.size(); }
/// empty - Returns true if the vector is empty.
///
bool empty() const { return Vector.empty(); }
/// reset - Clears all the entries.
///
void reset() {
Map.clear();
Vector.resize(0, 0);
}
};
} // End of namespace llvm
#endif // LLVM_ADT_UNIQUEVECTOR_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/ilist_node.h | //==-- llvm/ADT/ilist_node.h - Intrusive Linked List Helper ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ilist_node class template, which is a convenient
// base class for creating classes that can be used with ilists.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ILIST_NODE_H
#define LLVM_ADT_ILIST_NODE_H
#include "llvm/Config/abi-breaking.h"
namespace llvm {
template<typename NodeTy>
struct ilist_traits;
/// ilist_half_node - Base class that provides prev services for sentinels.
///
template<typename NodeTy>
class ilist_half_node {
friend struct ilist_traits<NodeTy>;
NodeTy *Prev;
protected:
NodeTy *getPrev() { return Prev; }
const NodeTy *getPrev() const { return Prev; }
void setPrev(NodeTy *P) { Prev = P; }
ilist_half_node() : Prev(nullptr) {}
};
template<typename NodeTy>
struct ilist_nextprev_traits;
/// ilist_node - Base class that provides next/prev services for nodes
/// that use ilist_nextprev_traits or ilist_default_traits.
///
template<typename NodeTy>
class ilist_node : private ilist_half_node<NodeTy> {
friend struct ilist_nextprev_traits<NodeTy>;
friend struct ilist_traits<NodeTy>;
NodeTy *Next;
NodeTy *getNext() { return Next; }
const NodeTy *getNext() const { return Next; }
void setNext(NodeTy *N) { Next = N; }
protected:
ilist_node() : Next(nullptr) {}
public:
/// @name Adjacent Node Accessors
/// @{
/// \brief Get the previous node, or 0 for the list head.
NodeTy *getPrevNode() {
NodeTy *Prev = this->getPrev();
// Check for sentinel.
if (Prev && !Prev->getNext()) // HLSL Change: Prev may be nullptr
return nullptr;
return Prev;
}
/// \brief Get the previous node, or 0 for the list head.
const NodeTy *getPrevNode() const {
const NodeTy *Prev = this->getPrev();
// Check for sentinel.
if (Prev && !Prev->getNext()) // HLSL Change: Prev may be nullptr
return nullptr;
return Prev;
}
/// \brief Get the next node, or 0 for the list tail.
NodeTy *getNextNode() {
NodeTy *Next = getNext();
// Check for sentinel.
if (Next && !Next->getNext()) // HLSL Change: Next may be nullptr
return nullptr;
return Next;
}
/// \brief Get the next node, or 0 for the list tail.
const NodeTy *getNextNode() const {
const NodeTy *Next = getNext();
// Check for sentinel.
if (Next && !Next->getNext()) // HLSL Change: Next may be nullptr
return nullptr;
return Next;
}
/// @}
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SparseBitVector.h | //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseBitVector class. See the doxygen comment for
// SparseBitVector for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
#define LLVM_ADT_SPARSEBITVECTOR_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <climits>
namespace llvm {
/// SparseBitVector is an implementation of a bitvector that is sparse by only
/// storing the elements that have non-zero bits set. In order to make this
/// fast for the most common cases, SparseBitVector is implemented as a linked
/// list of SparseBitVectorElements. We maintain a pointer to the last
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
/// to make multiple in-order test/set constant time after the first one is
/// executed. Note that using vectors to store SparseBitVectorElement's does
/// not work out very well because it causes insertion in the middle to take
/// enormous amounts of time with a large amount of bits. Other structures that
/// have better worst cases for insertion in the middle (various balanced trees,
/// etc) do not perform as well in practice as a linked list with this iterator
/// kept up to date. They are also significantly more memory intensive.
template <unsigned ElementSize = 128>
struct SparseBitVectorElement
: public ilist_node<SparseBitVectorElement<ElementSize> > {
public:
typedef unsigned long BitWord;
typedef unsigned size_type;
enum {
BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
BITS_PER_ELEMENT = ElementSize
};
private:
// Index of Element in terms of where first bit starts.
unsigned ElementIndex;
BitWord Bits[BITWORDS_PER_ELEMENT];
// Needed for sentinels
friend struct ilist_sentinel_traits<SparseBitVectorElement>;
SparseBitVectorElement() {
ElementIndex = ~0U;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
public:
explicit SparseBitVectorElement(unsigned Idx) {
ElementIndex = Idx;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
// Comparison.
bool operator==(const SparseBitVectorElement &RHS) const {
if (ElementIndex != RHS.ElementIndex)
return false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != RHS.Bits[i])
return false;
return true;
}
bool operator!=(const SparseBitVectorElement &RHS) const {
return !(*this == RHS);
}
// Return the bits that make up word Idx in our element.
BitWord word(unsigned Idx) const {
assert (Idx < BITWORDS_PER_ELEMENT);
return Bits[Idx];
}
unsigned index() const {
return ElementIndex;
}
bool empty() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i])
return false;
return true;
}
void set(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
void reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
}
bool test(unsigned Idx) const {
return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
}
size_type count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
NumBits += countPopulation(Bits[i]);
return NumBits;
}
/// find_first - Returns the index of the first set bit.
int find_first() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
llvm_unreachable("Illegal empty element");
}
/// find_next - Returns the index of the next set bit starting from the
/// "Curr" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Curr) const {
if (Curr >= BITS_PER_ELEMENT)
return -1;
unsigned WordPos = Curr / BITWORD_SIZE;
unsigned BitPos = Curr % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
assert (WordPos <= BITWORDS_PER_ELEMENT
&& "Word Position outside of element");
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0)
return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
// Check subsequent words.
for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
return -1;
}
// Union this element with RHS and return true if this one changed.
bool unionWith(const SparseBitVectorElement &RHS) {
bool changed = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] |= RHS.Bits[i];
if (!changed && old != Bits[i])
changed = true;
}
return changed;
}
// Return true if we have any bits in common with RHS
bool intersects(const SparseBitVectorElement &RHS) const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
if (RHS.Bits[i] & Bits[i])
return true;
}
return false;
}
// Intersect this Element with RHS and return true if this one changed.
// BecameZero is set to true if this element became all-zero bits.
bool intersectWith(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Intersect this Element with the complement of RHS and return true if this
// one changed. BecameZero is set to true if this element became all-zero
// bits.
bool intersectWithComplement(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= ~RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Three argument version of intersectWithComplement that intersects
// RHS1 & ~RHS2 into this element
void intersectWithComplement(const SparseBitVectorElement &RHS1,
const SparseBitVectorElement &RHS2,
bool &BecameZero) {
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
if (Bits[i] != 0)
allzero = false;
}
BecameZero = allzero;
}
};
template <unsigned ElementSize>
struct ilist_traits<SparseBitVectorElement<ElementSize> >
: public ilist_default_traits<SparseBitVectorElement<ElementSize> > {
typedef SparseBitVectorElement<ElementSize> Element;
// HLSL Change Starts
// Temporarily disable "downcast of address" UBSAN runtime error
// https://github.com/microsoft/DirectXShaderCompiler/issues/6446
#ifdef __has_feature
#if __has_feature(undefined_behavior_sanitizer)
__attribute__((no_sanitize("undefined")))
#endif // __has_feature(address_sanitizer)
#endif // defined(__has_feature)
// HLSL Change Ends
Element *
createSentinel() const {
return static_cast<Element *>(&Sentinel);
}
static void destroySentinel(Element *) {}
Element *provideInitialHead() const { return createSentinel(); }
Element *ensureHead(Element *) const { return createSentinel(); }
static void noteHead(Element *, Element *) {}
private:
mutable ilist_half_node<Element> Sentinel;
};
template <unsigned ElementSize = 128>
class SparseBitVector {
typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
typedef typename ElementList::iterator ElementListIter;
typedef typename ElementList::const_iterator ElementListConstIter;
enum {
BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
};
// Pointer to our current Element.
ElementListIter CurrElementIter;
ElementList Elements;
// This is like std::lower_bound, except we do linear searching from the
// current position.
ElementListIter FindLowerBound(unsigned ElementIndex) {
if (Elements.empty()) {
CurrElementIter = Elements.begin();
return Elements.begin();
}
// Make sure our current iterator is valid.
if (CurrElementIter == Elements.end())
--CurrElementIter;
// Search from our current iterator, either backwards or forwards,
// depending on what element we are looking for.
ElementListIter ElementIter = CurrElementIter;
if (CurrElementIter->index() == ElementIndex) {
return ElementIter;
} else if (CurrElementIter->index() > ElementIndex) {
while (ElementIter != Elements.begin()
&& ElementIter->index() > ElementIndex)
--ElementIter;
} else {
while (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
++ElementIter;
}
CurrElementIter = ElementIter;
return ElementIter;
}
// Iterator to walk set bits in the bitmap. This iterator is a lot uglier
// than it would be, in order to be efficient.
class SparseBitVectorIterator {
private:
bool AtEnd;
const SparseBitVector<ElementSize> *BitVector;
// Current element inside of bitmap.
ElementListConstIter Iter;
// Current bit number inside of our bitmap.
unsigned BitNumber;
// Current word number inside of our element.
unsigned WordNumber;
// Current bits from the element.
typename SparseBitVectorElement<ElementSize>::BitWord Bits;
// Move our iterator to the first non-zero bit in the bitmap.
void AdvanceToFirstNonZero() {
if (AtEnd)
return;
if (BitVector->Elements.empty()) {
AtEnd = true;
return;
}
Iter = BitVector->Elements.begin();
BitNumber = Iter->index() * ElementSize;
unsigned BitPos = Iter->find_first();
BitNumber += BitPos;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= BitPos % BITWORD_SIZE;
}
// Move our iterator to the next non-zero bit.
void AdvanceToNextNonZero() {
if (AtEnd)
return;
while (Bits && !(Bits & 1)) {
Bits >>= 1;
BitNumber += 1;
}
// See if we ran out of Bits in this word.
if (!Bits) {
int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
// If we ran out of set bits in this element, move to next element.
if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
++Iter;
WordNumber = 0;
// We may run out of elements in the bitmap.
if (Iter == BitVector->Elements.end()) {
AtEnd = true;
return;
}
// Set up for next non-zero word in bitmap.
BitNumber = Iter->index() * ElementSize;
NextSetBitNumber = Iter->find_first();
BitNumber += NextSetBitNumber;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
} else {
WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
BitNumber = Iter->index() * ElementSize;
BitNumber += NextSetBitNumber;
}
}
}
public:
// Preincrement.
inline SparseBitVectorIterator& operator++() {
++BitNumber;
Bits >>= 1;
AdvanceToNextNonZero();
return *this;
}
// Postincrement.
inline SparseBitVectorIterator operator++(int) {
SparseBitVectorIterator tmp = *this;
++*this;
return tmp;
}
// Return the current set bit number.
unsigned operator*() const {
return BitNumber;
}
bool operator==(const SparseBitVectorIterator &RHS) const {
// If they are both at the end, ignore the rest of the fields.
if (AtEnd && RHS.AtEnd)
return true;
// Otherwise they are the same if they have the same bit number and
// bitmap.
return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
}
bool operator!=(const SparseBitVectorIterator &RHS) const {
return !(*this == RHS);
}
SparseBitVectorIterator(): BitVector(NULL) {
}
SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
bool end = false):BitVector(RHS) {
Iter = BitVector->Elements.begin();
BitNumber = 0;
Bits = 0;
WordNumber = ~0;
AtEnd = end;
AdvanceToFirstNonZero();
}
};
public:
typedef SparseBitVectorIterator iterator;
SparseBitVector () {
CurrElementIter = Elements.begin ();
}
~SparseBitVector() {
}
// SparseBitVector copy ctor.
SparseBitVector(const SparseBitVector &RHS) {
ElementListConstIter ElementIter = RHS.Elements.begin();
while (ElementIter != RHS.Elements.end()) {
Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
++ElementIter;
}
CurrElementIter = Elements.begin ();
}
// Clear.
void clear() {
Elements.clear();
}
// Assignment
SparseBitVector& operator=(const SparseBitVector& RHS) {
Elements.clear();
ElementListConstIter ElementIter = RHS.Elements.begin();
while (ElementIter != RHS.Elements.end()) {
Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
++ElementIter;
}
CurrElementIter = Elements.begin ();
return *this;
}
// Test, Reset, and Set a bit in the bitmap.
bool test(unsigned Idx) {
if (Elements.empty())
return false;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return false;
return ElementIter->test(Idx % ElementSize);
}
void reset(unsigned Idx) {
if (Elements.empty())
return;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return;
ElementIter->reset(Idx % ElementSize);
// When the element is zeroed out, delete it.
if (ElementIter->empty()) {
++CurrElementIter;
Elements.erase(ElementIter);
}
}
void set(unsigned Idx) {
unsigned ElementIndex = Idx / ElementSize;
SparseBitVectorElement<ElementSize> *Element;
ElementListIter ElementIter;
if (Elements.empty()) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
ElementIter = Elements.insert(Elements.end(), Element);
} else {
ElementIter = FindLowerBound(ElementIndex);
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
// We may have hit the beginning of our SparseBitVector, in which case,
// we may need to insert right after this element, which requires moving
// the current iterator forward one, because insert does insert before.
if (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
ElementIter = Elements.insert(++ElementIter, Element);
else
ElementIter = Elements.insert(ElementIter, Element);
}
}
CurrElementIter = ElementIter;
ElementIter->set(Idx % ElementSize);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
bool operator!=(const SparseBitVector &RHS) const {
return !(*this == RHS);
}
bool operator==(const SparseBitVector &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
++Iter1, ++Iter2) {
if (*Iter1 != *Iter2)
return false;
}
return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
}
// Union our bitmap with the RHS and return true if we changed.
bool operator|=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If RHS is empty, we are done
if (RHS.Elements.empty())
return false;
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
Elements.insert(Iter1,
new SparseBitVectorElement<ElementSize>(*Iter2));
++Iter2;
changed = true;
} else if (Iter1->index() == Iter2->index()) {
changed |= Iter1->unionWith(*Iter2);
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the RHS and return true if ours changed.
bool operator&=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWith(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
}
}
Elements.erase(Iter1, Elements.end());
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the complement of the RHS and return true
// if ours changed.
bool intersectWithComplement(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If either our bitmap or RHS is empty, we are done
if (Elements.empty() || RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
return intersectWithComplement(*RHS);
}
// Three argument version of intersectWithComplement.
// Result of RHS1 & ~RHS2 is stored into this bitmap.
void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
const SparseBitVector<ElementSize> &RHS2)
{
Elements.clear();
CurrElementIter = Elements.begin();
ElementListConstIter Iter1 = RHS1.Elements.begin();
ElementListConstIter Iter2 = RHS2.Elements.begin();
// If RHS1 is empty, we are done
// If RHS2 is empty, we still have to copy RHS1
if (RHS1.Elements.empty())
return;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS2.Elements.end()) {
if (Iter1 == RHS1.Elements.end())
return;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero = false;
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(Iter1->index());
NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
if (!BecameZero) {
Elements.push_back(NewElement);
}
else
delete NewElement;
++Iter1;
++Iter2;
} else {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
}
// copy the remaining elements
while (Iter1 != RHS1.Elements.end()) {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
return;
}
void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
const SparseBitVector<ElementSize> *RHS2) {
intersectWithComplement(*RHS1, *RHS2);
}
bool intersects(const SparseBitVector<ElementSize> *RHS) const {
return intersects(*RHS);
}
// Return true if we share any bits in common with RHS
bool intersects(const SparseBitVector<ElementSize> &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting stopping when we hit bits in common.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return false;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
if (Iter1->intersects(*Iter2))
return true;
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
return false;
}
// Return true iff all bits set in this SparseBitVector are
// also set in RHS.
bool contains(const SparseBitVector<ElementSize> &RHS) const {
SparseBitVector<ElementSize> Result(*this);
Result &= RHS;
return (Result == RHS);
}
// Return the first set bit in the bitmap. Return -1 if no bits are set.
int find_first() const {
if (Elements.empty())
return -1;
const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
return (First.index() * ElementSize) + First.find_first();
}
// Return true if the SparseBitVector is empty
bool empty() const {
return Elements.empty();
}
unsigned count() const {
unsigned BitCount = 0;
for (ElementListConstIter Iter = Elements.begin();
Iter != Elements.end();
++Iter)
BitCount += Iter->count();
return BitCount;
}
iterator begin() const {
return iterator(this);
}
iterator end() const {
return iterator(this, true);
}
};
// Convenience functions to allow Or and And without dereferencing in the user
// code.
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS |= *RHS;
}
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator|=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator&=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS &= *RHS;
}
// Convenience functions for infix union, intersection, difference operators.
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator|(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result |= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator&(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result &= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator-(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result;
Result.intersectWithComplement(LHS, RHS);
return Result;
}
// Dump a SparseBitVector to a stream
template <unsigned ElementSize>
void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
out << "[";
typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
be = LHS.end();
if (bi != be) {
out << *bi;
for (++bi; bi != be; ++bi) {
out << " " << *bi;
}
}
out << "]\n";
}
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/edit_distance.h | //===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Levenshtein distance function that works for any two
// sequences, with each element of each sequence being analogous to a character
// in a string.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EDIT_DISTANCE_H
#define LLVM_ADT_EDIT_DISTANCE_H
#include "llvm/ADT/ArrayRef.h"
#include <algorithm>
#include <memory>
namespace llvm {
/// \brief Determine the edit distance between two sequences.
///
/// \param FromArray the first sequence to compare.
///
/// \param ToArray the second sequence to compare.
///
/// \param AllowReplacements whether to allow element replacements (change one
/// element into another) as a single operation, rather than as two operations
/// (an insertion and a removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
/// routine is allowed to compute. If the edit distance will exceed that
/// maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of element insertions, removals, or (if
/// \p AllowReplacements is \c true) replacements needed to transform one of
/// the given sequences into the other. If zero, the sequences are identical.
template<typename T>
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
bool AllowReplacements = true,
unsigned MaxEditDistance = 0) {
// The algorithm implemented below is the "classic"
// dynamic-programming algorithm for computing the Levenshtein
// distance, which is described here:
//
// http://en.wikipedia.org/wiki/Levenshtein_distance
//
// Although the algorithm is typically described using an m x n
// array, only one row plus one element are used at a time, so this
// implementation just keeps one vector for the row. To update one entry,
// only the entries to the left, top, and top-left are needed. The left
// entry is in Row[x-1], the top entry is what's in Row[x] from the last
// iteration, and the top-left entry is stored in Previous.
typename ArrayRef<T>::size_type m = FromArray.size();
typename ArrayRef<T>::size_type n = ToArray.size();
const unsigned SmallBufferSize = 64;
unsigned SmallBuffer[SmallBufferSize];
std::unique_ptr<unsigned[]> Allocated;
unsigned *Row = SmallBuffer;
if (n + 1 > SmallBufferSize) {
Row = new unsigned[n + 1];
Allocated.reset(Row);
}
for (unsigned i = 1; i <= n; ++i)
Row[i] = i;
for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
Row[0] = y;
unsigned BestThisRow = Row[0];
unsigned Previous = y - 1;
for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
int OldRow = Row[x];
if (AllowReplacements) {
Row[x] = std::min(
Previous + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
std::min(Row[x-1], Row[x])+1);
}
else {
if (FromArray[y-1] == ToArray[x-1]) Row[x] = Previous;
else Row[x] = std::min(Row[x-1], Row[x]) + 1;
}
Previous = OldRow;
BestThisRow = std::min(BestThisRow, Row[x]);
}
if (MaxEditDistance && BestThisRow > MaxEditDistance)
return MaxEditDistance + 1;
}
#pragma warning( push ) // HLSL Change - suppress this warning
#pragma warning( disable : 28199 ) // 'Using possibly uninitialized memory '*Row': The variable has had its address taken but no assignment to it has been discovered.'
// n is assigned early on and is never < 1 because it's an array size
unsigned Result = Row[n];
#pragma warning( pop )
return Result;
}
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/PostOrderIterator.h | //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POSTORDERITERATOR_H
#define LLVM_ADT_POSTORDERITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <set>
#include <vector>
namespace llvm {
// The po_iterator_storage template provides access to the set of already
// visited nodes during the po_iterator's depth-first traversal.
//
// The default implementation simply contains a set of visited nodes, while
// the Extended=true version uses a reference to an external set.
//
// It is possible to prune the depth-first traversal in several ways:
//
// - When providing an external set that already contains some graph nodes,
// those nodes won't be visited again. This is useful for restarting a
// post-order traversal on a graph with nodes that aren't dominated by a
// single node.
//
// - By providing a custom SetType class, unwanted graph nodes can be excluded
// by having the insert() function return false. This could for example
// confine a CFG traversal to blocks in a specific loop.
//
// - Finally, by specializing the po_iterator_storage template itself, graph
// edges can be pruned by returning false in the insertEdge() function. This
// could be used to remove loop back-edges from the CFG seen by po_iterator.
//
// A specialized po_iterator_storage class can observe both the pre-order and
// the post-order. The insertEdge() function is called in a pre-order, while
// the finishPostorder() function is called just before the po_iterator moves
// on to the next node.
/// Default po_iterator_storage implementation with an internal set object.
template<class SetType, bool External>
class po_iterator_storage {
SetType Visited;
public:
// Return true if edge destination should be visited.
template<typename NodeType>
bool insertEdge(NodeType *From, NodeType *To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template<typename NodeType>
void finishPostorder(NodeType *BB) {}
};
/// Specialization of po_iterator_storage that references an external set.
template<class SetType>
class po_iterator_storage<SetType, true> {
SetType &Visited;
public:
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
// Return true if edge destination should be visited, called with From = 0 for
// the root node.
// Graph edges can be pruned by specializing this function.
template <class NodeType> bool insertEdge(NodeType *From, NodeType *To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template<class NodeType>
void finishPostorder(NodeType *BB) {}
};
template<class GraphT,
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
bool ExtStorage = false,
class GT = GraphTraits<GraphT> >
class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename GT::NodeType;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
NodeType *BB = *VisitStack.back().second++;
if (this->insertEdge(VisitStack.back().first, BB)) {
// If the block is not visited...
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
po_iterator(NodeType *BB) {
this->insertEdge((NodeType*)nullptr, BB);
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
po_iterator() {} // End is when stack is empty.
po_iterator(NodeType *BB, SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
if (this->insertEdge((NodeType*)nullptr, BB)) {
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
po_iterator(SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
} // End is when stack is empty.
public:
// Provide static "constructors"...
static po_iterator begin(GraphT G) {
return po_iterator(GT::getEntryNode(G));
}
static po_iterator end(GraphT G) { return po_iterator(); }
static po_iterator begin(GraphT G, SetType &S) {
return po_iterator(GT::getEntryNode(G), S);
}
static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
bool operator==(const po_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const po_iterator &x) const { return !(*this == x); }
pointer operator*() const { return VisitStack.back().first; }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeType *operator->() const { return **this; }
po_iterator &operator++() { // Preincrement
this->finishPostorder(VisitStack.back().first);
VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
}
po_iterator operator++(int) { // Postincrement
po_iterator tmp = *this;
++*this;
return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
return make_range(po_begin(G), po_end(G));
}
// Provide global definitions of external postorder iterators...
template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
po_iterator<T, SetType, true>(V) {}
};
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
return po_ext_iterator<T, SetType>::begin(G, S);
}
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
return po_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
return make_range(po_ext_begin(G, S), po_ext_end(G, S));
}
// Provide global definitions of inverse post order iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*>,
bool External = false>
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
po_iterator<Inverse<T>, SetType, External> (V) {}
};
template <class T>
ipo_iterator<T> ipo_begin(const T &G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(const T &G){
return ipo_iterator<T>::end(G);
}
template <class T>
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G, bool Reverse = false) {
return make_range(ipo_begin(G, Reverse), ipo_end(G));
}
// Provide global definitions of external inverse postorder iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*> >
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
};
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::begin(G, S);
}
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<ipo_ext_iterator<T, SetType>>
inverse_post_order_ext(const T &G, SetType &S) {
return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT> >
class ReversePostOrderTraversal {
typedef typename GT::NodeType NodeType;
std::vector<NodeType*> Blocks; // Block list in normal PO order
void Initialize(NodeType *BB) {
std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
}
public:
typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
// Because we want a reverse post order, use reverse iterators from the vector
rpo_iterator begin() { return Blocks.rbegin(); }
rpo_iterator end() { return Blocks.rend(); }
};
} // End llvm namespace
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/StringMap.h | //===--- StringMap.h - String Hash table map interface ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the StringMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGMAP_H
#define LLVM_ADT_STRINGMAP_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include <cstring>
#include <utility>
namespace llvm {
template<typename ValueT>
class StringMapConstIterator;
template<typename ValueT>
class StringMapIterator;
template<typename ValueTy>
class StringMapEntry;
/// StringMapEntryBase - Shared base class of StringMapEntry instances.
class StringMapEntryBase {
unsigned StrLen;
public:
explicit StringMapEntryBase(unsigned Len) : StrLen(Len) {}
unsigned getKeyLength() const { return StrLen; }
};
/// StringMapImpl - This is the base class of StringMap that is shared among
/// all of its instantiations.
class StringMapImpl {
protected:
// Array of NumBuckets pointers to entries, null pointers are holes.
// TheTable[NumBuckets] contains a sentinel value for easy iteration. Followed
// by an array of the actual hash values as unsigned integers.
StringMapEntryBase **TheTable;
unsigned NumBuckets;
unsigned NumItems;
unsigned NumTombstones;
unsigned ItemSize;
protected:
explicit StringMapImpl(unsigned itemSize)
: TheTable(nullptr),
// Initialize the map with zero buckets to allocation.
NumBuckets(0), NumItems(0), NumTombstones(0), ItemSize(itemSize) {}
StringMapImpl(StringMapImpl &&RHS)
: TheTable(RHS.TheTable), NumBuckets(RHS.NumBuckets),
NumItems(RHS.NumItems), NumTombstones(RHS.NumTombstones),
ItemSize(RHS.ItemSize) {
RHS.TheTable = nullptr;
RHS.NumBuckets = 0;
RHS.NumItems = 0;
RHS.NumTombstones = 0;
}
StringMapImpl(unsigned InitSize, unsigned ItemSize);
unsigned RehashTable(unsigned BucketNo = 0);
/// LookupBucketFor - Look up the bucket that the specified string should end
/// up in. If it already exists as a key in the map, the Item pointer for the
/// specified bucket will be non-null. Otherwise, it will be null. In either
/// case, the FullHashValue field of the bucket will be set to the hash value
/// of the string.
unsigned LookupBucketFor(StringRef Key);
/// FindKey - Look up the bucket that contains the specified key. If it exists
/// in the map, return the bucket number of the key. Otherwise return -1.
/// This does not modify the map.
int FindKey(StringRef Key) const;
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
/// delete it. This aborts if the value isn't in the table.
void RemoveKey(StringMapEntryBase *V);
/// RemoveKey - Remove the StringMapEntry for the specified key from the
/// table, returning it. If the key is not in the table, this returns null.
StringMapEntryBase *RemoveKey(StringRef Key);
private:
void init(unsigned Size);
public:
static StringMapEntryBase *getTombstoneVal() {
return (StringMapEntryBase*)-1;
}
unsigned getNumBuckets() const { return NumBuckets; }
unsigned getNumItems() const { return NumItems; }
bool empty() const { return NumItems == 0; }
unsigned size() const { return NumItems; }
void swap(StringMapImpl &Other) {
std::swap(TheTable, Other.TheTable);
std::swap(NumBuckets, Other.NumBuckets);
std::swap(NumItems, Other.NumItems);
std::swap(NumTombstones, Other.NumTombstones);
}
};
/// StringMapEntry - This is used to represent one value that is inserted into
/// a StringMap. It contains the Value itself and the key: the string length
/// and data.
template<typename ValueTy>
class StringMapEntry : public StringMapEntryBase {
StringMapEntry(StringMapEntry &E) = delete;
public:
ValueTy second;
explicit StringMapEntry(unsigned strLen)
: StringMapEntryBase(strLen), second() {}
template <class InitTy>
StringMapEntry(unsigned strLen, InitTy &&V)
: StringMapEntryBase(strLen), second(std::forward<InitTy>(V)) {}
StringRef getKey() const {
return StringRef(getKeyData(), getKeyLength());
}
const ValueTy &getValue() const { return second; }
ValueTy &getValue() { return second; }
void setValue(const ValueTy &V) { second = V; }
/// getKeyData - Return the start of the string data that is the key for this
/// value. The string data is always stored immediately after the
/// StringMapEntry object.
const char *getKeyData() const {return reinterpret_cast<const char*>(this+1);}
StringRef first() const { return StringRef(getKeyData(), getKeyLength()); }
/// Create - Create a StringMapEntry for the specified key and default
/// construct the value.
template <typename AllocatorTy, typename InitType>
static StringMapEntry *Create(StringRef Key, AllocatorTy &Allocator,
InitType &&InitVal) {
unsigned KeyLength = Key.size();
// Allocate a new item with space for the string at the end and a null
// terminator.
unsigned AllocSize = static_cast<unsigned>(sizeof(StringMapEntry))+
KeyLength+1;
unsigned Alignment = alignOf<StringMapEntry>();
StringMapEntry *NewItem =
static_cast<StringMapEntry*>(Allocator.Allocate(AllocSize,Alignment));
// Default construct the value.
new (NewItem) StringMapEntry(KeyLength, std::forward<InitType>(InitVal));
// Copy the string information.
char *StrBuffer = const_cast<char*>(NewItem->getKeyData());
if (KeyLength > 0)
memcpy(StrBuffer, Key.data(), KeyLength);
StrBuffer[KeyLength] = 0; // Null terminate for convenience of clients.
return NewItem;
}
template<typename AllocatorTy>
static StringMapEntry *Create(StringRef Key, AllocatorTy &Allocator) {
return Create(Key, Allocator, ValueTy());
}
/// Create - Create a StringMapEntry with normal malloc/free.
template<typename InitType>
static StringMapEntry *Create(StringRef Key, InitType &&InitVal) {
MallocAllocator A;
return Create(Key, A, std::forward<InitType>(InitVal));
}
static StringMapEntry *Create(StringRef Key) {
return Create(Key, ValueTy());
}
/// GetStringMapEntryFromKeyData - Given key data that is known to be embedded
/// into a StringMapEntry, return the StringMapEntry itself.
static StringMapEntry &GetStringMapEntryFromKeyData(const char *KeyData) {
char *Ptr = const_cast<char*>(KeyData) - sizeof(StringMapEntry<ValueTy>);
return *reinterpret_cast<StringMapEntry*>(Ptr);
}
/// Destroy - Destroy this StringMapEntry, releasing memory back to the
/// specified allocator.
template<typename AllocatorTy>
void Destroy(AllocatorTy &Allocator) {
// Free memory referenced by the item.
unsigned AllocSize =
static_cast<unsigned>(sizeof(StringMapEntry)) + getKeyLength() + 1;
this->~StringMapEntry();
Allocator.Deallocate(static_cast<void *>(this), AllocSize);
}
/// Destroy this object, releasing memory back to the malloc allocator.
void Destroy() {
MallocAllocator A;
Destroy(A);
}
};
/// StringMap - This is an unconventional map that is specialized for handling
/// keys that are "strings", which are basically ranges of bytes. This does some
/// funky memory allocation and hashing things to make it extremely efficient,
/// storing the string data *after* the value in the map.
template<typename ValueTy, typename AllocatorTy = MallocAllocator>
class StringMap : public StringMapImpl {
AllocatorTy Allocator;
public:
typedef StringMapEntry<ValueTy> MapEntryTy;
StringMap() : StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(unsigned InitialSize)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(AllocatorTy A)
: StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))), Allocator(A) {}
StringMap(unsigned InitialSize, AllocatorTy A)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))),
Allocator(A) {}
StringMap(StringMap &&RHS)
: StringMapImpl(std::move(RHS)), Allocator(std::move(RHS.Allocator)) {}
StringMap &operator=(StringMap RHS) {
StringMapImpl::swap(RHS);
std::swap(Allocator, RHS.Allocator);
return *this;
}
// FIXME: Implement copy operations if/when they're needed.
AllocatorTy &getAllocator() { return Allocator; }
const AllocatorTy &getAllocator() const { return Allocator; }
typedef const char* key_type;
typedef ValueTy mapped_type;
typedef StringMapEntry<ValueTy> value_type;
typedef size_t size_type;
typedef StringMapConstIterator<ValueTy> const_iterator;
typedef StringMapIterator<ValueTy> iterator;
iterator begin() {
return iterator(TheTable, NumBuckets == 0);
}
iterator end() {
return iterator(TheTable+NumBuckets, true);
}
const_iterator begin() const {
return const_iterator(TheTable, NumBuckets == 0);
}
const_iterator end() const {
return const_iterator(TheTable+NumBuckets, true);
}
iterator find(StringRef Key) {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return iterator(TheTable+Bucket, true);
}
const_iterator find(StringRef Key) const {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return const_iterator(TheTable+Bucket, true);
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueTy lookup(StringRef Key) const {
const_iterator it = find(Key);
if (it != end())
return it->second;
return ValueTy();
}
ValueTy &operator[](StringRef Key) {
return insert(std::make_pair(Key, ValueTy())).first->second;
}
/// count - Return 1 if the element is in the map, 0 otherwise.
size_type count(StringRef Key) const {
return find(Key) == end() ? 0 : 1;
}
/// insert - Insert the specified key/value pair into the map. If the key
/// already exists in the map, return false and ignore the request, otherwise
/// insert it and return true.
bool insert(MapEntryTy *KeyValue) {
unsigned BucketNo = LookupBucketFor(KeyValue->getKey());
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return false; // Already exists in map.
if (Bucket == getTombstoneVal())
--NumTombstones;
Bucket = KeyValue;
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
RehashTable();
return true;
}
/// insert - Inserts the specified key/value pair into the map if the key
/// isn't already in the map. The bool component of the returned pair is true
/// if and only if the insertion takes place, and the iterator component of
/// the pair points to the element with key equivalent to the key of the pair.
std::pair<iterator, bool> insert(std::pair<StringRef, ValueTy> KV) {
unsigned BucketNo = LookupBucketFor(KV.first);
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return std::make_pair(iterator(TheTable + BucketNo, false),
false); // Already exists in map.
if (Bucket == getTombstoneVal())
--NumTombstones;
Bucket =
MapEntryTy::Create(KV.first, Allocator, std::move(KV.second));
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
BucketNo = RehashTable(BucketNo);
return std::make_pair(iterator(TheTable + BucketNo, false), true);
}
// clear - Empties out the StringMap
void clear() {
if (empty()) return;
// Zap all values, resetting the keys back to non-present (not tombstone),
// which is safe because we're removing all elements.
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *&Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
}
Bucket = nullptr;
}
NumItems = 0;
NumTombstones = 0;
}
/// remove - Remove the specified key/value pair from the map, but do not
/// erase it. This aborts if the key is not in the map.
void remove(MapEntryTy *KeyValue) {
RemoveKey(KeyValue);
}
void erase(iterator I) {
MapEntryTy &V = *I;
remove(&V);
V.Destroy(Allocator);
}
bool erase(StringRef Key) {
iterator I = find(Key);
if (I == end()) return false;
erase(I);
return true;
}
~StringMap() {
// Delete all the elements in the map, but don't reset the elements
// to default values. This is a copy of clear(), but avoids unnecessary
// work not required in the destructor.
if (!empty()) {
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
}
}
}
::operator delete(TheTable); // HLSL Change Begin: Use overridable operator delete
}
};
template<typename ValueTy>
class StringMapConstIterator {
protected:
StringMapEntryBase **Ptr;
public:
typedef StringMapEntry<ValueTy> value_type;
StringMapConstIterator() : Ptr(nullptr) { }
explicit StringMapConstIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: Ptr(Bucket) {
if (!NoAdvance) AdvancePastEmptyBuckets();
}
const value_type &operator*() const {
return *static_cast<StringMapEntry<ValueTy>*>(*Ptr);
}
const value_type *operator->() const {
return static_cast<StringMapEntry<ValueTy>*>(*Ptr);
}
bool operator==(const StringMapConstIterator &RHS) const {
return Ptr == RHS.Ptr;
}
bool operator!=(const StringMapConstIterator &RHS) const {
return Ptr != RHS.Ptr;
}
inline StringMapConstIterator& operator++() { // Preincrement
++Ptr;
AdvancePastEmptyBuckets();
return *this;
}
StringMapConstIterator operator++(int) { // Postincrement
StringMapConstIterator tmp = *this; ++*this; return tmp;
}
private:
void AdvancePastEmptyBuckets() {
while (*Ptr == nullptr || *Ptr == StringMapImpl::getTombstoneVal())
++Ptr;
}
};
template<typename ValueTy>
class StringMapIterator : public StringMapConstIterator<ValueTy> {
public:
StringMapIterator() {}
explicit StringMapIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: StringMapConstIterator<ValueTy>(Bucket, NoAdvance) {
}
StringMapEntry<ValueTy> &operator*() const {
return *static_cast<StringMapEntry<ValueTy>*>(*this->Ptr);
}
StringMapEntry<ValueTy> *operator->() const {
return static_cast<StringMapEntry<ValueTy>*>(*this->Ptr);
}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/DAGDeltaAlgorithm.h | //===--- DAGDeltaAlgorithm.h - A DAG Minimization Algorithm ----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DAGDELTAALGORITHM_H
#define LLVM_ADT_DAGDELTAALGORITHM_H
#include <set>
#include <vector>
namespace llvm {
/// DAGDeltaAlgorithm - Implements a "delta debugging" algorithm for minimizing
/// directed acyclic graphs using a predicate function.
///
/// The result of the algorithm is a subset of the input change set which is
/// guaranteed to satisfy the predicate, assuming that the input set did. For
/// well formed predicates, the result set is guaranteed to be such that
/// removing any single element not required by the dependencies on the other
/// elements would falsify the predicate.
///
/// The DAG should be used to represent dependencies in the changes which are
/// likely to hold across the predicate function. That is, for a particular
/// changeset S and predicate P:
///
/// P(S) => P(S union pred(S))
///
/// The minization algorithm uses this dependency information to attempt to
/// eagerly prune large subsets of changes. As with \see DeltaAlgorithm, the DAG
/// is not required to satisfy this property, but the algorithm will run
/// substantially fewer tests with appropriate dependencies. \see DeltaAlgorithm
/// for more information on the properties which the predicate function itself
/// should satisfy.
class DAGDeltaAlgorithm {
virtual void anchor();
public:
typedef unsigned change_ty;
typedef std::pair<change_ty, change_ty> edge_ty;
// FIXME: Use a decent data structure.
typedef std::set<change_ty> changeset_ty;
typedef std::vector<changeset_ty> changesetlist_ty;
public:
virtual ~DAGDeltaAlgorithm() {}
/// Run - Minimize the DAG formed by the \p Changes vertices and the
/// \p Dependencies edges by executing \see ExecuteOneTest() on subsets of
/// changes and returning the smallest set which still satisfies the test
/// predicate and the input \p Dependencies.
///
/// \param Changes The list of changes.
///
/// \param Dependencies The list of dependencies amongst changes. For each
/// (x,y) in \p Dependencies, both x and y must be in \p Changes. The
/// minimization algorithm guarantees that for each tested changed set S,
/// \f$ x \in S \f$ implies \f$ y \in S \f$. It is an error to have cyclic
/// dependencies.
changeset_ty Run(const changeset_ty &Changes,
const std::vector<edge_ty> &Dependencies);
/// UpdatedSearchState - Callback used when the search state changes.
virtual void UpdatedSearchState(const changeset_ty &Changes,
const changesetlist_ty &Sets,
const changeset_ty &Required) {}
/// ExecuteOneTest - Execute a single test predicate on the change set \p S.
virtual bool ExecuteOneTest(const changeset_ty &S) = 0;
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/PointerUnion.h | //===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PointerUnion class, which is a discriminated union of
// pointer types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POINTERUNION_H
#define LLVM_ADT_POINTERUNION_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
template <typename T>
struct PointerUnionTypeSelectorReturn {
typedef T Return;
};
/// \brief Get a type based on whether two types are the same or not. For:
/// @code
/// typedef typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return Ret;
/// @endcode
/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector {
typedef typename PointerUnionTypeSelectorReturn<RET_NE>::Return Return;
};
template <typename T, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
typedef typename PointerUnionTypeSelectorReturn<RET_EQ>::Return Return;
};
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelectorReturn<
PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE> > {
typedef typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return
Return;
};
/// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
/// for the two template arguments.
template <typename PT1, typename PT2>
class PointerUnionUIntTraits {
public:
static inline void *getAsVoidPointer(void *P) { return P; }
static inline void *getFromVoidPointer(void *P) { return P; }
enum {
PT1BitsAv = (int)(PointerLikeTypeTraits<PT1>::NumLowBitsAvailable),
PT2BitsAv = (int)(PointerLikeTypeTraits<PT2>::NumLowBitsAvailable),
NumLowBitsAvailable = PT1BitsAv < PT2BitsAv ? PT1BitsAv : PT2BitsAv
};
};
/// PointerUnion - This implements a discriminated union of two pointer types,
/// and keeps the discriminator bit-mangled into the low bits of the pointer.
/// This allows the implementation to be extremely efficient in space, but
/// permits a very natural and type-safe API.
///
/// Common use patterns would be something like this:
/// PointerUnion<int*, float*> P;
/// P = (int*)0;
/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
/// X = P.get<int*>(); // ok.
/// Y = P.get<float*>(); // runtime assertion failure.
/// Z = P.get<double*>(); // compile time failure.
/// P = (float*)0;
/// Y = P.get<float*>(); // ok.
/// X = P.get<int*>(); // runtime assertion failure.
template <typename PT1, typename PT2>
class PointerUnion {
public:
typedef PointerIntPair<void*, 1, bool,
PointerUnionUIntTraits<PT1,PT2> > ValTy;
private:
ValTy Val;
struct IsPT1 {
static const int Num = 0;
};
struct IsPT2 {
static const int Num = 1;
};
template <typename T>
struct UNION_DOESNT_CONTAIN_TYPE { };
public:
PointerUnion() {}
PointerUnion(PT1 V) : Val(
const_cast<void *>(PointerLikeTypeTraits<PT1>::getAsVoidPointer(V))) {
}
PointerUnion(PT2 V) : Val(
const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(V)), 1) {
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const {
// Convert from the void* to one of the pointer types, to make sure that
// we recursively strip off low bits if we have a nested PointerUnion.
return !PointerLikeTypeTraits<PT1>::getFromVoidPointer(Val.getPointer());
}
explicit operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsPT1,
::llvm::PointerUnionTypeSelector<PT2, T, IsPT2,
UNION_DOESNT_CONTAIN_TYPE<T> > >::Return Ty;
int TyNo = Ty::Num;
return static_cast<int>(Val.getInt()) == TyNo;
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
return PointerLikeTypeTraits<T>::getFromVoidPointer(Val.getPointer());
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// \brief If the union is set to the first pointer type get an address
/// pointing to it.
PT1 const *getAddrOfPtr1() const {
return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
}
/// \brief If the union is set to the first pointer type get an address
/// pointing to it.
PT1 *getAddrOfPtr1() {
assert(is<PT1>() && "Val is not the first pointer");
assert(get<PT1>() == Val.getPointer() &&
"Can't get the address because PointerLikeTypeTraits changes the ptr");
return const_cast<PT1 *>(
reinterpret_cast<const PT1 *>(Val.getAddrOfPointer()));
}
/// \brief Assignment from nullptr which just clears the union.
const PointerUnion &operator=(std::nullptr_t) {
Val.initWithPointer(nullptr);
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion &operator=(const PT1 &RHS) {
Val.initWithPointer(
const_cast<void *>(PointerLikeTypeTraits<PT1>::getAsVoidPointer(RHS)));
return *this;
}
const PointerUnion &operator=(const PT2 &RHS) {
Val.setPointerAndInt(
const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(RHS)),
1);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion getFromOpaqueValue(void *VP) {
PointerUnion V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
template<typename PT1, typename PT2>
static bool operator==(PointerUnion<PT1, PT2> lhs,
PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() == rhs.getOpaqueValue();
}
template<typename PT1, typename PT2>
static bool operator!=(PointerUnion<PT1, PT2> lhs,
PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() != rhs.getOpaqueValue();
}
template<typename PT1, typename PT2>
static bool operator<(PointerUnion<PT1, PT2> lhs,
PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() < rhs.getOpaqueValue();
}
// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits)-1.
template<typename PT1, typename PT2>
class PointerLikeTypeTraits<PointerUnion<PT1, PT2> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion<PT1, PT2> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion<PT1, PT2>
getFromVoidPointer(void *P) {
return PointerUnion<PT1, PT2>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion<PT1,PT2>::ValTy>
::NumLowBitsAvailable
};
};
/// PointerUnion3 - This is a pointer union of three pointer types. See
/// documentation for PointerUnion for usage.
template <typename PT1, typename PT2, typename PT3>
class PointerUnion3 {
public:
typedef PointerUnion<PT1, PT2> InnerUnion;
typedef PointerUnion<InnerUnion, PT3> ValTy;
private:
ValTy Val;
struct IsInnerUnion {
ValTy Val;
IsInnerUnion(ValTy val) : Val(val) { }
template<typename T>
int is() const {
return Val.template is<InnerUnion>() &&
Val.template get<InnerUnion>().template is<T>();
}
template<typename T>
T get() const {
return Val.template get<InnerUnion>().template get<T>();
}
};
struct IsPT3 {
ValTy Val;
IsPT3(ValTy val) : Val(val) { }
template<typename T>
int is() const {
return Val.template is<T>();
}
template<typename T>
T get() const {
return Val.template get<T>();
}
};
public:
PointerUnion3() {}
PointerUnion3(PT1 V) {
Val = InnerUnion(V);
}
PointerUnion3(PT2 V) {
Val = InnerUnion(V);
}
PointerUnion3(PT3 V) {
Val = V;
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const { return Val.isNull(); }
explicit operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3 >
>::Return Ty;
return Ty(Val).template is<T>();
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3 >
>::Return Ty;
return Ty(Val).template get<T>();
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// \brief Assignment from nullptr which just clears the union.
const PointerUnion3 &operator=(std::nullptr_t) {
Val = nullptr;
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion3 &operator=(const PT1 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT2 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT3 &RHS) {
Val = RHS;
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion3 getFromOpaqueValue(void *VP) {
PointerUnion3 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion3 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template<typename PT1, typename PT2, typename PT3>
class PointerLikeTypeTraits<PointerUnion3<PT1, PT2, PT3> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion3<PT1, PT2, PT3> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion3<PT1, PT2, PT3>
getFromVoidPointer(void *P) {
return PointerUnion3<PT1, PT2, PT3>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion3<PT1, PT2, PT3>::ValTy>
::NumLowBitsAvailable
};
};
/// PointerUnion4 - This is a pointer union of four pointer types. See
/// documentation for PointerUnion for usage.
template <typename PT1, typename PT2, typename PT3, typename PT4>
class PointerUnion4 {
public:
typedef PointerUnion<PT1, PT2> InnerUnion1;
typedef PointerUnion<PT3, PT4> InnerUnion2;
typedef PointerUnion<InnerUnion1, InnerUnion2> ValTy;
private:
ValTy Val;
public:
PointerUnion4() {}
PointerUnion4(PT1 V) {
Val = InnerUnion1(V);
}
PointerUnion4(PT2 V) {
Val = InnerUnion1(V);
}
PointerUnion4(PT3 V) {
Val = InnerUnion2(V);
}
PointerUnion4(PT4 V) {
Val = InnerUnion2(V);
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const { return Val.isNull(); }
explicit operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1, InnerUnion2 >
>::Return Ty;
return Val.template is<Ty>() &&
Val.template get<Ty>().template is<T>();
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1, InnerUnion2 >
>::Return Ty;
return Val.template get<Ty>().template get<T>();
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// \brief Assignment from nullptr which just clears the union.
const PointerUnion4 &operator=(std::nullptr_t) {
Val = nullptr;
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion4 &operator=(const PT1 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT2 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT3 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT4 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion4 getFromOpaqueValue(void *VP) {
PointerUnion4 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion4 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template<typename PT1, typename PT2, typename PT3, typename PT4>
class PointerLikeTypeTraits<PointerUnion4<PT1, PT2, PT3, PT4> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion4<PT1, PT2, PT3, PT4> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion4<PT1, PT2, PT3, PT4>
getFromVoidPointer(void *P) {
return PointerUnion4<PT1, PT2, PT3, PT4>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion4<PT1, PT2, PT3, PT4>::ValTy>
::NumLowBitsAvailable
};
};
// Teach DenseMap how to use PointerUnions as keys.
template<typename T, typename U>
struct DenseMapInfo<PointerUnion<T, U> > {
typedef PointerUnion<T, U> Pair;
typedef DenseMapInfo<T> FirstInfo;
typedef DenseMapInfo<U> SecondInfo;
static inline Pair getEmptyKey() {
return Pair(FirstInfo::getEmptyKey());
}
static inline Pair getTombstoneKey() {
return Pair(FirstInfo::getTombstoneKey());
}
static unsigned getHashValue(const Pair &PairVal) {
intptr_t key = (intptr_t)PairVal.getOpaqueValue();
return DenseMapInfo<intptr_t>::getHashValue(key);
}
static bool isEqual(const Pair &LHS, const Pair &RHS) {
return LHS.template is<T>() == RHS.template is<T>() &&
(LHS.template is<T>() ?
FirstInfo::isEqual(LHS.template get<T>(),
RHS.template get<T>()) :
SecondInfo::isEqual(LHS.template get<U>(),
RHS.template get<U>()));
}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/ImmutableSet.h | //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLESET_H
#define LLVM_ADT_IMMUTABLESET_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <functional>
#include <vector>
namespace llvm {
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLFactory;
template <typename ImutInfo> class ImutIntervalAVLFactory;
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
template <typename ImutInfo> class ImutAVLTreeGenericIterator;
template <typename ImutInfo >
class ImutAVLTree {
public:
typedef typename ImutInfo::key_type_ref key_type_ref;
typedef typename ImutInfo::value_type value_type;
typedef typename ImutInfo::value_type_ref value_type_ref;
typedef ImutAVLFactory<ImutInfo> Factory;
friend class ImutAVLFactory<ImutInfo>;
friend class ImutIntervalAVLFactory<ImutInfo>;
friend class ImutAVLTreeGenericIterator<ImutInfo>;
typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator;
//===----------------------------------------------------===//
// Public Interface.
//===----------------------------------------------------===//
/// Return a pointer to the left subtree. This value
/// is NULL if there is no left subtree.
ImutAVLTree *getLeft() const { return left; }
/// Return a pointer to the right subtree. This value is
/// NULL if there is no right subtree.
ImutAVLTree *getRight() const { return right; }
/// getHeight - Returns the height of the tree. A tree with no subtrees
/// has a height of 1.
unsigned getHeight() const { return height; }
/// getValue - Returns the data value associated with the tree node.
const value_type& getValue() const { return value; }
/// find - Finds the subtree associated with the specified key value.
/// This method returns NULL if no matching subtree is found.
ImutAVLTree* find(key_type_ref K) {
ImutAVLTree *T = this;
while (T) {
key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
if (ImutInfo::isEqual(K,CurrentKey))
return T;
else if (ImutInfo::isLess(K,CurrentKey))
T = T->getLeft();
else
T = T->getRight();
}
return nullptr;
}
/// getMaxElement - Find the subtree associated with the highest ranged
/// key value.
ImutAVLTree* getMaxElement() {
ImutAVLTree *T = this;
ImutAVLTree *Right = T->getRight();
while (Right) { T = Right; Right = T->getRight(); }
return T;
}
/// size - Returns the number of nodes in the tree, which includes
/// both leaves and non-leaf nodes.
unsigned size() const {
unsigned n = 1;
if (const ImutAVLTree* L = getLeft())
n += L->size();
if (const ImutAVLTree* R = getRight())
n += R->size();
return n;
}
/// begin - Returns an iterator that iterates over the nodes of the tree
/// in an inorder traversal. The returned iterator thus refers to the
/// the tree node with the minimum data element.
iterator begin() const { return iterator(this); }
/// end - Returns an iterator for the tree that denotes the end of an
/// inorder traversal.
iterator end() const { return iterator(); }
bool isElementEqual(value_type_ref V) const {
// Compare the keys.
if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(V)))
return false;
// Also compare the data values.
if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
ImutInfo::DataOfValue(V)))
return false;
return true;
}
bool isElementEqual(const ImutAVLTree* RHS) const {
return isElementEqual(RHS->getValue());
}
/// isEqual - Compares two trees for structural equality and returns true
/// if they are equal. This worst case performance of this operation is
// linear in the sizes of the trees.
bool isEqual(const ImutAVLTree& RHS) const {
if (&RHS == this)
return true;
iterator LItr = begin(), LEnd = end();
iterator RItr = RHS.begin(), REnd = RHS.end();
while (LItr != LEnd && RItr != REnd) {
if (&*LItr == &*RItr) {
LItr.skipSubTree();
RItr.skipSubTree();
continue;
}
if (!LItr->isElementEqual(&*RItr))
return false;
++LItr;
++RItr;
}
return LItr == LEnd && RItr == REnd;
}
/// isNotEqual - Compares two trees for structural inequality. Performance
/// is the same is isEqual.
bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
/// contains - Returns true if this tree contains a subtree (node) that
/// has an data element that matches the specified key. Complexity
/// is logarithmic in the size of the tree.
bool contains(key_type_ref K) { return (bool) find(K); }
/// foreach - A member template the accepts invokes operator() on a functor
/// object (specifed by Callback) for every node/subtree in the tree.
/// Nodes are visited using an inorder traversal.
template <typename Callback>
void foreach(Callback& C) {
if (ImutAVLTree* L = getLeft())
L->foreach(C);
C(value);
if (ImutAVLTree* R = getRight())
R->foreach(C);
}
/// validateTree - A utility method that checks that the balancing and
/// ordering invariants of the tree are satisifed. It is a recursive
/// method that returns the height of the tree, which is then consumed
/// by the enclosing validateTree call. External callers should ignore the
/// return value. An invalid tree will cause an assertion to fire in
/// a debug build.
unsigned validateTree() const {
unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
unsigned HR = getRight() ? getRight()->validateTree() : 0;
(void) HL;
(void) HR;
assert(getHeight() == ( HL > HR ? HL : HR ) + 1
&& "Height calculation wrong");
assert((HL > HR ? HL-HR : HR-HL) <= 2
&& "Balancing invariant violated");
assert((!getLeft() ||
ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
ImutInfo::KeyOfValue(getValue()))) &&
"Value in left child is not less that current value");
assert(!(getRight() ||
ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(getRight()->getValue()))) &&
"Current value is not less that value of right child");
return getHeight();
}
//===----------------------------------------------------===//
// Internal values.
//===----------------------------------------------------===//
private:
Factory *factory;
ImutAVLTree *left;
ImutAVLTree *right;
ImutAVLTree *prev;
ImutAVLTree *next;
unsigned height : 28;
unsigned IsMutable : 1;
unsigned IsDigestCached : 1;
unsigned IsCanonicalized : 1;
value_type value;
uint32_t digest;
uint32_t refCount;
//===----------------------------------------------------===//
// Internal methods (node manipulation; used by Factory).
//===----------------------------------------------------===//
private:
/// ImutAVLTree - Internal constructor that is only called by
/// ImutAVLFactory.
ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
unsigned height)
: factory(f), left(l), right(r), prev(nullptr), next(nullptr),
height(height), IsMutable(true), IsDigestCached(false),
IsCanonicalized(0), value(v), digest(0), refCount(0)
{
if (left) left->retain();
if (right) right->retain();
}
/// isMutable - Returns true if the left and right subtree references
/// (as well as height) can be changed. If this method returns false,
/// the tree is truly immutable. Trees returned from an ImutAVLFactory
/// object should always have this method return true. Further, if this
/// method returns false for an instance of ImutAVLTree, all subtrees
/// will also have this method return false. The converse is not true.
bool isMutable() const { return IsMutable; }
/// hasCachedDigest - Returns true if the digest for this tree is cached.
/// This can only be true if the tree is immutable.
bool hasCachedDigest() const { return IsDigestCached; }
//===----------------------------------------------------===//
// Mutating operations. A tree root can be manipulated as
// long as its reference has not "escaped" from internal
// methods of a factory object (see below). When a tree
// pointer is externally viewable by client code, the
// internal "mutable bit" is cleared to mark the tree
// immutable. Note that a tree that still has its mutable
// bit set may have children (subtrees) that are themselves
// immutable.
//===----------------------------------------------------===//
/// markImmutable - Clears the mutable flag for a tree. After this happens,
/// it is an error to call setLeft(), setRight(), and setHeight().
void markImmutable() {
assert(isMutable() && "Mutable flag already removed.");
IsMutable = false;
}
/// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
void markedCachedDigest() {
assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
IsDigestCached = true;
}
/// setHeight - Changes the height of the tree. Used internally by
/// ImutAVLFactory.
void setHeight(unsigned h) {
assert(isMutable() && "Only a mutable tree can have its height changed.");
height = h;
}
static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
value_type_ref V) {
uint32_t digest = 0;
if (L)
digest += L->computeDigest();
// Compute digest of stored data.
FoldingSetNodeID ID;
ImutInfo::Profile(ID,V);
digest += ID.ComputeHash();
if (R)
digest += R->computeDigest();
return digest;
}
uint32_t computeDigest() {
// Check the lowest bit to determine if digest has actually been
// pre-computed.
if (hasCachedDigest())
return digest;
uint32_t X = computeDigest(getLeft(), getRight(), getValue());
digest = X;
markedCachedDigest();
return X;
}
//===----------------------------------------------------===//
// Reference count operations.
//===----------------------------------------------------===//
public:
void retain() { ++refCount; }
void release() {
assert(refCount > 0);
if (--refCount == 0)
destroy();
}
void destroy() {
if (left)
left->release();
if (right)
right->release();
if (IsCanonicalized) {
if (next)
next->prev = prev;
if (prev)
prev->next = next;
else
factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
}
// We need to clear the mutability bit in case we are
// destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
IsMutable = false;
factory->freeNodes.push_back(this);
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//
template <typename ImutInfo >
class ImutAVLFactory {
friend class ImutAVLTree<ImutInfo>;
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef typename TreeTy::value_type_ref value_type_ref;
typedef typename TreeTy::key_type_ref key_type_ref;
typedef DenseMap<unsigned, TreeTy*> CacheTy;
CacheTy Cache;
uintptr_t Allocator;
std::vector<TreeTy*> createdNodes;
std::vector<TreeTy*> freeNodes;
bool ownsAllocator() const {
return Allocator & 0x1 ? false : true;
}
BumpPtrAllocator& getAllocator() const {
return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
}
//===--------------------------------------------------===//
// Public interface.
//===--------------------------------------------------===//
public:
ImutAVLFactory()
: Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImutAVLFactory(BumpPtrAllocator& Alloc)
: Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImutAVLFactory() {
if (ownsAllocator()) delete &getAllocator();
}
TreeTy* add(TreeTy* T, value_type_ref V) {
T = add_internal(V,T);
markImmutable(T);
recoverNodes();
return T;
}
TreeTy* remove(TreeTy* T, key_type_ref V) {
T = remove_internal(V,T);
markImmutable(T);
recoverNodes();
return T;
}
TreeTy* getEmptyTree() const { return nullptr; }
protected:
//===--------------------------------------------------===//
// A bunch of quick helper functions used for reasoning
// about the properties of trees and their children.
// These have succinct names so that the balancing code
// is as terse (and readable) as possible.
//===--------------------------------------------------===//
bool isEmpty(TreeTy* T) const { return !T; }
unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); }
TreeTy* getRight(TreeTy* T) const { return T->getRight(); }
value_type_ref getValue(TreeTy* T) const { return T->value; }
// Make sure the index is not the Tombstone or Entry key of the DenseMap.
static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
unsigned hl = getHeight(L);
unsigned hr = getHeight(R);
return (hl > hr ? hl : hr) + 1;
}
static bool compareTreeWithSection(TreeTy* T,
typename TreeTy::iterator& TI,
typename TreeTy::iterator& TE) {
typename TreeTy::iterator I = T->begin(), E = T->end();
for ( ; I!=E ; ++I, ++TI) {
if (TI == TE || !I->isElementEqual(&*TI))
return false;
}
return true;
}
//===--------------------------------------------------===//
// "createNode" is used to generate new tree roots that link
// to other trees. The functon may also simply move links
// in an existing root if that root is still marked mutable.
// This is necessary because otherwise our balancing code
// would leak memory as it would create nodes that are
// then discarded later before the finished tree is
// returned to the caller.
//===--------------------------------------------------===//
TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
BumpPtrAllocator& A = getAllocator();
TreeTy* T;
if (!freeNodes.empty()) {
T = freeNodes.back();
freeNodes.pop_back();
assert(T != L);
assert(T != R);
} else {
T = (TreeTy*) A.Allocate<TreeTy>();
}
new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
createdNodes.push_back(T);
return T;
}
TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
return createNode(newLeft, getValue(oldTree), newRight);
}
void recoverNodes() {
for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
TreeTy *N = createdNodes[i];
if (N->isMutable() && N->refCount == 0)
N->destroy();
}
createdNodes.clear();
}
/// balanceTree - Used by add_internal and remove_internal to
/// balance a newly created tree.
TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
unsigned hl = getHeight(L);
unsigned hr = getHeight(R);
if (hl > hr + 2) {
assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
TreeTy *LL = getLeft(L);
TreeTy *LR = getRight(L);
if (getHeight(LL) >= getHeight(LR))
return createNode(LL, L, createNode(LR,V,R));
assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
TreeTy *LRL = getLeft(LR);
TreeTy *LRR = getRight(LR);
return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
}
if (hr > hl + 2) {
assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
TreeTy *RL = getLeft(R);
TreeTy *RR = getRight(R);
if (getHeight(RR) >= getHeight(RL))
return createNode(createNode(L,V,RL), R, RR);
assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
TreeTy *RLL = getLeft(RL);
TreeTy *RLR = getRight(RL);
return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
}
return createNode(L,V,R);
}
/// add_internal - Creates a new tree that includes the specified
/// data and the data from the original tree. If the original tree
/// already contained the data item, the original tree is returned.
TreeTy* add_internal(value_type_ref V, TreeTy* T) {
if (isEmpty(T))
return createNode(T, V, T);
assert(!T->isMutable());
key_type_ref K = ImutInfo::KeyOfValue(V);
key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent))
return createNode(getLeft(T), V, getRight(T));
else if (ImutInfo::isLess(K,KCurrent))
return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
else
return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
}
/// remove_internal - Creates a new tree that includes all the data
/// from the original tree except the specified data. If the
/// specified data did not exist in the original tree, the original
/// tree is returned.
TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
if (isEmpty(T))
return T;
assert(!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent)) {
return combineTrees(getLeft(T), getRight(T));
} else if (ImutInfo::isLess(K,KCurrent)) {
return balanceTree(remove_internal(K, getLeft(T)),
getValue(T), getRight(T));
} else {
return balanceTree(getLeft(T), getValue(T),
remove_internal(K, getRight(T)));
}
}
TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
if (isEmpty(L))
return R;
if (isEmpty(R))
return L;
TreeTy* OldNode;
TreeTy* newRight = removeMinBinding(R,OldNode);
return balanceTree(L, getValue(OldNode), newRight);
}
TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
assert(!isEmpty(T));
if (isEmpty(getLeft(T))) {
Noderemoved = T;
return getRight(T);
}
return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
getValue(T), getRight(T));
}
/// markImmutable - Clears the mutable bits of a root and all of its
/// descendants.
void markImmutable(TreeTy* T) {
if (!T || !T->isMutable())
return;
T->markImmutable();
markImmutable(getLeft(T));
markImmutable(getRight(T));
}
public:
TreeTy *getCanonicalTree(TreeTy *TNew) {
if (!TNew)
return nullptr;
if (TNew->IsCanonicalized)
return TNew;
// Search the hashtable for another tree with the same digest, and
// if find a collision compare those trees by their contents.
unsigned digest = TNew->computeDigest();
TreeTy *&entry = Cache[maskCacheIndex(digest)];
do {
if (!entry)
break;
for (TreeTy *T = entry ; T != nullptr; T = T->next) {
// Compare the Contents('T') with Contents('TNew')
typename TreeTy::iterator TI = T->begin(), TE = T->end();
if (!compareTreeWithSection(TNew, TI, TE))
continue;
if (TI != TE)
continue; // T has more contents than TNew.
// Trees did match! Return 'T'.
if (TNew->refCount == 0)
TNew->destroy();
return T;
}
entry->prev = TNew;
TNew->next = entry;
}
while (false);
entry = TNew;
TNew->IsCanonicalized = true;
return TNew;
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Iterators.
//===----------------------------------------------------------------------===//
template <typename ImutInfo>
class ImutAVLTreeGenericIterator {
SmallVector<uintptr_t,20> stack;
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = ImutAVLTree<ImutInfo>;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
Flags=0x3 };
typedef ImutAVLTree<ImutInfo> TreeTy;
ImutAVLTreeGenericIterator() {}
ImutAVLTreeGenericIterator(const TreeTy *Root) {
if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
}
TreeTy &operator*() const {
assert(!stack.empty());
return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
}
TreeTy *operator->() const { return &*this; }
uintptr_t getVisitState() const {
assert(!stack.empty());
return stack.back() & Flags;
}
bool atEnd() const { return stack.empty(); }
bool atBeginning() const {
return stack.size() == 1 && getVisitState() == VisitedNone;
}
void skipToParent() {
assert(!stack.empty());
stack.pop_back();
if (stack.empty())
return;
switch (getVisitState()) {
case VisitedNone:
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
stack.back() |= VisitedRight;
break;
default:
llvm_unreachable("Unreachable.");
}
}
bool operator==(const ImutAVLTreeGenericIterator &x) const {
return stack == x.stack;
}
bool operator!=(const ImutAVLTreeGenericIterator &x) const {
return !(*this == x);
}
ImutAVLTreeGenericIterator &operator++() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L));
else
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R));
else
stack.back() |= VisitedRight;
break;
case VisitedRight:
skipToParent();
break;
default:
llvm_unreachable("Unreachable.");
}
return *this;
}
ImutAVLTreeGenericIterator &operator--() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
stack.pop_back();
break;
case VisitedLeft:
stack.back() &= ~Flags; // Set state to "VisitedNone."
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
break;
case VisitedRight:
stack.back() &= ~Flags;
stack.back() |= VisitedLeft;
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
break;
default:
llvm_unreachable("Unreachable.");
}
return *this;
}
};
template <typename ImutInfo>
class ImutAVLTreeInOrderIterator {
typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
InternalIteratorTy InternalItr;
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = ImutAVLTree<ImutInfo>;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
typedef ImutAVLTree<ImutInfo> TreeTy;
ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
if (Root)
++*this; // Advance to first element.
}
ImutAVLTreeInOrderIterator() : InternalItr() {}
bool operator==(const ImutAVLTreeInOrderIterator &x) const {
return InternalItr == x.InternalItr;
}
bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
return !(*this == x);
}
TreeTy &operator*() const { return *InternalItr; }
TreeTy *operator->() const { return &*InternalItr; }
ImutAVLTreeInOrderIterator &operator++() {
do ++InternalItr;
while (!InternalItr.atEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
ImutAVLTreeInOrderIterator &operator--() {
do --InternalItr;
while (!InternalItr.atBeginning() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
void skipSubTree() {
InternalItr.skipToParent();
while (!InternalItr.atEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
++InternalItr;
}
};
/// Generic iterator that wraps a T::TreeTy::iterator and exposes
/// iterator::getValue() on dereference.
template <typename T>
struct ImutAVLValueIterator
: iterator_adaptor_base<
ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
typename std::iterator_traits<
typename T::TreeTy::iterator>::iterator_category,
const typename T::value_type> {
ImutAVLValueIterator() = default;
explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
: ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
typename ImutAVLValueIterator::reference operator*() const {
return this->I->getValue();
}
};
//===----------------------------------------------------------------------===//
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//
/// Generic profile template. The default behavior is to invoke the
/// profile method of an object. Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
typedef const T value_type;
typedef const T& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
FoldingSetTrait<T>::Profile(X,ID);
}
};
/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {
typedef const T value_type;
typedef const T& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddInteger(X);
}
};
#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)
#undef PROFILE_INTEGER_INFO
/// Profile traits for booleans.
template <>
struct ImutProfileInfo<bool> {
typedef const bool value_type;
typedef const bool& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddBoolean(X);
}
};
/// Generic profile trait for pointer types. We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
typedef const T* value_type;
typedef value_type value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddPointer(X);
}
};
//===----------------------------------------------------------------------===//
// Trait classes that contain element comparison operators and type
// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These
// inherit from the profile traits (ImutProfileInfo) to include operations
// for element profiling.
//===----------------------------------------------------------------------===//
/// ImutContainerInfo - Generic definition of comparison operations for
/// elements of immutable containers that defaults to using
/// std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
typedef typename ImutProfileInfo<T>::value_type value_type;
typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static key_type_ref KeyOfValue(value_type_ref D) { return D; }
static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return std::equal_to<key_type>()(LHS,RHS);
}
static bool isLess(key_type_ref LHS, key_type_ref RHS) {
return std::less<key_type>()(LHS,RHS);
}
static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};
/// ImutContainerInfo - Specialization for pointer values to treat pointers
/// as references to unique objects. Pointers are thus compared by
/// their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
typedef typename ImutProfileInfo<T*>::value_type value_type;
typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static key_type_ref KeyOfValue(value_type_ref D) { return D; }
static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};
//===----------------------------------------------------------------------===//
// Immutable Set
// //
///////////////////////////////////////////////////////////////////////////////
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
private:
TreeTy *Root;
public:
/// Constructs a set from a pointer to a tree root. In general one
/// should use a Factory object to create sets instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableSet(TreeTy* R) : Root(R) {
if (Root) { Root->retain(); }
}
ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
if (Root) { Root->retain(); }
}
ImmutableSet &operator=(const ImmutableSet &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
}
return *this;
}
~ImmutableSet() {
if (Root) { Root->release(); }
}
class Factory {
typename TreeTy::Factory F;
const bool Canonicalize;
public:
Factory(bool canonicalize = true)
: Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
: F(Alloc), Canonicalize(canonicalize) {}
/// getEmptySet - Returns an immutable set that contains no elements.
ImmutableSet getEmptySet() {
return ImmutableSet(F.getEmptyTree());
}
/// add - Creates a new immutable set that contains all of the values
/// of the original set with the addition of the specified value. If
/// the original set already included the value, then the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet add(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.add(Old.Root, V);
return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
}
/// remove - Creates a new immutable set that contains all of the values
/// of the original set with the exception of the specified value. If
/// the original set did not contain the value, the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.remove(Old.Root, V);
return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
}
BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
typename TreeTy::Factory *getTreeFactory() const {
return const_cast<typename TreeTy::Factory *>(&F);
}
private:
Factory(const Factory& RHS) = delete;
void operator=(const Factory& RHS) = delete;
};
friend class Factory;
/// Returns true if the set contains the specified value.
bool contains(value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
bool operator==(const ImmutableSet &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableSet &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
TreeTy *getRoot() {
if (Root) { Root->retain(); }
return Root;
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
/// isEmpty - Return true if the set contains no elements.
bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element.
/// This method runs in constant time.
bool isSingleton() const { return getHeight() == 1; }
template <typename Callback>
void foreach(Callback& C) { if (Root) Root->foreach(C); }
template <typename Callback>
void foreach() { if (Root) { Callback C; Root->foreach(C); } }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
typedef ImutAVLValueIterator<ImmutableSet> iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
ID.AddPointer(S.Root);
}
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); }
};
// NOTE: This may some day replace the current ImmutableSet.
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSetRef {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
typedef typename TreeTy::Factory FactoryTy;
private:
TreeTy *Root;
FactoryTy *Factory;
public:
/// Constructs a set from a pointer to a tree root. In general one
/// should use a Factory object to create sets instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
: Root(R),
Factory(F) {
if (Root) { Root->retain(); }
}
ImmutableSetRef(const ImmutableSetRef &X)
: Root(X.Root),
Factory(X.Factory) {
if (Root) { Root->retain(); }
}
ImmutableSetRef &operator=(const ImmutableSetRef &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
Factory = X.Factory;
}
return *this;
}
~ImmutableSetRef() {
if (Root) { Root->release(); }
}
static ImmutableSetRef getEmptySet(FactoryTy *F) {
return ImmutableSetRef(0, F);
}
ImmutableSetRef add(value_type_ref V) {
return ImmutableSetRef(Factory->add(Root, V), Factory);
}
ImmutableSetRef remove(value_type_ref V) {
return ImmutableSetRef(Factory->remove(Root, V), Factory);
}
/// Returns true if the set contains the specified value.
bool contains(value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
return ImmutableSet<ValT>(canonicalize ?
Factory->getCanonicalTree(Root) : Root);
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
bool operator==(const ImmutableSetRef &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableSetRef &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
/// isEmpty - Return true if the set contains no elements.
bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element.
/// This method runs in constant time.
bool isSingleton() const { return getHeight() == 1; }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
ID.AddPointer(S.Root);
}
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); }
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/StringSwitch.h | //===--- StringSwitch.h - Switch-on-literal-string Construct --------------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements the StringSwitch template, which mimics a switch()
// statement whose cases are string literals.
//
//===----------------------------------------------------------------------===/
#ifndef LLVM_ADT_STRINGSWITCH_H
#define LLVM_ADT_STRINGSWITCH_H
#include "llvm/ADT/StringRef.h"
#include <cassert>
#include <cstring>
namespace llvm {
/// \brief A switch()-like statement whose cases are string literals.
///
/// The StringSwitch class is a simple form of a switch() statement that
/// determines whether the given string matches one of the given string
/// literals. The template type parameter \p T is the type of the value that
/// will be returned from the string-switch expression. For example,
/// the following code switches on the name of a color in \c argv[i]:
///
/// \code
/// Color color = StringSwitch<Color>(argv[i])
/// .Case("red", Red)
/// .Case("orange", Orange)
/// .Case("yellow", Yellow)
/// .Case("green", Green)
/// .Case("blue", Blue)
/// .Case("indigo", Indigo)
/// .Cases("violet", "purple", Violet)
/// .Default(UnknownColor);
/// \endcode
template<typename T, typename R = T>
class StringSwitch {
/// \brief The string we are matching.
StringRef Str;
/// \brief The pointer to the result of this switch statement, once known,
/// null before that.
const T *Result;
public:
explicit StringSwitch(StringRef S)
: Str(S), Result(nullptr) { }
template<unsigned N>
StringSwitch& Case(const char (&S)[N], const T& Value) {
if (!Result && N-1 == Str.size() &&
(std::memcmp(S, Str.data(), N-1) == 0)) {
Result = &Value;
}
return *this;
}
template<unsigned N>
StringSwitch& EndsWith(const char (&S)[N], const T &Value) {
if (!Result && Str.size() >= N-1 &&
std::memcmp(S, Str.data() + Str.size() + 1 - N, N-1) == 0) {
Result = &Value;
}
return *this;
}
template<unsigned N>
StringSwitch& StartsWith(const char (&S)[N], const T &Value) {
if (!Result && Str.size() >= N-1 &&
std::memcmp(S, Str.data(), N-1) == 0) {
Result = &Value;
}
return *this;
}
template<unsigned N0, unsigned N1>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const T& Value) {
return Case(S0, Value).Case(S1, Value);
}
template<unsigned N0, unsigned N1, unsigned N2>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value);
}
template<unsigned N0, unsigned N1, unsigned N2, unsigned N3>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const char (&S3)[N3],
const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value).Case(S3, Value);
}
template<unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const char (&S3)[N3],
const char (&S4)[N4], const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value).Case(S3, Value)
.Case(S4, Value);
}
R Default(const T& Value) const {
if (Result)
return *Result;
return Value;
}
operator R() const {
assert(Result && "Fell off the end of a string-switch");
return *Result;
}
};
} // end namespace llvm
#endif // LLVM_ADT_STRINGSWITCH_H
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/Hashing.h | //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the newly proposed standard C++ interfaces for hashing
// arbitrary data and building hash functions for user-defined types. This
// interface was originally proposed in N3333[1] and is currently under review
// for inclusion in a future TR and/or standard.
//
// The primary interfaces provide are comprised of one type and three functions:
//
// -- 'hash_code' class is an opaque type representing the hash code for some
// data. It is the intended product of hashing, and can be used to implement
// hash tables, checksumming, and other common uses of hashes. It is not an
// integer type (although it can be converted to one) because it is risky
// to assume much about the internals of a hash_code. In particular, each
// execution of the program has a high probability of producing a different
// hash_code for a given input. Thus their values are not stable to save or
// persist, and should only be used during the execution for the
// construction of hashing datastructures.
//
// -- 'hash_value' is a function designed to be overloaded for each
// user-defined type which wishes to be used within a hashing context. It
// should be overloaded within the user-defined type's namespace and found
// via ADL. Overloads for primitive types are provided by this library.
//
// -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
// programmers in easily and intuitively combining a set of data into
// a single hash_code for their object. They should only logically be used
// within the implementation of a 'hash_value' routine or similar context.
//
// Note that 'hash_combine_range' contains very special logic for hashing
// a contiguous array of integers or pointers. This logic is *extremely* fast,
// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
// under 32-bytes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_HASHING_H
#define LLVM_ADT_HASHING_H
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <string>
#include <utility>
namespace llvm {
/// \brief An opaque object representing a hash code.
///
/// This object represents the result of hashing some entity. It is intended to
/// be used to implement hashtables or other hashing-based data structures.
/// While it wraps and exposes a numeric value, this value should not be
/// trusted to be stable or predictable across processes or executions.
///
/// In order to obtain the hash_code for an object 'x':
/// \code
/// using llvm::hash_value;
/// llvm::hash_code code = hash_value(x);
/// \endcode
class hash_code {
size_t value;
public:
/// \brief Default construct a hash_code.
/// Note that this leaves the value uninitialized.
hash_code() = default;
/// \brief Form a hash code directly from a numerical value.
hash_code(size_t value) : value(value) {}
/// \brief Convert the hash code to its numerical value for use.
/*explicit*/ operator size_t() const { return value; }
friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
return lhs.value == rhs.value;
}
friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
return lhs.value != rhs.value;
}
/// \brief Allow a hash_code to be directly run through hash_value.
friend size_t hash_value(const hash_code &code) { return code.value; }
};
/// \brief Compute a hash_code for any integer value.
///
/// Note that this function is intended to compute the same hash_code for
/// a particular value without regard to the pre-promotion type. This is in
/// contrast to hash_combine which may produce different hash_codes for
/// differing argument types even if they would implicit promote to a common
/// type without changing the value.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value);
/// \brief Compute a hash_code for a pointer's address.
///
/// N.B.: This hashes the *address*. Not the value and not the type.
template <typename T> hash_code hash_value(const T *ptr);
/// \brief Compute a hash_code for a pair of objects.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg);
/// \brief Compute a hash_code for a standard string.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg);
/// \brief Override the execution seed with a fixed value.
///
/// This hashing library uses a per-execution seed designed to change on each
/// run with high probability in order to ensure that the hash codes are not
/// attackable and to ensure that output which is intended to be stable does
/// not rely on the particulars of the hash codes produced.
///
/// That said, there are use cases where it is important to be able to
/// reproduce *exactly* a specific behavior. To that end, we provide a function
/// which will forcibly set the seed to a fixed value. This must be done at the
/// start of the program, before any hashes are computed. Also, it cannot be
/// undone. This makes it thread-hostile and very hard to use outside of
/// immediately on start of a simple program designed for reproducible
/// behavior.
void set_fixed_execution_hash_seed(size_t fixed_value);
// All of the implementation details of actually computing the various hash
// code values are held within this namespace. These routines are included in
// the header file mainly to allow inlining and constant propagation.
namespace hashing {
namespace detail {
inline uint64_t fetch64(const char *p) {
uint64_t result;
memcpy(&result, p, sizeof(result));
if (sys::IsBigEndianHost)
sys::swapByteOrder(result);
return result;
}
inline uint32_t fetch32(const char *p) {
uint32_t result;
memcpy(&result, p, sizeof(result));
if (sys::IsBigEndianHost)
sys::swapByteOrder(result);
return result;
}
/// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
static const uint64_t k3 = 0xc949d7c7509e6557ULL;
/// \brief Bitwise right rotate.
/// Normally this will compile to a single instruction, especially if the
/// shift is a manifest constant.
inline uint64_t rotate(uint64_t val, size_t shift) {
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
inline uint64_t shift_mix(uint64_t val) {
return val ^ (val >> 47);
}
inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
// Murmur-inspired hashing.
const uint64_t kMul = 0x9ddfea08eb382d69ULL;
uint64_t a = (low ^ high) * kMul;
a ^= (a >> 47);
uint64_t b = (high ^ a) * kMul;
b ^= (b >> 47);
b *= kMul;
return b;
}
inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
uint8_t a = s[0];
uint8_t b = s[len >> 1];
uint8_t c = s[len - 1];
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
uint32_t z = len + (static_cast<uint32_t>(c) << 2);
return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
}
inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch32(s);
return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
}
inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch64(s);
uint64_t b = fetch64(s + len - 8);
return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
}
inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch64(s) * k1;
uint64_t b = fetch64(s + 8);
uint64_t c = fetch64(s + len - 8) * k2;
uint64_t d = fetch64(s + len - 16) * k0;
return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
a + rotate(b ^ k3, 20) - c + len + seed);
}
inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t z = fetch64(s + 24);
uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
uint64_t b = rotate(a + z, 52);
uint64_t c = rotate(a, 37);
a += fetch64(s + 8);
c += rotate(a, 7);
a += fetch64(s + 16);
uint64_t vf = a + z;
uint64_t vs = b + rotate(a, 31) + c;
a = fetch64(s + 16) + fetch64(s + len - 32);
z = fetch64(s + len - 8);
b = rotate(a + z, 52);
c = rotate(a, 37);
a += fetch64(s + len - 24);
c += rotate(a, 7);
a += fetch64(s + len - 16);
uint64_t wf = a + z;
uint64_t ws = b + rotate(a, 31) + c;
uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
return shift_mix((seed ^ (r * k0)) + vs) * k2;
}
inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
if (length >= 4 && length <= 8)
return hash_4to8_bytes(s, length, seed);
if (length > 8 && length <= 16)
return hash_9to16_bytes(s, length, seed);
if (length > 16 && length <= 32)
return hash_17to32_bytes(s, length, seed);
if (length > 32)
return hash_33to64_bytes(s, length, seed);
if (length != 0)
return hash_1to3_bytes(s, length, seed);
return k2 ^ seed;
}
/// \brief The intermediate state used during hashing.
/// Currently, the algorithm for computing hash codes is based on CityHash and
/// keeps 56 bytes of arbitrary state.
struct hash_state {
uint64_t h0, h1, h2, h3, h4, h5, h6;
/// \brief Create a new hash_state structure and initialize it based on the
/// seed and the first 64-byte chunk.
/// This effectively performs the initial mix.
static hash_state create(const char *s, uint64_t seed) {
hash_state state = {
0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
seed * k1, shift_mix(seed), 0 };
state.h6 = hash_16_bytes(state.h4, state.h5);
state.mix(s);
return state;
}
/// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
/// and 'b', including whatever is already in 'a' and 'b'.
static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
a += fetch64(s);
uint64_t c = fetch64(s + 24);
b = rotate(b + a + c, 21);
uint64_t d = a;
a += fetch64(s + 8) + fetch64(s + 16);
b += rotate(a, 44) + d;
a += c;
}
/// \brief Mix in a 64-byte buffer of data.
/// We mix all 64 bytes even when the chunk length is smaller, but we
/// record the actual length.
void mix(const char *s) {
h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
h0 ^= h6;
h1 += h3 + fetch64(s + 40);
h2 = rotate(h2 + h5, 33) * k1;
h3 = h4 * k1;
h4 = h0 + h5;
mix_32_bytes(s, h3, h4);
h5 = h2 + h6;
h6 = h1 + fetch64(s + 16);
mix_32_bytes(s + 32, h5, h6);
std::swap(h2, h0);
}
/// \brief Compute the final 64-bit hash code value based on the current
/// state and the length of bytes hashed.
uint64_t finalize(size_t length) {
return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
}
};
/// \brief A global, fixed seed-override variable.
///
/// This variable can be set using the \see llvm::set_fixed_execution_seed
/// function. See that function for details. Do not, under any circumstances,
/// set or read this variable.
extern size_t fixed_seed_override;
inline size_t get_execution_seed() {
// FIXME: This needs to be a per-execution seed. This is just a placeholder
// implementation. Switching to a per-execution seed is likely to flush out
// instability bugs and so will happen as its own commit.
//
// However, if there is a fixed seed override set the first time this is
// called, return that instead of the per-execution seed.
const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
size_t seed = fixed_seed_override ? fixed_seed_override
: (size_t)seed_prime;
return seed;
}
/// \brief Trait to indicate whether a type's bits can be hashed directly.
///
/// A type trait which is true if we want to combine values for hashing by
/// reading the underlying data. It is false if values of this type must
/// first be passed to hash_value, and the resulting hash_codes combined.
//
// FIXME: We want to replace is_integral_or_enum and is_pointer here with
// a predicate which asserts that comparing the underlying storage of two
// values of the type for equality is equivalent to comparing the two values
// for equality. For all the platforms we care about, this holds for integers
// and pointers, but there are platforms where it doesn't and we would like to
// support user-defined types which happen to satisfy this property.
template <typename T> struct is_hashable_data
: std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
std::is_pointer<T>::value) &&
64 % sizeof(T) == 0)> {};
// Special case std::pair to detect when both types are viable and when there
// is no alignment-derived padding in the pair. This is a bit of a lie because
// std::pair isn't truly POD, but it's close enough in all reasonable
// implementations for our use case of hashing the underlying data.
template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
: std::integral_constant<bool, (is_hashable_data<T>::value &&
is_hashable_data<U>::value &&
(sizeof(T) + sizeof(U)) ==
sizeof(std::pair<T, U>))> {};
/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when the type itself can be used.
template <typename T>
typename std::enable_if<is_hashable_data<T>::value, T>::type
get_hashable_data(const T &value) {
return value;
}
/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when we must first call hash_value and use the
/// result as our data.
template <typename T>
typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
get_hashable_data(const T &value) {
using ::llvm::hash_value;
return hash_value(value);
}
/// \brief Helper to store data from a value into a buffer and advance the
/// pointer into that buffer.
///
/// This routine first checks whether there is enough space in the provided
/// buffer, and if not immediately returns false. If there is space, it
/// copies the underlying bytes of value into the buffer, advances the
/// buffer_ptr past the copied bytes, and returns true.
template <typename T>
bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
size_t offset = 0) {
size_t store_size = sizeof(value) - offset;
if (buffer_ptr + store_size > buffer_end)
return false;
const char *value_data = reinterpret_cast<const char *>(&value);
memcpy(buffer_ptr, value_data + offset, store_size);
buffer_ptr += store_size;
return true;
}
/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is
/// integral. Rather than computing a hash_code for each object and then
/// combining them, this (as an optimization) directly combines the integers.
template <typename InputIteratorT>
hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
const size_t seed = get_execution_seed();
char buffer[64], *buffer_ptr = buffer;
char *const buffer_end = std::end(buffer);
while (first != last && store_and_advance(buffer_ptr, buffer_end,
get_hashable_data(*first)))
++first;
if (first == last)
return hash_short(buffer, buffer_ptr - buffer, seed);
assert(buffer_ptr == buffer_end);
hash_state state = state.create(buffer, seed);
size_t length = 64;
while (first != last) {
// Fill up the buffer. We don't clear it, which re-mixes the last round
// when only a partial 64-byte chunk is left.
buffer_ptr = buffer;
while (first != last && store_and_advance(buffer_ptr, buffer_end,
get_hashable_data(*first)))
++first;
// Rotate the buffer if we did a partial fill in order to simulate doing
// a mix of the last 64-bytes. That is how the algorithm works when we
// have a contiguous byte sequence, and we want to emulate that here.
std::rotate(buffer, buffer_ptr, buffer_end);
// Mix this chunk into the current state.
state.mix(buffer);
length += buffer_ptr - buffer;
};
return state.finalize(length);
}
/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is integral
/// and when the input iterator is actually a pointer. Rather than computing
/// a hash_code for each object and then combining them, this (as an
/// optimization) directly combines the integers. Also, because the integers
/// are stored in contiguous memory, this routine avoids copying each value
/// and directly reads from the underlying memory.
template <typename ValueT>
typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
hash_combine_range_impl(ValueT *first, ValueT *last) {
const size_t seed = get_execution_seed();
const char *s_begin = reinterpret_cast<const char *>(first);
const char *s_end = reinterpret_cast<const char *>(last);
const size_t length = std::distance(s_begin, s_end);
if (length <= 64)
return hash_short(s_begin, length, seed);
const char *s_aligned_end = s_begin + (length & ~63);
hash_state state = state.create(s_begin, seed);
s_begin += 64;
while (s_begin != s_aligned_end) {
state.mix(s_begin);
s_begin += 64;
}
if (length & 63)
state.mix(s_end - 64);
return state.finalize(length);
}
} // namespace detail
} // namespace hashing
/// \brief Compute a hash_code for a sequence of values.
///
/// This hashes a sequence of values. It produces the same hash_code as
/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
/// and is significantly faster given pointers and types which can be hashed as
/// a sequence of bytes.
template <typename InputIteratorT>
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
}
// Implementation details for hash_combine.
namespace hashing {
namespace detail {
/// \brief Helper class to manage the recursive combining of hash_combine
/// arguments.
///
/// This class exists to manage the state and various calls involved in the
/// recursive combining of arguments used in hash_combine. It is particularly
/// useful at minimizing the code in the recursive calls to ease the pain
/// caused by a lack of variadic functions.
struct hash_combine_recursive_helper {
char buffer[64];
hash_state state;
const size_t seed;
public:
/// \brief Construct a recursive hash combining helper.
///
/// This sets up the state for a recursive hash combine, including getting
/// the seed and buffer setup.
hash_combine_recursive_helper()
: seed(get_execution_seed()) {}
/// \brief Combine one chunk of data into the current in-flight hash.
///
/// This merges one chunk of data into the hash. First it tries to buffer
/// the data. If the buffer is full, it hashes the buffer into its
/// hash_state, empties it, and then merges the new chunk in. This also
/// handles cases where the data straddles the end of the buffer.
template <typename T>
char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
if (!store_and_advance(buffer_ptr, buffer_end, data)) {
// Check for skew which prevents the buffer from being packed, and do
// a partial store into the buffer to fill it. This is only a concern
// with the variadic combine because that formation can have varying
// argument types.
size_t partial_store_size = buffer_end - buffer_ptr;
memcpy(buffer_ptr, &data, partial_store_size);
// If the store fails, our buffer is full and ready to hash. We have to
// either initialize the hash state (on the first full buffer) or mix
// this buffer into the existing hash state. Length tracks the *hashed*
// length, not the buffered length.
if (length == 0) {
state = state.create(buffer, seed);
length = 64;
} else {
// Mix this chunk into the current state and bump length up by 64.
state.mix(buffer);
length += 64;
}
// Reset the buffer_ptr to the head of the buffer for the next chunk of
// data.
buffer_ptr = buffer;
// Try again to store into the buffer -- this cannot fail as we only
// store types smaller than the buffer.
if (!store_and_advance(buffer_ptr, buffer_end, data,
partial_store_size))
abort();
}
return buffer_ptr;
}
/// \brief Recursive, variadic combining method.
///
/// This function recurses through each argument, combining that argument
/// into a single hash.
template <typename T, typename ...Ts>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T &arg, const Ts &...args) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
// Recurse to the next argument.
return combine(length, buffer_ptr, buffer_end, args...);
}
/// \brief Base case for recursive, variadic combining.
///
/// The base case when combining arguments recursively is reached when all
/// arguments have been handled. It flushes the remaining buffer and
/// constructs a hash_code.
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
// Check whether the entire set of values fit in the buffer. If so, we'll
// use the optimized short hashing routine and skip state entirely.
if (length == 0)
return hash_short(buffer, buffer_ptr - buffer, seed);
// Mix the final buffer, rotating it if we did a partial fill in order to
// simulate doing a mix of the last 64-bytes. That is how the algorithm
// works when we have a contiguous byte sequence, and we want to emulate
// that here.
std::rotate(buffer, buffer_ptr, buffer_end);
// Mix this chunk into the current state.
state.mix(buffer);
length += buffer_ptr - buffer;
return state.finalize(length);
}
};
} // namespace detail
} // namespace hashing
/// \brief Combine values into a single hash_code.
///
/// This routine accepts a varying number of arguments of any type. It will
/// attempt to combine them into a single hash_code. For user-defined types it
/// attempts to call a \see hash_value overload (via ADL) for the type. For
/// integer and pointer types it directly combines their data into the
/// resulting hash_code.
///
/// The result is suitable for returning from a user's hash_value
/// *implementation* for their user-defined type. Consumers of a type should
/// *not* call this routine, they should instead call 'hash_value'.
template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
// Recursively hash each argument using a helper class.
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
}
// Implementation details for implementations of hash_value overloads provided
// here.
namespace hashing {
namespace detail {
/// \brief Helper to hash the value of a single integer.
///
/// Overloads for smaller integer types are not provided to ensure consistent
/// behavior in the presence of integral promotions. Essentially,
/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
inline hash_code hash_integer_value(uint64_t value) {
// Similar to hash_4to8_bytes but using a seed instead of length.
const uint64_t seed = get_execution_seed();
const char *s = reinterpret_cast<const char *>(&value);
const uint64_t a = fetch32(s);
return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
}
} // namespace detail
} // namespace hashing
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value) {
return ::llvm::hashing::detail::hash_integer_value(value);
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T> hash_code hash_value(const T *ptr) {
return ::llvm::hashing::detail::hash_integer_value(
reinterpret_cast<uintptr_t>(ptr));
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg) {
return hash_combine(arg.first, arg.second);
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg) {
return hash_combine_range(arg.begin(), arg.end());
}
} // namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/SmallPtrSet.h | //===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallPtrSet class. See the doxygen comment for
// SmallPtrSetImplBase for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLPTRSET_H
#define LLVM_ADT_SMALLPTRSET_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <utility>
namespace llvm {
class SmallPtrSetIteratorImpl;
/// SmallPtrSetImplBase - This is the common code shared among all the
/// SmallPtrSet<>'s, which is almost everything. SmallPtrSet has two modes, one
/// for small and one for large sets.
///
/// Small sets use an array of pointers allocated in the SmallPtrSet object,
/// which is treated as a simple array of pointers. When a pointer is added to
/// the set, the array is scanned to see if the element already exists, if not
/// the element is 'pushed back' onto the array. If we run out of space in the
/// array, we grow into the 'large set' case. SmallSet should be used when the
/// sets are often small. In this case, no memory allocation is used, and only
/// light-weight and cache-efficient scanning is used.
///
/// Large sets use a classic exponentially-probed hash table. Empty buckets are
/// represented with an illegal pointer value (-1) to allow null pointers to be
/// inserted. Tombstones are represented with another illegal pointer value
/// (-2), to allow deletion. The hash table is resized when the table is 3/4 or
/// more. When this happens, the table is doubled in size.
///
class SmallPtrSetImplBase {
friend class SmallPtrSetIteratorImpl;
protected:
/// SmallArray - Points to a fixed size set of buckets, used in 'small mode'.
const void **SmallArray;
/// CurArray - This is the current set of buckets. If equal to SmallArray,
/// then the set is in 'small mode'.
const void **CurArray;
/// CurArraySize - The allocated size of CurArray, always a power of two.
unsigned CurArraySize;
/// Number of elements in CurArray that contain a value or are a tombstone.
/// If small, all these elements are at the beginning of CurArray and the rest
/// is uninitialized.
unsigned NumNonEmpty;
/// Number of tombstones in CurArray.
unsigned NumTombstones;
// Helpers to copy and move construct a SmallPtrSet.
SmallPtrSetImplBase(const void **SmallStorage, const SmallPtrSetImplBase &that);
SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize,
SmallPtrSetImplBase &&that);
explicit SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize)
: SmallArray(SmallStorage), CurArray(SmallStorage),
CurArraySize(SmallSize), NumNonEmpty(0), NumTombstones(0) {
assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
"Initial size must be a power of two!");
}
~SmallPtrSetImplBase();
public:
typedef unsigned size_type;
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return size() == 0; }
size_type size() const { return NumNonEmpty - NumTombstones; }
void clear() {
// If the capacity of the array is huge, and the # elements used is small,
// shrink the array.
if (!isSmall()) {
if (size() * 4 < CurArraySize && CurArraySize > 32)
return shrink_and_clear();
// Fill the array with empty markers.
memset(CurArray, -1, CurArraySize * sizeof(void *));
}
NumNonEmpty = 0;
NumTombstones = 0;
}
protected:
static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
static void *getEmptyMarker() {
// Note that -1 is chosen to make clear() efficiently implementable with
// memset and because it's not a valid pointer value.
return reinterpret_cast<void*>(-1);
}
const void **EndPointer() const {
return isSmall() ? CurArray + NumNonEmpty : CurArray + CurArraySize;
}
/// insert_imp - This returns true if the pointer was new to the set, false if
/// it was already in the set. This is hidden from the client so that the
/// derived class can check that the right type of pointer is passed in.
std::pair<const void *const *, bool> insert_imp(const void *Ptr) {
if (isSmall()) {
// Check to see if it is already in the set.
const void **LastTombstone = nullptr;
for (const void **APtr = SmallArray, **E = SmallArray + NumNonEmpty;
APtr != E; ++APtr) {
const void *Value = *APtr;
if (Value == Ptr)
return std::make_pair(APtr, false);
if (Value == getTombstoneMarker())
LastTombstone = APtr;
}
// Did we find any tombstone marker?
if (LastTombstone != nullptr) {
*LastTombstone = Ptr;
--NumTombstones;
return std::make_pair(LastTombstone, true);
}
// Nope, there isn't. If we stay small, just 'pushback' now.
if (NumNonEmpty < CurArraySize) {
SmallArray[NumNonEmpty++] = Ptr;
return std::make_pair(SmallArray + (NumNonEmpty - 1), true);
}
// Otherwise, hit the big set case, which will call grow.
}
return insert_imp_big(Ptr);
}
/// erase_imp - If the set contains the specified pointer, remove it and
/// return true, otherwise return false. This is hidden from the client so
/// that the derived class can check that the right type of pointer is passed
/// in.
bool erase_imp(const void * Ptr);
bool count_imp(const void * Ptr) const {
if (isSmall()) {
// Linear search for the item.
for (const void *const *APtr = SmallArray,
*const *E = SmallArray + NumNonEmpty; APtr != E; ++APtr)
if (*APtr == Ptr)
return true;
return false;
}
// Big set case.
return *FindBucketFor(Ptr) == Ptr;
}
private:
bool isSmall() const { return CurArray == SmallArray; }
std::pair<const void *const *, bool> insert_imp_big(const void *Ptr);
const void * const *FindBucketFor(const void *Ptr) const;
void shrink_and_clear();
/// Grow - Allocate a larger backing store for the buckets and move it over.
void Grow(unsigned NewSize);
void operator=(const SmallPtrSetImplBase &RHS) = delete;
protected:
/// swap - Swaps the elements of two sets.
/// Note: This method assumes that both sets have the same small size.
void swap(SmallPtrSetImplBase &RHS);
void CopyFrom(const SmallPtrSetImplBase &RHS);
void MoveFrom(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
private:
/// Code shared by MoveFrom() and move constructor.
void MoveHelper(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
/// Code shared by CopyFrom() and copy constructor.
void CopyHelper(const SmallPtrSetImplBase &RHS);
};
/// SmallPtrSetIteratorImpl - This is the common base class shared between all
/// instances of SmallPtrSetIterator.
class SmallPtrSetIteratorImpl {
protected:
const void *const *Bucket;
const void *const *End;
public:
explicit SmallPtrSetIteratorImpl(const void *const *BP, const void*const *E)
: Bucket(BP), End(E) {
AdvanceIfNotValid();
}
bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket == RHS.Bucket;
}
bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket != RHS.Bucket;
}
protected:
/// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
/// that is. This is guaranteed to stop because the end() bucket is marked
/// valid.
void AdvanceIfNotValid() {
assert(Bucket <= End);
while (Bucket != End &&
(*Bucket == SmallPtrSetImplBase::getEmptyMarker() ||
*Bucket == SmallPtrSetImplBase::getTombstoneMarker()))
++Bucket;
}
};
/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
template<typename PtrTy>
class SmallPtrSetIterator : public SmallPtrSetIteratorImpl {
typedef PointerLikeTypeTraits<PtrTy> PtrTraits;
public:
typedef PtrTy value_type;
typedef PtrTy reference;
typedef PtrTy pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
explicit SmallPtrSetIterator(const void *const *BP, const void *const *E)
: SmallPtrSetIteratorImpl(BP, E) {}
// Most methods provided by baseclass.
const PtrTy operator*() const {
assert(Bucket < End);
return PtrTraits::getFromVoidPointer(const_cast<void*>(*Bucket));
}
inline SmallPtrSetIterator& operator++() { // Preincrement
++Bucket;
AdvanceIfNotValid();
return *this;
}
SmallPtrSetIterator operator++(int) { // Postincrement
SmallPtrSetIterator tmp = *this; ++*this; return tmp;
}
};
/// RoundUpToPowerOfTwo - This is a helper template that rounds N up to the next
/// power of two (which means N itself if N is already a power of two).
template<unsigned N>
struct RoundUpToPowerOfTwo;
/// RoundUpToPowerOfTwoH - If N is not a power of two, increase it. This is a
/// helper template used to implement RoundUpToPowerOfTwo.
template<unsigned N, bool isPowerTwo>
struct RoundUpToPowerOfTwoH {
enum { Val = N };
};
template<unsigned N>
struct RoundUpToPowerOfTwoH<N, false> {
enum {
// We could just use NextVal = N+1, but this converges faster. N|(N-1) sets
// the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
Val = RoundUpToPowerOfTwo<(N|(N-1)) + 1>::Val
};
};
template<unsigned N>
struct RoundUpToPowerOfTwo {
enum { Val = RoundUpToPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
};
/// \brief A templated base class for \c SmallPtrSet which provides the
/// typesafe interface that is common across all small sizes.
///
/// This is particularly useful for passing around between interface boundaries
/// to avoid encoding a particular small size in the interface boundary.
template <typename PtrType>
class SmallPtrSetImpl : public SmallPtrSetImplBase {
typedef PointerLikeTypeTraits<PtrType> PtrTraits;
SmallPtrSetImpl(const SmallPtrSetImpl&) = delete;
protected:
// Constructors that forward to the base.
SmallPtrSetImpl(const void **SmallStorage, const SmallPtrSetImpl &that)
: SmallPtrSetImplBase(SmallStorage, that) {}
SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize,
SmallPtrSetImpl &&that)
: SmallPtrSetImplBase(SmallStorage, SmallSize, std::move(that)) {}
explicit SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize)
: SmallPtrSetImplBase(SmallStorage, SmallSize) {}
public:
typedef SmallPtrSetIterator<PtrType> iterator;
typedef SmallPtrSetIterator<PtrType> const_iterator;
/// Inserts Ptr if and only if there is no element in the container equal to
/// Ptr. The bool component of the returned pair is true if and only if the
/// insertion takes place, and the iterator component of the pair points to
/// the element equal to Ptr.
std::pair<iterator, bool> insert(PtrType Ptr) {
auto p = insert_imp(PtrTraits::getAsVoidPointer(Ptr));
return std::make_pair(iterator(p.first, EndPointer()), p.second);
}
/// erase - If the set contains the specified pointer, remove it and return
/// true, otherwise return false.
bool erase(PtrType Ptr) {
return erase_imp(PtrTraits::getAsVoidPointer(Ptr));
}
/// count - Return 1 if the specified pointer is in the set, 0 otherwise.
size_type count(PtrType Ptr) const {
return count_imp(PtrTraits::getAsVoidPointer(Ptr)) ? 1 : 0;
}
template <typename IterT>
void insert(IterT I, IterT E) {
for (; I != E; ++I)
insert(*I);
}
inline iterator begin() const {
return iterator(CurArray, EndPointer());
}
inline iterator end() const {
const void *const *End = EndPointer();
return iterator(End, End);
}
};
/// SmallPtrSet - This class implements a set which is optimized for holding
/// SmallSize or less elements. This internally rounds up SmallSize to the next
/// power of two if it is not already a power of two. See the comments above
/// SmallPtrSetImplBase for details of the algorithm.
template<class PtrType, unsigned SmallSize>
class SmallPtrSet : public SmallPtrSetImpl<PtrType> {
typedef SmallPtrSetImpl<PtrType> BaseT;
// Make sure that SmallSize is a power of two, round up if not.
enum { SmallSizePowTwo = RoundUpToPowerOfTwo<SmallSize>::Val };
/// SmallStorage - Fixed size storage used in 'small mode'.
const void *SmallStorage[SmallSizePowTwo];
public:
SmallPtrSet() : BaseT(SmallStorage, SmallSizePowTwo) {}
SmallPtrSet(const SmallPtrSet &that) : BaseT(SmallStorage, that) {}
SmallPtrSet(SmallPtrSet &&that)
: BaseT(SmallStorage, SmallSizePowTwo, std::move(that)) {}
template<typename It>
SmallPtrSet(It I, It E) : BaseT(SmallStorage, SmallSizePowTwo) {
this->insert(I, E);
}
SmallPtrSet<PtrType, SmallSize> &
operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) {
if (&RHS != this)
this->CopyFrom(RHS);
return *this;
}
SmallPtrSet<PtrType, SmallSize>&
operator=(SmallPtrSet<PtrType, SmallSize> &&RHS) {
if (&RHS != this)
this->MoveFrom(SmallSizePowTwo, std::move(RHS));
return *this;
}
/// swap - Swaps the elements of two sets.
void swap(SmallPtrSet<PtrType, SmallSize> &RHS) {
SmallPtrSetImplBase::swap(RHS);
}
};
}
namespace std {
/// Implement std::swap in terms of SmallPtrSet swap.
template<class T, unsigned N>
inline void swap(llvm::SmallPtrSet<T, N> &LHS, llvm::SmallPtrSet<T, N> &RHS) {
LHS.swap(RHS);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/FoldingSet.h | //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a hash set that can be used to remove duplication of nodes
// in a graph. This code was originally created by Chris Lattner for use with
// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_FOLDINGSET_H
#define LLVM_ADT_FOLDINGSET_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
/// This folding set used for two purposes:
/// 1. Given information about a node we want to create, look up the unique
/// instance of the node in the set. If the node already exists, return
/// it, otherwise return the bucket it should be inserted into.
/// 2. Given a node that has already been created, remove it from the set.
///
/// This class is implemented as a single-link chained hash table, where the
/// "buckets" are actually the nodes themselves (the next pointer is in the
/// node). The last node points back to the bucket to simplify node removal.
///
/// Any node that is to be included in the folding set must be a subclass of
/// FoldingSetNode. The node class must also define a Profile method used to
/// establish the unique bits of data for the node. The Profile method is
/// passed a FoldingSetNodeID object which is used to gather the bits. Just
/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
/// NOTE: That the folding set does not own the nodes and it is the
/// responsibility of the user to dispose of the nodes.
///
/// Eg.
/// class MyNode : public FoldingSetNode {
/// private:
/// std::string Name;
/// unsigned Value;
/// public:
/// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
/// ...
/// void Profile(FoldingSetNodeID &ID) const {
/// ID.AddString(Name);
/// ID.AddInteger(Value);
/// }
/// ...
/// };
///
/// To define the folding set itself use the FoldingSet template;
///
/// Eg.
/// FoldingSet<MyNode> MyFoldingSet;
///
/// Four public methods are available to manipulate the folding set;
///
/// 1) If you have an existing node that you want add to the set but unsure
/// that the node might already exist then call;
///
/// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
///
/// If The result is equal to the input then the node has been inserted.
/// Otherwise, the result is the node existing in the folding set, and the
/// input can be discarded (use the result instead.)
///
/// 2) If you are ready to construct a node but want to check if it already
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
/// check;
///
/// FoldingSetNodeID ID;
/// ID.AddString(Name);
/// ID.AddInteger(Value);
/// void *InsertPoint;
///
/// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
///
/// If found then M with be non-NULL, else InsertPoint will point to where it
/// should be inserted using InsertNode.
///
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
/// node with FindNodeOrInsertPos;
///
/// InsertNode(N, InsertPoint);
///
/// 4) Finally, if you want to remove a node from the folding set call;
///
/// bool WasRemoved = RemoveNode(N);
///
/// The result indicates whether the node existed in the folding set.
class FoldingSetNodeID;
//===----------------------------------------------------------------------===//
/// FoldingSetImpl - Implements the folding set functionality. The main
/// structure is an array of buckets. Each bucket is indexed by the hash of
/// the nodes it contains. The bucket itself points to the nodes contained
/// in the bucket via a singly linked list. The last node in the list points
/// back to the bucket to facilitate node removal.
///
class FoldingSetImpl {
virtual void anchor(); // Out of line virtual method.
protected:
/// Buckets - Array of bucket chains.
///
void **Buckets;
/// NumBuckets - Length of the Buckets array. Always a power of 2.
///
unsigned NumBuckets;
/// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
/// is greater than twice the number of buckets.
unsigned NumNodes;
~FoldingSetImpl();
explicit FoldingSetImpl(unsigned Log2InitSize = 6);
public:
//===--------------------------------------------------------------------===//
/// Node - This class is used to maintain the singly linked bucket list in
/// a folding set.
///
class Node {
private:
// NextInFoldingSetBucket - next link in the bucket list.
void *NextInFoldingSetBucket;
public:
Node() : NextInFoldingSetBucket(nullptr) {}
// Accessors
void *getNextInBucket() const { return NextInFoldingSetBucket; }
void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
};
/// clear - Remove all nodes from the folding set.
void clear();
/// RemoveNode - Remove a node from the folding set, returning true if one
/// was removed or false if the node was not in the folding set.
bool RemoveNode(Node *N);
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and return
/// it instead.
Node *GetOrInsertNode(Node *N);
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set. InsertPos must be obtained from
/// FindNodeOrInsertPos.
void InsertNode(Node *N, void *InsertPos);
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set.
void InsertNode(Node *N) {
Node *Inserted = GetOrInsertNode(N);
(void)Inserted;
assert(Inserted == N && "Node already inserted!");
}
/// size - Returns the number of nodes in the folding set.
unsigned size() const { return NumNodes; }
/// empty - Returns true if there are no nodes in the folding set.
bool empty() const { return NumNodes == 0; }
private:
/// GrowHashTable - Double the size of the hash table and rehash everything.
///
void GrowHashTable();
protected:
/// GetNodeProfile - Instantiations of the FoldingSet template implement
/// this function to gather data bits for the given node.
virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
/// NodeEquals - Instantiations of the FoldingSet template implement
/// this function to compare the given node with the given ID.
virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) const=0;
/// ComputeNodeHash - Instantiations of the FoldingSet template implement
/// this function to compute a hash value for the given node.
virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
};
//===----------------------------------------------------------------------===//
template<typename T> struct FoldingSetTrait;
/// DefaultFoldingSetTrait - This class provides default implementations
/// for FoldingSetTrait implementations.
///
template<typename T> struct DefaultFoldingSetTrait {
static void Profile(const T &X, FoldingSetNodeID &ID) {
X.Profile(ID);
}
static void Profile(T &X, FoldingSetNodeID &ID) {
X.Profile(ID);
}
// Equals - Test if the profile for X would match ID, using TempID
// to compute a temporary ID if necessary. The default implementation
// just calls Profile and does a regular comparison. Implementations
// can override this to provide more efficient implementations.
static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID);
// ComputeHash - Compute a hash value for X, using TempID to
// compute a temporary ID if necessary. The default implementation
// just calls Profile and does a regular hash computation.
// Implementations can override this to provide more efficient
// implementations.
static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
};
/// FoldingSetTrait - This trait class is used to define behavior of how
/// to "profile" (in the FoldingSet parlance) an object of a given type.
/// The default behavior is to invoke a 'Profile' method on an object, but
/// through template specialization the behavior can be tailored for specific
/// types. Combined with the FoldingSetNodeWrapper class, one can add objects
/// to FoldingSets that were not originally designed to have that behavior.
template<typename T> struct FoldingSetTrait
: public DefaultFoldingSetTrait<T> {};
template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
/// for ContextualFoldingSets.
template<typename T, typename Ctx>
struct DefaultContextualFoldingSetTrait {
static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
X.Profile(ID, Context);
}
static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID, Ctx Context);
static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
Ctx Context);
};
/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
/// ContextualFoldingSets.
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
: public DefaultContextualFoldingSetTrait<T, Ctx> {};
//===--------------------------------------------------------------------===//
/// FoldingSetNodeIDRef - This class describes a reference to an interned
/// FoldingSetNodeID, which can be a useful to store node id data rather
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
/// is often much larger than necessary, and the possibility of heap
/// allocation means it requires a non-trivial destructor call.
class FoldingSetNodeIDRef {
const unsigned *Data;
size_t Size;
public:
FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
/// used to lookup the node in the FoldingSetImpl.
unsigned ComputeHash() const;
bool operator==(FoldingSetNodeIDRef) const;
bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool operator<(FoldingSetNodeIDRef) const;
const unsigned *getData() const { return Data; }
size_t getSize() const { return Size; }
};
//===--------------------------------------------------------------------===//
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
/// a node. When all the bits are gathered this class is used to produce a
/// hash value for the node.
///
class FoldingSetNodeID {
/// Bits - Vector of all the data bits that make the node unique.
/// Use a SmallVector to avoid a heap allocation in the common case.
SmallVector<unsigned, 32> Bits;
public:
FoldingSetNodeID() {}
FoldingSetNodeID(FoldingSetNodeIDRef Ref)
: Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
/// Add* - Add various data types to Bit data.
///
void AddPointer(const void *Ptr);
void AddInteger(signed I);
void AddInteger(unsigned I);
void AddInteger(long I);
void AddInteger(unsigned long I);
void AddInteger(long long I);
void AddInteger(unsigned long long I);
void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
void AddString(StringRef String);
void AddNodeID(const FoldingSetNodeID &ID);
template <typename T>
inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
/// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
/// object to be used to compute a new profile.
inline void clear() { Bits.clear(); }
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
/// to lookup the node in the FoldingSetImpl.
unsigned ComputeHash() const;
/// operator== - Used to compare two nodes to each other.
///
bool operator==(const FoldingSetNodeID &RHS) const;
bool operator==(const FoldingSetNodeIDRef RHS) const;
bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool operator<(const FoldingSetNodeID &RHS) const;
bool operator<(const FoldingSetNodeIDRef RHS) const;
/// Intern - Copy this node's data to a memory region allocated from the
/// given allocator and return a FoldingSetNodeIDRef describing the
/// interned data.
FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
};
// Convenience type to hide the implementation of the folding set.
typedef FoldingSetImpl::Node FoldingSetNode;
template<class T> class FoldingSetIterator;
template<class T> class FoldingSetBucketIterator;
// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
// require the definition of FoldingSetNodeID.
template<typename T>
inline bool
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
unsigned /*IDHash*/,
FoldingSetNodeID &TempID) {
FoldingSetTrait<T>::Profile(X, TempID);
return TempID == ID;
}
template<typename T>
inline unsigned
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
FoldingSetTrait<T>::Profile(X, TempID);
return TempID.ComputeHash();
}
template<typename T, typename Ctx>
inline bool
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
const FoldingSetNodeID &ID,
unsigned /*IDHash*/,
FoldingSetNodeID &TempID,
Ctx Context) {
ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
return TempID == ID;
}
template<typename T, typename Ctx>
inline unsigned
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
FoldingSetNodeID &TempID,
Ctx Context) {
ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
return TempID.ComputeHash();
}
//===----------------------------------------------------------------------===//
/// FoldingSet - This template class is used to instantiate a specialized
/// implementation of the folding set to the node class T. T must be a
/// subclass of FoldingSetNode and implement a Profile function.
///
template <class T> class FoldingSet final : public FoldingSetImpl {
private:
/// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
/// way to convert nodes into a unique specifier.
void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
T *TN = static_cast<T *>(N);
FoldingSetTrait<T>::Profile(*TN, ID);
}
/// NodeEquals - Instantiations may optionally provide a way to compare a
/// node with a specified ID.
bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) const override {
T *TN = static_cast<T *>(N);
return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
}
/// ComputeNodeHash - Instantiations may optionally provide a way to compute a
/// hash value directly from a node.
unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
T *TN = static_cast<T *>(N);
return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
}
public:
explicit FoldingSet(unsigned Log2InitSize = 6)
: FoldingSetImpl(Log2InitSize)
{}
typedef FoldingSetIterator<T> iterator;
iterator begin() { return iterator(Buckets); }
iterator end() { return iterator(Buckets+NumBuckets); }
typedef FoldingSetIterator<const T> const_iterator;
const_iterator begin() const { return const_iterator(Buckets); }
const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
typedef FoldingSetBucketIterator<T> bucket_iterator;
bucket_iterator bucket_begin(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
}
bucket_iterator bucket_end(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and
/// return it instead.
T *GetOrInsertNode(Node *N) {
return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
}
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
}
};
//===----------------------------------------------------------------------===//
/// ContextualFoldingSet - This template class is a further refinement
/// of FoldingSet which provides a context argument when calling
/// Profile on its nodes. Currently, that argument is fixed at
/// initialization time.
///
/// T must be a subclass of FoldingSetNode and implement a Profile
/// function with signature
/// void Profile(llvm::FoldingSetNodeID &, Ctx);
template <class T, class Ctx>
class ContextualFoldingSet final : public FoldingSetImpl {
// Unfortunately, this can't derive from FoldingSet<T> because the
// construction vtable for FoldingSet<T> requires
// FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
// requires a single-argument T::Profile().
private:
Ctx Context;
/// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
/// way to convert nodes into a unique specifier.
void GetNodeProfile(FoldingSetImpl::Node *N,
FoldingSetNodeID &ID) const override {
T *TN = static_cast<T *>(N);
ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
}
bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) const override {
T *TN = static_cast<T *>(N);
return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
Context);
}
unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
FoldingSetNodeID &TempID) const override {
T *TN = static_cast<T *>(N);
return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
}
public:
explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
: FoldingSetImpl(Log2InitSize), Context(Context)
{}
Ctx getContext() const { return Context; }
typedef FoldingSetIterator<T> iterator;
iterator begin() { return iterator(Buckets); }
iterator end() { return iterator(Buckets+NumBuckets); }
typedef FoldingSetIterator<const T> const_iterator;
const_iterator begin() const { return const_iterator(Buckets); }
const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
typedef FoldingSetBucketIterator<T> bucket_iterator;
bucket_iterator bucket_begin(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
}
bucket_iterator bucket_end(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N'
/// and return it instead.
T *GetOrInsertNode(Node *N) {
return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
}
/// FindNodeOrInsertPos - Look up the node specified by ID. If it
/// exists, return it. If not, return the insertion token that will
/// make insertion faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetVector - This template class combines a FoldingSet and a vector
/// to provide the interface of FoldingSet but with deterministic iteration
/// order based on the insertion order. T must be a subclass of FoldingSetNode
/// and implement a Profile function.
template <class T, class VectorT = SmallVector<T*, 8> >
class FoldingSetVector {
FoldingSet<T> Set;
VectorT Vector;
public:
explicit FoldingSetVector(unsigned Log2InitSize = 6)
: Set(Log2InitSize) {
}
typedef pointee_iterator<typename VectorT::iterator> iterator;
iterator begin() { return Vector.begin(); }
iterator end() { return Vector.end(); }
typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
const_iterator begin() const { return Vector.begin(); }
const_iterator end() const { return Vector.end(); }
/// clear - Remove all nodes from the folding set.
void clear() { Set.clear(); Vector.clear(); }
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return Set.FindNodeOrInsertPos(ID, InsertPos);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and
/// return it instead.
T *GetOrInsertNode(T *N) {
T *Result = Set.GetOrInsertNode(N);
if (Result == N) Vector.push_back(N);
return Result;
}
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set. InsertPos must be obtained from
/// FindNodeOrInsertPos.
void InsertNode(T *N, void *InsertPos) {
Set.InsertNode(N, InsertPos);
Vector.push_back(N);
}
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set.
void InsertNode(T *N) {
Set.InsertNode(N);
Vector.push_back(N);
}
/// size - Returns the number of nodes in the folding set.
unsigned size() const { return Set.size(); }
/// empty - Returns true if there are no nodes in the folding set.
bool empty() const { return Set.empty(); }
};
//===----------------------------------------------------------------------===//
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
/// folding sets, which knows how to walk the folding set hash table.
class FoldingSetIteratorImpl {
protected:
FoldingSetNode *NodePtr;
FoldingSetIteratorImpl(void **Bucket);
void advance();
public:
bool operator==(const FoldingSetIteratorImpl &RHS) const {
return NodePtr == RHS.NodePtr;
}
bool operator!=(const FoldingSetIteratorImpl &RHS) const {
return NodePtr != RHS.NodePtr;
}
};
template<class T>
class FoldingSetIterator : public FoldingSetIteratorImpl {
public:
explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
T &operator*() const {
return *static_cast<T*>(NodePtr);
}
T *operator->() const {
return static_cast<T*>(NodePtr);
}
inline FoldingSetIterator &operator++() { // Preincrement
advance();
return *this;
}
FoldingSetIterator operator++(int) { // Postincrement
FoldingSetIterator tmp = *this; ++*this; return tmp;
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
/// shared by all folding sets, which knows how to walk a particular bucket
/// of a folding set hash table.
class FoldingSetBucketIteratorImpl {
protected:
void *Ptr;
explicit FoldingSetBucketIteratorImpl(void **Bucket);
FoldingSetBucketIteratorImpl(void **Bucket, bool)
: Ptr(Bucket) {}
void advance() {
void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
Ptr = reinterpret_cast<void*>(x);
}
public:
bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
return Ptr == RHS.Ptr;
}
bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
return Ptr != RHS.Ptr;
}
};
template<class T>
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
public:
explicit FoldingSetBucketIterator(void **Bucket) :
FoldingSetBucketIteratorImpl(Bucket) {}
FoldingSetBucketIterator(void **Bucket, bool) :
FoldingSetBucketIteratorImpl(Bucket, true) {}
T &operator*() const { return *static_cast<T*>(Ptr); }
T *operator->() const { return static_cast<T*>(Ptr); }
inline FoldingSetBucketIterator &operator++() { // Preincrement
advance();
return *this;
}
FoldingSetBucketIterator operator++(int) { // Postincrement
FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
/// types in an enclosing object so that they can be inserted into FoldingSets.
template <typename T>
class FoldingSetNodeWrapper : public FoldingSetNode {
T data;
public:
template <typename... Ts>
explicit FoldingSetNodeWrapper(Ts &&... Args)
: data(std::forward<Ts>(Args)...) {}
void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
T &getValue() { return data; }
const T &getValue() const { return data; }
operator T&() { return data; }
operator const T&() const { return data; }
};
//===----------------------------------------------------------------------===//
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
/// a FoldingSetNodeID value rather than requiring the node to recompute it
/// each time it is needed. This trades space for speed (which can be
/// significant if the ID is long), and it also permits nodes to drop
/// information that would otherwise only be required for recomputing an ID.
class FastFoldingSetNode : public FoldingSetNode {
FoldingSetNodeID FastID;
protected:
explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
public:
void Profile(FoldingSetNodeID &ID) const {
ID.AddNodeID(FastID);
}
};
// //
///////////////////////////////////////////////////////////////////////////////
// Partial specializations of FoldingSetTrait.
template<typename T> struct FoldingSetTrait<T*> {
static inline void Profile(T *X, FoldingSetNodeID &ID) {
ID.AddPointer(X);
}
};
template <typename T1, typename T2>
struct FoldingSetTrait<std::pair<T1, T2>> {
static inline void Profile(const std::pair<T1, T2> &P,
llvm::FoldingSetNodeID &ID) {
ID.Add(P.first);
ID.Add(P.second);
}
};
} // End of namespace llvm.
#endif
|
0 | repos/DirectXShaderCompiler/include/llvm | repos/DirectXShaderCompiler/include/llvm/ADT/APSInt.h | //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the APSInt class, which is a simple class that
// represents an arbitrary sized integer that knows its signedness.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H
#include "llvm/ADT/APInt.h"
namespace llvm {
class APSInt : public APInt {
bool IsUnsigned;
public:
/// Default constructor that creates an uninitialized APInt.
explicit APSInt() : IsUnsigned(false) {}
/// APSInt ctor - Create an APSInt with the specified width, default to
/// unsigned.
explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
: APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
explicit APSInt(APInt I, bool isUnsigned = true)
: APInt(std::move(I)), IsUnsigned(isUnsigned) {}
/// Construct an APSInt from a string representation.
///
/// This constructor interprets the string \p Str using the radix of 10.
/// The interpretation stops at the end of the string. The bit width of the
/// constructed APSInt is determined automatically.
///
/// \param Str the string to be interpreted.
explicit APSInt(StringRef Str);
APSInt &operator=(APInt RHS) {
// Retain our current sign.
APInt::operator=(std::move(RHS));
return *this;
}
APSInt &operator=(uint64_t RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
// Query sign information.
bool isSigned() const { return !IsUnsigned; }
bool isUnsigned() const { return IsUnsigned; }
void setIsUnsigned(bool Val) { IsUnsigned = Val; }
void setIsSigned(bool Val) { IsUnsigned = !Val; }
/// toString - Append this APSInt to the specified SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
APInt::toString(Str, Radix, isSigned());
}
/// toString - Converts an APInt to a std::string. This is an inefficient
/// method; you should prefer passing in a SmallString instead.
std::string toString(unsigned Radix) const {
return APInt::toString(Radix, isSigned());
}
using APInt::toString;
/// \brief Get the correctly-extended \c int64_t value.
int64_t getExtValue() const {
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
return isSigned() ? getSExtValue() : getZExtValue();
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(uint32_t width) const {
return APSInt(APInt::trunc(width), IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extend(uint32_t width) const {
if (IsUnsigned)
return APSInt(zext(width), IsUnsigned);
else
return APSInt(sext(width), IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extOrTrunc(uint32_t width) const {
if (IsUnsigned)
return APSInt(zextOrTrunc(width), IsUnsigned);
else
return APSInt(sextOrTrunc(width), IsUnsigned);
}
const APSInt &operator%=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = urem(RHS);
else
*this = srem(RHS);
return *this;
}
const APSInt &operator/=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = udiv(RHS);
else
*this = sdiv(RHS);
return *this;
}
APSInt operator%(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
}
APSInt operator/(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
}
APSInt operator>>(unsigned Amt) const {
return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
}
APSInt& operator>>=(unsigned Amt) {
*this = *this >> Amt;
return *this;
}
inline bool operator<(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ult(RHS) : slt(RHS);
}
inline bool operator>(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ugt(RHS) : sgt(RHS);
}
inline bool operator<=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ule(RHS) : sle(RHS);
}
inline bool operator>=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? uge(RHS) : sge(RHS);
}
inline bool operator==(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return eq(RHS);
}
inline bool operator!=(const APSInt& RHS) const {
return !((*this) == RHS);
}
bool operator==(int64_t RHS) const {
return compareValues(*this, get(RHS)) == 0;
}
bool operator!=(int64_t RHS) const {
return compareValues(*this, get(RHS)) != 0;
}
bool operator<=(int64_t RHS) const {
return compareValues(*this, get(RHS)) <= 0;
}
bool operator>=(int64_t RHS) const {
return compareValues(*this, get(RHS)) >= 0;
}
bool operator<(int64_t RHS) const {
return compareValues(*this, get(RHS)) < 0;
}
bool operator>(int64_t RHS) const {
return compareValues(*this, get(RHS)) > 0;
}
// The remaining operators just wrap the logic of APInt, but retain the
// signedness information.
APSInt operator<<(unsigned Bits) const {
return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
}
APSInt& operator<<=(unsigned Amt) {
*this = *this << Amt;
return *this;
}
APSInt& operator++() {
++(static_cast<APInt&>(*this));
return *this;
}
APSInt& operator--() {
--(static_cast<APInt&>(*this));
return *this;
}
APSInt operator++(int) {
return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator--(int) {
return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator-() const {
return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
}
APSInt& operator+=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) += RHS;
return *this;
}
APSInt& operator-=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) -= RHS;
return *this;
}
APSInt& operator*=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) *= RHS;
return *this;
}
APSInt& operator&=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) &= RHS;
return *this;
}
APSInt& operator|=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) |= RHS;
return *this;
}
APSInt& operator^=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) ^= RHS;
return *this;
}
APSInt operator&(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APSInt& RHS) const {
return this->operator&(RHS);
}
APSInt operator|(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APSInt& RHS) const {
return this->operator|(RHS);
}
APSInt operator^(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APSInt& RHS) const {
return this->operator^(RHS);
}
APSInt operator*(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
}
APSInt operator+(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
}
APSInt operator-(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
}
APSInt operator~() const {
return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
}
/// getMaxValue - Return the APSInt representing the maximum integer value
/// with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMaxValue(numBits)
: APInt::getSignedMaxValue(numBits), Unsigned);
}
/// getMinValue - Return the APSInt representing the minimum integer value
/// with the given bit width and signedness.
static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMinValue(numBits)
: APInt::getSignedMinValue(numBits), Unsigned);
}
/// \brief Determine if two APSInts have the same value, zero- or
/// sign-extending as needed.
static bool isSameValue(const APSInt &I1, const APSInt &I2) {
return !compareValues(I1, I2);
}
/// \brief Compare underlying values of two numbers.
static int compareValues(const APSInt &I1, const APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1 == I2 ? 0 : I1 > I2 ? 1 : -1;
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return compareValues(I1, I2.extend(I1.getBitWidth()));
else if (I2.getBitWidth() > I1.getBitWidth())
return compareValues(I1.extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Check for negative values and do an
// unsigned compare if both are positive.
if (I1.isSigned()) {
assert(!I2.isSigned() && "Expected signed mismatch");
if (I1.isNegative())
return -1;
} else {
assert(I2.isSigned() && "Expected signed mismatch");
if (I2.isNegative())
return 1;
}
return I1.eq(I2) ? 0 : I1.ugt(I2) ? 1 : -1;
}
static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }
/// Profile - Used to insert APSInt objects, or objects that contain APSInt
/// objects, into FoldingSets.
void Profile(FoldingSetNodeID& ID) const;
};
inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }
inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
I.print(OS, I.isSigned());
return OS;
}
} // end namespace llvm
#endif
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.