Unnamed: 0
int64
0
0
repo_id
stringlengths
5
186
file_path
stringlengths
15
223
content
stringlengths
1
32.8M
0
repos/zig-gorillas/lib
repos/zig-gorillas/lib/nanovg/LICENSE.txt
Copyright (c) 2013 Mikko Mononen [email protected] This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution.
0
repos/zig-gorillas/lib
repos/zig-gorillas/lib/nanovg/README.md
*This project is not actively maintained.* NanoVG ========== NanoVG is small antialiased vector graphics rendering library for OpenGL. It has lean API modeled after HTML5 canvas API. It is aimed to be a practical and fun toolset for building scalable user interfaces and visualizations. ## Screenshot ![screenshot of some text rendered witht the sample program](/example/screenshot-01.png?raw=true) Usage ===== The NanoVG API is modeled loosely on HTML5 canvas API. If you know canvas, you're up to speed with NanoVG in no time. ## Creating drawing context The drawing context is created using platform specific constructor function. If you're using the OpenGL 2.0 back-end the context is created as follows: ```C #define NANOVG_GL2_IMPLEMENTATION // Use GL2 implementation. #include "nanovg_gl.h" ... struct NVGcontext* vg = nvgCreateGL2(NVG_ANTIALIAS | NVG_STENCIL_STROKES); ``` The first parameter defines flags for creating the renderer. - `NVG_ANTIALIAS` means that the renderer adjusts the geometry to include anti-aliasing. If you're using MSAA, you can omit this flags. - `NVG_STENCIL_STROKES` means that the render uses better quality rendering for (overlapping) strokes. The quality is mostly visible on wider strokes. If you want speed, you can omit this flag. Currently there is an OpenGL back-end for NanoVG: [nanovg_gl.h](/src/nanovg_gl.h) for OpenGL 2.0, OpenGL ES 2.0, OpenGL 3.2 core profile and OpenGL ES 3. The implementation can be chosen using a define as in above example. See the header file and examples for further info. *NOTE:* The render target you're rendering to must have stencil buffer. ## Drawing shapes with NanoVG Drawing a simple shape using NanoVG consists of four steps: 1) begin a new shape, 2) define the path to draw, 3) set fill or stroke, 4) and finally fill or stroke the path. ```C nvgBeginPath(vg); nvgRect(vg, 100,100, 120,30); nvgFillColor(vg, nvgRGBA(255,192,0,255)); nvgFill(vg); ``` Calling `nvgBeginPath()` will clear any existing paths and start drawing from blank slate. There are number of number of functions to define the path to draw, such as rectangle, rounded rectangle and ellipse, or you can use the common moveTo, lineTo, bezierTo and arcTo API to compose the paths step by step. ## Understanding Composite Paths Because of the way the rendering backend is build in NanoVG, drawing a composite path, that is path consisting from multiple paths defining holes and fills, is a bit more involved. NanoVG uses even-odd filling rule and by default the paths are wound in counter clockwise order. Keep that in mind when drawing using the low level draw API. In order to wind one of the predefined shapes as a hole, you should call `nvgPathWinding(vg, NVG_HOLE)`, or `nvgPathWinding(vg, NVG_CW)` _after_ defining the path. ``` C nvgBeginPath(vg); nvgRect(vg, 100,100, 120,30); nvgCircle(vg, 120,120, 5); nvgPathWinding(vg, NVG_HOLE); // Mark circle as a hole. nvgFillColor(vg, nvgRGBA(255,192,0,255)); nvgFill(vg); ``` ## Rendering is wrong, what to do? - make sure you have created NanoVG context using one of the `nvgCreatexxx()` calls - make sure you have initialised OpenGL with *stencil buffer* - make sure you have cleared stencil buffer - make sure all rendering calls happen between `nvgBeginFrame()` and `nvgEndFrame()` - to enable more checks for OpenGL errors, add `NVG_DEBUG` flag to `nvgCreatexxx()` - if the problem still persists, please report an issue! ## OpenGL state touched by the backend The OpenGL back-end touches following states: When textures are uploaded or updated, the following pixel store is set to defaults: `GL_UNPACK_ALIGNMENT`, `GL_UNPACK_ROW_LENGTH`, `GL_UNPACK_SKIP_PIXELS`, `GL_UNPACK_SKIP_ROWS`. Texture binding is also affected. Texture updates can happen when the user loads images, or when new font glyphs are added. Glyphs are added as needed between calls to `nvgBeginFrame()` and `nvgEndFrame()`. The data for the whole frame is buffered and flushed in `nvgEndFrame()`. The following code illustrates the OpenGL state touched by the rendering code: ```C glUseProgram(prog); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glFrontFace(GL_CCW); glEnable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glStencilMask(0xffffffff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilFunc(GL_ALWAYS, 0, 0xffffffff); glActiveTexture(GL_TEXTURE0); glBindBuffer(GL_UNIFORM_BUFFER, buf); glBindVertexArray(arr); glBindBuffer(GL_ARRAY_BUFFER, buf); glBindTexture(GL_TEXTURE_2D, tex); glUniformBlockBinding(... , GLNVG_FRAG_BINDING); ``` ## API Reference See the header file [nanovg.h](/src/nanovg.h) for API reference. ## Ports - [DX11 port](https://github.com/cmaughan/nanovg) by [Chris Maughan](https://github.com/cmaughan) - [Metal port](https://github.com/ollix/MetalNanoVG) by [Olli Wang](https://github.com/olliwang) - [bgfx port](https://github.com/bkaradzic/bgfx/tree/master/examples/20-nanovg) by [Branimir Karadžić](https://github.com/bkaradzic) ## Projects using NanoVG - [Processing API simulation by vinjn](https://github.com/vinjn/island/blob/master/examples/01-processing/sketch2d.h) - [NanoVG for .NET, C# P/Invoke binding](https://github.com/sbarisic/nanovg_dotnet) ## License The library is licensed under [zlib license](LICENSE.txt) Fonts used in examples: - Roboto licensed under [Apache license](http://www.apache.org/licenses/LICENSE-2.0) - Entypo licensed under CC BY-SA 4.0. - Noto Emoji licensed under [SIL Open Font License, Version 1.1](http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL) ## Discussions [NanoVG mailing list](https://groups.google.com/forum/#!forum/nanovg) ## Links Uses [stb_truetype](http://nothings.org) (or, optionally, [freetype](http://freetype.org)) for font rendering. Uses [stb_image](http://nothings.org) for image loading.
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/perf.c
#include "perf.h" #include <stdio.h> #include <string.h> #include <math.h> #ifdef NANOVG_GLEW # include <GL/glew.h> #endif #include <GLFW/glfw3.h> #include "nanovg.h" #ifdef _MSC_VER #define snprintf _snprintf #elif !defined(__MINGW32__) #include <iconv.h> #endif // timer query support #ifndef GL_ARB_timer_query #define GL_TIME_ELAPSED 0x88BF //typedef void (APIENTRY *pfnGLGETQUERYOBJECTUI64V)(GLuint id, GLenum pname, GLuint64* params); //pfnGLGETQUERYOBJECTUI64V glGetQueryObjectui64v = 0; #endif void initGPUTimer(GPUtimer* timer) { memset(timer, 0, sizeof(*timer)); /* timer->supported = glfwExtensionSupported("GL_ARB_timer_query"); if (timer->supported) { #ifndef GL_ARB_timer_query glGetQueryObjectui64v = (pfnGLGETQUERYOBJECTUI64V)glfwGetProcAddress("glGetQueryObjectui64v"); printf("glGetQueryObjectui64v=%p\n", glGetQueryObjectui64v); if (!glGetQueryObjectui64v) { timer->supported = GL_FALSE; return; } #endif glGenQueries(GPU_QUERY_COUNT, timer->queries); }*/ } void startGPUTimer(GPUtimer* timer) { if (!timer->supported) return; glBeginQuery(GL_TIME_ELAPSED, timer->queries[timer->cur % GPU_QUERY_COUNT] ); timer->cur++; } int stopGPUTimer(GPUtimer* timer, float* times, int maxTimes) { NVG_NOTUSED(times); NVG_NOTUSED(maxTimes); GLint available = 1; int n = 0; if (!timer->supported) return 0; glEndQuery(GL_TIME_ELAPSED); while (available && timer->ret <= timer->cur) { // check for results if there are any glGetQueryObjectiv(timer->queries[timer->ret % GPU_QUERY_COUNT], GL_QUERY_RESULT_AVAILABLE, &available); if (available) { /* GLuint64 timeElapsed = 0; glGetQueryObjectui64v(timer->queries[timer->ret % GPU_QUERY_COUNT], GL_QUERY_RESULT, &timeElapsed); timer->ret++; if (n < maxTimes) { times[n] = (float)((double)timeElapsed * 1e-9); n++; }*/ } } return n; } void initGraph(PerfGraph* fps, int style, const char* name) { memset(fps, 0, sizeof(PerfGraph)); fps->style = style; strncpy(fps->name, name, sizeof(fps->name)); fps->name[sizeof(fps->name)-1] = '\0'; } void updateGraph(PerfGraph* fps, float frameTime) { fps->head = (fps->head+1) % GRAPH_HISTORY_COUNT; fps->values[fps->head] = frameTime; } float getGraphAverage(PerfGraph* fps) { int i; float avg = 0; for (i = 0; i < GRAPH_HISTORY_COUNT; i++) { avg += fps->values[i]; } return avg / (float)GRAPH_HISTORY_COUNT; } void renderGraph(NVGcontext* vg, float x, float y, PerfGraph* fps) { int i; float avg, w, h; char str[64]; avg = getGraphAverage(fps); w = 200; h = 35; nvgBeginPath(vg); nvgRect(vg, x,y, w,h); nvgFillColor(vg, nvgRGBA(0,0,0,128)); nvgFill(vg); nvgBeginPath(vg); nvgMoveTo(vg, x, y+h); if (fps->style == GRAPH_RENDER_FPS) { for (i = 0; i < GRAPH_HISTORY_COUNT; i++) { float v = 1.0f / (0.00001f + fps->values[(fps->head+i) % GRAPH_HISTORY_COUNT]); float vx, vy; if (v > 80.0f) v = 80.0f; vx = x + ((float)i/(GRAPH_HISTORY_COUNT-1)) * w; vy = y + h - ((v / 80.0f) * h); nvgLineTo(vg, vx, vy); } } else if (fps->style == GRAPH_RENDER_PERCENT) { for (i = 0; i < GRAPH_HISTORY_COUNT; i++) { float v = fps->values[(fps->head+i) % GRAPH_HISTORY_COUNT] * 1.0f; float vx, vy; if (v > 100.0f) v = 100.0f; vx = x + ((float)i/(GRAPH_HISTORY_COUNT-1)) * w; vy = y + h - ((v / 100.0f) * h); nvgLineTo(vg, vx, vy); } } else { for (i = 0; i < GRAPH_HISTORY_COUNT; i++) { float v = fps->values[(fps->head+i) % GRAPH_HISTORY_COUNT] * 1000.0f; float vx, vy; if (v > 20.0f) v = 20.0f; vx = x + ((float)i/(GRAPH_HISTORY_COUNT-1)) * w; vy = y + h - ((v / 20.0f) * h); nvgLineTo(vg, vx, vy); } } nvgLineTo(vg, x+w, y+h); nvgFillColor(vg, nvgRGBA(255,192,0,128)); nvgFill(vg); nvgFontFace(vg, "sans"); if (fps->name[0] != '\0') { nvgFontSize(vg, 12.0f); nvgTextAlign(vg, NVG_ALIGN_LEFT|NVG_ALIGN_TOP); nvgFillColor(vg, nvgRGBA(240,240,240,192)); nvgText(vg, x+3,y+3, fps->name, NULL); } if (fps->style == GRAPH_RENDER_FPS) { nvgFontSize(vg, 15.0f); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_TOP); nvgFillColor(vg, nvgRGBA(240,240,240,255)); sprintf(str, "%.2f FPS", 1.0f / avg); nvgText(vg, x+w-3,y+3, str, NULL); nvgFontSize(vg, 13.0f); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_BASELINE); nvgFillColor(vg, nvgRGBA(240,240,240,160)); sprintf(str, "%.2f ms", avg * 1000.0f); nvgText(vg, x+w-3,y+h-3, str, NULL); } else if (fps->style == GRAPH_RENDER_PERCENT) { nvgFontSize(vg, 15.0f); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_TOP); nvgFillColor(vg, nvgRGBA(240,240,240,255)); sprintf(str, "%.1f %%", avg * 1.0f); nvgText(vg, x+w-3,y+3, str, NULL); } else { nvgFontSize(vg, 15.0f); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_TOP); nvgFillColor(vg, nvgRGBA(240,240,240,255)); sprintf(str, "%.2f ms", avg * 1000.0f); nvgText(vg, x+w-3,y+3, str, NULL); } }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/example_gles3.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdio.h> #define GLFW_INCLUDE_ES3 #define GLFW_INCLUDE_GLEXT #include <GLFW/glfw3.h> #include "nanovg.h" #define NANOVG_GLES3_IMPLEMENTATION #include "nanovg_gl.h" #include "nanovg_gl_utils.h" #include "demo.h" #include "perf.h" void errorcb(int error, const char* desc) { printf("GLFW error %d: %s\n", error, desc); } int blowup = 0; int screenshot = 0; int premult = 0; static void key(GLFWwindow* window, int key, int scancode, int action, int mods) { NVG_NOTUSED(scancode); NVG_NOTUSED(mods); if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); if (key == GLFW_KEY_SPACE && action == GLFW_PRESS) blowup = !blowup; if (key == GLFW_KEY_S && action == GLFW_PRESS) screenshot = 1; if (key == GLFW_KEY_P && action == GLFW_PRESS) premult = !premult; } int main() { GLFWwindow* window; DemoData data; NVGcontext* vg = NULL; PerfGraph fps; double prevt = 0; if (!glfwInit()) { printf("Failed to init GLFW."); return -1; } initGraph(&fps, GRAPH_RENDER_FPS, "Frame Time"); glfwSetErrorCallback(errorcb); glfwWindowHint(GLFW_CLIENT_API, GLFW_OPENGL_ES_API); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0); window = glfwCreateWindow(1000, 600, "NanoVG", NULL, NULL); // window = glfwCreateWindow(1000, 600, "NanoVG", glfwGetPrimaryMonitor(), NULL); if (!window) { glfwTerminate(); return -1; } glfwSetKeyCallback(window, key); glfwMakeContextCurrent(window); vg = nvgCreateGLES3(NVG_ANTIALIAS | NVG_STENCIL_STROKES | NVG_DEBUG); if (vg == NULL) { printf("Could not init nanovg.\n"); return -1; } if (loadDemoData(vg, &data) == -1) return -1; glfwSwapInterval(0); glfwSetTime(0); prevt = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double mx, my, t, dt; int winWidth, winHeight; int fbWidth, fbHeight; float pxRatio; t = glfwGetTime(); dt = t - prevt; prevt = t; updateGraph(&fps, dt); glfwGetCursorPos(window, &mx, &my); glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; // Update and render glViewport(0, 0, fbWidth, fbHeight); if (premult) glClearColor(0,0,0,0); else glClearColor(0.3f, 0.3f, 0.32f, 1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); renderDemo(vg, mx,my, winWidth,winHeight, t, blowup, &data); renderGraph(vg, 5,5, &fps); nvgEndFrame(vg); glEnable(GL_DEPTH_TEST); if (screenshot) { screenshot = 0; saveScreenShot(fbWidth, fbHeight, premult, "dump.png"); } glfwSwapBuffers(window); glfwPollEvents(); } freeDemoData(vg, &data); nvgDeleteGLES3(vg); glfwTerminate(); return 0; }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/example_gl3.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdio.h> #ifdef NANOVG_GLEW # include <GL/glew.h> #endif #ifdef __APPLE__ # define GLFW_INCLUDE_GLCOREARB #endif #define GLFW_INCLUDE_GLEXT #include <GLFW/glfw3.h> #include "nanovg.h" #define NANOVG_GL3_IMPLEMENTATION #include "nanovg_gl.h" #include "demo.h" #include "perf.h" void errorcb(int error, const char* desc) { printf("GLFW error %d: %s\n", error, desc); } int blowup = 0; int screenshot = 0; int premult = 0; static void key(GLFWwindow* window, int key, int scancode, int action, int mods) { NVG_NOTUSED(scancode); NVG_NOTUSED(mods); if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); if (key == GLFW_KEY_SPACE && action == GLFW_PRESS) blowup = !blowup; if (key == GLFW_KEY_S && action == GLFW_PRESS) screenshot = 1; if (key == GLFW_KEY_P && action == GLFW_PRESS) premult = !premult; } int main() { GLFWwindow* window; DemoData data; NVGcontext* vg = NULL; GPUtimer gpuTimer; PerfGraph fps, cpuGraph, gpuGraph; double prevt = 0, cpuTime = 0; if (!glfwInit()) { printf("Failed to init GLFW."); return -1; } initGraph(&fps, GRAPH_RENDER_FPS, "Frame Time"); initGraph(&cpuGraph, GRAPH_RENDER_MS, "CPU Time"); initGraph(&gpuGraph, GRAPH_RENDER_MS, "GPU Time"); glfwSetErrorCallback(errorcb); #ifndef _WIN32 // don't require this on win32, and works with more cards glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #endif glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, 1); #ifdef DEMO_MSAA glfwWindowHint(GLFW_SAMPLES, 4); #endif window = glfwCreateWindow(1000, 600, "NanoVG", NULL, NULL); // window = glfwCreateWindow(1000, 600, "NanoVG", glfwGetPrimaryMonitor(), NULL); if (!window) { glfwTerminate(); return -1; } glfwSetKeyCallback(window, key); glfwMakeContextCurrent(window); #ifdef NANOVG_GLEW glewExperimental = GL_TRUE; if(glewInit() != GLEW_OK) { printf("Could not init glew.\n"); return -1; } // GLEW generates GL error because it calls glGetString(GL_EXTENSIONS), we'll consume it here. glGetError(); #endif #ifdef DEMO_MSAA vg = nvgCreateGL3(NVG_STENCIL_STROKES | NVG_DEBUG); #else vg = nvgCreateGL3(NVG_ANTIALIAS | NVG_STENCIL_STROKES | NVG_DEBUG); #endif if (vg == NULL) { printf("Could not init nanovg.\n"); return -1; } if (loadDemoData(vg, &data) == -1) return -1; glfwSwapInterval(0); initGPUTimer(&gpuTimer); glfwSetTime(0); prevt = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double mx, my, t, dt; int winWidth, winHeight; int fbWidth, fbHeight; float pxRatio; float gpuTimes[3]; int i, n; t = glfwGetTime(); dt = t - prevt; prevt = t; startGPUTimer(&gpuTimer); glfwGetCursorPos(window, &mx, &my); glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; // Update and render glViewport(0, 0, fbWidth, fbHeight); if (premult) glClearColor(0,0,0,0); else glClearColor(0.3f, 0.3f, 0.32f, 1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); renderDemo(vg, mx,my, winWidth,winHeight, t, blowup, &data); renderGraph(vg, 5,5, &fps); renderGraph(vg, 5+200+5,5, &cpuGraph); if (gpuTimer.supported) renderGraph(vg, 5+200+5+200+5,5, &gpuGraph); nvgEndFrame(vg); // Measure the CPU time taken excluding swap buffers (as the swap may wait for GPU) cpuTime = glfwGetTime() - t; updateGraph(&fps, dt); updateGraph(&cpuGraph, cpuTime); // We may get multiple results. n = stopGPUTimer(&gpuTimer, gpuTimes, 3); for (i = 0; i < n; i++) updateGraph(&gpuGraph, gpuTimes[i]); if (screenshot) { screenshot = 0; saveScreenShot(fbWidth, fbHeight, premult, "dump.png"); } glfwSwapBuffers(window); glfwPollEvents(); } freeDemoData(vg, &data); nvgDeleteGL3(vg); printf("Average Frame Time: %.2f ms\n", getGraphAverage(&fps) * 1000.0f); printf(" CPU Time: %.2f ms\n", getGraphAverage(&cpuGraph) * 1000.0f); printf(" GPU Time: %.2f ms\n", getGraphAverage(&gpuGraph) * 1000.0f); glfwTerminate(); return 0; }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/example_gles2.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdio.h> #define GLFW_INCLUDE_ES2 #define GLFW_INCLUDE_GLEXT #include <GLFW/glfw3.h> #include "nanovg.h" #define NANOVG_GLES2_IMPLEMENTATION #include "nanovg_gl.h" #include "nanovg_gl_utils.h" #include "demo.h" #include "perf.h" void errorcb(int error, const char* desc) { printf("GLFW error %d: %s\n", error, desc); } int blowup = 0; int screenshot = 0; int premult = 0; static void key(GLFWwindow* window, int key, int scancode, int action, int mods) { NVG_NOTUSED(scancode); NVG_NOTUSED(mods); if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); if (key == GLFW_KEY_SPACE && action == GLFW_PRESS) blowup = !blowup; if (key == GLFW_KEY_S && action == GLFW_PRESS) screenshot = 1; if (key == GLFW_KEY_P && action == GLFW_PRESS) premult = !premult; } int main() { GLFWwindow* window; DemoData data; NVGcontext* vg = NULL; PerfGraph fps; double prevt = 0; if (!glfwInit()) { printf("Failed to init GLFW."); return -1; } initGraph(&fps, GRAPH_RENDER_FPS, "Frame Time"); glfwSetErrorCallback(errorcb); glfwWindowHint(GLFW_CLIENT_API, GLFW_OPENGL_ES_API); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0); window = glfwCreateWindow(1000, 600, "NanoVG", NULL, NULL); // window = glfwCreateWindow(1000, 600, "NanoVG", glfwGetPrimaryMonitor(), NULL); if (!window) { glfwTerminate(); return -1; } glfwSetKeyCallback(window, key); glfwMakeContextCurrent(window); vg = nvgCreateGLES2(NVG_ANTIALIAS | NVG_STENCIL_STROKES | NVG_DEBUG); if (vg == NULL) { printf("Could not init nanovg.\n"); return -1; } if (loadDemoData(vg, &data) == -1) return -1; glfwSwapInterval(0); glfwSetTime(0); prevt = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double mx, my, t, dt; int winWidth, winHeight; int fbWidth, fbHeight; float pxRatio; t = glfwGetTime(); dt = t - prevt; prevt = t; updateGraph(&fps, dt); glfwGetCursorPos(window, &mx, &my); glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; // Update and render glViewport(0, 0, fbWidth, fbHeight); if (premult) glClearColor(0,0,0,0); else glClearColor(0.3f, 0.3f, 0.32f, 1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); renderDemo(vg, mx,my, winWidth,winHeight, t, blowup, &data); renderGraph(vg, 5,5, &fps); nvgEndFrame(vg); if (screenshot) { screenshot = 0; saveScreenShot(fbWidth, fbHeight, premult, "dump.png"); } glEnable(GL_DEPTH_TEST); glfwSwapBuffers(window); glfwPollEvents(); } freeDemoData(vg, &data); nvgDeleteGLES2(vg); glfwTerminate(); return 0; }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/example_fbo.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdio.h> #ifdef NANOVG_GLEW # include <GL/glew.h> #endif #ifdef __APPLE__ # define GLFW_INCLUDE_GLCOREARB #endif #include <GLFW/glfw3.h> #include "nanovg.h" #define NANOVG_GL3_IMPLEMENTATION #include "nanovg_gl.h" #include "nanovg_gl_utils.h" #include "perf.h" void renderPattern(NVGcontext* vg, NVGLUframebuffer* fb, float t, float pxRatio) { int winWidth, winHeight; int fboWidth, fboHeight; int pw, ph, x, y; float s = 20.0f; float sr = (cosf(t)+1)*0.5f; float r = s * 0.6f * (0.2f + 0.8f * sr); if (fb == NULL) return; nvgImageSize(vg, fb->image, &fboWidth, &fboHeight); winWidth = (int)(fboWidth / pxRatio); winHeight = (int)(fboHeight / pxRatio); // Draw some stuff to an FBO as a test nvgluBindFramebuffer(fb); glViewport(0, 0, fboWidth, fboHeight); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); pw = (int)ceilf(winWidth / s); ph = (int)ceilf(winHeight / s); nvgBeginPath(vg); for (y = 0; y < ph; y++) { for (x = 0; x < pw; x++) { float cx = (x+0.5f) * s; float cy = (y+0.5f) * s; nvgCircle(vg, cx,cy, r); } } nvgFillColor(vg, nvgRGBA(220,160,0,200)); nvgFill(vg); nvgEndFrame(vg); nvgluBindFramebuffer(NULL); } int loadFonts(NVGcontext* vg) { int font; font = nvgCreateFont(vg, "sans", "../example/Roboto-Regular.ttf"); if (font == -1) { printf("Could not add font regular.\n"); return -1; } font = nvgCreateFont(vg, "sans-bold", "../example/Roboto-Bold.ttf"); if (font == -1) { printf("Could not add font bold.\n"); return -1; } return 0; } void errorcb(int error, const char* desc) { printf("GLFW error %d: %s\n", error, desc); } static void key(GLFWwindow* window, int key, int scancode, int action, int mods) { NVG_NOTUSED(scancode); NVG_NOTUSED(mods); if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); } int main() { GLFWwindow* window; NVGcontext* vg = NULL; GPUtimer gpuTimer; PerfGraph fps, cpuGraph, gpuGraph; double prevt = 0, cpuTime = 0; NVGLUframebuffer* fb = NULL; int winWidth, winHeight; int fbWidth, fbHeight; float pxRatio; if (!glfwInit()) { printf("Failed to init GLFW."); return -1; } initGraph(&fps, GRAPH_RENDER_FPS, "Frame Time"); initGraph(&cpuGraph, GRAPH_RENDER_MS, "CPU Time"); initGraph(&gpuGraph, GRAPH_RENDER_MS, "GPU Time"); glfwSetErrorCallback(errorcb); #ifndef _WIN32 // don't require this on win32, and works with more cards glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #endif glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, 1); #ifdef DEMO_MSAA glfwWindowHint(GLFW_SAMPLES, 4); #endif window = glfwCreateWindow(1000, 600, "NanoVG", NULL, NULL); // window = glfwCreateWindow(1000, 600, "NanoVG", glfwGetPrimaryMonitor(), NULL); if (!window) { glfwTerminate(); return -1; } glfwSetKeyCallback(window, key); glfwMakeContextCurrent(window); #ifdef NANOVG_GLEW glewExperimental = GL_TRUE; if(glewInit() != GLEW_OK) { printf("Could not init glew.\n"); return -1; } // GLEW generates GL error because it calls glGetString(GL_EXTENSIONS), we'll consume it here. glGetError(); #endif #ifdef DEMO_MSAA vg = nvgCreateGL3(NVG_STENCIL_STROKES | NVG_DEBUG); #else vg = nvgCreateGL3(NVG_ANTIALIAS | NVG_STENCIL_STROKES | NVG_DEBUG); #endif if (vg == NULL) { printf("Could not init nanovg.\n"); return -1; } // Create hi-dpi FBO for hi-dpi screens. glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; // The image pattern is tiled, set repeat on x and y. fb = nvgluCreateFramebuffer(vg, (int)(100*pxRatio), (int)(100*pxRatio), NVG_IMAGE_REPEATX | NVG_IMAGE_REPEATY); if (fb == NULL) { printf("Could not create FBO.\n"); return -1; } if (loadFonts(vg) == -1) { printf("Could not load fonts\n"); return -1; } glfwSwapInterval(0); initGPUTimer(&gpuTimer); glfwSetTime(0); prevt = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double mx, my, t, dt; float gpuTimes[3]; int i, n; t = glfwGetTime(); dt = t - prevt; prevt = t; startGPUTimer(&gpuTimer); glfwGetCursorPos(window, &mx, &my); glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; renderPattern(vg, fb, t, pxRatio); // Update and render glViewport(0, 0, fbWidth, fbHeight); glClearColor(0.3f, 0.3f, 0.32f, 1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); // Use the FBO as image pattern. if (fb != NULL) { NVGpaint img = nvgImagePattern(vg, 0, 0, 100, 100, 0, fb->image, 1.0f); nvgSave(vg); for (i = 0; i < 20; i++) { nvgBeginPath(vg); nvgRect(vg, 10 + i*30,10, 10, winHeight-20); nvgFillColor(vg, nvgHSLA(i/19.0f, 0.5f, 0.5f, 255)); nvgFill(vg); } nvgBeginPath(vg); nvgRoundedRect(vg, 140 + sinf(t*1.3f)*100, 140 + cosf(t*1.71244f)*100, 250, 250, 20); nvgFillPaint(vg, img); nvgFill(vg); nvgStrokeColor(vg, nvgRGBA(220,160,0,255)); nvgStrokeWidth(vg, 3.0f); nvgStroke(vg); nvgRestore(vg); } renderGraph(vg, 5,5, &fps); renderGraph(vg, 5+200+5,5, &cpuGraph); if (gpuTimer.supported) renderGraph(vg, 5+200+5+200+5,5, &gpuGraph); nvgEndFrame(vg); // Measure the CPU time taken excluding swap buffers (as the swap may wait for GPU) cpuTime = glfwGetTime() - t; updateGraph(&fps, dt); updateGraph(&cpuGraph, cpuTime); // We may get multiple results. n = stopGPUTimer(&gpuTimer, gpuTimes, 3); for (i = 0; i < n; i++) updateGraph(&gpuGraph, gpuTimes[i]); glfwSwapBuffers(window); glfwPollEvents(); } nvgluDeleteFramebuffer(fb); nvgDeleteGL3(vg); printf("Average Frame Time: %.2f ms\n", getGraphAverage(&fps) * 1000.0f); printf(" CPU Time: %.2f ms\n", getGraphAverage(&cpuGraph) * 1000.0f); printf(" GPU Time: %.2f ms\n", getGraphAverage(&gpuGraph) * 1000.0f); glfwTerminate(); return 0; }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/stb_image_write.h
/* stbiw-0.92 - public domain - http://nothings.org/stb/stb_image_write.h writes out PNG/BMP/TGA images to C stdio - Sean Barrett 2010 no warranty implied; use at your own risk Before including, #define STB_IMAGE_WRITE_IMPLEMENTATION in the file that you want to have the implementation. ABOUT: This header file is a library for writing images to C stdio. It could be adapted to write to memory or a general streaming interface; let me know. The PNG output is not optimal; it is 20-50% larger than the file written by a decent optimizing implementation. This library is designed for source code compactness and simplicitly, not optimal image file size or run-time performance. USAGE: There are three functions, one for each image file format: int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); Each function returns 0 on failure and non-0 on success. The functions create an image file defined by the parameters. The image is a rectangle of pixels stored from left-to-right, top-to-bottom. Each pixel contains 'comp' channels of data stored interleaved with 8-bits per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall. The *data pointer points to the first byte of the top-left-most pixel. For PNG, "stride_in_bytes" is the distance in bytes from the first byte of a row of pixels to the first byte of the next row of pixels. PNG creates output files with the same number of components as the input. The BMP and TGA formats expand Y to RGB in the file format. BMP does not output alpha. PNG supports writing rectangles of data even when the bytes storing rows of data are not consecutive in memory (e.g. sub-rectangles of a larger image), by supplying the stride between the beginning of adjacent rows. The other formats do not. (Thus you cannot write a native-format BMP through the BMP writer, both because it is in BGR order and because it may have padding at the end of the line.) */ #ifndef INCLUDE_STB_IMAGE_WRITE_H #define INCLUDE_STB_IMAGE_WRITE_H #ifdef __cplusplus extern "C" { #endif extern int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); extern int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); extern int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); #ifdef __cplusplus } #endif #endif//INCLUDE_STB_IMAGE_WRITE_H #ifdef STB_IMAGE_WRITE_IMPLEMENTATION #include <stdarg.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <assert.h> typedef unsigned int stbiw_uint32; typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; static void writefv(FILE *f, const char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { unsigned char x = (unsigned char) va_arg(v, int); fputc(x,f); break; } case '2': { int x = va_arg(v,int); unsigned char b[2]; b[0] = (unsigned char) x; b[1] = (unsigned char) (x>>8); fwrite(b,2,1,f); break; } case '4': { stbiw_uint32 x = va_arg(v,int); unsigned char b[4]; b[0]=(unsigned char)x; b[1]=(unsigned char)(x>>8); b[2]=(unsigned char)(x>>16); b[3]=(unsigned char)(x>>24); fwrite(b,4,1,f); break; } default: assert(0); return; } } } static void write3(FILE *f, unsigned char a, unsigned char b, unsigned char c) { unsigned char arr[3]; arr[0] = a, arr[1] = b, arr[2] = c; fwrite(arr, 3, 1, f); } static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) { unsigned char bg[3] = { 255, 0, 255}, px[3]; stbiw_uint32 zero = 0; int i,j,k, j_end; if (y <= 0) return; if (vdir < 0) j_end = -1, j = y-1; else j_end = y, j = 0; for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { unsigned char *d = (unsigned char *) data + (j*x+i)*comp; if (write_alpha < 0) fwrite(&d[comp-1], 1, 1, f); switch (comp) { case 1: case 2: write3(f, d[0],d[0],d[0]); break; case 4: if (!write_alpha) { // composite against pink background for (k=0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; write3(f, px[1-rgb_dir],px[1],px[1+rgb_dir]); break; } /* FALLTHROUGH */ case 3: write3(f, d[1-rgb_dir],d[1],d[1+rgb_dir]); break; } if (write_alpha > 0) fwrite(&d[comp-1], 1, 1, f); } fwrite(&zero,scanline_pad,1,f); } } static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, const char *fmt, ...) { FILE *f; if (y < 0 || x < 0) return 0; f = fopen(filename, "wb"); if (f) { va_list v; va_start(v, fmt); writefv(f, fmt, v); va_end(v); write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); fclose(f); } return f != NULL; } int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) { int pad = (-x*3) & 3; return outfile(filename,-1,-1,x,y,comp,(void *) data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) { int has_alpha = !(comp & 1); return outfile(filename, -1,-1, x, y, comp, (void *) data, has_alpha, 0, "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); } // stretchy buffer; stbi__sbpush() == vector<>::push_back() -- stbi__sbcount() == vector<>::size() #define stbi__sbraw(a) ((int *) (a) - 2) #define stbi__sbm(a) stbi__sbraw(a)[0] #define stbi__sbn(a) stbi__sbraw(a)[1] #define stbi__sbneedgrow(a,n) ((a)==0 || stbi__sbn(a)+n >= stbi__sbm(a)) #define stbi__sbmaybegrow(a,n) (stbi__sbneedgrow(a,(n)) ? stbi__sbgrow(a,n) : 0) #define stbi__sbgrow(a,n) stbi__sbgrowf((void **) &(a), (n), sizeof(*(a))) #define stbi__sbpush(a, v) (stbi__sbmaybegrow(a,1), (a)[stbi__sbn(a)++] = (v)) #define stbi__sbcount(a) ((a) ? stbi__sbn(a) : 0) #define stbi__sbfree(a) ((a) ? free(stbi__sbraw(a)),0 : 0) static void *stbi__sbgrowf(void **arr, int increment, int itemsize) { int m = *arr ? 2*stbi__sbm(*arr)+increment : increment+1; void *p = realloc(*arr ? stbi__sbraw(*arr) : 0, itemsize * m + sizeof(int)*2); assert(p); if (p) { if (!*arr) ((int *) p)[1] = 0; *arr = (void *) ((int *) p + 2); stbi__sbm(*arr) = m; } return *arr; } static unsigned char *stbi__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) { while (*bitcount >= 8) { stbi__sbpush(data, (unsigned char) *bitbuffer); *bitbuffer >>= 8; *bitcount -= 8; } return data; } static int stbi__zlib_bitrev(int code, int codebits) { int res=0; while (codebits--) { res = (res << 1) | (code & 1); code >>= 1; } return res; } static unsigned int stbi__zlib_countm(unsigned char *a, unsigned char *b, int limit) { int i; for (i=0; i < limit && i < 258; ++i) if (a[i] != b[i]) break; return i; } static unsigned int stbi__zhash(unsigned char *data) { stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 4; hash += hash >> 17; hash ^= hash << 25; hash += hash >> 6; return hash; } #define stbi__zlib_flush() (out = stbi__zlib_flushf(out, &bitbuf, &bitcount)) #define stbi__zlib_add(code,codebits) \ (bitbuf |= (code) << bitcount, bitcount += (codebits), stbi__zlib_flush()) #define stbi__zlib_huffa(b,c) stbi__zlib_add(stbi__zlib_bitrev(b,c),c) // default huffman tables #define stbi__zlib_huff1(n) stbi__zlib_huffa(0x30 + (n), 8) #define stbi__zlib_huff2(n) stbi__zlib_huffa(0x190 + (n)-144, 9) #define stbi__zlib_huff3(n) stbi__zlib_huffa(0 + (n)-256,7) #define stbi__zlib_huff4(n) stbi__zlib_huffa(0xc0 + (n)-280,8) #define stbi__zlib_huff(n) ((n) <= 143 ? stbi__zlib_huff1(n) : (n) <= 255 ? stbi__zlib_huff2(n) : (n) <= 279 ? stbi__zlib_huff3(n) : stbi__zlib_huff4(n)) #define stbi__zlib_huffb(n) ((n) <= 143 ? stbi__zlib_huff1(n) : stbi__zlib_huff2(n)) #define stbi__ZHASH 16384 unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) { static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; unsigned int bitbuf=0; int i,j, bitcount=0; unsigned char *out = NULL; unsigned char **hash_table[stbi__ZHASH]; // 64KB on the stack! if (quality < 5) quality = 5; stbi__sbpush(out, 0x78); // DEFLATE 32K window stbi__sbpush(out, 0x5e); // FLEVEL = 1 stbi__zlib_add(1,1); // BFINAL = 1 stbi__zlib_add(1,2); // BTYPE = 1 -- fixed huffman for (i=0; i < stbi__ZHASH; ++i) hash_table[i] = NULL; i=0; while (i < data_len-3) { // hash next 3 bytes of data to be compressed int h = stbi__zhash(data+i)&(stbi__ZHASH-1), best=3; unsigned char *bestloc = 0; unsigned char **hlist = hash_table[h]; int n = stbi__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32768) { // if entry lies within window int d = stbi__zlib_countm(hlist[j], data+i, data_len-i); if (d >= best) best=d,bestloc=hlist[j]; } } // when hash table entry is too long, delete half the entries if (hash_table[h] && stbi__sbn(hash_table[h]) == 2*quality) { memcpy(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); stbi__sbn(hash_table[h]) = quality; } stbi__sbpush(hash_table[h],data+i); if (bestloc) { // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal h = stbi__zhash(data+i+1)&(stbi__ZHASH-1); hlist = hash_table[h]; n = stbi__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32767) { int e = stbi__zlib_countm(hlist[j], data+i+1, data_len-i-1); if (e > best) { // if next match is better, bail on current match bestloc = NULL; break; } } } } if (bestloc) { int d = data+i - bestloc; // distance back assert(d <= 32767 && best <= 258); for (j=0; best > lengthc[j+1]-1; ++j); stbi__zlib_huff(j+257); if (lengtheb[j]) stbi__zlib_add(best - lengthc[j], lengtheb[j]); for (j=0; d > distc[j+1]-1; ++j); stbi__zlib_add(stbi__zlib_bitrev(j,5),5); if (disteb[j]) stbi__zlib_add(d - distc[j], disteb[j]); i += best; } else { stbi__zlib_huffb(data[i]); ++i; } } // write out final bytes for (;i < data_len; ++i) stbi__zlib_huffb(data[i]); stbi__zlib_huff(256); // end of block // pad with 0 bits to byte boundary while (bitcount) stbi__zlib_add(0,1); for (i=0; i < stbi__ZHASH; ++i) (void) stbi__sbfree(hash_table[i]); { // compute adler32 on input unsigned int i=0, s1=1, s2=0, blocklen = data_len % 5552; int j=0; while (j < data_len) { for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1; s1 %= 65521, s2 %= 65521; j += blocklen; blocklen = 5552; } stbi__sbpush(out, (unsigned char) (s2 >> 8)); stbi__sbpush(out, (unsigned char) s2); stbi__sbpush(out, (unsigned char) (s1 >> 8)); stbi__sbpush(out, (unsigned char) s1); } *out_len = stbi__sbn(out); // make returned pointer freeable memmove(stbi__sbraw(out), out, *out_len); return (unsigned char *) stbi__sbraw(out); } unsigned int stbi__crc32(unsigned char *buffer, int len) { static unsigned int crc_table[256]; unsigned int crc = ~0u; int i,j; if (crc_table[1] == 0) for(i=0; i < 256; i++) for (crc_table[i]=i, j=0; j < 8; ++j) crc_table[i] = (crc_table[i] >> 1) ^ (crc_table[i] & 1 ? 0xedb88320 : 0); for (i=0; i < len; ++i) crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; return ~crc; } #define stbi__wpng4(o,a,b,c,d) ((o)[0]=(unsigned char)(a),(o)[1]=(unsigned char)(b),(o)[2]=(unsigned char)(c),(o)[3]=(unsigned char)(d),(o)+=4) #define stbi__wp32(data,v) stbi__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); #define stbi__wptag(data,s) stbi__wpng4(data, s[0],s[1],s[2],s[3]) static void stbi__wpcrc(unsigned char **data, int len) { unsigned int crc = stbi__crc32(*data - len - 4, len+4); stbi__wp32(*data, crc); } static unsigned char stbi__paeth(int a, int b, int c) { int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); if (pa <= pb && pa <= pc) return (unsigned char) a; if (pb <= pc) return (unsigned char) b; return (unsigned char) c; } unsigned char *stbi_write_png_to_mem(unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) { int ctype[5] = { -1, 0, 4, 2, 6 }; unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; unsigned char *out,*o, *filt, *zlib; signed char *line_buffer; int i,j,k,p,zlen; if (stride_bytes == 0) stride_bytes = x * n; filt = (unsigned char *) malloc((x*n+1) * y); if (!filt) return 0; line_buffer = (signed char *) malloc(x * n); if (!line_buffer) { free(filt); return 0; } for (j=0; j < y; ++j) { static int mapping[] = { 0,1,2,3,4 }; static int firstmap[] = { 0,1,0,5,6 }; int *mymap = j ? mapping : firstmap; int best = 0, bestval = 0x7fffffff; for (p=0; p < 2; ++p) { for (k= p?best:0; k < 5; ++k) { int type = mymap[k],est=0; unsigned char *z = pixels + stride_bytes*j; for (i=0; i < n; ++i) switch (type) { case 0: line_buffer[i] = z[i]; break; case 1: line_buffer[i] = z[i]; break; case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break; case 3: line_buffer[i] = z[i] - (z[i-stride_bytes]>>1); break; case 4: line_buffer[i] = (signed char) (z[i] - stbi__paeth(0,z[i-stride_bytes],0)); break; case 5: line_buffer[i] = z[i]; break; case 6: line_buffer[i] = z[i]; break; } for (i=n; i < x*n; ++i) { switch (type) { case 0: line_buffer[i] = z[i]; break; case 1: line_buffer[i] = z[i] - z[i-n]; break; case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break; case 3: line_buffer[i] = z[i] - ((z[i-n] + z[i-stride_bytes])>>1); break; case 4: line_buffer[i] = z[i] - stbi__paeth(z[i-n], z[i-stride_bytes], z[i-stride_bytes-n]); break; case 5: line_buffer[i] = z[i] - (z[i-n]>>1); break; case 6: line_buffer[i] = z[i] - stbi__paeth(z[i-n], 0,0); break; } } if (p) break; for (i=0; i < x*n; ++i) est += abs((signed char) line_buffer[i]); if (est < bestval) { bestval = est; best = k; } } } // when we get here, best contains the filter type, and line_buffer contains the data filt[j*(x*n+1)] = (unsigned char) best; memcpy(filt+j*(x*n+1)+1, line_buffer, x*n); } free(line_buffer); zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, 8); // increase 8 to get smaller but use more memory free(filt); if (!zlib) return 0; // each tag requires 12 bytes of overhead out = (unsigned char *) malloc(8 + 12+13 + 12+zlen + 12); if (!out) return 0; *out_len = 8 + 12+13 + 12+zlen + 12; o=out; memcpy(o,sig,8); o+= 8; stbi__wp32(o, 13); // header length stbi__wptag(o, "IHDR"); stbi__wp32(o, x); stbi__wp32(o, y); *o++ = 8; *o++ = (unsigned char) ctype[n]; *o++ = 0; *o++ = 0; *o++ = 0; stbi__wpcrc(&o,13); stbi__wp32(o, zlen); stbi__wptag(o, "IDAT"); memcpy(o, zlib, zlen); o += zlen; free(zlib); stbi__wpcrc(&o, zlen); stbi__wp32(o,0); stbi__wptag(o, "IEND"); stbi__wpcrc(&o,0); assert(o == out + *out_len); return out; } int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) { FILE *f; int len; unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len); if (!png) return 0; f = fopen(filename, "wb"); if (!f) { free(png); return 0; } fwrite(png, 1, len, f); fclose(f); free(png); return 1; } #endif // STB_IMAGE_WRITE_IMPLEMENTATION /* Revision history 0.92 (2010-08-01) casts to unsigned char to fix warnings 0.91 (2010-07-17) first public release 0.90 first internal release */
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/example_gl2.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdio.h> #ifdef NANOVG_GLEW # include <GL/glew.h> #endif #define GLFW_INCLUDE_GLEXT #include <GLFW/glfw3.h> #include "nanovg.h" #define NANOVG_GL2_IMPLEMENTATION #include "nanovg_gl.h" #include "demo.h" #include "perf.h" void errorcb(int error, const char* desc) { printf("GLFW error %d: %s\n", error, desc); } int blowup = 0; int screenshot = 0; int premult = 0; static void key(GLFWwindow* window, int key, int scancode, int action, int mods) { NVG_NOTUSED(scancode); NVG_NOTUSED(mods); if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); if (key == GLFW_KEY_SPACE && action == GLFW_PRESS) blowup = !blowup; if (key == GLFW_KEY_S && action == GLFW_PRESS) screenshot = 1; if (key == GLFW_KEY_P && action == GLFW_PRESS) premult = !premult; } int main() { GLFWwindow* window; DemoData data; NVGcontext* vg = NULL; PerfGraph fps; double prevt = 0; if (!glfwInit()) { printf("Failed to init GLFW."); return -1; } initGraph(&fps, GRAPH_RENDER_FPS, "Frame Time"); glfwSetErrorCallback(errorcb); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0); #ifdef DEMO_MSAA glfwWindowHint(GLFW_SAMPLES, 4); #endif window = glfwCreateWindow(1000, 600, "NanoVG", NULL, NULL); // window = glfwCreateWindow(1000, 600, "NanoVG", glfwGetPrimaryMonitor(), NULL); if (!window) { glfwTerminate(); return -1; } glfwSetKeyCallback(window, key); glfwMakeContextCurrent(window); #ifdef NANOVG_GLEW if(glewInit() != GLEW_OK) { printf("Could not init glew.\n"); return -1; } #endif #ifdef DEMO_MSAA vg = nvgCreateGL2(NVG_STENCIL_STROKES | NVG_DEBUG); #else vg = nvgCreateGL2(NVG_ANTIALIAS | NVG_STENCIL_STROKES | NVG_DEBUG); #endif if (vg == NULL) { printf("Could not init nanovg.\n"); return -1; } if (loadDemoData(vg, &data) == -1) return -1; glfwSwapInterval(0); glfwSetTime(0); prevt = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double mx, my, t, dt; int winWidth, winHeight; int fbWidth, fbHeight; float pxRatio; t = glfwGetTime(); dt = t - prevt; prevt = t; updateGraph(&fps, dt); glfwGetCursorPos(window, &mx, &my); glfwGetWindowSize(window, &winWidth, &winHeight); glfwGetFramebufferSize(window, &fbWidth, &fbHeight); // Calculate pixel ration for hi-dpi devices. pxRatio = (float)fbWidth / (float)winWidth; // Update and render glViewport(0, 0, fbWidth, fbHeight); if (premult) glClearColor(0,0,0,0); else glClearColor(0.3f, 0.3f, 0.32f, 1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); nvgBeginFrame(vg, winWidth, winHeight, pxRatio); renderDemo(vg, mx,my, winWidth,winHeight, t, blowup, &data); renderGraph(vg, 5,5, &fps); nvgEndFrame(vg); if (screenshot) { screenshot = 0; saveScreenShot(fbWidth, fbHeight, premult, "dump.png"); } glfwSwapBuffers(window); glfwPollEvents(); } freeDemoData(vg, &data); nvgDeleteGL2(vg); glfwTerminate(); return 0; }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/perf.h
#ifndef PERF_H #define PERF_H #include "nanovg.h" #ifdef __cplusplus extern "C" { #endif enum GraphrenderStyle { GRAPH_RENDER_FPS, GRAPH_RENDER_MS, GRAPH_RENDER_PERCENT, }; #define GRAPH_HISTORY_COUNT 100 struct PerfGraph { int style; char name[32]; float values[GRAPH_HISTORY_COUNT]; int head; }; typedef struct PerfGraph PerfGraph; void initGraph(PerfGraph* fps, int style, const char* name); void updateGraph(PerfGraph* fps, float frameTime); void renderGraph(NVGcontext* vg, float x, float y, PerfGraph* fps); float getGraphAverage(PerfGraph* fps); #define GPU_QUERY_COUNT 5 struct GPUtimer { int supported; int cur, ret; unsigned int queries[GPU_QUERY_COUNT]; }; typedef struct GPUtimer GPUtimer; void initGPUTimer(GPUtimer* timer); void startGPUTimer(GPUtimer* timer); int stopGPUTimer(GPUtimer* timer, float* times, int maxTimes); #ifdef __cplusplus } #endif #endif // PERF_H
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/demo.c
#include "demo.h" #include <stdio.h> #include <string.h> #include <math.h> #ifdef NANOVG_GLEW # include <GL/glew.h> #endif #include <GLFW/glfw3.h> #include "nanovg.h" #define STB_IMAGE_WRITE_IMPLEMENTATION #include "stb_image_write.h" #ifdef _MSC_VER #define snprintf _snprintf #elif !defined(__MINGW32__) #include <iconv.h> #endif #define ICON_SEARCH 0x1F50D #define ICON_CIRCLED_CROSS 0x2716 #define ICON_CHEVRON_RIGHT 0xE75E #define ICON_CHECK 0x2713 #define ICON_LOGIN 0xE740 #define ICON_TRASH 0xE729 //static float minf(float a, float b) { return a < b ? a : b; } //static float maxf(float a, float b) { return a > b ? a : b; } //static float absf(float a) { return a >= 0.0f ? a : -a; } static float clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } // Returns 1 if col.rgba is 0.0f,0.0f,0.0f,0.0f, 0 otherwise int isBlack(NVGcolor col) { if( col.r == 0.0f && col.g == 0.0f && col.b == 0.0f && col.a == 0.0f ) { return 1; } return 0; } static char* cpToUTF8(int cp, char* str) { int n = 0; if (cp < 0x80) n = 1; else if (cp < 0x800) n = 2; else if (cp < 0x10000) n = 3; else if (cp < 0x200000) n = 4; else if (cp < 0x4000000) n = 5; else if (cp <= 0x7fffffff) n = 6; str[n] = '\0'; switch (n) { case 6: str[5] = 0x80 | (cp & 0x3f); cp = cp >> 6; cp |= 0x4000000; case 5: str[4] = 0x80 | (cp & 0x3f); cp = cp >> 6; cp |= 0x200000; case 4: str[3] = 0x80 | (cp & 0x3f); cp = cp >> 6; cp |= 0x10000; case 3: str[2] = 0x80 | (cp & 0x3f); cp = cp >> 6; cp |= 0x800; case 2: str[1] = 0x80 | (cp & 0x3f); cp = cp >> 6; cp |= 0xc0; case 1: str[0] = cp; } return str; } void drawWindow(NVGcontext* vg, const char* title, float x, float y, float w, float h) { float cornerRadius = 3.0f; NVGpaint shadowPaint; NVGpaint headerPaint; nvgSave(vg); // nvgClearState(vg); // Window nvgBeginPath(vg); nvgRoundedRect(vg, x,y, w,h, cornerRadius); nvgFillColor(vg, nvgRGBA(28,30,34,192)); // nvgFillColor(vg, nvgRGBA(0,0,0,128)); nvgFill(vg); // Drop shadow shadowPaint = nvgBoxGradient(vg, x,y+2, w,h, cornerRadius*2, 10, nvgRGBA(0,0,0,128), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, x-10,y-10, w+20,h+30); nvgRoundedRect(vg, x,y, w,h, cornerRadius); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, shadowPaint); nvgFill(vg); // Header headerPaint = nvgLinearGradient(vg, x,y,x,y+15, nvgRGBA(255,255,255,8), nvgRGBA(0,0,0,16)); nvgBeginPath(vg); nvgRoundedRect(vg, x+1,y+1, w-2,30, cornerRadius-1); nvgFillPaint(vg, headerPaint); nvgFill(vg); nvgBeginPath(vg); nvgMoveTo(vg, x+0.5f, y+0.5f+30); nvgLineTo(vg, x+0.5f+w-1, y+0.5f+30); nvgStrokeColor(vg, nvgRGBA(0,0,0,32)); nvgStroke(vg); nvgFontSize(vg, 15.0f); nvgFontFace(vg, "sans-bold"); nvgTextAlign(vg,NVG_ALIGN_CENTER|NVG_ALIGN_MIDDLE); nvgFontBlur(vg,2); nvgFillColor(vg, nvgRGBA(0,0,0,128)); nvgText(vg, x+w/2,y+16+1, title, NULL); nvgFontBlur(vg,0); nvgFillColor(vg, nvgRGBA(220,220,220,160)); nvgText(vg, x+w/2,y+16, title, NULL); nvgRestore(vg); } void drawSearchBox(NVGcontext* vg, const char* text, float x, float y, float w, float h) { NVGpaint bg; char icon[8]; float cornerRadius = h/2-1; // Edit bg = nvgBoxGradient(vg, x,y+1.5f, w,h, h/2,5, nvgRGBA(0,0,0,16), nvgRGBA(0,0,0,92)); nvgBeginPath(vg); nvgRoundedRect(vg, x,y, w,h, cornerRadius); nvgFillPaint(vg, bg); nvgFill(vg); /* nvgBeginPath(vg); nvgRoundedRect(vg, x+0.5f,y+0.5f, w-1,h-1, cornerRadius-0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,48)); nvgStroke(vg);*/ nvgFontSize(vg, h*1.3f); nvgFontFace(vg, "icons"); nvgFillColor(vg, nvgRGBA(255,255,255,64)); nvgTextAlign(vg,NVG_ALIGN_CENTER|NVG_ALIGN_MIDDLE); nvgText(vg, x+h*0.55f, y+h*0.55f, cpToUTF8(ICON_SEARCH,icon), NULL); nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,32)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x+h*1.05f,y+h*0.5f,text, NULL); nvgFontSize(vg, h*1.3f); nvgFontFace(vg, "icons"); nvgFillColor(vg, nvgRGBA(255,255,255,32)); nvgTextAlign(vg,NVG_ALIGN_CENTER|NVG_ALIGN_MIDDLE); nvgText(vg, x+w-h*0.55f, y+h*0.55f, cpToUTF8(ICON_CIRCLED_CROSS,icon), NULL); } void drawDropDown(NVGcontext* vg, const char* text, float x, float y, float w, float h) { NVGpaint bg; char icon[8]; float cornerRadius = 4.0f; bg = nvgLinearGradient(vg, x,y,x,y+h, nvgRGBA(255,255,255,16), nvgRGBA(0,0,0,16)); nvgBeginPath(vg); nvgRoundedRect(vg, x+1,y+1, w-2,h-2, cornerRadius-1); nvgFillPaint(vg, bg); nvgFill(vg); nvgBeginPath(vg); nvgRoundedRect(vg, x+0.5f,y+0.5f, w-1,h-1, cornerRadius-0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,48)); nvgStroke(vg); nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,160)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x+h*0.3f,y+h*0.5f,text, NULL); nvgFontSize(vg, h*1.3f); nvgFontFace(vg, "icons"); nvgFillColor(vg, nvgRGBA(255,255,255,64)); nvgTextAlign(vg,NVG_ALIGN_CENTER|NVG_ALIGN_MIDDLE); nvgText(vg, x+w-h*0.5f, y+h*0.5f, cpToUTF8(ICON_CHEVRON_RIGHT,icon), NULL); } void drawLabel(NVGcontext* vg, const char* text, float x, float y, float w, float h) { NVG_NOTUSED(w); nvgFontSize(vg, 15.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,128)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x,y+h*0.5f,text, NULL); } void drawEditBoxBase(NVGcontext* vg, float x, float y, float w, float h) { NVGpaint bg; // Edit bg = nvgBoxGradient(vg, x+1,y+1+1.5f, w-2,h-2, 3,4, nvgRGBA(255,255,255,32), nvgRGBA(32,32,32,32)); nvgBeginPath(vg); nvgRoundedRect(vg, x+1,y+1, w-2,h-2, 4-1); nvgFillPaint(vg, bg); nvgFill(vg); nvgBeginPath(vg); nvgRoundedRect(vg, x+0.5f,y+0.5f, w-1,h-1, 4-0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,48)); nvgStroke(vg); } void drawEditBox(NVGcontext* vg, const char* text, float x, float y, float w, float h) { drawEditBoxBase(vg, x,y, w,h); nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,64)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x+h*0.3f,y+h*0.5f,text, NULL); } void drawEditBoxNum(NVGcontext* vg, const char* text, const char* units, float x, float y, float w, float h) { float uw; drawEditBoxBase(vg, x,y, w,h); uw = nvgTextBounds(vg, 0,0, units, NULL, NULL); nvgFontSize(vg, 15.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,64)); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_MIDDLE); nvgText(vg, x+w-h*0.3f,y+h*0.5f,units, NULL); nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,128)); nvgTextAlign(vg,NVG_ALIGN_RIGHT|NVG_ALIGN_MIDDLE); nvgText(vg, x+w-uw-h*0.5f,y+h*0.5f,text, NULL); } void drawCheckBox(NVGcontext* vg, const char* text, float x, float y, float w, float h) { NVGpaint bg; char icon[8]; NVG_NOTUSED(w); nvgFontSize(vg, 15.0f); nvgFontFace(vg, "sans"); nvgFillColor(vg, nvgRGBA(255,255,255,160)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x+28,y+h*0.5f,text, NULL); bg = nvgBoxGradient(vg, x+1,y+(int)(h*0.5f)-9+1, 18,18, 3,3, nvgRGBA(0,0,0,32), nvgRGBA(0,0,0,92)); nvgBeginPath(vg); nvgRoundedRect(vg, x+1,y+(int)(h*0.5f)-9, 18,18, 3); nvgFillPaint(vg, bg); nvgFill(vg); nvgFontSize(vg, 33); nvgFontFace(vg, "icons"); nvgFillColor(vg, nvgRGBA(255,255,255,128)); nvgTextAlign(vg,NVG_ALIGN_CENTER|NVG_ALIGN_MIDDLE); nvgText(vg, x+9+2, y+h*0.5f, cpToUTF8(ICON_CHECK,icon), NULL); } void drawButton(NVGcontext* vg, int preicon, const char* text, float x, float y, float w, float h, NVGcolor col) { NVGpaint bg; char icon[8]; float cornerRadius = 4.0f; float tw = 0, iw = 0; bg = nvgLinearGradient(vg, x,y,x,y+h, nvgRGBA(255,255,255,isBlack(col)?16:32), nvgRGBA(0,0,0,isBlack(col)?16:32)); nvgBeginPath(vg); nvgRoundedRect(vg, x+1,y+1, w-2,h-2, cornerRadius-1); if (!isBlack(col)) { nvgFillColor(vg, col); nvgFill(vg); } nvgFillPaint(vg, bg); nvgFill(vg); nvgBeginPath(vg); nvgRoundedRect(vg, x+0.5f,y+0.5f, w-1,h-1, cornerRadius-0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,48)); nvgStroke(vg); nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans-bold"); tw = nvgTextBounds(vg, 0,0, text, NULL, NULL); if (preicon != 0) { nvgFontSize(vg, h*1.3f); nvgFontFace(vg, "icons"); iw = nvgTextBounds(vg, 0,0, cpToUTF8(preicon,icon), NULL, NULL); iw += h*0.15f; } if (preicon != 0) { nvgFontSize(vg, h*1.3f); nvgFontFace(vg, "icons"); nvgFillColor(vg, nvgRGBA(255,255,255,96)); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgText(vg, x+w*0.5f-tw*0.5f-iw*0.75f, y+h*0.5f, cpToUTF8(preicon,icon), NULL); } nvgFontSize(vg, 17.0f); nvgFontFace(vg, "sans-bold"); nvgTextAlign(vg,NVG_ALIGN_LEFT|NVG_ALIGN_MIDDLE); nvgFillColor(vg, nvgRGBA(0,0,0,160)); nvgText(vg, x+w*0.5f-tw*0.5f+iw*0.25f,y+h*0.5f-1,text, NULL); nvgFillColor(vg, nvgRGBA(255,255,255,160)); nvgText(vg, x+w*0.5f-tw*0.5f+iw*0.25f,y+h*0.5f,text, NULL); } void drawSlider(NVGcontext* vg, float pos, float x, float y, float w, float h) { NVGpaint bg, knob; float cy = y+(int)(h*0.5f); float kr = (int)(h*0.25f); nvgSave(vg); // nvgClearState(vg); // Slot bg = nvgBoxGradient(vg, x,cy-2+1, w,4, 2,2, nvgRGBA(0,0,0,32), nvgRGBA(0,0,0,128)); nvgBeginPath(vg); nvgRoundedRect(vg, x,cy-2, w,4, 2); nvgFillPaint(vg, bg); nvgFill(vg); // Knob Shadow bg = nvgRadialGradient(vg, x+(int)(pos*w),cy+1, kr-3,kr+3, nvgRGBA(0,0,0,64), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, x+(int)(pos*w)-kr-5,cy-kr-5,kr*2+5+5,kr*2+5+5+3); nvgCircle(vg, x+(int)(pos*w),cy, kr); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, bg); nvgFill(vg); // Knob knob = nvgLinearGradient(vg, x,cy-kr,x,cy+kr, nvgRGBA(255,255,255,16), nvgRGBA(0,0,0,16)); nvgBeginPath(vg); nvgCircle(vg, x+(int)(pos*w),cy, kr-1); nvgFillColor(vg, nvgRGBA(40,43,48,255)); nvgFill(vg); nvgFillPaint(vg, knob); nvgFill(vg); nvgBeginPath(vg); nvgCircle(vg, x+(int)(pos*w),cy, kr-0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,92)); nvgStroke(vg); nvgRestore(vg); } void drawEyes(NVGcontext* vg, float x, float y, float w, float h, float mx, float my, float t) { NVGpaint gloss, bg; float ex = w *0.23f; float ey = h * 0.5f; float lx = x + ex; float ly = y + ey; float rx = x + w - ex; float ry = y + ey; float dx,dy,d; float br = (ex < ey ? ex : ey) * 0.5f; float blink = 1 - pow(sinf(t*0.5f),200)*0.8f; bg = nvgLinearGradient(vg, x,y+h*0.5f,x+w*0.1f,y+h, nvgRGBA(0,0,0,32), nvgRGBA(0,0,0,16)); nvgBeginPath(vg); nvgEllipse(vg, lx+3.0f,ly+16.0f, ex,ey); nvgEllipse(vg, rx+3.0f,ry+16.0f, ex,ey); nvgFillPaint(vg, bg); nvgFill(vg); bg = nvgLinearGradient(vg, x,y+h*0.25f,x+w*0.1f,y+h, nvgRGBA(220,220,220,255), nvgRGBA(128,128,128,255)); nvgBeginPath(vg); nvgEllipse(vg, lx,ly, ex,ey); nvgEllipse(vg, rx,ry, ex,ey); nvgFillPaint(vg, bg); nvgFill(vg); dx = (mx - rx) / (ex * 10); dy = (my - ry) / (ey * 10); d = sqrtf(dx*dx+dy*dy); if (d > 1.0f) { dx /= d; dy /= d; } dx *= ex*0.4f; dy *= ey*0.5f; nvgBeginPath(vg); nvgEllipse(vg, lx+dx,ly+dy+ey*0.25f*(1-blink), br,br*blink); nvgFillColor(vg, nvgRGBA(32,32,32,255)); nvgFill(vg); dx = (mx - rx) / (ex * 10); dy = (my - ry) / (ey * 10); d = sqrtf(dx*dx+dy*dy); if (d > 1.0f) { dx /= d; dy /= d; } dx *= ex*0.4f; dy *= ey*0.5f; nvgBeginPath(vg); nvgEllipse(vg, rx+dx,ry+dy+ey*0.25f*(1-blink), br,br*blink); nvgFillColor(vg, nvgRGBA(32,32,32,255)); nvgFill(vg); gloss = nvgRadialGradient(vg, lx-ex*0.25f,ly-ey*0.5f, ex*0.1f,ex*0.75f, nvgRGBA(255,255,255,128), nvgRGBA(255,255,255,0)); nvgBeginPath(vg); nvgEllipse(vg, lx,ly, ex,ey); nvgFillPaint(vg, gloss); nvgFill(vg); gloss = nvgRadialGradient(vg, rx-ex*0.25f,ry-ey*0.5f, ex*0.1f,ex*0.75f, nvgRGBA(255,255,255,128), nvgRGBA(255,255,255,0)); nvgBeginPath(vg); nvgEllipse(vg, rx,ry, ex,ey); nvgFillPaint(vg, gloss); nvgFill(vg); } void drawGraph(NVGcontext* vg, float x, float y, float w, float h, float t) { NVGpaint bg; float samples[6]; float sx[6], sy[6]; float dx = w/5.0f; int i; samples[0] = (1+sinf(t*1.2345f+cosf(t*0.33457f)*0.44f))*0.5f; samples[1] = (1+sinf(t*0.68363f+cosf(t*1.3f)*1.55f))*0.5f; samples[2] = (1+sinf(t*1.1642f+cosf(t*0.33457)*1.24f))*0.5f; samples[3] = (1+sinf(t*0.56345f+cosf(t*1.63f)*0.14f))*0.5f; samples[4] = (1+sinf(t*1.6245f+cosf(t*0.254f)*0.3f))*0.5f; samples[5] = (1+sinf(t*0.345f+cosf(t*0.03f)*0.6f))*0.5f; for (i = 0; i < 6; i++) { sx[i] = x+i*dx; sy[i] = y+h*samples[i]*0.8f; } // Graph background bg = nvgLinearGradient(vg, x,y,x,y+h, nvgRGBA(0,160,192,0), nvgRGBA(0,160,192,64)); nvgBeginPath(vg); nvgMoveTo(vg, sx[0], sy[0]); for (i = 1; i < 6; i++) nvgBezierTo(vg, sx[i-1]+dx*0.5f,sy[i-1], sx[i]-dx*0.5f,sy[i], sx[i],sy[i]); nvgLineTo(vg, x+w, y+h); nvgLineTo(vg, x, y+h); nvgFillPaint(vg, bg); nvgFill(vg); // Graph line nvgBeginPath(vg); nvgMoveTo(vg, sx[0], sy[0]+2); for (i = 1; i < 6; i++) nvgBezierTo(vg, sx[i-1]+dx*0.5f,sy[i-1]+2, sx[i]-dx*0.5f,sy[i]+2, sx[i],sy[i]+2); nvgStrokeColor(vg, nvgRGBA(0,0,0,32)); nvgStrokeWidth(vg, 3.0f); nvgStroke(vg); nvgBeginPath(vg); nvgMoveTo(vg, sx[0], sy[0]); for (i = 1; i < 6; i++) nvgBezierTo(vg, sx[i-1]+dx*0.5f,sy[i-1], sx[i]-dx*0.5f,sy[i], sx[i],sy[i]); nvgStrokeColor(vg, nvgRGBA(0,160,192,255)); nvgStrokeWidth(vg, 3.0f); nvgStroke(vg); // Graph sample pos for (i = 0; i < 6; i++) { bg = nvgRadialGradient(vg, sx[i],sy[i]+2, 3.0f,8.0f, nvgRGBA(0,0,0,32), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, sx[i]-10, sy[i]-10+2, 20,20); nvgFillPaint(vg, bg); nvgFill(vg); } nvgBeginPath(vg); for (i = 0; i < 6; i++) nvgCircle(vg, sx[i], sy[i], 4.0f); nvgFillColor(vg, nvgRGBA(0,160,192,255)); nvgFill(vg); nvgBeginPath(vg); for (i = 0; i < 6; i++) nvgCircle(vg, sx[i], sy[i], 2.0f); nvgFillColor(vg, nvgRGBA(220,220,220,255)); nvgFill(vg); nvgStrokeWidth(vg, 1.0f); } void drawSpinner(NVGcontext* vg, float cx, float cy, float r, float t) { float a0 = 0.0f + t*6; float a1 = NVG_PI + t*6; float r0 = r; float r1 = r * 0.75f; float ax,ay, bx,by; NVGpaint paint; nvgSave(vg); nvgBeginPath(vg); nvgArc(vg, cx,cy, r0, a0, a1, NVG_CW); nvgArc(vg, cx,cy, r1, a1, a0, NVG_CCW); nvgClosePath(vg); ax = cx + cosf(a0) * (r0+r1)*0.5f; ay = cy + sinf(a0) * (r0+r1)*0.5f; bx = cx + cosf(a1) * (r0+r1)*0.5f; by = cy + sinf(a1) * (r0+r1)*0.5f; paint = nvgLinearGradient(vg, ax,ay, bx,by, nvgRGBA(0,0,0,0), nvgRGBA(0,0,0,128)); nvgFillPaint(vg, paint); nvgFill(vg); nvgRestore(vg); } void drawThumbnails(NVGcontext* vg, float x, float y, float w, float h, const int* images, int nimages, float t) { float cornerRadius = 3.0f; NVGpaint shadowPaint, imgPaint, fadePaint; float ix,iy,iw,ih; float thumb = 60.0f; float arry = 30.5f; int imgw, imgh; float stackh = (nimages/2) * (thumb+10) + 10; int i; float u = (1+cosf(t*0.5f))*0.5f; float u2 = (1-cosf(t*0.2f))*0.5f; float scrollh, dv; nvgSave(vg); // nvgClearState(vg); // Drop shadow shadowPaint = nvgBoxGradient(vg, x,y+4, w,h, cornerRadius*2, 20, nvgRGBA(0,0,0,128), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, x-10,y-10, w+20,h+30); nvgRoundedRect(vg, x,y, w,h, cornerRadius); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, shadowPaint); nvgFill(vg); // Window nvgBeginPath(vg); nvgRoundedRect(vg, x,y, w,h, cornerRadius); nvgMoveTo(vg, x-10,y+arry); nvgLineTo(vg, x+1,y+arry-11); nvgLineTo(vg, x+1,y+arry+11); nvgFillColor(vg, nvgRGBA(200,200,200,255)); nvgFill(vg); nvgSave(vg); nvgScissor(vg, x,y,w,h); nvgTranslate(vg, 0, -(stackh - h)*u); dv = 1.0f / (float)(nimages-1); for (i = 0; i < nimages; i++) { float tx, ty, v, a; tx = x+10; ty = y+10; tx += (i%2) * (thumb+10); ty += (i/2) * (thumb+10); nvgImageSize(vg, images[i], &imgw, &imgh); if (imgw < imgh) { iw = thumb; ih = iw * (float)imgh/(float)imgw; ix = 0; iy = -(ih-thumb)*0.5f; } else { ih = thumb; iw = ih * (float)imgw/(float)imgh; ix = -(iw-thumb)*0.5f; iy = 0; } v = i * dv; a = clampf((u2-v) / dv, 0, 1); if (a < 1.0f) drawSpinner(vg, tx+thumb/2,ty+thumb/2, thumb*0.25f, t); imgPaint = nvgImagePattern(vg, tx+ix, ty+iy, iw,ih, 0.0f/180.0f*NVG_PI, images[i], a); nvgBeginPath(vg); nvgRoundedRect(vg, tx,ty, thumb,thumb, 5); nvgFillPaint(vg, imgPaint); nvgFill(vg); shadowPaint = nvgBoxGradient(vg, tx-1,ty, thumb+2,thumb+2, 5, 3, nvgRGBA(0,0,0,128), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, tx-5,ty-5, thumb+10,thumb+10); nvgRoundedRect(vg, tx,ty, thumb,thumb, 6); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, shadowPaint); nvgFill(vg); nvgBeginPath(vg); nvgRoundedRect(vg, tx+0.5f,ty+0.5f, thumb-1,thumb-1, 4-0.5f); nvgStrokeWidth(vg,1.0f); nvgStrokeColor(vg, nvgRGBA(255,255,255,192)); nvgStroke(vg); } nvgRestore(vg); // Hide fades fadePaint = nvgLinearGradient(vg, x,y,x,y+6, nvgRGBA(200,200,200,255), nvgRGBA(200,200,200,0)); nvgBeginPath(vg); nvgRect(vg, x+4,y,w-8,6); nvgFillPaint(vg, fadePaint); nvgFill(vg); fadePaint = nvgLinearGradient(vg, x,y+h,x,y+h-6, nvgRGBA(200,200,200,255), nvgRGBA(200,200,200,0)); nvgBeginPath(vg); nvgRect(vg, x+4,y+h-6,w-8,6); nvgFillPaint(vg, fadePaint); nvgFill(vg); // Scroll bar shadowPaint = nvgBoxGradient(vg, x+w-12+1,y+4+1, 8,h-8, 3,4, nvgRGBA(0,0,0,32), nvgRGBA(0,0,0,92)); nvgBeginPath(vg); nvgRoundedRect(vg, x+w-12,y+4, 8,h-8, 3); nvgFillPaint(vg, shadowPaint); // nvgFillColor(vg, nvgRGBA(255,0,0,128)); nvgFill(vg); scrollh = (h/stackh) * (h-8); shadowPaint = nvgBoxGradient(vg, x+w-12-1,y+4+(h-8-scrollh)*u-1, 8,scrollh, 3,4, nvgRGBA(220,220,220,255), nvgRGBA(128,128,128,255)); nvgBeginPath(vg); nvgRoundedRect(vg, x+w-12+1,y+4+1 + (h-8-scrollh)*u, 8-2,scrollh-2, 2); nvgFillPaint(vg, shadowPaint); // nvgFillColor(vg, nvgRGBA(0,0,0,128)); nvgFill(vg); nvgRestore(vg); } void drawColorwheel(NVGcontext* vg, float x, float y, float w, float h, float t) { int i; float r0, r1, ax,ay, bx,by, cx,cy, aeps, r; float hue = sinf(t * 0.12f); NVGpaint paint; nvgSave(vg); /* nvgBeginPath(vg); nvgRect(vg, x,y,w,h); nvgFillColor(vg, nvgRGBA(255,0,0,128)); nvgFill(vg);*/ cx = x + w*0.5f; cy = y + h*0.5f; r1 = (w < h ? w : h) * 0.5f - 5.0f; r0 = r1 - 20.0f; aeps = 0.5f / r1; // half a pixel arc length in radians (2pi cancels out). for (i = 0; i < 6; i++) { float a0 = (float)i / 6.0f * NVG_PI * 2.0f - aeps; float a1 = (float)(i+1.0f) / 6.0f * NVG_PI * 2.0f + aeps; nvgBeginPath(vg); nvgArc(vg, cx,cy, r0, a0, a1, NVG_CW); nvgArc(vg, cx,cy, r1, a1, a0, NVG_CCW); nvgClosePath(vg); ax = cx + cosf(a0) * (r0+r1)*0.5f; ay = cy + sinf(a0) * (r0+r1)*0.5f; bx = cx + cosf(a1) * (r0+r1)*0.5f; by = cy + sinf(a1) * (r0+r1)*0.5f; paint = nvgLinearGradient(vg, ax,ay, bx,by, nvgHSLA(a0/(NVG_PI*2),1.0f,0.55f,255), nvgHSLA(a1/(NVG_PI*2),1.0f,0.55f,255)); nvgFillPaint(vg, paint); nvgFill(vg); } nvgBeginPath(vg); nvgCircle(vg, cx,cy, r0-0.5f); nvgCircle(vg, cx,cy, r1+0.5f); nvgStrokeColor(vg, nvgRGBA(0,0,0,64)); nvgStrokeWidth(vg, 1.0f); nvgStroke(vg); // Selector nvgSave(vg); nvgTranslate(vg, cx,cy); nvgRotate(vg, hue*NVG_PI*2); // Marker on nvgStrokeWidth(vg, 2.0f); nvgBeginPath(vg); nvgRect(vg, r0-1,-3,r1-r0+2,6); nvgStrokeColor(vg, nvgRGBA(255,255,255,192)); nvgStroke(vg); paint = nvgBoxGradient(vg, r0-3,-5,r1-r0+6,10, 2,4, nvgRGBA(0,0,0,128), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, r0-2-10,-4-10,r1-r0+4+20,8+20); nvgRect(vg, r0-2,-4,r1-r0+4,8); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, paint); nvgFill(vg); // Center triangle r = r0 - 6; ax = cosf(120.0f/180.0f*NVG_PI) * r; ay = sinf(120.0f/180.0f*NVG_PI) * r; bx = cosf(-120.0f/180.0f*NVG_PI) * r; by = sinf(-120.0f/180.0f*NVG_PI) * r; nvgBeginPath(vg); nvgMoveTo(vg, r,0); nvgLineTo(vg, ax,ay); nvgLineTo(vg, bx,by); nvgClosePath(vg); paint = nvgLinearGradient(vg, r,0, ax,ay, nvgHSLA(hue,1.0f,0.5f,255), nvgRGBA(255,255,255,255)); nvgFillPaint(vg, paint); nvgFill(vg); paint = nvgLinearGradient(vg, (r+ax)*0.5f,(0+ay)*0.5f, bx,by, nvgRGBA(0,0,0,0), nvgRGBA(0,0,0,255)); nvgFillPaint(vg, paint); nvgFill(vg); nvgStrokeColor(vg, nvgRGBA(0,0,0,64)); nvgStroke(vg); // Select circle on triangle ax = cosf(120.0f/180.0f*NVG_PI) * r*0.3f; ay = sinf(120.0f/180.0f*NVG_PI) * r*0.4f; nvgStrokeWidth(vg, 2.0f); nvgBeginPath(vg); nvgCircle(vg, ax,ay,5); nvgStrokeColor(vg, nvgRGBA(255,255,255,192)); nvgStroke(vg); paint = nvgRadialGradient(vg, ax,ay, 7,9, nvgRGBA(0,0,0,64), nvgRGBA(0,0,0,0)); nvgBeginPath(vg); nvgRect(vg, ax-20,ay-20,40,40); nvgCircle(vg, ax,ay,7); nvgPathWinding(vg, NVG_HOLE); nvgFillPaint(vg, paint); nvgFill(vg); nvgRestore(vg); nvgRestore(vg); } void drawLines(NVGcontext* vg, float x, float y, float w, float h, float t) { int i, j; float pad = 5.0f, s = w/9.0f - pad*2; float pts[4*2], fx, fy; int joins[3] = {NVG_MITER, NVG_ROUND, NVG_BEVEL}; int caps[3] = {NVG_BUTT, NVG_ROUND, NVG_SQUARE}; NVG_NOTUSED(h); nvgSave(vg); pts[0] = -s*0.25f + cosf(t*0.3f) * s*0.5f; pts[1] = sinf(t*0.3f) * s*0.5f; pts[2] = -s*0.25; pts[3] = 0; pts[4] = s*0.25f; pts[5] = 0; pts[6] = s*0.25f + cosf(-t*0.3f) * s*0.5f; pts[7] = sinf(-t*0.3f) * s*0.5f; for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { fx = x + s*0.5f + (i*3+j)/9.0f*w + pad; fy = y - s*0.5f + pad; nvgLineCap(vg, caps[i]); nvgLineJoin(vg, joins[j]); nvgStrokeWidth(vg, s*0.3f); nvgStrokeColor(vg, nvgRGBA(0,0,0,160)); nvgBeginPath(vg); nvgMoveTo(vg, fx+pts[0], fy+pts[1]); nvgLineTo(vg, fx+pts[2], fy+pts[3]); nvgLineTo(vg, fx+pts[4], fy+pts[5]); nvgLineTo(vg, fx+pts[6], fy+pts[7]); nvgStroke(vg); nvgLineCap(vg, NVG_BUTT); nvgLineJoin(vg, NVG_BEVEL); nvgStrokeWidth(vg, 1.0f); nvgStrokeColor(vg, nvgRGBA(0,192,255,255)); nvgBeginPath(vg); nvgMoveTo(vg, fx+pts[0], fy+pts[1]); nvgLineTo(vg, fx+pts[2], fy+pts[3]); nvgLineTo(vg, fx+pts[4], fy+pts[5]); nvgLineTo(vg, fx+pts[6], fy+pts[7]); nvgStroke(vg); } } nvgRestore(vg); } int loadDemoData(NVGcontext* vg, DemoData* data) { int i; if (vg == NULL) return -1; for (i = 0; i < 12; i++) { char file[128]; snprintf(file, 128, "../example/images/image%d.jpg", i+1); data->images[i] = nvgCreateImage(vg, file, 0); if (data->images[i] == 0) { printf("Could not load %s.\n", file); return -1; } } data->fontIcons = nvgCreateFont(vg, "icons", "../example/entypo.ttf"); if (data->fontIcons == -1) { printf("Could not add font icons.\n"); return -1; } data->fontNormal = nvgCreateFont(vg, "sans", "../example/Roboto-Regular.ttf"); if (data->fontNormal == -1) { printf("Could not add font italic.\n"); return -1; } data->fontBold = nvgCreateFont(vg, "sans-bold", "../example/Roboto-Bold.ttf"); if (data->fontBold == -1) { printf("Could not add font bold.\n"); return -1; } data->fontEmoji = nvgCreateFont(vg, "emoji", "../example/NotoEmoji-Regular.ttf"); if (data->fontEmoji == -1) { printf("Could not add font emoji.\n"); return -1; } nvgAddFallbackFontId(vg, data->fontNormal, data->fontEmoji); nvgAddFallbackFontId(vg, data->fontBold, data->fontEmoji); return 0; } void freeDemoData(NVGcontext* vg, DemoData* data) { int i; if (vg == NULL) return; for (i = 0; i < 12; i++) nvgDeleteImage(vg, data->images[i]); } void drawParagraph(NVGcontext* vg, float x, float y, float width, float height, float mx, float my) { NVGtextRow rows[3]; NVGglyphPosition glyphs[100]; const char* text = "This is longer chunk of text.\n \n Would have used lorem ipsum but she was busy jumping over the lazy dog with the fox and all the men who came to the aid of the party.🎉"; const char* start; const char* end; int nrows, i, nglyphs, j, lnum = 0; float lineh; float caretx, px; float bounds[4]; float a; const char* hoverText = "Hover your mouse over the text to see calculated caret position."; float gx,gy; int gutter = 0; const char* boxText = "Testing\nsome multiline\ntext."; NVG_NOTUSED(height); nvgSave(vg); nvgFontSize(vg, 15.0f); nvgFontFace(vg, "sans"); nvgTextAlign(vg, NVG_ALIGN_LEFT|NVG_ALIGN_TOP); nvgTextMetrics(vg, NULL, NULL, &lineh); // The text break API can be used to fill a large buffer of rows, // or to iterate over the text just few lines (or just one) at a time. // The "next" variable of the last returned item tells where to continue. start = text; end = text + strlen(text); while ((nrows = nvgTextBreakLines(vg, start, end, width, rows, 3))) { for (i = 0; i < nrows; i++) { NVGtextRow* row = &rows[i]; int hit = mx > x && mx < (x+width) && my >= y && my < (y+lineh); nvgBeginPath(vg); nvgFillColor(vg, nvgRGBA(255,255,255,hit?64:16)); nvgRect(vg, x + row->minx, y, row->maxx - row->minx, lineh); nvgFill(vg); nvgFillColor(vg, nvgRGBA(255,255,255,255)); nvgText(vg, x, y, row->start, row->end); if (hit) { caretx = (mx < x+row->width/2) ? x : x+row->width; px = x; nglyphs = nvgTextGlyphPositions(vg, x, y, row->start, row->end, glyphs, 100); for (j = 0; j < nglyphs; j++) { float x0 = glyphs[j].x; float x1 = (j+1 < nglyphs) ? glyphs[j+1].x : x+row->width; float gx = x0 * 0.3f + x1 * 0.7f; if (mx >= px && mx < gx) caretx = glyphs[j].x; px = gx; } nvgBeginPath(vg); nvgFillColor(vg, nvgRGBA(255,192,0,255)); nvgRect(vg, caretx, y, 1, lineh); nvgFill(vg); gutter = lnum+1; gx = x - 10; gy = y + lineh/2; } lnum++; y += lineh; } // Keep going... start = rows[nrows-1].next; } if (gutter) { char txt[16]; snprintf(txt, sizeof(txt), "%d", gutter); nvgFontSize(vg, 12.0f); nvgTextAlign(vg, NVG_ALIGN_RIGHT|NVG_ALIGN_MIDDLE); nvgTextBounds(vg, gx,gy, txt, NULL, bounds); nvgBeginPath(vg); nvgFillColor(vg, nvgRGBA(255,192,0,255)); nvgRoundedRect(vg, (int)bounds[0]-4,(int)bounds[1]-2, (int)(bounds[2]-bounds[0])+8, (int)(bounds[3]-bounds[1])+4, ((int)(bounds[3]-bounds[1])+4)/2-1); nvgFill(vg); nvgFillColor(vg, nvgRGBA(32,32,32,255)); nvgText(vg, gx,gy, txt, NULL); } y += 20.0f; nvgFontSize(vg, 11.0f); nvgTextAlign(vg, NVG_ALIGN_LEFT|NVG_ALIGN_TOP); nvgTextLineHeight(vg, 1.2f); nvgTextBoxBounds(vg, x,y, 150, hoverText, NULL, bounds); // Fade the tooltip out when close to it. gx = clampf(mx, bounds[0], bounds[2]) - mx; gy = clampf(my, bounds[1], bounds[3]) - my; a = sqrtf(gx*gx + gy*gy) / 30.0f; a = clampf(a, 0, 1); nvgGlobalAlpha(vg, a); nvgBeginPath(vg); nvgFillColor(vg, nvgRGBA(220,220,220,255)); nvgRoundedRect(vg, bounds[0]-2,bounds[1]-2, (int)(bounds[2]-bounds[0])+4, (int)(bounds[3]-bounds[1])+4, 3); px = (int)((bounds[2]+bounds[0])/2); nvgMoveTo(vg, px,bounds[1] - 10); nvgLineTo(vg, px+7,bounds[1]+1); nvgLineTo(vg, px-7,bounds[1]+1); nvgFill(vg); nvgFillColor(vg, nvgRGBA(0,0,0,220)); nvgTextBox(vg, x,y, 150, hoverText, NULL); nvgRestore(vg); } void drawWidths(NVGcontext* vg, float x, float y, float width) { int i; nvgSave(vg); nvgStrokeColor(vg, nvgRGBA(0,0,0,255)); for (i = 0; i < 20; i++) { float w = (i+0.5f)*0.1f; nvgStrokeWidth(vg, w); nvgBeginPath(vg); nvgMoveTo(vg, x,y); nvgLineTo(vg, x+width,y+width*0.3f); nvgStroke(vg); y += 10; } nvgRestore(vg); } void drawCaps(NVGcontext* vg, float x, float y, float width) { int i; int caps[3] = {NVG_BUTT, NVG_ROUND, NVG_SQUARE}; float lineWidth = 8.0f; nvgSave(vg); nvgBeginPath(vg); nvgRect(vg, x-lineWidth/2, y, width+lineWidth, 40); nvgFillColor(vg, nvgRGBA(255,255,255,32)); nvgFill(vg); nvgBeginPath(vg); nvgRect(vg, x, y, width, 40); nvgFillColor(vg, nvgRGBA(255,255,255,32)); nvgFill(vg); nvgStrokeWidth(vg, lineWidth); for (i = 0; i < 3; i++) { nvgLineCap(vg, caps[i]); nvgStrokeColor(vg, nvgRGBA(0,0,0,255)); nvgBeginPath(vg); nvgMoveTo(vg, x, y + i*10 + 5); nvgLineTo(vg, x+width, y + i*10 + 5); nvgStroke(vg); } nvgRestore(vg); } void drawScissor(NVGcontext* vg, float x, float y, float t) { nvgSave(vg); // Draw first rect and set scissor to it's area. nvgTranslate(vg, x, y); nvgRotate(vg, nvgDegToRad(5)); nvgBeginPath(vg); nvgRect(vg, -20,-20,60,40); nvgFillColor(vg, nvgRGBA(255,0,0,255)); nvgFill(vg); nvgScissor(vg, -20,-20,60,40); // Draw second rectangle with offset and rotation. nvgTranslate(vg, 40,0); nvgRotate(vg, t); // Draw the intended second rectangle without any scissoring. nvgSave(vg); nvgResetScissor(vg); nvgBeginPath(vg); nvgRect(vg, -20,-10,60,30); nvgFillColor(vg, nvgRGBA(255,128,0,64)); nvgFill(vg); nvgRestore(vg); // Draw second rectangle with combined scissoring. nvgIntersectScissor(vg, -20,-10,60,30); nvgBeginPath(vg); nvgRect(vg, -20,-10,60,30); nvgFillColor(vg, nvgRGBA(255,128,0,255)); nvgFill(vg); nvgRestore(vg); } void renderDemo(NVGcontext* vg, float mx, float my, float width, float height, float t, int blowup, DemoData* data) { float x,y,popy; drawEyes(vg, width - 250, 50, 150, 100, mx, my, t); drawParagraph(vg, width - 450, 50, 150, 100, mx, my); drawGraph(vg, 0, height/2, width, height/2, t); drawColorwheel(vg, width - 300, height - 300, 250.0f, 250.0f, t); // Line joints drawLines(vg, 120, height-50, 600, 50, t); // Line caps drawWidths(vg, 10, 50, 30); // Line caps drawCaps(vg, 10, 300, 30); drawScissor(vg, 50, height-80, t); nvgSave(vg); if (blowup) { nvgRotate(vg, sinf(t*0.3f)*5.0f/180.0f*NVG_PI); nvgScale(vg, 2.0f, 2.0f); } // Widgets drawWindow(vg, "Widgets `n Stuff", 50, 50, 300, 400); x = 60; y = 95; drawSearchBox(vg, "Search", x,y,280,25); y += 40; drawDropDown(vg, "Effects", x,y,280,28); popy = y + 14; y += 45; // Form drawLabel(vg, "Login", x,y, 280,20); y += 25; drawEditBox(vg, "Email", x,y, 280,28); y += 35; drawEditBox(vg, "Password", x,y, 280,28); y += 38; drawCheckBox(vg, "Remember me", x,y, 140,28); drawButton(vg, ICON_LOGIN, "Sign in", x+138, y, 140, 28, nvgRGBA(0,96,128,255)); y += 45; // Slider drawLabel(vg, "Diameter", x,y, 280,20); y += 25; drawEditBoxNum(vg, "123.00", "px", x+180,y, 100,28); drawSlider(vg, 0.4f, x,y, 170,28); y += 55; drawButton(vg, ICON_TRASH, "Delete", x, y, 160, 28, nvgRGBA(128,16,8,255)); drawButton(vg, 0, "Cancel", x+170, y, 110, 28, nvgRGBA(0,0,0,0)); // Thumbnails box drawThumbnails(vg, 365, popy-30, 160, 300, data->images, 12, t); nvgRestore(vg); } static int mini(int a, int b) { return a < b ? a : b; } static void unpremultiplyAlpha(unsigned char* image, int w, int h, int stride) { int x,y; // Unpremultiply for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = row[0], g = row[1], b = row[2], a = row[3]; if (a != 0) { row[0] = (int)mini(r*255/a, 255); row[1] = (int)mini(g*255/a, 255); row[2] = (int)mini(b*255/a, 255); } row += 4; } } // Defringe for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = 0, g = 0, b = 0, a = row[3], n = 0; if (a == 0) { if (x-1 > 0 && row[-1] != 0) { r += row[-4]; g += row[-3]; b += row[-2]; n++; } if (x+1 < w && row[7] != 0) { r += row[4]; g += row[5]; b += row[6]; n++; } if (y-1 > 0 && row[-stride+3] != 0) { r += row[-stride]; g += row[-stride+1]; b += row[-stride+2]; n++; } if (y+1 < h && row[stride+3] != 0) { r += row[stride]; g += row[stride+1]; b += row[stride+2]; n++; } if (n > 0) { row[0] = r/n; row[1] = g/n; row[2] = b/n; } } row += 4; } } } static void setAlpha(unsigned char* image, int w, int h, int stride, unsigned char a) { int x, y; for (y = 0; y < h; y++) { unsigned char* row = &image[y*stride]; for (x = 0; x < w; x++) row[x*4+3] = a; } } static void flipHorizontal(unsigned char* image, int w, int h, int stride) { int i = 0, j = h-1, k; while (i < j) { unsigned char* ri = &image[i * stride]; unsigned char* rj = &image[j * stride]; for (k = 0; k < w*4; k++) { unsigned char t = ri[k]; ri[k] = rj[k]; rj[k] = t; } i++; j--; } } void saveScreenShot(int w, int h, int premult, const char* name) { unsigned char* image = (unsigned char*)malloc(w*h*4); if (image == NULL) return; glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, image); if (premult) unpremultiplyAlpha(image, w, h, w*4); else setAlpha(image, w, h, w*4, 255); flipHorizontal(image, w, h, w*4); stbi_write_png(name, w, h, 4, image, w*4); free(image); }
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/LICENSE_OFL.txt
This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is copied below, and is also available with a FAQ at: http://scripts.sil.org/OFL ----------------------------------------------------------- SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007 ----------------------------------------------------------- PREAMBLE The goals of the Open Font License (OFL) are to stimulate worldwide development of collaborative font projects, to support the font creation efforts of academic and linguistic communities, and to provide a free and open framework in which fonts may be shared and improved in partnership with others. The OFL allows the licensed fonts to be used, studied, modified and redistributed freely as long as they are not sold by themselves. The fonts, including any derivative works, can be bundled, embedded, redistributed and/or sold with any software provided that any reserved names are not used by derivative works. The fonts and derivatives, however, cannot be released under any other type of license. The requirement for fonts to remain under this license does not apply to any document created using the fonts or their derivatives. DEFINITIONS "Font Software" refers to the set of files released by the Copyright Holder(s) under this license and clearly marked as such. This may include source files, build scripts and documentation. "Reserved Font Name" refers to any names specified as such after the copyright statement(s). "Original Version" refers to the collection of Font Software components as distributed by the Copyright Holder(s). "Modified Version" refers to any derivative made by adding to, deleting, or substituting -- in part or in whole -- any of the components of the Original Version, by changing formats or by porting the Font Software to a new environment. "Author" refers to any designer, engineer, programmer, technical writer or other person who contributed to the Font Software. PERMISSION & CONDITIONS Permission is hereby granted, free of charge, to any person obtaining a copy of the Font Software, to use, study, copy, merge, embed, modify, redistribute, and sell modified and unmodified copies of the Font Software, subject to the following conditions: 1) Neither the Font Software nor any of its individual components, in Original or Modified Versions, may be sold by itself. 2) Original or Modified Versions of the Font Software may be bundled, redistributed and/or sold with any software, provided that each copy contains the above copyright notice and this license. These can be included either as stand-alone text files, human-readable headers or in the appropriate machine-readable metadata fields within text or binary files as long as those fields can be easily viewed by the user. 3) No Modified Version of the Font Software may use the Reserved Font Name(s) unless explicit written permission is granted by the corresponding Copyright Holder. This restriction only applies to the primary font name as presented to the users. 4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font Software shall not be used to promote, endorse or advertise any Modified Version, except to acknowledge the contribution(s) of the Copyright Holder(s) and the Author(s) or with their explicit written permission. 5) The Font Software, modified or unmodified, in part or in whole, must be distributed entirely under this license, and must not be distributed under any other license. The requirement for fonts to remain under this license does not apply to any document created using the Font Software. TERMINATION This license becomes null and void if any of the above conditions are not met. DISCLAIMER THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/images.txt
Image credits http://cuteoverload.com/2013/11/05/mom-taxi-xvi-birthday-party/ http://cuteoverload.com/2013/11/05/benson-hedges-private-eye-in-the-case-of-the-crafty-craftsman/ http://cuteoverload.com/2013/11/05/no-underwater-ballets/ http://cuteoverload.com/2013/11/05/every-nose-has-a-story/ http://cuteoverload.com/2013/11/04/nosevember-nozzle-nose/ http://cuteoverload.com/2013/11/04/this-just-in-super-strength-cute/ http://cuteoverload.com/2013/11/03/have-a-bunderful-sunday/ http://cuteoverload.com/2013/11/02/caturday-sense-a-common-theme-here/ http://cuteoverload.com/2013/11/01/nosevember-1st-24-hours-of-noses-1148pm-pt/ http://cuteoverload.com/2013/04/02/there-might-be-something-cuter-than-this/ http://cuteoverload.com/2013/07/17/snorting-micro-peeg-gets-belleh-rubs-interwebs-explode/ http://cuteoverload.com/2013/08/07/bark-in-the-park-v3-0/
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/example/demo.h
#ifndef DEMO_H #define DEMO_H #include "nanovg.h" #ifdef __cplusplus extern "C" { #endif struct DemoData { int fontNormal, fontBold, fontIcons, fontEmoji; int images[12]; }; typedef struct DemoData DemoData; int loadDemoData(NVGcontext* vg, DemoData* data); void freeDemoData(NVGcontext* vg, DemoData* data); void renderDemo(NVGcontext* vg, float mx, float my, float width, float height, float t, int blowup, DemoData* data); void saveScreenShot(int w, int h, int premult, const char* name); #ifdef __cplusplus } #endif #endif // DEMO_H
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/nanovg.c
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdlib.h> #include <stdio.h> #include <math.h> #include <memory.h> #include "nanovg.h" #define FONTSTASH_IMPLEMENTATION #include "fontstash.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #ifdef _MSC_VER #pragma warning(disable: 4100) // unreferenced formal parameter #pragma warning(disable: 4127) // conditional expression is constant #pragma warning(disable: 4204) // nonstandard extension used : non-constant aggregate initializer #pragma warning(disable: 4706) // assignment within conditional expression #endif #define NVG_INIT_FONTIMAGE_SIZE 512 #define NVG_MAX_FONTIMAGE_SIZE 2048 #define NVG_MAX_FONTIMAGES 4 #define NVG_INIT_COMMANDS_SIZE 256 #define NVG_INIT_POINTS_SIZE 128 #define NVG_INIT_PATHS_SIZE 16 #define NVG_INIT_VERTS_SIZE 256 #define NVG_MAX_STATES 32 #define NVG_KAPPA90 0.5522847493f // Length proportional to radius of a cubic bezier handle for 90deg arcs. #define NVG_COUNTOF(arr) (sizeof(arr) / sizeof(0[arr])) enum NVGcommands { NVG_MOVETO = 0, NVG_LINETO = 1, NVG_BEZIERTO = 2, NVG_CLOSE = 3, NVG_WINDING = 4, }; enum NVGpointFlags { NVG_PT_CORNER = 0x01, NVG_PT_LEFT = 0x02, NVG_PT_BEVEL = 0x04, NVG_PR_INNERBEVEL = 0x08, }; struct NVGstate { NVGcompositeOperationState compositeOperation; int shapeAntiAlias; NVGpaint fill; NVGpaint stroke; float strokeWidth; float miterLimit; int lineJoin; int lineCap; float alpha; float xform[6]; NVGscissor scissor; float fontSize; float letterSpacing; float lineHeight; float fontBlur; int textAlign; int fontId; }; typedef struct NVGstate NVGstate; struct NVGpoint { float x,y; float dx, dy; float len; float dmx, dmy; unsigned char flags; }; typedef struct NVGpoint NVGpoint; struct NVGpathCache { NVGpoint* points; int npoints; int cpoints; NVGpath* paths; int npaths; int cpaths; NVGvertex* verts; int nverts; int cverts; float bounds[4]; }; typedef struct NVGpathCache NVGpathCache; struct NVGcontext { NVGparams params; float* commands; int ccommands; int ncommands; float commandx, commandy; NVGstate states[NVG_MAX_STATES]; int nstates; NVGpathCache* cache; float tessTol; float distTol; float fringeWidth; float devicePxRatio; struct FONScontext* fs; int fontImages[NVG_MAX_FONTIMAGES]; int fontImageIdx; int drawCallCount; int fillTriCount; int strokeTriCount; int textTriCount; }; static float nvg__sqrtf(float a) { return sqrtf(a); } static float nvg__modf(float a, float b) { return fmodf(a, b); } static float nvg__sinf(float a) { return sinf(a); } static float nvg__cosf(float a) { return cosf(a); } static float nvg__tanf(float a) { return tanf(a); } static float nvg__atan2f(float a,float b) { return atan2f(a, b); } static float nvg__acosf(float a) { return acosf(a); } static int nvg__mini(int a, int b) { return a < b ? a : b; } static int nvg__maxi(int a, int b) { return a > b ? a : b; } static int nvg__clampi(int a, int mn, int mx) { return a < mn ? mn : (a > mx ? mx : a); } static float nvg__minf(float a, float b) { return a < b ? a : b; } static float nvg__maxf(float a, float b) { return a > b ? a : b; } static float nvg__absf(float a) { return a >= 0.0f ? a : -a; } static float nvg__signf(float a) { return a >= 0.0f ? 1.0f : -1.0f; } static float nvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } static float nvg__cross(float dx0, float dy0, float dx1, float dy1) { return dx1*dy0 - dx0*dy1; } static float nvg__normalize(float *x, float* y) { float d = nvg__sqrtf((*x)*(*x) + (*y)*(*y)); if (d > 1e-6f) { float id = 1.0f / d; *x *= id; *y *= id; } return d; } static void nvg__deletePathCache(NVGpathCache* c) { if (c == NULL) return; if (c->points != NULL) free(c->points); if (c->paths != NULL) free(c->paths); if (c->verts != NULL) free(c->verts); free(c); } static NVGpathCache* nvg__allocPathCache(void) { NVGpathCache* c = (NVGpathCache*)malloc(sizeof(NVGpathCache)); if (c == NULL) goto error; memset(c, 0, sizeof(NVGpathCache)); c->points = (NVGpoint*)malloc(sizeof(NVGpoint)*NVG_INIT_POINTS_SIZE); if (!c->points) goto error; c->npoints = 0; c->cpoints = NVG_INIT_POINTS_SIZE; c->paths = (NVGpath*)malloc(sizeof(NVGpath)*NVG_INIT_PATHS_SIZE); if (!c->paths) goto error; c->npaths = 0; c->cpaths = NVG_INIT_PATHS_SIZE; c->verts = (NVGvertex*)malloc(sizeof(NVGvertex)*NVG_INIT_VERTS_SIZE); if (!c->verts) goto error; c->nverts = 0; c->cverts = NVG_INIT_VERTS_SIZE; return c; error: nvg__deletePathCache(c); return NULL; } static void nvg__setDevicePixelRatio(NVGcontext* ctx, float ratio) { ctx->tessTol = 0.25f / ratio; ctx->distTol = 0.01f / ratio; ctx->fringeWidth = 1.0f / ratio; ctx->devicePxRatio = ratio; } static NVGcompositeOperationState nvg__compositeOperationState(int op) { int sfactor, dfactor; if (op == NVG_SOURCE_OVER) { sfactor = NVG_ONE; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_SOURCE_IN) { sfactor = NVG_DST_ALPHA; dfactor = NVG_ZERO; } else if (op == NVG_SOURCE_OUT) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ZERO; } else if (op == NVG_ATOP) { sfactor = NVG_DST_ALPHA; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_DESTINATION_OVER) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ONE; } else if (op == NVG_DESTINATION_IN) { sfactor = NVG_ZERO; dfactor = NVG_SRC_ALPHA; } else if (op == NVG_DESTINATION_OUT) { sfactor = NVG_ZERO; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_DESTINATION_ATOP) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_SRC_ALPHA; } else if (op == NVG_LIGHTER) { sfactor = NVG_ONE; dfactor = NVG_ONE; } else if (op == NVG_COPY) { sfactor = NVG_ONE; dfactor = NVG_ZERO; } else if (op == NVG_XOR) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else { sfactor = NVG_ONE; dfactor = NVG_ZERO; } NVGcompositeOperationState state; state.srcRGB = sfactor; state.dstRGB = dfactor; state.srcAlpha = sfactor; state.dstAlpha = dfactor; return state; } static NVGstate* nvg__getState(NVGcontext* ctx) { return &ctx->states[ctx->nstates-1]; } NVGcontext* nvgCreateInternal(NVGparams* params) { FONSparams fontParams; NVGcontext* ctx = (NVGcontext*)malloc(sizeof(NVGcontext)); int i; if (ctx == NULL) goto error; memset(ctx, 0, sizeof(NVGcontext)); ctx->params = *params; for (i = 0; i < NVG_MAX_FONTIMAGES; i++) ctx->fontImages[i] = 0; ctx->commands = (float*)malloc(sizeof(float)*NVG_INIT_COMMANDS_SIZE); if (!ctx->commands) goto error; ctx->ncommands = 0; ctx->ccommands = NVG_INIT_COMMANDS_SIZE; ctx->cache = nvg__allocPathCache(); if (ctx->cache == NULL) goto error; nvgSave(ctx); nvgReset(ctx); nvg__setDevicePixelRatio(ctx, 1.0f); if (ctx->params.renderCreate(ctx->params.userPtr) == 0) goto error; // Init font rendering memset(&fontParams, 0, sizeof(fontParams)); fontParams.width = NVG_INIT_FONTIMAGE_SIZE; fontParams.height = NVG_INIT_FONTIMAGE_SIZE; fontParams.flags = FONS_ZERO_TOPLEFT; fontParams.renderCreate = NULL; fontParams.renderUpdate = NULL; fontParams.renderDraw = NULL; fontParams.renderDelete = NULL; fontParams.userPtr = NULL; ctx->fs = fonsCreateInternal(&fontParams); if (ctx->fs == NULL) goto error; // Create font texture ctx->fontImages[0] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, fontParams.width, fontParams.height, 0, NULL); if (ctx->fontImages[0] == 0) goto error; ctx->fontImageIdx = 0; return ctx; error: nvgDeleteInternal(ctx); return 0; } NVGparams* nvgInternalParams(NVGcontext* ctx) { return &ctx->params; } void nvgDeleteInternal(NVGcontext* ctx) { int i; if (ctx == NULL) return; if (ctx->commands != NULL) free(ctx->commands); if (ctx->cache != NULL) nvg__deletePathCache(ctx->cache); if (ctx->fs) fonsDeleteInternal(ctx->fs); for (i = 0; i < NVG_MAX_FONTIMAGES; i++) { if (ctx->fontImages[i] != 0) { nvgDeleteImage(ctx, ctx->fontImages[i]); ctx->fontImages[i] = 0; } } if (ctx->params.renderDelete != NULL) ctx->params.renderDelete(ctx->params.userPtr); free(ctx); } void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio) { /* printf("Tris: draws:%d fill:%d stroke:%d text:%d TOT:%d\n", ctx->drawCallCount, ctx->fillTriCount, ctx->strokeTriCount, ctx->textTriCount, ctx->fillTriCount+ctx->strokeTriCount+ctx->textTriCount);*/ ctx->nstates = 0; nvgSave(ctx); nvgReset(ctx); nvg__setDevicePixelRatio(ctx, devicePixelRatio); ctx->params.renderViewport(ctx->params.userPtr, windowWidth, windowHeight, devicePixelRatio); ctx->drawCallCount = 0; ctx->fillTriCount = 0; ctx->strokeTriCount = 0; ctx->textTriCount = 0; } void nvgCancelFrame(NVGcontext* ctx) { ctx->params.renderCancel(ctx->params.userPtr); } void nvgEndFrame(NVGcontext* ctx) { ctx->params.renderFlush(ctx->params.userPtr); if (ctx->fontImageIdx != 0) { int fontImage = ctx->fontImages[ctx->fontImageIdx]; int i, j, iw, ih; // delete images that smaller than current one if (fontImage == 0) return; nvgImageSize(ctx, fontImage, &iw, &ih); for (i = j = 0; i < ctx->fontImageIdx; i++) { if (ctx->fontImages[i] != 0) { int nw, nh; nvgImageSize(ctx, ctx->fontImages[i], &nw, &nh); if (nw < iw || nh < ih) nvgDeleteImage(ctx, ctx->fontImages[i]); else ctx->fontImages[j++] = ctx->fontImages[i]; } } // make current font image to first ctx->fontImages[j++] = ctx->fontImages[0]; ctx->fontImages[0] = fontImage; ctx->fontImageIdx = 0; // clear all images after j for (i = j; i < NVG_MAX_FONTIMAGES; i++) ctx->fontImages[i] = 0; } } NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b) { return nvgRGBA(r,g,b,255); } NVGcolor nvgRGBf(float r, float g, float b) { return nvgRGBAf(r,g,b,1.0f); } NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { NVGcolor color; // Use longer initialization to suppress warning. color.r = r / 255.0f; color.g = g / 255.0f; color.b = b / 255.0f; color.a = a / 255.0f; return color; } NVGcolor nvgRGBAf(float r, float g, float b, float a) { NVGcolor color; // Use longer initialization to suppress warning. color.r = r; color.g = g; color.b = b; color.a = a; return color; } NVGcolor nvgTransRGBA(NVGcolor c, unsigned char a) { c.a = a / 255.0f; return c; } NVGcolor nvgTransRGBAf(NVGcolor c, float a) { c.a = a; return c; } NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u) { int i; float oneminu; NVGcolor cint = {{{0}}}; u = nvg__clampf(u, 0.0f, 1.0f); oneminu = 1.0f - u; for( i = 0; i <4; i++ ) { cint.rgba[i] = c0.rgba[i] * oneminu + c1.rgba[i] * u; } return cint; } NVGcolor nvgHSL(float h, float s, float l) { return nvgHSLA(h,s,l,255); } static float nvg__hue(float h, float m1, float m2) { if (h < 0) h += 1; if (h > 1) h -= 1; if (h < 1.0f/6.0f) return m1 + (m2 - m1) * h * 6.0f; else if (h < 3.0f/6.0f) return m2; else if (h < 4.0f/6.0f) return m1 + (m2 - m1) * (2.0f/3.0f - h) * 6.0f; return m1; } NVGcolor nvgHSLA(float h, float s, float l, unsigned char a) { float m1, m2; NVGcolor col; h = nvg__modf(h, 1.0f); if (h < 0.0f) h += 1.0f; s = nvg__clampf(s, 0.0f, 1.0f); l = nvg__clampf(l, 0.0f, 1.0f); m2 = l <= 0.5f ? (l * (1 + s)) : (l + s - l * s); m1 = 2 * l - m2; col.r = nvg__clampf(nvg__hue(h + 1.0f/3.0f, m1, m2), 0.0f, 1.0f); col.g = nvg__clampf(nvg__hue(h, m1, m2), 0.0f, 1.0f); col.b = nvg__clampf(nvg__hue(h - 1.0f/3.0f, m1, m2), 0.0f, 1.0f); col.a = a/255.0f; return col; } void nvgTransformIdentity(float* t) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformTranslate(float* t, float tx, float ty) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = tx; t[5] = ty; } void nvgTransformScale(float* t, float sx, float sy) { t[0] = sx; t[1] = 0.0f; t[2] = 0.0f; t[3] = sy; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformRotate(float* t, float a) { float cs = nvg__cosf(a), sn = nvg__sinf(a); t[0] = cs; t[1] = sn; t[2] = -sn; t[3] = cs; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformSkewX(float* t, float a) { t[0] = 1.0f; t[1] = 0.0f; t[2] = nvg__tanf(a); t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformSkewY(float* t, float a) { t[0] = 1.0f; t[1] = nvg__tanf(a); t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformMultiply(float* t, const float* s) { float t0 = t[0] * s[0] + t[1] * s[2]; float t2 = t[2] * s[0] + t[3] * s[2]; float t4 = t[4] * s[0] + t[5] * s[2] + s[4]; t[1] = t[0] * s[1] + t[1] * s[3]; t[3] = t[2] * s[1] + t[3] * s[3]; t[5] = t[4] * s[1] + t[5] * s[3] + s[5]; t[0] = t0; t[2] = t2; t[4] = t4; } void nvgTransformPremultiply(float* t, const float* s) { float s2[6]; memcpy(s2, s, sizeof(float)*6); nvgTransformMultiply(s2, t); memcpy(t, s2, sizeof(float)*6); } int nvgTransformInverse(float* inv, const float* t) { double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; if (det > -1e-6 && det < 1e-6) { nvgTransformIdentity(inv); return 0; } invdet = 1.0 / det; inv[0] = (float)(t[3] * invdet); inv[2] = (float)(-t[2] * invdet); inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); inv[1] = (float)(-t[1] * invdet); inv[3] = (float)(t[0] * invdet); inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); return 1; } void nvgTransformPoint(float* dx, float* dy, const float* t, float sx, float sy) { *dx = sx*t[0] + sy*t[2] + t[4]; *dy = sx*t[1] + sy*t[3] + t[5]; } float nvgDegToRad(float deg) { return deg / 180.0f * NVG_PI; } float nvgRadToDeg(float rad) { return rad / NVG_PI * 180.0f; } static void nvg__setPaintColor(NVGpaint* p, NVGcolor color) { memset(p, 0, sizeof(*p)); nvgTransformIdentity(p->xform); p->radius = 0.0f; p->feather = 1.0f; p->innerColor = color; p->outerColor = color; } // State handling void nvgSave(NVGcontext* ctx) { if (ctx->nstates >= NVG_MAX_STATES) return; if (ctx->nstates > 0) memcpy(&ctx->states[ctx->nstates], &ctx->states[ctx->nstates-1], sizeof(NVGstate)); ctx->nstates++; } void nvgRestore(NVGcontext* ctx) { if (ctx->nstates <= 1) return; ctx->nstates--; } void nvgReset(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); memset(state, 0, sizeof(*state)); nvg__setPaintColor(&state->fill, nvgRGBA(255,255,255,255)); nvg__setPaintColor(&state->stroke, nvgRGBA(0,0,0,255)); state->compositeOperation = nvg__compositeOperationState(NVG_SOURCE_OVER); state->shapeAntiAlias = 1; state->strokeWidth = 1.0f; state->miterLimit = 10.0f; state->lineCap = NVG_BUTT; state->lineJoin = NVG_MITER; state->alpha = 1.0f; nvgTransformIdentity(state->xform); state->scissor.extent[0] = -1.0f; state->scissor.extent[1] = -1.0f; state->fontSize = 16.0f; state->letterSpacing = 0.0f; state->lineHeight = 1.0f; state->fontBlur = 0.0f; state->textAlign = NVG_ALIGN_LEFT | NVG_ALIGN_BASELINE; state->fontId = 0; } // State setting void nvgShapeAntiAlias(NVGcontext* ctx, int enabled) { NVGstate* state = nvg__getState(ctx); state->shapeAntiAlias = enabled; } void nvgStrokeWidth(NVGcontext* ctx, float width) { NVGstate* state = nvg__getState(ctx); state->strokeWidth = width; } void nvgMiterLimit(NVGcontext* ctx, float limit) { NVGstate* state = nvg__getState(ctx); state->miterLimit = limit; } void nvgLineCap(NVGcontext* ctx, int cap) { NVGstate* state = nvg__getState(ctx); state->lineCap = cap; } void nvgLineJoin(NVGcontext* ctx, int join) { NVGstate* state = nvg__getState(ctx); state->lineJoin = join; } void nvgGlobalAlpha(NVGcontext* ctx, float alpha) { NVGstate* state = nvg__getState(ctx); state->alpha = alpha; } void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f) { NVGstate* state = nvg__getState(ctx); float t[6] = { a, b, c, d, e, f }; nvgTransformPremultiply(state->xform, t); } void nvgResetTransform(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); nvgTransformIdentity(state->xform); } void nvgTranslate(NVGcontext* ctx, float x, float y) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformTranslate(t, x,y); nvgTransformPremultiply(state->xform, t); } void nvgRotate(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformRotate(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgSkewX(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformSkewX(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgSkewY(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformSkewY(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgScale(NVGcontext* ctx, float x, float y) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformScale(t, x,y); nvgTransformPremultiply(state->xform, t); } void nvgCurrentTransform(NVGcontext* ctx, float* xform) { NVGstate* state = nvg__getState(ctx); if (xform == NULL) return; memcpy(xform, state->xform, sizeof(float)*6); } void nvgStrokeColor(NVGcontext* ctx, NVGcolor color) { NVGstate* state = nvg__getState(ctx); nvg__setPaintColor(&state->stroke, color); } void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint) { NVGstate* state = nvg__getState(ctx); state->stroke = paint; nvgTransformMultiply(state->stroke.xform, state->xform); } void nvgFillColor(NVGcontext* ctx, NVGcolor color) { NVGstate* state = nvg__getState(ctx); nvg__setPaintColor(&state->fill, color); } void nvgFillPaint(NVGcontext* ctx, NVGpaint paint) { NVGstate* state = nvg__getState(ctx); state->fill = paint; nvgTransformMultiply(state->fill.xform, state->xform); } int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags) { int w, h, n, image; unsigned char* img; stbi_set_unpremultiply_on_load(1); stbi_convert_iphone_png_to_rgb(1); img = stbi_load(filename, &w, &h, &n, 4); if (img == NULL) { // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); return 0; } image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); stbi_image_free(img); return image; } int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata) { int w, h, n, image; unsigned char* img = stbi_load_from_memory(data, ndata, &w, &h, &n, 4); if (img == NULL) { // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); return 0; } image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); stbi_image_free(img); return image; } int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data) { return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_RGBA, w, h, imageFlags, data); } void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data) { int w, h; ctx->params.renderGetTextureSize(ctx->params.userPtr, image, &w, &h); ctx->params.renderUpdateTexture(ctx->params.userPtr, image, 0,0, w,h, data); } void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h) { ctx->params.renderGetTextureSize(ctx->params.userPtr, image, w, h); } void nvgDeleteImage(NVGcontext* ctx, int image) { ctx->params.renderDeleteTexture(ctx->params.userPtr, image); } NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey, NVGcolor icol, NVGcolor ocol) { NVGpaint p; float dx, dy, d; const float large = 1e5; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); // Calculate transform aligned to the line dx = ex - sx; dy = ey - sy; d = sqrtf(dx*dx + dy*dy); if (d > 0.0001f) { dx /= d; dy /= d; } else { dx = 0; dy = 1; } p.xform[0] = dy; p.xform[1] = -dx; p.xform[2] = dx; p.xform[3] = dy; p.xform[4] = sx - dx*large; p.xform[5] = sy - dy*large; p.extent[0] = large; p.extent[1] = large + d*0.5f; p.radius = 0.0f; p.feather = nvg__maxf(1.0f, d); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, NVGcolor icol, NVGcolor ocol) { NVGpaint p; float r = (inr+outr)*0.5f; float f = (outr-inr); NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformIdentity(p.xform); p.xform[4] = cx; p.xform[5] = cy; p.extent[0] = r; p.extent[1] = r; p.radius = r; p.feather = nvg__maxf(1.0f, f); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, float r, float f, NVGcolor icol, NVGcolor ocol) { NVGpaint p; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformIdentity(p.xform); p.xform[4] = x+w*0.5f; p.xform[5] = y+h*0.5f; p.extent[0] = w*0.5f; p.extent[1] = h*0.5f; p.radius = r; p.feather = nvg__maxf(1.0f, f); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgImagePattern(NVGcontext* ctx, float cx, float cy, float w, float h, float angle, int image, float alpha) { NVGpaint p; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformRotate(p.xform, angle); p.xform[4] = cx; p.xform[5] = cy; p.extent[0] = w; p.extent[1] = h; p.image = image; p.innerColor = p.outerColor = nvgRGBAf(1,1,1,alpha); return p; } // Scissoring void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h) { NVGstate* state = nvg__getState(ctx); w = nvg__maxf(0.0f, w); h = nvg__maxf(0.0f, h); nvgTransformIdentity(state->scissor.xform); state->scissor.xform[4] = x+w*0.5f; state->scissor.xform[5] = y+h*0.5f; nvgTransformMultiply(state->scissor.xform, state->xform); state->scissor.extent[0] = w*0.5f; state->scissor.extent[1] = h*0.5f; } static void nvg__isectRects(float* dst, float ax, float ay, float aw, float ah, float bx, float by, float bw, float bh) { float minx = nvg__maxf(ax, bx); float miny = nvg__maxf(ay, by); float maxx = nvg__minf(ax+aw, bx+bw); float maxy = nvg__minf(ay+ah, by+bh); dst[0] = minx; dst[1] = miny; dst[2] = nvg__maxf(0.0f, maxx - minx); dst[3] = nvg__maxf(0.0f, maxy - miny); } void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h) { NVGstate* state = nvg__getState(ctx); float pxform[6], invxorm[6]; float rect[4]; float ex, ey, tex, tey; // If no previous scissor has been set, set the scissor as current scissor. if (state->scissor.extent[0] < 0) { nvgScissor(ctx, x, y, w, h); return; } // Transform the current scissor rect into current transform space. // If there is difference in rotation, this will be approximation. memcpy(pxform, state->scissor.xform, sizeof(float)*6); ex = state->scissor.extent[0]; ey = state->scissor.extent[1]; nvgTransformInverse(invxorm, state->xform); nvgTransformMultiply(pxform, invxorm); tex = ex*nvg__absf(pxform[0]) + ey*nvg__absf(pxform[2]); tey = ex*nvg__absf(pxform[1]) + ey*nvg__absf(pxform[3]); // Intersect rects. nvg__isectRects(rect, pxform[4]-tex,pxform[5]-tey,tex*2,tey*2, x,y,w,h); nvgScissor(ctx, rect[0], rect[1], rect[2], rect[3]); } void nvgResetScissor(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); memset(state->scissor.xform, 0, sizeof(state->scissor.xform)); state->scissor.extent[0] = -1.0f; state->scissor.extent[1] = -1.0f; } // Global composite operation. void nvgGlobalCompositeOperation(NVGcontext* ctx, int op) { NVGstate* state = nvg__getState(ctx); state->compositeOperation = nvg__compositeOperationState(op); } void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor) { nvgGlobalCompositeBlendFuncSeparate(ctx, sfactor, dfactor, sfactor, dfactor); } void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha) { NVGcompositeOperationState op; op.srcRGB = srcRGB; op.dstRGB = dstRGB; op.srcAlpha = srcAlpha; op.dstAlpha = dstAlpha; NVGstate* state = nvg__getState(ctx); state->compositeOperation = op; } static int nvg__ptEquals(float x1, float y1, float x2, float y2, float tol) { float dx = x2 - x1; float dy = y2 - y1; return dx*dx + dy*dy < tol*tol; } static float nvg__distPtSeg(float x, float y, float px, float py, float qx, float qy) { float pqx, pqy, dx, dy, d, t; pqx = qx-px; pqy = qy-py; dx = x-px; dy = y-py; d = pqx*pqx + pqy*pqy; t = pqx*dx + pqy*dy; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dy = py + t*pqy - y; return dx*dx + dy*dy; } static void nvg__appendCommands(NVGcontext* ctx, float* vals, int nvals) { NVGstate* state = nvg__getState(ctx); int i; if (ctx->ncommands+nvals > ctx->ccommands) { float* commands; int ccommands = ctx->ncommands+nvals + ctx->ccommands/2; commands = (float*)realloc(ctx->commands, sizeof(float)*ccommands); if (commands == NULL) return; ctx->commands = commands; ctx->ccommands = ccommands; } if ((int)vals[0] != NVG_CLOSE && (int)vals[0] != NVG_WINDING) { ctx->commandx = vals[nvals-2]; ctx->commandy = vals[nvals-1]; } // transform commands i = 0; while (i < nvals) { int cmd = (int)vals[i]; switch (cmd) { case NVG_MOVETO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); i += 3; break; case NVG_LINETO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); i += 3; break; case NVG_BEZIERTO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); nvgTransformPoint(&vals[i+3],&vals[i+4], state->xform, vals[i+3],vals[i+4]); nvgTransformPoint(&vals[i+5],&vals[i+6], state->xform, vals[i+5],vals[i+6]); i += 7; break; case NVG_CLOSE: i++; break; case NVG_WINDING: i += 2; break; default: i++; } } memcpy(&ctx->commands[ctx->ncommands], vals, nvals*sizeof(float)); ctx->ncommands += nvals; } static void nvg__clearPathCache(NVGcontext* ctx) { ctx->cache->npoints = 0; ctx->cache->npaths = 0; } static NVGpath* nvg__lastPath(NVGcontext* ctx) { if (ctx->cache->npaths > 0) return &ctx->cache->paths[ctx->cache->npaths-1]; return NULL; } static void nvg__addPath(NVGcontext* ctx) { NVGpath* path; if (ctx->cache->npaths+1 > ctx->cache->cpaths) { NVGpath* paths; int cpaths = ctx->cache->npaths+1 + ctx->cache->cpaths/2; paths = (NVGpath*)realloc(ctx->cache->paths, sizeof(NVGpath)*cpaths); if (paths == NULL) return; ctx->cache->paths = paths; ctx->cache->cpaths = cpaths; } path = &ctx->cache->paths[ctx->cache->npaths]; memset(path, 0, sizeof(*path)); path->first = ctx->cache->npoints; path->winding = NVG_CCW; ctx->cache->npaths++; } static NVGpoint* nvg__lastPoint(NVGcontext* ctx) { if (ctx->cache->npoints > 0) return &ctx->cache->points[ctx->cache->npoints-1]; return NULL; } static void nvg__addPoint(NVGcontext* ctx, float x, float y, int flags) { NVGpath* path = nvg__lastPath(ctx); NVGpoint* pt; if (path == NULL) return; if (path->count > 0 && ctx->cache->npoints > 0) { pt = nvg__lastPoint(ctx); if (nvg__ptEquals(pt->x,pt->y, x,y, ctx->distTol)) { pt->flags |= flags; return; } } if (ctx->cache->npoints+1 > ctx->cache->cpoints) { NVGpoint* points; int cpoints = ctx->cache->npoints+1 + ctx->cache->cpoints/2; points = (NVGpoint*)realloc(ctx->cache->points, sizeof(NVGpoint)*cpoints); if (points == NULL) return; ctx->cache->points = points; ctx->cache->cpoints = cpoints; } pt = &ctx->cache->points[ctx->cache->npoints]; memset(pt, 0, sizeof(*pt)); pt->x = x; pt->y = y; pt->flags = (unsigned char)flags; ctx->cache->npoints++; path->count++; } static void nvg__closePath(NVGcontext* ctx) { NVGpath* path = nvg__lastPath(ctx); if (path == NULL) return; path->closed = 1; } static void nvg__pathWinding(NVGcontext* ctx, int winding) { NVGpath* path = nvg__lastPath(ctx); if (path == NULL) return; path->winding = winding; } static float nvg__getAverageScale(float *t) { float sx = sqrtf(t[0]*t[0] + t[2]*t[2]); float sy = sqrtf(t[1]*t[1] + t[3]*t[3]); return (sx + sy) * 0.5f; } static NVGvertex* nvg__allocTempVerts(NVGcontext* ctx, int nverts) { if (nverts > ctx->cache->cverts) { NVGvertex* verts; int cverts = (nverts + 0xff) & ~0xff; // Round up to prevent allocations when things change just slightly. verts = (NVGvertex*)realloc(ctx->cache->verts, sizeof(NVGvertex)*cverts); if (verts == NULL) return NULL; ctx->cache->verts = verts; ctx->cache->cverts = cverts; } return ctx->cache->verts; } static float nvg__triarea2(float ax, float ay, float bx, float by, float cx, float cy) { float abx = bx - ax; float aby = by - ay; float acx = cx - ax; float acy = cy - ay; return acx*aby - abx*acy; } static float nvg__polyArea(NVGpoint* pts, int npts) { int i; float area = 0; for (i = 2; i < npts; i++) { NVGpoint* a = &pts[0]; NVGpoint* b = &pts[i-1]; NVGpoint* c = &pts[i]; area += nvg__triarea2(a->x,a->y, b->x,b->y, c->x,c->y); } return area * 0.5f; } static void nvg__polyReverse(NVGpoint* pts, int npts) { NVGpoint tmp; int i = 0, j = npts-1; while (i < j) { tmp = pts[i]; pts[i] = pts[j]; pts[j] = tmp; i++; j--; } } static void nvg__vset(NVGvertex* vtx, float x, float y, float u, float v) { vtx->x = x; vtx->y = y; vtx->u = u; vtx->v = v; } static void nvg__tesselateBezier(NVGcontext* ctx, float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, int level, int type) { float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234; float dx,dy,d2,d3; if (level > 10) return; x12 = (x1+x2)*0.5f; y12 = (y1+y2)*0.5f; x23 = (x2+x3)*0.5f; y23 = (y2+y3)*0.5f; x34 = (x3+x4)*0.5f; y34 = (y3+y4)*0.5f; x123 = (x12+x23)*0.5f; y123 = (y12+y23)*0.5f; dx = x4 - x1; dy = y4 - y1; d2 = nvg__absf(((x2 - x4) * dy - (y2 - y4) * dx)); d3 = nvg__absf(((x3 - x4) * dy - (y3 - y4) * dx)); if ((d2 + d3)*(d2 + d3) < ctx->tessTol * (dx*dx + dy*dy)) { nvg__addPoint(ctx, x4, y4, type); return; } /* if (nvg__absf(x1+x3-x2-x2) + nvg__absf(y1+y3-y2-y2) + nvg__absf(x2+x4-x3-x3) + nvg__absf(y2+y4-y3-y3) < ctx->tessTol) { nvg__addPoint(ctx, x4, y4, type); return; }*/ x234 = (x23+x34)*0.5f; y234 = (y23+y34)*0.5f; x1234 = (x123+x234)*0.5f; y1234 = (y123+y234)*0.5f; nvg__tesselateBezier(ctx, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0); nvg__tesselateBezier(ctx, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type); } static void nvg__flattenPaths(NVGcontext* ctx) { NVGpathCache* cache = ctx->cache; // NVGstate* state = nvg__getState(ctx); NVGpoint* last; NVGpoint* p0; NVGpoint* p1; NVGpoint* pts; NVGpath* path; int i, j; float* cp1; float* cp2; float* p; float area; if (cache->npaths > 0) return; // Flatten i = 0; while (i < ctx->ncommands) { int cmd = (int)ctx->commands[i]; switch (cmd) { case NVG_MOVETO: nvg__addPath(ctx); p = &ctx->commands[i+1]; nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); i += 3; break; case NVG_LINETO: p = &ctx->commands[i+1]; nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); i += 3; break; case NVG_BEZIERTO: last = nvg__lastPoint(ctx); if (last != NULL) { cp1 = &ctx->commands[i+1]; cp2 = &ctx->commands[i+3]; p = &ctx->commands[i+5]; nvg__tesselateBezier(ctx, last->x,last->y, cp1[0],cp1[1], cp2[0],cp2[1], p[0],p[1], 0, NVG_PT_CORNER); } i += 7; break; case NVG_CLOSE: nvg__closePath(ctx); i++; break; case NVG_WINDING: nvg__pathWinding(ctx, (int)ctx->commands[i+1]); i += 2; break; default: i++; } } cache->bounds[0] = cache->bounds[1] = 1e6f; cache->bounds[2] = cache->bounds[3] = -1e6f; // Calculate the direction and length of line segments. for (j = 0; j < cache->npaths; j++) { path = &cache->paths[j]; pts = &cache->points[path->first]; // If the first and last points are the same, remove the last, mark as closed path. p0 = &pts[path->count-1]; p1 = &pts[0]; if (nvg__ptEquals(p0->x,p0->y, p1->x,p1->y, ctx->distTol)) { path->count--; p0 = &pts[path->count-1]; path->closed = 1; } // Enforce winding. if (path->count > 2) { area = nvg__polyArea(pts, path->count); if (path->winding == NVG_CCW && area < 0.0f) nvg__polyReverse(pts, path->count); if (path->winding == NVG_CW && area > 0.0f) nvg__polyReverse(pts, path->count); } for(i = 0; i < path->count; i++) { // Calculate segment direction and length p0->dx = p1->x - p0->x; p0->dy = p1->y - p0->y; p0->len = nvg__normalize(&p0->dx, &p0->dy); // Update bounds cache->bounds[0] = nvg__minf(cache->bounds[0], p0->x); cache->bounds[1] = nvg__minf(cache->bounds[1], p0->y); cache->bounds[2] = nvg__maxf(cache->bounds[2], p0->x); cache->bounds[3] = nvg__maxf(cache->bounds[3], p0->y); // Advance p0 = p1++; } } } static int nvg__curveDivs(float r, float arc, float tol) { float da = acosf(r / (r + tol)) * 2.0f; return nvg__maxi(2, (int)ceilf(arc / da)); } static void nvg__chooseBevel(int bevel, NVGpoint* p0, NVGpoint* p1, float w, float* x0, float* y0, float* x1, float* y1) { if (bevel) { *x0 = p1->x + p0->dy * w; *y0 = p1->y - p0->dx * w; *x1 = p1->x + p1->dy * w; *y1 = p1->y - p1->dx * w; } else { *x0 = p1->x + p1->dmx * w; *y0 = p1->y + p1->dmy * w; *x1 = p1->x + p1->dmx * w; *y1 = p1->y + p1->dmy * w; } } static NVGvertex* nvg__roundJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, float lw, float rw, float lu, float ru, int ncap, float fringe) { int i, n; float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; NVG_NOTUSED(fringe); if (p1->flags & NVG_PT_LEFT) { float lx0,ly0,lx1,ly1,a0,a1; nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); a0 = atan2f(-dly0, -dlx0); a1 = atan2f(-dly1, -dlx1); if (a1 > a0) a1 -= NVG_PI*2; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; n = nvg__clampi((int)ceilf(((a0 - a1) / NVG_PI) * ncap), 2, ncap); for (i = 0; i < n; i++) { float u = i/(float)(n-1); float a = a0 + u*(a1-a0); float rx = p1->x + cosf(a) * rw; float ry = p1->y + sinf(a) * rw; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, rx, ry, ru,1); dst++; } nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { float rx0,ry0,rx1,ry1,a0,a1; nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); a0 = atan2f(dly0, dlx0); a1 = atan2f(dly1, dlx1); if (a1 < a0) a1 += NVG_PI*2; nvg__vset(dst, p1->x + dlx0*rw, p1->y + dly0*rw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; n = nvg__clampi((int)ceilf(((a1 - a0) / NVG_PI) * ncap), 2, ncap); for (i = 0; i < n; i++) { float u = i/(float)(n-1); float a = a0 + u*(a1-a0); float lx = p1->x + cosf(a) * lw; float ly = p1->y + sinf(a) * lw; nvg__vset(dst, lx, ly, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; } nvg__vset(dst, p1->x + dlx1*rw, p1->y + dly1*rw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } return dst; } static NVGvertex* nvg__bevelJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, float lw, float rw, float lu, float ru, float fringe) { float rx0,ry0,rx1,ry1; float lx0,ly0,lx1,ly1; float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; NVG_NOTUSED(fringe); if (p1->flags & NVG_PT_LEFT) { nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; if (p1->flags & NVG_PT_BEVEL) { nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { rx0 = p1->x - p1->dmx * rw; ry0 = p1->y - p1->dmy * rw; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; if (p1->flags & NVG_PT_BEVEL) { nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } else { lx0 = p1->x + p1->dmx * lw; ly0 = p1->y + p1->dmy * lw; nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; } nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } return dst; } static NVGvertex* nvg__buttCapStart(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, float d, float aa, float u0, float u1) { float px = p->x - dx*d; float py = p->y - dy*d; float dlx = dy; float dly = -dx; nvg__vset(dst, px + dlx*w - dx*aa, py + dly*w - dy*aa, u0,0); dst++; nvg__vset(dst, px - dlx*w - dx*aa, py - dly*w - dy*aa, u1,0); dst++; nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; return dst; } static NVGvertex* nvg__buttCapEnd(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, float d, float aa, float u0, float u1) { float px = p->x + dx*d; float py = p->y + dy*d; float dlx = dy; float dly = -dx; nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; nvg__vset(dst, px + dlx*w + dx*aa, py + dly*w + dy*aa, u0,0); dst++; nvg__vset(dst, px - dlx*w + dx*aa, py - dly*w + dy*aa, u1,0); dst++; return dst; } static NVGvertex* nvg__roundCapStart(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, int ncap, float aa, float u0, float u1) { int i; float px = p->x; float py = p->y; float dlx = dy; float dly = -dx; NVG_NOTUSED(aa); for (i = 0; i < ncap; i++) { float a = i/(float)(ncap-1)*NVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; nvg__vset(dst, px - dlx*ax - dx*ay, py - dly*ax - dy*ay, u0,1); dst++; nvg__vset(dst, px, py, 0.5f,1); dst++; } nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; return dst; } static NVGvertex* nvg__roundCapEnd(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, int ncap, float aa, float u0, float u1) { int i; float px = p->x; float py = p->y; float dlx = dy; float dly = -dx; NVG_NOTUSED(aa); nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; for (i = 0; i < ncap; i++) { float a = i/(float)(ncap-1)*NVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; nvg__vset(dst, px, py, 0.5f,1); dst++; nvg__vset(dst, px - dlx*ax + dx*ay, py - dly*ax + dy*ay, u0,1); dst++; } return dst; } static void nvg__calculateJoins(NVGcontext* ctx, float w, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; int i, j; float iw = 0.0f; if (w > 0.0f) iw = 1.0f / w; // Calculate which joins needs extra vertices to append, and gather vertex count. for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0 = &pts[path->count-1]; NVGpoint* p1 = &pts[0]; int nleft = 0; path->nbevel = 0; for (j = 0; j < path->count; j++) { float dlx0, dly0, dlx1, dly1, dmr2, cross, limit; dlx0 = p0->dy; dly0 = -p0->dx; dlx1 = p1->dy; dly1 = -p1->dx; // Calculate extrusions p1->dmx = (dlx0 + dlx1) * 0.5f; p1->dmy = (dly0 + dly1) * 0.5f; dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; if (dmr2 > 0.000001f) { float scale = 1.0f / dmr2; if (scale > 600.0f) { scale = 600.0f; } p1->dmx *= scale; p1->dmy *= scale; } // Clear flags, but keep the corner. p1->flags = (p1->flags & NVG_PT_CORNER) ? NVG_PT_CORNER : 0; // Keep track of left turns. cross = p1->dx * p0->dy - p0->dx * p1->dy; if (cross > 0.0f) { nleft++; p1->flags |= NVG_PT_LEFT; } // Calculate if we should use bevel or miter for inner join. limit = nvg__maxf(1.01f, nvg__minf(p0->len, p1->len) * iw); if ((dmr2 * limit*limit) < 1.0f) p1->flags |= NVG_PR_INNERBEVEL; // Check to see if the corner needs to be beveled. if (p1->flags & NVG_PT_CORNER) { if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NVG_BEVEL || lineJoin == NVG_ROUND) { p1->flags |= NVG_PT_BEVEL; } } if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) path->nbevel++; p0 = p1++; } path->convex = (nleft == path->count) ? 1 : 0; } } static int nvg__expandStroke(NVGcontext* ctx, float w, float fringe, int lineCap, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; NVGvertex* verts; NVGvertex* dst; int cverts, i, j; float aa = fringe;//ctx->fringeWidth; float u0 = 0.0f, u1 = 1.0f; int ncap = nvg__curveDivs(w, NVG_PI, ctx->tessTol); // Calculate divisions per half circle. w += aa * 0.5f; // Disable the gradient used for antialiasing when antialiasing is not used. if (aa == 0.0f) { u0 = 0.5f; u1 = 0.5f; } nvg__calculateJoins(ctx, w, lineJoin, miterLimit); // Calculate max vertex usage. cverts = 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; int loop = (path->closed == 0) ? 0 : 1; if (lineJoin == NVG_ROUND) cverts += (path->count + path->nbevel*(ncap+2) + 1) * 2; // plus one for loop else cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop if (loop == 0) { // space for caps if (lineCap == NVG_ROUND) { cverts += (ncap*2 + 2)*2; } else { cverts += (3+3)*2; } } } verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0; NVGpoint* p1; int s, e, loop; float dx, dy; path->fill = 0; path->nfill = 0; // Calculate fringe or stroke loop = (path->closed == 0) ? 0 : 1; dst = verts; path->stroke = dst; if (loop) { // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; s = 0; e = path->count; } else { // Add cap p0 = &pts[0]; p1 = &pts[1]; s = 1; e = path->count-1; } if (loop == 0) { // Add cap dx = p1->x - p0->x; dy = p1->y - p0->y; nvg__normalize(&dx, &dy); if (lineCap == NVG_BUTT) dst = nvg__buttCapStart(dst, p0, dx, dy, w, -aa*0.5f, aa, u0, u1); else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) dst = nvg__buttCapStart(dst, p0, dx, dy, w, w-aa, aa, u0, u1); else if (lineCap == NVG_ROUND) dst = nvg__roundCapStart(dst, p0, dx, dy, w, ncap, aa, u0, u1); } for (j = s; j < e; ++j) { if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { if (lineJoin == NVG_ROUND) { dst = nvg__roundJoin(dst, p0, p1, w, w, u0, u1, ncap, aa); } else { dst = nvg__bevelJoin(dst, p0, p1, w, w, u0, u1, aa); } } else { nvg__vset(dst, p1->x + (p1->dmx * w), p1->y + (p1->dmy * w), u0,1); dst++; nvg__vset(dst, p1->x - (p1->dmx * w), p1->y - (p1->dmy * w), u1,1); dst++; } p0 = p1++; } if (loop) { // Loop it nvg__vset(dst, verts[0].x, verts[0].y, u0,1); dst++; nvg__vset(dst, verts[1].x, verts[1].y, u1,1); dst++; } else { // Add cap dx = p1->x - p0->x; dy = p1->y - p0->y; nvg__normalize(&dx, &dy); if (lineCap == NVG_BUTT) dst = nvg__buttCapEnd(dst, p1, dx, dy, w, -aa*0.5f, aa, u0, u1); else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) dst = nvg__buttCapEnd(dst, p1, dx, dy, w, w-aa, aa, u0, u1); else if (lineCap == NVG_ROUND) dst = nvg__roundCapEnd(dst, p1, dx, dy, w, ncap, aa, u0, u1); } path->nstroke = (int)(dst - verts); verts = dst; } return 1; } static int nvg__expandFill(NVGcontext* ctx, float w, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; NVGvertex* verts; NVGvertex* dst; int cverts, convex, i, j; float aa = ctx->fringeWidth; int fringe = w > 0.0f; nvg__calculateJoins(ctx, w, lineJoin, miterLimit); // Calculate max vertex usage. cverts = 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; cverts += path->count + path->nbevel + 1; if (fringe) cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop } verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return 0; convex = cache->npaths == 1 && cache->paths[0].convex; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0; NVGpoint* p1; float rw, lw, woff; float ru, lu; // Calculate shape vertices. woff = 0.5f*aa; dst = verts; path->fill = dst; if (fringe) { // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; for (j = 0; j < path->count; ++j) { if (p1->flags & NVG_PT_BEVEL) { float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; if (p1->flags & NVG_PT_LEFT) { float lx = p1->x + p1->dmx * woff; float ly = p1->y + p1->dmy * woff; nvg__vset(dst, lx, ly, 0.5f,1); dst++; } else { float lx0 = p1->x + dlx0 * woff; float ly0 = p1->y + dly0 * woff; float lx1 = p1->x + dlx1 * woff; float ly1 = p1->y + dly1 * woff; nvg__vset(dst, lx0, ly0, 0.5f,1); dst++; nvg__vset(dst, lx1, ly1, 0.5f,1); dst++; } } else { nvg__vset(dst, p1->x + (p1->dmx * woff), p1->y + (p1->dmy * woff), 0.5f,1); dst++; } p0 = p1++; } } else { for (j = 0; j < path->count; ++j) { nvg__vset(dst, pts[j].x, pts[j].y, 0.5f,1); dst++; } } path->nfill = (int)(dst - verts); verts = dst; // Calculate fringe if (fringe) { lw = w + woff; rw = w - woff; lu = 0; ru = 1; dst = verts; path->stroke = dst; // Create only half a fringe for convex shapes so that // the shape can be rendered without stenciling. if (convex) { lw = woff; // This should generate the same vertex as fill inset above. lu = 0.5f; // Set outline fade at middle. } // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; for (j = 0; j < path->count; ++j) { if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { dst = nvg__bevelJoin(dst, p0, p1, lw, rw, lu, ru, ctx->fringeWidth); } else { nvg__vset(dst, p1->x + (p1->dmx * lw), p1->y + (p1->dmy * lw), lu,1); dst++; nvg__vset(dst, p1->x - (p1->dmx * rw), p1->y - (p1->dmy * rw), ru,1); dst++; } p0 = p1++; } // Loop it nvg__vset(dst, verts[0].x, verts[0].y, lu,1); dst++; nvg__vset(dst, verts[1].x, verts[1].y, ru,1); dst++; path->nstroke = (int)(dst - verts); verts = dst; } else { path->stroke = NULL; path->nstroke = 0; } } return 1; } // Draw void nvgBeginPath(NVGcontext* ctx) { ctx->ncommands = 0; nvg__clearPathCache(ctx); } void nvgMoveTo(NVGcontext* ctx, float x, float y) { float vals[] = { NVG_MOVETO, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgLineTo(NVGcontext* ctx, float x, float y) { float vals[] = { NVG_LINETO, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y) { float vals[] = { NVG_BEZIERTO, c1x, c1y, c2x, c2y, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y) { float x0 = ctx->commandx; float y0 = ctx->commandy; float vals[] = { NVG_BEZIERTO, x0 + 2.0f/3.0f*(cx - x0), y0 + 2.0f/3.0f*(cy - y0), x + 2.0f/3.0f*(cx - x), y + 2.0f/3.0f*(cy - y), x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius) { float x0 = ctx->commandx; float y0 = ctx->commandy; float dx0,dy0, dx1,dy1, a, d, cx,cy, a0,a1; int dir; if (ctx->ncommands == 0) { return; } // Handle degenerate cases. if (nvg__ptEquals(x0,y0, x1,y1, ctx->distTol) || nvg__ptEquals(x1,y1, x2,y2, ctx->distTol) || nvg__distPtSeg(x1,y1, x0,y0, x2,y2) < ctx->distTol*ctx->distTol || radius < ctx->distTol) { nvgLineTo(ctx, x1,y1); return; } // Calculate tangential circle to lines (x0,y0)-(x1,y1) and (x1,y1)-(x2,y2). dx0 = x0-x1; dy0 = y0-y1; dx1 = x2-x1; dy1 = y2-y1; nvg__normalize(&dx0,&dy0); nvg__normalize(&dx1,&dy1); a = nvg__acosf(dx0*dx1 + dy0*dy1); d = radius / nvg__tanf(a/2.0f); // printf("a=%f° d=%f\n", a/NVG_PI*180.0f, d); if (d > 10000.0f) { nvgLineTo(ctx, x1,y1); return; } if (nvg__cross(dx0,dy0, dx1,dy1) > 0.0f) { cx = x1 + dx0*d + dy0*radius; cy = y1 + dy0*d + -dx0*radius; a0 = nvg__atan2f(dx0, -dy0); a1 = nvg__atan2f(-dx1, dy1); dir = NVG_CW; // printf("CW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); } else { cx = x1 + dx0*d + -dy0*radius; cy = y1 + dy0*d + dx0*radius; a0 = nvg__atan2f(-dx0, dy0); a1 = nvg__atan2f(dx1, -dy1); dir = NVG_CCW; // printf("CCW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); } nvgArc(ctx, cx, cy, radius, a0, a1, dir); } void nvgClosePath(NVGcontext* ctx) { float vals[] = { NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgPathWinding(NVGcontext* ctx, int dir) { float vals[] = { NVG_WINDING, (float)dir }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir) { float a = 0, da = 0, hda = 0, kappa = 0; float dx = 0, dy = 0, x = 0, y = 0, tanx = 0, tany = 0; float px = 0, py = 0, ptanx = 0, ptany = 0; float vals[3 + 5*7 + 100]; int i, ndivs, nvals; int move = ctx->ncommands > 0 ? NVG_LINETO : NVG_MOVETO; // Clamp angles da = a1 - a0; if (dir == NVG_CW) { if (nvg__absf(da) >= NVG_PI*2) { da = NVG_PI*2; } else { while (da < 0.0f) da += NVG_PI*2; } } else { if (nvg__absf(da) >= NVG_PI*2) { da = -NVG_PI*2; } else { while (da > 0.0f) da -= NVG_PI*2; } } // Split arc into max 90 degree segments. ndivs = nvg__maxi(1, nvg__mini((int)(nvg__absf(da) / (NVG_PI*0.5f) + 0.5f), 5)); hda = (da / (float)ndivs) / 2.0f; kappa = nvg__absf(4.0f / 3.0f * (1.0f - nvg__cosf(hda)) / nvg__sinf(hda)); if (dir == NVG_CCW) kappa = -kappa; nvals = 0; for (i = 0; i <= ndivs; i++) { a = a0 + da * (i/(float)ndivs); dx = nvg__cosf(a); dy = nvg__sinf(a); x = cx + dx*r; y = cy + dy*r; tanx = -dy*r*kappa; tany = dx*r*kappa; if (i == 0) { vals[nvals++] = (float)move; vals[nvals++] = x; vals[nvals++] = y; } else { vals[nvals++] = NVG_BEZIERTO; vals[nvals++] = px+ptanx; vals[nvals++] = py+ptany; vals[nvals++] = x-tanx; vals[nvals++] = y-tany; vals[nvals++] = x; vals[nvals++] = y; } px = x; py = y; ptanx = tanx; ptany = tany; } nvg__appendCommands(ctx, vals, nvals); } void nvgRect(NVGcontext* ctx, float x, float y, float w, float h) { float vals[] = { NVG_MOVETO, x,y, NVG_LINETO, x,y+h, NVG_LINETO, x+w,y+h, NVG_LINETO, x+w,y, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r) { nvgRoundedRectVarying(ctx, x, y, w, h, r, r, r, r); } void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft) { if(radTopLeft < 0.1f && radTopRight < 0.1f && radBottomRight < 0.1f && radBottomLeft < 0.1f) { nvgRect(ctx, x, y, w, h); return; } else { float halfw = nvg__absf(w)*0.5f; float halfh = nvg__absf(h)*0.5f; float rxBL = nvg__minf(radBottomLeft, halfw) * nvg__signf(w), ryBL = nvg__minf(radBottomLeft, halfh) * nvg__signf(h); float rxBR = nvg__minf(radBottomRight, halfw) * nvg__signf(w), ryBR = nvg__minf(radBottomRight, halfh) * nvg__signf(h); float rxTR = nvg__minf(radTopRight, halfw) * nvg__signf(w), ryTR = nvg__minf(radTopRight, halfh) * nvg__signf(h); float rxTL = nvg__minf(radTopLeft, halfw) * nvg__signf(w), ryTL = nvg__minf(radTopLeft, halfh) * nvg__signf(h); float vals[] = { NVG_MOVETO, x, y + ryTL, NVG_LINETO, x, y + h - ryBL, NVG_BEZIERTO, x, y + h - ryBL*(1 - NVG_KAPPA90), x + rxBL*(1 - NVG_KAPPA90), y + h, x + rxBL, y + h, NVG_LINETO, x + w - rxBR, y + h, NVG_BEZIERTO, x + w - rxBR*(1 - NVG_KAPPA90), y + h, x + w, y + h - ryBR*(1 - NVG_KAPPA90), x + w, y + h - ryBR, NVG_LINETO, x + w, y + ryTR, NVG_BEZIERTO, x + w, y + ryTR*(1 - NVG_KAPPA90), x + w - rxTR*(1 - NVG_KAPPA90), y, x + w - rxTR, y, NVG_LINETO, x + rxTL, y, NVG_BEZIERTO, x + rxTL*(1 - NVG_KAPPA90), y, x, y + ryTL*(1 - NVG_KAPPA90), x, y + ryTL, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } } void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry) { float vals[] = { NVG_MOVETO, cx-rx, cy, NVG_BEZIERTO, cx-rx, cy+ry*NVG_KAPPA90, cx-rx*NVG_KAPPA90, cy+ry, cx, cy+ry, NVG_BEZIERTO, cx+rx*NVG_KAPPA90, cy+ry, cx+rx, cy+ry*NVG_KAPPA90, cx+rx, cy, NVG_BEZIERTO, cx+rx, cy-ry*NVG_KAPPA90, cx+rx*NVG_KAPPA90, cy-ry, cx, cy-ry, NVG_BEZIERTO, cx-rx*NVG_KAPPA90, cy-ry, cx-rx, cy-ry*NVG_KAPPA90, cx-rx, cy, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgCircle(NVGcontext* ctx, float cx, float cy, float r) { nvgEllipse(ctx, cx,cy, r,r); } void nvgDebugDumpPathCache(NVGcontext* ctx) { const NVGpath* path; int i, j; printf("Dumping %d cached paths\n", ctx->cache->npaths); for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; printf(" - Path %d\n", i); if (path->nfill) { printf(" - fill: %d\n", path->nfill); for (j = 0; j < path->nfill; j++) printf("%f\t%f\n", path->fill[j].x, path->fill[j].y); } if (path->nstroke) { printf(" - stroke: %d\n", path->nstroke); for (j = 0; j < path->nstroke; j++) printf("%f\t%f\n", path->stroke[j].x, path->stroke[j].y); } } } void nvgFill(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); const NVGpath* path; NVGpaint fillPaint = state->fill; int i; nvg__flattenPaths(ctx); if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) nvg__expandFill(ctx, ctx->fringeWidth, NVG_MITER, 2.4f); else nvg__expandFill(ctx, 0.0f, NVG_MITER, 2.4f); // Apply global alpha fillPaint.innerColor.a *= state->alpha; fillPaint.outerColor.a *= state->alpha; ctx->params.renderFill(ctx->params.userPtr, &fillPaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, ctx->cache->bounds, ctx->cache->paths, ctx->cache->npaths); // Count triangles for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; ctx->fillTriCount += path->nfill-2; ctx->fillTriCount += path->nstroke-2; ctx->drawCallCount += 2; } } void nvgStroke(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getAverageScale(state->xform); float strokeWidth = nvg__clampf(state->strokeWidth * scale, 0.0f, 200.0f); NVGpaint strokePaint = state->stroke; const NVGpath* path; int i; if (strokeWidth < ctx->fringeWidth) { // If the stroke width is less than pixel size, use alpha to emulate coverage. // Since coverage is area, scale by alpha*alpha. float alpha = nvg__clampf(strokeWidth / ctx->fringeWidth, 0.0f, 1.0f); strokePaint.innerColor.a *= alpha*alpha; strokePaint.outerColor.a *= alpha*alpha; strokeWidth = ctx->fringeWidth; } // Apply global alpha strokePaint.innerColor.a *= state->alpha; strokePaint.outerColor.a *= state->alpha; nvg__flattenPaths(ctx); if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) nvg__expandStroke(ctx, strokeWidth*0.5f, ctx->fringeWidth, state->lineCap, state->lineJoin, state->miterLimit); else nvg__expandStroke(ctx, strokeWidth*0.5f, 0.0f, state->lineCap, state->lineJoin, state->miterLimit); ctx->params.renderStroke(ctx->params.userPtr, &strokePaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, strokeWidth, ctx->cache->paths, ctx->cache->npaths); // Count triangles for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; ctx->strokeTriCount += path->nstroke-2; ctx->drawCallCount++; } } // Add fonts int nvgCreateFont(NVGcontext* ctx, const char* name, const char* filename) { return fonsAddFont(ctx->fs, name, filename, 0); } int nvgCreateFontAtIndex(NVGcontext* ctx, const char* name, const char* filename, const int fontIndex) { return fonsAddFont(ctx->fs, name, filename, fontIndex); } int nvgCreateFontMem(NVGcontext* ctx, const char* name, const unsigned char* data, int ndata, int freeData) { return fonsAddFontMem(ctx->fs, name, data, ndata, freeData, 0); } int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex) { return fonsAddFontMem(ctx->fs, name, data, ndata, freeData, fontIndex); } int nvgFindFont(NVGcontext* ctx, const char* name) { if (name == NULL) return -1; return fonsGetFontByName(ctx->fs, name); } int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont) { if(baseFont == -1 || fallbackFont == -1) return 0; return fonsAddFallbackFont(ctx->fs, baseFont, fallbackFont); } int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont) { return nvgAddFallbackFontId(ctx, nvgFindFont(ctx, baseFont), nvgFindFont(ctx, fallbackFont)); } void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont) { fonsResetFallbackFont(ctx->fs, baseFont); } void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont) { nvgResetFallbackFontsId(ctx, nvgFindFont(ctx, baseFont)); } // State setting void nvgFontSize(NVGcontext* ctx, float size) { NVGstate* state = nvg__getState(ctx); state->fontSize = size; } void nvgFontBlur(NVGcontext* ctx, float blur) { NVGstate* state = nvg__getState(ctx); state->fontBlur = blur; } void nvgTextLetterSpacing(NVGcontext* ctx, float spacing) { NVGstate* state = nvg__getState(ctx); state->letterSpacing = spacing; } void nvgTextLineHeight(NVGcontext* ctx, float lineHeight) { NVGstate* state = nvg__getState(ctx); state->lineHeight = lineHeight; } void nvgTextAlign(NVGcontext* ctx, int align) { NVGstate* state = nvg__getState(ctx); state->textAlign = align; } void nvgFontFaceId(NVGcontext* ctx, int font) { NVGstate* state = nvg__getState(ctx); state->fontId = font; } void nvgFontFace(NVGcontext* ctx, const char* font) { NVGstate* state = nvg__getState(ctx); state->fontId = fonsGetFontByName(ctx->fs, font); } static float nvg__quantize(float a, float d) { return ((int)(a / d + 0.5f)) * d; } static float nvg__getFontScale(NVGstate* state) { return nvg__minf(nvg__quantize(nvg__getAverageScale(state->xform), 0.01f), 4.0f); } static void nvg__flushTextTexture(NVGcontext* ctx) { int dirty[4]; if (fonsValidateTexture(ctx->fs, dirty)) { int fontImage = ctx->fontImages[ctx->fontImageIdx]; // Update texture if (fontImage != 0) { int iw, ih; const unsigned char* data = fonsGetTextureData(ctx->fs, &iw, &ih); int x = dirty[0]; int y = dirty[1]; int w = dirty[2] - dirty[0]; int h = dirty[3] - dirty[1]; ctx->params.renderUpdateTexture(ctx->params.userPtr, fontImage, x,y, w,h, data); } } } static int nvg__allocTextAtlas(NVGcontext* ctx) { int iw, ih; nvg__flushTextTexture(ctx); if (ctx->fontImageIdx >= NVG_MAX_FONTIMAGES-1) return 0; // if next fontImage already have a texture if (ctx->fontImages[ctx->fontImageIdx+1] != 0) nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx+1], &iw, &ih); else { // calculate the new font image size and create it. nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx], &iw, &ih); if (iw > ih) ih *= 2; else iw *= 2; if (iw > NVG_MAX_FONTIMAGE_SIZE || ih > NVG_MAX_FONTIMAGE_SIZE) iw = ih = NVG_MAX_FONTIMAGE_SIZE; ctx->fontImages[ctx->fontImageIdx+1] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, iw, ih, 0, NULL); } ++ctx->fontImageIdx; fonsResetAtlas(ctx->fs, iw, ih); return 1; } static void nvg__renderText(NVGcontext* ctx, NVGvertex* verts, int nverts) { NVGstate* state = nvg__getState(ctx); NVGpaint paint = state->fill; // Render triangles. paint.image = ctx->fontImages[ctx->fontImageIdx]; // Apply global alpha paint.innerColor.a *= state->alpha; paint.outerColor.a *= state->alpha; ctx->params.renderTriangles(ctx->params.userPtr, &paint, state->compositeOperation, &state->scissor, verts, nverts, ctx->fringeWidth); ctx->drawCallCount++; ctx->textTriCount += nverts/3; } float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end) { NVGstate* state = nvg__getState(ctx); FONStextIter iter, prevIter; FONSquad q; NVGvertex* verts; float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; int cverts = 0; int nverts = 0; if (end == NULL) end = string + strlen(string); if (state->fontId == FONS_INVALID) return x; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); cverts = nvg__maxi(2, (int)(end - string)) * 6; // conservative estimate. verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return x; fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_REQUIRED); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { float c[4*2]; if (iter.prevGlyphIndex == -1) { // can not retrieve glyph? if (nverts != 0) { nvg__renderText(ctx, verts, nverts); nverts = 0; } if (!nvg__allocTextAtlas(ctx)) break; // no memory :( iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again if (iter.prevGlyphIndex == -1) // still can not find glyph? break; } prevIter = iter; // Transform corners. nvgTransformPoint(&c[0],&c[1], state->xform, q.x0*invscale, q.y0*invscale); nvgTransformPoint(&c[2],&c[3], state->xform, q.x1*invscale, q.y0*invscale); nvgTransformPoint(&c[4],&c[5], state->xform, q.x1*invscale, q.y1*invscale); nvgTransformPoint(&c[6],&c[7], state->xform, q.x0*invscale, q.y1*invscale); // Create triangles if (nverts+6 <= cverts) { nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; nvg__vset(&verts[nverts], c[2], c[3], q.s1, q.t0); nverts++; nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; nvg__vset(&verts[nverts], c[6], c[7], q.s0, q.t1); nverts++; nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; } } // TODO: add back-end bit to do this just once per frame. nvg__flushTextTexture(ctx); nvg__renderText(ctx, verts, nverts); return iter.nextx / scale; } void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end) { NVGstate* state = nvg__getState(ctx); NVGtextRow rows[2]; int nrows = 0, i; int oldAlign = state->textAlign; int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); float lineh = 0; if (state->fontId == FONS_INVALID) return; nvgTextMetrics(ctx, NULL, NULL, &lineh); state->textAlign = NVG_ALIGN_LEFT | valign; while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { for (i = 0; i < nrows; i++) { NVGtextRow* row = &rows[i]; if (haling & NVG_ALIGN_LEFT) nvgText(ctx, x, y, row->start, row->end); else if (haling & NVG_ALIGN_CENTER) nvgText(ctx, x + breakRowWidth*0.5f - row->width*0.5f, y, row->start, row->end); else if (haling & NVG_ALIGN_RIGHT) nvgText(ctx, x + breakRowWidth - row->width, y, row->start, row->end); y += lineh * state->lineHeight; } string = rows[nrows-1].next; } state->textAlign = oldAlign; } int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; FONStextIter iter, prevIter; FONSquad q; int npos = 0; if (state->fontId == FONS_INVALID) return 0; if (end == NULL) end = string + strlen(string); if (string == end) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_OPTIONAL); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again } prevIter = iter; positions[npos].str = iter.str; positions[npos].x = iter.x * invscale; positions[npos].minx = nvg__minf(iter.x, q.x0) * invscale; positions[npos].maxx = nvg__maxf(iter.nextx, q.x1) * invscale; npos++; if (npos >= maxPositions) break; } return npos; } enum NVGcodepointType { NVG_SPACE, NVG_NEWLINE, NVG_CHAR, NVG_CJK_CHAR, }; int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; FONStextIter iter, prevIter; FONSquad q; int nrows = 0; float rowStartX = 0; float rowWidth = 0; float rowMinX = 0; float rowMaxX = 0; const char* rowStart = NULL; const char* rowEnd = NULL; const char* wordStart = NULL; float wordStartX = 0; float wordMinX = 0; const char* breakEnd = NULL; float breakWidth = 0; float breakMaxX = 0; int type = NVG_SPACE, ptype = NVG_SPACE; unsigned int pcodepoint = 0; if (maxRows == 0) return 0; if (state->fontId == FONS_INVALID) return 0; if (end == NULL) end = string + strlen(string); if (string == end) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); breakRowWidth *= scale; fonsTextIterInit(ctx->fs, &iter, 0, 0, string, end, FONS_GLYPH_BITMAP_OPTIONAL); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again } prevIter = iter; switch (iter.codepoint) { case 9: // \t case 11: // \v case 12: // \f case 32: // space case 0x00a0: // NBSP type = NVG_SPACE; break; case 10: // \n type = pcodepoint == 13 ? NVG_SPACE : NVG_NEWLINE; break; case 13: // \r type = pcodepoint == 10 ? NVG_SPACE : NVG_NEWLINE; break; case 0x0085: // NEL type = NVG_NEWLINE; break; default: if ((iter.codepoint >= 0x4E00 && iter.codepoint <= 0x9FFF) || (iter.codepoint >= 0x3000 && iter.codepoint <= 0x30FF) || (iter.codepoint >= 0xFF00 && iter.codepoint <= 0xFFEF) || (iter.codepoint >= 0x1100 && iter.codepoint <= 0x11FF) || (iter.codepoint >= 0x3130 && iter.codepoint <= 0x318F) || (iter.codepoint >= 0xAC00 && iter.codepoint <= 0xD7AF)) type = NVG_CJK_CHAR; else type = NVG_CHAR; break; } if (type == NVG_NEWLINE) { // Always handle new lines. rows[nrows].start = rowStart != NULL ? rowStart : iter.str; rows[nrows].end = rowEnd != NULL ? rowEnd : iter.str; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = iter.next; nrows++; if (nrows >= maxRows) return nrows; // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; // Indicate to skip the white space at the beginning of the row. rowStart = NULL; rowEnd = NULL; rowWidth = 0; rowMinX = rowMaxX = 0; } else { if (rowStart == NULL) { // Skip white space until the beginning of the line if (type == NVG_CHAR || type == NVG_CJK_CHAR) { // The current char is the row so far rowStartX = iter.x; rowStart = iter.str; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = q.x0 - rowStartX; rowMaxX = q.x1 - rowStartX; wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0 - rowStartX; // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; } } else { float nextWidth = iter.nextx - rowStartX; // track last non-white space character if (type == NVG_CHAR || type == NVG_CJK_CHAR) { rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMaxX = q.x1 - rowStartX; } // track last end of a word if (((ptype == NVG_CHAR || ptype == NVG_CJK_CHAR) && type == NVG_SPACE) || type == NVG_CJK_CHAR) { breakEnd = iter.str; breakWidth = rowWidth; breakMaxX = rowMaxX; } // track last beginning of a word if ((ptype == NVG_SPACE && (type == NVG_CHAR || type == NVG_CJK_CHAR)) || type == NVG_CJK_CHAR) { wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0; } // Break to new line when a character is beyond break width. if ((type == NVG_CHAR || type == NVG_CJK_CHAR) && nextWidth > breakRowWidth) { // The run length is too long, need to break to new line. if (breakEnd == rowStart) { // The current word is longer than the row length, just break it from here. rows[nrows].start = rowStart; rows[nrows].end = iter.str; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = iter.str; nrows++; if (nrows >= maxRows) return nrows; rowStartX = iter.x; rowStart = iter.str; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = q.x0 - rowStartX; rowMaxX = q.x1 - rowStartX; wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0 - rowStartX; } else { // Break the line from the end of the last word, and start new line from the beginning of the new. rows[nrows].start = rowStart; rows[nrows].end = breakEnd; rows[nrows].width = breakWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = breakMaxX * invscale; rows[nrows].next = wordStart; nrows++; if (nrows >= maxRows) return nrows; // Update row rowStartX = wordStartX; rowStart = wordStart; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = wordMinX - rowStartX; rowMaxX = q.x1 - rowStartX; } // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; } } } pcodepoint = iter.codepoint; ptype = type; } // Break the line from the end of the last word, and start new line from the beginning of the new. if (rowStart != NULL) { rows[nrows].start = rowStart; rows[nrows].end = rowEnd; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = end; nrows++; } return nrows; } float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; float width; if (state->fontId == FONS_INVALID) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); width = fonsTextBounds(ctx->fs, x*scale, y*scale, string, end, bounds); if (bounds != NULL) { // Use line bounds for height. fonsLineBounds(ctx->fs, y*scale, &bounds[1], &bounds[3]); bounds[0] *= invscale; bounds[1] *= invscale; bounds[2] *= invscale; bounds[3] *= invscale; } return width * invscale; } void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds) { NVGstate* state = nvg__getState(ctx); NVGtextRow rows[2]; float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; int nrows = 0, i; int oldAlign = state->textAlign; int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); float lineh = 0, rminy = 0, rmaxy = 0; float minx, miny, maxx, maxy; if (state->fontId == FONS_INVALID) { if (bounds != NULL) bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0f; return; } nvgTextMetrics(ctx, NULL, NULL, &lineh); state->textAlign = NVG_ALIGN_LEFT | valign; minx = maxx = x; miny = maxy = y; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsLineBounds(ctx->fs, 0, &rminy, &rmaxy); rminy *= invscale; rmaxy *= invscale; while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { for (i = 0; i < nrows; i++) { NVGtextRow* row = &rows[i]; float rminx, rmaxx, dx = 0; // Horizontal bounds if (haling & NVG_ALIGN_LEFT) dx = 0; else if (haling & NVG_ALIGN_CENTER) dx = breakRowWidth*0.5f - row->width*0.5f; else if (haling & NVG_ALIGN_RIGHT) dx = breakRowWidth - row->width; rminx = x + row->minx + dx; rmaxx = x + row->maxx + dx; minx = nvg__minf(minx, rminx); maxx = nvg__maxf(maxx, rmaxx); // Vertical bounds. miny = nvg__minf(miny, y + rminy); maxy = nvg__maxf(maxy, y + rmaxy); y += lineh * state->lineHeight; } string = rows[nrows-1].next; } state->textAlign = oldAlign; if (bounds != NULL) { bounds[0] = minx; bounds[1] = miny; bounds[2] = maxx; bounds[3] = maxy; } } void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; if (state->fontId == FONS_INVALID) return; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsVertMetrics(ctx->fs, ascender, descender, lineh); if (ascender != NULL) *ascender *= invscale; if (descender != NULL) *descender *= invscale; if (lineh != NULL) *lineh *= invscale; } // vim: ft=c nu noet ts=4
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/stb_image.h
/* stb_image - v2.10 - public domain image loader - http://nothings.org/stb_image.h no warranty implied; use at your own risk Do this: #define STB_IMAGE_IMPLEMENTATION before you include this file in *one* C or C++ file to create the implementation. // i.e. it should look like this: #include ... #include ... #include ... #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" You can #define STBI_ASSERT(x) before the #include to avoid using assert.h. And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib) PNG 1/2/4/8-bit-per-channel (16 bpc not supported) TGA (not sure what subset, if a subset) BMP non-1bpp, non-RLE PSD (composited view only, no extra channels, 8/16 bit-per-channel) GIF (*comp always reports as 4-channel) HDR (radiance rgbE format) PIC (Softimage PIC) PNM (PPM and PGM binary only) Animated GIF still needs a proper API, but here's one way to do it: http://gist.github.com/urraka/685d9a6340b26b830d49 - decode from memory or through FILE (define STBI_NO_STDIO to remove code) - decode from arbitrary I/O callbacks - SIMD acceleration on x86/x64 (SSE2) and ARM (NEON) Full documentation under "DOCUMENTATION" below. Revision 2.00 release notes: - Progressive JPEG is now supported. - PPM and PGM binary formats are now supported, thanks to Ken Miller. - x86 platforms now make use of SSE2 SIMD instructions for JPEG decoding, and ARM platforms can use NEON SIMD if requested. This work was done by Fabian "ryg" Giesen. SSE2 is used by default, but NEON must be enabled explicitly; see docs. With other JPEG optimizations included in this version, we see 2x speedup on a JPEG on an x86 machine, and a 1.5x speedup on a JPEG on an ARM machine, relative to previous versions of this library. The same results will not obtain for all JPGs and for all x86/ARM machines. (Note that progressive JPEGs are significantly slower to decode than regular JPEGs.) This doesn't mean that this is the fastest JPEG decoder in the land; rather, it brings it closer to parity with standard libraries. If you want the fastest decode, look elsewhere. (See "Philosophy" section of docs below.) See final bullet items below for more info on SIMD. - Added STBI_MALLOC, STBI_REALLOC, and STBI_FREE macros for replacing the memory allocator. Unlike other STBI libraries, these macros don't support a context parameter, so if you need to pass a context in to the allocator, you'll have to store it in a global or a thread-local variable. - Split existing STBI_NO_HDR flag into two flags, STBI_NO_HDR and STBI_NO_LINEAR. STBI_NO_HDR: suppress implementation of .hdr reader format STBI_NO_LINEAR: suppress high-dynamic-range light-linear float API - You can suppress implementation of any of the decoders to reduce your code footprint by #defining one or more of the following symbols before creating the implementation. STBI_NO_JPEG STBI_NO_PNG STBI_NO_BMP STBI_NO_PSD STBI_NO_TGA STBI_NO_GIF STBI_NO_HDR STBI_NO_PIC STBI_NO_PNM (.ppm and .pgm) - You can request *only* certain decoders and suppress all other ones (this will be more forward-compatible, as addition of new decoders doesn't require you to disable them explicitly): STBI_ONLY_JPEG STBI_ONLY_PNG STBI_ONLY_BMP STBI_ONLY_PSD STBI_ONLY_TGA STBI_ONLY_GIF STBI_ONLY_HDR STBI_ONLY_PIC STBI_ONLY_PNM (.ppm and .pgm) Note that you can define multiples of these, and you will get all of them ("only x" and "only y" is interpreted to mean "only x&y"). - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB - Compilation of all SIMD code can be suppressed with #define STBI_NO_SIMD It should not be necessary to disable SIMD unless you have issues compiling (e.g. using an x86 compiler which doesn't support SSE intrinsics or that doesn't support the method used to detect SSE2 support at run-time), and even those can be reported as bugs so I can refine the built-in compile-time checking to be smarter. - The old STBI_SIMD system which allowed installing a user-defined IDCT etc. has been removed. If you need this, don't upgrade. My assumption is that almost nobody was doing this, and those who were will find the built-in SIMD more satisfactory anyway. - RGB values computed for JPEG images are slightly different from previous versions of stb_image. (This is due to using less integer precision in SIMD.) The C code has been adjusted so that the same RGB values will be computed regardless of whether SIMD support is available, so your app should always produce consistent results. But these results are slightly different from previous versions. (Specifically, about 3% of available YCbCr values will compute different RGB results from pre-1.49 versions by +-1; most of the deviating values are one smaller in the G channel.) - If you must produce consistent results with previous versions of stb_image, #define STBI_JPEG_OLD and you will get the same results you used to; however, you will not get the SIMD speedups for the YCbCr-to-RGB conversion step (although you should still see significant JPEG speedup from the other changes). Please note that STBI_JPEG_OLD is a temporary feature; it will be removed in future versions of the library. It is only intended for near-term back-compatibility use. Latest revision history: 2.10 (2016-01-22) avoid warning introduced in 2.09 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA 2.07 (2015-09-13) partial animated GIF support limited 16-bit PSD support minor bugs, code cleanup, and compiler warnings 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit 2.03 (2015-04-12) additional corruption checking stbi_set_flip_vertically_on_load fix NEON support; fix mingw support 2.02 (2015-01-19) fix incorrect assert, fix warning 2.01 (2015-01-17) fix various warnings 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG 2.00 (2014-12-25) optimize JPEG, including x86 SSE2 & ARM NEON SIMD progressive JPEG PGM/PPM support STBI_MALLOC,STBI_REALLOC,STBI_FREE STBI_NO_*, STBI_ONLY_* GIF bugfix 1.48 (2014-12-14) fix incorrectly-named assert() 1.47 (2014-12-14) 1/2/4-bit PNG support (both grayscale and paletted) optimize PNG fix bug in interlaced PNG with user-specified channel count See end of file for full revision history. ============================ Contributors ========================= Image formats Extensions, features Sean Barrett (jpeg, png, bmp) Jetro Lauha (stbi_info) Nicolas Schulz (hdr, psd) Martin "SpartanJ" Golini (stbi_info) Jonathan Dummer (tga) James "moose2000" Brown (iPhone PNG) Jean-Marc Lienher (gif) Ben "Disch" Wenger (io callbacks) Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG) Thatcher Ulrich (psd) Nicolas Guillemot (vertical flip) Ken Miller (pgm, ppm) Richard Mitton (16-bit PSD) urraka@github (animated gif) Junggon Kim (PNM comments) Daniel Gibson (16-bit TGA) Optimizations & bugfixes Fabian "ryg" Giesen Arseny Kapoulkine Bug & warning fixes Marc LeBlanc David Woo Guillaume George Martins Mozeiko Christpher Lloyd Martin Golini Jerry Jansson Joseph Thomson Dave Moore Roy Eltham Hayaki Saito Phil Jordan Won Chun Luke Graham Johan Duparc Nathan Reed the Horde3D community Thomas Ruf Ronny Chevalier Nick Verigakis Janez Zemva John Bartholomew Michal Cichon svdijk@github Jonathan Blow Ken Hamada Tero Hanninen Baldur Karlsson Laurent Gomila Cort Stratton Sergio Gonzalez romigrou@github Aruelien Pocheville Thibault Reuille Cass Everitt Ryamond Barbiero Paul Du Bois Engin Manap Blazej Dariusz Roszkowski Michaelangel007@github LICENSE This software is in the public domain. Where that dedication is not recognized, you are granted a perpetual, irrevocable license to copy, distribute, and modify this file as you see fit. */ #ifndef STBI_INCLUDE_STB_IMAGE_H #define STBI_INCLUDE_STB_IMAGE_H // DOCUMENTATION // // Limitations: // - no 16-bit-per-channel PNG // - no 12-bit-per-channel JPEG // - no JPEGs with arithmetic coding // - no 1-bit BMP // - GIF always returns *comp=4 // // Basic usage (see HDR discussion below for HDR usage): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // // ... but 'n' will always be the number that it would have been if you said 0 // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *comp -- outputs # of image components in image file // int req_comp -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data, or NULL on an allocation failure or if the image is // corrupt or invalid. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. // If req_comp is non-zero, *comp has the number of components that _would_ // have been output otherwise. E.g. if you set req_comp to 4, you will always // get RGBA output, but you can check *comp to see if it's trivially opaque // because e.g. there were only 3 channels in the source image. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *comp will be unchanged. The function stbi_failure_reason() // can be queried for an extremely brief, end-user unfriendly explanation // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. // // =========================================================================== // // Philosophy // // stb libraries are designed with the following priorities: // // 1. easy to use // 2. easy to maintain // 3. good performance // // Sometimes I let "good performance" creep up in priority over "easy to maintain", // and for best performance I may provide less-easy-to-use APIs that give higher // performance, in addition to the easy to use ones. Nevertheless, it's important // to keep in mind that from the standpoint of you, a client of this library, // all you care about is #1 and #3, and stb libraries do not emphasize #3 above all. // // Some secondary priorities arise directly from the first two, some of which // make more explicit reasons why performance can't be emphasized. // // - Portable ("ease of use") // - Small footprint ("easy to maintain") // - No dependencies ("ease of use") // // =========================================================================== // // I/O callbacks // // I/O callbacks allow you to read from arbitrary sources, like packaged // files or some other source. Data read from callbacks are processed // through a small internal buffer (currently 128 bytes) to try to reduce // overhead. // // The three functions you must define are "read" (reads some bytes of data), // "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). // // =========================================================================== // // SIMD support // // The JPEG decoder will try to automatically use SIMD kernels on x86 when // supported by the compiler. For ARM Neon support, you must explicitly // request it. // // (The old do-it-yourself SIMD API is no longer supported in the current // code.) // // On x86, SSE2 will automatically be used when available based on a run-time // test; if not, the generic C versions are used as a fall-back. On ARM targets, // the typical path is to have separate builds for NEON and non-NEON devices // (at least this is true for iOS and Android). Therefore, the NEON support is // toggled by a build flag: define STBI_NEON to get NEON loops. // // The output of the JPEG decoder is slightly different from versions where // SIMD support was introduced (that is, for versions before 1.49). The // difference is only +-1 in the 8-bit RGB channels, and only on a small // fraction of pixels. You can force the pre-1.49 behavior by defining // STBI_JPEG_OLD, but this will disable some of the SIMD decoding path // and hence cost some performance. // // If for some reason you do not want to use any of SIMD code, or if // you have issues compiling it, you can disable it entirely by // defining STBI_NO_SIMD. // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image now supports loading HDR images in general, and currently // the Radiance .HDR file format, although the support is provided // generically. You can still load any file through the existing interface; // if you attempt to load an HDR file, it will be automatically remapped to // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); // // =========================================================================== // // iPhone PNG support: // // By default we convert iphone-formatted PNGs back to RGB, even though // they are internally encoded differently. You can disable this conversion // by by calling stbi_convert_iphone_png_to_rgb(0), in which case // you will always just get the native iphone "format" through (which // is BGR stored in RGB). // // Call stbi_set_unpremultiply_on_load(1) as well to force a divide per // pixel to remove any premultiplied alpha *only* if the image file explicitly // says there's premultiplied data (currently only happens in iPhone images, // and only if iPhone convert-to-rgb processing is on). // #ifndef STBI_NO_STDIO #include <stdio.h> #endif // STBI_NO_STDIO #define STBI_VERSION 1 enum { STBI_default = 0, // only used for req_comp STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4 }; typedef unsigned char stbi_uc; #ifdef __cplusplus extern "C" { #endif #ifdef STB_IMAGE_STATIC #define STBIDEF static #else #define STBIDEF extern #endif ////////////////////////////////////////////////////////////////////////////// // // PRIMARY API - works on images of any type // // // load image by filename, open file, or memory buffer // typedef struct { int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative int (*eof) (void *user); // returns nonzero if we are at end of file/data } stbi_io_callbacks; STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp); STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *comp, int req_comp); STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); // for stbi_load_from_file, file pointer is left pointing immediately after image #endif #ifndef STBI_NO_LINEAR STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp); STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif #endif #ifndef STBI_NO_HDR STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); STBIDEF void stbi_hdr_to_ldr_scale(float scale); #endif // STBI_NO_HDR #ifndef STBI_NO_LINEAR STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); STBIDEF void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_LINEAR // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO STBIDEF int stbi_is_hdr (char const *filename); STBIDEF int stbi_is_hdr_from_file(FILE *f); #endif // STBI_NO_STDIO // get a VERY brief reason for failure // NOT THREADSAFE STBIDEF const char *stbi_failure_reason (void); // free the loaded image -- this is just free() STBIDEF void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // for image formats that explicitly notate that they have premultiplied alpha, // we just return the colors as stored in the file. set this flag to force // unpremultiplication. results are undefined if the unpremultiply overflow. STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); // indicate whether we should process iphone images back to canonical format, // or just pass them through "as-is" STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); // flip the image vertically, so the first pixel in the output array is the bottom left STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); // ZLIB client - used by PNG, available for other purposes STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #endif // STBI_INCLUDE_STB_IMAGE_H #ifdef STB_IMAGE_IMPLEMENTATION #if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ || defined(STBI_ONLY_ZLIB) #ifndef STBI_ONLY_JPEG #define STBI_NO_JPEG #endif #ifndef STBI_ONLY_PNG #define STBI_NO_PNG #endif #ifndef STBI_ONLY_BMP #define STBI_NO_BMP #endif #ifndef STBI_ONLY_PSD #define STBI_NO_PSD #endif #ifndef STBI_ONLY_TGA #define STBI_NO_TGA #endif #ifndef STBI_ONLY_GIF #define STBI_NO_GIF #endif #ifndef STBI_ONLY_HDR #define STBI_NO_HDR #endif #ifndef STBI_ONLY_PIC #define STBI_NO_PIC #endif #ifndef STBI_ONLY_PNM #define STBI_NO_PNM #endif #endif #if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) #define STBI_NO_ZLIB #endif #include <stdarg.h> #include <stddef.h> // ptrdiff_t on osx #include <stdlib.h> #include <string.h> #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) #include <math.h> // ldexp #endif #ifndef STBI_NO_STDIO #include <stdio.h> #endif #ifndef STBI_ASSERT #include <assert.h> #define STBI_ASSERT(x) assert(x) #endif #ifndef _MSC_VER #ifdef __cplusplus #define stbi_inline inline #else #define stbi_inline #endif #else #define stbi_inline __forceinline #endif #ifdef _MSC_VER typedef unsigned short stbi__uint16; typedef signed short stbi__int16; typedef unsigned int stbi__uint32; typedef signed int stbi__int32; #else #include <stdint.h> typedef uint16_t stbi__uint16; typedef int16_t stbi__int16; typedef uint32_t stbi__uint32; typedef int32_t stbi__int32; #endif // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #ifdef _MSC_VER #define STBI_NOTUSED(v) (void)(v) #else #define STBI_NOTUSED(v) (void)sizeof(v) #endif #ifdef _MSC_VER #define STBI_HAS_LROTL #endif #ifdef STBI_HAS_LROTL #define stbi_lrot(x,y) _lrotl(x,y) #else #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y)))) #endif #if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) // ok #elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) // ok #else #error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." #endif #ifndef STBI_MALLOC #define STBI_MALLOC(sz) malloc(sz) #define STBI_REALLOC(p,newsz) realloc(p,newsz) #define STBI_FREE(p) free(p) #endif #ifndef STBI_REALLOC_SIZED #define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) #endif // x86/x64 detection #if defined(__x86_64__) || defined(_M_X64) #define STBI__X64_TARGET #elif defined(__i386) || defined(_M_IX86) #define STBI__X86_TARGET #endif #if defined(__GNUC__) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) // NOTE: not clear do we actually need this for the 64-bit path? // gcc doesn't support sse2 intrinsics unless you compile with -msse2, // (but compiling with -msse2 allows the compiler to use SSE2 everywhere; // this is just broken and gcc are jerks for not fixing it properly // http://www.virtualdub.org/blog/pivot/entry.php?id=363 ) #define STBI_NO_SIMD #endif #if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) // Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET // // 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the // Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. // As a result, enabling SSE2 on 32-bit MinGW is dangerous when not // simultaneously enabling "-mstackrealign". // // See https://github.com/nothings/stb/issues/81 for more information. // // So default to no SSE2 on 32-bit MinGW. If you've read this far and added // -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. #define STBI_NO_SIMD #endif #if !defined(STBI_NO_SIMD) && defined(STBI__X86_TARGET) #define STBI_SSE2 #include <emmintrin.h> #ifdef _MSC_VER #if _MSC_VER >= 1400 // not VC6 #include <intrin.h> // __cpuid static int stbi__cpuid3(void) { int info[4]; __cpuid(info,1); return info[3]; } #else static int stbi__cpuid3(void) { int res; __asm { mov eax,1 cpuid mov res,edx } return res; } #endif #define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name static int stbi__sse2_available() { int info3 = stbi__cpuid3(); return ((info3 >> 26) & 1) != 0; } #else // assume GCC-style if not VC++ #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) static int stbi__sse2_available() { #if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__) >= 408 // GCC 4.8 or later // GCC 4.8+ has a nice way to do this return __builtin_cpu_supports("sse2"); #else // portable way to do this, preferably without using GCC inline ASM? // just bail for now. return 0; #endif } #endif #endif // ARM NEON #if defined(STBI_NO_SIMD) && defined(STBI_NEON) #undef STBI_NEON #endif #ifdef STBI_NEON #include <arm_neon.h> // assume GCC or Clang on ARM targets #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) #endif #ifndef STBI_SIMD_ALIGN #define STBI_SIMD_ALIGN(type, name) type name #endif /////////////////////////////////////////////// // // stbi__context struct and start_xxx functions // stbi__context structure is our basic context used by all images, so it // contains all the IO context, plus some basic image information typedef struct { stbi__uint32 img_x, img_y; int img_n, img_out_n; stbi_io_callbacks io; void *io_user_data; int read_from_callbacks; int buflen; stbi_uc buffer_start[128]; stbi_uc *img_buffer, *img_buffer_end; stbi_uc *img_buffer_original, *img_buffer_original_end; } stbi__context; static void stbi__refill_buffer(stbi__context *s); // initialize a memory-decode context static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) { s->io.read = NULL; s->read_from_callbacks = 0; s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; } // initialize a callback-based context static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) { s->io = *c; s->io_user_data = user; s->buflen = sizeof(s->buffer_start); s->read_from_callbacks = 1; s->img_buffer_original = s->buffer_start; stbi__refill_buffer(s); s->img_buffer_original_end = s->img_buffer_end; } #ifndef STBI_NO_STDIO static int stbi__stdio_read(void *user, char *data, int size) { return (int) fread(data,1,size,(FILE*) user); } static void stbi__stdio_skip(void *user, int n) { fseek((FILE*) user, n, SEEK_CUR); } static int stbi__stdio_eof(void *user) { return feof((FILE*) user); } static stbi_io_callbacks stbi__stdio_callbacks = { stbi__stdio_read, stbi__stdio_skip, stbi__stdio_eof, }; static void stbi__start_file(stbi__context *s, FILE *f) { stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); } //static void stop_file(stbi__context *s) { } #endif // !STBI_NO_STDIO static void stbi__rewind(stbi__context *s) { // conceptually rewind SHOULD rewind to the beginning of the stream, // but we just rewind to the beginning of the initial buffer, because // we only use it after doing 'test', which only ever looks at at most 92 bytes s->img_buffer = s->img_buffer_original; s->img_buffer_end = s->img_buffer_original_end; } #ifndef STBI_NO_JPEG static int stbi__jpeg_test(stbi__context *s); static stbi_uc *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNG static int stbi__png_test(stbi__context *s); static stbi_uc *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_BMP static int stbi__bmp_test(stbi__context *s); static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_TGA static int stbi__tga_test(stbi__context *s); static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PSD static int stbi__psd_test(stbi__context *s); static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_HDR static int stbi__hdr_test(stbi__context *s); static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PIC static int stbi__pic_test(stbi__context *s); static stbi_uc *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_GIF static int stbi__gif_test(stbi__context *s); static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNM static int stbi__pnm_test(stbi__context *s); static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); #endif // this is not threadsafe static const char *stbi__g_failure_reason; STBIDEF const char *stbi_failure_reason(void) { return stbi__g_failure_reason; } static int stbi__err(const char *str) { stbi__g_failure_reason = str; return 0; } static void *stbi__malloc(size_t size) { return STBI_MALLOC(size); } // stbi__err - error // stbi__errpf - error returning pointer to float // stbi__errpuc - error returning pointer to unsigned char #ifdef STBI_NO_FAILURE_STRINGS #define stbi__err(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define stbi__err(x,y) stbi__err(y) #else #define stbi__err(x,y) stbi__err(x) #endif #define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) #define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) STBIDEF void stbi_image_free(void *retval_from_stbi_load) { STBI_FREE(retval_from_stbi_load); } #ifndef STBI_NO_LINEAR static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); #endif #ifndef STBI_NO_HDR static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); #endif static int stbi__vertically_flip_on_load = 0; STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) { stbi__vertically_flip_on_load = flag_true_if_should_flip; } static unsigned char *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) { #ifndef STBI_NO_JPEG if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_PNG if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_BMP if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_GIF if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_PSD if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_PIC if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_PNM if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp); #endif #ifndef STBI_NO_HDR if (stbi__hdr_test(s)) { float *hdr = stbi__hdr_load(s, x,y,comp,req_comp); return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif #ifndef STBI_NO_TGA // test tga last because it's a crappy test! if (stbi__tga_test(s)) return stbi__tga_load(s,x,y,comp,req_comp); #endif return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); } static unsigned char *stbi__load_flip(stbi__context *s, int *x, int *y, int *comp, int req_comp) { unsigned char *result = stbi__load_main(s, x, y, comp, req_comp); if (stbi__vertically_flip_on_load && result != NULL) { int w = *x, h = *y; int depth = req_comp ? req_comp : *comp; int row,col,z; stbi_uc temp; // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once for (row = 0; row < (h>>1); row++) { for (col = 0; col < w; col++) { for (z = 0; z < depth; z++) { temp = result[(row * w + col) * depth + z]; result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z]; result[((h - row - 1) * w + col) * depth + z] = temp; } } } } return result; } #ifndef STBI_NO_HDR static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) { if (stbi__vertically_flip_on_load && result != NULL) { int w = *x, h = *y; int depth = req_comp ? req_comp : *comp; int row,col,z; float temp; // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once for (row = 0; row < (h>>1); row++) { for (col = 0; col < w; col++) { for (z = 0; z < depth; z++) { temp = result[(row * w + col) * depth + z]; result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z]; result[((h - row - 1) * w + col) * depth + z] = temp; } } } } } #endif #ifndef STBI_NO_STDIO static FILE *stbi__fopen(char const *filename, char const *mode) { FILE *f; #if defined(_MSC_VER) && _MSC_VER >= 1400 if (0 != fopen_s(&f, filename, mode)) f=0; #else f = fopen(filename, mode); #endif return f; } STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = stbi__fopen(filename, "rb"); unsigned char *result; if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *result; stbi__context s; stbi__start_file(&s,f); result = stbi__load_flip(&s,x,y,comp,req_comp); if (result) { // need to 'unget' all the characters in the IO buffer fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); } return result; } #endif //!STBI_NO_STDIO STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__load_flip(&s,x,y,comp,req_comp); } STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__load_flip(&s,x,y,comp,req_comp); } #ifndef STBI_NO_LINEAR static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi__hdr_test(s)) { float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp); if (hdr_data) stbi__float_postprocess(hdr_data,x,y,comp,req_comp); return hdr_data; } #endif data = stbi__load_flip(s, x, y, comp, req_comp); if (data) return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); } STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__loadf_main(&s,x,y,comp,req_comp); } STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__loadf_main(&s,x,y,comp,req_comp); } #ifndef STBI_NO_STDIO STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) { float *result; FILE *f = stbi__fopen(filename, "rb"); if (!f) return stbi__errpf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_file(&s,f); return stbi__loadf_main(&s,x,y,comp,req_comp); } #endif // !STBI_NO_STDIO #endif // !STBI_NO_LINEAR // these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is // defined, for API simplicity; if STBI_NO_LINEAR is defined, it always // reports false! STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { #ifndef STBI_NO_HDR stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__hdr_test(&s); #else STBI_NOTUSED(buffer); STBI_NOTUSED(len); return 0; #endif } #ifndef STBI_NO_STDIO STBIDEF int stbi_is_hdr (char const *filename) { FILE *f = stbi__fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } STBIDEF int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR stbi__context s; stbi__start_file(&s,f); return stbi__hdr_test(&s); #else STBI_NOTUSED(f); return 0; #endif } #endif // !STBI_NO_STDIO STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) { #ifndef STBI_NO_HDR stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__hdr_test(&s); #else STBI_NOTUSED(clbk); STBI_NOTUSED(user); return 0; #endif } #ifndef STBI_NO_LINEAR static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } #endif static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // enum { STBI__SCAN_load=0, STBI__SCAN_type, STBI__SCAN_header }; static void stbi__refill_buffer(stbi__context *s) { int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); if (n == 0) { // at end of file, treat same as if from memory, but need to handle case // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file s->read_from_callbacks = 0; s->img_buffer = s->buffer_start; s->img_buffer_end = s->buffer_start+1; *s->img_buffer = 0; } else { s->img_buffer = s->buffer_start; s->img_buffer_end = s->buffer_start + n; } } stbi_inline static stbi_uc stbi__get8(stbi__context *s) { if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; if (s->read_from_callbacks) { stbi__refill_buffer(s); return *s->img_buffer++; } return 0; } stbi_inline static int stbi__at_eof(stbi__context *s) { if (s->io.read) { if (!(s->io.eof)(s->io_user_data)) return 0; // if feof() is true, check if buffer = end // special case: we've only got the special 0 character at the end if (s->read_from_callbacks == 0) return 1; } return s->img_buffer >= s->img_buffer_end; } static void stbi__skip(stbi__context *s, int n) { if (n < 0) { s->img_buffer = s->img_buffer_end; return; } if (s->io.read) { int blen = (int) (s->img_buffer_end - s->img_buffer); if (blen < n) { s->img_buffer = s->img_buffer_end; (s->io.skip)(s->io_user_data, n - blen); return; } } s->img_buffer += n; } static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) { if (s->io.read) { int blen = (int) (s->img_buffer_end - s->img_buffer); if (blen < n) { int res, count; memcpy(buffer, s->img_buffer, blen); count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); res = (count == (n-blen)); s->img_buffer = s->img_buffer_end; return res; } } if (s->img_buffer+n <= s->img_buffer_end) { memcpy(buffer, s->img_buffer, n); s->img_buffer += n; return 1; } else return 0; } static int stbi__get16be(stbi__context *s) { int z = stbi__get8(s); return (z << 8) + stbi__get8(s); } static stbi__uint32 stbi__get32be(stbi__context *s) { stbi__uint32 z = stbi__get16be(s); return (z << 16) + stbi__get16be(s); } #if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) // nothing #else static int stbi__get16le(stbi__context *s) { int z = stbi__get8(s); return z + (stbi__get8(s) << 8); } #endif #ifndef STBI_NO_BMP static stbi__uint32 stbi__get32le(stbi__context *s) { stbi__uint32 z = stbi__get16le(s); return z + (stbi__get16le(s) << 16); } #endif #define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static stbi_uc stbi__compute_y(int r, int g, int b) { return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) stbi__malloc(req_comp * x * y); if (good == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define COMBO(a,b) ((a)*8+(b)) #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch (COMBO(img_n, req_comp)) { CASE(1,2) dest[0]=src[0], dest[1]=255; break; CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; CASE(2,1) dest[0]=src[0]; break; CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; CASE(3,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break; CASE(3,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; break; CASE(4,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break; CASE(4,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; default: STBI_ASSERT(0); } #undef CASE } STBI_FREE(data); return good; } #ifndef STBI_NO_LINEAR static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output = (float *) stbi__malloc(x * y * comp * sizeof(float)); if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); } if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; } STBI_FREE(data); return output; } #endif #ifndef STBI_NO_HDR #define stbi__float2int(x) ((int) (x)) static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output = (stbi_uc *) stbi__malloc(x * y * comp); if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = (stbi_uc) stbi__float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = (stbi_uc) stbi__float2int(z); } } STBI_FREE(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder // // simple implementation // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - some SIMD kernels for common paths on targets with SSE2/NEON // - uses a lot of intermediate memory, could cache poorly #ifndef STBI_NO_JPEG // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { stbi_uc fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win stbi__uint16 code[256]; stbi_uc values[256]; stbi_uc size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } stbi__huffman; typedef struct { stbi__context *s; stbi__huffman huff_dc[4]; stbi__huffman huff_ac[4]; stbi_uc dequant[4][64]; stbi__int16 fast_ac[4][1 << FAST_BITS]; // sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h; // definition of jpeg image component struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; stbi_uc *data; void *raw_data, *raw_coeff; stbi_uc *linebuf; short *coeff; // progressive only int coeff_w, coeff_h; // number of 8x8 coefficient blocks } img_comp[4]; stbi__uint32 code_buffer; // jpeg entropy-coded buffer int code_bits; // number of valid bits unsigned char marker; // marker seen while filling entropy buffer int nomore; // flag if we saw a marker so must stop int progressive; int spec_start; int spec_end; int succ_high; int succ_low; int eob_run; int scan_n, order[4]; int restart_interval, todo; // kernels void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); } stbi__jpeg; static int stbi__build_huffman(stbi__huffman *h, int *count) { int i,j,k=0,code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (stbi_uc) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (stbi__uint16) (code++); if (code-1 >= (1 << j)) return stbi__err("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (stbi_uc) i; } } } return 1; } // build a table that decodes both magnitude and value of small ACs in // one go. static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) { int i; for (i=0; i < (1 << FAST_BITS); ++i) { stbi_uc fast = h->fast[i]; fast_ac[i] = 0; if (fast < 255) { int rs = h->values[fast]; int run = (rs >> 4) & 15; int magbits = rs & 15; int len = h->size[fast]; if (magbits && len + magbits <= FAST_BITS) { // magnitude code followed by receive_extend code int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); int m = 1 << (magbits - 1); if (k < m) k += (-1 << magbits) + 1; // if the result is small enough, we can fit it in fast_ac table if (k >= -128 && k <= 127) fast_ac[i] = (stbi__int16) ((k << 8) + (run << 4) + (len + magbits)); } } } } static void stbi__grow_buffer_unsafe(stbi__jpeg *j) { do { int b = j->nomore ? 0 : stbi__get8(j->s); if (b == 0xff) { int c = stbi__get8(j->s); if (c != 0) { j->marker = (unsigned char) c; j->nomore = 1; return; } } j->code_buffer |= b << (24 - j->code_bits); j->code_bits += 8; } while (j->code_bits <= 24); } // (1 << n) - 1 static stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) { unsigned int temp; int c,k; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { int s = h->size[k]; if (s > j->code_bits) return -1; j->code_buffer <<= s; j->code_bits -= s; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. temp = j->code_buffer >> 16; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found j->code_bits -= 16; return -1; } if (k > j->code_bits) return -1; // convert the huffman code to the symbol id c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol j->code_bits -= k; j->code_buffer <<= k; return h->values[c]; } // bias[n] = (-1<<n) + 1 static int const stbi__jbias[16] = {0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767}; // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n) { unsigned int k; int sgn; if (j->code_bits < n) stbi__grow_buffer_unsafe(j); sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB k = stbi_lrot(j->code_buffer, n); STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))); j->code_buffer = k & ~stbi__bmask[n]; k &= stbi__bmask[n]; j->code_bits -= n; return k + (stbi__jbias[n] & ~sgn); } // get some unsigned bits stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) { unsigned int k; if (j->code_bits < n) stbi__grow_buffer_unsafe(j); k = stbi_lrot(j->code_buffer, n); j->code_buffer = k & ~stbi__bmask[n]; k &= stbi__bmask[n]; j->code_bits -= n; return k; } stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) { unsigned int k; if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); k = j->code_buffer; j->code_buffer <<= 1; --j->code_bits; return k & 0x80000000; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static stbi_uc stbi__jpeg_dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi_uc *dequant) { int diff,dc,k; int t; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); t = stbi__jpeg_huff_decode(j, hdc); if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? stbi__extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) (dc * dequant[0]); // decode AC components, see JPEG spec k = 1; do { unsigned int zig; int c,r,s; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); r = fac[c]; if (r) { // fast-AC path k += (r >> 4) & 15; // run s = r & 15; // combined length j->code_buffer <<= s; j->code_bits -= s; // decode into unzigzag'd location zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) ((r >> 8) * dequant[zig]); } else { int rs = stbi__jpeg_huff_decode(j, hac); if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); } } } while (k < 64); return 1; } static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) { int diff,dc; int t; if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); if (j->succ_high == 0) { // first scan for DC coefficient, must be first memset(data,0,64*sizeof(data[0])); // 0 all the ac values now t = stbi__jpeg_huff_decode(j, hdc); diff = t ? stbi__extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) (dc << j->succ_low); } else { // refinement scan for DC coefficient if (stbi__jpeg_get_bit(j)) data[0] += (short) (1 << j->succ_low); } return 1; } // @OPTIMIZE: store non-zigzagged during the decode passes, // and only de-zigzag when dequantizing static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) { int k; if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); if (j->succ_high == 0) { int shift = j->succ_low; if (j->eob_run) { --j->eob_run; return 1; } k = j->spec_start; do { unsigned int zig; int c,r,s; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); r = fac[c]; if (r) { // fast-AC path k += (r >> 4) & 15; // run s = r & 15; // combined length j->code_buffer <<= s; j->code_bits -= s; zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) ((r >> 8) << shift); } else { int rs = stbi__jpeg_huff_decode(j, hac); if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (r < 15) { j->eob_run = (1 << r); if (r) j->eob_run += stbi__jpeg_get_bits(j, r); --j->eob_run; break; } k += 16; } else { k += r; zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) (stbi__extend_receive(j,s) << shift); } } } while (k <= j->spec_end); } else { // refinement scan for these AC coefficients short bit = (short) (1 << j->succ_low); if (j->eob_run) { --j->eob_run; for (k = j->spec_start; k <= j->spec_end; ++k) { short *p = &data[stbi__jpeg_dezigzag[k]]; if (*p != 0) if (stbi__jpeg_get_bit(j)) if ((*p & bit)==0) { if (*p > 0) *p += bit; else *p -= bit; } } } else { k = j->spec_start; do { int r,s; int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (r < 15) { j->eob_run = (1 << r) - 1; if (r) j->eob_run += stbi__jpeg_get_bits(j, r); r = 64; // force end of block } else { // r=15 s=0 should write 16 0s, so we just do // a run of 15 0s and then write s (which is 0), // so we don't have to do anything special here } } else { if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); // sign bit if (stbi__jpeg_get_bit(j)) s = bit; else s = -bit; } // advance by r while (k <= j->spec_end) { short *p = &data[stbi__jpeg_dezigzag[k++]]; if (*p != 0) { if (stbi__jpeg_get_bit(j)) if ((*p & bit)==0) { if (*p > 0) *p += bit; else *p -= bit; } } else { if (r == 0) { *p = (short) s; break; } --r; } } } while (k <= j->spec_end); } } return 1; } // take a -128..127 value and stbi__clamp it and convert to 0..255 stbi_inline static stbi_uc stbi__clamp(int x) { // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (stbi_uc) x; } #define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) #define stbi__fsh(x) ((x) << 12) // derived from jidctint -- DCT_ISLOW #define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * stbi__f2f(0.5411961f); \ t2 = p1 + p3*stbi__f2f(-1.847759065f); \ t3 = p1 + p2*stbi__f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = stbi__fsh(p2+p3); \ t1 = stbi__fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ t0 = t0*stbi__f2f( 0.298631336f); \ t1 = t1*stbi__f2f( 2.053119869f); \ t2 = t2*stbi__f2f( 3.072711026f); \ t3 = t3*stbi__f2f( 1.501321110f); \ p1 = p5 + p1*stbi__f2f(-0.899976223f); \ p2 = p5 + p2*stbi__f2f(-2.562915447f); \ p3 = p3*stbi__f2f(-1.961570560f); \ p4 = p4*stbi__f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) { int i,val[64],*v=val; stbi_uc *o; short *d = data; // columns for (i=0; i < 8; ++i,++d, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. // so we want to round that, which means adding 0.5 * 1<<17, // aka 65536. Also, we'll end up with -128 to 127 that we want // to encode as 0..255 by adding 128, so we'll add that before the shift x0 += 65536 + (128<<17); x1 += 65536 + (128<<17); x2 += 65536 + (128<<17); x3 += 65536 + (128<<17); // tried computing the shifts into temps, or'ing the temps to see // if any were out of range, but that was slower o[0] = stbi__clamp((x0+t3) >> 17); o[7] = stbi__clamp((x0-t3) >> 17); o[1] = stbi__clamp((x1+t2) >> 17); o[6] = stbi__clamp((x1-t2) >> 17); o[2] = stbi__clamp((x2+t1) >> 17); o[5] = stbi__clamp((x2-t1) >> 17); o[3] = stbi__clamp((x3+t0) >> 17); o[4] = stbi__clamp((x3-t0) >> 17); } } #ifdef STBI_SSE2 // sse2 integer IDCT. not the fastest possible implementation but it // produces bit-identical results to the generic C version so it's // fully "transparent". static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { // This is constructed to match our regular (generic) integer IDCT exactly. __m128i row0, row1, row2, row3, row4, row5, row6, row7; __m128i tmp; // dot product constant: even elems=x, odd elems=y #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) // out(1) = c1[even]*x + c1[odd]*y #define dct_rot(out0,out1, x,y,c0,c1) \ __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) // out = in << 12 (in 16-bit, out 32-bit) #define dct_widen(out, in) \ __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) // wide add #define dct_wadd(out, a, b) \ __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ __m128i out##_h = _mm_add_epi32(a##_h, b##_h) // wide sub #define dct_wsub(out, a, b) \ __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) // butterfly a/b, add bias, then shift by "s" and pack #define dct_bfly32o(out0, out1, a,b,bias,s) \ { \ __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ dct_wadd(sum, abiased, b); \ dct_wsub(dif, abiased, b); \ out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ } // 8-bit interleave step (for transposes) #define dct_interleave8(a, b) \ tmp = a; \ a = _mm_unpacklo_epi8(a, b); \ b = _mm_unpackhi_epi8(tmp, b) // 16-bit interleave step (for transposes) #define dct_interleave16(a, b) \ tmp = a; \ a = _mm_unpacklo_epi16(a, b); \ b = _mm_unpackhi_epi16(tmp, b) #define dct_pass(bias,shift) \ { \ /* even part */ \ dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ __m128i sum04 = _mm_add_epi16(row0, row4); \ __m128i dif04 = _mm_sub_epi16(row0, row4); \ dct_widen(t0e, sum04); \ dct_widen(t1e, dif04); \ dct_wadd(x0, t0e, t3e); \ dct_wsub(x3, t0e, t3e); \ dct_wadd(x1, t1e, t2e); \ dct_wsub(x2, t1e, t2e); \ /* odd part */ \ dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ __m128i sum17 = _mm_add_epi16(row1, row7); \ __m128i sum35 = _mm_add_epi16(row3, row5); \ dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ dct_wadd(x4, y0o, y4o); \ dct_wadd(x5, y1o, y5o); \ dct_wadd(x6, y2o, y5o); \ dct_wadd(x7, y3o, y4o); \ dct_bfly32o(row0,row7, x0,x7,bias,shift); \ dct_bfly32o(row1,row6, x1,x6,bias,shift); \ dct_bfly32o(row2,row5, x2,x5,bias,shift); \ dct_bfly32o(row3,row4, x3,x4,bias,shift); \ } __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); // rounding biases in column/row passes, see stbi__idct_block for explanation. __m128i bias_0 = _mm_set1_epi32(512); __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); // load row0 = _mm_load_si128((const __m128i *) (data + 0*8)); row1 = _mm_load_si128((const __m128i *) (data + 1*8)); row2 = _mm_load_si128((const __m128i *) (data + 2*8)); row3 = _mm_load_si128((const __m128i *) (data + 3*8)); row4 = _mm_load_si128((const __m128i *) (data + 4*8)); row5 = _mm_load_si128((const __m128i *) (data + 5*8)); row6 = _mm_load_si128((const __m128i *) (data + 6*8)); row7 = _mm_load_si128((const __m128i *) (data + 7*8)); // column pass dct_pass(bias_0, 10); { // 16bit 8x8 transpose pass 1 dct_interleave16(row0, row4); dct_interleave16(row1, row5); dct_interleave16(row2, row6); dct_interleave16(row3, row7); // transpose pass 2 dct_interleave16(row0, row2); dct_interleave16(row1, row3); dct_interleave16(row4, row6); dct_interleave16(row5, row7); // transpose pass 3 dct_interleave16(row0, row1); dct_interleave16(row2, row3); dct_interleave16(row4, row5); dct_interleave16(row6, row7); } // row pass dct_pass(bias_1, 17); { // pack __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 __m128i p1 = _mm_packus_epi16(row2, row3); __m128i p2 = _mm_packus_epi16(row4, row5); __m128i p3 = _mm_packus_epi16(row6, row7); // 8bit 8x8 transpose pass 1 dct_interleave8(p0, p2); // a0e0a1e1... dct_interleave8(p1, p3); // c0g0c1g1... // transpose pass 2 dct_interleave8(p0, p1); // a0c0e0g0... dct_interleave8(p2, p3); // b0d0f0h0... // transpose pass 3 dct_interleave8(p0, p2); // a0b0c0d0... dct_interleave8(p1, p3); // a4b4c4d4... // store _mm_storel_epi64((__m128i *) out, p0); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p2); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p1); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p3); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); } #undef dct_const #undef dct_rot #undef dct_widen #undef dct_wadd #undef dct_wsub #undef dct_bfly32o #undef dct_interleave8 #undef dct_interleave16 #undef dct_pass } #endif // STBI_SSE2 #ifdef STBI_NEON // NEON integer IDCT. should produce bit-identical // results to the generic C version. static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); #define dct_long_mul(out, inq, coeff) \ int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) #define dct_long_mac(out, acc, inq, coeff) \ int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) #define dct_widen(out, inq) \ int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) // wide add #define dct_wadd(out, a, b) \ int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ int32x4_t out##_h = vaddq_s32(a##_h, b##_h) // wide sub #define dct_wsub(out, a, b) \ int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ int32x4_t out##_h = vsubq_s32(a##_h, b##_h) // butterfly a/b, then shift using "shiftop" by "s" and pack #define dct_bfly32o(out0,out1, a,b,shiftop,s) \ { \ dct_wadd(sum, a, b); \ dct_wsub(dif, a, b); \ out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ } #define dct_pass(shiftop, shift) \ { \ /* even part */ \ int16x8_t sum26 = vaddq_s16(row2, row6); \ dct_long_mul(p1e, sum26, rot0_0); \ dct_long_mac(t2e, p1e, row6, rot0_1); \ dct_long_mac(t3e, p1e, row2, rot0_2); \ int16x8_t sum04 = vaddq_s16(row0, row4); \ int16x8_t dif04 = vsubq_s16(row0, row4); \ dct_widen(t0e, sum04); \ dct_widen(t1e, dif04); \ dct_wadd(x0, t0e, t3e); \ dct_wsub(x3, t0e, t3e); \ dct_wadd(x1, t1e, t2e); \ dct_wsub(x2, t1e, t2e); \ /* odd part */ \ int16x8_t sum15 = vaddq_s16(row1, row5); \ int16x8_t sum17 = vaddq_s16(row1, row7); \ int16x8_t sum35 = vaddq_s16(row3, row5); \ int16x8_t sum37 = vaddq_s16(row3, row7); \ int16x8_t sumodd = vaddq_s16(sum17, sum35); \ dct_long_mul(p5o, sumodd, rot1_0); \ dct_long_mac(p1o, p5o, sum17, rot1_1); \ dct_long_mac(p2o, p5o, sum35, rot1_2); \ dct_long_mul(p3o, sum37, rot2_0); \ dct_long_mul(p4o, sum15, rot2_1); \ dct_wadd(sump13o, p1o, p3o); \ dct_wadd(sump24o, p2o, p4o); \ dct_wadd(sump23o, p2o, p3o); \ dct_wadd(sump14o, p1o, p4o); \ dct_long_mac(x4, sump13o, row7, rot3_0); \ dct_long_mac(x5, sump24o, row5, rot3_1); \ dct_long_mac(x6, sump23o, row3, rot3_2); \ dct_long_mac(x7, sump14o, row1, rot3_3); \ dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ } // load row0 = vld1q_s16(data + 0*8); row1 = vld1q_s16(data + 1*8); row2 = vld1q_s16(data + 2*8); row3 = vld1q_s16(data + 3*8); row4 = vld1q_s16(data + 4*8); row5 = vld1q_s16(data + 5*8); row6 = vld1q_s16(data + 6*8); row7 = vld1q_s16(data + 7*8); // add DC bias row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); // column pass dct_pass(vrshrn_n_s32, 10); // 16bit 8x8 transpose { // these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. // whether compilers actually get this is another story, sadly. #define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } #define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } #define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } // pass 1 dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 dct_trn16(row2, row3); dct_trn16(row4, row5); dct_trn16(row6, row7); // pass 2 dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 dct_trn32(row1, row3); dct_trn32(row4, row6); dct_trn32(row5, row7); // pass 3 dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 dct_trn64(row1, row5); dct_trn64(row2, row6); dct_trn64(row3, row7); #undef dct_trn16 #undef dct_trn32 #undef dct_trn64 } // row pass // vrshrn_n_s32 only supports shifts up to 16, we need // 17. so do a non-rounding shift of 16 first then follow // up with a rounding shift by 1. dct_pass(vshrn_n_s32, 16); { // pack and round uint8x8_t p0 = vqrshrun_n_s16(row0, 1); uint8x8_t p1 = vqrshrun_n_s16(row1, 1); uint8x8_t p2 = vqrshrun_n_s16(row2, 1); uint8x8_t p3 = vqrshrun_n_s16(row3, 1); uint8x8_t p4 = vqrshrun_n_s16(row4, 1); uint8x8_t p5 = vqrshrun_n_s16(row5, 1); uint8x8_t p6 = vqrshrun_n_s16(row6, 1); uint8x8_t p7 = vqrshrun_n_s16(row7, 1); // again, these can translate into one instruction, but often don't. #define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } #define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } #define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } // sadly can't use interleaved stores here since we only write // 8 bytes to each scan line! // 8x8 8-bit transpose pass 1 dct_trn8_8(p0, p1); dct_trn8_8(p2, p3); dct_trn8_8(p4, p5); dct_trn8_8(p6, p7); // pass 2 dct_trn8_16(p0, p2); dct_trn8_16(p1, p3); dct_trn8_16(p4, p6); dct_trn8_16(p5, p7); // pass 3 dct_trn8_32(p0, p4); dct_trn8_32(p1, p5); dct_trn8_32(p2, p6); dct_trn8_32(p3, p7); // store vst1_u8(out, p0); out += out_stride; vst1_u8(out, p1); out += out_stride; vst1_u8(out, p2); out += out_stride; vst1_u8(out, p3); out += out_stride; vst1_u8(out, p4); out += out_stride; vst1_u8(out, p5); out += out_stride; vst1_u8(out, p6); out += out_stride; vst1_u8(out, p7); #undef dct_trn8_8 #undef dct_trn8_16 #undef dct_trn8_32 } #undef dct_long_mul #undef dct_long_mac #undef dct_widen #undef dct_wadd #undef dct_wsub #undef dct_bfly32o #undef dct_pass } #endif // STBI_NEON #define STBI__MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static stbi_uc stbi__get_marker(stbi__jpeg *j) { stbi_uc x; if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } x = stbi__get8(j->s); if (x != 0xff) return STBI__MARKER_none; while (x == 0xff) x = stbi__get8(j->s); return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] #define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, stbi__jpeg_reset the entropy decoder and // the dc prediction static void stbi__jpeg_reset(stbi__jpeg *j) { j->code_bits = 0; j->code_buffer = 0; j->nomore = 0; j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; j->marker = STBI__MARKER_none; j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; j->eob_run = 0; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int stbi__parse_entropy_coded_data(stbi__jpeg *z) { stbi__jpeg_reset(z); if (!z->progressive) { if (z->scan_n == 1) { int i,j; STBI_SIMD_ALIGN(short, data[64]); int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } else { // interleaved int i,j,k,x,y; STBI_SIMD_ALIGN(short, data[64]); for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x)*8; int y2 = (j*z->img_comp[n].v + y)*8; int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } } else { if (z->scan_n == 1) { int i,j; int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); if (z->spec_start == 0) { if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) return 0; } else { int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) return 0; } // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } else { // interleaved int i,j,k,x,y; for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x); int y2 = (j*z->img_comp[n].v + y); short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) return 0; } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } } } static void stbi__jpeg_dequantize(short *data, stbi_uc *dequant) { int i; for (i=0; i < 64; ++i) data[i] *= dequant[i]; } static void stbi__jpeg_finish(stbi__jpeg *z) { if (z->progressive) { // dequantize and idct the data int i,j,n; for (n=0; n < z->s->img_n; ++n) { int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); } } } } } static int stbi__process_marker(stbi__jpeg *z, int m) { int L; switch (m) { case STBI__MARKER_none: // no marker found return stbi__err("expected marker","Corrupt JPEG"); case 0xDD: // DRI - specify restart interval if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); z->restart_interval = stbi__get16be(z->s); return 1; case 0xDB: // DQT - define quantization table L = stbi__get16be(z->s)-2; while (L > 0) { int q = stbi__get8(z->s); int p = q >> 4; int t = q & 15,i; if (p != 0) return stbi__err("bad DQT type","Corrupt JPEG"); if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) z->dequant[t][stbi__jpeg_dezigzag[i]] = stbi__get8(z->s); L -= 65; } return L==0; case 0xC4: // DHT - define huffman table L = stbi__get16be(z->s)-2; while (L > 0) { stbi_uc *v; int sizes[16],i,n=0; int q = stbi__get8(z->s); int tc = q >> 4; int th = q & 15; if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = stbi__get8(z->s); n += sizes[i]; } L -= 17; if (tc == 0) { if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; v = z->huff_dc[th].values; } else { if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; v = z->huff_ac[th].values; } for (i=0; i < n; ++i) v[i] = stbi__get8(z->s); if (tc != 0) stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); L -= n; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { stbi__skip(z->s, stbi__get16be(z->s)-2); return 1; } return 0; } // after we see SOS static int stbi__process_scan_header(stbi__jpeg *z) { int i; int Ls = stbi__get16be(z->s); z->scan_n = stbi__get8(z->s); if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); for (i=0; i < z->scan_n; ++i) { int id = stbi__get8(z->s), which; int q = stbi__get8(z->s); for (which = 0; which < z->s->img_n; ++which) if (z->img_comp[which].id == id) break; if (which == z->s->img_n) return 0; // no match z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); z->order[i] = which; } { int aa; z->spec_start = stbi__get8(z->s); z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 aa = stbi__get8(z->s); z->succ_high = (aa >> 4); z->succ_low = (aa & 15); if (z->progressive) { if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) return stbi__err("bad SOS", "Corrupt JPEG"); } else { if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); z->spec_end = 63; } } return 1; } static int stbi__process_frame_header(stbi__jpeg *z, int scan) { stbi__context *s = z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires c = stbi__get8(s); if (c != 3 && c != 1) return stbi__err("bad component count","Corrupt JPEG"); // JFIF requires s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); for (i=0; i < s->img_n; ++i) { z->img_comp[i].id = stbi__get8(s); if (z->img_comp[i].id != i+1) // JFIF requires if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files! return stbi__err("bad component ID","Corrupt JPEG"); q = stbi__get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); } if (scan != STBI__SCAN_load) return 1; if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].raw_data = stbi__malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); if (z->img_comp[i].raw_data == NULL) { for(--i; i >= 0; --i) { STBI_FREE(z->img_comp[i].raw_data); z->img_comp[i].raw_data = NULL; } return stbi__err("outofmem", "Out of memory"); } // align blocks for idct using mmx/sse z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); z->img_comp[i].linebuf = NULL; if (z->progressive) { z->img_comp[i].coeff_w = (z->img_comp[i].w2 + 7) >> 3; z->img_comp[i].coeff_h = (z->img_comp[i].h2 + 7) >> 3; z->img_comp[i].raw_coeff = STBI_MALLOC(z->img_comp[i].coeff_w * z->img_comp[i].coeff_h * 64 * sizeof(short) + 15); z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); } else { z->img_comp[i].coeff = 0; z->img_comp[i].raw_coeff = 0; } } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define stbi__DNL(x) ((x) == 0xdc) #define stbi__SOI(x) ((x) == 0xd8) #define stbi__EOI(x) ((x) == 0xd9) #define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) #define stbi__SOS(x) ((x) == 0xda) #define stbi__SOF_progressive(x) ((x) == 0xc2) static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) { int m; z->marker = STBI__MARKER_none; // initialize cached marker to empty m = stbi__get_marker(z); if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); if (scan == STBI__SCAN_type) return 1; m = stbi__get_marker(z); while (!stbi__SOF(m)) { if (!stbi__process_marker(z,m)) return 0; m = stbi__get_marker(z); while (m == STBI__MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); m = stbi__get_marker(z); } } z->progressive = stbi__SOF_progressive(m); if (!stbi__process_frame_header(z, scan)) return 0; return 1; } // decode image to YCbCr format static int stbi__decode_jpeg_image(stbi__jpeg *j) { int m; for (m = 0; m < 4; m++) { j->img_comp[m].raw_data = NULL; j->img_comp[m].raw_coeff = NULL; } j->restart_interval = 0; if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; m = stbi__get_marker(j); while (!stbi__EOI(m)) { if (stbi__SOS(m)) { if (!stbi__process_scan_header(j)) return 0; if (!stbi__parse_entropy_coded_data(j)) return 0; if (j->marker == STBI__MARKER_none ) { // handle 0s at the end of image data from IP Kamera 9060 while (!stbi__at_eof(j->s)) { int x = stbi__get8(j->s); if (x == 255) { j->marker = stbi__get8(j->s); break; } else if (x != 0) { return stbi__err("junk before marker", "Corrupt JPEG"); } } // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 } } else { if (!stbi__process_marker(j, m)) return 0; } m = stbi__get_marker(j); } if (j->progressive) stbi__jpeg_finish(j); return 1; } // static jfif-centered resampling (across block boundaries) typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, int w, int hs); #define stbi__div4(x) ((stbi_uc) ((x) >> 2)) static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { STBI_NOTUSED(out); STBI_NOTUSED(in_far); STBI_NOTUSED(w); STBI_NOTUSED(hs); return in_near; } static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate two samples vertically for every one in input int i; STBI_NOTUSED(hs); for (i=0; i < w; ++i) out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); return out; } static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate two samples horizontally for every one in input int i; stbi_uc *input = in_near; if (w == 1) { // if only one sample, can't do any interpolation out[0] = out[1] = input[0]; return out; } out[0] = input[0]; out[1] = stbi__div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) { int n = 3*input[i]+2; out[i*2+0] = stbi__div4(n+input[i-1]); out[i*2+1] = stbi__div4(n+input[i+1]); } out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; STBI_NOTUSED(in_far); STBI_NOTUSED(hs); return out; } #define stbi__div16(x) ((stbi_uc) ((x) >> 4)) static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i,t0,t1; if (w == 1) { out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; out[0] = stbi__div4(t1+2); for (i=1; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = stbi__div16(3*t0 + t1 + 8); out[i*2 ] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out; } #if defined(STBI_SSE2) || defined(STBI_NEON) static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i=0,t0,t1; if (w == 1) { out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; // process groups of 8 pixels for as long as we can. // note we can't handle the last pixel in a row in this loop // because we need to handle the filter boundary conditions. for (; i < ((w-1) & ~7); i += 8) { #if defined(STBI_SSE2) // load and perform the vertical filtering pass // this uses 3*x + y = 4*x + (y - x) __m128i zero = _mm_setzero_si128(); __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); __m128i farw = _mm_unpacklo_epi8(farb, zero); __m128i nearw = _mm_unpacklo_epi8(nearb, zero); __m128i diff = _mm_sub_epi16(farw, nearw); __m128i nears = _mm_slli_epi16(nearw, 2); __m128i curr = _mm_add_epi16(nears, diff); // current row // horizontal filter works the same based on shifted vers of current // row. "prev" is current row shifted right by 1 pixel; we need to // insert the previous pixel value (from t1). // "next" is current row shifted left by 1 pixel, with first pixel // of next block of 8 pixels added in. __m128i prv0 = _mm_slli_si128(curr, 2); __m128i nxt0 = _mm_srli_si128(curr, 2); __m128i prev = _mm_insert_epi16(prv0, t1, 0); __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); // horizontal filter, polyphase implementation since it's convenient: // even pixels = 3*cur + prev = cur*4 + (prev - cur) // odd pixels = 3*cur + next = cur*4 + (next - cur) // note the shared term. __m128i bias = _mm_set1_epi16(8); __m128i curs = _mm_slli_epi16(curr, 2); __m128i prvd = _mm_sub_epi16(prev, curr); __m128i nxtd = _mm_sub_epi16(next, curr); __m128i curb = _mm_add_epi16(curs, bias); __m128i even = _mm_add_epi16(prvd, curb); __m128i odd = _mm_add_epi16(nxtd, curb); // interleave even and odd pixels, then undo scaling. __m128i int0 = _mm_unpacklo_epi16(even, odd); __m128i int1 = _mm_unpackhi_epi16(even, odd); __m128i de0 = _mm_srli_epi16(int0, 4); __m128i de1 = _mm_srli_epi16(int1, 4); // pack and write output __m128i outv = _mm_packus_epi16(de0, de1); _mm_storeu_si128((__m128i *) (out + i*2), outv); #elif defined(STBI_NEON) // load and perform the vertical filtering pass // this uses 3*x + y = 4*x + (y - x) uint8x8_t farb = vld1_u8(in_far + i); uint8x8_t nearb = vld1_u8(in_near + i); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); int16x8_t curr = vaddq_s16(nears, diff); // current row // horizontal filter works the same based on shifted vers of current // row. "prev" is current row shifted right by 1 pixel; we need to // insert the previous pixel value (from t1). // "next" is current row shifted left by 1 pixel, with first pixel // of next block of 8 pixels added in. int16x8_t prv0 = vextq_s16(curr, curr, 7); int16x8_t nxt0 = vextq_s16(curr, curr, 1); int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); // horizontal filter, polyphase implementation since it's convenient: // even pixels = 3*cur + prev = cur*4 + (prev - cur) // odd pixels = 3*cur + next = cur*4 + (next - cur) // note the shared term. int16x8_t curs = vshlq_n_s16(curr, 2); int16x8_t prvd = vsubq_s16(prev, curr); int16x8_t nxtd = vsubq_s16(next, curr); int16x8_t even = vaddq_s16(curs, prvd); int16x8_t odd = vaddq_s16(curs, nxtd); // undo scaling and round, then store with even/odd phases interleaved uint8x8x2_t o; o.val[0] = vqrshrun_n_s16(even, 4); o.val[1] = vqrshrun_n_s16(odd, 4); vst2_u8(out + i*2, o); #endif // "previous" value for next iter t1 = 3*in_near[i+7] + in_far[i+7]; } t0 = t1; t1 = 3*in_near[i] + in_far[i]; out[i*2] = stbi__div16(3*t1 + t0 + 8); for (++i; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = stbi__div16(3*t0 + t1 + 8); out[i*2 ] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out; } #endif static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // resample with nearest-neighbor int i,j; STBI_NOTUSED(in_far); for (i=0; i < w; ++i) for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out; } #ifdef STBI_JPEG_OLD // this is the same YCbCr-to-RGB calculation that stb_image has used // historically before the algorithm changes in 1.49 #define float2fixed(x) ((int) ((x) * 65536 + 0.5)) static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 16) + 32768; // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr*float2fixed(1.40200f); g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); b = y_fixed + cb*float2fixed(1.77200f); r >>= 16; g >>= 16; b >>= 16; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (stbi_uc)r; out[1] = (stbi_uc)g; out[2] = (stbi_uc)b; out[3] = 255; out += step; } } #else // this is a reduced-precision calculation of YCbCr-to-RGB introduced // to make sure the code produces the same results in both SIMD and scalar #define float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 20) + (1<<19); // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr* float2fixed(1.40200f); g = y_fixed + (cr*-float2fixed(0.71414f)) + ((cb*-float2fixed(0.34414f)) & 0xffff0000); b = y_fixed + cb* float2fixed(1.77200f); r >>= 20; g >>= 20; b >>= 20; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (stbi_uc)r; out[1] = (stbi_uc)g; out[2] = (stbi_uc)b; out[3] = 255; out += step; } } #endif #if defined(STBI_SSE2) || defined(STBI_NEON) static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) { int i = 0; #ifdef STBI_SSE2 // step == 3 is pretty ugly on the final interleave, and i'm not convinced // it's useful in practice (you wouldn't use it for textures, for example). // so just accelerate step == 4 case. if (step == 4) { // this is a fairly straightforward implementation and not super-optimized. __m128i signflip = _mm_set1_epi8(-0x80); __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); __m128i xw = _mm_set1_epi16(255); // alpha channel for (; i+7 < count; i += 8) { // load __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 // unpack to short (and left-shift cr, cb by 8) __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); // color transform __m128i yws = _mm_srli_epi16(yw, 4); __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); __m128i rws = _mm_add_epi16(cr0, yws); __m128i gwt = _mm_add_epi16(cb0, yws); __m128i bws = _mm_add_epi16(yws, cb1); __m128i gws = _mm_add_epi16(gwt, cr1); // descale __m128i rw = _mm_srai_epi16(rws, 4); __m128i bw = _mm_srai_epi16(bws, 4); __m128i gw = _mm_srai_epi16(gws, 4); // back to byte, set up for transpose __m128i brb = _mm_packus_epi16(rw, bw); __m128i gxb = _mm_packus_epi16(gw, xw); // transpose to interleave channels __m128i t0 = _mm_unpacklo_epi8(brb, gxb); __m128i t1 = _mm_unpackhi_epi8(brb, gxb); __m128i o0 = _mm_unpacklo_epi16(t0, t1); __m128i o1 = _mm_unpackhi_epi16(t0, t1); // store _mm_storeu_si128((__m128i *) (out + 0), o0); _mm_storeu_si128((__m128i *) (out + 16), o1); out += 32; } } #endif #ifdef STBI_NEON // in this version, step=3 support would be easy to add. but is there demand? if (step == 4) { // this is a fairly straightforward implementation and not super-optimized. uint8x8_t signflip = vdup_n_u8(0x80); int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); for (; i+7 < count; i += 8) { // load uint8x8_t y_bytes = vld1_u8(y + i); uint8x8_t cr_bytes = vld1_u8(pcr + i); uint8x8_t cb_bytes = vld1_u8(pcb + i); int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); // expand to s16 int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); int16x8_t crw = vshll_n_s8(cr_biased, 7); int16x8_t cbw = vshll_n_s8(cb_biased, 7); // color transform int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); int16x8_t rws = vaddq_s16(yws, cr0); int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); int16x8_t bws = vaddq_s16(yws, cb1); // undo scaling, round, convert to byte uint8x8x4_t o; o.val[0] = vqrshrun_n_s16(rws, 4); o.val[1] = vqrshrun_n_s16(gws, 4); o.val[2] = vqrshrun_n_s16(bws, 4); o.val[3] = vdup_n_u8(255); // store, interleaving r/g/b/a vst4_u8(out, o); out += 8*4; } } #endif for (; i < count; ++i) { int y_fixed = (y[i] << 20) + (1<<19); // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr* float2fixed(1.40200f); g = y_fixed + cr*-float2fixed(0.71414f) + ((cb*-float2fixed(0.34414f)) & 0xffff0000); b = y_fixed + cb* float2fixed(1.77200f); r >>= 20; g >>= 20; b >>= 20; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (stbi_uc)r; out[1] = (stbi_uc)g; out[2] = (stbi_uc)b; out[3] = 255; out += step; } } #endif // set up the kernels static void stbi__setup_jpeg(stbi__jpeg *j) { j->idct_block_kernel = stbi__idct_block; j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; #ifdef STBI_SSE2 if (stbi__sse2_available()) { j->idct_block_kernel = stbi__idct_simd; #ifndef STBI_JPEG_OLD j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; #endif j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; } #endif #ifdef STBI_NEON j->idct_block_kernel = stbi__idct_simd; #ifndef STBI_JPEG_OLD j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; #endif j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; #endif } // clean up the temporary component buffers static void stbi__cleanup_jpeg(stbi__jpeg *j) { int i; for (i=0; i < j->s->img_n; ++i) { if (j->img_comp[i].raw_data) { STBI_FREE(j->img_comp[i].raw_data); j->img_comp[i].raw_data = NULL; j->img_comp[i].data = NULL; } if (j->img_comp[i].raw_coeff) { STBI_FREE(j->img_comp[i].raw_coeff); j->img_comp[i].raw_coeff = 0; j->img_comp[i].coeff = 0; } if (j->img_comp[i].linebuf) { STBI_FREE(j->img_comp[i].linebuf); j->img_comp[i].linebuf = NULL; } } } typedef struct { resample_row_func resample; stbi_uc *line0,*line1; int hs,vs; // expansion factor in each axis int w_lores; // horizontal pixels pre-expansion int ystep; // how far through vertical expansion we are int ypos; // which pre-expansion row we're on } stbi__resample; static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) { int n, decode_n; z->s->img_n = 0; // make stbi__cleanup_jpeg safe // validate req_comp if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); // load a jpeg image from whichever source, but leave in YCbCr format if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : z->s->img_n; if (z->s->img_n == 3 && n < 3) decode_n = 1; else decode_n = z->s->img_n; // resample and color-convert { int k; unsigned int i,j; stbi_uc *output; stbi_uc *coutput[4]; stbi__resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi__resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } r->hs = z->img_h_max / z->img_comp[k].h; r->vs = z->img_v_max / z->img_comp[k].v; r->ystep = r->vs >> 1; r->w_lores = (z->s->img_x + r->hs-1) / r->hs; r->ypos = 0; r->line0 = r->line1 = z->img_comp[k].data; if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; else r->resample = stbi__resample_row_generic; } // can't error after this so, this is safe output = (stbi_uc *) stbi__malloc(n * z->s->img_x * z->s->img_y + 1); if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } // now go ahead and resample for (j=0; j < z->s->img_y; ++j) { stbi_uc *out = output + n * z->s->img_x * j; for (k=0; k < decode_n; ++k) { stbi__resample *r = &res_comp[k]; int y_bot = r->ystep >= (r->vs >> 1); coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, r->w_lores, r->hs); if (++r->ystep >= r->vs) { r->ystep = 0; r->line0 = r->line1; if (++r->ypos < z->img_comp[k].y) r->line1 += z->img_comp[k].w2; } } if (n >= 3) { stbi_uc *y = coutput[0]; if (z->s->img_n == 3) { z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); } else for (i=0; i < z->s->img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n==3 out += n; } } else { stbi_uc *y = coutput[0]; if (n == 1) for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; else for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255; } } stbi__cleanup_jpeg(z); *out_x = z->s->img_x; *out_y = z->s->img_y; if (comp) *comp = z->s->img_n; // report original components, not output return output; } } static unsigned char *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi__jpeg j; j.s = s; stbi__setup_jpeg(&j); return load_jpeg_image(&j, x,y,comp,req_comp); } static int stbi__jpeg_test(stbi__context *s) { int r; stbi__jpeg j; j.s = s; stbi__setup_jpeg(&j); r = stbi__decode_jpeg_header(&j, STBI__SCAN_type); stbi__rewind(s); return r; } static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) { if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { stbi__rewind( j->s ); return 0; } if (x) *x = j->s->img_x; if (y) *y = j->s->img_y; if (comp) *comp = j->s->img_n; return 1; } static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) { stbi__jpeg j; j.s = s; return stbi__jpeg_info_raw(&j, x, y, comp); } #endif // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman #ifndef STBI_NO_ZLIB // fast-way is faster to check than jpeg huffman, but slow way is slower #define STBI__ZFAST_BITS 9 // accelerate all cases in default tables #define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { stbi__uint16 fast[1 << STBI__ZFAST_BITS]; stbi__uint16 firstcode[16]; int maxcode[17]; stbi__uint16 firstsymbol[16]; stbi_uc size[288]; stbi__uint16 value[288]; } stbi__zhuffman; stbi_inline static int stbi__bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } stbi_inline static int stbi__bit_reverse(int v, int bits) { STBI_ASSERT(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return stbi__bitreverse16(v) >> (16-bits); } static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 0, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) if (sizes[i] > (1 << i)) return stbi__err("bad sizes", "Corrupt PNG"); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (stbi__uint16) code; z->firstsymbol[i] = (stbi__uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); z->size [c] = (stbi_uc ) s; z->value[c] = (stbi__uint16) i; if (s <= STBI__ZFAST_BITS) { int j = stbi__bit_reverse(next_code[s],s); while (j < (1 << STBI__ZFAST_BITS)) { z->fast[j] = fastv; j += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer typedef struct { stbi_uc *zbuffer, *zbuffer_end; int num_bits; stbi__uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; stbi__zhuffman z_length, z_distance; } stbi__zbuf; stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) { if (z->zbuffer >= z->zbuffer_end) return 0; return *z->zbuffer++; } static void stbi__fill_bits(stbi__zbuf *z) { do { STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) { unsigned int k; if (z->num_bits < n) stbi__fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) { int b,s,k; // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = stbi__bit_reverse(a->code_buffer, 16); for (s=STBI__ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; STBI_ASSERT(z->size[b] == s); a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) { int b,s; if (a->num_bits < 16) stbi__fill_bits(a); b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; if (b) { s = b >> 9; a->code_buffer >>= s; a->num_bits -= s; return b & 511; } return stbi__zhuffman_decode_slowpath(a, z); } static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes { char *q; int cur, limit, old_limit; z->zout = zout; if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); cur = (int) (z->zout - z->zout_start); limit = old_limit = (int) (z->zout_end - z->zout_start); while (cur + n > limit) limit *= 2; q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); STBI_NOTUSED(old_limit); if (q == NULL) return stbi__err("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static int stbi__zlength_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int stbi__zlength_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int stbi__zdist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int stbi__parse_huffman_block(stbi__zbuf *a) { char *zout = a->zout; for(;;) { int z = stbi__zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes if (zout >= a->zout_end) { if (!stbi__zexpand(a, zout, 1)) return 0; zout = a->zout; } *zout++ = (char) z; } else { stbi_uc *p; int len,dist; if (z == 256) { a->zout = zout; return 1; } z -= 257; len = stbi__zlength_base[z]; if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); z = stbi__zhuffman_decode(a, &a->z_distance); if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); dist = stbi__zdist_base[z]; if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); if (zout + len > a->zout_end) { if (!stbi__zexpand(a, zout, len)) return 0; zout = a->zout; } p = (stbi_uc *) (zout - dist); if (dist == 1) { // run of one byte; common in images. stbi_uc v = *p; if (len) { do *zout++ = v; while (--len); } } else { if (len) { do *zout++ = *p++; while (--len); } } } } } static int stbi__compute_huffman_codes(stbi__zbuf *a) { static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; stbi__zhuffman z_codelength; stbi_uc lencodes[286+32+137];//padding for maximum single op stbi_uc codelength_sizes[19]; int i,n; int hlit = stbi__zreceive(a,5) + 257; int hdist = stbi__zreceive(a,5) + 1; int hclen = stbi__zreceive(a,4) + 4; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = stbi__zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; } if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < hlit + hdist) { int c = stbi__zhuffman_decode(a, &z_codelength); if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); if (c < 16) lencodes[n++] = (stbi_uc) c; else if (c == 16) { c = stbi__zreceive(a,2)+3; memset(lencodes+n, lencodes[n-1], c); n += c; } else if (c == 17) { c = stbi__zreceive(a,3)+3; memset(lencodes+n, 0, c); n += c; } else { STBI_ASSERT(c == 18); c = stbi__zreceive(a,7)+11; memset(lencodes+n, 0, c); n += c; } } if (n != hlit+hdist) return stbi__err("bad codelengths","Corrupt PNG"); if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int stbi__parse_uncomperssed_block(stbi__zbuf *a) { stbi_uc header[4]; int len,nlen,k; if (a->num_bits & 7) stbi__zreceive(a, a->num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (a->num_bits > 0) { header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check a->code_buffer >>= 8; a->num_bits -= 8; } STBI_ASSERT(a->num_bits == 0); // now fill header the normal way while (k < 4) header[k++] = stbi__zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!stbi__zexpand(a, a->zout, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int stbi__parse_zlib_header(stbi__zbuf *a) { int cmf = stbi__zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = stbi__zget8(a); if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } // @TODO: should statically initialize these for optimal thread safety static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32]; static void stbi__init_zdefaults(void) { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; } static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) { int final, type; if (parse_header) if (!stbi__parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = stbi__zreceive(a,1); type = stbi__zreceive(a,2); if (type == 0) { if (!stbi__parse_uncomperssed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!stbi__zdefault_distance[31]) stbi__init_zdefaults(); if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; } else { if (!stbi__compute_huffman_codes(a)) return 0; } if (!stbi__parse_huffman_block(a)) return 0; } } while (!final); return 1; } static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return stbi__parse_zlib(a, parse_header); } STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) { stbi__zbuf a; char *p = (char *) stbi__malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer + len; if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) { return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) { stbi__zbuf a; char *p = (char *) stbi__malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer + len; if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) { stbi__zbuf a; a.zbuffer = (stbi_uc *) ibuffer; a.zbuffer_end = (stbi_uc *) ibuffer + ilen; if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) return (int) (a.zout - a.zout_start); else return -1; } STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) { stbi__zbuf a; char *p = (char *) stbi__malloc(16384); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer+len; if (stbi__do_zlib(&a, p, 16384, 1, 0)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) { stbi__zbuf a; a.zbuffer = (stbi_uc *) ibuffer; a.zbuffer_end = (stbi_uc *) ibuffer + ilen; if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) return (int) (a.zout - a.zout_start); else return -1; } #endif // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding #ifndef STBI_NO_PNG typedef struct { stbi__uint32 length; stbi__uint32 type; } stbi__pngchunk; static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) { stbi__pngchunk c; c.length = stbi__get32be(s); c.type = stbi__get32be(s); return c; } static int stbi__check_png_header(stbi__context *s) { static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); return 1; } typedef struct { stbi__context *s; stbi_uc *idata, *expanded, *out; } stbi__png; enum { STBI__F_none=0, STBI__F_sub=1, STBI__F_up=2, STBI__F_avg=3, STBI__F_paeth=4, // synthetic filters used for first scanline to avoid needing a dummy row of 0s STBI__F_avg_first, STBI__F_paeth_first }; static stbi_uc first_row_filter[5] = { STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first }; static int stbi__paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; // create the png data from post-deflated data static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) { stbi__context *s = a->s; stbi__uint32 i,j,stride = x*out_n; stbi__uint32 img_len, img_width_bytes; int k; int img_n = s->img_n; // copy it into a local for later STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); a->out = (stbi_uc *) stbi__malloc(x * y * out_n); // extra bytes to write off the end into if (!a->out) return stbi__err("outofmem", "Out of memory"); img_width_bytes = (((img_n * x * depth) + 7) >> 3); img_len = (img_width_bytes + 1) * y; if (s->img_x == x && s->img_y == y) { if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG"); } else { // interlaced: if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); } for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *prior = cur - stride; int filter = *raw++; int filter_bytes = img_n; int width = x; if (filter > 4) return stbi__err("invalid filter","Corrupt PNG"); if (depth < 8) { STBI_ASSERT(img_width_bytes <= x); cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place filter_bytes = 1; width = img_width_bytes; } // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first byte explicitly for (k=0; k < filter_bytes; ++k) { switch (filter) { case STBI__F_none : cur[k] = raw[k]; break; case STBI__F_sub : cur[k] = raw[k]; break; case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; case STBI__F_avg_first : cur[k] = raw[k]; break; case STBI__F_paeth_first: cur[k] = raw[k]; break; } } if (depth == 8) { if (img_n != out_n) cur[img_n] = 255; // first pixel raw += img_n; cur += out_n; prior += out_n; } else { raw += 1; cur += 1; prior += 1; } // this is a little gross, so that we don't switch per-pixel or per-component if (depth < 8 || img_n == out_n) { int nk = (width - 1)*img_n; #define CASE(f) \ case f: \ for (k=0; k < nk; ++k) switch (filter) { // "none" filter turns into a memcpy here; make that explicit. case STBI__F_none: memcpy(cur, raw, nk); break; CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); break; CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); break; CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); break; CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); break; CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); break; } #undef CASE raw += nk; } else { STBI_ASSERT(img_n+1 == out_n); #define CASE(f) \ case f: \ for (i=x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ for (k=0; k < img_n; ++k) switch (filter) { CASE(STBI__F_none) cur[k] = raw[k]; break; CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k-out_n]); break; CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-out_n])>>1)); break; CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k-out_n] >> 1)); break; CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-out_n],0,0)); break; } #undef CASE } } // we make a separate pass to expand bits to pixels; for performance, // this could run two scanlines behind the above code, so it won't // intefere with filtering but will still be in the cache. if (depth < 8) { for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range // note that the final byte might overshoot and write more data than desired. // we can allocate enough data that this never writes out of memory, but it // could also overwrite the next scanline. can it overwrite non-empty data // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. // so we need to explicitly clamp the final ones if (depth == 4) { for (k=x*img_n; k >= 2; k-=2, ++in) { *cur++ = scale * ((*in >> 4) ); *cur++ = scale * ((*in ) & 0x0f); } if (k > 0) *cur++ = scale * ((*in >> 4) ); } else if (depth == 2) { for (k=x*img_n; k >= 4; k-=4, ++in) { *cur++ = scale * ((*in >> 6) ); *cur++ = scale * ((*in >> 4) & 0x03); *cur++ = scale * ((*in >> 2) & 0x03); *cur++ = scale * ((*in ) & 0x03); } if (k > 0) *cur++ = scale * ((*in >> 6) ); if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); } else if (depth == 1) { for (k=x*img_n; k >= 8; k-=8, ++in) { *cur++ = scale * ((*in >> 7) ); *cur++ = scale * ((*in >> 6) & 0x01); *cur++ = scale * ((*in >> 5) & 0x01); *cur++ = scale * ((*in >> 4) & 0x01); *cur++ = scale * ((*in >> 3) & 0x01); *cur++ = scale * ((*in >> 2) & 0x01); *cur++ = scale * ((*in >> 1) & 0x01); *cur++ = scale * ((*in ) & 0x01); } if (k > 0) *cur++ = scale * ((*in >> 7) ); if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); } if (img_n != out_n) { int q; // insert alpha = 255 cur = a->out + stride*j; if (img_n == 1) { for (q=x-1; q >= 0; --q) { cur[q*2+1] = 255; cur[q*2+0] = cur[q]; } } else { STBI_ASSERT(img_n == 3); for (q=x-1; q >= 0; --q) { cur[q*4+3] = 255; cur[q*4+2] = cur[q*3+2]; cur[q*4+1] = cur[q*3+1]; cur[q*4+0] = cur[q*3+0]; } } } } } return 1; } static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) { stbi_uc *final; int p; if (!interlaced) return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); // de-interlacing final = (stbi_uc *) stbi__malloc(a->s->img_x * a->s->img_y * out_n); for (p=0; p < 7; ++p) { int xorig[] = { 0,4,0,2,0,1,0 }; int yorig[] = { 0,0,4,0,2,0,1 }; int xspc[] = { 8,8,4,4,2,2,1 }; int yspc[] = { 8,8,8,4,4,2,2 }; int i,j,x,y; // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; if (x && y) { stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { STBI_FREE(final); return 0; } for (j=0; j < y; ++j) { for (i=0; i < x; ++i) { int out_y = j*yspc[p]+yorig[p]; int out_x = i*xspc[p]+xorig[p]; memcpy(final + out_y*a->s->img_x*out_n + out_x*out_n, a->out + (j*x+i)*out_n, out_n); } } STBI_FREE(a->out); image_data += img_len; image_data_len -= img_len; } } a->out = final; return 1; } static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output STBI_ASSERT(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) { stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; stbi_uc *p, *temp_out, *orig = a->out; p = (stbi_uc *) stbi__malloc(pixel_count * pal_img_n); if (p == NULL) return stbi__err("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } STBI_FREE(a->out); a->out = temp_out; STBI_NOTUSED(len); return 1; } static int stbi__unpremultiply_on_load = 0; static int stbi__de_iphone_flag = 0; STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) { stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; } STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) { stbi__de_iphone_flag = flag_true_if_should_convert; } static void stbi__de_iphone(stbi__png *z) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; if (s->img_out_n == 3) { // convert bgr to rgb for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 3; } } else { STBI_ASSERT(s->img_out_n == 4); if (stbi__unpremultiply_on_load) { // convert bgr to rgb and unpremultiply for (i=0; i < pixel_count; ++i) { stbi_uc a = p[3]; stbi_uc t = p[0]; if (a) { p[0] = p[2] * 255 / a; p[1] = p[1] * 255 / a; p[2] = t * 255 / a; } else { p[0] = p[2]; p[2] = t; } p += 4; } } else { // convert bgr to rgb for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 4; } } } } #define STBI__PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) { stbi_uc palette[1024], pal_img_n=0; stbi_uc has_trans=0, tc[3]; stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k,interlace=0, color=0, depth=0, is_iphone=0; stbi__context *s = z->s; z->expanded = NULL; z->idata = NULL; z->out = NULL; if (!stbi__check_png_header(s)) return 0; if (scan == STBI__SCAN_type) return 1; for (;;) { stbi__pngchunk c = stbi__get_chunk_header(s); switch (c.type) { case STBI__PNG_TYPE('C','g','B','I'): is_iphone = 1; stbi__skip(s, c.length); break; case STBI__PNG_TYPE('I','H','D','R'): { int comp,filter; if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); first = 0; if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); depth = stbi__get8(s); if (depth != 1 && depth != 2 && depth != 4 && depth != 8) return stbi__err("1/2/4/8-bit only","PNG not supported: 1/2/4/8-bit only"); color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); if (scan == STBI__SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case STBI__PNG_TYPE('P','L','T','E'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = stbi__get8(s); palette[i*4+1] = stbi__get8(s); palette[i*4+2] = stbi__get8(s); palette[i*4+3] = 255; } break; } case STBI__PNG_TYPE('t','R','N','S'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = stbi__get8(s); } else { if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); has_trans = 1; for (k=0; k < s->img_n; ++k) tc[k] = (stbi_uc) (stbi__get16be(s) & 255) * stbi__depth_scale_table[depth]; // non 8-bit images will be larger } break; } case STBI__PNG_TYPE('I','D','A','T'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } if ((int)(ioff + c.length) < (int)ioff) return 0; if (ioff + c.length > idata_limit) { stbi__uint32 idata_limit_old = idata_limit; stbi_uc *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; STBI_NOTUSED(idata_limit_old); p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); z->idata = p; } if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); ioff += c.length; break; } case STBI__PNG_TYPE('I','E','N','D'): { stbi__uint32 raw_len, bpl; if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (scan != STBI__SCAN_load) return 1; if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); // initial guess for decoded data size to avoid unnecessary reallocs bpl = (s->img_x * depth + 7) / 8; // bytes per line, per component raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); if (z->expanded == NULL) return 0; // zlib should set error STBI_FREE(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, depth, color, interlace)) return 0; if (has_trans) if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) stbi__de_iphone(z); if (pal_img_n) { // pal_img_n == 3 or 4 s->img_n = pal_img_n; // record the actual colors we had s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) return 0; } STBI_FREE(z->expanded); z->expanded = NULL; return 1; } default: // if critical, fail if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = "XXXX PNG chunk not known"; invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); #endif return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); } stbi__skip(s, c.length); break; } // end of PNG chunk, read and skip CRC stbi__get32be(s); } } static unsigned char *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp) { unsigned char *result=NULL; if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { result = p->out; p->out = NULL; if (req_comp && req_comp != p->s->img_out_n) { result = stbi__convert_format(result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); p->s->img_out_n = req_comp; if (result == NULL) return result; } *x = p->s->img_x; *y = p->s->img_y; if (n) *n = p->s->img_out_n; } STBI_FREE(p->out); p->out = NULL; STBI_FREE(p->expanded); p->expanded = NULL; STBI_FREE(p->idata); p->idata = NULL; return result; } static unsigned char *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi__png p; p.s = s; return stbi__do_png(&p, x,y,comp,req_comp); } static int stbi__png_test(stbi__context *s) { int r; r = stbi__check_png_header(s); stbi__rewind(s); return r; } static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) { if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { stbi__rewind( p->s ); return 0; } if (x) *x = p->s->img_x; if (y) *y = p->s->img_y; if (comp) *comp = p->s->img_n; return 1; } static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) { stbi__png p; p.s = s; return stbi__png_info_raw(&p, x, y, comp); } #endif // Microsoft/Windows BMP image #ifndef STBI_NO_BMP static int stbi__bmp_test_raw(stbi__context *s) { int r; int sz; if (stbi__get8(s) != 'B') return 0; if (stbi__get8(s) != 'M') return 0; stbi__get32le(s); // discard filesize stbi__get16le(s); // discard reserved stbi__get16le(s); // discard reserved stbi__get32le(s); // discard data offset sz = stbi__get32le(s); r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); return r; } static int stbi__bmp_test(stbi__context *s) { int r = stbi__bmp_test_raw(s); stbi__rewind(s); return r; } // returns 0..31 for the highest set bit static int stbi__high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) n += 16, z >>= 16; if (z >= 0x00100) n += 8, z >>= 8; if (z >= 0x00010) n += 4, z >>= 4; if (z >= 0x00004) n += 2, z >>= 2; if (z >= 0x00002) n += 1, z >>= 1; return n; } static int stbi__bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } static int stbi__shiftsigned(int v, int shift, int bits) { int result; int z=0; if (shift < 0) v <<= -shift; else v >>= shift; result = v; z = bits; while (z < 8) { result += v >> z; z += bits; } return result; } typedef struct { int bpp, offset, hsz; unsigned int mr,mg,mb,ma, all_a; } stbi__bmp_data; static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) { int hsz; if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); stbi__get32le(s); // discard filesize stbi__get16le(s); // discard reserved stbi__get16le(s); // discard reserved info->offset = stbi__get32le(s); info->hsz = hsz = stbi__get32le(s); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); if (hsz == 12) { s->img_x = stbi__get16le(s); s->img_y = stbi__get16le(s); } else { s->img_x = stbi__get32le(s); s->img_y = stbi__get32le(s); } if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); info->bpp = stbi__get16le(s); if (info->bpp == 1) return stbi__errpuc("monochrome", "BMP type not supported: 1-bit"); if (hsz != 12) { int compress = stbi__get32le(s); if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); stbi__get32le(s); // discard sizeof stbi__get32le(s); // discard hres stbi__get32le(s); // discard vres stbi__get32le(s); // discard colorsused stbi__get32le(s); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { stbi__get32le(s); stbi__get32le(s); stbi__get32le(s); stbi__get32le(s); } if (info->bpp == 16 || info->bpp == 32) { info->mr = info->mg = info->mb = 0; if (compress == 0) { if (info->bpp == 32) { info->mr = 0xffu << 16; info->mg = 0xffu << 8; info->mb = 0xffu << 0; info->ma = 0xffu << 24; info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 } else { info->mr = 31u << 10; info->mg = 31u << 5; info->mb = 31u << 0; } } else if (compress == 3) { info->mr = stbi__get32le(s); info->mg = stbi__get32le(s); info->mb = stbi__get32le(s); // not documented, but generated by photoshop and handled by mspaint if (info->mr == info->mg && info->mg == info->mb) { // ?!?!? return stbi__errpuc("bad BMP", "bad BMP"); } } else return stbi__errpuc("bad BMP", "bad BMP"); } } else { int i; if (hsz != 108 && hsz != 124) return stbi__errpuc("bad BMP", "bad BMP"); info->mr = stbi__get32le(s); info->mg = stbi__get32le(s); info->mb = stbi__get32le(s); info->ma = stbi__get32le(s); stbi__get32le(s); // discard color space for (i=0; i < 12; ++i) stbi__get32le(s); // discard color space parameters if (hsz == 124) { stbi__get32le(s); // discard rendering intent stbi__get32le(s); // discard offset of profile data stbi__get32le(s); // discard size of profile data stbi__get32le(s); // discard reserved } } } return (void *) 1; } static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi_uc *out; unsigned int mr=0,mg=0,mb=0,ma=0, all_a; stbi_uc pal[256][4]; int psize=0,i,j,width; int flip_vertically, pad, target; stbi__bmp_data info; info.all_a = 255; if (stbi__bmp_parse_header(s, &info) == NULL) return NULL; // error code already set flip_vertically = ((int) s->img_y) > 0; s->img_y = abs((int) s->img_y); mr = info.mr; mg = info.mg; mb = info.mb; ma = info.ma; all_a = info.all_a; if (info.hsz == 12) { if (info.bpp < 24) psize = (info.offset - 14 - 24) / 3; } else { if (info.bpp < 16) psize = (info.offset - 14 - info.hsz) >> 2; } s->img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = s->img_n; // if they want monochrome, we'll post-convert out = (stbi_uc *) stbi__malloc(target * s->img_x * s->img_y); if (!out) return stbi__errpuc("outofmem", "Out of memory"); if (info.bpp < 16) { int z=0; if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } for (i=0; i < psize; ++i) { pal[i][2] = stbi__get8(s); pal[i][1] = stbi__get8(s); pal[i][0] = stbi__get8(s); if (info.hsz != 12) stbi__get8(s); pal[i][3] = 255; } stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); if (info.bpp == 4) width = (s->img_x + 1) >> 1; else if (info.bpp == 8) width = s->img_x; else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } pad = (-width)&3; for (j=0; j < (int) s->img_y; ++j) { for (i=0; i < (int) s->img_x; i += 2) { int v=stbi__get8(s),v2=0; if (info.bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; v = (info.bpp == 8) ? stbi__get8(s) : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } stbi__skip(s, pad); } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; stbi__skip(s, info.offset - 14 - info.hsz); if (info.bpp == 24) width = 3 * s->img_x; else if (info.bpp == 16) width = 2*s->img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (info.bpp == 24) { easy = 1; } else if (info.bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } // right shift amt to put high bit in position #7 rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); } for (j=0; j < (int) s->img_y; ++j) { if (easy) { for (i=0; i < (int) s->img_x; ++i) { unsigned char a; out[z+2] = stbi__get8(s); out[z+1] = stbi__get8(s); out[z+0] = stbi__get8(s); z += 3; a = (easy == 2 ? stbi__get8(s) : 255); all_a |= a; if (target == 4) out[z++] = a; } } else { int bpp = info.bpp; for (i=0; i < (int) s->img_x; ++i) { stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); int a; out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); all_a |= a; if (target == 4) out[z++] = STBI__BYTECAST(a); } } stbi__skip(s, pad); } } // if alpha channel is all 0s, replace with all 255s if (target == 4 && all_a == 0) for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) out[i] = 255; if (flip_vertically) { stbi_uc t; for (j=0; j < (int) s->img_y>>1; ++j) { stbi_uc *p1 = out + j *s->img_x*target; stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; for (i=0; i < (int) s->img_x*target; ++i) { t = p1[i], p1[i] = p2[i], p2[i] = t; } } } if (req_comp && req_comp != target) { out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // stbi__convert_format frees input on failure } *x = s->img_x; *y = s->img_y; if (comp) *comp = s->img_n; return out; } #endif // Targa Truevision - TGA // by Jonathan Dummer #ifndef STBI_NO_TGA // returns STBI_rgb or whatever, 0 on error static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) { // only RGB or RGBA (incl. 16bit) or grey allowed if(is_rgb16) *is_rgb16 = 0; switch(bits_per_pixel) { case 8: return STBI_grey; case 16: if(is_grey) return STBI_grey_alpha; // else: fall-through case 15: if(is_rgb16) *is_rgb16 = 1; return STBI_rgb; case 24: // fall-through case 32: return bits_per_pixel/8; default: return 0; } } static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) { int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; int sz, tga_colormap_type; stbi__get8(s); // discard Offset tga_colormap_type = stbi__get8(s); // colormap type if( tga_colormap_type > 1 ) { stbi__rewind(s); return 0; // only RGB or indexed allowed } tga_image_type = stbi__get8(s); // image type if ( tga_colormap_type == 1 ) { // colormapped (paletted) image if (tga_image_type != 1 && tga_image_type != 9) { stbi__rewind(s); return 0; } stbi__skip(s,4); // skip index of first colormap entry and number of entries sz = stbi__get8(s); // check bits per palette color entry if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { stbi__rewind(s); return 0; } stbi__skip(s,4); // skip image x and y origin tga_colormap_bpp = sz; } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { stbi__rewind(s); return 0; // only RGB or grey allowed, +/- RLE } stbi__skip(s,9); // skip colormap specification and image x/y origin tga_colormap_bpp = 0; } tga_w = stbi__get16le(s); if( tga_w < 1 ) { stbi__rewind(s); return 0; // test width } tga_h = stbi__get16le(s); if( tga_h < 1 ) { stbi__rewind(s); return 0; // test height } tga_bits_per_pixel = stbi__get8(s); // bits per pixel stbi__get8(s); // ignore alpha bits if (tga_colormap_bpp != 0) { if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { // when using a colormap, tga_bits_per_pixel is the size of the indexes // I don't think anything but 8 or 16bit indexes makes sense stbi__rewind(s); return 0; } tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); } else { tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); } if(!tga_comp) { stbi__rewind(s); return 0; } if (x) *x = tga_w; if (y) *y = tga_h; if (comp) *comp = tga_comp; return 1; // seems to have passed everything } static int stbi__tga_test(stbi__context *s) { int res = 0; int sz, tga_color_type; stbi__get8(s); // discard Offset tga_color_type = stbi__get8(s); // color type if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed sz = stbi__get8(s); // image type if ( tga_color_type == 1 ) { // colormapped (paletted) image if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 stbi__skip(s,4); // skip index of first colormap entry and number of entries sz = stbi__get8(s); // check bits per palette color entry if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; stbi__skip(s,4); // skip image x and y origin } else { // "normal" image w/o colormap if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE stbi__skip(s,9); // skip colormap specification and image x/y origin } if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height sz = stbi__get8(s); // bits per pixel if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; res = 1; // if we got this far, everything's good and we can return 1 instead of 0 errorEnd: stbi__rewind(s); return res; } // read 16bit value and convert to 24bit RGB void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) { stbi__uint16 px = stbi__get16le(s); stbi__uint16 fiveBitMask = 31; // we have 3 channels with 5bits each int r = (px >> 10) & fiveBitMask; int g = (px >> 5) & fiveBitMask; int b = px & fiveBitMask; // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later out[0] = (r * 255)/31; out[1] = (g * 255)/31; out[2] = (b * 255)/31; // some people claim that the most significant bit might be used for alpha // (possibly if an alpha-bit is set in the "image descriptor byte") // but that only made 16bit test images completely translucent.. // so let's treat all 15 and 16bit TGAs as RGB with no alpha. } static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { // read in the TGA header stuff int tga_offset = stbi__get8(s); int tga_indexed = stbi__get8(s); int tga_image_type = stbi__get8(s); int tga_is_RLE = 0; int tga_palette_start = stbi__get16le(s); int tga_palette_len = stbi__get16le(s); int tga_palette_bits = stbi__get8(s); int tga_x_origin = stbi__get16le(s); int tga_y_origin = stbi__get16le(s); int tga_width = stbi__get16le(s); int tga_height = stbi__get16le(s); int tga_bits_per_pixel = stbi__get8(s); int tga_comp, tga_rgb16=0; int tga_inverted = stbi__get8(s); // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4]; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; // do a tiny bit of precessing if ( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } tga_inverted = 1 - ((tga_inverted >> 5) & 1); // If I'm paletted, then I'll use the number of bits from the palette if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); // tga info *x = tga_width; *y = tga_height; if (comp) *comp = tga_comp; tga_data = (unsigned char*)stbi__malloc( (size_t)tga_width * tga_height * tga_comp ); if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); // skip to the data's starting position (offset usually = 0) stbi__skip(s, tga_offset ); if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { for (i=0; i < tga_height; ++i) { int row = tga_inverted ? tga_height -i - 1 : i; stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; stbi__getn(s, tga_row, tga_width * tga_comp); } } else { // do I need to load a palette? if ( tga_indexed) { // any data to skip? (offset usually = 0) stbi__skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)stbi__malloc( tga_palette_len * tga_comp ); if (!tga_palette) { STBI_FREE(tga_data); return stbi__errpuc("outofmem", "Out of memory"); } if (tga_rgb16) { stbi_uc *pal_entry = tga_palette; STBI_ASSERT(tga_comp == STBI_rgb); for (i=0; i < tga_palette_len; ++i) { stbi__tga_read_rgb16(s, pal_entry); pal_entry += tga_comp; } } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { STBI_FREE(tga_data); STBI_FREE(tga_palette); return stbi__errpuc("bad palette", "Corrupt TGA"); } } // load the data for (i=0; i < tga_width * tga_height; ++i) { // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? if ( tga_is_RLE ) { if ( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = stbi__get8(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if ( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if ( read_next_pixel ) { // load however much data we did have if ( tga_indexed ) { // read in index, then perform the lookup int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); if ( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_comp; for (j = 0; j < tga_comp; ++j) { raw_data[j] = tga_palette[pal_idx+j]; } } else if(tga_rgb16) { STBI_ASSERT(tga_comp == STBI_rgb); stbi__tga_read_rgb16(s, raw_data); } else { // read in the data raw for (j = 0; j < tga_comp; ++j) { raw_data[j] = stbi__get8(s); } } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // copy data for (j = 0; j < tga_comp; ++j) tga_data[i*tga_comp+j] = raw_data[j]; // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if ( tga_inverted ) { for (j = 0; j*2 < tga_height; ++j) { int index1 = j * tga_width * tga_comp; int index2 = (tga_height - 1 - j) * tga_width * tga_comp; for (i = tga_width * tga_comp; i > 0; --i) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if ( tga_palette != NULL ) { STBI_FREE( tga_palette ); } } // swap RGB - if the source data was RGB16, it already is in the right order if (tga_comp >= 3 && !tga_rgb16) { unsigned char* tga_pixel = tga_data; for (i=0; i < tga_width * tga_height; ++i) { unsigned char temp = tga_pixel[0]; tga_pixel[0] = tga_pixel[2]; tga_pixel[2] = temp; tga_pixel += tga_comp; } } // convert to target component count if (req_comp && req_comp != tga_comp) tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; // OK, done return tga_data; } #endif // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB #ifndef STBI_NO_PSD static int stbi__psd_test(stbi__context *s) { int r = (stbi__get32be(s) == 0x38425053); stbi__rewind(s); return r; } static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { int pixelCount; int channelCount, compression; int channel, i, count, len; int bitdepth; int w,h; stbi_uc *out; // Check identifier if (stbi__get32be(s) != 0x38425053) // "8BPS" return stbi__errpuc("not PSD", "Corrupt PSD image"); // Check file type version. if (stbi__get16be(s) != 1) return stbi__errpuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. stbi__skip(s, 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = stbi__get16be(s); if (channelCount < 0 || channelCount > 16) return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = stbi__get32be(s); w = stbi__get32be(s); // Make sure the depth is 8 bits. bitdepth = stbi__get16be(s); if (bitdepth != 8 && bitdepth != 16) return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (stbi__get16be(s) != 3) return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) stbi__skip(s,stbi__get32be(s) ); // Skip the image resources. (resolution, pen tool paths, etc) stbi__skip(s, stbi__get32be(s) ); // Skip the reserved data. stbi__skip(s, stbi__get32be(s) ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = stbi__get16be(s); if (compression > 1) return stbi__errpuc("bad compression", "PSD has an unknown compression format"); // Create the destination image. out = (stbi_uc *) stbi__malloc(4 * w*h); if (!out) return stbi__errpuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, // which we're going to just skip. stbi__skip(s, h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { stbi_uc *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++, p += 4) *p = (channel == 3 ? 255 : 0); } else { // Read the RLE data. count = 0; while (count < pixelCount) { len = stbi__get8(s); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; count += len; while (len) { *p = stbi__get8(s); p += 4; len--; } } else if (len > 128) { stbi_uc val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len ^= 0x0FF; len += 2; val = stbi__get8(s); count += len; while (len) { *p = val; p += 4; len--; } } } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { stbi_uc *p; p = out + channel; if (channel >= channelCount) { // Fill this channel with default data. stbi_uc val = channel == 3 ? 255 : 0; for (i = 0; i < pixelCount; i++, p += 4) *p = val; } else { // Read the data. if (bitdepth == 16) { for (i = 0; i < pixelCount; i++, p += 4) *p = (stbi_uc) (stbi__get16be(s) >> 8); } else { for (i = 0; i < pixelCount; i++, p += 4) *p = stbi__get8(s); } } } } if (req_comp && req_comp != 4) { out = stbi__convert_format(out, 4, req_comp, w, h); if (out == NULL) return out; // stbi__convert_format frees input on failure } if (comp) *comp = 4; *y = h; *x = w; return out; } #endif // ************************************************************************************************* // Softimage PIC loader // by Tom Seddon // // See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format // See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ #ifndef STBI_NO_PIC static int stbi__pic_is4(stbi__context *s,const char *str) { int i; for (i=0; i<4; ++i) if (stbi__get8(s) != (stbi_uc)str[i]) return 0; return 1; } static int stbi__pic_test_core(stbi__context *s) { int i; if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) return 0; for(i=0;i<84;++i) stbi__get8(s); if (!stbi__pic_is4(s,"PICT")) return 0; return 1; } typedef struct { stbi_uc size,type,channel; } stbi__pic_packet; static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) { int mask=0x80, i; for (i=0; i<4; ++i, mask>>=1) { if (channel & mask) { if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); dest[i]=stbi__get8(s); } } return dest; } static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) { int mask=0x80,i; for (i=0;i<4; ++i, mask>>=1) if (channel&mask) dest[i]=src[i]; } static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) { int act_comp=0,num_packets=0,y,chained; stbi__pic_packet packets[10]; // this will (should...) cater for even some bizarre stuff like having data // for the same channel in multiple packets. do { stbi__pic_packet *packet; if (num_packets==sizeof(packets)/sizeof(packets[0])) return stbi__errpuc("bad format","too many packets"); packet = &packets[num_packets++]; chained = stbi__get8(s); packet->size = stbi__get8(s); packet->type = stbi__get8(s); packet->channel = stbi__get8(s); act_comp |= packet->channel; if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); } while (chained); *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? for(y=0; y<height; ++y) { int packet_idx; for(packet_idx=0; packet_idx < num_packets; ++packet_idx) { stbi__pic_packet *packet = &packets[packet_idx]; stbi_uc *dest = result+y*width*4; switch (packet->type) { default: return stbi__errpuc("bad format","packet has bad compression type"); case 0: {//uncompressed int x; for(x=0;x<width;++x, dest+=4) if (!stbi__readval(s,packet->channel,dest)) return 0; break; } case 1://Pure RLE { int left=width, i; while (left>0) { stbi_uc count,value[4]; count=stbi__get8(s); if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); if (count > left) count = (stbi_uc) left; if (!stbi__readval(s,packet->channel,value)) return 0; for(i=0; i<count; ++i,dest+=4) stbi__copyval(packet->channel,dest,value); left -= count; } } break; case 2: {//Mixed RLE int left=width; while (left>0) { int count = stbi__get8(s), i; if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); if (count >= 128) { // Repeated stbi_uc value[4]; if (count==128) count = stbi__get16be(s); else count -= 127; if (count > left) return stbi__errpuc("bad file","scanline overrun"); if (!stbi__readval(s,packet->channel,value)) return 0; for(i=0;i<count;++i, dest += 4) stbi__copyval(packet->channel,dest,value); } else { // Raw ++count; if (count>left) return stbi__errpuc("bad file","scanline overrun"); for(i=0;i<count;++i, dest+=4) if (!stbi__readval(s,packet->channel,dest)) return 0; } left-=count; } break; } } } } return result; } static stbi_uc *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp) { stbi_uc *result; int i, x,y; for (i=0; i<92; ++i) stbi__get8(s); x = stbi__get16be(s); y = stbi__get16be(s); if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); if ((1 << 28) / x < y) return stbi__errpuc("too large", "Image too large to decode"); stbi__get32be(s); //skip `ratio' stbi__get16be(s); //skip `fields' stbi__get16be(s); //skip `pad' // intermediate buffer is RGBA result = (stbi_uc *) stbi__malloc(x*y*4); memset(result, 0xff, x*y*4); if (!stbi__pic_load_core(s,x,y,comp, result)) { STBI_FREE(result); result=0; } *px = x; *py = y; if (req_comp == 0) req_comp = *comp; result=stbi__convert_format(result,4,req_comp,x,y); return result; } static int stbi__pic_test(stbi__context *s) { int r = stbi__pic_test_core(s); stbi__rewind(s); return r; } #endif // ************************************************************************************************* // GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb #ifndef STBI_NO_GIF typedef struct { stbi__int16 prefix; stbi_uc first; stbi_uc suffix; } stbi__gif_lzw; typedef struct { int w,h; stbi_uc *out, *old_out; // output buffer (always 4 components) int flags, bgindex, ratio, transparent, eflags, delay; stbi_uc pal[256][4]; stbi_uc lpal[256][4]; stbi__gif_lzw codes[4096]; stbi_uc *color_table; int parse, step; int lflags; int start_x, start_y; int max_x, max_y; int cur_x, cur_y; int line_size; } stbi__gif; static int stbi__gif_test_raw(stbi__context *s) { int sz; if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; sz = stbi__get8(s); if (sz != '9' && sz != '7') return 0; if (stbi__get8(s) != 'a') return 0; return 1; } static int stbi__gif_test(stbi__context *s) { int r = stbi__gif_test_raw(s); stbi__rewind(s); return r; } static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) { int i; for (i=0; i < num_entries; ++i) { pal[i][2] = stbi__get8(s); pal[i][1] = stbi__get8(s); pal[i][0] = stbi__get8(s); pal[i][3] = transp == i ? 0 : 255; } } static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) { stbi_uc version; if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return stbi__err("not GIF", "Corrupt GIF"); version = stbi__get8(s); if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); stbi__g_failure_reason = ""; g->w = stbi__get16le(s); g->h = stbi__get16le(s); g->flags = stbi__get8(s); g->bgindex = stbi__get8(s); g->ratio = stbi__get8(s); g->transparent = -1; if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments if (is_info) return 1; if (g->flags & 0x80) stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); return 1; } static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) { stbi__gif g; if (!stbi__gif_header(s, &g, comp, 1)) { stbi__rewind( s ); return 0; } if (x) *x = g.w; if (y) *y = g.h; return 1; } static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) { stbi_uc *p, *c; // recurse to decode the prefixes, since the linked-list is backwards, // and working backwards through an interleaved image would be nasty if (g->codes[code].prefix >= 0) stbi__out_gif_code(g, g->codes[code].prefix); if (g->cur_y >= g->max_y) return; p = &g->out[g->cur_x + g->cur_y]; c = &g->color_table[g->codes[code].suffix * 4]; if (c[3] >= 128) { p[0] = c[2]; p[1] = c[1]; p[2] = c[0]; p[3] = c[3]; } g->cur_x += 4; if (g->cur_x >= g->max_x) { g->cur_x = g->start_x; g->cur_y += g->step; while (g->cur_y >= g->max_y && g->parse > 0) { g->step = (1 << g->parse) * g->line_size; g->cur_y = g->start_y + (g->step >> 1); --g->parse; } } } static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) { stbi_uc lzw_cs; stbi__int32 len, init_code; stbi__uint32 first; stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; stbi__gif_lzw *p; lzw_cs = stbi__get8(s); if (lzw_cs > 12) return NULL; clear = 1 << lzw_cs; first = 1; codesize = lzw_cs + 1; codemask = (1 << codesize) - 1; bits = 0; valid_bits = 0; for (init_code = 0; init_code < clear; init_code++) { g->codes[init_code].prefix = -1; g->codes[init_code].first = (stbi_uc) init_code; g->codes[init_code].suffix = (stbi_uc) init_code; } // support no starting clear code avail = clear+2; oldcode = -1; len = 0; for(;;) { if (valid_bits < codesize) { if (len == 0) { len = stbi__get8(s); // start new block if (len == 0) return g->out; } --len; bits |= (stbi__int32) stbi__get8(s) << valid_bits; valid_bits += 8; } else { stbi__int32 code = bits & codemask; bits >>= codesize; valid_bits -= codesize; // @OPTIMIZE: is there some way we can accelerate the non-clear path? if (code == clear) { // clear code codesize = lzw_cs + 1; codemask = (1 << codesize) - 1; avail = clear + 2; oldcode = -1; first = 0; } else if (code == clear + 1) { // end of stream code stbi__skip(s, len); while ((len = stbi__get8(s)) > 0) stbi__skip(s,len); return g->out; } else if (code <= avail) { if (first) return stbi__errpuc("no clear code", "Corrupt GIF"); if (oldcode >= 0) { p = &g->codes[avail++]; if (avail > 4096) return stbi__errpuc("too many codes", "Corrupt GIF"); p->prefix = (stbi__int16) oldcode; p->first = g->codes[oldcode].first; p->suffix = (code == avail) ? p->first : g->codes[code].first; } else if (code == avail) return stbi__errpuc("illegal code in raster", "Corrupt GIF"); stbi__out_gif_code(g, (stbi__uint16) code); if ((avail & codemask) == 0 && avail <= 0x0FFF) { codesize++; codemask = (1 << codesize) - 1; } oldcode = code; } else { return stbi__errpuc("illegal code in raster", "Corrupt GIF"); } } } } static void stbi__fill_gif_background(stbi__gif *g, int x0, int y0, int x1, int y1) { int x, y; stbi_uc *c = g->pal[g->bgindex]; for (y = y0; y < y1; y += 4 * g->w) { for (x = x0; x < x1; x += 4) { stbi_uc *p = &g->out[y + x]; p[0] = c[2]; p[1] = c[1]; p[2] = c[0]; p[3] = 0; } } } // this function is designed to support animated gifs, although stb_image doesn't support it static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp) { int i; stbi_uc *prev_out = 0; if (g->out == 0 && !stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header prev_out = g->out; g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h); if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory"); switch ((g->eflags & 0x1C) >> 2) { case 0: // unspecified (also always used on 1st frame) stbi__fill_gif_background(g, 0, 0, 4 * g->w, 4 * g->w * g->h); break; case 1: // do not dispose if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h); g->old_out = prev_out; break; case 2: // dispose to background if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h); stbi__fill_gif_background(g, g->start_x, g->start_y, g->max_x, g->max_y); break; case 3: // dispose to previous if (g->old_out) { for (i = g->start_y; i < g->max_y; i += 4 * g->w) memcpy(&g->out[i + g->start_x], &g->old_out[i + g->start_x], g->max_x - g->start_x); } break; } for (;;) { switch (stbi__get8(s)) { case 0x2C: /* Image Descriptor */ { int prev_trans = -1; stbi__int32 x, y, w, h; stbi_uc *o; x = stbi__get16le(s); y = stbi__get16le(s); w = stbi__get16le(s); h = stbi__get16le(s); if (((x + w) > (g->w)) || ((y + h) > (g->h))) return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); g->line_size = g->w * 4; g->start_x = x * 4; g->start_y = y * g->line_size; g->max_x = g->start_x + w * 4; g->max_y = g->start_y + h * g->line_size; g->cur_x = g->start_x; g->cur_y = g->start_y; g->lflags = stbi__get8(s); if (g->lflags & 0x40) { g->step = 8 * g->line_size; // first interlaced spacing g->parse = 3; } else { g->step = g->line_size; g->parse = 0; } if (g->lflags & 0x80) { stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); g->color_table = (stbi_uc *) g->lpal; } else if (g->flags & 0x80) { if (g->transparent >= 0 && (g->eflags & 0x01)) { prev_trans = g->pal[g->transparent][3]; g->pal[g->transparent][3] = 0; } g->color_table = (stbi_uc *) g->pal; } else return stbi__errpuc("missing color table", "Corrupt GIF"); o = stbi__process_gif_raster(s, g); if (o == NULL) return NULL; if (prev_trans != -1) g->pal[g->transparent][3] = (stbi_uc) prev_trans; return o; } case 0x21: // Comment Extension. { int len; if (stbi__get8(s) == 0xF9) { // Graphic Control Extension. len = stbi__get8(s); if (len == 4) { g->eflags = stbi__get8(s); g->delay = stbi__get16le(s); g->transparent = stbi__get8(s); } else { stbi__skip(s, len); break; } } while ((len = stbi__get8(s)) != 0) stbi__skip(s, len); break; } case 0x3B: // gif stream termination code return (stbi_uc *) s; // using '1' causes warning on some compilers default: return stbi__errpuc("unknown code", "Corrupt GIF"); } } STBI_NOTUSED(req_comp); } static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi_uc *u = 0; stbi__gif g; memset(&g, 0, sizeof(g)); u = stbi__gif_load_next(s, &g, comp, req_comp); if (u == (stbi_uc *) s) u = 0; // end of animated gif marker if (u) { *x = g.w; *y = g.h; if (req_comp && req_comp != 4) u = stbi__convert_format(u, 4, req_comp, g.w, g.h); } else if (g.out) STBI_FREE(g.out); return u; } static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) { return stbi__gif_info_raw(s,x,y,comp); } #endif // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int stbi__hdr_test_core(stbi__context *s) { const char *signature = "#?RADIANCE\n"; int i; for (i=0; signature[i]; ++i) if (stbi__get8(s) != signature[i]) return 0; return 1; } static int stbi__hdr_test(stbi__context* s) { int r = stbi__hdr_test_core(s); stbi__rewind(s); return r; } #define STBI__HDR_BUFLEN 1024 static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) { int len=0; char c = '\0'; c = (char) stbi__get8(z); while (!stbi__at_eof(z) && c != '\n') { buffer[len++] = c; if (len == STBI__HDR_BUFLEN-1) { // flush to end of line while (!stbi__at_eof(z) && stbi__get8(z) != '\n') ; break; } c = (char) stbi__get8(z); } buffer[len] = 0; return buffer; } static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) { if ( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0) return stbi__errpf("not HDR", "Corrupt HDR image"); // Parse header for(;;) { token = stbi__hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); token += 3; height = (int) strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); token += 3; width = (int) strtol(token, NULL, 10); *x = width; *y = height; if (comp) *comp = 3; if (req_comp == 0) req_comp = 3; // Read data hdr_data = (float *) stbi__malloc(height * width * req_comp * sizeof(float)); // Load image data // image data is stored as some number of sca if ( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: stbi__getn(s, rgbe, 4); stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = stbi__get8(s); c2 = stbi__get8(s); len = stbi__get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4]; rgbe[0] = (stbi_uc) c1; rgbe[1] = (stbi_uc) c2; rgbe[2] = (stbi_uc) len; rgbe[3] = (stbi_uc) stbi__get8(s); stbi__hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; STBI_FREE(scanline); goto main_decode_loop; // yes, this makes no sense } len <<= 8; len |= stbi__get8(s); if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) scanline = (stbi_uc *) stbi__malloc(width * 4); for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = stbi__get8(s); if (count > 128) { // Run value = stbi__get8(s); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = stbi__get8(s); } } } for (i=0; i < width; ++i) stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } STBI_FREE(scanline); } return hdr_data; } static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) { char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; if (stbi__hdr_test(s) == 0) { stbi__rewind( s ); return 0; } for(;;) { token = stbi__hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) { stbi__rewind( s ); return 0; } token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) { stbi__rewind( s ); return 0; } token += 3; *y = (int) strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) { stbi__rewind( s ); return 0; } token += 3; *x = (int) strtol(token, NULL, 10); *comp = 3; return 1; } #endif // STBI_NO_HDR #ifndef STBI_NO_BMP static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) { void *p; stbi__bmp_data info; info.all_a = 255; p = stbi__bmp_parse_header(s, &info); stbi__rewind( s ); if (p == NULL) return 0; *x = s->img_x; *y = s->img_y; *comp = info.ma ? 4 : 3; return 1; } #endif #ifndef STBI_NO_PSD static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) { int channelCount; if (stbi__get32be(s) != 0x38425053) { stbi__rewind( s ); return 0; } if (stbi__get16be(s) != 1) { stbi__rewind( s ); return 0; } stbi__skip(s, 6); channelCount = stbi__get16be(s); if (channelCount < 0 || channelCount > 16) { stbi__rewind( s ); return 0; } *y = stbi__get32be(s); *x = stbi__get32be(s); if (stbi__get16be(s) != 8) { stbi__rewind( s ); return 0; } if (stbi__get16be(s) != 3) { stbi__rewind( s ); return 0; } *comp = 4; return 1; } #endif #ifndef STBI_NO_PIC static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) { int act_comp=0,num_packets=0,chained; stbi__pic_packet packets[10]; if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { stbi__rewind(s); return 0; } stbi__skip(s, 88); *x = stbi__get16be(s); *y = stbi__get16be(s); if (stbi__at_eof(s)) { stbi__rewind( s); return 0; } if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { stbi__rewind( s ); return 0; } stbi__skip(s, 8); do { stbi__pic_packet *packet; if (num_packets==sizeof(packets)/sizeof(packets[0])) return 0; packet = &packets[num_packets++]; chained = stbi__get8(s); packet->size = stbi__get8(s); packet->type = stbi__get8(s); packet->channel = stbi__get8(s); act_comp |= packet->channel; if (stbi__at_eof(s)) { stbi__rewind( s ); return 0; } if (packet->size != 8) { stbi__rewind( s ); return 0; } } while (chained); *comp = (act_comp & 0x10 ? 4 : 3); return 1; } #endif // ************************************************************************************************* // Portable Gray Map and Portable Pixel Map loader // by Ken Miller // // PGM: http://netpbm.sourceforge.net/doc/pgm.html // PPM: http://netpbm.sourceforge.net/doc/ppm.html // // Known limitations: // Does not support comments in the header section // Does not support ASCII image data (formats P2 and P3) // Does not support 16-bit-per-channel #ifndef STBI_NO_PNM static int stbi__pnm_test(stbi__context *s) { char p, t; p = (char) stbi__get8(s); t = (char) stbi__get8(s); if (p != 'P' || (t != '5' && t != '6')) { stbi__rewind( s ); return 0; } return 1; } static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi_uc *out; if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) return 0; *x = s->img_x; *y = s->img_y; *comp = s->img_n; out = (stbi_uc *) stbi__malloc(s->img_n * s->img_x * s->img_y); if (!out) return stbi__errpuc("outofmem", "Out of memory"); stbi__getn(s, out, s->img_n * s->img_x * s->img_y); if (req_comp && req_comp != s->img_n) { out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // stbi__convert_format frees input on failure } return out; } static int stbi__pnm_isspace(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; } static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) { for (;;) { while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) *c = (char) stbi__get8(s); if (stbi__at_eof(s) || *c != '#') break; while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) *c = (char) stbi__get8(s); } } static int stbi__pnm_isdigit(char c) { return c >= '0' && c <= '9'; } static int stbi__pnm_getinteger(stbi__context *s, char *c) { int value = 0; while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { value = value*10 + (*c - '0'); *c = (char) stbi__get8(s); } return value; } static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) { int maxv; char c, p, t; stbi__rewind( s ); // Get identifier p = (char) stbi__get8(s); t = (char) stbi__get8(s); if (p != 'P' || (t != '5' && t != '6')) { stbi__rewind( s ); return 0; } *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm c = (char) stbi__get8(s); stbi__pnm_skip_whitespace(s, &c); *x = stbi__pnm_getinteger(s, &c); // read width stbi__pnm_skip_whitespace(s, &c); *y = stbi__pnm_getinteger(s, &c); // read height stbi__pnm_skip_whitespace(s, &c); maxv = stbi__pnm_getinteger(s, &c); // read max value if (maxv > 255) return stbi__err("max value > 255", "PPM image not 8-bit"); else return 1; } #endif static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) { #ifndef STBI_NO_JPEG if (stbi__jpeg_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PNG if (stbi__png_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_GIF if (stbi__gif_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_BMP if (stbi__bmp_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PSD if (stbi__psd_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PIC if (stbi__pic_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PNM if (stbi__pnm_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_HDR if (stbi__hdr_info(s, x, y, comp)) return 1; #endif // test tga last because it's a crappy test! #ifndef STBI_NO_TGA if (stbi__tga_info(s, x, y, comp)) return 1; #endif return stbi__err("unknown image type", "Image not of any known type, or corrupt"); } #ifndef STBI_NO_STDIO STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) { FILE *f = stbi__fopen(filename, "rb"); int result; if (!f) return stbi__err("can't fopen", "Unable to open file"); result = stbi_info_from_file(f, x, y, comp); fclose(f); return result; } STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) { int r; stbi__context s; long pos = ftell(f); stbi__start_file(&s, f); r = stbi__info_main(&s,x,y,comp); fseek(f,pos,SEEK_SET); return r; } #endif // !STBI_NO_STDIO STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__info_main(&s,x,y,comp); } STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); return stbi__info_main(&s,x,y,comp); } #endif // STB_IMAGE_IMPLEMENTATION /* revision history: 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED 2.09 (2016-01-16) allow comments in PNM files 16-bit-per-pixel TGA (not bit-per-component) info() for TGA could break due to .hdr handling info() for BMP to shares code instead of sloppy parse can use STBI_REALLOC_SIZED if allocator doesn't support realloc code cleanup 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA 2.07 (2015-09-13) fix compiler warnings partial animated GIF support limited 16-bpc PSD support #ifdef unused functions bug with < 92 byte PIC,PNM,HDR,TGA 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit 2.03 (2015-04-12) extra corruption checking (mmozeiko) stbi_set_flip_vertically_on_load (nguillemot) fix NEON support; fix mingw support 2.02 (2015-01-19) fix incorrect assert, fix warning 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) progressive JPEG (stb) PGM/PPM support (Ken Miller) STBI_MALLOC,STBI_REALLOC,STBI_FREE GIF bugfix -- seemingly never worked STBI_NO_*, STBI_ONLY_* 1.48 (2014-12-14) fix incorrectly-named assert() 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) optimize PNG (ryg) fix bug in interlaced PNG with user-specified channel count (stb) 1.46 (2014-08-26) fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG 1.45 (2014-08-16) fix MSVC-ARM internal compiler error by wrapping malloc 1.44 (2014-08-07) various warning fixes from Ronny Chevalier 1.43 (2014-07-15) fix MSVC-only compiler problem in code changed in 1.42 1.42 (2014-07-09) don't define _CRT_SECURE_NO_WARNINGS (affects user code) fixes to stbi__cleanup_jpeg path added STBI_ASSERT to avoid requiring assert.h 1.41 (2014-06-25) fix search&replace from 1.36 that messed up comments/error messages 1.40 (2014-06-22) fix gcc struct-initialization warning 1.39 (2014-06-15) fix to TGA optimization when req_comp != number of components in TGA; fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) add support for BMP version 5 (more ignored fields) 1.38 (2014-06-06) suppress MSVC warnings on integer casts truncating values fix accidental rename of 'skip' field of I/O 1.37 (2014-06-04) remove duplicate typedef 1.36 (2014-06-03) convert to header file single-file library if de-iphone isn't set, load iphone images color-swapped instead of returning NULL 1.35 (2014-05-27) various warnings fix broken STBI_SIMD path fix bug where stbi_load_from_file no longer left file pointer in correct place fix broken non-easy path for 32-bit BMP (possibly never used) TGA optimization by Arseny Kapoulkine 1.34 (unknown) use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case 1.33 (2011-07-14) make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements 1.32 (2011-07-13) support for "info" function for all supported filetypes (SpartanJ) 1.31 (2011-06-20) a few more leak fixes, bug in PNG handling (SpartanJ) 1.30 (2011-06-11) added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) removed deprecated format-specific test/load functions removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) fix inefficiency in decoding 32-bit BMP (David Woo) 1.29 (2010-08-16) various warning fixes from Aurelien Pocheville 1.28 (2010-08-01) fix bug in GIF palette transparency (SpartanJ) 1.27 (2010-08-01) cast-to-stbi_uc to fix warnings 1.26 (2010-07-24) fix bug in file buffering for PNG reported by SpartanJ 1.25 (2010-07-17) refix trans_data warning (Won Chun) 1.24 (2010-07-12) perf improvements reading from files on platforms with lock-heavy fgetc() minor perf improvements for jpeg deprecated type-specific functions so we'll get feedback if they're needed attempt to fix trans_data warning (Won Chun) 1.23 fixed bug in iPhone support 1.22 (2010-07-10) removed image *writing* support stbi_info support from Jetro Lauha GIF support from Jean-Marc Lienher iPhone PNG-extensions from James Brown warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) 1.21 fix use of 'stbi_uc' in header (reported by jon blow) 1.20 added support for Softimage PIC, by Tom Seddon 1.19 bug in interlaced PNG corruption check (found by ryg) 1.18 (2008-08-02) fix a threading bug (local mutable static) 1.17 support interlaced PNG 1.16 major bugfix - stbi__convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant 0.50 (2006-11-19) first released version */
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/nanovg.h
// // Copyright (c) 2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef NANOVG_H #define NANOVG_H #ifdef __cplusplus extern "C" { #endif #define NVG_PI 3.14159265358979323846264338327f #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union #endif typedef struct NVGcontext NVGcontext; struct NVGcolor { union { float rgba[4]; struct { float r,g,b,a; }; }; int zigpad; // Workaround for https://github.com/ziglang/zig/issues/1481 }; typedef struct NVGcolor NVGcolor; struct NVGpaint { float xform[6]; float extent[2]; float radius; float feather; NVGcolor innerColor; NVGcolor outerColor; int image; }; typedef struct NVGpaint NVGpaint; enum NVGwinding { NVG_CCW = 1, // Winding for solid shapes NVG_CW = 2, // Winding for holes }; enum NVGsolidity { NVG_SOLID = 1, // CCW NVG_HOLE = 2, // CW }; enum NVGlineCap { NVG_BUTT, NVG_ROUND, NVG_SQUARE, NVG_BEVEL, NVG_MITER, }; enum NVGalign { // Horizontal align NVG_ALIGN_LEFT = 1<<0, // Default, align text horizontally to left. NVG_ALIGN_CENTER = 1<<1, // Align text horizontally to center. NVG_ALIGN_RIGHT = 1<<2, // Align text horizontally to right. // Vertical align NVG_ALIGN_TOP = 1<<3, // Align text vertically to top. NVG_ALIGN_MIDDLE = 1<<4, // Align text vertically to middle. NVG_ALIGN_BOTTOM = 1<<5, // Align text vertically to bottom. NVG_ALIGN_BASELINE = 1<<6, // Default, align text vertically to baseline. }; enum NVGblendFactor { NVG_ZERO = 1<<0, NVG_ONE = 1<<1, NVG_SRC_COLOR = 1<<2, NVG_ONE_MINUS_SRC_COLOR = 1<<3, NVG_DST_COLOR = 1<<4, NVG_ONE_MINUS_DST_COLOR = 1<<5, NVG_SRC_ALPHA = 1<<6, NVG_ONE_MINUS_SRC_ALPHA = 1<<7, NVG_DST_ALPHA = 1<<8, NVG_ONE_MINUS_DST_ALPHA = 1<<9, NVG_SRC_ALPHA_SATURATE = 1<<10, }; enum NVGcompositeOperation { NVG_SOURCE_OVER, NVG_SOURCE_IN, NVG_SOURCE_OUT, NVG_ATOP, NVG_DESTINATION_OVER, NVG_DESTINATION_IN, NVG_DESTINATION_OUT, NVG_DESTINATION_ATOP, NVG_LIGHTER, NVG_COPY, NVG_XOR, }; struct NVGcompositeOperationState { int srcRGB; int dstRGB; int srcAlpha; int dstAlpha; }; typedef struct NVGcompositeOperationState NVGcompositeOperationState; struct NVGglyphPosition { const char* str; // Position of the glyph in the input string. float x; // The x-coordinate of the logical glyph position. float minx, maxx; // The bounds of the glyph shape. }; typedef struct NVGglyphPosition NVGglyphPosition; struct NVGtextRow { const char* start; // Pointer to the input text where the row starts. const char* end; // Pointer to the input text where the row ends (one past the last character). const char* next; // Pointer to the beginning of the next row. float width; // Logical width of the row. float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending. }; typedef struct NVGtextRow NVGtextRow; enum NVGimageFlags { NVG_IMAGE_GENERATE_MIPMAPS = 1<<0, // Generate mipmaps during creation of the image. NVG_IMAGE_REPEATX = 1<<1, // Repeat image in X direction. NVG_IMAGE_REPEATY = 1<<2, // Repeat image in Y direction. NVG_IMAGE_FLIPY = 1<<3, // Flips (inverses) image in Y direction when rendered. NVG_IMAGE_PREMULTIPLIED = 1<<4, // Image data has premultiplied alpha. NVG_IMAGE_NEAREST = 1<<5, // Image interpolation is Nearest instead Linear }; // Begin drawing a new frame // Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame() // nvgBeginFrame() defines the size of the window to render to in relation currently // set viewport (i.e. glViewport on GL backends). Device pixel ration allows to // control the rendering on Hi-DPI devices. // For example, GLFW returns two dimension for an opened window: window size and // frame buffer size. In that case you would set windowWidth/Height to the window size // devicePixelRatio to: frameBufferWidth / windowWidth. void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio); // Cancels drawing the current frame. void nvgCancelFrame(NVGcontext* ctx); // Ends drawing flushing remaining render state. void nvgEndFrame(NVGcontext* ctx); // // Composite operation // // The composite operations in NanoVG are modeled after HTML Canvas API, and // the blend func is based on OpenGL (see corresponding manuals for more info). // The colors in the blending state have premultiplied alpha. // Sets the composite operation. The op parameter should be one of NVGcompositeOperation. void nvgGlobalCompositeOperation(NVGcontext* ctx, int op); // Sets the composite operation with custom pixel arithmetic. The parameters should be one of NVGblendFactor. void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor); // Sets the composite operation with custom pixel arithmetic for RGB and alpha components separately. The parameters should be one of NVGblendFactor. void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha); // // Color utils // // Colors in NanoVG are stored as unsigned ints in ABGR format. // Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f). NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b); // Returns a color value from red, green, blue values. Alpha will be set to 1.0f. NVGcolor nvgRGBf(float r, float g, float b); // Returns a color value from red, green, blue and alpha values. NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Returns a color value from red, green, blue and alpha values. NVGcolor nvgRGBAf(float r, float g, float b, float a); // Linearly interpolates from color c0 to c1, and returns resulting color value. NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u); // Sets transparency of a color value. NVGcolor nvgTransRGBA(NVGcolor c0, unsigned char a); // Sets transparency of a color value. NVGcolor nvgTransRGBAf(NVGcolor c0, float a); // Returns color value specified by hue, saturation and lightness. // HSL values are all in range [0..1], alpha will be set to 255. NVGcolor nvgHSL(float h, float s, float l); // Returns color value specified by hue, saturation and lightness and alpha. // HSL values are all in range [0..1], alpha in range [0..255] NVGcolor nvgHSLA(float h, float s, float l, unsigned char a); // // State Handling // // NanoVG contains state which represents how paths will be rendered. // The state contains transform, fill and stroke styles, text and font styles, // and scissor clipping. // Pushes and saves the current render state into a state stack. // A matching nvgRestore() must be used to restore the state. void nvgSave(NVGcontext* ctx); // Pops and restores current render state. void nvgRestore(NVGcontext* ctx); // Resets current render state to default values. Does not affect the render state stack. void nvgReset(NVGcontext* ctx); // // Render styles // // Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern. // Solid color is simply defined as a color value, different kinds of paints can be created // using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern(). // // Current render style can be saved and restored using nvgSave() and nvgRestore(). // Sets whether to draw antialias for nvgStroke() and nvgFill(). It's enabled by default. void nvgShapeAntiAlias(NVGcontext* ctx, int enabled); // Sets current stroke style to a solid color. void nvgStrokeColor(NVGcontext* ctx, NVGcolor color); // Sets current stroke style to a paint, which can be a one of the gradients or a pattern. void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint); // Sets current fill style to a solid color. void nvgFillColor(NVGcontext* ctx, NVGcolor color); // Sets current fill style to a paint, which can be a one of the gradients or a pattern. void nvgFillPaint(NVGcontext* ctx, NVGpaint paint); // Sets the miter limit of the stroke style. // Miter limit controls when a sharp corner is beveled. void nvgMiterLimit(NVGcontext* ctx, float limit); // Sets the stroke width of the stroke style. void nvgStrokeWidth(NVGcontext* ctx, float size); // Sets how the end of the line (cap) is drawn, // Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE. void nvgLineCap(NVGcontext* ctx, int cap); // Sets how sharp path corners are drawn. // Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL. void nvgLineJoin(NVGcontext* ctx, int join); // Sets the transparency applied to all rendered shapes. // Already transparent paths will get proportionally more transparent as well. void nvgGlobalAlpha(NVGcontext* ctx, float alpha); // // Transforms // // The paths, gradients, patterns and scissor region are transformed by an transformation // matrix at the time when they are passed to the API. // The current transformation matrix is a affine matrix: // [sx kx tx] // [ky sy ty] // [ 0 0 1] // Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation. // The last row is assumed to be 0,0,1 and is not stored. // // Apart from nvgResetTransform(), each transformation function first creates // specific transformation matrix and pre-multiplies the current transformation by it. // // Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore(). // Resets current transform to a identity matrix. void nvgResetTransform(NVGcontext* ctx); // Premultiplies current coordinate system by specified matrix. // The parameters are interpreted as matrix as follows: // [a c e] // [b d f] // [0 0 1] void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f); // Translates current coordinate system. void nvgTranslate(NVGcontext* ctx, float x, float y); // Rotates current coordinate system. Angle is specified in radians. void nvgRotate(NVGcontext* ctx, float angle); // Skews the current coordinate system along X axis. Angle is specified in radians. void nvgSkewX(NVGcontext* ctx, float angle); // Skews the current coordinate system along Y axis. Angle is specified in radians. void nvgSkewY(NVGcontext* ctx, float angle); // Scales the current coordinate system. void nvgScale(NVGcontext* ctx, float x, float y); // Stores the top part (a-f) of the current transformation matrix in to the specified buffer. // [a c e] // [b d f] // [0 0 1] // There should be space for 6 floats in the return buffer for the values a-f. void nvgCurrentTransform(NVGcontext* ctx, float* xform); // The following functions can be used to make calculations on 2x3 transformation matrices. // A 2x3 matrix is represented as float[6]. // Sets the transform to identity matrix. void nvgTransformIdentity(float* dst); // Sets the transform to translation matrix matrix. void nvgTransformTranslate(float* dst, float tx, float ty); // Sets the transform to scale matrix. void nvgTransformScale(float* dst, float sx, float sy); // Sets the transform to rotate matrix. Angle is specified in radians. void nvgTransformRotate(float* dst, float a); // Sets the transform to skew-x matrix. Angle is specified in radians. void nvgTransformSkewX(float* dst, float a); // Sets the transform to skew-y matrix. Angle is specified in radians. void nvgTransformSkewY(float* dst, float a); // Sets the transform to the result of multiplication of two transforms, of A = A*B. void nvgTransformMultiply(float* dst, const float* src); // Sets the transform to the result of multiplication of two transforms, of A = B*A. void nvgTransformPremultiply(float* dst, const float* src); // Sets the destination to inverse of specified transform. // Returns 1 if the inverse could be calculated, else 0. int nvgTransformInverse(float* dst, const float* src); // Transform a point by given transform. void nvgTransformPoint(float* dstx, float* dsty, const float* xform, float srcx, float srcy); // Converts degrees to radians and vice versa. float nvgDegToRad(float deg); float nvgRadToDeg(float rad); // // Images // // NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering. // In addition you can upload your own image. The image loading is provided by stb_image. // The parameter imageFlags is combination of flags defined in NVGimageFlags. // Creates image by loading it from the disk from specified file name. // Returns handle to the image. int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags); // Creates image by loading it from the specified chunk of memory. // Returns handle to the image. int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata); // Creates image from specified image data. // Returns handle to the image. int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data); // Updates image data specified by image handle. void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data); // Returns the dimensions of a created image. void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h); // Deletes created image. void nvgDeleteImage(NVGcontext* ctx, int image); // // Paints // // NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern. // These can be used as paints for strokes and fills. // Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates // of the linear gradient, icol specifies the start color and ocol the end color. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey, NVGcolor icol, NVGcolor ocol); // Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering // drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle, // (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry // the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, float r, float f, NVGcolor icol, NVGcolor ocol); // Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify // the inner and outer radius of the gradient, icol specifies the start color and ocol the end color. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, NVGcolor icol, NVGcolor ocol); // Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern, // (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). NVGpaint nvgImagePattern(NVGcontext* ctx, float ox, float oy, float ex, float ey, float angle, int image, float alpha); // // Scissoring // // Scissoring allows you to clip the rendering into a rectangle. This is useful for various // user interface cases like rendering a text edit or a timeline. // Sets the current scissor rectangle. // The scissor rectangle is transformed by the current transform. void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h); // Intersects current scissor rectangle with the specified rectangle. // The scissor rectangle is transformed by the current transform. // Note: in case the rotation of previous scissor rect differs from // the current one, the intersection will be done between the specified // rectangle and the previous scissor rectangle transformed in the current // transform space. The resulting shape is always rectangle. void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h); // Reset and disables scissoring. void nvgResetScissor(NVGcontext* ctx); // // Paths // // Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths. // Then you define one or more paths and sub-paths which describe the shape. The are functions // to draw common shapes like rectangles and circles, and lower level step-by-step functions, // which allow to define a path curve by curve. // // NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise // winding and holes should have counter clockwise order. To specify winding of a path you can // call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW. // // Finally you can fill the path using current fill style by calling nvgFill(), and stroke it // with current stroke style by calling nvgStroke(). // // The curve segments and sub-paths are transformed by the current transform. // Clears the current path and sub-paths. void nvgBeginPath(NVGcontext* ctx); // Starts new sub-path with specified point as first point. void nvgMoveTo(NVGcontext* ctx, float x, float y); // Adds line segment from the last point in the path to the specified point. void nvgLineTo(NVGcontext* ctx, float x, float y); // Adds cubic bezier segment from last point in the path via two control points to the specified point. void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y); // Adds quadratic bezier segment from last point in the path via a control point to the specified point. void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y); // Adds an arc segment at the corner defined by the last path point, and two specified points. void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius); // Closes current sub-path with a line segment. void nvgClosePath(NVGcontext* ctx); // Sets the current sub-path winding, see NVGwinding and NVGsolidity. void nvgPathWinding(NVGcontext* ctx, int dir); // Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r, // and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW). // Angles are specified in radians. void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir); // Creates new rectangle shaped sub-path. void nvgRect(NVGcontext* ctx, float x, float y, float w, float h); // Creates new rounded rectangle shaped sub-path. void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r); // Creates new rounded rectangle shaped sub-path with varying radii for each corner. void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft); // Creates new ellipse shaped sub-path. void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry); // Creates new circle shaped sub-path. void nvgCircle(NVGcontext* ctx, float cx, float cy, float r); // Fills the current path with current fill style. void nvgFill(NVGcontext* ctx); // Fills the current path with current stroke style. void nvgStroke(NVGcontext* ctx); // // Text // // NanoVG allows you to load .ttf files and use the font to render text. // // The appearance of the text can be defined by setting the current text style // and by specifying the fill color. Common text and font settings such as // font size, letter spacing and text align are supported. Font blur allows you // to create simple text effects such as drop shadows. // // At render time the font face can be set based on the font handles or name. // // Font measure functions return values in local space, the calculations are // carried in the same resolution as the final rendering. This is done because // the text glyph positions are snapped to the nearest pixels sharp rendering. // // The local space means that values are not rotated or scale as per the current // transformation. For example if you set font size to 12, which would mean that // line height is 16, then regardless of the current scaling and rotation, the // returned line height is always 16. Some measures may vary because of the scaling // since aforementioned pixel snapping. // // While this may sound a little odd, the setup allows you to always render the // same way regardless of scaling. I.e. following works regardless of scaling: // // const char* txt = "Text me up."; // nvgTextBounds(vg, x,y, txt, NULL, bounds); // nvgBeginPath(vg); // nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]); // nvgFill(vg); // // Note: currently only solid color fill is supported for text. // Creates font by loading it from the disk from specified file name. // Returns handle to the font. int nvgCreateFont(NVGcontext* ctx, const char* name, const char* filename); // fontIndex specifies which font face to load from a .ttf/.ttc file. int nvgCreateFontAtIndex(NVGcontext* ctx, const char* name, const char* filename, const int fontIndex); // Creates font by loading it from the specified memory chunk. // Returns handle to the font. int nvgCreateFontMem(NVGcontext* ctx, const char* name, const unsigned char* data, int ndata, int freeData); // fontIndex specifies which font face to load from a .ttf/.ttc file. int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex); // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found. int nvgFindFont(NVGcontext* ctx, const char* name); // Adds a fallback font by handle. int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont); // Adds a fallback font by name. int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont); // Resets fallback fonts by handle. void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont); // Resets fallback fonts by name. void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont); // Sets the font size of current text style. void nvgFontSize(NVGcontext* ctx, float size); // Sets the blur of current text style. void nvgFontBlur(NVGcontext* ctx, float blur); // Sets the letter spacing of current text style. void nvgTextLetterSpacing(NVGcontext* ctx, float spacing); // Sets the proportional line height of current text style. The line height is specified as multiple of font size. void nvgTextLineHeight(NVGcontext* ctx, float lineHeight); // Sets the text align of current text style, see NVGalign for options. void nvgTextAlign(NVGcontext* ctx, int align); // Sets the font face based on specified id of current text style. void nvgFontFaceId(NVGcontext* ctx, int font); // Sets the font face based on specified name of current text style. void nvgFontFace(NVGcontext* ctx, const char* font); // Draws text string at specified location. If end is specified only the sub-string up to the end is drawn. float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end); // Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn. // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. // Words longer than the max width are slit at nearest character (i.e. no hyphenation). void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end); // Measures the specified text string. Parameter bounds should be a pointer to float[4], // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] // Returns the horizontal advance of the measured text (i.e. where the next character should drawn). // Measured values are returned in local coordinate space. float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds); // Measures the specified multi-text string. Parameter bounds should be a pointer to float[4], // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] // Measured values are returned in local coordinate space. void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds); // Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used. // Measured values are returned in local coordinate space. int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions); // Returns the vertical metrics based on the current text style. // Measured values are returned in local coordinate space. void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh); // Breaks the specified text into lines. If end is specified only the sub-string will be used. // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. // Words longer than the max width are slit at nearest character (i.e. no hyphenation). int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows); // // Internal Render API // enum NVGtexture { NVG_TEXTURE_ALPHA = 0x01, NVG_TEXTURE_RGBA = 0x02, }; struct NVGscissor { float xform[6]; float extent[2]; }; typedef struct NVGscissor NVGscissor; struct NVGvertex { float x,y,u,v; }; typedef struct NVGvertex NVGvertex; struct NVGpath { int first; int count; unsigned char closed; int nbevel; NVGvertex* fill; int nfill; NVGvertex* stroke; int nstroke; int winding; int convex; }; typedef struct NVGpath NVGpath; struct NVGparams { void* userPtr; int edgeAntiAlias; int (*renderCreate)(void* uptr); int (*renderCreateTexture)(void* uptr, int type, int w, int h, int imageFlags, const unsigned char* data); int (*renderDeleteTexture)(void* uptr, int image); int (*renderUpdateTexture)(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data); int (*renderGetTextureSize)(void* uptr, int image, int* w, int* h); void (*renderViewport)(void* uptr, float width, float height, float devicePixelRatio); void (*renderCancel)(void* uptr); void (*renderFlush)(void* uptr); void (*renderFill)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, const float* bounds, const NVGpath* paths, int npaths); void (*renderStroke)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, float strokeWidth, const NVGpath* paths, int npaths); void (*renderTriangles)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, const NVGvertex* verts, int nverts, float fringe); void (*renderDelete)(void* uptr); }; typedef struct NVGparams NVGparams; // Constructor and destructor, called by the render back-end. NVGcontext* nvgCreateInternal(NVGparams* params); void nvgDeleteInternal(NVGcontext* ctx); NVGparams* nvgInternalParams(NVGcontext* ctx); // Debug function to dump cached path data. void nvgDebugDumpPathCache(NVGcontext* ctx); #ifdef _MSC_VER #pragma warning(pop) #endif #define NVG_NOTUSED(v) for (;;) { (void)(1 ? (void)0 : ( (void)(v) ) ); break; } #ifdef __cplusplus } #endif #endif // NANOVG_H
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/fontstash.h
// // Copyright (c) 2009-2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef FONS_H #define FONS_H #define FONS_INVALID -1 enum FONSflags { FONS_ZERO_TOPLEFT = 1, FONS_ZERO_BOTTOMLEFT = 2, }; enum FONSalign { // Horizontal align FONS_ALIGN_LEFT = 1<<0, // Default FONS_ALIGN_CENTER = 1<<1, FONS_ALIGN_RIGHT = 1<<2, // Vertical align FONS_ALIGN_TOP = 1<<3, FONS_ALIGN_MIDDLE = 1<<4, FONS_ALIGN_BOTTOM = 1<<5, FONS_ALIGN_BASELINE = 1<<6, // Default }; enum FONSglyphBitmap { FONS_GLYPH_BITMAP_OPTIONAL = 1, FONS_GLYPH_BITMAP_REQUIRED = 2, }; enum FONSerrorCode { // Font atlas is full. FONS_ATLAS_FULL = 1, // Scratch memory used to render glyphs is full, requested size reported in 'val', you may need to bump up FONS_SCRATCH_BUF_SIZE. FONS_SCRATCH_FULL = 2, // Calls to fonsPushState has created too large stack, if you need deep state stack bump up FONS_MAX_STATES. FONS_STATES_OVERFLOW = 3, // Trying to pop too many states fonsPopState(). FONS_STATES_UNDERFLOW = 4, }; struct FONSparams { int width, height; unsigned char flags; void* userPtr; int (*renderCreate)(void* uptr, int width, int height); int (*renderResize)(void* uptr, int width, int height); void (*renderUpdate)(void* uptr, int* rect, const unsigned char* data); void (*renderDraw)(void* uptr, const float* verts, const float* tcoords, const unsigned int* colors, int nverts); void (*renderDelete)(void* uptr); }; typedef struct FONSparams FONSparams; struct FONSquad { float x0,y0,s0,t0; float x1,y1,s1,t1; }; typedef struct FONSquad FONSquad; struct FONStextIter { float x, y, nextx, nexty, scale, spacing; unsigned int codepoint; short isize, iblur; struct FONSfont* font; int prevGlyphIndex; const char* str; const char* next; const char* end; unsigned int utf8state; int bitmapOption; }; typedef struct FONStextIter FONStextIter; typedef struct FONScontext FONScontext; // Constructor and destructor. FONScontext* fonsCreateInternal(FONSparams* params); void fonsDeleteInternal(FONScontext* s); void fonsSetErrorCallback(FONScontext* s, void (*callback)(void* uptr, int error, int val), void* uptr); // Returns current atlas size. void fonsGetAtlasSize(FONScontext* s, int* width, int* height); // Expands the atlas size. int fonsExpandAtlas(FONScontext* s, int width, int height); // Resets the whole stash. int fonsResetAtlas(FONScontext* stash, int width, int height); // Add fonts int fonsAddFont(FONScontext* s, const char* name, const char* path, int fontIndex); int fonsAddFontMem(FONScontext* s, const char* name, unsigned char* data, int ndata, int freeData, int fontIndex); int fonsGetFontByName(FONScontext* s, const char* name); // State handling void fonsPushState(FONScontext* s); void fonsPopState(FONScontext* s); void fonsClearState(FONScontext* s); // State setting void fonsSetSize(FONScontext* s, float size); void fonsSetColor(FONScontext* s, unsigned int color); void fonsSetSpacing(FONScontext* s, float spacing); void fonsSetBlur(FONScontext* s, float blur); void fonsSetAlign(FONScontext* s, int align); void fonsSetFont(FONScontext* s, int font); // Draw text float fonsDrawText(FONScontext* s, float x, float y, const char* string, const char* end); // Measure text float fonsTextBounds(FONScontext* s, float x, float y, const char* string, const char* end, float* bounds); void fonsLineBounds(FONScontext* s, float y, float* miny, float* maxy); void fonsVertMetrics(FONScontext* s, float* ascender, float* descender, float* lineh); // Text iterator int fonsTextIterInit(FONScontext* stash, FONStextIter* iter, float x, float y, const char* str, const char* end, int bitmapOption); int fonsTextIterNext(FONScontext* stash, FONStextIter* iter, struct FONSquad* quad); // Pull texture changes const unsigned char* fonsGetTextureData(FONScontext* stash, int* width, int* height); int fonsValidateTexture(FONScontext* s, int* dirty); // Draws the stash texture for debugging void fonsDrawDebug(FONScontext* s, float x, float y); #endif // FONTSTASH_H #ifdef FONTSTASH_IMPLEMENTATION #define FONS_NOTUSED(v) (void)sizeof(v) #ifdef FONS_USE_FREETYPE #include <ft2build.h> #include FT_FREETYPE_H #include FT_ADVANCES_H #include <math.h> struct FONSttFontImpl { FT_Face font; }; typedef struct FONSttFontImpl FONSttFontImpl; static FT_Library ftLibrary; int fons__tt_init(FONScontext *context) { FT_Error ftError; FONS_NOTUSED(context); ftError = FT_Init_FreeType(&ftLibrary); return ftError == 0; } int fons__tt_done(FONScontext *context) { FT_Error ftError; FONS_NOTUSED(context); ftError = FT_Done_FreeType(ftLibrary); return ftError == 0; } int fons__tt_loadFont(FONScontext *context, FONSttFontImpl *font, unsigned char *data, int dataSize, int fontIndex) { FT_Error ftError; FONS_NOTUSED(context); //font->font.userdata = stash; ftError = FT_New_Memory_Face(ftLibrary, (const FT_Byte*)data, dataSize, fontIndex, &font->font); return ftError == 0; } void fons__tt_getFontVMetrics(FONSttFontImpl *font, int *ascent, int *descent, int *lineGap) { *ascent = font->font->ascender; *descent = font->font->descender; *lineGap = font->font->height - (*ascent - *descent); } float fons__tt_getPixelHeightScale(FONSttFontImpl *font, float size) { return size / font->font->units_per_EM; } int fons__tt_getGlyphIndex(FONSttFontImpl *font, int codepoint) { return FT_Get_Char_Index(font->font, codepoint); } int fons__tt_buildGlyphBitmap(FONSttFontImpl *font, int glyph, float size, float scale, int *advance, int *lsb, int *x0, int *y0, int *x1, int *y1) { FT_Error ftError; FT_GlyphSlot ftGlyph; FT_Fixed advFixed; FONS_NOTUSED(scale); ftError = FT_Set_Pixel_Sizes(font->font, 0, size); if (ftError) return 0; ftError = FT_Load_Glyph(font->font, glyph, FT_LOAD_RENDER | FT_LOAD_FORCE_AUTOHINT); if (ftError) return 0; ftError = FT_Get_Advance(font->font, glyph, FT_LOAD_NO_SCALE, &advFixed); if (ftError) return 0; ftGlyph = font->font->glyph; *advance = (int)advFixed; *lsb = (int)ftGlyph->metrics.horiBearingX; *x0 = ftGlyph->bitmap_left; *x1 = *x0 + ftGlyph->bitmap.width; *y0 = -ftGlyph->bitmap_top; *y1 = *y0 + ftGlyph->bitmap.rows; return 1; } void fons__tt_renderGlyphBitmap(FONSttFontImpl *font, unsigned char *output, int outWidth, int outHeight, int outStride, float scaleX, float scaleY, int glyph) { FT_GlyphSlot ftGlyph = font->font->glyph; int ftGlyphOffset = 0; unsigned int x, y; FONS_NOTUSED(outWidth); FONS_NOTUSED(outHeight); FONS_NOTUSED(scaleX); FONS_NOTUSED(scaleY); FONS_NOTUSED(glyph); // glyph has already been loaded by fons__tt_buildGlyphBitmap for ( y = 0; y < ftGlyph->bitmap.rows; y++ ) { for ( x = 0; x < ftGlyph->bitmap.width; x++ ) { output[(y * outStride) + x] = ftGlyph->bitmap.buffer[ftGlyphOffset++]; } } } int fons__tt_getGlyphKernAdvance(FONSttFontImpl *font, int glyph1, int glyph2) { FT_Vector ftKerning; FT_Get_Kerning(font->font, glyph1, glyph2, FT_KERNING_DEFAULT, &ftKerning); return (int)((ftKerning.x + 32) >> 6); // Round up and convert to integer } #else #define STB_TRUETYPE_IMPLEMENTATION static void* fons__tmpalloc(size_t size, void* up); static void fons__tmpfree(void* ptr, void* up); #define STBTT_malloc(x,u) fons__tmpalloc(x,u) #define STBTT_free(x,u) fons__tmpfree(x,u) #include "stb_truetype.h" struct FONSttFontImpl { stbtt_fontinfo font; }; typedef struct FONSttFontImpl FONSttFontImpl; int fons__tt_init(FONScontext *context) { FONS_NOTUSED(context); return 1; } int fons__tt_done(FONScontext *context) { FONS_NOTUSED(context); return 1; } int fons__tt_loadFont(FONScontext *context, FONSttFontImpl *font, unsigned char *data, int dataSize, int fontIndex) { int offset, stbError; FONS_NOTUSED(dataSize); font->font.userdata = context; offset = stbtt_GetFontOffsetForIndex(data, fontIndex); if (offset == -1) { stbError = 0; } else { stbError = stbtt_InitFont(&font->font, data, offset); } return stbError; } void fons__tt_getFontVMetrics(FONSttFontImpl *font, int *ascent, int *descent, int *lineGap) { stbtt_GetFontVMetrics(&font->font, ascent, descent, lineGap); } float fons__tt_getPixelHeightScale(FONSttFontImpl *font, float size) { return stbtt_ScaleForMappingEmToPixels(&font->font, size); } int fons__tt_getGlyphIndex(FONSttFontImpl *font, int codepoint) { return stbtt_FindGlyphIndex(&font->font, codepoint); } int fons__tt_buildGlyphBitmap(FONSttFontImpl *font, int glyph, float size, float scale, int *advance, int *lsb, int *x0, int *y0, int *x1, int *y1) { FONS_NOTUSED(size); stbtt_GetGlyphHMetrics(&font->font, glyph, advance, lsb); stbtt_GetGlyphBitmapBox(&font->font, glyph, scale, scale, x0, y0, x1, y1); return 1; } void fons__tt_renderGlyphBitmap(FONSttFontImpl *font, unsigned char *output, int outWidth, int outHeight, int outStride, float scaleX, float scaleY, int glyph) { stbtt_MakeGlyphBitmap(&font->font, output, outWidth, outHeight, outStride, scaleX, scaleY, glyph); } int fons__tt_getGlyphKernAdvance(FONSttFontImpl *font, int glyph1, int glyph2) { return stbtt_GetGlyphKernAdvance(&font->font, glyph1, glyph2); } #endif #ifndef FONS_SCRATCH_BUF_SIZE # define FONS_SCRATCH_BUF_SIZE 96000 #endif #ifndef FONS_HASH_LUT_SIZE # define FONS_HASH_LUT_SIZE 256 #endif #ifndef FONS_INIT_FONTS # define FONS_INIT_FONTS 4 #endif #ifndef FONS_INIT_GLYPHS # define FONS_INIT_GLYPHS 256 #endif #ifndef FONS_INIT_ATLAS_NODES # define FONS_INIT_ATLAS_NODES 256 #endif #ifndef FONS_VERTEX_COUNT # define FONS_VERTEX_COUNT 1024 #endif #ifndef FONS_MAX_STATES # define FONS_MAX_STATES 20 #endif #ifndef FONS_MAX_FALLBACKS # define FONS_MAX_FALLBACKS 20 #endif static unsigned int fons__hashint(unsigned int a) { a += ~(a<<15); a ^= (a>>10); a += (a<<3); a ^= (a>>6); a += ~(a<<11); a ^= (a>>16); return a; } static int fons__mini(int a, int b) { return a < b ? a : b; } static int fons__maxi(int a, int b) { return a > b ? a : b; } struct FONSglyph { unsigned int codepoint; int index; int next; short size, blur; short x0,y0,x1,y1; short xadv,xoff,yoff; }; typedef struct FONSglyph FONSglyph; struct FONSfont { FONSttFontImpl font; char name[64]; const unsigned char* data; int dataSize; unsigned char freeData; float ascender; float descender; float lineh; FONSglyph* glyphs; int cglyphs; int nglyphs; int lut[FONS_HASH_LUT_SIZE]; int fallbacks[FONS_MAX_FALLBACKS]; int nfallbacks; }; typedef struct FONSfont FONSfont; struct FONSstate { int font; int align; float size; unsigned int color; float blur; float spacing; }; typedef struct FONSstate FONSstate; struct FONSatlasNode { short x, y, width; }; typedef struct FONSatlasNode FONSatlasNode; struct FONSatlas { int width, height; FONSatlasNode* nodes; int nnodes; int cnodes; }; typedef struct FONSatlas FONSatlas; struct FONScontext { FONSparams params; float itw,ith; unsigned char* texData; int dirtyRect[4]; FONSfont** fonts; FONSatlas* atlas; int cfonts; int nfonts; float verts[FONS_VERTEX_COUNT*2]; float tcoords[FONS_VERTEX_COUNT*2]; unsigned int colors[FONS_VERTEX_COUNT]; int nverts; unsigned char* scratch; int nscratch; FONSstate states[FONS_MAX_STATES]; int nstates; void (*handleError)(void* uptr, int error, int val); void* errorUptr; }; #ifdef STB_TRUETYPE_IMPLEMENTATION static void* fons__tmpalloc(size_t size, void* up) { unsigned char* ptr; FONScontext* stash = (FONScontext*)up; // 16-byte align the returned pointer size = (size + 0xf) & ~0xf; if (stash->nscratch+(int)size > FONS_SCRATCH_BUF_SIZE) { if (stash->handleError) stash->handleError(stash->errorUptr, FONS_SCRATCH_FULL, stash->nscratch+(int)size); return NULL; } ptr = stash->scratch + stash->nscratch; stash->nscratch += (int)size; return ptr; } static void fons__tmpfree(void* ptr, void* up) { (void)ptr; (void)up; // empty } #endif // STB_TRUETYPE_IMPLEMENTATION // Copyright (c) 2008-2010 Bjoern Hoehrmann <[email protected]> // See http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ for details. #define FONS_UTF8_ACCEPT 0 #define FONS_UTF8_REJECT 12 static unsigned int fons__decutf8(unsigned int* state, unsigned int* codep, unsigned int byte) { static const unsigned char utf8d[] = { // The first part of the table maps bytes to character classes that // to reduce the size of the transition table and create bitmasks. 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8, // The second part is a transition table that maps a combination // of a state of the automaton and a character class to a state. 0,12,24,36,60,96,84,12,12,12,48,72, 12,12,12,12,12,12,12,12,12,12,12,12, 12, 0,12,12,12,12,12, 0,12, 0,12,12, 12,24,12,12,12,12,12,24,12,24,12,12, 12,12,12,12,12,12,12,24,12,12,12,12, 12,24,12,12,12,12,12,12,12,24,12,12, 12,12,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,12,12,12,12,12, }; unsigned int type = utf8d[byte]; *codep = (*state != FONS_UTF8_ACCEPT) ? (byte & 0x3fu) | (*codep << 6) : (0xff >> type) & (byte); *state = utf8d[256 + *state + type]; return *state; } // Atlas based on Skyline Bin Packer by Jukka Jylänki static void fons__deleteAtlas(FONSatlas* atlas) { if (atlas == NULL) return; if (atlas->nodes != NULL) free(atlas->nodes); free(atlas); } static FONSatlas* fons__allocAtlas(int w, int h, int nnodes) { FONSatlas* atlas = NULL; // Allocate memory for the font stash. atlas = (FONSatlas*)malloc(sizeof(FONSatlas)); if (atlas == NULL) goto error; memset(atlas, 0, sizeof(FONSatlas)); atlas->width = w; atlas->height = h; // Allocate space for skyline nodes atlas->nodes = (FONSatlasNode*)malloc(sizeof(FONSatlasNode) * nnodes); if (atlas->nodes == NULL) goto error; memset(atlas->nodes, 0, sizeof(FONSatlasNode) * nnodes); atlas->nnodes = 0; atlas->cnodes = nnodes; // Init root node. atlas->nodes[0].x = 0; atlas->nodes[0].y = 0; atlas->nodes[0].width = (short)w; atlas->nnodes++; return atlas; error: if (atlas) fons__deleteAtlas(atlas); return NULL; } static int fons__atlasInsertNode(FONSatlas* atlas, int idx, int x, int y, int w) { int i; // Insert node if (atlas->nnodes+1 > atlas->cnodes) { atlas->cnodes = atlas->cnodes == 0 ? 8 : atlas->cnodes * 2; atlas->nodes = (FONSatlasNode*)realloc(atlas->nodes, sizeof(FONSatlasNode) * atlas->cnodes); if (atlas->nodes == NULL) return 0; } for (i = atlas->nnodes; i > idx; i--) atlas->nodes[i] = atlas->nodes[i-1]; atlas->nodes[idx].x = (short)x; atlas->nodes[idx].y = (short)y; atlas->nodes[idx].width = (short)w; atlas->nnodes++; return 1; } static void fons__atlasRemoveNode(FONSatlas* atlas, int idx) { int i; if (atlas->nnodes == 0) return; for (i = idx; i < atlas->nnodes-1; i++) atlas->nodes[i] = atlas->nodes[i+1]; atlas->nnodes--; } static void fons__atlasExpand(FONSatlas* atlas, int w, int h) { // Insert node for empty space if (w > atlas->width) fons__atlasInsertNode(atlas, atlas->nnodes, atlas->width, 0, w - atlas->width); atlas->width = w; atlas->height = h; } static void fons__atlasReset(FONSatlas* atlas, int w, int h) { atlas->width = w; atlas->height = h; atlas->nnodes = 0; // Init root node. atlas->nodes[0].x = 0; atlas->nodes[0].y = 0; atlas->nodes[0].width = (short)w; atlas->nnodes++; } static int fons__atlasAddSkylineLevel(FONSatlas* atlas, int idx, int x, int y, int w, int h) { int i; // Insert new node if (fons__atlasInsertNode(atlas, idx, x, y+h, w) == 0) return 0; // Delete skyline segments that fall under the shadow of the new segment. for (i = idx+1; i < atlas->nnodes; i++) { if (atlas->nodes[i].x < atlas->nodes[i-1].x + atlas->nodes[i-1].width) { int shrink = atlas->nodes[i-1].x + atlas->nodes[i-1].width - atlas->nodes[i].x; atlas->nodes[i].x += (short)shrink; atlas->nodes[i].width -= (short)shrink; if (atlas->nodes[i].width <= 0) { fons__atlasRemoveNode(atlas, i); i--; } else { break; } } else { break; } } // Merge same height skyline segments that are next to each other. for (i = 0; i < atlas->nnodes-1; i++) { if (atlas->nodes[i].y == atlas->nodes[i+1].y) { atlas->nodes[i].width += atlas->nodes[i+1].width; fons__atlasRemoveNode(atlas, i+1); i--; } } return 1; } static int fons__atlasRectFits(FONSatlas* atlas, int i, int w, int h) { // Checks if there is enough space at the location of skyline span 'i', // and return the max height of all skyline spans under that at that location, // (think tetris block being dropped at that position). Or -1 if no space found. int x = atlas->nodes[i].x; int y = atlas->nodes[i].y; int spaceLeft; if (x + w > atlas->width) return -1; spaceLeft = w; while (spaceLeft > 0) { if (i == atlas->nnodes) return -1; y = fons__maxi(y, atlas->nodes[i].y); if (y + h > atlas->height) return -1; spaceLeft -= atlas->nodes[i].width; ++i; } return y; } static int fons__atlasAddRect(FONSatlas* atlas, int rw, int rh, int* rx, int* ry) { int besth = atlas->height, bestw = atlas->width, besti = -1; int bestx = -1, besty = -1, i; // Bottom left fit heuristic. for (i = 0; i < atlas->nnodes; i++) { int y = fons__atlasRectFits(atlas, i, rw, rh); if (y != -1) { if (y + rh < besth || (y + rh == besth && atlas->nodes[i].width < bestw)) { besti = i; bestw = atlas->nodes[i].width; besth = y + rh; bestx = atlas->nodes[i].x; besty = y; } } } if (besti == -1) return 0; // Perform the actual packing. if (fons__atlasAddSkylineLevel(atlas, besti, bestx, besty, rw, rh) == 0) return 0; *rx = bestx; *ry = besty; return 1; } static void fons__addWhiteRect(FONScontext* stash, int w, int h) { int x, y, gx, gy; unsigned char* dst; if (fons__atlasAddRect(stash->atlas, w, h, &gx, &gy) == 0) return; // Rasterize dst = &stash->texData[gx + gy * stash->params.width]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) dst[x] = 0xff; dst += stash->params.width; } stash->dirtyRect[0] = fons__mini(stash->dirtyRect[0], gx); stash->dirtyRect[1] = fons__mini(stash->dirtyRect[1], gy); stash->dirtyRect[2] = fons__maxi(stash->dirtyRect[2], gx+w); stash->dirtyRect[3] = fons__maxi(stash->dirtyRect[3], gy+h); } FONScontext* fonsCreateInternal(FONSparams* params) { FONScontext* stash = NULL; // Allocate memory for the font stash. stash = (FONScontext*)malloc(sizeof(FONScontext)); if (stash == NULL) goto error; memset(stash, 0, sizeof(FONScontext)); stash->params = *params; // Allocate scratch buffer. stash->scratch = (unsigned char*)malloc(FONS_SCRATCH_BUF_SIZE); if (stash->scratch == NULL) goto error; // Initialize implementation library if (!fons__tt_init(stash)) goto error; if (stash->params.renderCreate != NULL) { if (stash->params.renderCreate(stash->params.userPtr, stash->params.width, stash->params.height) == 0) goto error; } stash->atlas = fons__allocAtlas(stash->params.width, stash->params.height, FONS_INIT_ATLAS_NODES); if (stash->atlas == NULL) goto error; // Allocate space for fonts. stash->fonts = (FONSfont**)malloc(sizeof(FONSfont*) * FONS_INIT_FONTS); if (stash->fonts == NULL) goto error; memset(stash->fonts, 0, sizeof(FONSfont*) * FONS_INIT_FONTS); stash->cfonts = FONS_INIT_FONTS; stash->nfonts = 0; // Create texture for the cache. stash->itw = 1.0f/stash->params.width; stash->ith = 1.0f/stash->params.height; stash->texData = (unsigned char*)malloc(stash->params.width * stash->params.height); if (stash->texData == NULL) goto error; memset(stash->texData, 0, stash->params.width * stash->params.height); stash->dirtyRect[0] = stash->params.width; stash->dirtyRect[1] = stash->params.height; stash->dirtyRect[2] = 0; stash->dirtyRect[3] = 0; // Add white rect at 0,0 for debug drawing. fons__addWhiteRect(stash, 2,2); fonsPushState(stash); fonsClearState(stash); return stash; error: fonsDeleteInternal(stash); return NULL; } static FONSstate* fons__getState(FONScontext* stash) { return &stash->states[stash->nstates-1]; } int fonsAddFallbackFont(FONScontext* stash, int base, int fallback) { FONSfont* baseFont = stash->fonts[base]; if (baseFont->nfallbacks < FONS_MAX_FALLBACKS) { baseFont->fallbacks[baseFont->nfallbacks++] = fallback; return 1; } return 0; } void fonsResetFallbackFont(FONScontext* stash, int base) { int i; FONSfont* baseFont = stash->fonts[base]; baseFont->nfallbacks = 0; baseFont->nglyphs = 0; for (i = 0; i < FONS_HASH_LUT_SIZE; i++) baseFont->lut[i] = -1; } void fonsSetSize(FONScontext* stash, float size) { fons__getState(stash)->size = size; } void fonsSetColor(FONScontext* stash, unsigned int color) { fons__getState(stash)->color = color; } void fonsSetSpacing(FONScontext* stash, float spacing) { fons__getState(stash)->spacing = spacing; } void fonsSetBlur(FONScontext* stash, float blur) { fons__getState(stash)->blur = blur; } void fonsSetAlign(FONScontext* stash, int align) { fons__getState(stash)->align = align; } void fonsSetFont(FONScontext* stash, int font) { fons__getState(stash)->font = font; } void fonsPushState(FONScontext* stash) { if (stash->nstates >= FONS_MAX_STATES) { if (stash->handleError) stash->handleError(stash->errorUptr, FONS_STATES_OVERFLOW, 0); return; } if (stash->nstates > 0) memcpy(&stash->states[stash->nstates], &stash->states[stash->nstates-1], sizeof(FONSstate)); stash->nstates++; } void fonsPopState(FONScontext* stash) { if (stash->nstates <= 1) { if (stash->handleError) stash->handleError(stash->errorUptr, FONS_STATES_UNDERFLOW, 0); return; } stash->nstates--; } void fonsClearState(FONScontext* stash) { FONSstate* state = fons__getState(stash); state->size = 12.0f; state->color = 0xffffffff; state->font = 0; state->blur = 0; state->spacing = 0; state->align = FONS_ALIGN_LEFT | FONS_ALIGN_BASELINE; } static void fons__freeFont(FONSfont* font) { if (font == NULL) return; if (font->glyphs) free(font->glyphs); if (font->freeData && font->data) free(font->data); free(font); } static int fons__allocFont(FONScontext* stash) { FONSfont* font = NULL; if (stash->nfonts+1 > stash->cfonts) { stash->cfonts = stash->cfonts == 0 ? 8 : stash->cfonts * 2; stash->fonts = (FONSfont**)realloc(stash->fonts, sizeof(FONSfont*) * stash->cfonts); if (stash->fonts == NULL) return -1; } font = (FONSfont*)malloc(sizeof(FONSfont)); if (font == NULL) goto error; memset(font, 0, sizeof(FONSfont)); font->glyphs = (FONSglyph*)malloc(sizeof(FONSglyph) * FONS_INIT_GLYPHS); if (font->glyphs == NULL) goto error; font->cglyphs = FONS_INIT_GLYPHS; font->nglyphs = 0; stash->fonts[stash->nfonts++] = font; return stash->nfonts-1; error: fons__freeFont(font); return FONS_INVALID; } int fonsAddFont(FONScontext* stash, const char* name, const char* path, int fontIndex) { FILE* fp = 0; int dataSize = 0; size_t readed; unsigned char* data = NULL; // Read in the font data. fp = fopen(path, "rb"); if (fp == NULL) goto error; fseek(fp,0,SEEK_END); dataSize = (int)ftell(fp); fseek(fp,0,SEEK_SET); data = (unsigned char*)malloc(dataSize); if (data == NULL) goto error; readed = fread(data, 1, dataSize, fp); fclose(fp); fp = 0; if (readed != (size_t)dataSize) goto error; return fonsAddFontMem(stash, name, data, dataSize, 1, fontIndex); error: if (data) free(data); if (fp) fclose(fp); return FONS_INVALID; } int fonsAddFontMem(FONScontext* stash, const char* name, unsigned char* data, int dataSize, int freeData, int fontIndex) { int i, ascent, descent, fh, lineGap; FONSfont* font; int idx = fons__allocFont(stash); if (idx == FONS_INVALID) return FONS_INVALID; font = stash->fonts[idx]; strncpy(font->name, name, sizeof(font->name)); font->name[sizeof(font->name)-1] = '\0'; // Init hash lookup. for (i = 0; i < FONS_HASH_LUT_SIZE; ++i) font->lut[i] = -1; // Read in the font data. font->dataSize = dataSize; font->data = data; font->freeData = (unsigned char)freeData; // Init font stash->nscratch = 0; if (!fons__tt_loadFont(stash, &font->font, data, dataSize, fontIndex)) goto error; // Store normalized line height. The real line height is got // by multiplying the lineh by font size. fons__tt_getFontVMetrics( &font->font, &ascent, &descent, &lineGap); ascent += lineGap; fh = ascent - descent; font->ascender = (float)ascent / (float)fh; font->descender = (float)descent / (float)fh; font->lineh = font->ascender - font->descender; return idx; error: fons__freeFont(font); stash->nfonts--; return FONS_INVALID; } int fonsGetFontByName(FONScontext* s, const char* name) { int i; for (i = 0; i < s->nfonts; i++) { if (strcmp(s->fonts[i]->name, name) == 0) return i; } return FONS_INVALID; } static FONSglyph* fons__allocGlyph(FONSfont* font) { if (font->nglyphs+1 > font->cglyphs) { font->cglyphs = font->cglyphs == 0 ? 8 : font->cglyphs * 2; font->glyphs = (FONSglyph*)realloc(font->glyphs, sizeof(FONSglyph) * font->cglyphs); if (font->glyphs == NULL) return NULL; } font->nglyphs++; return &font->glyphs[font->nglyphs-1]; } // Based on Exponential blur, Jani Huhtanen, 2006 #define APREC 16 #define ZPREC 7 static void fons__blurCols(unsigned char* dst, int w, int h, int dstStride, int alpha) { int x, y; for (y = 0; y < h; y++) { int z = 0; // force zero border for (x = 1; x < w; x++) { z += (alpha * (((int)(dst[x]) << ZPREC) - z)) >> APREC; dst[x] = (unsigned char)(z >> ZPREC); } dst[w-1] = 0; // force zero border z = 0; for (x = w-2; x >= 0; x--) { z += (alpha * (((int)(dst[x]) << ZPREC) - z)) >> APREC; dst[x] = (unsigned char)(z >> ZPREC); } dst[0] = 0; // force zero border dst += dstStride; } } static void fons__blurRows(unsigned char* dst, int w, int h, int dstStride, int alpha) { int x, y; for (x = 0; x < w; x++) { int z = 0; // force zero border for (y = dstStride; y < h*dstStride; y += dstStride) { z += (alpha * (((int)(dst[y]) << ZPREC) - z)) >> APREC; dst[y] = (unsigned char)(z >> ZPREC); } dst[(h-1)*dstStride] = 0; // force zero border z = 0; for (y = (h-2)*dstStride; y >= 0; y -= dstStride) { z += (alpha * (((int)(dst[y]) << ZPREC) - z)) >> APREC; dst[y] = (unsigned char)(z >> ZPREC); } dst[0] = 0; // force zero border dst++; } } static void fons__blur(FONScontext* stash, unsigned char* dst, int w, int h, int dstStride, int blur) { int alpha; float sigma; (void)stash; if (blur < 1) return; // Calculate the alpha such that 90% of the kernel is within the radius. (Kernel extends to infinity) sigma = (float)blur * 0.57735f; // 1 / sqrt(3) alpha = (int)((1<<APREC) * (1.0f - expf(-2.3f / (sigma+1.0f)))); fons__blurRows(dst, w, h, dstStride, alpha); fons__blurCols(dst, w, h, dstStride, alpha); fons__blurRows(dst, w, h, dstStride, alpha); fons__blurCols(dst, w, h, dstStride, alpha); // fons__blurrows(dst, w, h, dstStride, alpha); // fons__blurcols(dst, w, h, dstStride, alpha); } static FONSglyph* fons__getGlyph(FONScontext* stash, FONSfont* font, unsigned int codepoint, short isize, short iblur, int bitmapOption) { int i, g, advance, lsb, x0, y0, x1, y1, gw, gh, gx, gy, x, y; float scale; FONSglyph* glyph = NULL; unsigned int h; float size = isize/10.0f; int pad, added; unsigned char* bdst; unsigned char* dst; FONSfont* renderFont = font; if (isize < 2) return NULL; if (iblur > 20) iblur = 20; pad = iblur+2; // Reset allocator. stash->nscratch = 0; // Find code point and size. h = fons__hashint(codepoint) & (FONS_HASH_LUT_SIZE-1); i = font->lut[h]; while (i != -1) { if (font->glyphs[i].codepoint == codepoint && font->glyphs[i].size == isize && font->glyphs[i].blur == iblur) { glyph = &font->glyphs[i]; if (bitmapOption == FONS_GLYPH_BITMAP_OPTIONAL || (glyph->x0 >= 0 && glyph->y0 >= 0)) { return glyph; } // At this point, glyph exists but the bitmap data is not yet created. break; } i = font->glyphs[i].next; } // Create a new glyph or rasterize bitmap data for a cached glyph. g = fons__tt_getGlyphIndex(&font->font, codepoint); // Try to find the glyph in fallback fonts. if (g == 0) { for (i = 0; i < font->nfallbacks; ++i) { FONSfont* fallbackFont = stash->fonts[font->fallbacks[i]]; int fallbackIndex = fons__tt_getGlyphIndex(&fallbackFont->font, codepoint); if (fallbackIndex != 0) { g = fallbackIndex; renderFont = fallbackFont; break; } } // It is possible that we did not find a fallback glyph. // In that case the glyph index 'g' is 0, and we'll proceed below and cache empty glyph. } scale = fons__tt_getPixelHeightScale(&renderFont->font, size); fons__tt_buildGlyphBitmap(&renderFont->font, g, size, scale, &advance, &lsb, &x0, &y0, &x1, &y1); gw = x1-x0 + pad*2; gh = y1-y0 + pad*2; // Determines the spot to draw glyph in the atlas. if (bitmapOption == FONS_GLYPH_BITMAP_REQUIRED) { // Find free spot for the rect in the atlas added = fons__atlasAddRect(stash->atlas, gw, gh, &gx, &gy); if (added == 0 && stash->handleError != NULL) { // Atlas is full, let the user to resize the atlas (or not), and try again. stash->handleError(stash->errorUptr, FONS_ATLAS_FULL, 0); added = fons__atlasAddRect(stash->atlas, gw, gh, &gx, &gy); } if (added == 0) return NULL; } else { // Negative coordinate indicates there is no bitmap data created. gx = -1; gy = -1; } // Init glyph. if (glyph == NULL) { glyph = fons__allocGlyph(font); glyph->codepoint = codepoint; glyph->size = isize; glyph->blur = iblur; glyph->next = 0; // Insert char to hash lookup. glyph->next = font->lut[h]; font->lut[h] = font->nglyphs-1; } glyph->index = g; glyph->x0 = (short)gx; glyph->y0 = (short)gy; glyph->x1 = (short)(glyph->x0+gw); glyph->y1 = (short)(glyph->y0+gh); glyph->xadv = (short)(scale * advance * 10.0f); glyph->xoff = (short)(x0 - pad); glyph->yoff = (short)(y0 - pad); if (bitmapOption == FONS_GLYPH_BITMAP_OPTIONAL) { return glyph; } // Rasterize dst = &stash->texData[(glyph->x0+pad) + (glyph->y0+pad) * stash->params.width]; fons__tt_renderGlyphBitmap(&renderFont->font, dst, gw-pad*2,gh-pad*2, stash->params.width, scale, scale, g); // Make sure there is one pixel empty border. dst = &stash->texData[glyph->x0 + glyph->y0 * stash->params.width]; for (y = 0; y < gh; y++) { dst[y*stash->params.width] = 0; dst[gw-1 + y*stash->params.width] = 0; } for (x = 0; x < gw; x++) { dst[x] = 0; dst[x + (gh-1)*stash->params.width] = 0; } // Debug code to color the glyph background /* unsigned char* fdst = &stash->texData[glyph->x0 + glyph->y0 * stash->params.width]; for (y = 0; y < gh; y++) { for (x = 0; x < gw; x++) { int a = (int)fdst[x+y*stash->params.width] + 20; if (a > 255) a = 255; fdst[x+y*stash->params.width] = a; } }*/ // Blur if (iblur > 0) { stash->nscratch = 0; bdst = &stash->texData[glyph->x0 + glyph->y0 * stash->params.width]; fons__blur(stash, bdst, gw, gh, stash->params.width, iblur); } stash->dirtyRect[0] = fons__mini(stash->dirtyRect[0], glyph->x0); stash->dirtyRect[1] = fons__mini(stash->dirtyRect[1], glyph->y0); stash->dirtyRect[2] = fons__maxi(stash->dirtyRect[2], glyph->x1); stash->dirtyRect[3] = fons__maxi(stash->dirtyRect[3], glyph->y1); return glyph; } static void fons__getQuad(FONScontext* stash, FONSfont* font, int prevGlyphIndex, FONSglyph* glyph, float scale, float spacing, float* x, float* y, FONSquad* q) { float rx,ry,xoff,yoff,x0,y0,x1,y1; if (prevGlyphIndex != -1) { float adv = fons__tt_getGlyphKernAdvance(&font->font, prevGlyphIndex, glyph->index) * scale; *x += (int)(adv + spacing + 0.5f); } // Each glyph has 2px border to allow good interpolation, // one pixel to prevent leaking, and one to allow good interpolation for rendering. // Inset the texture region by one pixel for correct interpolation. xoff = (short)(glyph->xoff+1); yoff = (short)(glyph->yoff+1); x0 = (float)(glyph->x0+1); y0 = (float)(glyph->y0+1); x1 = (float)(glyph->x1-1); y1 = (float)(glyph->y1-1); if (stash->params.flags & FONS_ZERO_TOPLEFT) { rx = floorf(*x + xoff); ry = floorf(*y + yoff); q->x0 = rx; q->y0 = ry; q->x1 = rx + x1 - x0; q->y1 = ry + y1 - y0; q->s0 = x0 * stash->itw; q->t0 = y0 * stash->ith; q->s1 = x1 * stash->itw; q->t1 = y1 * stash->ith; } else { rx = floorf(*x + xoff); ry = floorf(*y - yoff); q->x0 = rx; q->y0 = ry; q->x1 = rx + x1 - x0; q->y1 = ry - y1 + y0; q->s0 = x0 * stash->itw; q->t0 = y0 * stash->ith; q->s1 = x1 * stash->itw; q->t1 = y1 * stash->ith; } *x += (int)(glyph->xadv / 10.0f + 0.5f); } static void fons__flush(FONScontext* stash) { // Flush texture if (stash->dirtyRect[0] < stash->dirtyRect[2] && stash->dirtyRect[1] < stash->dirtyRect[3]) { if (stash->params.renderUpdate != NULL) stash->params.renderUpdate(stash->params.userPtr, stash->dirtyRect, stash->texData); // Reset dirty rect stash->dirtyRect[0] = stash->params.width; stash->dirtyRect[1] = stash->params.height; stash->dirtyRect[2] = 0; stash->dirtyRect[3] = 0; } // Flush triangles if (stash->nverts > 0) { if (stash->params.renderDraw != NULL) stash->params.renderDraw(stash->params.userPtr, stash->verts, stash->tcoords, stash->colors, stash->nverts); stash->nverts = 0; } } static __inline void fons__vertex(FONScontext* stash, float x, float y, float s, float t, unsigned int c) { stash->verts[stash->nverts*2+0] = x; stash->verts[stash->nverts*2+1] = y; stash->tcoords[stash->nverts*2+0] = s; stash->tcoords[stash->nverts*2+1] = t; stash->colors[stash->nverts] = c; stash->nverts++; } static float fons__getVertAlign(FONScontext* stash, FONSfont* font, int align, short isize) { if (stash->params.flags & FONS_ZERO_TOPLEFT) { if (align & FONS_ALIGN_TOP) { return font->ascender * (float)isize/10.0f; } else if (align & FONS_ALIGN_MIDDLE) { return (font->ascender + font->descender) / 2.0f * (float)isize/10.0f; } else if (align & FONS_ALIGN_BASELINE) { return 0.0f; } else if (align & FONS_ALIGN_BOTTOM) { return font->descender * (float)isize/10.0f; } } else { if (align & FONS_ALIGN_TOP) { return -font->ascender * (float)isize/10.0f; } else if (align & FONS_ALIGN_MIDDLE) { return -(font->ascender + font->descender) / 2.0f * (float)isize/10.0f; } else if (align & FONS_ALIGN_BASELINE) { return 0.0f; } else if (align & FONS_ALIGN_BOTTOM) { return -font->descender * (float)isize/10.0f; } } return 0.0; } float fonsDrawText(FONScontext* stash, float x, float y, const char* str, const char* end) { FONSstate* state = fons__getState(stash); unsigned int codepoint; unsigned int utf8state = 0; FONSglyph* glyph = NULL; FONSquad q; int prevGlyphIndex = -1; short isize = (short)(state->size*10.0f); short iblur = (short)state->blur; float scale; FONSfont* font; float width; if (stash == NULL) return x; if (state->font < 0 || state->font >= stash->nfonts) return x; font = stash->fonts[state->font]; if (font->data == NULL) return x; scale = fons__tt_getPixelHeightScale(&font->font, (float)isize/10.0f); if (end == NULL) end = str + strlen(str); // Align horizontally if (state->align & FONS_ALIGN_LEFT) { // empty } else if (state->align & FONS_ALIGN_RIGHT) { width = fonsTextBounds(stash, x,y, str, end, NULL); x -= width; } else if (state->align & FONS_ALIGN_CENTER) { width = fonsTextBounds(stash, x,y, str, end, NULL); x -= width * 0.5f; } // Align vertically. y += fons__getVertAlign(stash, font, state->align, isize); for (; str != end; ++str) { if (fons__decutf8(&utf8state, &codepoint, *(const unsigned char*)str)) continue; glyph = fons__getGlyph(stash, font, codepoint, isize, iblur, FONS_GLYPH_BITMAP_REQUIRED); if (glyph != NULL) { fons__getQuad(stash, font, prevGlyphIndex, glyph, scale, state->spacing, &x, &y, &q); if (stash->nverts+6 > FONS_VERTEX_COUNT) fons__flush(stash); fons__vertex(stash, q.x0, q.y0, q.s0, q.t0, state->color); fons__vertex(stash, q.x1, q.y1, q.s1, q.t1, state->color); fons__vertex(stash, q.x1, q.y0, q.s1, q.t0, state->color); fons__vertex(stash, q.x0, q.y0, q.s0, q.t0, state->color); fons__vertex(stash, q.x0, q.y1, q.s0, q.t1, state->color); fons__vertex(stash, q.x1, q.y1, q.s1, q.t1, state->color); } prevGlyphIndex = glyph != NULL ? glyph->index : -1; } fons__flush(stash); return x; } int fonsTextIterInit(FONScontext* stash, FONStextIter* iter, float x, float y, const char* str, const char* end, int bitmapOption) { FONSstate* state = fons__getState(stash); float width; memset(iter, 0, sizeof(*iter)); if (stash == NULL) return 0; if (state->font < 0 || state->font >= stash->nfonts) return 0; iter->font = stash->fonts[state->font]; if (iter->font->data == NULL) return 0; iter->isize = (short)(state->size*10.0f); iter->iblur = (short)state->blur; iter->scale = fons__tt_getPixelHeightScale(&iter->font->font, (float)iter->isize/10.0f); // Align horizontally if (state->align & FONS_ALIGN_LEFT) { // empty } else if (state->align & FONS_ALIGN_RIGHT) { width = fonsTextBounds(stash, x,y, str, end, NULL); x -= width; } else if (state->align & FONS_ALIGN_CENTER) { width = fonsTextBounds(stash, x,y, str, end, NULL); x -= width * 0.5f; } // Align vertically. y += fons__getVertAlign(stash, iter->font, state->align, iter->isize); if (end == NULL) end = str + strlen(str); iter->x = iter->nextx = x; iter->y = iter->nexty = y; iter->spacing = state->spacing; iter->str = str; iter->next = str; iter->end = end; iter->codepoint = 0; iter->prevGlyphIndex = -1; iter->bitmapOption = bitmapOption; return 1; } int fonsTextIterNext(FONScontext* stash, FONStextIter* iter, FONSquad* quad) { FONSglyph* glyph = NULL; const char* str = iter->next; iter->str = iter->next; if (str == iter->end) return 0; for (; str != iter->end; str++) { if (fons__decutf8(&iter->utf8state, &iter->codepoint, *(const unsigned char*)str)) continue; str++; // Get glyph and quad iter->x = iter->nextx; iter->y = iter->nexty; glyph = fons__getGlyph(stash, iter->font, iter->codepoint, iter->isize, iter->iblur, iter->bitmapOption); // If the iterator was initialized with FONS_GLYPH_BITMAP_OPTIONAL, then the UV coordinates of the quad will be invalid. if (glyph != NULL) fons__getQuad(stash, iter->font, iter->prevGlyphIndex, glyph, iter->scale, iter->spacing, &iter->nextx, &iter->nexty, quad); iter->prevGlyphIndex = glyph != NULL ? glyph->index : -1; break; } iter->next = str; return 1; } void fonsDrawDebug(FONScontext* stash, float x, float y) { int i; int w = stash->params.width; int h = stash->params.height; float u = w == 0 ? 0 : (1.0f / w); float v = h == 0 ? 0 : (1.0f / h); if (stash->nverts+6+6 > FONS_VERTEX_COUNT) fons__flush(stash); // Draw background fons__vertex(stash, x+0, y+0, u, v, 0x0fffffff); fons__vertex(stash, x+w, y+h, u, v, 0x0fffffff); fons__vertex(stash, x+w, y+0, u, v, 0x0fffffff); fons__vertex(stash, x+0, y+0, u, v, 0x0fffffff); fons__vertex(stash, x+0, y+h, u, v, 0x0fffffff); fons__vertex(stash, x+w, y+h, u, v, 0x0fffffff); // Draw texture fons__vertex(stash, x+0, y+0, 0, 0, 0xffffffff); fons__vertex(stash, x+w, y+h, 1, 1, 0xffffffff); fons__vertex(stash, x+w, y+0, 1, 0, 0xffffffff); fons__vertex(stash, x+0, y+0, 0, 0, 0xffffffff); fons__vertex(stash, x+0, y+h, 0, 1, 0xffffffff); fons__vertex(stash, x+w, y+h, 1, 1, 0xffffffff); // Drawbug draw atlas for (i = 0; i < stash->atlas->nnodes; i++) { FONSatlasNode* n = &stash->atlas->nodes[i]; if (stash->nverts+6 > FONS_VERTEX_COUNT) fons__flush(stash); fons__vertex(stash, x+n->x+0, y+n->y+0, u, v, 0xc00000ff); fons__vertex(stash, x+n->x+n->width, y+n->y+1, u, v, 0xc00000ff); fons__vertex(stash, x+n->x+n->width, y+n->y+0, u, v, 0xc00000ff); fons__vertex(stash, x+n->x+0, y+n->y+0, u, v, 0xc00000ff); fons__vertex(stash, x+n->x+0, y+n->y+1, u, v, 0xc00000ff); fons__vertex(stash, x+n->x+n->width, y+n->y+1, u, v, 0xc00000ff); } fons__flush(stash); } float fonsTextBounds(FONScontext* stash, float x, float y, const char* str, const char* end, float* bounds) { FONSstate* state = fons__getState(stash); unsigned int codepoint; unsigned int utf8state = 0; FONSquad q; FONSglyph* glyph = NULL; int prevGlyphIndex = -1; short isize = (short)(state->size*10.0f); short iblur = (short)state->blur; float scale; FONSfont* font; float startx, advance; float minx, miny, maxx, maxy; if (stash == NULL) return 0; if (state->font < 0 || state->font >= stash->nfonts) return 0; font = stash->fonts[state->font]; if (font->data == NULL) return 0; scale = fons__tt_getPixelHeightScale(&font->font, (float)isize/10.0f); // Align vertically. y += fons__getVertAlign(stash, font, state->align, isize); minx = maxx = x; miny = maxy = y; startx = x; if (end == NULL) end = str + strlen(str); for (; str != end; ++str) { if (fons__decutf8(&utf8state, &codepoint, *(const unsigned char*)str)) continue; glyph = fons__getGlyph(stash, font, codepoint, isize, iblur, FONS_GLYPH_BITMAP_OPTIONAL); if (glyph != NULL) { fons__getQuad(stash, font, prevGlyphIndex, glyph, scale, state->spacing, &x, &y, &q); if (q.x0 < minx) minx = q.x0; if (q.x1 > maxx) maxx = q.x1; if (stash->params.flags & FONS_ZERO_TOPLEFT) { if (q.y0 < miny) miny = q.y0; if (q.y1 > maxy) maxy = q.y1; } else { if (q.y1 < miny) miny = q.y1; if (q.y0 > maxy) maxy = q.y0; } } prevGlyphIndex = glyph != NULL ? glyph->index : -1; } advance = x - startx; // Align horizontally if (state->align & FONS_ALIGN_LEFT) { // empty } else if (state->align & FONS_ALIGN_RIGHT) { minx -= advance; maxx -= advance; } else if (state->align & FONS_ALIGN_CENTER) { minx -= advance * 0.5f; maxx -= advance * 0.5f; } if (bounds) { bounds[0] = minx; bounds[1] = miny; bounds[2] = maxx; bounds[3] = maxy; } return advance; } void fonsVertMetrics(FONScontext* stash, float* ascender, float* descender, float* lineh) { FONSfont* font; FONSstate* state = fons__getState(stash); short isize; if (stash == NULL) return; if (state->font < 0 || state->font >= stash->nfonts) return; font = stash->fonts[state->font]; isize = (short)(state->size*10.0f); if (font->data == NULL) return; if (ascender) *ascender = font->ascender*isize/10.0f; if (descender) *descender = font->descender*isize/10.0f; if (lineh) *lineh = font->lineh*isize/10.0f; } void fonsLineBounds(FONScontext* stash, float y, float* miny, float* maxy) { FONSfont* font; FONSstate* state = fons__getState(stash); short isize; if (stash == NULL) return; if (state->font < 0 || state->font >= stash->nfonts) return; font = stash->fonts[state->font]; isize = (short)(state->size*10.0f); if (font->data == NULL) return; y += fons__getVertAlign(stash, font, state->align, isize); if (stash->params.flags & FONS_ZERO_TOPLEFT) { *miny = y - font->ascender * (float)isize/10.0f; *maxy = *miny + font->lineh*isize/10.0f; } else { *maxy = y + font->descender * (float)isize/10.0f; *miny = *maxy - font->lineh*isize/10.0f; } } const unsigned char* fonsGetTextureData(FONScontext* stash, int* width, int* height) { if (width != NULL) *width = stash->params.width; if (height != NULL) *height = stash->params.height; return stash->texData; } int fonsValidateTexture(FONScontext* stash, int* dirty) { if (stash->dirtyRect[0] < stash->dirtyRect[2] && stash->dirtyRect[1] < stash->dirtyRect[3]) { dirty[0] = stash->dirtyRect[0]; dirty[1] = stash->dirtyRect[1]; dirty[2] = stash->dirtyRect[2]; dirty[3] = stash->dirtyRect[3]; // Reset dirty rect stash->dirtyRect[0] = stash->params.width; stash->dirtyRect[1] = stash->params.height; stash->dirtyRect[2] = 0; stash->dirtyRect[3] = 0; return 1; } return 0; } void fonsDeleteInternal(FONScontext* stash) { int i; if (stash == NULL) return; if (stash->params.renderDelete) stash->params.renderDelete(stash->params.userPtr); for (i = 0; i < stash->nfonts; ++i) fons__freeFont(stash->fonts[i]); if (stash->atlas) fons__deleteAtlas(stash->atlas); if (stash->fonts) free(stash->fonts); if (stash->texData) free(stash->texData); if (stash->scratch) free(stash->scratch); free(stash); fons__tt_done(stash); } void fonsSetErrorCallback(FONScontext* stash, void (*callback)(void* uptr, int error, int val), void* uptr) { if (stash == NULL) return; stash->handleError = callback; stash->errorUptr = uptr; } void fonsGetAtlasSize(FONScontext* stash, int* width, int* height) { if (stash == NULL) return; *width = stash->params.width; *height = stash->params.height; } int fonsExpandAtlas(FONScontext* stash, int width, int height) { int i, maxy = 0; unsigned char* data = NULL; if (stash == NULL) return 0; width = fons__maxi(width, stash->params.width); height = fons__maxi(height, stash->params.height); if (width == stash->params.width && height == stash->params.height) return 1; // Flush pending glyphs. fons__flush(stash); // Create new texture if (stash->params.renderResize != NULL) { if (stash->params.renderResize(stash->params.userPtr, width, height) == 0) return 0; } // Copy old texture data over. data = (unsigned char*)malloc(width * height); if (data == NULL) return 0; for (i = 0; i < stash->params.height; i++) { unsigned char* dst = &data[i*width]; unsigned char* src = &stash->texData[i*stash->params.width]; memcpy(dst, src, stash->params.width); if (width > stash->params.width) memset(dst+stash->params.width, 0, width - stash->params.width); } if (height > stash->params.height) memset(&data[stash->params.height * width], 0, (height - stash->params.height) * width); free(stash->texData); stash->texData = data; // Increase atlas size fons__atlasExpand(stash->atlas, width, height); // Add existing data as dirty. for (i = 0; i < stash->atlas->nnodes; i++) maxy = fons__maxi(maxy, stash->atlas->nodes[i].y); stash->dirtyRect[0] = 0; stash->dirtyRect[1] = 0; stash->dirtyRect[2] = stash->params.width; stash->dirtyRect[3] = maxy; stash->params.width = width; stash->params.height = height; stash->itw = 1.0f/stash->params.width; stash->ith = 1.0f/stash->params.height; return 1; } int fonsResetAtlas(FONScontext* stash, int width, int height) { int i, j; if (stash == NULL) return 0; // Flush pending glyphs. fons__flush(stash); // Create new texture if (stash->params.renderResize != NULL) { if (stash->params.renderResize(stash->params.userPtr, width, height) == 0) return 0; } // Reset atlas fons__atlasReset(stash->atlas, width, height); // Clear texture data. stash->texData = (unsigned char*)realloc(stash->texData, width * height); if (stash->texData == NULL) return 0; memset(stash->texData, 0, width * height); // Reset dirty rect stash->dirtyRect[0] = width; stash->dirtyRect[1] = height; stash->dirtyRect[2] = 0; stash->dirtyRect[3] = 0; // Reset cached glyphs for (i = 0; i < stash->nfonts; i++) { FONSfont* font = stash->fonts[i]; font->nglyphs = 0; for (j = 0; j < FONS_HASH_LUT_SIZE; j++) font->lut[j] = -1; } stash->params.width = width; stash->params.height = height; stash->itw = 1.0f/stash->params.width; stash->ith = 1.0f/stash->params.height; // Add white rect at 0,0 for debug drawing. fons__addWhiteRect(stash, 2,2); return 1; } #endif
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/stb_truetype.h
// stb_truetype.h - v1.24 - public domain // authored from 2009-2020 by Sean Barrett / RAD Game Tools // // ======================================================================= // // NO SECURITY GUARANTEE -- DO NOT USE THIS ON UNTRUSTED FONT FILES // // This library does no range checking of the offsets found in the file, // meaning an attacker can use it to read arbitrary memory. // // ======================================================================= // // This library processes TrueType files: // parse files // extract glyph metrics // extract glyph shapes // render glyphs to one-channel bitmaps with antialiasing (box filter) // render glyphs to one-channel SDF bitmaps (signed-distance field/function) // // Todo: // non-MS cmaps // crashproof on bad data // hinting? (no longer patented) // cleartype-style AA? // optimize: use simple memory allocator for intermediates // optimize: build edge-list directly from curves // optimize: rasterize directly from curves? // // ADDITIONAL CONTRIBUTORS // // Mikko Mononen: compound shape support, more cmap formats // Tor Andersson: kerning, subpixel rendering // Dougall Johnson: OpenType / Type 2 font handling // Daniel Ribeiro Maciel: basic GPOS-based kerning // // Misc other: // Ryan Gordon // Simon Glass // github:IntellectualKitty // Imanol Celaya // Daniel Ribeiro Maciel // // Bug/warning reports/fixes: // "Zer" on mollyrocket Fabian "ryg" Giesen github:NiLuJe // Cass Everitt Martins Mozeiko github:aloucks // stoiko (Haemimont Games) Cap Petschulat github:oyvindjam // Brian Hook Omar Cornut github:vassvik // Walter van Niftrik Ryan Griege // David Gow Peter LaValle // David Given Sergey Popov // Ivan-Assen Ivanov Giumo X. Clanjor // Anthony Pesch Higor Euripedes // Johan Duparc Thomas Fields // Hou Qiming Derek Vinyard // Rob Loach Cort Stratton // Kenney Phillis Jr. Brian Costabile // Ken Voskuil (kaesve) // // VERSION HISTORY // // 1.24 (2020-02-05) fix warning // 1.23 (2020-02-02) query SVG data for glyphs; query whole kerning table (but only kern not GPOS) // 1.22 (2019-08-11) minimize missing-glyph duplication; fix kerning if both 'GPOS' and 'kern' are defined // 1.21 (2019-02-25) fix warning // 1.20 (2019-02-07) PackFontRange skips missing codepoints; GetScaleFontVMetrics() // 1.19 (2018-02-11) GPOS kerning, STBTT_fmod // 1.18 (2018-01-29) add missing function // 1.17 (2017-07-23) make more arguments const; doc fix // 1.16 (2017-07-12) SDF support // 1.15 (2017-03-03) make more arguments const // 1.14 (2017-01-16) num-fonts-in-TTC function // 1.13 (2017-01-02) support OpenType fonts, certain Apple fonts // 1.12 (2016-10-25) suppress warnings about casting away const with -Wcast-qual // 1.11 (2016-04-02) fix unused-variable warning // 1.10 (2016-04-02) user-defined fabs(); rare memory leak; remove duplicate typedef // 1.09 (2016-01-16) warning fix; avoid crash on outofmem; use allocation userdata properly // 1.08 (2015-09-13) document stbtt_Rasterize(); fixes for vertical & horizontal edges // 1.07 (2015-08-01) allow PackFontRanges to accept arrays of sparse codepoints; // variant PackFontRanges to pack and render in separate phases; // fix stbtt_GetFontOFfsetForIndex (never worked for non-0 input?); // fixed an assert() bug in the new rasterizer // replace assert() with STBTT_assert() in new rasterizer // // Full history can be found at the end of this file. // // LICENSE // // See end of file for license information. // // USAGE // // Include this file in whatever places need to refer to it. In ONE C/C++ // file, write: // #define STB_TRUETYPE_IMPLEMENTATION // before the #include of this file. This expands out the actual // implementation into that C/C++ file. // // To make the implementation private to the file that generates the implementation, // #define STBTT_STATIC // // Simple 3D API (don't ship this, but it's fine for tools and quick start) // stbtt_BakeFontBitmap() -- bake a font to a bitmap for use as texture // stbtt_GetBakedQuad() -- compute quad to draw for a given char // // Improved 3D API (more shippable): // #include "stb_rect_pack.h" -- optional, but you really want it // stbtt_PackBegin() // stbtt_PackSetOversampling() -- for improved quality on small fonts // stbtt_PackFontRanges() -- pack and renders // stbtt_PackEnd() // stbtt_GetPackedQuad() // // "Load" a font file from a memory buffer (you have to keep the buffer loaded) // stbtt_InitFont() // stbtt_GetFontOffsetForIndex() -- indexing for TTC font collections // stbtt_GetNumberOfFonts() -- number of fonts for TTC font collections // // Render a unicode codepoint to a bitmap // stbtt_GetCodepointBitmap() -- allocates and returns a bitmap // stbtt_MakeCodepointBitmap() -- renders into bitmap you provide // stbtt_GetCodepointBitmapBox() -- how big the bitmap must be // // Character advance/positioning // stbtt_GetCodepointHMetrics() // stbtt_GetFontVMetrics() // stbtt_GetFontVMetricsOS2() // stbtt_GetCodepointKernAdvance() // // Starting with version 1.06, the rasterizer was replaced with a new, // faster and generally-more-precise rasterizer. The new rasterizer more // accurately measures pixel coverage for anti-aliasing, except in the case // where multiple shapes overlap, in which case it overestimates the AA pixel // coverage. Thus, anti-aliasing of intersecting shapes may look wrong. If // this turns out to be a problem, you can re-enable the old rasterizer with // #define STBTT_RASTERIZER_VERSION 1 // which will incur about a 15% speed hit. // // ADDITIONAL DOCUMENTATION // // Immediately after this block comment are a series of sample programs. // // After the sample programs is the "header file" section. This section // includes documentation for each API function. // // Some important concepts to understand to use this library: // // Codepoint // Characters are defined by unicode codepoints, e.g. 65 is // uppercase A, 231 is lowercase c with a cedilla, 0x7e30 is // the hiragana for "ma". // // Glyph // A visual character shape (every codepoint is rendered as // some glyph) // // Glyph index // A font-specific integer ID representing a glyph // // Baseline // Glyph shapes are defined relative to a baseline, which is the // bottom of uppercase characters. Characters extend both above // and below the baseline. // // Current Point // As you draw text to the screen, you keep track of a "current point" // which is the origin of each character. The current point's vertical // position is the baseline. Even "baked fonts" use this model. // // Vertical Font Metrics // The vertical qualities of the font, used to vertically position // and space the characters. See docs for stbtt_GetFontVMetrics. // // Font Size in Pixels or Points // The preferred interface for specifying font sizes in stb_truetype // is to specify how tall the font's vertical extent should be in pixels. // If that sounds good enough, skip the next paragraph. // // Most font APIs instead use "points", which are a common typographic // measurement for describing font size, defined as 72 points per inch. // stb_truetype provides a point API for compatibility. However, true // "per inch" conventions don't make much sense on computer displays // since different monitors have different number of pixels per // inch. For example, Windows traditionally uses a convention that // there are 96 pixels per inch, thus making 'inch' measurements have // nothing to do with inches, and thus effectively defining a point to // be 1.333 pixels. Additionally, the TrueType font data provides // an explicit scale factor to scale a given font's glyphs to points, // but the author has observed that this scale factor is often wrong // for non-commercial fonts, thus making fonts scaled in points // according to the TrueType spec incoherently sized in practice. // // DETAILED USAGE: // // Scale: // Select how high you want the font to be, in points or pixels. // Call ScaleForPixelHeight or ScaleForMappingEmToPixels to compute // a scale factor SF that will be used by all other functions. // // Baseline: // You need to select a y-coordinate that is the baseline of where // your text will appear. Call GetFontBoundingBox to get the baseline-relative // bounding box for all characters. SF*-y0 will be the distance in pixels // that the worst-case character could extend above the baseline, so if // you want the top edge of characters to appear at the top of the // screen where y=0, then you would set the baseline to SF*-y0. // // Current point: // Set the current point where the first character will appear. The // first character could extend left of the current point; this is font // dependent. You can either choose a current point that is the leftmost // point and hope, or add some padding, or check the bounding box or // left-side-bearing of the first character to be displayed and set // the current point based on that. // // Displaying a character: // Compute the bounding box of the character. It will contain signed values // relative to <current_point, baseline>. I.e. if it returns x0,y0,x1,y1, // then the character should be displayed in the rectangle from // <current_point+SF*x0, baseline+SF*y0> to <current_point+SF*x1,baseline+SF*y1). // // Advancing for the next character: // Call GlyphHMetrics, and compute 'current_point += SF * advance'. // // // ADVANCED USAGE // // Quality: // // - Use the functions with Subpixel at the end to allow your characters // to have subpixel positioning. Since the font is anti-aliased, not // hinted, this is very import for quality. (This is not possible with // baked fonts.) // // - Kerning is now supported, and if you're supporting subpixel rendering // then kerning is worth using to give your text a polished look. // // Performance: // // - Convert Unicode codepoints to glyph indexes and operate on the glyphs; // if you don't do this, stb_truetype is forced to do the conversion on // every call. // // - There are a lot of memory allocations. We should modify it to take // a temp buffer and allocate from the temp buffer (without freeing), // should help performance a lot. // // NOTES // // The system uses the raw data found in the .ttf file without changing it // and without building auxiliary data structures. This is a bit inefficient // on little-endian systems (the data is big-endian), but assuming you're // caching the bitmaps or glyph shapes this shouldn't be a big deal. // // It appears to be very hard to programmatically determine what font a // given file is in a general way. I provide an API for this, but I don't // recommend it. // // // PERFORMANCE MEASUREMENTS FOR 1.06: // // 32-bit 64-bit // Previous release: 8.83 s 7.68 s // Pool allocations: 7.72 s 6.34 s // Inline sort : 6.54 s 5.65 s // New rasterizer : 5.63 s 5.00 s ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// //// //// SAMPLE PROGRAMS //// // // Incomplete text-in-3d-api example, which draws quads properly aligned to be lossless // #if 0 #define STB_TRUETYPE_IMPLEMENTATION // force following include to generate implementation #include "stb_truetype.h" unsigned char ttf_buffer[1<<20]; unsigned char temp_bitmap[512*512]; stbtt_bakedchar cdata[96]; // ASCII 32..126 is 95 glyphs GLuint ftex; void my_stbtt_initfont(void) { fread(ttf_buffer, 1, 1<<20, fopen("c:/windows/fonts/times.ttf", "rb")); stbtt_BakeFontBitmap(ttf_buffer,0, 32.0, temp_bitmap,512,512, 32,96, cdata); // no guarantee this fits! // can free ttf_buffer at this point glGenTextures(1, &ftex); glBindTexture(GL_TEXTURE_2D, ftex); glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, 512,512, 0, GL_ALPHA, GL_UNSIGNED_BYTE, temp_bitmap); // can free temp_bitmap at this point glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } void my_stbtt_print(float x, float y, char *text) { // assume orthographic projection with units = screen pixels, origin at top left glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, ftex); glBegin(GL_QUADS); while (*text) { if (*text >= 32 && *text < 128) { stbtt_aligned_quad q; stbtt_GetBakedQuad(cdata, 512,512, *text-32, &x,&y,&q,1);//1=opengl & d3d10+,0=d3d9 glTexCoord2f(q.s0,q.t1); glVertex2f(q.x0,q.y0); glTexCoord2f(q.s1,q.t1); glVertex2f(q.x1,q.y0); glTexCoord2f(q.s1,q.t0); glVertex2f(q.x1,q.y1); glTexCoord2f(q.s0,q.t0); glVertex2f(q.x0,q.y1); } ++text; } glEnd(); } #endif // // ////////////////////////////////////////////////////////////////////////////// // // Complete program (this compiles): get a single bitmap, print as ASCII art // #if 0 #include <stdio.h> #define STB_TRUETYPE_IMPLEMENTATION // force following include to generate implementation #include "stb_truetype.h" char ttf_buffer[1<<25]; int main(int argc, char **argv) { stbtt_fontinfo font; unsigned char *bitmap; int w,h,i,j,c = (argc > 1 ? atoi(argv[1]) : 'a'), s = (argc > 2 ? atoi(argv[2]) : 20); fread(ttf_buffer, 1, 1<<25, fopen(argc > 3 ? argv[3] : "c:/windows/fonts/arialbd.ttf", "rb")); stbtt_InitFont(&font, ttf_buffer, stbtt_GetFontOffsetForIndex(ttf_buffer,0)); bitmap = stbtt_GetCodepointBitmap(&font, 0,stbtt_ScaleForPixelHeight(&font, s), c, &w, &h, 0,0); for (j=0; j < h; ++j) { for (i=0; i < w; ++i) putchar(" .:ioVM@"[bitmap[j*w+i]>>5]); putchar('\n'); } return 0; } #endif // // Output: // // .ii. // @@@@@@. // V@Mio@@o // :i. V@V // :oM@@M // :@@@MM@M // @@o o@M // :@@. M@M // @@@o@@@@ // :M@@V:@@. // ////////////////////////////////////////////////////////////////////////////// // // Complete program: print "Hello World!" banner, with bugs // #if 0 char buffer[24<<20]; unsigned char screen[20][79]; int main(int arg, char **argv) { stbtt_fontinfo font; int i,j,ascent,baseline,ch=0; float scale, xpos=2; // leave a little padding in case the character extends left char *text = "Heljo World!"; // intentionally misspelled to show 'lj' brokenness fread(buffer, 1, 1000000, fopen("c:/windows/fonts/arialbd.ttf", "rb")); stbtt_InitFont(&font, buffer, 0); scale = stbtt_ScaleForPixelHeight(&font, 15); stbtt_GetFontVMetrics(&font, &ascent,0,0); baseline = (int) (ascent*scale); while (text[ch]) { int advance,lsb,x0,y0,x1,y1; float x_shift = xpos - (float) floor(xpos); stbtt_GetCodepointHMetrics(&font, text[ch], &advance, &lsb); stbtt_GetCodepointBitmapBoxSubpixel(&font, text[ch], scale,scale,x_shift,0, &x0,&y0,&x1,&y1); stbtt_MakeCodepointBitmapSubpixel(&font, &screen[baseline + y0][(int) xpos + x0], x1-x0,y1-y0, 79, scale,scale,x_shift,0, text[ch]); // note that this stomps the old data, so where character boxes overlap (e.g. 'lj') it's wrong // because this API is really for baking character bitmaps into textures. if you want to render // a sequence of characters, you really need to render each bitmap to a temp buffer, then // "alpha blend" that into the working buffer xpos += (advance * scale); if (text[ch+1]) xpos += scale*stbtt_GetCodepointKernAdvance(&font, text[ch],text[ch+1]); ++ch; } for (j=0; j < 20; ++j) { for (i=0; i < 78; ++i) putchar(" .:ioVM@"[screen[j][i]>>5]); putchar('\n'); } return 0; } #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// //// //// INTEGRATION WITH YOUR CODEBASE //// //// The following sections allow you to supply alternate definitions //// of C library functions used by stb_truetype, e.g. if you don't //// link with the C runtime library. #ifdef STB_TRUETYPE_IMPLEMENTATION // #define your own (u)stbtt_int8/16/32 before including to override this #ifndef stbtt_uint8 typedef unsigned char stbtt_uint8; typedef signed char stbtt_int8; typedef unsigned short stbtt_uint16; typedef signed short stbtt_int16; typedef unsigned int stbtt_uint32; typedef signed int stbtt_int32; #endif typedef char stbtt__check_size32[sizeof(stbtt_int32)==4 ? 1 : -1]; typedef char stbtt__check_size16[sizeof(stbtt_int16)==2 ? 1 : -1]; // e.g. #define your own STBTT_ifloor/STBTT_iceil() to avoid math.h #ifndef STBTT_ifloor #include <math.h> #define STBTT_ifloor(x) ((int) floor(x)) #define STBTT_iceil(x) ((int) ceil(x)) #endif #ifndef STBTT_sqrt #include <math.h> #define STBTT_sqrt(x) sqrt(x) #define STBTT_pow(x,y) pow(x,y) #endif #ifndef STBTT_fmod #include <math.h> #define STBTT_fmod(x,y) fmod(x,y) #endif #ifndef STBTT_cos #include <math.h> #define STBTT_cos(x) cos(x) #define STBTT_acos(x) acos(x) #endif #ifndef STBTT_fabs #include <math.h> #define STBTT_fabs(x) fabs(x) #endif // #define your own functions "STBTT_malloc" / "STBTT_free" to avoid malloc.h #ifndef STBTT_malloc #include <stdlib.h> #define STBTT_malloc(x,u) ((void)(u),malloc(x)) #define STBTT_free(x,u) ((void)(u),free(x)) #endif #ifndef STBTT_assert #include <assert.h> #define STBTT_assert(x) assert(x) #endif #ifndef STBTT_strlen #include <string.h> #define STBTT_strlen(x) strlen(x) #endif #ifndef STBTT_memcpy #include <string.h> #define STBTT_memcpy memcpy #define STBTT_memset memset #endif #endif /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //// //// INTERFACE //// //// #ifndef __STB_INCLUDE_STB_TRUETYPE_H__ #define __STB_INCLUDE_STB_TRUETYPE_H__ #ifdef STBTT_STATIC #define STBTT_DEF static #else #define STBTT_DEF extern #endif #ifdef __cplusplus extern "C" { #endif // private structure typedef struct { unsigned char *data; int cursor; int size; } stbtt__buf; ////////////////////////////////////////////////////////////////////////////// // // TEXTURE BAKING API // // If you use this API, you only have to call two functions ever. // typedef struct { unsigned short x0,y0,x1,y1; // coordinates of bbox in bitmap float xoff,yoff,xadvance; } stbtt_bakedchar; STBTT_DEF int stbtt_BakeFontBitmap(const unsigned char *data, int offset, // font location (use offset=0 for plain .ttf) float pixel_height, // height of font in pixels unsigned char *pixels, int pw, int ph, // bitmap to be filled in int first_char, int num_chars, // characters to bake stbtt_bakedchar *chardata); // you allocate this, it's num_chars long // if return is positive, the first unused row of the bitmap // if return is negative, returns the negative of the number of characters that fit // if return is 0, no characters fit and no rows were used // This uses a very crappy packing. typedef struct { float x0,y0,s0,t0; // top-left float x1,y1,s1,t1; // bottom-right } stbtt_aligned_quad; STBTT_DEF void stbtt_GetBakedQuad(const stbtt_bakedchar *chardata, int pw, int ph, // same data as above int char_index, // character to display float *xpos, float *ypos, // pointers to current position in screen pixel space stbtt_aligned_quad *q, // output: quad to draw int opengl_fillrule); // true if opengl fill rule; false if DX9 or earlier // Call GetBakedQuad with char_index = 'character - first_char', and it // creates the quad you need to draw and advances the current position. // // The coordinate system used assumes y increases downwards. // // Characters will extend both above and below the current position; // see discussion of "BASELINE" above. // // It's inefficient; you might want to c&p it and optimize it. STBTT_DEF void stbtt_GetScaledFontVMetrics(const unsigned char *fontdata, int index, float size, float *ascent, float *descent, float *lineGap); // Query the font vertical metrics without having to create a font first. ////////////////////////////////////////////////////////////////////////////// // // NEW TEXTURE BAKING API // // This provides options for packing multiple fonts into one atlas, not // perfectly but better than nothing. typedef struct { unsigned short x0,y0,x1,y1; // coordinates of bbox in bitmap float xoff,yoff,xadvance; float xoff2,yoff2; } stbtt_packedchar; typedef struct stbtt_pack_context stbtt_pack_context; typedef struct stbtt_fontinfo stbtt_fontinfo; #ifndef STB_RECT_PACK_VERSION typedef struct stbrp_rect stbrp_rect; #endif STBTT_DEF int stbtt_PackBegin(stbtt_pack_context *spc, unsigned char *pixels, int width, int height, int stride_in_bytes, int padding, void *alloc_context); // Initializes a packing context stored in the passed-in stbtt_pack_context. // Future calls using this context will pack characters into the bitmap passed // in here: a 1-channel bitmap that is width * height. stride_in_bytes is // the distance from one row to the next (or 0 to mean they are packed tightly // together). "padding" is the amount of padding to leave between each // character (normally you want '1' for bitmaps you'll use as textures with // bilinear filtering). // // Returns 0 on failure, 1 on success. STBTT_DEF void stbtt_PackEnd (stbtt_pack_context *spc); // Cleans up the packing context and frees all memory. #define STBTT_POINT_SIZE(x) (-(x)) STBTT_DEF int stbtt_PackFontRange(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, float font_size, int first_unicode_char_in_range, int num_chars_in_range, stbtt_packedchar *chardata_for_range); // Creates character bitmaps from the font_index'th font found in fontdata (use // font_index=0 if you don't know what that is). It creates num_chars_in_range // bitmaps for characters with unicode values starting at first_unicode_char_in_range // and increasing. Data for how to render them is stored in chardata_for_range; // pass these to stbtt_GetPackedQuad to get back renderable quads. // // font_size is the full height of the character from ascender to descender, // as computed by stbtt_ScaleForPixelHeight. To use a point size as computed // by stbtt_ScaleForMappingEmToPixels, wrap the point size in STBTT_POINT_SIZE() // and pass that result as 'font_size': // ..., 20 , ... // font max minus min y is 20 pixels tall // ..., STBTT_POINT_SIZE(20), ... // 'M' is 20 pixels tall typedef struct { float font_size; int first_unicode_codepoint_in_range; // if non-zero, then the chars are continuous, and this is the first codepoint int *array_of_unicode_codepoints; // if non-zero, then this is an array of unicode codepoints int num_chars; stbtt_packedchar *chardata_for_range; // output unsigned char h_oversample, v_oversample; // don't set these, they're used internally } stbtt_pack_range; STBTT_DEF int stbtt_PackFontRanges(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, stbtt_pack_range *ranges, int num_ranges); // Creates character bitmaps from multiple ranges of characters stored in // ranges. This will usually create a better-packed bitmap than multiple // calls to stbtt_PackFontRange. Note that you can call this multiple // times within a single PackBegin/PackEnd. STBTT_DEF void stbtt_PackSetOversampling(stbtt_pack_context *spc, unsigned int h_oversample, unsigned int v_oversample); // Oversampling a font increases the quality by allowing higher-quality subpixel // positioning, and is especially valuable at smaller text sizes. // // This function sets the amount of oversampling for all following calls to // stbtt_PackFontRange(s) or stbtt_PackFontRangesGatherRects for a given // pack context. The default (no oversampling) is achieved by h_oversample=1 // and v_oversample=1. The total number of pixels required is // h_oversample*v_oversample larger than the default; for example, 2x2 // oversampling requires 4x the storage of 1x1. For best results, render // oversampled textures with bilinear filtering. Look at the readme in // stb/tests/oversample for information about oversampled fonts // // To use with PackFontRangesGather etc., you must set it before calls // call to PackFontRangesGatherRects. STBTT_DEF void stbtt_PackSetSkipMissingCodepoints(stbtt_pack_context *spc, int skip); // If skip != 0, this tells stb_truetype to skip any codepoints for which // there is no corresponding glyph. If skip=0, which is the default, then // codepoints without a glyph recived the font's "missing character" glyph, // typically an empty box by convention. STBTT_DEF void stbtt_GetPackedQuad(const stbtt_packedchar *chardata, int pw, int ph, // same data as above int char_index, // character to display float *xpos, float *ypos, // pointers to current position in screen pixel space stbtt_aligned_quad *q, // output: quad to draw int align_to_integer); STBTT_DEF int stbtt_PackFontRangesGatherRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects); STBTT_DEF void stbtt_PackFontRangesPackRects(stbtt_pack_context *spc, stbrp_rect *rects, int num_rects); STBTT_DEF int stbtt_PackFontRangesRenderIntoRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects); // Calling these functions in sequence is roughly equivalent to calling // stbtt_PackFontRanges(). If you more control over the packing of multiple // fonts, or if you want to pack custom data into a font texture, take a look // at the source to of stbtt_PackFontRanges() and create a custom version // using these functions, e.g. call GatherRects multiple times, // building up a single array of rects, then call PackRects once, // then call RenderIntoRects repeatedly. This may result in a // better packing than calling PackFontRanges multiple times // (or it may not). // this is an opaque structure that you shouldn't mess with which holds // all the context needed from PackBegin to PackEnd. struct stbtt_pack_context { void *user_allocator_context; void *pack_info; int width; int height; int stride_in_bytes; int padding; int skip_missing; unsigned int h_oversample, v_oversample; unsigned char *pixels; void *nodes; }; ////////////////////////////////////////////////////////////////////////////// // // FONT LOADING // // STBTT_DEF int stbtt_GetNumberOfFonts(const unsigned char *data); // This function will determine the number of fonts in a font file. TrueType // collection (.ttc) files may contain multiple fonts, while TrueType font // (.ttf) files only contain one font. The number of fonts can be used for // indexing with the previous function where the index is between zero and one // less than the total fonts. If an error occurs, -1 is returned. STBTT_DEF int stbtt_GetFontOffsetForIndex(const unsigned char *data, int index); // Each .ttf/.ttc file may have more than one font. Each font has a sequential // index number starting from 0. Call this function to get the font offset for // a given index; it returns -1 if the index is out of range. A regular .ttf // file will only define one font and it always be at offset 0, so it will // return '0' for index 0, and -1 for all other indices. // The following structure is defined publicly so you can declare one on // the stack or as a global or etc, but you should treat it as opaque. struct stbtt_fontinfo { void * userdata; unsigned char * data; // pointer to .ttf file int fontstart; // offset of start of font int numGlyphs; // number of glyphs, needed for range checking int loca,head,glyf,hhea,hmtx,kern,gpos,svg; // table locations as offset from start of .ttf int index_map; // a cmap mapping for our chosen character encoding int indexToLocFormat; // format needed to map from glyph index to glyph stbtt__buf cff; // cff font data stbtt__buf charstrings; // the charstring index stbtt__buf gsubrs; // global charstring subroutines index stbtt__buf subrs; // private charstring subroutines index stbtt__buf fontdicts; // array of font dicts stbtt__buf fdselect; // map from glyph to fontdict }; STBTT_DEF int stbtt_InitFont(stbtt_fontinfo *info, const unsigned char *data, int offset); // Given an offset into the file that defines a font, this function builds // the necessary cached info for the rest of the system. You must allocate // the stbtt_fontinfo yourself, and stbtt_InitFont will fill it out. You don't // need to do anything special to free it, because the contents are pure // value data with no additional data structures. Returns 0 on failure. ////////////////////////////////////////////////////////////////////////////// // // CHARACTER TO GLYPH-INDEX CONVERSIOn STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint); // If you're going to perform multiple operations on the same character // and you want a speed-up, call this function with the character you're // going to process, then use glyph-based functions instead of the // codepoint-based functions. // Returns 0 if the character codepoint is not defined in the font. ////////////////////////////////////////////////////////////////////////////// // // CHARACTER PROPERTIES // STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float pixels); // computes a scale factor to produce a font whose "height" is 'pixels' tall. // Height is measured as the distance from the highest ascender to the lowest // descender; in other words, it's equivalent to calling stbtt_GetFontVMetrics // and computing: // scale = pixels / (ascent - descent) // so if you prefer to measure height by the ascent only, use a similar calculation. STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels); // computes a scale factor to produce a font whose EM size is mapped to // 'pixels' tall. This is probably what traditional APIs compute, but // I'm not positive. STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap); // ascent is the coordinate above the baseline the font extends; descent // is the coordinate below the baseline the font extends (i.e. it is typically negative) // lineGap is the spacing between one row's descent and the next row's ascent... // so you should advance the vertical position by "*ascent - *descent + *lineGap" // these are expressed in unscaled coordinates, so you must multiply by // the scale factor for a given size STBTT_DEF int stbtt_GetFontVMetricsOS2(const stbtt_fontinfo *info, int *typoAscent, int *typoDescent, int *typoLineGap); // analogous to GetFontVMetrics, but returns the "typographic" values from the OS/2 // table (specific to MS/Windows TTF files). // // Returns 1 on success (table present), 0 on failure. STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1); // the bounding box around all possible characters STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing); // leftSideBearing is the offset from the current horizontal position to the left edge of the character // advanceWidth is the offset from the current horizontal position to the next horizontal position // these are expressed in unscaled coordinates STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2); // an additional amount to add to the 'advance' value between ch1 and ch2 STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1); // Gets the bounding box of the visible part of the glyph, in unscaled coordinates STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing); STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2); STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); // as above, but takes one or more glyph indices for greater efficiency typedef struct stbtt_kerningentry { int glyph1; // use stbtt_FindGlyphIndex int glyph2; int advance; } stbtt_kerningentry; STBTT_DEF int stbtt_GetKerningTableLength(const stbtt_fontinfo *info); STBTT_DEF int stbtt_GetKerningTable(const stbtt_fontinfo *info, stbtt_kerningentry* table, int table_length); // Retrieves a complete list of all of the kerning pairs provided by the font // stbtt_GetKerningTable never writes more than table_length entries and returns how many entries it did write. // The table will be sorted by (a.glyph1 == b.glyph1)?(a.glyph2 < b.glyph2):(a.glyph1 < b.glyph1) ////////////////////////////////////////////////////////////////////////////// // // GLYPH SHAPES (you probably don't need these, but they have to go before // the bitmaps for C declaration-order reasons) // #ifndef STBTT_vmove // you can predefine these to use different values (but why?) enum { STBTT_vmove=1, STBTT_vline, STBTT_vcurve, STBTT_vcubic }; #endif #ifndef stbtt_vertex // you can predefine this to use different values // (we share this with other code at RAD) #define stbtt_vertex_type short // can't use stbtt_int16 because that's not visible in the header file typedef struct { stbtt_vertex_type x,y,cx,cy,cx1,cy1; unsigned char type,padding; } stbtt_vertex; #endif STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index); // returns non-zero if nothing is drawn for this glyph STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices); STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **vertices); // returns # of vertices and fills *vertices with the pointer to them // these are expressed in "unscaled" coordinates // // The shape is a series of contours. Each one starts with // a STBTT_moveto, then consists of a series of mixed // STBTT_lineto and STBTT_curveto segments. A lineto // draws a line from previous endpoint to its x,y; a curveto // draws a quadratic bezier from previous endpoint to // its x,y, using cx,cy as the bezier control point. STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *vertices); // frees the data allocated above STBTT_DEF int stbtt_GetCodepointSVG(const stbtt_fontinfo *info, int unicode_codepoint, const char **svg); STBTT_DEF int stbtt_GetGlyphSVG(const stbtt_fontinfo *info, int gl, const char **svg); // fills svg with the character's SVG data. // returns data size or 0 if SVG not found. ////////////////////////////////////////////////////////////////////////////// // // BITMAP RENDERING // STBTT_DEF void stbtt_FreeBitmap(unsigned char *bitmap, void *userdata); // frees the bitmap allocated below STBTT_DEF unsigned char *stbtt_GetCodepointBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff); // allocates a large-enough single-channel 8bpp bitmap and renders the // specified character/glyph at the specified scale into it, with // antialiasing. 0 is no coverage (transparent), 255 is fully covered (opaque). // *width & *height are filled out with the width & height of the bitmap, // which is stored left-to-right, top-to-bottom. // // xoff/yoff are the offset it pixel space from the glyph origin to the top-left of the bitmap STBTT_DEF unsigned char *stbtt_GetCodepointBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff); // the same as stbtt_GetCodepoitnBitmap, but you can specify a subpixel // shift for the character STBTT_DEF void stbtt_MakeCodepointBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint); // the same as stbtt_GetCodepointBitmap, but you pass in storage for the bitmap // in the form of 'output', with row spacing of 'out_stride' bytes. the bitmap // is clipped to out_w/out_h bytes. Call stbtt_GetCodepointBitmapBox to get the // width and height and positioning info for it first. STBTT_DEF void stbtt_MakeCodepointBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint); // same as stbtt_MakeCodepointBitmap, but you can specify a subpixel // shift for the character STBTT_DEF void stbtt_MakeCodepointBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint); // same as stbtt_MakeCodepointBitmapSubpixel, but prefiltering // is performed (see stbtt_PackSetOversampling) STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1); // get the bbox of the bitmap centered around the glyph origin; so the // bitmap width is ix1-ix0, height is iy1-iy0, and location to place // the bitmap top left is (leftSideBearing*scale,iy0). // (Note that the bitmap uses y-increases-down, but the shape uses // y-increases-up, so CodepointBitmapBox and CodepointBox are inverted.) STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1); // same as stbtt_GetCodepointBitmapBox, but you can specify a subpixel // shift for the character // the following functions are equivalent to the above functions, but operate // on glyph indices instead of Unicode codepoints (for efficiency) STBTT_DEF unsigned char *stbtt_GetGlyphBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff); STBTT_DEF unsigned char *stbtt_GetGlyphBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff); STBTT_DEF void stbtt_MakeGlyphBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph); STBTT_DEF void stbtt_MakeGlyphBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph); STBTT_DEF void stbtt_MakeGlyphBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int glyph); STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1); STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1); // @TODO: don't expose this structure typedef struct { int w,h,stride; unsigned char *pixels; } stbtt__bitmap; // rasterize a shape with quadratic beziers into a bitmap STBTT_DEF void stbtt_Rasterize(stbtt__bitmap *result, // 1-channel bitmap to draw into float flatness_in_pixels, // allowable error of curve in pixels stbtt_vertex *vertices, // array of vertices defining shape int num_verts, // number of vertices in above array float scale_x, float scale_y, // scale applied to input vertices float shift_x, float shift_y, // translation applied to input vertices int x_off, int y_off, // another translation applied to input int invert, // if non-zero, vertically flip shape void *userdata); // context for to STBTT_MALLOC ////////////////////////////////////////////////////////////////////////////// // // Signed Distance Function (or Field) rendering STBTT_DEF void stbtt_FreeSDF(unsigned char *bitmap, void *userdata); // frees the SDF bitmap allocated below STBTT_DEF unsigned char * stbtt_GetGlyphSDF(const stbtt_fontinfo *info, float scale, int glyph, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff); STBTT_DEF unsigned char * stbtt_GetCodepointSDF(const stbtt_fontinfo *info, float scale, int codepoint, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff); // These functions compute a discretized SDF field for a single character, suitable for storing // in a single-channel texture, sampling with bilinear filtering, and testing against // larger than some threshold to produce scalable fonts. // info -- the font // scale -- controls the size of the resulting SDF bitmap, same as it would be creating a regular bitmap // glyph/codepoint -- the character to generate the SDF for // padding -- extra "pixels" around the character which are filled with the distance to the character (not 0), // which allows effects like bit outlines // onedge_value -- value 0-255 to test the SDF against to reconstruct the character (i.e. the isocontour of the character) // pixel_dist_scale -- what value the SDF should increase by when moving one SDF "pixel" away from the edge (on the 0..255 scale) // if positive, > onedge_value is inside; if negative, < onedge_value is inside // width,height -- output height & width of the SDF bitmap (including padding) // xoff,yoff -- output origin of the character // return value -- a 2D array of bytes 0..255, width*height in size // // pixel_dist_scale & onedge_value are a scale & bias that allows you to make // optimal use of the limited 0..255 for your application, trading off precision // and special effects. SDF values outside the range 0..255 are clamped to 0..255. // // Example: // scale = stbtt_ScaleForPixelHeight(22) // padding = 5 // onedge_value = 180 // pixel_dist_scale = 180/5.0 = 36.0 // // This will create an SDF bitmap in which the character is about 22 pixels // high but the whole bitmap is about 22+5+5=32 pixels high. To produce a filled // shape, sample the SDF at each pixel and fill the pixel if the SDF value // is greater than or equal to 180/255. (You'll actually want to antialias, // which is beyond the scope of this example.) Additionally, you can compute // offset outlines (e.g. to stroke the character border inside & outside, // or only outside). For example, to fill outside the character up to 3 SDF // pixels, you would compare against (180-36.0*3)/255 = 72/255. The above // choice of variables maps a range from 5 pixels outside the shape to // 2 pixels inside the shape to 0..255; this is intended primarily for apply // outside effects only (the interior range is needed to allow proper // antialiasing of the font at *smaller* sizes) // // The function computes the SDF analytically at each SDF pixel, not by e.g. // building a higher-res bitmap and approximating it. In theory the quality // should be as high as possible for an SDF of this size & representation, but // unclear if this is true in practice (perhaps building a higher-res bitmap // and computing from that can allow drop-out prevention). // // The algorithm has not been optimized at all, so expect it to be slow // if computing lots of characters or very large sizes. ////////////////////////////////////////////////////////////////////////////// // // Finding the right font... // // You should really just solve this offline, keep your own tables // of what font is what, and don't try to get it out of the .ttf file. // That's because getting it out of the .ttf file is really hard, because // the names in the file can appear in many possible encodings, in many // possible languages, and e.g. if you need a case-insensitive comparison, // the details of that depend on the encoding & language in a complex way // (actually underspecified in truetype, but also gigantic). // // But you can use the provided functions in two possible ways: // stbtt_FindMatchingFont() will use *case-sensitive* comparisons on // unicode-encoded names to try to find the font you want; // you can run this before calling stbtt_InitFont() // // stbtt_GetFontNameString() lets you get any of the various strings // from the file yourself and do your own comparisons on them. // You have to have called stbtt_InitFont() first. STBTT_DEF int stbtt_FindMatchingFont(const unsigned char *fontdata, const char *name, int flags); // returns the offset (not index) of the font that matches, or -1 if none // if you use STBTT_MACSTYLE_DONTCARE, use a font name like "Arial Bold". // if you use any other flag, use a font name like "Arial"; this checks // the 'macStyle' header field; i don't know if fonts set this consistently #define STBTT_MACSTYLE_DONTCARE 0 #define STBTT_MACSTYLE_BOLD 1 #define STBTT_MACSTYLE_ITALIC 2 #define STBTT_MACSTYLE_UNDERSCORE 4 #define STBTT_MACSTYLE_NONE 8 // <= not same as 0, this makes us check the bitfield is 0 STBTT_DEF int stbtt_CompareUTF8toUTF16_bigendian(const char *s1, int len1, const char *s2, int len2); // returns 1/0 whether the first string interpreted as utf8 is identical to // the second string interpreted as big-endian utf16... useful for strings from next func STBTT_DEF const char *stbtt_GetFontNameString(const stbtt_fontinfo *font, int *length, int platformID, int encodingID, int languageID, int nameID); // returns the string (which may be big-endian double byte, e.g. for unicode) // and puts the length in bytes in *length. // // some of the values for the IDs are below; for more see the truetype spec: // http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6name.html // http://www.microsoft.com/typography/otspec/name.htm enum { // platformID STBTT_PLATFORM_ID_UNICODE =0, STBTT_PLATFORM_ID_MAC =1, STBTT_PLATFORM_ID_ISO =2, STBTT_PLATFORM_ID_MICROSOFT =3 }; enum { // encodingID for STBTT_PLATFORM_ID_UNICODE STBTT_UNICODE_EID_UNICODE_1_0 =0, STBTT_UNICODE_EID_UNICODE_1_1 =1, STBTT_UNICODE_EID_ISO_10646 =2, STBTT_UNICODE_EID_UNICODE_2_0_BMP=3, STBTT_UNICODE_EID_UNICODE_2_0_FULL=4 }; enum { // encodingID for STBTT_PLATFORM_ID_MICROSOFT STBTT_MS_EID_SYMBOL =0, STBTT_MS_EID_UNICODE_BMP =1, STBTT_MS_EID_SHIFTJIS =2, STBTT_MS_EID_UNICODE_FULL =10 }; enum { // encodingID for STBTT_PLATFORM_ID_MAC; same as Script Manager codes STBTT_MAC_EID_ROMAN =0, STBTT_MAC_EID_ARABIC =4, STBTT_MAC_EID_JAPANESE =1, STBTT_MAC_EID_HEBREW =5, STBTT_MAC_EID_CHINESE_TRAD =2, STBTT_MAC_EID_GREEK =6, STBTT_MAC_EID_KOREAN =3, STBTT_MAC_EID_RUSSIAN =7 }; enum { // languageID for STBTT_PLATFORM_ID_MICROSOFT; same as LCID... // problematic because there are e.g. 16 english LCIDs and 16 arabic LCIDs STBTT_MS_LANG_ENGLISH =0x0409, STBTT_MS_LANG_ITALIAN =0x0410, STBTT_MS_LANG_CHINESE =0x0804, STBTT_MS_LANG_JAPANESE =0x0411, STBTT_MS_LANG_DUTCH =0x0413, STBTT_MS_LANG_KOREAN =0x0412, STBTT_MS_LANG_FRENCH =0x040c, STBTT_MS_LANG_RUSSIAN =0x0419, STBTT_MS_LANG_GERMAN =0x0407, STBTT_MS_LANG_SPANISH =0x0409, STBTT_MS_LANG_HEBREW =0x040d, STBTT_MS_LANG_SWEDISH =0x041D }; enum { // languageID for STBTT_PLATFORM_ID_MAC STBTT_MAC_LANG_ENGLISH =0 , STBTT_MAC_LANG_JAPANESE =11, STBTT_MAC_LANG_ARABIC =12, STBTT_MAC_LANG_KOREAN =23, STBTT_MAC_LANG_DUTCH =4 , STBTT_MAC_LANG_RUSSIAN =32, STBTT_MAC_LANG_FRENCH =1 , STBTT_MAC_LANG_SPANISH =6 , STBTT_MAC_LANG_GERMAN =2 , STBTT_MAC_LANG_SWEDISH =5 , STBTT_MAC_LANG_HEBREW =10, STBTT_MAC_LANG_CHINESE_SIMPLIFIED =33, STBTT_MAC_LANG_ITALIAN =3 , STBTT_MAC_LANG_CHINESE_TRAD =19 }; #ifdef __cplusplus } #endif #endif // __STB_INCLUDE_STB_TRUETYPE_H__ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //// //// IMPLEMENTATION //// //// #ifdef STB_TRUETYPE_IMPLEMENTATION #ifndef STBTT_MAX_OVERSAMPLE #define STBTT_MAX_OVERSAMPLE 8 #endif #if STBTT_MAX_OVERSAMPLE > 255 #error "STBTT_MAX_OVERSAMPLE cannot be > 255" #endif typedef int stbtt__test_oversample_pow2[(STBTT_MAX_OVERSAMPLE & (STBTT_MAX_OVERSAMPLE-1)) == 0 ? 1 : -1]; #ifndef STBTT_RASTERIZER_VERSION #define STBTT_RASTERIZER_VERSION 2 #endif #ifdef _MSC_VER #define STBTT__NOTUSED(v) (void)(v) #else #define STBTT__NOTUSED(v) (void)sizeof(v) #endif ////////////////////////////////////////////////////////////////////////// // // stbtt__buf helpers to parse data from file // static stbtt_uint8 stbtt__buf_get8(stbtt__buf *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor++]; } static stbtt_uint8 stbtt__buf_peek8(stbtt__buf *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor]; } static void stbtt__buf_seek(stbtt__buf *b, int o) { STBTT_assert(!(o > b->size || o < 0)); b->cursor = (o > b->size || o < 0) ? b->size : o; } static void stbtt__buf_skip(stbtt__buf *b, int o) { stbtt__buf_seek(b, b->cursor + o); } static stbtt_uint32 stbtt__buf_get(stbtt__buf *b, int n) { stbtt_uint32 v = 0; int i; STBTT_assert(n >= 1 && n <= 4); for (i = 0; i < n; i++) v = (v << 8) | stbtt__buf_get8(b); return v; } static stbtt__buf stbtt__new_buf(const void *p, size_t size) { stbtt__buf r; STBTT_assert(size < 0x40000000); r.data = (stbtt_uint8*) p; r.size = (int) size; r.cursor = 0; return r; } #define stbtt__buf_get16(b) stbtt__buf_get((b), 2) #define stbtt__buf_get32(b) stbtt__buf_get((b), 4) static stbtt__buf stbtt__buf_range(const stbtt__buf *b, int o, int s) { stbtt__buf r = stbtt__new_buf(NULL, 0); if (o < 0 || s < 0 || o > b->size || s > b->size - o) return r; r.data = b->data + o; r.size = s; return r; } static stbtt__buf stbtt__cff_get_index(stbtt__buf *b) { int count, start, offsize; start = b->cursor; count = stbtt__buf_get16(b); if (count) { offsize = stbtt__buf_get8(b); STBTT_assert(offsize >= 1 && offsize <= 4); stbtt__buf_skip(b, offsize * count); stbtt__buf_skip(b, stbtt__buf_get(b, offsize) - 1); } return stbtt__buf_range(b, start, b->cursor - start); } static stbtt_uint32 stbtt__cff_int(stbtt__buf *b) { int b0 = stbtt__buf_get8(b); if (b0 >= 32 && b0 <= 246) return b0 - 139; else if (b0 >= 247 && b0 <= 250) return (b0 - 247)*256 + stbtt__buf_get8(b) + 108; else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - stbtt__buf_get8(b) - 108; else if (b0 == 28) return stbtt__buf_get16(b); else if (b0 == 29) return stbtt__buf_get32(b); STBTT_assert(0); return 0; } static void stbtt__cff_skip_operand(stbtt__buf *b) { int v, b0 = stbtt__buf_peek8(b); STBTT_assert(b0 >= 28); if (b0 == 30) { stbtt__buf_skip(b, 1); while (b->cursor < b->size) { v = stbtt__buf_get8(b); if ((v & 0xF) == 0xF || (v >> 4) == 0xF) break; } } else { stbtt__cff_int(b); } } static stbtt__buf stbtt__dict_get(stbtt__buf *b, int key) { stbtt__buf_seek(b, 0); while (b->cursor < b->size) { int start = b->cursor, end, op; while (stbtt__buf_peek8(b) >= 28) stbtt__cff_skip_operand(b); end = b->cursor; op = stbtt__buf_get8(b); if (op == 12) op = stbtt__buf_get8(b) | 0x100; if (op == key) return stbtt__buf_range(b, start, end-start); } return stbtt__buf_range(b, 0, 0); } static void stbtt__dict_get_ints(stbtt__buf *b, int key, int outcount, stbtt_uint32 *out) { int i; stbtt__buf operands = stbtt__dict_get(b, key); for (i = 0; i < outcount && operands.cursor < operands.size; i++) out[i] = stbtt__cff_int(&operands); } static int stbtt__cff_index_count(stbtt__buf *b) { stbtt__buf_seek(b, 0); return stbtt__buf_get16(b); } static stbtt__buf stbtt__cff_index_get(stbtt__buf b, int i) { int count, offsize, start, end; stbtt__buf_seek(&b, 0); count = stbtt__buf_get16(&b); offsize = stbtt__buf_get8(&b); STBTT_assert(i >= 0 && i < count); STBTT_assert(offsize >= 1 && offsize <= 4); stbtt__buf_skip(&b, i*offsize); start = stbtt__buf_get(&b, offsize); end = stbtt__buf_get(&b, offsize); return stbtt__buf_range(&b, 2+(count+1)*offsize+start, end - start); } ////////////////////////////////////////////////////////////////////////// // // accessors to parse data from file // // on platforms that don't allow misaligned reads, if we want to allow // truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE #define ttBYTE(p) (* (stbtt_uint8 *) (p)) #define ttCHAR(p) (* (stbtt_int8 *) (p)) #define ttFixed(p) ttLONG(p) static stbtt_uint16 ttUSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; } static stbtt_int16 ttSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; } static stbtt_uint32 ttULONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } static stbtt_int32 ttLONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } #define stbtt_tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3)) #define stbtt_tag(p,str) stbtt_tag4(p,str[0],str[1],str[2],str[3]) static int stbtt__isfont(stbtt_uint8 *font) { // check the version number if (stbtt_tag4(font, '1',0,0,0)) return 1; // TrueType 1 if (stbtt_tag(font, "typ1")) return 1; // TrueType with type 1 font -- we don't support this! if (stbtt_tag(font, "OTTO")) return 1; // OpenType with CFF if (stbtt_tag4(font, 0,1,0,0)) return 1; // OpenType 1.0 if (stbtt_tag(font, "true")) return 1; // Apple specification for TrueType fonts return 0; } // @OPTIMIZE: binary search static stbtt_uint32 stbtt__find_table(stbtt_uint8 *data, stbtt_uint32 fontstart, const char *tag) { stbtt_int32 num_tables = ttUSHORT(data+fontstart+4); stbtt_uint32 tabledir = fontstart + 12; stbtt_int32 i; for (i=0; i < num_tables; ++i) { stbtt_uint32 loc = tabledir + 16*i; if (stbtt_tag(data+loc+0, tag)) return ttULONG(data+loc+8); } return 0; } static int stbtt_GetFontOffsetForIndex_internal(unsigned char *font_collection, int index) { // if it's just a font, there's only one valid index if (stbtt__isfont(font_collection)) return index == 0 ? 0 : -1; // check if it's a TTC if (stbtt_tag(font_collection, "ttcf")) { // version 1? if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) { stbtt_int32 n = ttLONG(font_collection+8); if (index >= n) return -1; return ttULONG(font_collection+12+index*4); } } return -1; } static int stbtt_GetNumberOfFonts_internal(unsigned char *font_collection) { // if it's just a font, there's only one valid font if (stbtt__isfont(font_collection)) return 1; // check if it's a TTC if (stbtt_tag(font_collection, "ttcf")) { // version 1? if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) { return ttLONG(font_collection+8); } } return 0; } static stbtt__buf stbtt__get_subrs(stbtt__buf cff, stbtt__buf fontdict) { stbtt_uint32 subrsoff = 0, private_loc[2] = { 0, 0 }; stbtt__buf pdict; stbtt__dict_get_ints(&fontdict, 18, 2, private_loc); if (!private_loc[1] || !private_loc[0]) return stbtt__new_buf(NULL, 0); pdict = stbtt__buf_range(&cff, private_loc[1], private_loc[0]); stbtt__dict_get_ints(&pdict, 19, 1, &subrsoff); if (!subrsoff) return stbtt__new_buf(NULL, 0); stbtt__buf_seek(&cff, private_loc[1]+subrsoff); return stbtt__cff_get_index(&cff); } // since most people won't use this, find this table the first time it's needed static int stbtt__get_svg(stbtt_fontinfo *info) { stbtt_uint32 t; if (info->svg < 0) { t = stbtt__find_table(info->data, info->fontstart, "SVG "); if (t) { stbtt_uint32 offset = ttULONG(info->data + t + 2); info->svg = t + offset; } else { info->svg = 0; } } return info->svg; } static int stbtt_InitFont_internal(stbtt_fontinfo *info, unsigned char *data, int fontstart) { stbtt_uint32 cmap, t; stbtt_int32 i,numTables; info->data = data; info->fontstart = fontstart; info->cff = stbtt__new_buf(NULL, 0); cmap = stbtt__find_table(data, fontstart, "cmap"); // required info->loca = stbtt__find_table(data, fontstart, "loca"); // required info->head = stbtt__find_table(data, fontstart, "head"); // required info->glyf = stbtt__find_table(data, fontstart, "glyf"); // required info->hhea = stbtt__find_table(data, fontstart, "hhea"); // required info->hmtx = stbtt__find_table(data, fontstart, "hmtx"); // required info->kern = stbtt__find_table(data, fontstart, "kern"); // not required info->gpos = stbtt__find_table(data, fontstart, "GPOS"); // not required if (!cmap || !info->head || !info->hhea || !info->hmtx) return 0; if (info->glyf) { // required for truetype if (!info->loca) return 0; } else { // initialization for CFF / Type2 fonts (OTF) stbtt__buf b, topdict, topdictidx; stbtt_uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0; stbtt_uint32 cff; cff = stbtt__find_table(data, fontstart, "CFF "); if (!cff) return 0; info->fontdicts = stbtt__new_buf(NULL, 0); info->fdselect = stbtt__new_buf(NULL, 0); // @TODO this should use size from table (not 512MB) info->cff = stbtt__new_buf(data+cff, 512*1024*1024); b = info->cff; // read the header stbtt__buf_skip(&b, 2); stbtt__buf_seek(&b, stbtt__buf_get8(&b)); // hdrsize // @TODO the name INDEX could list multiple fonts, // but we just use the first one. stbtt__cff_get_index(&b); // name INDEX topdictidx = stbtt__cff_get_index(&b); topdict = stbtt__cff_index_get(topdictidx, 0); stbtt__cff_get_index(&b); // string INDEX info->gsubrs = stbtt__cff_get_index(&b); stbtt__dict_get_ints(&topdict, 17, 1, &charstrings); stbtt__dict_get_ints(&topdict, 0x100 | 6, 1, &cstype); stbtt__dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff); stbtt__dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff); info->subrs = stbtt__get_subrs(b, topdict); // we only support Type 2 charstrings if (cstype != 2) return 0; if (charstrings == 0) return 0; if (fdarrayoff) { // looks like a CID font if (!fdselectoff) return 0; stbtt__buf_seek(&b, fdarrayoff); info->fontdicts = stbtt__cff_get_index(&b); info->fdselect = stbtt__buf_range(&b, fdselectoff, b.size-fdselectoff); } stbtt__buf_seek(&b, charstrings); info->charstrings = stbtt__cff_get_index(&b); } t = stbtt__find_table(data, fontstart, "maxp"); if (t) info->numGlyphs = ttUSHORT(data+t+4); else info->numGlyphs = 0xffff; info->svg = -1; // find a cmap encoding table we understand *now* to avoid searching // later. (todo: could make this installable) // the same regardless of glyph. numTables = ttUSHORT(data + cmap + 2); info->index_map = 0; for (i=0; i < numTables; ++i) { stbtt_uint32 encoding_record = cmap + 4 + 8 * i; // find an encoding we understand: switch(ttUSHORT(data+encoding_record)) { case STBTT_PLATFORM_ID_MICROSOFT: switch (ttUSHORT(data+encoding_record+2)) { case STBTT_MS_EID_UNICODE_BMP: case STBTT_MS_EID_UNICODE_FULL: // MS/Unicode info->index_map = cmap + ttULONG(data+encoding_record+4); break; } break; case STBTT_PLATFORM_ID_UNICODE: // Mac/iOS has these // all the encodingIDs are unicode, so we don't bother to check it info->index_map = cmap + ttULONG(data+encoding_record+4); break; } } if (info->index_map == 0) return 0; info->indexToLocFormat = ttUSHORT(data+info->head + 50); return 1; } STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint) { stbtt_uint8 *data = info->data; stbtt_uint32 index_map = info->index_map; stbtt_uint16 format = ttUSHORT(data + index_map + 0); if (format == 0) { // apple byte encoding stbtt_int32 bytes = ttUSHORT(data + index_map + 2); if (unicode_codepoint < bytes-6) return ttBYTE(data + index_map + 6 + unicode_codepoint); return 0; } else if (format == 6) { stbtt_uint32 first = ttUSHORT(data + index_map + 6); stbtt_uint32 count = ttUSHORT(data + index_map + 8); if ((stbtt_uint32) unicode_codepoint >= first && (stbtt_uint32) unicode_codepoint < first+count) return ttUSHORT(data + index_map + 10 + (unicode_codepoint - first)*2); return 0; } else if (format == 2) { STBTT_assert(0); // @TODO: high-byte mapping for japanese/chinese/korean return 0; } else if (format == 4) { // standard mapping for windows fonts: binary search collection of ranges stbtt_uint16 segcount = ttUSHORT(data+index_map+6) >> 1; stbtt_uint16 searchRange = ttUSHORT(data+index_map+8) >> 1; stbtt_uint16 entrySelector = ttUSHORT(data+index_map+10); stbtt_uint16 rangeShift = ttUSHORT(data+index_map+12) >> 1; // do a binary search of the segments stbtt_uint32 endCount = index_map + 14; stbtt_uint32 search = endCount; if (unicode_codepoint > 0xffff) return 0; // they lie from endCount .. endCount + segCount // but searchRange is the nearest power of two, so... if (unicode_codepoint >= ttUSHORT(data + search + rangeShift*2)) search += rangeShift*2; // now decrement to bias correctly to find smallest search -= 2; while (entrySelector) { stbtt_uint16 end; searchRange >>= 1; end = ttUSHORT(data + search + searchRange*2); if (unicode_codepoint > end) search += searchRange*2; --entrySelector; } search += 2; { stbtt_uint16 offset, start; stbtt_uint16 item = (stbtt_uint16) ((search - endCount) >> 1); STBTT_assert(unicode_codepoint <= ttUSHORT(data + endCount + 2*item)); start = ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item); if (unicode_codepoint < start) return 0; offset = ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item); if (offset == 0) return (stbtt_uint16) (unicode_codepoint + ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item)); return ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item); } } else if (format == 12 || format == 13) { stbtt_uint32 ngroups = ttULONG(data+index_map+12); stbtt_int32 low,high; low = 0; high = (stbtt_int32)ngroups; // Binary search the right group. while (low < high) { stbtt_int32 mid = low + ((high-low) >> 1); // rounds down, so low <= mid < high stbtt_uint32 start_char = ttULONG(data+index_map+16+mid*12); stbtt_uint32 end_char = ttULONG(data+index_map+16+mid*12+4); if ((stbtt_uint32) unicode_codepoint < start_char) high = mid; else if ((stbtt_uint32) unicode_codepoint > end_char) low = mid+1; else { stbtt_uint32 start_glyph = ttULONG(data+index_map+16+mid*12+8); if (format == 12) return start_glyph + unicode_codepoint-start_char; else // format == 13 return start_glyph; } } return 0; // not found } // @TODO STBTT_assert(0); return 0; } STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices) { return stbtt_GetGlyphShape(info, stbtt_FindGlyphIndex(info, unicode_codepoint), vertices); } static void stbtt_setvertex(stbtt_vertex *v, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy) { v->type = type; v->x = (stbtt_int16) x; v->y = (stbtt_int16) y; v->cx = (stbtt_int16) cx; v->cy = (stbtt_int16) cy; } static int stbtt__GetGlyfOffset(const stbtt_fontinfo *info, int glyph_index) { int g1,g2; STBTT_assert(!info->cff.size); if (glyph_index >= info->numGlyphs) return -1; // glyph index out of range if (info->indexToLocFormat >= 2) return -1; // unknown index->glyph map format if (info->indexToLocFormat == 0) { g1 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2) * 2; g2 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2 + 2) * 2; } else { g1 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4); g2 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4 + 4); } return g1==g2 ? -1 : g1; // if length is 0, return -1 } static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { if (info->cff.size) { stbtt__GetGlyphInfoT2(info, glyph_index, x0, y0, x1, y1); } else { int g = stbtt__GetGlyfOffset(info, glyph_index); if (g < 0) return 0; if (x0) *x0 = ttSHORT(info->data + g + 2); if (y0) *y0 = ttSHORT(info->data + g + 4); if (x1) *x1 = ttSHORT(info->data + g + 6); if (y1) *y1 = ttSHORT(info->data + g + 8); } return 1; } STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1) { return stbtt_GetGlyphBox(info, stbtt_FindGlyphIndex(info,codepoint), x0,y0,x1,y1); } STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index) { stbtt_int16 numberOfContours; int g; if (info->cff.size) return stbtt__GetGlyphInfoT2(info, glyph_index, NULL, NULL, NULL, NULL) == 0; g = stbtt__GetGlyfOffset(info, glyph_index); if (g < 0) return 1; numberOfContours = ttSHORT(info->data + g); return numberOfContours == 0; } static int stbtt__close_shape(stbtt_vertex *vertices, int num_vertices, int was_off, int start_off, stbtt_int32 sx, stbtt_int32 sy, stbtt_int32 scx, stbtt_int32 scy, stbtt_int32 cx, stbtt_int32 cy) { if (start_off) { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy); stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, sx,sy,scx,scy); } else { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve,sx,sy,cx,cy); else stbtt_setvertex(&vertices[num_vertices++], STBTT_vline,sx,sy,0,0); } return num_vertices; } static int stbtt__GetGlyphShapeTT(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { stbtt_int16 numberOfContours; stbtt_uint8 *endPtsOfContours; stbtt_uint8 *data = info->data; stbtt_vertex *vertices=0; int num_vertices=0; int g = stbtt__GetGlyfOffset(info, glyph_index); *pvertices = NULL; if (g < 0) return 0; numberOfContours = ttSHORT(data + g); if (numberOfContours > 0) { stbtt_uint8 flags=0,flagcount; stbtt_int32 ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0; stbtt_int32 x,y,cx,cy,sx,sy, scx,scy; stbtt_uint8 *points; endPtsOfContours = (data + g + 10); ins = ttUSHORT(data + g + 10 + numberOfContours * 2); points = data + g + 10 + numberOfContours * 2 + 2 + ins; n = 1+ttUSHORT(endPtsOfContours + numberOfContours*2-2); m = n + 2*numberOfContours; // a loose bound on how many vertices we might need vertices = (stbtt_vertex *) STBTT_malloc(m * sizeof(vertices[0]), info->userdata); if (vertices == 0) return 0; next_move = 0; flagcount=0; // in first pass, we load uninterpreted data into the allocated array // above, shifted to the end of the array so we won't overwrite it when // we create our final data starting from the front off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated // first load flags for (i=0; i < n; ++i) { if (flagcount == 0) { flags = *points++; if (flags & 8) flagcount = *points++; } else --flagcount; vertices[off+i].type = flags; } // now load x coordinates x=0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; if (flags & 2) { stbtt_int16 dx = *points++; x += (flags & 16) ? dx : -dx; // ??? } else { if (!(flags & 16)) { x = x + (stbtt_int16) (points[0]*256 + points[1]); points += 2; } } vertices[off+i].x = (stbtt_int16) x; } // now load y coordinates y=0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; if (flags & 4) { stbtt_int16 dy = *points++; y += (flags & 32) ? dy : -dy; // ??? } else { if (!(flags & 32)) { y = y + (stbtt_int16) (points[0]*256 + points[1]); points += 2; } } vertices[off+i].y = (stbtt_int16) y; } // now convert them to our format num_vertices=0; sx = sy = cx = cy = scx = scy = 0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; x = (stbtt_int16) vertices[off+i].x; y = (stbtt_int16) vertices[off+i].y; if (next_move == i) { if (i != 0) num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy); // now start the new one start_off = !(flags & 1); if (start_off) { // if we start off with an off-curve point, then when we need to find a point on the curve // where we can start, and we need to save some state for when we wraparound. scx = x; scy = y; if (!(vertices[off+i+1].type & 1)) { // next point is also a curve point, so interpolate an on-point curve sx = (x + (stbtt_int32) vertices[off+i+1].x) >> 1; sy = (y + (stbtt_int32) vertices[off+i+1].y) >> 1; } else { // otherwise just use the next point as our start point sx = (stbtt_int32) vertices[off+i+1].x; sy = (stbtt_int32) vertices[off+i+1].y; ++i; // we're using point i+1 as the starting point, so skip it } } else { sx = x; sy = y; } stbtt_setvertex(&vertices[num_vertices++], STBTT_vmove,sx,sy,0,0); was_off = 0; next_move = 1 + ttUSHORT(endPtsOfContours+j*2); ++j; } else { if (!(flags & 1)) { // if it's a curve if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy); cx = x; cy = y; was_off = 1; } else { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, x,y, cx, cy); else stbtt_setvertex(&vertices[num_vertices++], STBTT_vline, x,y,0,0); was_off = 0; } } } num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy); } else if (numberOfContours < 0) { // Compound shapes. int more = 1; stbtt_uint8 *comp = data + g + 10; num_vertices = 0; vertices = 0; while (more) { stbtt_uint16 flags, gidx; int comp_num_verts = 0, i; stbtt_vertex *comp_verts = 0, *tmp = 0; float mtx[6] = {1,0,0,1,0,0}, m, n; flags = ttSHORT(comp); comp+=2; gidx = ttSHORT(comp); comp+=2; if (flags & 2) { // XY values if (flags & 1) { // shorts mtx[4] = ttSHORT(comp); comp+=2; mtx[5] = ttSHORT(comp); comp+=2; } else { mtx[4] = ttCHAR(comp); comp+=1; mtx[5] = ttCHAR(comp); comp+=1; } } else { // @TODO handle matching point STBTT_assert(0); } if (flags & (1<<3)) { // WE_HAVE_A_SCALE mtx[0] = mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; } else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE mtx[0] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; } else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO mtx[0] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = ttSHORT(comp)/16384.0f; comp+=2; mtx[2] = ttSHORT(comp)/16384.0f; comp+=2; mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; } // Find transformation scales. m = (float) STBTT_sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]); n = (float) STBTT_sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]); // Get indexed glyph. comp_num_verts = stbtt_GetGlyphShape(info, gidx, &comp_verts); if (comp_num_verts > 0) { // Transform vertices. for (i = 0; i < comp_num_verts; ++i) { stbtt_vertex* v = &comp_verts[i]; stbtt_vertex_type x,y; x=v->x; y=v->y; v->x = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->y = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); x=v->cx; y=v->cy; v->cx = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->cy = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); } // Append vertices. tmp = (stbtt_vertex*)STBTT_malloc((num_vertices+comp_num_verts)*sizeof(stbtt_vertex), info->userdata); if (!tmp) { if (vertices) STBTT_free(vertices, info->userdata); if (comp_verts) STBTT_free(comp_verts, info->userdata); return 0; } if (num_vertices > 0) STBTT_memcpy(tmp, vertices, num_vertices*sizeof(stbtt_vertex)); STBTT_memcpy(tmp+num_vertices, comp_verts, comp_num_verts*sizeof(stbtt_vertex)); if (vertices) STBTT_free(vertices, info->userdata); vertices = tmp; STBTT_free(comp_verts, info->userdata); num_vertices += comp_num_verts; } // More components ? more = flags & (1<<5); } } else { // numberOfCounters == 0, do nothing } *pvertices = vertices; return num_vertices; } typedef struct { int bounds; int started; float first_x, first_y; float x, y; stbtt_int32 min_x, max_x, min_y, max_y; stbtt_vertex *pvertices; int num_vertices; } stbtt__csctx; #define STBTT__CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, NULL, 0} static void stbtt__track_vertex(stbtt__csctx *c, stbtt_int32 x, stbtt_int32 y) { if (x > c->max_x || !c->started) c->max_x = x; if (y > c->max_y || !c->started) c->max_y = y; if (x < c->min_x || !c->started) c->min_x = x; if (y < c->min_y || !c->started) c->min_y = y; c->started = 1; } static void stbtt__csctx_v(stbtt__csctx *c, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy, stbtt_int32 cx1, stbtt_int32 cy1) { if (c->bounds) { stbtt__track_vertex(c, x, y); if (type == STBTT_vcubic) { stbtt__track_vertex(c, cx, cy); stbtt__track_vertex(c, cx1, cy1); } } else { stbtt_setvertex(&c->pvertices[c->num_vertices], type, x, y, cx, cy); c->pvertices[c->num_vertices].cx1 = (stbtt_int16) cx1; c->pvertices[c->num_vertices].cy1 = (stbtt_int16) cy1; } c->num_vertices++; } static void stbtt__csctx_close_shape(stbtt__csctx *ctx) { if (ctx->first_x != ctx->x || ctx->first_y != ctx->y) stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0); } static void stbtt__csctx_rmove_to(stbtt__csctx *ctx, float dx, float dy) { stbtt__csctx_close_shape(ctx); ctx->first_x = ctx->x = ctx->x + dx; ctx->first_y = ctx->y = ctx->y + dy; stbtt__csctx_v(ctx, STBTT_vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void stbtt__csctx_rline_to(stbtt__csctx *ctx, float dx, float dy) { ctx->x += dx; ctx->y += dy; stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void stbtt__csctx_rccurve_to(stbtt__csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3) { float cx1 = ctx->x + dx1; float cy1 = ctx->y + dy1; float cx2 = cx1 + dx2; float cy2 = cy1 + dy2; ctx->x = cx2 + dx3; ctx->y = cy2 + dy3; stbtt__csctx_v(ctx, STBTT_vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2); } static stbtt__buf stbtt__get_subr(stbtt__buf idx, int n) { int count = stbtt__cff_index_count(&idx); int bias = 107; if (count >= 33900) bias = 32768; else if (count >= 1240) bias = 1131; n += bias; if (n < 0 || n >= count) return stbtt__new_buf(NULL, 0); return stbtt__cff_index_get(idx, n); } static stbtt__buf stbtt__cid_get_glyph_subrs(const stbtt_fontinfo *info, int glyph_index) { stbtt__buf fdselect = info->fdselect; int nranges, start, end, v, fmt, fdselector = -1, i; stbtt__buf_seek(&fdselect, 0); fmt = stbtt__buf_get8(&fdselect); if (fmt == 0) { // untested stbtt__buf_skip(&fdselect, glyph_index); fdselector = stbtt__buf_get8(&fdselect); } else if (fmt == 3) { nranges = stbtt__buf_get16(&fdselect); start = stbtt__buf_get16(&fdselect); for (i = 0; i < nranges; i++) { v = stbtt__buf_get8(&fdselect); end = stbtt__buf_get16(&fdselect); if (glyph_index >= start && glyph_index < end) { fdselector = v; break; } start = end; } } if (fdselector == -1) stbtt__new_buf(NULL, 0); return stbtt__get_subrs(info->cff, stbtt__cff_index_get(info->fontdicts, fdselector)); } static int stbtt__run_charstring(const stbtt_fontinfo *info, int glyph_index, stbtt__csctx *c) { int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0; int has_subrs = 0, clear_stack; float s[48]; stbtt__buf subr_stack[10], subrs = info->subrs, b; float f; #define STBTT__CSERR(s) (0) // this currently ignores the initial width value, which isn't needed if we have hmtx b = stbtt__cff_index_get(info->charstrings, glyph_index); while (b.cursor < b.size) { i = 0; clear_stack = 1; b0 = stbtt__buf_get8(&b); switch (b0) { // @TODO implement hinting case 0x13: // hintmask case 0x14: // cntrmask if (in_header) maskbits += (sp / 2); // implicit "vstem" in_header = 0; stbtt__buf_skip(&b, (maskbits + 7) / 8); break; case 0x01: // hstem case 0x03: // vstem case 0x12: // hstemhm case 0x17: // vstemhm maskbits += (sp / 2); break; case 0x15: // rmoveto in_header = 0; if (sp < 2) return STBTT__CSERR("rmoveto stack"); stbtt__csctx_rmove_to(c, s[sp-2], s[sp-1]); break; case 0x04: // vmoveto in_header = 0; if (sp < 1) return STBTT__CSERR("vmoveto stack"); stbtt__csctx_rmove_to(c, 0, s[sp-1]); break; case 0x16: // hmoveto in_header = 0; if (sp < 1) return STBTT__CSERR("hmoveto stack"); stbtt__csctx_rmove_to(c, s[sp-1], 0); break; case 0x05: // rlineto if (sp < 2) return STBTT__CSERR("rlineto stack"); for (; i + 1 < sp; i += 2) stbtt__csctx_rline_to(c, s[i], s[i+1]); break; // hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical // starting from a different place. case 0x07: // vlineto if (sp < 1) return STBTT__CSERR("vlineto stack"); goto vlineto; case 0x06: // hlineto if (sp < 1) return STBTT__CSERR("hlineto stack"); for (;;) { if (i >= sp) break; stbtt__csctx_rline_to(c, s[i], 0); i++; vlineto: if (i >= sp) break; stbtt__csctx_rline_to(c, 0, s[i]); i++; } break; case 0x1F: // hvcurveto if (sp < 4) return STBTT__CSERR("hvcurveto stack"); goto hvcurveto; case 0x1E: // vhcurveto if (sp < 4) return STBTT__CSERR("vhcurveto stack"); for (;;) { if (i + 3 >= sp) break; stbtt__csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f); i += 4; hvcurveto: if (i + 3 >= sp) break; stbtt__csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]); i += 4; } break; case 0x08: // rrcurveto if (sp < 6) return STBTT__CSERR("rcurveline stack"); for (; i + 5 < sp; i += 6) stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x18: // rcurveline if (sp < 8) return STBTT__CSERR("rcurveline stack"); for (; i + 5 < sp - 2; i += 6) stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); if (i + 1 >= sp) return STBTT__CSERR("rcurveline stack"); stbtt__csctx_rline_to(c, s[i], s[i+1]); break; case 0x19: // rlinecurve if (sp < 8) return STBTT__CSERR("rlinecurve stack"); for (; i + 1 < sp - 6; i += 2) stbtt__csctx_rline_to(c, s[i], s[i+1]); if (i + 5 >= sp) return STBTT__CSERR("rlinecurve stack"); stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x1A: // vvcurveto case 0x1B: // hhcurveto if (sp < 4) return STBTT__CSERR("(vv|hh)curveto stack"); f = 0.0; if (sp & 1) { f = s[i]; i++; } for (; i + 3 < sp; i += 4) { if (b0 == 0x1B) stbtt__csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0); else stbtt__csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]); f = 0.0; } break; case 0x0A: // callsubr if (!has_subrs) { if (info->fdselect.size) subrs = stbtt__cid_get_glyph_subrs(info, glyph_index); has_subrs = 1; } // fallthrough case 0x1D: // callgsubr if (sp < 1) return STBTT__CSERR("call(g|)subr stack"); v = (int) s[--sp]; if (subr_stack_height >= 10) return STBTT__CSERR("recursion limit"); subr_stack[subr_stack_height++] = b; b = stbtt__get_subr(b0 == 0x0A ? subrs : info->gsubrs, v); if (b.size == 0) return STBTT__CSERR("subr not found"); b.cursor = 0; clear_stack = 0; break; case 0x0B: // return if (subr_stack_height <= 0) return STBTT__CSERR("return outside subr"); b = subr_stack[--subr_stack_height]; clear_stack = 0; break; case 0x0E: // endchar stbtt__csctx_close_shape(c); return 1; case 0x0C: { // two-byte escape float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6; float dx, dy; int b1 = stbtt__buf_get8(&b); switch (b1) { // @TODO These "flex" implementations ignore the flex-depth and resolution, // and always draw beziers. case 0x22: // hflex if (sp < 7) return STBTT__CSERR("hflex stack"); dx1 = s[0]; dx2 = s[1]; dy2 = s[2]; dx3 = s[3]; dx4 = s[4]; dx5 = s[5]; dx6 = s[6]; stbtt__csctx_rccurve_to(c, dx1, 0, dx2, dy2, dx3, 0); stbtt__csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0); break; case 0x23: // flex if (sp < 13) return STBTT__CSERR("flex stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = s[10]; dy6 = s[11]; //fd is s[12] stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; case 0x24: // hflex1 if (sp < 9) return STBTT__CSERR("hflex1 stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dx4 = s[5]; dx5 = s[6]; dy5 = s[7]; dx6 = s[8]; stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0); stbtt__csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5)); break; case 0x25: // flex1 if (sp < 11) return STBTT__CSERR("flex1 stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = dy6 = s[10]; dx = dx1+dx2+dx3+dx4+dx5; dy = dy1+dy2+dy3+dy4+dy5; if (STBTT_fabs(dx) > STBTT_fabs(dy)) dy6 = -dy; else dx6 = -dx; stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; default: return STBTT__CSERR("unimplemented"); } } break; default: if (b0 != 255 && b0 != 28 && (b0 < 32 || b0 > 254)) return STBTT__CSERR("reserved operator"); // push immediate if (b0 == 255) { f = (float)(stbtt_int32)stbtt__buf_get32(&b) / 0x10000; } else { stbtt__buf_skip(&b, -1); f = (float)(stbtt_int16)stbtt__cff_int(&b); } if (sp >= 48) return STBTT__CSERR("push stack overflow"); s[sp++] = f; clear_stack = 0; break; } if (clear_stack) sp = 0; } return STBTT__CSERR("no endchar"); #undef STBTT__CSERR } static int stbtt__GetGlyphShapeT2(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { // runs the charstring twice, once to count and once to output (to avoid realloc) stbtt__csctx count_ctx = STBTT__CSCTX_INIT(1); stbtt__csctx output_ctx = STBTT__CSCTX_INIT(0); if (stbtt__run_charstring(info, glyph_index, &count_ctx)) { *pvertices = (stbtt_vertex*)STBTT_malloc(count_ctx.num_vertices*sizeof(stbtt_vertex), info->userdata); output_ctx.pvertices = *pvertices; if (stbtt__run_charstring(info, glyph_index, &output_ctx)) { STBTT_assert(output_ctx.num_vertices == count_ctx.num_vertices); return output_ctx.num_vertices; } } *pvertices = NULL; return 0; } static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { stbtt__csctx c = STBTT__CSCTX_INIT(1); int r = stbtt__run_charstring(info, glyph_index, &c); if (x0) *x0 = r ? c.min_x : 0; if (y0) *y0 = r ? c.min_y : 0; if (x1) *x1 = r ? c.max_x : 0; if (y1) *y1 = r ? c.max_y : 0; return r ? c.num_vertices : 0; } STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { if (!info->cff.size) return stbtt__GetGlyphShapeTT(info, glyph_index, pvertices); else return stbtt__GetGlyphShapeT2(info, glyph_index, pvertices); } STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing) { stbtt_uint16 numOfLongHorMetrics = ttUSHORT(info->data+info->hhea + 34); if (glyph_index < numOfLongHorMetrics) { if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*glyph_index); if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*glyph_index + 2); } else { if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*(numOfLongHorMetrics-1)); if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics)); } } STBTT_DEF int stbtt_GetKerningTableLength(const stbtt_fontinfo *info) { stbtt_uint8 *data = info->data + info->kern; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) // number of tables, need at least 1 return 0; if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format return 0; return ttUSHORT(data+10); } STBTT_DEF int stbtt_GetKerningTable(const stbtt_fontinfo *info, stbtt_kerningentry* table, int table_length) { stbtt_uint8 *data = info->data + info->kern; int k, length; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) // number of tables, need at least 1 return 0; if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format return 0; length = ttUSHORT(data+10); if (table_length < length) length = table_length; for (k = 0; k < length; k++) { table[k].glyph1 = ttUSHORT(data+18+(k*6)); table[k].glyph2 = ttUSHORT(data+20+(k*6)); table[k].advance = ttSHORT(data+22+(k*6)); } return length; } static int stbtt__GetGlyphKernInfoAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2) { stbtt_uint8 *data = info->data + info->kern; stbtt_uint32 needle, straw; int l, r, m; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) // number of tables, need at least 1 return 0; if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format return 0; l = 0; r = ttUSHORT(data+10) - 1; needle = glyph1 << 16 | glyph2; while (l <= r) { m = (l + r) >> 1; straw = ttULONG(data+18+(m*6)); // note: unaligned read if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else return ttSHORT(data+22+(m*6)); } return 0; } static stbtt_int32 stbtt__GetCoverageIndex(stbtt_uint8 *coverageTable, int glyph) { stbtt_uint16 coverageFormat = ttUSHORT(coverageTable); switch(coverageFormat) { case 1: { stbtt_uint16 glyphCount = ttUSHORT(coverageTable + 2); // Binary search. stbtt_int32 l=0, r=glyphCount-1, m; int straw, needle=glyph; while (l <= r) { stbtt_uint8 *glyphArray = coverageTable + 4; stbtt_uint16 glyphID; m = (l + r) >> 1; glyphID = ttUSHORT(glyphArray + 2 * m); straw = glyphID; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { return m; } } } break; case 2: { stbtt_uint16 rangeCount = ttUSHORT(coverageTable + 2); stbtt_uint8 *rangeArray = coverageTable + 4; // Binary search. stbtt_int32 l=0, r=rangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { stbtt_uint8 *rangeRecord; m = (l + r) >> 1; rangeRecord = rangeArray + 6 * m; strawStart = ttUSHORT(rangeRecord); strawEnd = ttUSHORT(rangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else { stbtt_uint16 startCoverageIndex = ttUSHORT(rangeRecord + 4); return startCoverageIndex + glyph - strawStart; } } } break; default: { // There are no other cases. STBTT_assert(0); } break; } return -1; } static stbtt_int32 stbtt__GetGlyphClass(stbtt_uint8 *classDefTable, int glyph) { stbtt_uint16 classDefFormat = ttUSHORT(classDefTable); switch(classDefFormat) { case 1: { stbtt_uint16 startGlyphID = ttUSHORT(classDefTable + 2); stbtt_uint16 glyphCount = ttUSHORT(classDefTable + 4); stbtt_uint8 *classDef1ValueArray = classDefTable + 6; if (glyph >= startGlyphID && glyph < startGlyphID + glyphCount) return (stbtt_int32)ttUSHORT(classDef1ValueArray + 2 * (glyph - startGlyphID)); classDefTable = classDef1ValueArray + 2 * glyphCount; } break; case 2: { stbtt_uint16 classRangeCount = ttUSHORT(classDefTable + 2); stbtt_uint8 *classRangeRecords = classDefTable + 4; // Binary search. stbtt_int32 l=0, r=classRangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { stbtt_uint8 *classRangeRecord; m = (l + r) >> 1; classRangeRecord = classRangeRecords + 6 * m; strawStart = ttUSHORT(classRangeRecord); strawEnd = ttUSHORT(classRangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else return (stbtt_int32)ttUSHORT(classRangeRecord + 4); } classDefTable = classRangeRecords + 6 * classRangeCount; } break; default: { // There are no other cases. STBTT_assert(0); } break; } return -1; } // Define to STBTT_assert(x) if you want to break on unimplemented formats. #define STBTT_GPOS_TODO_assert(x) static stbtt_int32 stbtt__GetGlyphGPOSInfoAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2) { stbtt_uint16 lookupListOffset; stbtt_uint8 *lookupList; stbtt_uint16 lookupCount; stbtt_uint8 *data; stbtt_int32 i; if (!info->gpos) return 0; data = info->data + info->gpos; if (ttUSHORT(data+0) != 1) return 0; // Major version 1 if (ttUSHORT(data+2) != 0) return 0; // Minor version 0 lookupListOffset = ttUSHORT(data+8); lookupList = data + lookupListOffset; lookupCount = ttUSHORT(lookupList); for (i=0; i<lookupCount; ++i) { stbtt_uint16 lookupOffset = ttUSHORT(lookupList + 2 + 2 * i); stbtt_uint8 *lookupTable = lookupList + lookupOffset; stbtt_uint16 lookupType = ttUSHORT(lookupTable); stbtt_uint16 subTableCount = ttUSHORT(lookupTable + 4); stbtt_uint8 *subTableOffsets = lookupTable + 6; switch(lookupType) { case 2: { // Pair Adjustment Positioning Subtable stbtt_int32 sti; for (sti=0; sti<subTableCount; sti++) { stbtt_uint16 subtableOffset = ttUSHORT(subTableOffsets + 2 * sti); stbtt_uint8 *table = lookupTable + subtableOffset; stbtt_uint16 posFormat = ttUSHORT(table); stbtt_uint16 coverageOffset = ttUSHORT(table + 2); stbtt_int32 coverageIndex = stbtt__GetCoverageIndex(table + coverageOffset, glyph1); if (coverageIndex == -1) continue; switch (posFormat) { case 1: { stbtt_int32 l, r, m; int straw, needle; stbtt_uint16 valueFormat1 = ttUSHORT(table + 4); stbtt_uint16 valueFormat2 = ttUSHORT(table + 6); stbtt_int32 valueRecordPairSizeInBytes = 2; stbtt_uint16 pairSetCount = ttUSHORT(table + 8); stbtt_uint16 pairPosOffset = ttUSHORT(table + 10 + 2 * coverageIndex); stbtt_uint8 *pairValueTable = table + pairPosOffset; stbtt_uint16 pairValueCount = ttUSHORT(pairValueTable); stbtt_uint8 *pairValueArray = pairValueTable + 2; // TODO: Support more formats. STBTT_GPOS_TODO_assert(valueFormat1 == 4); if (valueFormat1 != 4) return 0; STBTT_GPOS_TODO_assert(valueFormat2 == 0); if (valueFormat2 != 0) return 0; STBTT_assert(coverageIndex < pairSetCount); STBTT__NOTUSED(pairSetCount); needle=glyph2; r=pairValueCount-1; l=0; // Binary search. while (l <= r) { stbtt_uint16 secondGlyph; stbtt_uint8 *pairValue; m = (l + r) >> 1; pairValue = pairValueArray + (2 + valueRecordPairSizeInBytes) * m; secondGlyph = ttUSHORT(pairValue); straw = secondGlyph; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { stbtt_int16 xAdvance = ttSHORT(pairValue + 2); return xAdvance; } } } break; case 2: { stbtt_uint16 valueFormat1 = ttUSHORT(table + 4); stbtt_uint16 valueFormat2 = ttUSHORT(table + 6); stbtt_uint16 classDef1Offset = ttUSHORT(table + 8); stbtt_uint16 classDef2Offset = ttUSHORT(table + 10); int glyph1class = stbtt__GetGlyphClass(table + classDef1Offset, glyph1); int glyph2class = stbtt__GetGlyphClass(table + classDef2Offset, glyph2); stbtt_uint16 class1Count = ttUSHORT(table + 12); stbtt_uint16 class2Count = ttUSHORT(table + 14); STBTT_assert(glyph1class < class1Count); STBTT_assert(glyph2class < class2Count); // TODO: Support more formats. STBTT_GPOS_TODO_assert(valueFormat1 == 4); if (valueFormat1 != 4) return 0; STBTT_GPOS_TODO_assert(valueFormat2 == 0); if (valueFormat2 != 0) return 0; if (glyph1class >= 0 && glyph1class < class1Count && glyph2class >= 0 && glyph2class < class2Count) { stbtt_uint8 *class1Records = table + 16; stbtt_uint8 *class2Records = class1Records + 2 * (glyph1class * class2Count); stbtt_int16 xAdvance = ttSHORT(class2Records + 2 * glyph2class); return xAdvance; } } break; default: { // There are no other cases. STBTT_assert(0); break; }; } } break; }; default: // TODO: Implement other stuff. break; } } return 0; } STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int g1, int g2) { int xAdvance = 0; if (info->gpos) xAdvance += stbtt__GetGlyphGPOSInfoAdvance(info, g1, g2); else if (info->kern) xAdvance += stbtt__GetGlyphKernInfoAdvance(info, g1, g2); return xAdvance; } STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2) { if (!info->kern && !info->gpos) // if no kerning table, don't waste time looking up both codepoint->glyphs return 0; return stbtt_GetGlyphKernAdvance(info, stbtt_FindGlyphIndex(info,ch1), stbtt_FindGlyphIndex(info,ch2)); } STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing) { stbtt_GetGlyphHMetrics(info, stbtt_FindGlyphIndex(info,codepoint), advanceWidth, leftSideBearing); } STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap) { if (ascent ) *ascent = ttSHORT(info->data+info->hhea + 4); if (descent) *descent = ttSHORT(info->data+info->hhea + 6); if (lineGap) *lineGap = ttSHORT(info->data+info->hhea + 8); } STBTT_DEF int stbtt_GetFontVMetricsOS2(const stbtt_fontinfo *info, int *typoAscent, int *typoDescent, int *typoLineGap) { int tab = stbtt__find_table(info->data, info->fontstart, "OS/2"); if (!tab) return 0; if (typoAscent ) *typoAscent = ttSHORT(info->data+tab + 68); if (typoDescent) *typoDescent = ttSHORT(info->data+tab + 70); if (typoLineGap) *typoLineGap = ttSHORT(info->data+tab + 72); return 1; } STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1) { *x0 = ttSHORT(info->data + info->head + 36); *y0 = ttSHORT(info->data + info->head + 38); *x1 = ttSHORT(info->data + info->head + 40); *y1 = ttSHORT(info->data + info->head + 42); } STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float height) { int fheight = ttSHORT(info->data + info->hhea + 4) - ttSHORT(info->data + info->hhea + 6); return (float) height / fheight; } STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels) { int unitsPerEm = ttUSHORT(info->data + info->head + 18); return pixels / unitsPerEm; } STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *v) { STBTT_free(v, info->userdata); } STBTT_DEF stbtt_uint8 *stbtt_FindSVGDoc(const stbtt_fontinfo *info, int gl) { int i; stbtt_uint8 *data = info->data; stbtt_uint8 *svg_doc_list = data + stbtt__get_svg((stbtt_fontinfo *) info); int numEntries = ttUSHORT(svg_doc_list); stbtt_uint8 *svg_docs = svg_doc_list + 2; for(i=0; i<numEntries; i++) { stbtt_uint8 *svg_doc = svg_docs + (12 * i); if ((gl >= ttUSHORT(svg_doc)) && (gl <= ttUSHORT(svg_doc + 2))) return svg_doc; } return 0; } STBTT_DEF int stbtt_GetGlyphSVG(const stbtt_fontinfo *info, int gl, const char **svg) { stbtt_uint8 *data = info->data; stbtt_uint8 *svg_doc; if (info->svg == 0) return 0; svg_doc = stbtt_FindSVGDoc(info, gl); if (svg_doc != NULL) { *svg = (char *) data + info->svg + ttULONG(svg_doc + 4); return ttULONG(svg_doc + 8); } else { return 0; } } STBTT_DEF int stbtt_GetCodepointSVG(const stbtt_fontinfo *info, int unicode_codepoint, const char **svg) { return stbtt_GetGlyphSVG(info, stbtt_FindGlyphIndex(info, unicode_codepoint), svg); } ////////////////////////////////////////////////////////////////////////////// // // antialiasing software rasterizer // STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { int x0=0,y0=0,x1,y1; // =0 suppresses compiler warning if (!stbtt_GetGlyphBox(font, glyph, &x0,&y0,&x1,&y1)) { // e.g. space character if (ix0) *ix0 = 0; if (iy0) *iy0 = 0; if (ix1) *ix1 = 0; if (iy1) *iy1 = 0; } else { // move to integral bboxes (treating pixels as little squares, what pixels get touched)? if (ix0) *ix0 = STBTT_ifloor( x0 * scale_x + shift_x); if (iy0) *iy0 = STBTT_ifloor(-y1 * scale_y + shift_y); if (ix1) *ix1 = STBTT_iceil ( x1 * scale_x + shift_x); if (iy1) *iy1 = STBTT_iceil (-y0 * scale_y + shift_y); } } STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetGlyphBitmapBoxSubpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1); } STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetGlyphBitmapBoxSubpixel(font, stbtt_FindGlyphIndex(font,codepoint), scale_x, scale_y,shift_x,shift_y, ix0,iy0,ix1,iy1); } STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetCodepointBitmapBoxSubpixel(font, codepoint, scale_x, scale_y,0.0f,0.0f, ix0,iy0,ix1,iy1); } ////////////////////////////////////////////////////////////////////////////// // // Rasterizer typedef struct stbtt__hheap_chunk { struct stbtt__hheap_chunk *next; } stbtt__hheap_chunk; typedef struct stbtt__hheap { struct stbtt__hheap_chunk *head; void *first_free; int num_remaining_in_head_chunk; } stbtt__hheap; static void *stbtt__hheap_alloc(stbtt__hheap *hh, size_t size, void *userdata) { if (hh->first_free) { void *p = hh->first_free; hh->first_free = * (void **) p; return p; } else { if (hh->num_remaining_in_head_chunk == 0) { int count = (size < 32 ? 2000 : size < 128 ? 800 : 100); stbtt__hheap_chunk *c = (stbtt__hheap_chunk *) STBTT_malloc(sizeof(stbtt__hheap_chunk) + size * count, userdata); if (c == NULL) return NULL; c->next = hh->head; hh->head = c; hh->num_remaining_in_head_chunk = count; } --hh->num_remaining_in_head_chunk; return (char *) (hh->head) + sizeof(stbtt__hheap_chunk) + size * hh->num_remaining_in_head_chunk; } } static void stbtt__hheap_free(stbtt__hheap *hh, void *p) { *(void **) p = hh->first_free; hh->first_free = p; } static void stbtt__hheap_cleanup(stbtt__hheap *hh, void *userdata) { stbtt__hheap_chunk *c = hh->head; while (c) { stbtt__hheap_chunk *n = c->next; STBTT_free(c, userdata); c = n; } } typedef struct stbtt__edge { float x0,y0, x1,y1; int invert; } stbtt__edge; typedef struct stbtt__active_edge { struct stbtt__active_edge *next; #if STBTT_RASTERIZER_VERSION==1 int x,dx; float ey; int direction; #elif STBTT_RASTERIZER_VERSION==2 float fx,fdx,fdy; float direction; float sy; float ey; #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif } stbtt__active_edge; #if STBTT_RASTERIZER_VERSION == 1 #define STBTT_FIXSHIFT 10 #define STBTT_FIX (1 << STBTT_FIXSHIFT) #define STBTT_FIXMASK (STBTT_FIX-1) static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata) { stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata); float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); STBTT_assert(z != NULL); if (!z) return z; // round dx down to avoid overshooting if (dxdy < 0) z->dx = -STBTT_ifloor(STBTT_FIX * -dxdy); else z->dx = STBTT_ifloor(STBTT_FIX * dxdy); z->x = STBTT_ifloor(STBTT_FIX * e->x0 + z->dx * (start_point - e->y0)); // use z->dx so when we offset later it's by the same amount z->x -= off_x * STBTT_FIX; z->ey = e->y1; z->next = 0; z->direction = e->invert ? 1 : -1; return z; } #elif STBTT_RASTERIZER_VERSION == 2 static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata) { stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata); float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); STBTT_assert(z != NULL); //STBTT_assert(e->y0 <= start_point); if (!z) return z; z->fdx = dxdy; z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f; z->fx = e->x0 + dxdy * (start_point - e->y0); z->fx -= off_x; z->direction = e->invert ? 1.0f : -1.0f; z->sy = e->y0; z->ey = e->y1; z->next = 0; return z; } #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif #if STBTT_RASTERIZER_VERSION == 1 // note: this routine clips fills that extend off the edges... ideally this // wouldn't happen, but it could happen if the truetype glyph bounding boxes // are wrong, or if the user supplies a too-small bitmap static void stbtt__fill_active_edges(unsigned char *scanline, int len, stbtt__active_edge *e, int max_weight) { // non-zero winding fill int x0=0, w=0; while (e) { if (w == 0) { // if we're currently at zero, we need to record the edge start point x0 = e->x; w += e->direction; } else { int x1 = e->x; w += e->direction; // if we went to zero, we need to draw if (w == 0) { int i = x0 >> STBTT_FIXSHIFT; int j = x1 >> STBTT_FIXSHIFT; if (i < len && j >= 0) { if (i == j) { // x0,x1 are the same pixel, so compute combined coverage scanline[i] = scanline[i] + (stbtt_uint8) ((x1 - x0) * max_weight >> STBTT_FIXSHIFT); } else { if (i >= 0) // add antialiasing for x0 scanline[i] = scanline[i] + (stbtt_uint8) (((STBTT_FIX - (x0 & STBTT_FIXMASK)) * max_weight) >> STBTT_FIXSHIFT); else i = -1; // clip if (j < len) // add antialiasing for x1 scanline[j] = scanline[j] + (stbtt_uint8) (((x1 & STBTT_FIXMASK) * max_weight) >> STBTT_FIXSHIFT); else j = len; // clip for (++i; i < j; ++i) // fill pixels between x0 and x1 scanline[i] = scanline[i] + (stbtt_uint8) max_weight; } } } } e = e->next; } } static void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata) { stbtt__hheap hh = { 0, 0, 0 }; stbtt__active_edge *active = NULL; int y,j=0; int max_weight = (255 / vsubsample); // weight per vertical scanline int s; // vertical subsample index unsigned char scanline_data[512], *scanline; if (result->w > 512) scanline = (unsigned char *) STBTT_malloc(result->w, userdata); else scanline = scanline_data; y = off_y * vsubsample; e[n].y0 = (off_y + result->h) * (float) vsubsample + 1; while (j < result->h) { STBTT_memset(scanline, 0, result->w); for (s=0; s < vsubsample; ++s) { // find center of pixel for this scanline float scan_y = y + 0.5f; stbtt__active_edge **step = &active; // update all active edges; // remove all active edges that terminate before the center of this scanline while (*step) { stbtt__active_edge * z = *step; if (z->ey <= scan_y) { *step = z->next; // delete from list STBTT_assert(z->direction); z->direction = 0; stbtt__hheap_free(&hh, z); } else { z->x += z->dx; // advance to position for current scanline step = &((*step)->next); // advance through list } } // resort the list if needed for(;;) { int changed=0; step = &active; while (*step && (*step)->next) { if ((*step)->x > (*step)->next->x) { stbtt__active_edge *t = *step; stbtt__active_edge *q = t->next; t->next = q->next; q->next = t; *step = q; changed = 1; } step = &(*step)->next; } if (!changed) break; } // insert all edges that start before the center of this scanline -- omit ones that also end on this scanline while (e->y0 <= scan_y) { if (e->y1 > scan_y) { stbtt__active_edge *z = stbtt__new_active(&hh, e, off_x, scan_y, userdata); if (z != NULL) { // find insertion point if (active == NULL) active = z; else if (z->x < active->x) { // insert at front z->next = active; active = z; } else { // find thing to insert AFTER stbtt__active_edge *p = active; while (p->next && p->next->x < z->x) p = p->next; // at this point, p->next->x is NOT < z->x z->next = p->next; p->next = z; } } } ++e; } // now process all active edges in XOR fashion if (active) stbtt__fill_active_edges(scanline, result->w, active, max_weight); ++y; } STBTT_memcpy(result->pixels + j * result->stride, scanline, result->w); ++j; } stbtt__hheap_cleanup(&hh, userdata); if (scanline != scanline_data) STBTT_free(scanline, userdata); } #elif STBTT_RASTERIZER_VERSION == 2 // the edge passed in here does not cross the vertical line at x or the vertical line at x+1 // (i.e. it has already been clipped to those) static void stbtt__handle_clipped_edge(float *scanline, int x, stbtt__active_edge *e, float x0, float y0, float x1, float y1) { if (y0 == y1) return; STBTT_assert(y0 < y1); STBTT_assert(e->sy <= e->ey); if (y0 > e->ey) return; if (y1 < e->sy) return; if (y0 < e->sy) { x0 += (x1-x0) * (e->sy - y0) / (y1-y0); y0 = e->sy; } if (y1 > e->ey) { x1 += (x1-x0) * (e->ey - y1) / (y1-y0); y1 = e->ey; } if (x0 == x) STBTT_assert(x1 <= x+1); else if (x0 == x+1) STBTT_assert(x1 >= x); else if (x0 <= x) STBTT_assert(x1 <= x); else if (x0 >= x+1) STBTT_assert(x1 >= x+1); else STBTT_assert(x1 >= x && x1 <= x+1); if (x0 <= x && x1 <= x) scanline[x] += e->direction * (y1-y0); else if (x0 >= x+1 && x1 >= x+1) ; else { STBTT_assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1); scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); // coverage = 1 - average x position } } static void stbtt__fill_active_edges_new(float *scanline, float *scanline_fill, int len, stbtt__active_edge *e, float y_top) { float y_bottom = y_top+1; while (e) { // brute force every pixel // compute intersection points with top & bottom STBTT_assert(e->ey >= y_top); if (e->fdx == 0) { float x0 = e->fx; if (x0 < len) { if (x0 >= 0) { stbtt__handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom); stbtt__handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom); } else { stbtt__handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom); } } } else { float x0 = e->fx; float dx = e->fdx; float xb = x0 + dx; float x_top, x_bottom; float sy0,sy1; float dy = e->fdy; STBTT_assert(e->sy <= y_bottom && e->ey >= y_top); // compute endpoints of line segment clipped to this scanline (if the // line segment starts on this scanline. x0 is the intersection of the // line with y_top, but that may be off the line segment. if (e->sy > y_top) { x_top = x0 + dx * (e->sy - y_top); sy0 = e->sy; } else { x_top = x0; sy0 = y_top; } if (e->ey < y_bottom) { x_bottom = x0 + dx * (e->ey - y_top); sy1 = e->ey; } else { x_bottom = xb; sy1 = y_bottom; } if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len) { // from here on, we don't have to range check x values if ((int) x_top == (int) x_bottom) { float height; // simple case, only spans one pixel int x = (int) x_top; height = sy1 - sy0; STBTT_assert(x >= 0 && x < len); scanline[x] += e->direction * (1-((x_top - x) + (x_bottom-x))/2) * height; scanline_fill[x] += e->direction * height; // everything right of this pixel is filled } else { int x,x1,x2; float y_crossing, step, sign, area; // covers 2+ pixels if (x_top > x_bottom) { // flip scanline vertically; signed area is the same float t; sy0 = y_bottom - (sy0 - y_top); sy1 = y_bottom - (sy1 - y_top); t = sy0, sy0 = sy1, sy1 = t; t = x_bottom, x_bottom = x_top, x_top = t; dx = -dx; dy = -dy; t = x0, x0 = xb, xb = t; } x1 = (int) x_top; x2 = (int) x_bottom; // compute intersection with y axis at x1+1 y_crossing = (x1+1 - x0) * dy + y_top; sign = e->direction; // area of the rectangle covered from y0..y_crossing area = sign * (y_crossing-sy0); // area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing) scanline[x1] += area * (1-((x_top - x1)+(x1+1-x1))/2); step = sign * dy; for (x = x1+1; x < x2; ++x) { scanline[x] += area + step/2; area += step; } y_crossing += dy * (x2 - (x1+1)); STBTT_assert(STBTT_fabs(area) <= 1.01f); scanline[x2] += area + sign * (1-((x2-x2)+(x_bottom-x2))/2) * (sy1-y_crossing); scanline_fill[x2] += sign * (sy1-sy0); } } else { // if edge goes outside of box we're drawing, we require // clipping logic. since this does not match the intended use // of this library, we use a different, very slow brute // force implementation int x; for (x=0; x < len; ++x) { // cases: // // there can be up to two intersections with the pixel. any intersection // with left or right edges can be handled by splitting into two (or three) // regions. intersections with top & bottom do not necessitate case-wise logic. // // the old way of doing this found the intersections with the left & right edges, // then used some simple logic to produce up to three segments in sorted order // from top-to-bottom. however, this had a problem: if an x edge was epsilon // across the x border, then the corresponding y position might not be distinct // from the other y segment, and it might ignored as an empty segment. to avoid // that, we need to explicitly produce segments based on x positions. // rename variables to clearly-defined pairs float y0 = y_top; float x1 = (float) (x); float x2 = (float) (x+1); float x3 = xb; float y3 = y_bottom; // x = e->x + e->dx * (y-y_top) // (y-y_top) = (x - e->x) / e->dx // y = (x - e->x) / e->dx + y_top float y1 = (x - x0) / dx + y_top; float y2 = (x+1 - x0) / dx + y_top; if (x0 < x1 && x3 > x2) { // three segments descending down-right stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x1 && x0 > x2) { // three segments descending down-left stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x1 && x3 > x1) { // two segments across x, down-right stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x3 < x1 && x0 > x1) { // two segments across x, down-left stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x2 && x3 > x2) { // two segments across x+1, down-right stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x2 && x0 > x2) { // two segments across x+1, down-left stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else { // one segment stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x3,y3); } } } } e = e->next; } } // directly AA rasterize edges w/o supersampling static void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata) { stbtt__hheap hh = { 0, 0, 0 }; stbtt__active_edge *active = NULL; int y,j=0, i; float scanline_data[129], *scanline, *scanline2; STBTT__NOTUSED(vsubsample); if (result->w > 64) scanline = (float *) STBTT_malloc((result->w*2+1) * sizeof(float), userdata); else scanline = scanline_data; scanline2 = scanline + result->w; y = off_y; e[n].y0 = (float) (off_y + result->h) + 1; while (j < result->h) { // find center of pixel for this scanline float scan_y_top = y + 0.0f; float scan_y_bottom = y + 1.0f; stbtt__active_edge **step = &active; STBTT_memset(scanline , 0, result->w*sizeof(scanline[0])); STBTT_memset(scanline2, 0, (result->w+1)*sizeof(scanline[0])); // update all active edges; // remove all active edges that terminate before the top of this scanline while (*step) { stbtt__active_edge * z = *step; if (z->ey <= scan_y_top) { *step = z->next; // delete from list STBTT_assert(z->direction); z->direction = 0; stbtt__hheap_free(&hh, z); } else { step = &((*step)->next); // advance through list } } // insert all edges that start before the bottom of this scanline while (e->y0 <= scan_y_bottom) { if (e->y0 != e->y1) { stbtt__active_edge *z = stbtt__new_active(&hh, e, off_x, scan_y_top, userdata); if (z != NULL) { if (j == 0 && off_y != 0) { if (z->ey < scan_y_top) { // this can happen due to subpixel positioning and some kind of fp rounding error i think z->ey = scan_y_top; } } STBTT_assert(z->ey >= scan_y_top); // if we get really unlucky a tiny bit of an edge can be out of bounds // insert at front z->next = active; active = z; } } ++e; } // now process all active edges if (active) stbtt__fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top); { float sum = 0; for (i=0; i < result->w; ++i) { float k; int m; sum += scanline2[i]; k = scanline[i] + sum; k = (float) STBTT_fabs(k)*255 + 0.5f; m = (int) k; if (m > 255) m = 255; result->pixels[j*result->stride + i] = (unsigned char) m; } } // advance all the edges step = &active; while (*step) { stbtt__active_edge *z = *step; z->fx += z->fdx; // advance to position for current scanline step = &((*step)->next); // advance through list } ++y; ++j; } stbtt__hheap_cleanup(&hh, userdata); if (scanline != scanline_data) STBTT_free(scanline, userdata); } #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif #define STBTT__COMPARE(a,b) ((a)->y0 < (b)->y0) static void stbtt__sort_edges_ins_sort(stbtt__edge *p, int n) { int i,j; for (i=1; i < n; ++i) { stbtt__edge t = p[i], *a = &t; j = i; while (j > 0) { stbtt__edge *b = &p[j-1]; int c = STBTT__COMPARE(a,b); if (!c) break; p[j] = p[j-1]; --j; } if (i != j) p[j] = t; } } static void stbtt__sort_edges_quicksort(stbtt__edge *p, int n) { /* threshold for transitioning to insertion sort */ while (n > 12) { stbtt__edge t; int c01,c12,c,m,i,j; /* compute median of three */ m = n >> 1; c01 = STBTT__COMPARE(&p[0],&p[m]); c12 = STBTT__COMPARE(&p[m],&p[n-1]); /* if 0 >= mid >= end, or 0 < mid < end, then use mid */ if (c01 != c12) { /* otherwise, we'll need to swap something else to middle */ int z; c = STBTT__COMPARE(&p[0],&p[n-1]); /* 0>mid && mid<n: 0>n => n; 0<n => 0 */ /* 0<mid && mid>n: 0>n => 0; 0<n => n */ z = (c == c12) ? 0 : n-1; t = p[z]; p[z] = p[m]; p[m] = t; } /* now p[m] is the median-of-three */ /* swap it to the beginning so it won't move around */ t = p[0]; p[0] = p[m]; p[m] = t; /* partition loop */ i=1; j=n-1; for(;;) { /* handling of equality is crucial here */ /* for sentinels & efficiency with duplicates */ for (;;++i) { if (!STBTT__COMPARE(&p[i], &p[0])) break; } for (;;--j) { if (!STBTT__COMPARE(&p[0], &p[j])) break; } /* make sure we haven't crossed */ if (i >= j) break; t = p[i]; p[i] = p[j]; p[j] = t; ++i; --j; } /* recurse on smaller side, iterate on larger */ if (j < (n-i)) { stbtt__sort_edges_quicksort(p,j); p = p+i; n = n-i; } else { stbtt__sort_edges_quicksort(p+i, n-i); n = j; } } } static void stbtt__sort_edges(stbtt__edge *p, int n) { stbtt__sort_edges_quicksort(p, n); stbtt__sort_edges_ins_sort(p, n); } typedef struct { float x,y; } stbtt__point; static void stbtt__rasterize(stbtt__bitmap *result, stbtt__point *pts, int *wcount, int windings, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert, void *userdata) { float y_scale_inv = invert ? -scale_y : scale_y; stbtt__edge *e; int n,i,j,k,m; #if STBTT_RASTERIZER_VERSION == 1 int vsubsample = result->h < 8 ? 15 : 5; #elif STBTT_RASTERIZER_VERSION == 2 int vsubsample = 1; #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif // vsubsample should divide 255 evenly; otherwise we won't reach full opacity // now we have to blow out the windings into explicit edge lists n = 0; for (i=0; i < windings; ++i) n += wcount[i]; e = (stbtt__edge *) STBTT_malloc(sizeof(*e) * (n+1), userdata); // add an extra one as a sentinel if (e == 0) return; n = 0; m=0; for (i=0; i < windings; ++i) { stbtt__point *p = pts + m; m += wcount[i]; j = wcount[i]-1; for (k=0; k < wcount[i]; j=k++) { int a=k,b=j; // skip the edge if horizontal if (p[j].y == p[k].y) continue; // add edge from j to k to the list e[n].invert = 0; if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) { e[n].invert = 1; a=j,b=k; } e[n].x0 = p[a].x * scale_x + shift_x; e[n].y0 = (p[a].y * y_scale_inv + shift_y) * vsubsample; e[n].x1 = p[b].x * scale_x + shift_x; e[n].y1 = (p[b].y * y_scale_inv + shift_y) * vsubsample; ++n; } } // now sort the edges by their highest point (should snap to integer, and then by x) //STBTT_sort(e, n, sizeof(e[0]), stbtt__edge_compare); stbtt__sort_edges(e, n); // now, traverse the scanlines and find the intersections on each scanline, use xor winding rule stbtt__rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, userdata); STBTT_free(e, userdata); } static void stbtt__add_point(stbtt__point *points, int n, float x, float y) { if (!points) return; // during first pass, it's unallocated points[n].x = x; points[n].y = y; } // tessellate until threshold p is happy... @TODO warped to compensate for non-linear stretching static int stbtt__tesselate_curve(stbtt__point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float objspace_flatness_squared, int n) { // midpoint float mx = (x0 + 2*x1 + x2)/4; float my = (y0 + 2*y1 + y2)/4; // versus directly drawn line float dx = (x0+x2)/2 - mx; float dy = (y0+y2)/2 - my; if (n > 16) // 65536 segments on one curve better be enough! return 1; if (dx*dx+dy*dy > objspace_flatness_squared) { // half-pixel error allowed... need to be smaller if AA stbtt__tesselate_curve(points, num_points, x0,y0, (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1); stbtt__tesselate_curve(points, num_points, mx,my, (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1); } else { stbtt__add_point(points, *num_points,x2,y2); *num_points = *num_points+1; } return 1; } static void stbtt__tesselate_cubic(stbtt__point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float objspace_flatness_squared, int n) { // @TODO this "flatness" calculation is just made-up nonsense that seems to work well enough float dx0 = x1-x0; float dy0 = y1-y0; float dx1 = x2-x1; float dy1 = y2-y1; float dx2 = x3-x2; float dy2 = y3-y2; float dx = x3-x0; float dy = y3-y0; float longlen = (float) (STBTT_sqrt(dx0*dx0+dy0*dy0)+STBTT_sqrt(dx1*dx1+dy1*dy1)+STBTT_sqrt(dx2*dx2+dy2*dy2)); float shortlen = (float) STBTT_sqrt(dx*dx+dy*dy); float flatness_squared = longlen*longlen-shortlen*shortlen; if (n > 16) // 65536 segments on one curve better be enough! return; if (flatness_squared > objspace_flatness_squared) { float x01 = (x0+x1)/2; float y01 = (y0+y1)/2; float x12 = (x1+x2)/2; float y12 = (y1+y2)/2; float x23 = (x2+x3)/2; float y23 = (y2+y3)/2; float xa = (x01+x12)/2; float ya = (y01+y12)/2; float xb = (x12+x23)/2; float yb = (y12+y23)/2; float mx = (xa+xb)/2; float my = (ya+yb)/2; stbtt__tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, objspace_flatness_squared,n+1); stbtt__tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, objspace_flatness_squared,n+1); } else { stbtt__add_point(points, *num_points,x3,y3); *num_points = *num_points+1; } } // returns number of contours static stbtt__point *stbtt_FlattenCurves(stbtt_vertex *vertices, int num_verts, float objspace_flatness, int **contour_lengths, int *num_contours, void *userdata) { stbtt__point *points=0; int num_points=0; float objspace_flatness_squared = objspace_flatness * objspace_flatness; int i,n=0,start=0, pass; // count how many "moves" there are to get the contour count for (i=0; i < num_verts; ++i) if (vertices[i].type == STBTT_vmove) ++n; *num_contours = n; if (n == 0) return 0; *contour_lengths = (int *) STBTT_malloc(sizeof(**contour_lengths) * n, userdata); if (*contour_lengths == 0) { *num_contours = 0; return 0; } // make two passes through the points so we don't need to realloc for (pass=0; pass < 2; ++pass) { float x=0,y=0; if (pass == 1) { points = (stbtt__point *) STBTT_malloc(num_points * sizeof(points[0]), userdata); if (points == NULL) goto error; } num_points = 0; n= -1; for (i=0; i < num_verts; ++i) { switch (vertices[i].type) { case STBTT_vmove: // start the next contour if (n >= 0) (*contour_lengths)[n] = num_points - start; ++n; start = num_points; x = vertices[i].x, y = vertices[i].y; stbtt__add_point(points, num_points++, x,y); break; case STBTT_vline: x = vertices[i].x, y = vertices[i].y; stbtt__add_point(points, num_points++, x, y); break; case STBTT_vcurve: stbtt__tesselate_curve(points, &num_points, x,y, vertices[i].cx, vertices[i].cy, vertices[i].x, vertices[i].y, objspace_flatness_squared, 0); x = vertices[i].x, y = vertices[i].y; break; case STBTT_vcubic: stbtt__tesselate_cubic(points, &num_points, x,y, vertices[i].cx, vertices[i].cy, vertices[i].cx1, vertices[i].cy1, vertices[i].x, vertices[i].y, objspace_flatness_squared, 0); x = vertices[i].x, y = vertices[i].y; break; } } (*contour_lengths)[n] = num_points - start; } return points; error: STBTT_free(points, userdata); STBTT_free(*contour_lengths, userdata); *contour_lengths = 0; *num_contours = 0; return NULL; } STBTT_DEF void stbtt_Rasterize(stbtt__bitmap *result, float flatness_in_pixels, stbtt_vertex *vertices, int num_verts, float scale_x, float scale_y, float shift_x, float shift_y, int x_off, int y_off, int invert, void *userdata) { float scale = scale_x > scale_y ? scale_y : scale_x; int winding_count = 0; int *winding_lengths = NULL; stbtt__point *windings = stbtt_FlattenCurves(vertices, num_verts, flatness_in_pixels / scale, &winding_lengths, &winding_count, userdata); if (windings) { stbtt__rasterize(result, windings, winding_lengths, winding_count, scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, userdata); STBTT_free(winding_lengths, userdata); STBTT_free(windings, userdata); } } STBTT_DEF void stbtt_FreeBitmap(unsigned char *bitmap, void *userdata) { STBTT_free(bitmap, userdata); } STBTT_DEF unsigned char *stbtt_GetGlyphBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff) { int ix0,iy0,ix1,iy1; stbtt__bitmap gbm; stbtt_vertex *vertices; int num_verts = stbtt_GetGlyphShape(info, glyph, &vertices); if (scale_x == 0) scale_x = scale_y; if (scale_y == 0) { if (scale_x == 0) { STBTT_free(vertices, info->userdata); return NULL; } scale_y = scale_x; } stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,&ix1,&iy1); // now we get the size gbm.w = (ix1 - ix0); gbm.h = (iy1 - iy0); gbm.pixels = NULL; // in case we error if (width ) *width = gbm.w; if (height) *height = gbm.h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; if (gbm.w && gbm.h) { gbm.pixels = (unsigned char *) STBTT_malloc(gbm.w * gbm.h, info->userdata); if (gbm.pixels) { gbm.stride = gbm.w; stbtt_Rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0, iy0, 1, info->userdata); } } STBTT_free(vertices, info->userdata); return gbm.pixels; } STBTT_DEF unsigned char *stbtt_GetGlyphBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphBitmapSubpixel(info, scale_x, scale_y, 0.0f, 0.0f, glyph, width, height, xoff, yoff); } STBTT_DEF void stbtt_MakeGlyphBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph) { int ix0,iy0; stbtt_vertex *vertices; int num_verts = stbtt_GetGlyphShape(info, glyph, &vertices); stbtt__bitmap gbm; stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,0,0); gbm.pixels = output; gbm.w = out_w; gbm.h = out_h; gbm.stride = out_stride; if (gbm.w && gbm.h) stbtt_Rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0,iy0, 1, info->userdata); STBTT_free(vertices, info->userdata); } STBTT_DEF void stbtt_MakeGlyphBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, glyph); } STBTT_DEF unsigned char *stbtt_GetCodepointBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphBitmapSubpixel(info, scale_x, scale_y,shift_x,shift_y, stbtt_FindGlyphIndex(info,codepoint), width,height,xoff,yoff); } STBTT_DEF void stbtt_MakeCodepointBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint) { stbtt_MakeGlyphBitmapSubpixelPrefilter(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, oversample_x, oversample_y, sub_x, sub_y, stbtt_FindGlyphIndex(info,codepoint)); } STBTT_DEF void stbtt_MakeCodepointBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, stbtt_FindGlyphIndex(info,codepoint)); } STBTT_DEF unsigned char *stbtt_GetCodepointBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetCodepointBitmapSubpixel(info, scale_x, scale_y, 0.0f,0.0f, codepoint, width,height,xoff,yoff); } STBTT_DEF void stbtt_MakeCodepointBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint) { stbtt_MakeCodepointBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, codepoint); } ////////////////////////////////////////////////////////////////////////////// // // bitmap baking // // This is SUPER-CRAPPY packing to keep source code small static int stbtt_BakeFontBitmap_internal(unsigned char *data, int offset, // font location (use offset=0 for plain .ttf) float pixel_height, // height of font in pixels unsigned char *pixels, int pw, int ph, // bitmap to be filled in int first_char, int num_chars, // characters to bake stbtt_bakedchar *chardata) { float scale; int x,y,bottom_y, i; stbtt_fontinfo f; f.userdata = NULL; if (!stbtt_InitFont(&f, data, offset)) return -1; STBTT_memset(pixels, 0, pw*ph); // background of 0 around pixels x=y=1; bottom_y = 1; scale = stbtt_ScaleForPixelHeight(&f, pixel_height); for (i=0; i < num_chars; ++i) { int advance, lsb, x0,y0,x1,y1,gw,gh; int g = stbtt_FindGlyphIndex(&f, first_char + i); stbtt_GetGlyphHMetrics(&f, g, &advance, &lsb); stbtt_GetGlyphBitmapBox(&f, g, scale,scale, &x0,&y0,&x1,&y1); gw = x1-x0; gh = y1-y0; if (x + gw + 1 >= pw) y = bottom_y, x = 1; // advance to next row if (y + gh + 1 >= ph) // check if it fits vertically AFTER potentially moving to next row return -i; STBTT_assert(x+gw < pw); STBTT_assert(y+gh < ph); stbtt_MakeGlyphBitmap(&f, pixels+x+y*pw, gw,gh,pw, scale,scale, g); chardata[i].x0 = (stbtt_int16) x; chardata[i].y0 = (stbtt_int16) y; chardata[i].x1 = (stbtt_int16) (x + gw); chardata[i].y1 = (stbtt_int16) (y + gh); chardata[i].xadvance = scale * advance; chardata[i].xoff = (float) x0; chardata[i].yoff = (float) y0; x = x + gw + 1; if (y+gh+1 > bottom_y) bottom_y = y+gh+1; } return bottom_y; } STBTT_DEF void stbtt_GetBakedQuad(const stbtt_bakedchar *chardata, int pw, int ph, int char_index, float *xpos, float *ypos, stbtt_aligned_quad *q, int opengl_fillrule) { float d3d_bias = opengl_fillrule ? 0 : -0.5f; float ipw = 1.0f / pw, iph = 1.0f / ph; const stbtt_bakedchar *b = chardata + char_index; int round_x = STBTT_ifloor((*xpos + b->xoff) + 0.5f); int round_y = STBTT_ifloor((*ypos + b->yoff) + 0.5f); q->x0 = round_x + d3d_bias; q->y0 = round_y + d3d_bias; q->x1 = round_x + b->x1 - b->x0 + d3d_bias; q->y1 = round_y + b->y1 - b->y0 + d3d_bias; q->s0 = b->x0 * ipw; q->t0 = b->y0 * iph; q->s1 = b->x1 * ipw; q->t1 = b->y1 * iph; *xpos += b->xadvance; } ////////////////////////////////////////////////////////////////////////////// // // rectangle packing replacement routines if you don't have stb_rect_pack.h // #ifndef STB_RECT_PACK_VERSION typedef int stbrp_coord; //////////////////////////////////////////////////////////////////////////////////// // // // // // COMPILER WARNING ?!?!? // // // // // // if you get a compile warning due to these symbols being defined more than // // once, move #include "stb_rect_pack.h" before #include "stb_truetype.h" // // // //////////////////////////////////////////////////////////////////////////////////// typedef struct { int width,height; int x,y,bottom_y; } stbrp_context; typedef struct { unsigned char x; } stbrp_node; struct stbrp_rect { stbrp_coord x,y; int id,w,h,was_packed; }; static void stbrp_init_target(stbrp_context *con, int pw, int ph, stbrp_node *nodes, int num_nodes) { con->width = pw; con->height = ph; con->x = 0; con->y = 0; con->bottom_y = 0; STBTT__NOTUSED(nodes); STBTT__NOTUSED(num_nodes); } static void stbrp_pack_rects(stbrp_context *con, stbrp_rect *rects, int num_rects) { int i; for (i=0; i < num_rects; ++i) { if (con->x + rects[i].w > con->width) { con->x = 0; con->y = con->bottom_y; } if (con->y + rects[i].h > con->height) break; rects[i].x = con->x; rects[i].y = con->y; rects[i].was_packed = 1; con->x += rects[i].w; if (con->y + rects[i].h > con->bottom_y) con->bottom_y = con->y + rects[i].h; } for ( ; i < num_rects; ++i) rects[i].was_packed = 0; } #endif ////////////////////////////////////////////////////////////////////////////// // // bitmap baking // // This is SUPER-AWESOME (tm Ryan Gordon) packing using stb_rect_pack.h. If // stb_rect_pack.h isn't available, it uses the BakeFontBitmap strategy. STBTT_DEF int stbtt_PackBegin(stbtt_pack_context *spc, unsigned char *pixels, int pw, int ph, int stride_in_bytes, int padding, void *alloc_context) { stbrp_context *context = (stbrp_context *) STBTT_malloc(sizeof(*context) ,alloc_context); int num_nodes = pw - padding; stbrp_node *nodes = (stbrp_node *) STBTT_malloc(sizeof(*nodes ) * num_nodes,alloc_context); if (context == NULL || nodes == NULL) { if (context != NULL) STBTT_free(context, alloc_context); if (nodes != NULL) STBTT_free(nodes , alloc_context); return 0; } spc->user_allocator_context = alloc_context; spc->width = pw; spc->height = ph; spc->pixels = pixels; spc->pack_info = context; spc->nodes = nodes; spc->padding = padding; spc->stride_in_bytes = stride_in_bytes != 0 ? stride_in_bytes : pw; spc->h_oversample = 1; spc->v_oversample = 1; spc->skip_missing = 0; stbrp_init_target(context, pw-padding, ph-padding, nodes, num_nodes); if (pixels) STBTT_memset(pixels, 0, pw*ph); // background of 0 around pixels return 1; } STBTT_DEF void stbtt_PackEnd (stbtt_pack_context *spc) { STBTT_free(spc->nodes , spc->user_allocator_context); STBTT_free(spc->pack_info, spc->user_allocator_context); } STBTT_DEF void stbtt_PackSetOversampling(stbtt_pack_context *spc, unsigned int h_oversample, unsigned int v_oversample) { STBTT_assert(h_oversample <= STBTT_MAX_OVERSAMPLE); STBTT_assert(v_oversample <= STBTT_MAX_OVERSAMPLE); if (h_oversample <= STBTT_MAX_OVERSAMPLE) spc->h_oversample = h_oversample; if (v_oversample <= STBTT_MAX_OVERSAMPLE) spc->v_oversample = v_oversample; } STBTT_DEF void stbtt_PackSetSkipMissingCodepoints(stbtt_pack_context *spc, int skip) { spc->skip_missing = skip; } #define STBTT__OVER_MASK (STBTT_MAX_OVERSAMPLE-1) static void stbtt__h_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { unsigned char buffer[STBTT_MAX_OVERSAMPLE]; int safe_w = w - kernel_width; int j; STBTT_memset(buffer, 0, STBTT_MAX_OVERSAMPLE); // suppress bogus warning from VS2013 -analyze for (j=0; j < h; ++j) { int i; unsigned int total; STBTT_memset(buffer, 0, kernel_width); total = 0; // make kernel_width a constant in common cases so compiler can optimize out the divide switch (kernel_width) { case 2: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 2); } break; case 3: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 3); } break; case 4: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 4); } break; case 5: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 5); } break; default: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / kernel_width); } break; } for (; i < w; ++i) { STBTT_assert(pixels[i] == 0); total -= buffer[i & STBTT__OVER_MASK]; pixels[i] = (unsigned char) (total / kernel_width); } pixels += stride_in_bytes; } } static void stbtt__v_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { unsigned char buffer[STBTT_MAX_OVERSAMPLE]; int safe_h = h - kernel_width; int j; STBTT_memset(buffer, 0, STBTT_MAX_OVERSAMPLE); // suppress bogus warning from VS2013 -analyze for (j=0; j < w; ++j) { int i; unsigned int total; STBTT_memset(buffer, 0, kernel_width); total = 0; // make kernel_width a constant in common cases so compiler can optimize out the divide switch (kernel_width) { case 2: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 2); } break; case 3: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 3); } break; case 4: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 4); } break; case 5: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 5); } break; default: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / kernel_width); } break; } for (; i < h; ++i) { STBTT_assert(pixels[i*stride_in_bytes] == 0); total -= buffer[i & STBTT__OVER_MASK]; pixels[i*stride_in_bytes] = (unsigned char) (total / kernel_width); } pixels += 1; } } static float stbtt__oversample_shift(int oversample) { if (!oversample) return 0.0f; // The prefilter is a box filter of width "oversample", // which shifts phase by (oversample - 1)/2 pixels in // oversampled space. We want to shift in the opposite // direction to counter this. return (float)-(oversample - 1) / (2.0f * (float)oversample); } // rects array must be big enough to accommodate all characters in the given ranges STBTT_DEF int stbtt_PackFontRangesGatherRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects) { int i,j,k; int missing_glyph_added = 0; k=0; for (i=0; i < num_ranges; ++i) { float fh = ranges[i].font_size; float scale = fh > 0 ? stbtt_ScaleForPixelHeight(info, fh) : stbtt_ScaleForMappingEmToPixels(info, -fh); ranges[i].h_oversample = (unsigned char) spc->h_oversample; ranges[i].v_oversample = (unsigned char) spc->v_oversample; for (j=0; j < ranges[i].num_chars; ++j) { int x0,y0,x1,y1; int codepoint = ranges[i].array_of_unicode_codepoints == NULL ? ranges[i].first_unicode_codepoint_in_range + j : ranges[i].array_of_unicode_codepoints[j]; int glyph = stbtt_FindGlyphIndex(info, codepoint); if (glyph == 0 && (spc->skip_missing || missing_glyph_added)) { rects[k].w = rects[k].h = 0; } else { stbtt_GetGlyphBitmapBoxSubpixel(info,glyph, scale * spc->h_oversample, scale * spc->v_oversample, 0,0, &x0,&y0,&x1,&y1); rects[k].w = (stbrp_coord) (x1-x0 + spc->padding + spc->h_oversample-1); rects[k].h = (stbrp_coord) (y1-y0 + spc->padding + spc->v_oversample-1); if (glyph == 0) missing_glyph_added = 1; } ++k; } } return k; } STBTT_DEF void stbtt_MakeGlyphBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int prefilter_x, int prefilter_y, float *sub_x, float *sub_y, int glyph) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w - (prefilter_x - 1), out_h - (prefilter_y - 1), out_stride, scale_x, scale_y, shift_x, shift_y, glyph); if (prefilter_x > 1) stbtt__h_prefilter(output, out_w, out_h, out_stride, prefilter_x); if (prefilter_y > 1) stbtt__v_prefilter(output, out_w, out_h, out_stride, prefilter_y); *sub_x = stbtt__oversample_shift(prefilter_x); *sub_y = stbtt__oversample_shift(prefilter_y); } // rects array must be big enough to accommodate all characters in the given ranges STBTT_DEF int stbtt_PackFontRangesRenderIntoRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects) { int i,j,k, missing_glyph = -1, return_value = 1; // save current values int old_h_over = spc->h_oversample; int old_v_over = spc->v_oversample; k = 0; for (i=0; i < num_ranges; ++i) { float fh = ranges[i].font_size; float scale = fh > 0 ? stbtt_ScaleForPixelHeight(info, fh) : stbtt_ScaleForMappingEmToPixels(info, -fh); float recip_h,recip_v,sub_x,sub_y; spc->h_oversample = ranges[i].h_oversample; spc->v_oversample = ranges[i].v_oversample; recip_h = 1.0f / spc->h_oversample; recip_v = 1.0f / spc->v_oversample; sub_x = stbtt__oversample_shift(spc->h_oversample); sub_y = stbtt__oversample_shift(spc->v_oversample); for (j=0; j < ranges[i].num_chars; ++j) { stbrp_rect *r = &rects[k]; if (r->was_packed && r->w != 0 && r->h != 0) { stbtt_packedchar *bc = &ranges[i].chardata_for_range[j]; int advance, lsb, x0,y0,x1,y1; int codepoint = ranges[i].array_of_unicode_codepoints == NULL ? ranges[i].first_unicode_codepoint_in_range + j : ranges[i].array_of_unicode_codepoints[j]; int glyph = stbtt_FindGlyphIndex(info, codepoint); stbrp_coord pad = (stbrp_coord) spc->padding; // pad on left and top r->x += pad; r->y += pad; r->w -= pad; r->h -= pad; stbtt_GetGlyphHMetrics(info, glyph, &advance, &lsb); stbtt_GetGlyphBitmapBox(info, glyph, scale * spc->h_oversample, scale * spc->v_oversample, &x0,&y0,&x1,&y1); stbtt_MakeGlyphBitmapSubpixel(info, spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w - spc->h_oversample+1, r->h - spc->v_oversample+1, spc->stride_in_bytes, scale * spc->h_oversample, scale * spc->v_oversample, 0,0, glyph); if (spc->h_oversample > 1) stbtt__h_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w, r->h, spc->stride_in_bytes, spc->h_oversample); if (spc->v_oversample > 1) stbtt__v_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w, r->h, spc->stride_in_bytes, spc->v_oversample); bc->x0 = (stbtt_int16) r->x; bc->y0 = (stbtt_int16) r->y; bc->x1 = (stbtt_int16) (r->x + r->w); bc->y1 = (stbtt_int16) (r->y + r->h); bc->xadvance = scale * advance; bc->xoff = (float) x0 * recip_h + sub_x; bc->yoff = (float) y0 * recip_v + sub_y; bc->xoff2 = (x0 + r->w) * recip_h + sub_x; bc->yoff2 = (y0 + r->h) * recip_v + sub_y; if (glyph == 0) missing_glyph = j; } else if (spc->skip_missing) { return_value = 0; } else if (r->was_packed && r->w == 0 && r->h == 0 && missing_glyph >= 0) { ranges[i].chardata_for_range[j] = ranges[i].chardata_for_range[missing_glyph]; } else { return_value = 0; // if any fail, report failure } ++k; } } // restore original values spc->h_oversample = old_h_over; spc->v_oversample = old_v_over; return return_value; } STBTT_DEF void stbtt_PackFontRangesPackRects(stbtt_pack_context *spc, stbrp_rect *rects, int num_rects) { stbrp_pack_rects((stbrp_context *) spc->pack_info, rects, num_rects); } STBTT_DEF int stbtt_PackFontRanges(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, stbtt_pack_range *ranges, int num_ranges) { stbtt_fontinfo info; int i,j,n, return_value = 1; //stbrp_context *context = (stbrp_context *) spc->pack_info; stbrp_rect *rects; // flag all characters as NOT packed for (i=0; i < num_ranges; ++i) for (j=0; j < ranges[i].num_chars; ++j) ranges[i].chardata_for_range[j].x0 = ranges[i].chardata_for_range[j].y0 = ranges[i].chardata_for_range[j].x1 = ranges[i].chardata_for_range[j].y1 = 0; n = 0; for (i=0; i < num_ranges; ++i) n += ranges[i].num_chars; rects = (stbrp_rect *) STBTT_malloc(sizeof(*rects) * n, spc->user_allocator_context); if (rects == NULL) return 0; info.userdata = spc->user_allocator_context; stbtt_InitFont(&info, fontdata, stbtt_GetFontOffsetForIndex(fontdata,font_index)); n = stbtt_PackFontRangesGatherRects(spc, &info, ranges, num_ranges, rects); stbtt_PackFontRangesPackRects(spc, rects, n); return_value = stbtt_PackFontRangesRenderIntoRects(spc, &info, ranges, num_ranges, rects); STBTT_free(rects, spc->user_allocator_context); return return_value; } STBTT_DEF int stbtt_PackFontRange(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, float font_size, int first_unicode_codepoint_in_range, int num_chars_in_range, stbtt_packedchar *chardata_for_range) { stbtt_pack_range range; range.first_unicode_codepoint_in_range = first_unicode_codepoint_in_range; range.array_of_unicode_codepoints = NULL; range.num_chars = num_chars_in_range; range.chardata_for_range = chardata_for_range; range.font_size = font_size; return stbtt_PackFontRanges(spc, fontdata, font_index, &range, 1); } STBTT_DEF void stbtt_GetScaledFontVMetrics(const unsigned char *fontdata, int index, float size, float *ascent, float *descent, float *lineGap) { int i_ascent, i_descent, i_lineGap; float scale; stbtt_fontinfo info; stbtt_InitFont(&info, fontdata, stbtt_GetFontOffsetForIndex(fontdata, index)); scale = size > 0 ? stbtt_ScaleForPixelHeight(&info, size) : stbtt_ScaleForMappingEmToPixels(&info, -size); stbtt_GetFontVMetrics(&info, &i_ascent, &i_descent, &i_lineGap); *ascent = (float) i_ascent * scale; *descent = (float) i_descent * scale; *lineGap = (float) i_lineGap * scale; } STBTT_DEF void stbtt_GetPackedQuad(const stbtt_packedchar *chardata, int pw, int ph, int char_index, float *xpos, float *ypos, stbtt_aligned_quad *q, int align_to_integer) { float ipw = 1.0f / pw, iph = 1.0f / ph; const stbtt_packedchar *b = chardata + char_index; if (align_to_integer) { float x = (float) STBTT_ifloor((*xpos + b->xoff) + 0.5f); float y = (float) STBTT_ifloor((*ypos + b->yoff) + 0.5f); q->x0 = x; q->y0 = y; q->x1 = x + b->xoff2 - b->xoff; q->y1 = y + b->yoff2 - b->yoff; } else { q->x0 = *xpos + b->xoff; q->y0 = *ypos + b->yoff; q->x1 = *xpos + b->xoff2; q->y1 = *ypos + b->yoff2; } q->s0 = b->x0 * ipw; q->t0 = b->y0 * iph; q->s1 = b->x1 * ipw; q->t1 = b->y1 * iph; *xpos += b->xadvance; } ////////////////////////////////////////////////////////////////////////////// // // sdf computation // #define STBTT_min(a,b) ((a) < (b) ? (a) : (b)) #define STBTT_max(a,b) ((a) < (b) ? (b) : (a)) static int stbtt__ray_intersect_bezier(float orig[2], float ray[2], float q0[2], float q1[2], float q2[2], float hits[2][2]) { float q0perp = q0[1]*ray[0] - q0[0]*ray[1]; float q1perp = q1[1]*ray[0] - q1[0]*ray[1]; float q2perp = q2[1]*ray[0] - q2[0]*ray[1]; float roperp = orig[1]*ray[0] - orig[0]*ray[1]; float a = q0perp - 2*q1perp + q2perp; float b = q1perp - q0perp; float c = q0perp - roperp; float s0 = 0., s1 = 0.; int num_s = 0; if (a != 0.0) { float discr = b*b - a*c; if (discr > 0.0) { float rcpna = -1 / a; float d = (float) STBTT_sqrt(discr); s0 = (b+d) * rcpna; s1 = (b-d) * rcpna; if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; if (d > 0.0 && s1 >= 0.0 && s1 <= 1.0) { if (num_s == 0) s0 = s1; ++num_s; } } } else { // 2*b*s + c = 0 // s = -c / (2*b) s0 = c / (-2 * b); if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; } if (num_s == 0) return 0; else { float rcp_len2 = 1 / (ray[0]*ray[0] + ray[1]*ray[1]); float rayn_x = ray[0] * rcp_len2, rayn_y = ray[1] * rcp_len2; float q0d = q0[0]*rayn_x + q0[1]*rayn_y; float q1d = q1[0]*rayn_x + q1[1]*rayn_y; float q2d = q2[0]*rayn_x + q2[1]*rayn_y; float rod = orig[0]*rayn_x + orig[1]*rayn_y; float q10d = q1d - q0d; float q20d = q2d - q0d; float q0rd = q0d - rod; hits[0][0] = q0rd + s0*(2.0f - 2.0f*s0)*q10d + s0*s0*q20d; hits[0][1] = a*s0+b; if (num_s > 1) { hits[1][0] = q0rd + s1*(2.0f - 2.0f*s1)*q10d + s1*s1*q20d; hits[1][1] = a*s1+b; return 2; } else { return 1; } } } static int equal(float *a, float *b) { return (a[0] == b[0] && a[1] == b[1]); } static int stbtt__compute_crossings_x(float x, float y, int nverts, stbtt_vertex *verts) { int i; float orig[2], ray[2] = { 1, 0 }; float y_frac; int winding = 0; orig[0] = x; orig[1] = y; // make sure y never passes through a vertex of the shape y_frac = (float) STBTT_fmod(y, 1.0f); if (y_frac < 0.01f) y += 0.01f; else if (y_frac > 0.99f) y -= 0.01f; orig[1] = y; // test a ray from (-infinity,y) to (x,y) for (i=0; i < nverts; ++i) { if (verts[i].type == STBTT_vline) { int x0 = (int) verts[i-1].x, y0 = (int) verts[i-1].y; int x1 = (int) verts[i ].x, y1 = (int) verts[i ].y; if (y > STBTT_min(y0,y1) && y < STBTT_max(y0,y1) && x > STBTT_min(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } if (verts[i].type == STBTT_vcurve) { int x0 = (int) verts[i-1].x , y0 = (int) verts[i-1].y ; int x1 = (int) verts[i ].cx, y1 = (int) verts[i ].cy; int x2 = (int) verts[i ].x , y2 = (int) verts[i ].y ; int ax = STBTT_min(x0,STBTT_min(x1,x2)), ay = STBTT_min(y0,STBTT_min(y1,y2)); int by = STBTT_max(y0,STBTT_max(y1,y2)); if (y > ay && y < by && x > ax) { float q0[2],q1[2],q2[2]; float hits[2][2]; q0[0] = (float)x0; q0[1] = (float)y0; q1[0] = (float)x1; q1[1] = (float)y1; q2[0] = (float)x2; q2[1] = (float)y2; if (equal(q0,q1) || equal(q1,q2)) { x0 = (int)verts[i-1].x; y0 = (int)verts[i-1].y; x1 = (int)verts[i ].x; y1 = (int)verts[i ].y; if (y > STBTT_min(y0,y1) && y < STBTT_max(y0,y1) && x > STBTT_min(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } else { int num_hits = stbtt__ray_intersect_bezier(orig, ray, q0, q1, q2, hits); if (num_hits >= 1) if (hits[0][0] < 0) winding += (hits[0][1] < 0 ? -1 : 1); if (num_hits >= 2) if (hits[1][0] < 0) winding += (hits[1][1] < 0 ? -1 : 1); } } } } return winding; } static float stbtt__cuberoot( float x ) { if (x<0) return -(float) STBTT_pow(-x,1.0f/3.0f); else return (float) STBTT_pow( x,1.0f/3.0f); } // x^3 + c*x^2 + b*x + a = 0 static int stbtt__solve_cubic(float a, float b, float c, float* r) { float s = -a / 3; float p = b - a*a / 3; float q = a * (2*a*a - 9*b) / 27 + c; float p3 = p*p*p; float d = q*q + 4*p3 / 27; if (d >= 0) { float z = (float) STBTT_sqrt(d); float u = (-q + z) / 2; float v = (-q - z) / 2; u = stbtt__cuberoot(u); v = stbtt__cuberoot(v); r[0] = s + u + v; return 1; } else { float u = (float) STBTT_sqrt(-p/3); float v = (float) STBTT_acos(-STBTT_sqrt(-27/p3) * q / 2) / 3; // p3 must be negative, since d is negative float m = (float) STBTT_cos(v); float n = (float) STBTT_cos(v-3.141592/2)*1.732050808f; r[0] = s + u * 2 * m; r[1] = s - u * (m + n); r[2] = s - u * (m - n); //STBTT_assert( STBTT_fabs(((r[0]+a)*r[0]+b)*r[0]+c) < 0.05f); // these asserts may not be safe at all scales, though they're in bezier t parameter units so maybe? //STBTT_assert( STBTT_fabs(((r[1]+a)*r[1]+b)*r[1]+c) < 0.05f); //STBTT_assert( STBTT_fabs(((r[2]+a)*r[2]+b)*r[2]+c) < 0.05f); return 3; } } STBTT_DEF unsigned char * stbtt_GetGlyphSDF(const stbtt_fontinfo *info, float scale, int glyph, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { float scale_x = scale, scale_y = scale; int ix0,iy0,ix1,iy1; int w,h; unsigned char *data; if (scale == 0) return NULL; stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale, scale, 0.0f,0.0f, &ix0,&iy0,&ix1,&iy1); // if empty, return NULL if (ix0 == ix1 || iy0 == iy1) return NULL; ix0 -= padding; iy0 -= padding; ix1 += padding; iy1 += padding; w = (ix1 - ix0); h = (iy1 - iy0); if (width ) *width = w; if (height) *height = h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; // invert for y-downwards bitmaps scale_y = -scale_y; { int x,y,i,j; float *precompute; stbtt_vertex *verts; int num_verts = stbtt_GetGlyphShape(info, glyph, &verts); data = (unsigned char *) STBTT_malloc(w * h, info->userdata); precompute = (float *) STBTT_malloc(num_verts * sizeof(float), info->userdata); for (i=0,j=num_verts-1; i < num_verts; j=i++) { if (verts[i].type == STBTT_vline) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; float x1 = verts[j].x*scale_x, y1 = verts[j].y*scale_y; float dist = (float) STBTT_sqrt((x1-x0)*(x1-x0) + (y1-y0)*(y1-y0)); precompute[i] = (dist == 0) ? 0.0f : 1.0f / dist; } else if (verts[i].type == STBTT_vcurve) { float x2 = verts[j].x *scale_x, y2 = verts[j].y *scale_y; float x1 = verts[i].cx*scale_x, y1 = verts[i].cy*scale_y; float x0 = verts[i].x *scale_x, y0 = verts[i].y *scale_y; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float len2 = bx*bx + by*by; if (len2 != 0.0f) precompute[i] = 1.0f / (bx*bx + by*by); else precompute[i] = 0.0f; } else precompute[i] = 0.0f; } for (y=iy0; y < iy1; ++y) { for (x=ix0; x < ix1; ++x) { float val; float min_dist = 999999.0f; float sx = (float) x + 0.5f; float sy = (float) y + 0.5f; float x_gspace = (sx / scale_x); float y_gspace = (sy / scale_y); int winding = stbtt__compute_crossings_x(x_gspace, y_gspace, num_verts, verts); // @OPTIMIZE: this could just be a rasterization, but needs to be line vs. non-tesselated curves so a new path for (i=0; i < num_verts; ++i) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; // check against every point here rather than inside line/curve primitives -- @TODO: wrong if multiple 'moves' in a row produce a garbage point, and given culling, probably more efficient to do within line/curve float dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy); if (dist2 < min_dist*min_dist) min_dist = (float) STBTT_sqrt(dist2); if (verts[i].type == STBTT_vline) { float x1 = verts[i-1].x*scale_x, y1 = verts[i-1].y*scale_y; // coarse culling against bbox //if (sx > STBTT_min(x0,x1)-min_dist && sx < STBTT_max(x0,x1)+min_dist && // sy > STBTT_min(y0,y1)-min_dist && sy < STBTT_max(y0,y1)+min_dist) float dist = (float) STBTT_fabs((x1-x0)*(y0-sy) - (y1-y0)*(x0-sx)) * precompute[i]; STBTT_assert(i != 0); if (dist < min_dist) { // check position along line // x' = x0 + t*(x1-x0), y' = y0 + t*(y1-y0) // minimize (x'-sx)*(x'-sx)+(y'-sy)*(y'-sy) float dx = x1-x0, dy = y1-y0; float px = x0-sx, py = y0-sy; // minimize (px+t*dx)^2 + (py+t*dy)^2 = px*px + 2*px*dx*t + t^2*dx*dx + py*py + 2*py*dy*t + t^2*dy*dy // derivative: 2*px*dx + 2*py*dy + (2*dx*dx+2*dy*dy)*t, set to 0 and solve float t = -(px*dx + py*dy) / (dx*dx + dy*dy); if (t >= 0.0f && t <= 1.0f) min_dist = dist; } } else if (verts[i].type == STBTT_vcurve) { float x2 = verts[i-1].x *scale_x, y2 = verts[i-1].y *scale_y; float x1 = verts[i ].cx*scale_x, y1 = verts[i ].cy*scale_y; float box_x0 = STBTT_min(STBTT_min(x0,x1),x2); float box_y0 = STBTT_min(STBTT_min(y0,y1),y2); float box_x1 = STBTT_max(STBTT_max(x0,x1),x2); float box_y1 = STBTT_max(STBTT_max(y0,y1),y2); // coarse culling against bbox to avoid computing cubic unnecessarily if (sx > box_x0-min_dist && sx < box_x1+min_dist && sy > box_y0-min_dist && sy < box_y1+min_dist) { int num=0; float ax = x1-x0, ay = y1-y0; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float mx = x0 - sx, my = y0 - sy; float res[3],px,py,t,it; float a_inv = precompute[i]; if (a_inv == 0.0) { // if a_inv is 0, it's 2nd degree so use quadratic formula float a = 3*(ax*bx + ay*by); float b = 2*(ax*ax + ay*ay) + (mx*bx+my*by); float c = mx*ax+my*ay; if (a == 0.0) { // if a is 0, it's linear if (b != 0.0) { res[num++] = -c/b; } } else { float discriminant = b*b - 4*a*c; if (discriminant < 0) num = 0; else { float root = (float) STBTT_sqrt(discriminant); res[0] = (-b - root)/(2*a); res[1] = (-b + root)/(2*a); num = 2; // don't bother distinguishing 1-solution case, as code below will still work } } } else { float b = 3*(ax*bx + ay*by) * a_inv; // could precompute this as it doesn't depend on sample point float c = (2*(ax*ax + ay*ay) + (mx*bx+my*by)) * a_inv; float d = (mx*ax+my*ay) * a_inv; num = stbtt__solve_cubic(b, c, d, res); } if (num >= 1 && res[0] >= 0.0f && res[0] <= 1.0f) { t = res[0], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } if (num >= 2 && res[1] >= 0.0f && res[1] <= 1.0f) { t = res[1], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } if (num >= 3 && res[2] >= 0.0f && res[2] <= 1.0f) { t = res[2], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } } } } if (winding == 0) min_dist = -min_dist; // if outside the shape, value is negative val = onedge_value + pixel_dist_scale * min_dist; if (val < 0) val = 0; else if (val > 255) val = 255; data[(y-iy0)*w+(x-ix0)] = (unsigned char) val; } } STBTT_free(precompute, info->userdata); STBTT_free(verts, info->userdata); } return data; } STBTT_DEF unsigned char * stbtt_GetCodepointSDF(const stbtt_fontinfo *info, float scale, int codepoint, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphSDF(info, scale, stbtt_FindGlyphIndex(info, codepoint), padding, onedge_value, pixel_dist_scale, width, height, xoff, yoff); } STBTT_DEF void stbtt_FreeSDF(unsigned char *bitmap, void *userdata) { STBTT_free(bitmap, userdata); } ////////////////////////////////////////////////////////////////////////////// // // font name matching -- recommended not to use this // // check if a utf8 string contains a prefix which is the utf16 string; if so return length of matching utf8 string static stbtt_int32 stbtt__CompareUTF8toUTF16_bigendian_prefix(stbtt_uint8 *s1, stbtt_int32 len1, stbtt_uint8 *s2, stbtt_int32 len2) { stbtt_int32 i=0; // convert utf16 to utf8 and compare the results while converting while (len2) { stbtt_uint16 ch = s2[0]*256 + s2[1]; if (ch < 0x80) { if (i >= len1) return -1; if (s1[i++] != ch) return -1; } else if (ch < 0x800) { if (i+1 >= len1) return -1; if (s1[i++] != 0xc0 + (ch >> 6)) return -1; if (s1[i++] != 0x80 + (ch & 0x3f)) return -1; } else if (ch >= 0xd800 && ch < 0xdc00) { stbtt_uint32 c; stbtt_uint16 ch2 = s2[2]*256 + s2[3]; if (i+3 >= len1) return -1; c = ((ch - 0xd800) << 10) + (ch2 - 0xdc00) + 0x10000; if (s1[i++] != 0xf0 + (c >> 18)) return -1; if (s1[i++] != 0x80 + ((c >> 12) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((c >> 6) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((c ) & 0x3f)) return -1; s2 += 2; // plus another 2 below len2 -= 2; } else if (ch >= 0xdc00 && ch < 0xe000) { return -1; } else { if (i+2 >= len1) return -1; if (s1[i++] != 0xe0 + (ch >> 12)) return -1; if (s1[i++] != 0x80 + ((ch >> 6) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((ch ) & 0x3f)) return -1; } s2 += 2; len2 -= 2; } return i; } static int stbtt_CompareUTF8toUTF16_bigendian_internal(char *s1, int len1, char *s2, int len2) { return len1 == stbtt__CompareUTF8toUTF16_bigendian_prefix((stbtt_uint8*) s1, len1, (stbtt_uint8*) s2, len2); } // returns results in whatever encoding you request... but note that 2-byte encodings // will be BIG-ENDIAN... use stbtt_CompareUTF8toUTF16_bigendian() to compare STBTT_DEF const char *stbtt_GetFontNameString(const stbtt_fontinfo *font, int *length, int platformID, int encodingID, int languageID, int nameID) { stbtt_int32 i,count,stringOffset; stbtt_uint8 *fc = font->data; stbtt_uint32 offset = font->fontstart; stbtt_uint32 nm = stbtt__find_table(fc, offset, "name"); if (!nm) return NULL; count = ttUSHORT(fc+nm+2); stringOffset = nm + ttUSHORT(fc+nm+4); for (i=0; i < count; ++i) { stbtt_uint32 loc = nm + 6 + 12 * i; if (platformID == ttUSHORT(fc+loc+0) && encodingID == ttUSHORT(fc+loc+2) && languageID == ttUSHORT(fc+loc+4) && nameID == ttUSHORT(fc+loc+6)) { *length = ttUSHORT(fc+loc+8); return (const char *) (fc+stringOffset+ttUSHORT(fc+loc+10)); } } return NULL; } static int stbtt__matchpair(stbtt_uint8 *fc, stbtt_uint32 nm, stbtt_uint8 *name, stbtt_int32 nlen, stbtt_int32 target_id, stbtt_int32 next_id) { stbtt_int32 i; stbtt_int32 count = ttUSHORT(fc+nm+2); stbtt_int32 stringOffset = nm + ttUSHORT(fc+nm+4); for (i=0; i < count; ++i) { stbtt_uint32 loc = nm + 6 + 12 * i; stbtt_int32 id = ttUSHORT(fc+loc+6); if (id == target_id) { // find the encoding stbtt_int32 platform = ttUSHORT(fc+loc+0), encoding = ttUSHORT(fc+loc+2), language = ttUSHORT(fc+loc+4); // is this a Unicode encoding? if (platform == 0 || (platform == 3 && encoding == 1) || (platform == 3 && encoding == 10)) { stbtt_int32 slen = ttUSHORT(fc+loc+8); stbtt_int32 off = ttUSHORT(fc+loc+10); // check if there's a prefix match stbtt_int32 matchlen = stbtt__CompareUTF8toUTF16_bigendian_prefix(name, nlen, fc+stringOffset+off,slen); if (matchlen >= 0) { // check for target_id+1 immediately following, with same encoding & language if (i+1 < count && ttUSHORT(fc+loc+12+6) == next_id && ttUSHORT(fc+loc+12) == platform && ttUSHORT(fc+loc+12+2) == encoding && ttUSHORT(fc+loc+12+4) == language) { slen = ttUSHORT(fc+loc+12+8); off = ttUSHORT(fc+loc+12+10); if (slen == 0) { if (matchlen == nlen) return 1; } else if (matchlen < nlen && name[matchlen] == ' ') { ++matchlen; if (stbtt_CompareUTF8toUTF16_bigendian_internal((char*) (name+matchlen), nlen-matchlen, (char*)(fc+stringOffset+off),slen)) return 1; } } else { // if nothing immediately following if (matchlen == nlen) return 1; } } } // @TODO handle other encodings } } return 0; } static int stbtt__matches(stbtt_uint8 *fc, stbtt_uint32 offset, stbtt_uint8 *name, stbtt_int32 flags) { stbtt_int32 nlen = (stbtt_int32) STBTT_strlen((char *) name); stbtt_uint32 nm,hd; if (!stbtt__isfont(fc+offset)) return 0; // check italics/bold/underline flags in macStyle... if (flags) { hd = stbtt__find_table(fc, offset, "head"); if ((ttUSHORT(fc+hd+44) & 7) != (flags & 7)) return 0; } nm = stbtt__find_table(fc, offset, "name"); if (!nm) return 0; if (flags) { // if we checked the macStyle flags, then just check the family and ignore the subfamily if (stbtt__matchpair(fc, nm, name, nlen, 16, -1)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 1, -1)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 3, -1)) return 1; } else { if (stbtt__matchpair(fc, nm, name, nlen, 16, 17)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 1, 2)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 3, -1)) return 1; } return 0; } static int stbtt_FindMatchingFont_internal(unsigned char *font_collection, char *name_utf8, stbtt_int32 flags) { stbtt_int32 i; for (i=0;;++i) { stbtt_int32 off = stbtt_GetFontOffsetForIndex(font_collection, i); if (off < 0) return off; if (stbtt__matches((stbtt_uint8 *) font_collection, off, (stbtt_uint8*) name_utf8, flags)) return off; } } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif STBTT_DEF int stbtt_BakeFontBitmap(const unsigned char *data, int offset, float pixel_height, unsigned char *pixels, int pw, int ph, int first_char, int num_chars, stbtt_bakedchar *chardata) { return stbtt_BakeFontBitmap_internal((unsigned char *) data, offset, pixel_height, pixels, pw, ph, first_char, num_chars, chardata); } STBTT_DEF int stbtt_GetFontOffsetForIndex(const unsigned char *data, int index) { return stbtt_GetFontOffsetForIndex_internal((unsigned char *) data, index); } STBTT_DEF int stbtt_GetNumberOfFonts(const unsigned char *data) { return stbtt_GetNumberOfFonts_internal((unsigned char *) data); } STBTT_DEF int stbtt_InitFont(stbtt_fontinfo *info, const unsigned char *data, int offset) { return stbtt_InitFont_internal(info, (unsigned char *) data, offset); } STBTT_DEF int stbtt_FindMatchingFont(const unsigned char *fontdata, const char *name, int flags) { return stbtt_FindMatchingFont_internal((unsigned char *) fontdata, (char *) name, flags); } STBTT_DEF int stbtt_CompareUTF8toUTF16_bigendian(const char *s1, int len1, const char *s2, int len2) { return stbtt_CompareUTF8toUTF16_bigendian_internal((char *) s1, len1, (char *) s2, len2); } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif #endif // STB_TRUETYPE_IMPLEMENTATION // FULL VERSION HISTORY // // 1.19 (2018-02-11) OpenType GPOS kerning (horizontal only), STBTT_fmod // 1.18 (2018-01-29) add missing function // 1.17 (2017-07-23) make more arguments const; doc fix // 1.16 (2017-07-12) SDF support // 1.15 (2017-03-03) make more arguments const // 1.14 (2017-01-16) num-fonts-in-TTC function // 1.13 (2017-01-02) support OpenType fonts, certain Apple fonts // 1.12 (2016-10-25) suppress warnings about casting away const with -Wcast-qual // 1.11 (2016-04-02) fix unused-variable warning // 1.10 (2016-04-02) allow user-defined fabs() replacement // fix memory leak if fontsize=0.0 // fix warning from duplicate typedef // 1.09 (2016-01-16) warning fix; avoid crash on outofmem; use alloc userdata for PackFontRanges // 1.08 (2015-09-13) document stbtt_Rasterize(); fixes for vertical & horizontal edges // 1.07 (2015-08-01) allow PackFontRanges to accept arrays of sparse codepoints; // allow PackFontRanges to pack and render in separate phases; // fix stbtt_GetFontOFfsetForIndex (never worked for non-0 input?); // fixed an assert() bug in the new rasterizer // replace assert() with STBTT_assert() in new rasterizer // 1.06 (2015-07-14) performance improvements (~35% faster on x86 and x64 on test machine) // also more precise AA rasterizer, except if shapes overlap // remove need for STBTT_sort // 1.05 (2015-04-15) fix misplaced definitions for STBTT_STATIC // 1.04 (2015-04-15) typo in example // 1.03 (2015-04-12) STBTT_STATIC, fix memory leak in new packing, various fixes // 1.02 (2014-12-10) fix various warnings & compile issues w/ stb_rect_pack, C++ // 1.01 (2014-12-08) fix subpixel position when oversampling to exactly match // non-oversampled; STBTT_POINT_SIZE for packed case only // 1.00 (2014-12-06) add new PackBegin etc. API, w/ support for oversampling // 0.99 (2014-09-18) fix multiple bugs with subpixel rendering (ryg) // 0.9 (2014-08-07) support certain mac/iOS fonts without an MS platformID // 0.8b (2014-07-07) fix a warning // 0.8 (2014-05-25) fix a few more warnings // 0.7 (2013-09-25) bugfix: subpixel glyph bug fixed in 0.5 had come back // 0.6c (2012-07-24) improve documentation // 0.6b (2012-07-20) fix a few more warnings // 0.6 (2012-07-17) fix warnings; added stbtt_ScaleForMappingEmToPixels, // stbtt_GetFontBoundingBox, stbtt_IsGlyphEmpty // 0.5 (2011-12-09) bugfixes: // subpixel glyph renderer computed wrong bounding box // first vertex of shape can be off-curve (FreeSans) // 0.4b (2011-12-03) fixed an error in the font baking example // 0.4 (2011-12-01) kerning, subpixel rendering (tor) // bugfixes for: // codepoint-to-glyph conversion using table fmt=12 // codepoint-to-glyph conversion using table fmt=4 // stbtt_GetBakedQuad with non-square texture (Zer) // updated Hello World! sample to use kerning and subpixel // fixed some warnings // 0.3 (2009-06-24) cmap fmt=12, compound shapes (MM) // userdata, malloc-from-userdata, non-zero fill (stb) // 0.2 (2009-03-11) Fix unsigned/signed char warnings // 0.1 (2009-03-09) First public release // /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/nanovg_gl.h
// // Copyright (c) 2009-2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef NANOVG_GL_H #define NANOVG_GL_H #ifdef __cplusplus extern "C" { #endif // Create flags enum NVGcreateFlags { // Flag indicating if geometry based anti-aliasing is used (may not be needed when using MSAA). NVG_ANTIALIAS = 1<<0, // Flag indicating if strokes should be drawn using stencil buffer. The rendering will be a little // slower, but path overlaps (i.e. self-intersecting or sharp turns) will be drawn just once. NVG_STENCIL_STROKES = 1<<1, // Flag indicating that additional debug checks are done. NVG_DEBUG = 1<<2, }; #if defined NANOVG_GL2_IMPLEMENTATION # define NANOVG_GL2 1 # define NANOVG_GL_IMPLEMENTATION 1 #elif defined NANOVG_GL3_IMPLEMENTATION # define NANOVG_GL3 1 # define NANOVG_GL_IMPLEMENTATION 1 # define NANOVG_GL_USE_UNIFORMBUFFER 1 #elif defined NANOVG_GLES2_IMPLEMENTATION # define NANOVG_GLES2 1 # define NANOVG_GL_IMPLEMENTATION 1 #elif defined NANOVG_GLES3_IMPLEMENTATION # define NANOVG_GLES3 1 # define NANOVG_GL_IMPLEMENTATION 1 #endif #define NANOVG_GL_USE_STATE_FILTER (1) // Creates NanoVG contexts for different OpenGL (ES) versions. // Flags should be combination of the create flags above. #if defined NANOVG_GL2 NVGcontext* nvgCreateGL2(int flags); void nvgDeleteGL2(NVGcontext* ctx); int nvglCreateImageFromHandleGL2(NVGcontext* ctx, GLuint textureId, int w, int h, int flags); GLuint nvglImageHandleGL2(NVGcontext* ctx, int image); #endif #if defined NANOVG_GL3 NVGcontext* nvgCreateGL3(int flags); void nvgDeleteGL3(NVGcontext* ctx); int nvglCreateImageFromHandleGL3(NVGcontext* ctx, GLuint textureId, int w, int h, int flags); GLuint nvglImageHandleGL3(NVGcontext* ctx, int image); #endif #if defined NANOVG_GLES2 NVGcontext* nvgCreateGLES2(int flags); void nvgDeleteGLES2(NVGcontext* ctx); int nvglCreateImageFromHandleGLES2(NVGcontext* ctx, GLuint textureId, int w, int h, int flags); GLuint nvglImageHandleGLES2(NVGcontext* ctx, int image); #endif #if defined NANOVG_GLES3 NVGcontext* nvgCreateGLES3(int flags); void nvgDeleteGLES3(NVGcontext* ctx); int nvglCreateImageFromHandleGLES3(NVGcontext* ctx, GLuint textureId, int w, int h, int flags); GLuint nvglImageHandleGLES3(NVGcontext* ctx, int image); #endif // These are additional flags on top of NVGimageFlags. enum NVGimageFlagsGL { NVG_IMAGE_NODELETE = 1<<16, // Do not delete GL texture handle. }; #ifdef __cplusplus } #endif #endif /* NANOVG_GL_H */ #ifdef NANOVG_GL_IMPLEMENTATION #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include "nanovg.h" enum GLNVGuniformLoc { GLNVG_LOC_VIEWSIZE, GLNVG_LOC_TEX, GLNVG_LOC_FRAG, GLNVG_MAX_LOCS }; enum GLNVGshaderType { NSVG_SHADER_FILLGRAD, NSVG_SHADER_FILLIMG, NSVG_SHADER_SIMPLE, NSVG_SHADER_IMG }; #if NANOVG_GL_USE_UNIFORMBUFFER enum GLNVGuniformBindings { GLNVG_FRAG_BINDING = 0, }; #endif struct GLNVGshader { GLuint prog; GLuint frag; GLuint vert; GLint loc[GLNVG_MAX_LOCS]; }; typedef struct GLNVGshader GLNVGshader; struct GLNVGtexture { int id; GLuint tex; int width, height; int type; int flags; }; typedef struct GLNVGtexture GLNVGtexture; struct GLNVGblend { GLenum srcRGB; GLenum dstRGB; GLenum srcAlpha; GLenum dstAlpha; }; typedef struct GLNVGblend GLNVGblend; enum GLNVGcallType { GLNVG_NONE = 0, GLNVG_FILL, GLNVG_CONVEXFILL, GLNVG_STROKE, GLNVG_TRIANGLES, }; struct GLNVGcall { int type; int image; int pathOffset; int pathCount; int triangleOffset; int triangleCount; int uniformOffset; GLNVGblend blendFunc; }; typedef struct GLNVGcall GLNVGcall; struct GLNVGpath { int fillOffset; int fillCount; int strokeOffset; int strokeCount; }; typedef struct GLNVGpath GLNVGpath; struct GLNVGfragUniforms { #if NANOVG_GL_USE_UNIFORMBUFFER float scissorMat[12]; // matrices are actually 3 vec4s float paintMat[12]; struct NVGcolor innerCol; struct NVGcolor outerCol; float scissorExt[2]; float scissorScale[2]; float extent[2]; float radius; float feather; float strokeMult; float strokeThr; int texType; int type; #else // note: after modifying layout or size of uniform array, // don't forget to also update the fragment shader source! #define NANOVG_GL_UNIFORMARRAY_SIZE 11 union { struct { float scissorMat[12]; // matrices are actually 3 vec4s float paintMat[12]; float innerCol[4]; float outerCol[4]; float scissorExt[2]; float scissorScale[2]; float extent[2]; float radius; float feather; float strokeMult; float strokeThr; float texType; float type; }; float uniformArray[NANOVG_GL_UNIFORMARRAY_SIZE][4]; }; #endif }; typedef struct GLNVGfragUniforms GLNVGfragUniforms; struct GLNVGcontext { GLNVGshader shader; GLNVGtexture* textures; float view[2]; int ntextures; int ctextures; int textureId; GLuint vertBuf; #if defined NANOVG_GL3 GLuint vertArr; #endif #if NANOVG_GL_USE_UNIFORMBUFFER GLuint fragBuf; #endif int fragSize; int flags; // Per frame buffers GLNVGcall* calls; int ccalls; int ncalls; GLNVGpath* paths; int cpaths; int npaths; struct NVGvertex* verts; int cverts; int nverts; unsigned char* uniforms; int cuniforms; int nuniforms; // cached state #if NANOVG_GL_USE_STATE_FILTER GLuint boundTexture; GLuint stencilMask; GLenum stencilFunc; GLint stencilFuncRef; GLuint stencilFuncMask; GLNVGblend blendFunc; #endif int dummyTex; }; typedef struct GLNVGcontext GLNVGcontext; static int glnvg__maxi(int a, int b) { return a > b ? a : b; } #ifdef NANOVG_GLES2 static unsigned int glnvg__nearestPow2(unsigned int num) { unsigned n = num > 0 ? num - 1 : 0; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; n++; return n; } #endif static void glnvg__bindTexture(GLNVGcontext* gl, GLuint tex) { #if NANOVG_GL_USE_STATE_FILTER if (gl->boundTexture != tex) { gl->boundTexture = tex; glBindTexture(GL_TEXTURE_2D, tex); } #else glBindTexture(GL_TEXTURE_2D, tex); #endif } static void glnvg__stencilMask(GLNVGcontext* gl, GLuint mask) { #if NANOVG_GL_USE_STATE_FILTER if (gl->stencilMask != mask) { gl->stencilMask = mask; glStencilMask(mask); } #else glStencilMask(mask); #endif } static void glnvg__stencilFunc(GLNVGcontext* gl, GLenum func, GLint ref, GLuint mask) { #if NANOVG_GL_USE_STATE_FILTER if ((gl->stencilFunc != func) || (gl->stencilFuncRef != ref) || (gl->stencilFuncMask != mask)) { gl->stencilFunc = func; gl->stencilFuncRef = ref; gl->stencilFuncMask = mask; glStencilFunc(func, ref, mask); } #else glStencilFunc(func, ref, mask); #endif } static void glnvg__blendFuncSeparate(GLNVGcontext* gl, const GLNVGblend* blend) { #if NANOVG_GL_USE_STATE_FILTER if ((gl->blendFunc.srcRGB != blend->srcRGB) || (gl->blendFunc.dstRGB != blend->dstRGB) || (gl->blendFunc.srcAlpha != blend->srcAlpha) || (gl->blendFunc.dstAlpha != blend->dstAlpha)) { gl->blendFunc = *blend; glBlendFuncSeparate(blend->srcRGB, blend->dstRGB, blend->srcAlpha,blend->dstAlpha); } #else glBlendFuncSeparate(blend->srcRGB, blend->dstRGB, blend->srcAlpha,blend->dstAlpha); #endif } static GLNVGtexture* glnvg__allocTexture(GLNVGcontext* gl) { GLNVGtexture* tex = NULL; int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == 0) { tex = &gl->textures[i]; break; } } if (tex == NULL) { if (gl->ntextures+1 > gl->ctextures) { GLNVGtexture* textures; int ctextures = glnvg__maxi(gl->ntextures+1, 4) + gl->ctextures/2; // 1.5x Overallocate textures = (GLNVGtexture*)realloc(gl->textures, sizeof(GLNVGtexture)*ctextures); if (textures == NULL) return NULL; gl->textures = textures; gl->ctextures = ctextures; } tex = &gl->textures[gl->ntextures++]; } memset(tex, 0, sizeof(*tex)); tex->id = ++gl->textureId; return tex; } static GLNVGtexture* glnvg__findTexture(GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) if (gl->textures[i].id == id) return &gl->textures[i]; return NULL; } static int glnvg__deleteTexture(GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == id) { if (gl->textures[i].tex != 0 && (gl->textures[i].flags & NVG_IMAGE_NODELETE) == 0) glDeleteTextures(1, &gl->textures[i].tex); memset(&gl->textures[i], 0, sizeof(gl->textures[i])); return 1; } } return 0; } static void glnvg__dumpShaderError(GLuint shader, const char* name, const char* type) { GLchar str[512+1]; GLsizei len = 0; glGetShaderInfoLog(shader, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Shader %s/%s error:\n%s\n", name, type, str); } static void glnvg__dumpProgramError(GLuint prog, const char* name) { GLchar str[512+1]; GLsizei len = 0; glGetProgramInfoLog(prog, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Program %s error:\n%s\n", name, str); } static void glnvg__checkError(GLNVGcontext* gl, const char* str) { GLenum err; if ((gl->flags & NVG_DEBUG) == 0) return; err = glGetError(); if (err != GL_NO_ERROR) { printf("Error %08x after %s\n", err, str); return; } } static int glnvg__createShader(GLNVGshader* shader, const char* name, const char* header, const char* opts, const char* vshader, const char* fshader) { GLint status; GLuint prog, vert, frag; const char* str[3]; str[0] = header; str[1] = opts != NULL ? opts : ""; memset(shader, 0, sizeof(*shader)); prog = glCreateProgram(); vert = glCreateShader(GL_VERTEX_SHADER); frag = glCreateShader(GL_FRAGMENT_SHADER); str[2] = vshader; glShaderSource(vert, 3, str, 0); str[2] = fshader; glShaderSource(frag, 3, str, 0); glCompileShader(vert); glGetShaderiv(vert, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(vert, name, "vert"); return 0; } glCompileShader(frag); glGetShaderiv(frag, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(frag, name, "frag"); return 0; } glAttachShader(prog, vert); glAttachShader(prog, frag); glBindAttribLocation(prog, 0, "vertex"); glBindAttribLocation(prog, 1, "tcoord"); glLinkProgram(prog); glGetProgramiv(prog, GL_LINK_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpProgramError(prog, name); return 0; } shader->prog = prog; shader->vert = vert; shader->frag = frag; return 1; } static void glnvg__deleteShader(GLNVGshader* shader) { if (shader->prog != 0) glDeleteProgram(shader->prog); if (shader->vert != 0) glDeleteShader(shader->vert); if (shader->frag != 0) glDeleteShader(shader->frag); } static void glnvg__getUniforms(GLNVGshader* shader) { shader->loc[GLNVG_LOC_VIEWSIZE] = glGetUniformLocation(shader->prog, "viewSize"); shader->loc[GLNVG_LOC_TEX] = glGetUniformLocation(shader->prog, "tex"); #if NANOVG_GL_USE_UNIFORMBUFFER shader->loc[GLNVG_LOC_FRAG] = glGetUniformBlockIndex(shader->prog, "frag"); #else shader->loc[GLNVG_LOC_FRAG] = glGetUniformLocation(shader->prog, "frag"); #endif } static int glnvg__renderCreateTexture(void* uptr, int type, int w, int h, int imageFlags, const unsigned char* data); static int glnvg__renderCreate(void* uptr) { GLNVGcontext* gl = (GLNVGcontext*)uptr; int align = 4; // TODO: mediump float may not be enough for GLES2 in iOS. // see the following discussion: https://github.com/memononen/nanovg/issues/46 static const char* shaderHeader = #if defined NANOVG_GL2 "#define NANOVG_GL2 1\n" #elif defined NANOVG_GL3 "#version 150 core\n" "#define NANOVG_GL3 1\n" #elif defined NANOVG_GLES2 "#version 100\n" "#define NANOVG_GL2 1\n" #elif defined NANOVG_GLES3 "#version 300 es\n" "#define NANOVG_GL3 1\n" #endif #if NANOVG_GL_USE_UNIFORMBUFFER "#define USE_UNIFORMBUFFER 1\n" #else "#define UNIFORMARRAY_SIZE 11\n" #endif "\n"; static const char* fillVertShader = "#ifdef NANOVG_GL3\n" " uniform vec2 viewSize;\n" " in vec2 vertex;\n" " in vec2 tcoord;\n" " out vec2 ftcoord;\n" " out vec2 fpos;\n" "#else\n" " uniform vec2 viewSize;\n" " attribute vec2 vertex;\n" " attribute vec2 tcoord;\n" " varying vec2 ftcoord;\n" " varying vec2 fpos;\n" "#endif\n" "void main(void) {\n" " ftcoord = tcoord;\n" " fpos = vertex;\n" " gl_Position = vec4(2.0*vertex.x/viewSize.x - 1.0, 1.0 - 2.0*vertex.y/viewSize.y, 0, 1);\n" "}\n"; static const char* fillFragShader = "#ifdef GL_ES\n" "#if defined(GL_FRAGMENT_PRECISION_HIGH) || defined(NANOVG_GL3)\n" " precision highp float;\n" "#else\n" " precision mediump float;\n" "#endif\n" "#endif\n" "#ifdef NANOVG_GL3\n" "#ifdef USE_UNIFORMBUFFER\n" " layout(std140) uniform frag {\n" " mat3 scissorMat;\n" " mat3 paintMat;\n" " vec4 innerCol;\n" " vec4 outerCol;\n" " vec2 scissorExt;\n" " vec2 scissorScale;\n" " vec2 extent;\n" " float radius;\n" " float feather;\n" " float strokeMult;\n" " float strokeThr;\n" " int texType;\n" " int type;\n" " };\n" "#else\n" // NANOVG_GL3 && !USE_UNIFORMBUFFER " uniform vec4 frag[UNIFORMARRAY_SIZE];\n" "#endif\n" " uniform sampler2D tex;\n" " in vec2 ftcoord;\n" " in vec2 fpos;\n" " out vec4 outColor;\n" "#else\n" // !NANOVG_GL3 " uniform vec4 frag[UNIFORMARRAY_SIZE];\n" " uniform sampler2D tex;\n" " varying vec2 ftcoord;\n" " varying vec2 fpos;\n" "#endif\n" "#ifndef USE_UNIFORMBUFFER\n" " #define scissorMat mat3(frag[0].xyz, frag[1].xyz, frag[2].xyz)\n" " #define paintMat mat3(frag[3].xyz, frag[4].xyz, frag[5].xyz)\n" " #define innerCol frag[6]\n" " #define outerCol frag[7]\n" " #define scissorExt frag[8].xy\n" " #define scissorScale frag[8].zw\n" " #define extent frag[9].xy\n" " #define radius frag[9].z\n" " #define feather frag[9].w\n" " #define strokeMult frag[10].x\n" " #define strokeThr frag[10].y\n" " #define texType int(frag[10].z)\n" " #define type int(frag[10].w)\n" "#endif\n" "\n" "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n" " vec2 ext2 = ext - vec2(rad,rad);\n" " vec2 d = abs(pt) - ext2;\n" " return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n" "}\n" "\n" "// Scissoring\n" "float scissorMask(vec2 p) {\n" " vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n" " sc = vec2(0.5,0.5) - sc * scissorScale;\n" " return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n" "}\n" "#ifdef EDGE_AA\n" "// Stroke - from [0..1] to clipped pyramid, where the slope is 1px.\n" "float strokeMask() {\n" " return min(1.0, (1.0-abs(ftcoord.x*2.0-1.0))*strokeMult) * min(1.0, ftcoord.y);\n" "}\n" "#endif\n" "\n" "void main(void) {\n" " vec4 result;\n" " float scissor = scissorMask(fpos);\n" "#ifdef EDGE_AA\n" " float strokeAlpha = strokeMask();\n" " if (strokeAlpha < strokeThr) discard;\n" "#else\n" " float strokeAlpha = 1.0;\n" "#endif\n" " if (type == 0) { // Gradient\n" " // Calculate gradient color using box gradient\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n" " float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n" " vec4 color = mix(innerCol,outerCol,d);\n" " // Combine alpha\n" " color *= strokeAlpha * scissor;\n" " result = color;\n" " } else if (type == 1) { // Image\n" " // Calculate color fron texture\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n" "#ifdef NANOVG_GL3\n" " vec4 color = texture(tex, pt);\n" "#else\n" " vec4 color = texture2D(tex, pt);\n" "#endif\n" " if (texType == 1) color = vec4(color.xyz*color.w,color.w);" " if (texType == 2) color = vec4(color.x);" " // Apply color tint and alpha.\n" " color *= innerCol;\n" " // Combine alpha\n" " color *= strokeAlpha * scissor;\n" " result = color;\n" " } else if (type == 2) { // Stencil fill\n" " result = vec4(1,1,1,1);\n" " } else if (type == 3) { // Textured tris\n" "#ifdef NANOVG_GL3\n" " vec4 color = texture(tex, ftcoord);\n" "#else\n" " vec4 color = texture2D(tex, ftcoord);\n" "#endif\n" " if (texType == 1) color = vec4(color.xyz*color.w,color.w);" " if (texType == 2) color = vec4(color.x);" " color *= scissor;\n" " result = color * innerCol;\n" " }\n" "#ifdef NANOVG_GL3\n" " outColor = result;\n" "#else\n" " gl_FragColor = result;\n" "#endif\n" "}\n"; glnvg__checkError(gl, "init"); if (gl->flags & NVG_ANTIALIAS) { if (glnvg__createShader(&gl->shader, "shader", shaderHeader, "#define EDGE_AA 1\n", fillVertShader, fillFragShader) == 0) return 0; } else { if (glnvg__createShader(&gl->shader, "shader", shaderHeader, NULL, fillVertShader, fillFragShader) == 0) return 0; } glnvg__checkError(gl, "uniform locations"); glnvg__getUniforms(&gl->shader); // Create dynamic vertex array #if defined NANOVG_GL3 glGenVertexArrays(1, &gl->vertArr); #endif glGenBuffers(1, &gl->vertBuf); #if NANOVG_GL_USE_UNIFORMBUFFER // Create UBOs glUniformBlockBinding(gl->shader.prog, gl->shader.loc[GLNVG_LOC_FRAG], GLNVG_FRAG_BINDING); glGenBuffers(1, &gl->fragBuf); glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &align); #endif gl->fragSize = sizeof(GLNVGfragUniforms) + align - sizeof(GLNVGfragUniforms) % align; // Some platforms does not allow to have samples to unset textures. // Create empty one which is bound when there's no texture specified. gl->dummyTex = glnvg__renderCreateTexture(gl, NVG_TEXTURE_ALPHA, 1, 1, 0, NULL); glnvg__checkError(gl, "create done"); glFinish(); return 1; } static int glnvg__renderCreateTexture(void* uptr, int type, int w, int h, int imageFlags, const unsigned char* data) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGtexture* tex = glnvg__allocTexture(gl); if (tex == NULL) return 0; #ifdef NANOVG_GLES2 // Check for non-power of 2. if (glnvg__nearestPow2(w) != (unsigned int)w || glnvg__nearestPow2(h) != (unsigned int)h) { // No repeat if ((imageFlags & NVG_IMAGE_REPEATX) != 0 || (imageFlags & NVG_IMAGE_REPEATY) != 0) { printf("Repeat X/Y is not supported for non power-of-two textures (%d x %d)\n", w, h); imageFlags &= ~(NVG_IMAGE_REPEATX | NVG_IMAGE_REPEATY); } // No mips. if (imageFlags & NVG_IMAGE_GENERATE_MIPMAPS) { printf("Mip-maps is not support for non power-of-two textures (%d x %d)\n", w, h); imageFlags &= ~NVG_IMAGE_GENERATE_MIPMAPS; } } #endif glGenTextures(1, &tex->tex); tex->width = w; tex->height = h; tex->type = type; tex->flags = imageFlags; glnvg__bindTexture(gl, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); #ifndef NANOVG_GLES2 glPixelStorei(GL_UNPACK_ROW_LENGTH, tex->width); glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); #endif #if defined (NANOVG_GL2) // GL 1.4 and later has support for generating mipmaps using a tex parameter. if (imageFlags & NVG_IMAGE_GENERATE_MIPMAPS) { glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); } #endif if (type == NVG_TEXTURE_RGBA) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); else #if defined(NANOVG_GLES2) || defined (NANOVG_GL2) glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, w, h, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, data); #elif defined(NANOVG_GLES3) glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, w, h, 0, GL_RED, GL_UNSIGNED_BYTE, data); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w, h, 0, GL_RED, GL_UNSIGNED_BYTE, data); #endif if (imageFlags & NVG_IMAGE_GENERATE_MIPMAPS) { if (imageFlags & NVG_IMAGE_NEAREST) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } } else { if (imageFlags & NVG_IMAGE_NEAREST) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } } if (imageFlags & NVG_IMAGE_NEAREST) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } if (imageFlags & NVG_IMAGE_REPEATX) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); if (imageFlags & NVG_IMAGE_REPEATY) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); #ifndef NANOVG_GLES2 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); #endif // The new way to build mipmaps on GLES and GL3 #if !defined(NANOVG_GL2) if (imageFlags & NVG_IMAGE_GENERATE_MIPMAPS) { glGenerateMipmap(GL_TEXTURE_2D); } #endif glnvg__checkError(gl, "create tex"); glnvg__bindTexture(gl, 0); return tex->id; } static int glnvg__renderDeleteTexture(void* uptr, int image) { GLNVGcontext* gl = (GLNVGcontext*)uptr; return glnvg__deleteTexture(gl, image); } static int glnvg__renderUpdateTexture(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; glnvg__bindTexture(gl, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); #ifndef NANOVG_GLES2 glPixelStorei(GL_UNPACK_ROW_LENGTH, tex->width); glPixelStorei(GL_UNPACK_SKIP_PIXELS, x); glPixelStorei(GL_UNPACK_SKIP_ROWS, y); #else // No support for all of skip, need to update a whole row at a time. if (tex->type == NVG_TEXTURE_RGBA) data += y*tex->width*4; else data += y*tex->width; x = 0; w = tex->width; #endif if (tex->type == NVG_TEXTURE_RGBA) glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_RGBA, GL_UNSIGNED_BYTE, data); else #if defined(NANOVG_GLES2) || defined(NANOVG_GL2) glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_LUMINANCE, GL_UNSIGNED_BYTE, data); #else glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_RED, GL_UNSIGNED_BYTE, data); #endif glPixelStorei(GL_UNPACK_ALIGNMENT, 4); #ifndef NANOVG_GLES2 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); #endif glnvg__bindTexture(gl, 0); return 1; } static int glnvg__renderGetTextureSize(void* uptr, int image, int* w, int* h) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; *w = tex->width; *h = tex->height; return 1; } static void glnvg__xformToMat3x4(float* m3, float* t) { m3[0] = t[0]; m3[1] = t[1]; m3[2] = 0.0f; m3[3] = 0.0f; m3[4] = t[2]; m3[5] = t[3]; m3[6] = 0.0f; m3[7] = 0.0f; m3[8] = t[4]; m3[9] = t[5]; m3[10] = 1.0f; m3[11] = 0.0f; } static NVGcolor glnvg__premulColor(NVGcolor c) { c.r *= c.a; c.g *= c.a; c.b *= c.a; return c; } static int glnvg__convertPaint(GLNVGcontext* gl, GLNVGfragUniforms* frag, NVGpaint* paint, NVGscissor* scissor, float width, float fringe, float strokeThr) { GLNVGtexture* tex = NULL; float invxform[6]; memset(frag, 0, sizeof(*frag)); NVGcolor premulInnerCol = glnvg__premulColor(paint->innerColor); NVGcolor premulOuterCol = glnvg__premulColor(paint->outerColor); frag->innerCol[0] = premulInnerCol.rgba[0]; frag->innerCol[1] = premulInnerCol.rgba[1]; frag->innerCol[2] = premulInnerCol.rgba[2]; frag->innerCol[3] = premulInnerCol.rgba[3]; frag->outerCol[0] = premulOuterCol.rgba[0]; frag->outerCol[1] = premulOuterCol.rgba[1]; frag->outerCol[2] = premulOuterCol.rgba[2]; frag->outerCol[3] = premulOuterCol.rgba[3]; if (scissor->extent[0] < -0.5f || scissor->extent[1] < -0.5f) { memset(frag->scissorMat, 0, sizeof(frag->scissorMat)); frag->scissorExt[0] = 1.0f; frag->scissorExt[1] = 1.0f; frag->scissorScale[0] = 1.0f; frag->scissorScale[1] = 1.0f; } else { nvgTransformInverse(invxform, scissor->xform); glnvg__xformToMat3x4(frag->scissorMat, invxform); frag->scissorExt[0] = scissor->extent[0]; frag->scissorExt[1] = scissor->extent[1]; frag->scissorScale[0] = sqrtf(scissor->xform[0]*scissor->xform[0] + scissor->xform[2]*scissor->xform[2]) / fringe; frag->scissorScale[1] = sqrtf(scissor->xform[1]*scissor->xform[1] + scissor->xform[3]*scissor->xform[3]) / fringe; } memcpy(frag->extent, paint->extent, sizeof(frag->extent)); frag->strokeMult = (width*0.5f + fringe*0.5f) / fringe; frag->strokeThr = strokeThr; if (paint->image != 0) { tex = glnvg__findTexture(gl, paint->image); if (tex == NULL) return 0; if ((tex->flags & NVG_IMAGE_FLIPY) != 0) { float m1[6], m2[6]; nvgTransformTranslate(m1, 0.0f, frag->extent[1] * 0.5f); nvgTransformMultiply(m1, paint->xform); nvgTransformScale(m2, 1.0f, -1.0f); nvgTransformMultiply(m2, m1); nvgTransformTranslate(m1, 0.0f, -frag->extent[1] * 0.5f); nvgTransformMultiply(m1, m2); nvgTransformInverse(invxform, m1); } else { nvgTransformInverse(invxform, paint->xform); } frag->type = NSVG_SHADER_FILLIMG; #if NANOVG_GL_USE_UNIFORMBUFFER if (tex->type == NVG_TEXTURE_RGBA) frag->texType = (tex->flags & NVG_IMAGE_PREMULTIPLIED) ? 0 : 1; else frag->texType = 2; #else if (tex->type == NVG_TEXTURE_RGBA) frag->texType = (tex->flags & NVG_IMAGE_PREMULTIPLIED) ? 0.0f : 1.0f; else frag->texType = 2.0f; #endif // printf("frag->texType = %d\n", frag->texType); } else { frag->type = NSVG_SHADER_FILLGRAD; frag->radius = paint->radius; frag->feather = paint->feather; nvgTransformInverse(invxform, paint->xform); } glnvg__xformToMat3x4(frag->paintMat, invxform); return 1; } static GLNVGfragUniforms* nvg__fragUniformPtr(GLNVGcontext* gl, int i); static void glnvg__setUniforms(GLNVGcontext* gl, int uniformOffset, int image) { GLNVGtexture* tex = NULL; #if NANOVG_GL_USE_UNIFORMBUFFER glBindBufferRange(GL_UNIFORM_BUFFER, GLNVG_FRAG_BINDING, gl->fragBuf, uniformOffset, sizeof(GLNVGfragUniforms)); #else GLNVGfragUniforms* frag = nvg__fragUniformPtr(gl, uniformOffset); glUniform4fv(gl->shader.loc[GLNVG_LOC_FRAG], NANOVG_GL_UNIFORMARRAY_SIZE, &(frag->uniformArray[0][0])); #endif if (image != 0) { tex = glnvg__findTexture(gl, image); } // If no image is set, use empty texture if (tex == NULL) { tex = glnvg__findTexture(gl, gl->dummyTex); } glnvg__bindTexture(gl, tex != NULL ? tex->tex : 0); glnvg__checkError(gl, "tex paint tex"); } static void glnvg__renderViewport(void* uptr, float width, float height, float devicePixelRatio) { NVG_NOTUSED(devicePixelRatio); GLNVGcontext* gl = (GLNVGcontext*)uptr; gl->view[0] = width; gl->view[1] = height; } static void glnvg__fill(GLNVGcontext* gl, GLNVGcall* call) { GLNVGpath* paths = &gl->paths[call->pathOffset]; int i, npaths = call->pathCount; // Draw shapes glEnable(GL_STENCIL_TEST); glnvg__stencilMask(gl, 0xff); glnvg__stencilFunc(gl, GL_ALWAYS, 0, 0xff); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // set bindpoint for solid loc glnvg__setUniforms(gl, call->uniformOffset, 0); glnvg__checkError(gl, "fill simple"); glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP); glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP); glDisable(GL_CULL_FACE); for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_FAN, paths[i].fillOffset, paths[i].fillCount); glEnable(GL_CULL_FACE); // Draw anti-aliased pixels glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glnvg__setUniforms(gl, call->uniformOffset + gl->fragSize, call->image); glnvg__checkError(gl, "fill fill"); if (gl->flags & NVG_ANTIALIAS) { glnvg__stencilFunc(gl, GL_EQUAL, 0x00, 0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // Draw fringes for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); } // Draw fill glnvg__stencilFunc(gl, GL_NOTEQUAL, 0x0, 0xff); glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO); glDrawArrays(GL_TRIANGLE_STRIP, call->triangleOffset, call->triangleCount); glDisable(GL_STENCIL_TEST); } static void glnvg__convexFill(GLNVGcontext* gl, GLNVGcall* call) { GLNVGpath* paths = &gl->paths[call->pathOffset]; int i, npaths = call->pathCount; glnvg__setUniforms(gl, call->uniformOffset, call->image); glnvg__checkError(gl, "convex fill"); for (i = 0; i < npaths; i++) { glDrawArrays(GL_TRIANGLE_FAN, paths[i].fillOffset, paths[i].fillCount); // Draw fringes if (paths[i].strokeCount > 0) { glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); } } } static void glnvg__stroke(GLNVGcontext* gl, GLNVGcall* call) { GLNVGpath* paths = &gl->paths[call->pathOffset]; int npaths = call->pathCount, i; if (gl->flags & NVG_STENCIL_STROKES) { glEnable(GL_STENCIL_TEST); glnvg__stencilMask(gl, 0xff); // Fill the stroke base without overlap glnvg__stencilFunc(gl, GL_EQUAL, 0x0, 0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); glnvg__setUniforms(gl, call->uniformOffset + gl->fragSize, call->image); glnvg__checkError(gl, "stroke fill 0"); for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); // Draw anti-aliased pixels. glnvg__setUniforms(gl, call->uniformOffset, call->image); glnvg__stencilFunc(gl, GL_EQUAL, 0x00, 0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); // Clear stencil buffer. glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glnvg__stencilFunc(gl, GL_ALWAYS, 0x0, 0xff); glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO); glnvg__checkError(gl, "stroke fill 1"); for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDisable(GL_STENCIL_TEST); // glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset + gl->fragSize), paint, scissor, strokeWidth, fringe, 1.0f - 0.5f/255.0f); } else { glnvg__setUniforms(gl, call->uniformOffset, call->image); glnvg__checkError(gl, "stroke fill"); // Draw Strokes for (i = 0; i < npaths; i++) glDrawArrays(GL_TRIANGLE_STRIP, paths[i].strokeOffset, paths[i].strokeCount); } } static void glnvg__triangles(GLNVGcontext* gl, GLNVGcall* call) { glnvg__setUniforms(gl, call->uniformOffset, call->image); glnvg__checkError(gl, "triangles fill"); glDrawArrays(GL_TRIANGLES, call->triangleOffset, call->triangleCount); } static void glnvg__renderCancel(void* uptr) { GLNVGcontext* gl = (GLNVGcontext*)uptr; gl->nverts = 0; gl->npaths = 0; gl->ncalls = 0; gl->nuniforms = 0; } static GLenum glnvg_convertBlendFuncFactor(int factor) { if (factor == NVG_ZERO) return GL_ZERO; if (factor == NVG_ONE) return GL_ONE; if (factor == NVG_SRC_COLOR) return GL_SRC_COLOR; if (factor == NVG_ONE_MINUS_SRC_COLOR) return GL_ONE_MINUS_SRC_COLOR; if (factor == NVG_DST_COLOR) return GL_DST_COLOR; if (factor == NVG_ONE_MINUS_DST_COLOR) return GL_ONE_MINUS_DST_COLOR; if (factor == NVG_SRC_ALPHA) return GL_SRC_ALPHA; if (factor == NVG_ONE_MINUS_SRC_ALPHA) return GL_ONE_MINUS_SRC_ALPHA; if (factor == NVG_DST_ALPHA) return GL_DST_ALPHA; if (factor == NVG_ONE_MINUS_DST_ALPHA) return GL_ONE_MINUS_DST_ALPHA; if (factor == NVG_SRC_ALPHA_SATURATE) return GL_SRC_ALPHA_SATURATE; return GL_INVALID_ENUM; } static GLNVGblend glnvg__blendCompositeOperation(NVGcompositeOperationState op) { GLNVGblend blend; blend.srcRGB = glnvg_convertBlendFuncFactor(op.srcRGB); blend.dstRGB = glnvg_convertBlendFuncFactor(op.dstRGB); blend.srcAlpha = glnvg_convertBlendFuncFactor(op.srcAlpha); blend.dstAlpha = glnvg_convertBlendFuncFactor(op.dstAlpha); if (blend.srcRGB == GL_INVALID_ENUM || blend.dstRGB == GL_INVALID_ENUM || blend.srcAlpha == GL_INVALID_ENUM || blend.dstAlpha == GL_INVALID_ENUM) { blend.srcRGB = GL_ONE; blend.dstRGB = GL_ONE_MINUS_SRC_ALPHA; blend.srcAlpha = GL_ONE; blend.dstAlpha = GL_ONE_MINUS_SRC_ALPHA; } return blend; } static void glnvg__renderFlush(void* uptr) { GLNVGcontext* gl = (GLNVGcontext*)uptr; int i; if (gl->ncalls > 0) { // Setup require GL state. glUseProgram(gl->shader.prog); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glFrontFace(GL_CCW); glEnable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glStencilMask(0xffffffff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilFunc(GL_ALWAYS, 0, 0xffffffff); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); #if NANOVG_GL_USE_STATE_FILTER gl->boundTexture = 0; gl->stencilMask = 0xffffffff; gl->stencilFunc = GL_ALWAYS; gl->stencilFuncRef = 0; gl->stencilFuncMask = 0xffffffff; gl->blendFunc.srcRGB = GL_INVALID_ENUM; gl->blendFunc.srcAlpha = GL_INVALID_ENUM; gl->blendFunc.dstRGB = GL_INVALID_ENUM; gl->blendFunc.dstAlpha = GL_INVALID_ENUM; #endif #if NANOVG_GL_USE_UNIFORMBUFFER // Upload ubo for frag shaders glBindBuffer(GL_UNIFORM_BUFFER, gl->fragBuf); glBufferData(GL_UNIFORM_BUFFER, gl->nuniforms * gl->fragSize, gl->uniforms, GL_STREAM_DRAW); #endif // Upload vertex data #if defined NANOVG_GL3 glBindVertexArray(gl->vertArr); #endif glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, gl->nverts * sizeof(NVGvertex), gl->verts, GL_STREAM_DRAW); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(NVGvertex), (const GLvoid*)(size_t)0); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(NVGvertex), (const GLvoid*)(0 + 2*sizeof(float))); // Set view and texture just once per frame. glUniform1i(gl->shader.loc[GLNVG_LOC_TEX], 0); glUniform2fv(gl->shader.loc[GLNVG_LOC_VIEWSIZE], 1, gl->view); #if NANOVG_GL_USE_UNIFORMBUFFER glBindBuffer(GL_UNIFORM_BUFFER, gl->fragBuf); #endif for (i = 0; i < gl->ncalls; i++) { GLNVGcall* call = &gl->calls[i]; glnvg__blendFuncSeparate(gl,&call->blendFunc); if (call->type == GLNVG_FILL) glnvg__fill(gl, call); else if (call->type == GLNVG_CONVEXFILL) glnvg__convexFill(gl, call); else if (call->type == GLNVG_STROKE) glnvg__stroke(gl, call); else if (call->type == GLNVG_TRIANGLES) glnvg__triangles(gl, call); } glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); #if defined NANOVG_GL3 glBindVertexArray(0); #endif glDisable(GL_CULL_FACE); glBindBuffer(GL_ARRAY_BUFFER, 0); glUseProgram(0); glnvg__bindTexture(gl, 0); } // Reset calls gl->nverts = 0; gl->npaths = 0; gl->ncalls = 0; gl->nuniforms = 0; } static int glnvg__maxVertCount(const NVGpath* paths, int npaths) { int i, count = 0; for (i = 0; i < npaths; i++) { count += paths[i].nfill; count += paths[i].nstroke; } return count; } static GLNVGcall* glnvg__allocCall(GLNVGcontext* gl) { GLNVGcall* ret = NULL; if (gl->ncalls+1 > gl->ccalls) { GLNVGcall* calls; int ccalls = glnvg__maxi(gl->ncalls+1, 128) + gl->ccalls/2; // 1.5x Overallocate calls = (GLNVGcall*)realloc(gl->calls, sizeof(GLNVGcall) * ccalls); if (calls == NULL) return NULL; gl->calls = calls; gl->ccalls = ccalls; } ret = &gl->calls[gl->ncalls++]; memset(ret, 0, sizeof(GLNVGcall)); return ret; } static int glnvg__allocPaths(GLNVGcontext* gl, int n) { int ret = 0; if (gl->npaths+n > gl->cpaths) { GLNVGpath* paths; int cpaths = glnvg__maxi(gl->npaths + n, 128) + gl->cpaths/2; // 1.5x Overallocate paths = (GLNVGpath*)realloc(gl->paths, sizeof(GLNVGpath) * cpaths); if (paths == NULL) return -1; gl->paths = paths; gl->cpaths = cpaths; } ret = gl->npaths; gl->npaths += n; return ret; } static int glnvg__allocVerts(GLNVGcontext* gl, int n) { int ret = 0; if (gl->nverts+n > gl->cverts) { NVGvertex* verts; int cverts = glnvg__maxi(gl->nverts + n, 4096) + gl->cverts/2; // 1.5x Overallocate verts = (NVGvertex*)realloc(gl->verts, sizeof(NVGvertex) * cverts); if (verts == NULL) return -1; gl->verts = verts; gl->cverts = cverts; } ret = gl->nverts; gl->nverts += n; return ret; } static int glnvg__allocFragUniforms(GLNVGcontext* gl, int n) { int ret = 0, structSize = gl->fragSize; if (gl->nuniforms+n > gl->cuniforms) { unsigned char* uniforms; int cuniforms = glnvg__maxi(gl->nuniforms+n, 128) + gl->cuniforms/2; // 1.5x Overallocate uniforms = (unsigned char*)realloc(gl->uniforms, structSize * cuniforms); if (uniforms == NULL) return -1; gl->uniforms = uniforms; gl->cuniforms = cuniforms; } ret = gl->nuniforms * structSize; gl->nuniforms += n; return ret; } static GLNVGfragUniforms* nvg__fragUniformPtr(GLNVGcontext* gl, int i) { return (GLNVGfragUniforms*)&gl->uniforms[i]; } static void glnvg__vset(NVGvertex* vtx, float x, float y, float u, float v) { vtx->x = x; vtx->y = y; vtx->u = u; vtx->v = v; } static void glnvg__renderFill(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, const float* bounds, const NVGpath* paths, int npaths) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGcall* call = glnvg__allocCall(gl); NVGvertex* quad; GLNVGfragUniforms* frag; int i, maxverts, offset; if (call == NULL) return; call->type = GLNVG_FILL; call->triangleCount = 4; call->pathOffset = glnvg__allocPaths(gl, npaths); if (call->pathOffset == -1) goto error; call->pathCount = npaths; call->image = paint->image; call->blendFunc = glnvg__blendCompositeOperation(compositeOperation); if (npaths == 1 && paths[0].convex) { call->type = GLNVG_CONVEXFILL; call->triangleCount = 0; // Bounding box fill quad not needed for convex fill } // Allocate vertices for all the paths. maxverts = glnvg__maxVertCount(paths, npaths) + call->triangleCount; offset = glnvg__allocVerts(gl, maxverts); if (offset == -1) goto error; for (i = 0; i < npaths; i++) { GLNVGpath* copy = &gl->paths[call->pathOffset + i]; const NVGpath* path = &paths[i]; memset(copy, 0, sizeof(GLNVGpath)); if (path->nfill > 0) { copy->fillOffset = offset; copy->fillCount = path->nfill; memcpy(&gl->verts[offset], path->fill, sizeof(NVGvertex) * path->nfill); offset += path->nfill; } if (path->nstroke > 0) { copy->strokeOffset = offset; copy->strokeCount = path->nstroke; memcpy(&gl->verts[offset], path->stroke, sizeof(NVGvertex) * path->nstroke); offset += path->nstroke; } } // Setup uniforms for draw calls if (call->type == GLNVG_FILL) { // Quad call->triangleOffset = offset; quad = &gl->verts[call->triangleOffset]; glnvg__vset(&quad[0], bounds[2], bounds[3], 0.5f, 1.0f); glnvg__vset(&quad[1], bounds[2], bounds[1], 0.5f, 1.0f); glnvg__vset(&quad[2], bounds[0], bounds[3], 0.5f, 1.0f); glnvg__vset(&quad[3], bounds[0], bounds[1], 0.5f, 1.0f); call->uniformOffset = glnvg__allocFragUniforms(gl, 2); if (call->uniformOffset == -1) goto error; // Simple shader for stencil frag = nvg__fragUniformPtr(gl, call->uniformOffset); memset(frag, 0, sizeof(*frag)); frag->strokeThr = -1.0f; frag->type = NSVG_SHADER_SIMPLE; // Fill shader glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset + gl->fragSize), paint, scissor, fringe, fringe, -1.0f); } else { call->uniformOffset = glnvg__allocFragUniforms(gl, 1); if (call->uniformOffset == -1) goto error; // Fill shader glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset), paint, scissor, fringe, fringe, -1.0f); } return; error: // We get here if call alloc was ok, but something else is not. // Roll back the last call to prevent drawing it. if (gl->ncalls > 0) gl->ncalls--; } static void glnvg__renderStroke(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, float strokeWidth, const NVGpath* paths, int npaths) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGcall* call = glnvg__allocCall(gl); int i, maxverts, offset; if (call == NULL) return; call->type = GLNVG_STROKE; call->pathOffset = glnvg__allocPaths(gl, npaths); if (call->pathOffset == -1) goto error; call->pathCount = npaths; call->image = paint->image; call->blendFunc = glnvg__blendCompositeOperation(compositeOperation); // Allocate vertices for all the paths. maxverts = glnvg__maxVertCount(paths, npaths); offset = glnvg__allocVerts(gl, maxverts); if (offset == -1) goto error; for (i = 0; i < npaths; i++) { GLNVGpath* copy = &gl->paths[call->pathOffset + i]; const NVGpath* path = &paths[i]; memset(copy, 0, sizeof(GLNVGpath)); if (path->nstroke) { copy->strokeOffset = offset; copy->strokeCount = path->nstroke; memcpy(&gl->verts[offset], path->stroke, sizeof(NVGvertex) * path->nstroke); offset += path->nstroke; } } if (gl->flags & NVG_STENCIL_STROKES) { // Fill shader call->uniformOffset = glnvg__allocFragUniforms(gl, 2); if (call->uniformOffset == -1) goto error; glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset), paint, scissor, strokeWidth, fringe, -1.0f); glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset + gl->fragSize), paint, scissor, strokeWidth, fringe, 1.0f - 0.5f/255.0f); } else { // Fill shader call->uniformOffset = glnvg__allocFragUniforms(gl, 1); if (call->uniformOffset == -1) goto error; glnvg__convertPaint(gl, nvg__fragUniformPtr(gl, call->uniformOffset), paint, scissor, strokeWidth, fringe, -1.0f); } return; error: // We get here if call alloc was ok, but something else is not. // Roll back the last call to prevent drawing it. if (gl->ncalls > 0) gl->ncalls--; } static void glnvg__renderTriangles(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, const NVGvertex* verts, int nverts, float fringe) { GLNVGcontext* gl = (GLNVGcontext*)uptr; GLNVGcall* call = glnvg__allocCall(gl); GLNVGfragUniforms* frag; if (call == NULL) return; call->type = GLNVG_TRIANGLES; call->image = paint->image; call->blendFunc = glnvg__blendCompositeOperation(compositeOperation); // Allocate vertices for all the paths. call->triangleOffset = glnvg__allocVerts(gl, nverts); if (call->triangleOffset == -1) goto error; call->triangleCount = nverts; memcpy(&gl->verts[call->triangleOffset], verts, sizeof(NVGvertex) * nverts); // Fill shader call->uniformOffset = glnvg__allocFragUniforms(gl, 1); if (call->uniformOffset == -1) goto error; frag = nvg__fragUniformPtr(gl, call->uniformOffset); glnvg__convertPaint(gl, frag, paint, scissor, 1.0f, fringe, -1.0f); frag->type = NSVG_SHADER_IMG; return; error: // We get here if call alloc was ok, but something else is not. // Roll back the last call to prevent drawing it. if (gl->ncalls > 0) gl->ncalls--; } static void glnvg__renderDelete(void* uptr) { GLNVGcontext* gl = (GLNVGcontext*)uptr; int i; if (gl == NULL) return; glnvg__deleteShader(&gl->shader); #if NANOVG_GL3 #if NANOVG_GL_USE_UNIFORMBUFFER if (gl->fragBuf != 0) glDeleteBuffers(1, &gl->fragBuf); #endif if (gl->vertArr != 0) glDeleteVertexArrays(1, &gl->vertArr); #endif if (gl->vertBuf != 0) glDeleteBuffers(1, &gl->vertBuf); for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].tex != 0 && (gl->textures[i].flags & NVG_IMAGE_NODELETE) == 0) glDeleteTextures(1, &gl->textures[i].tex); } free(gl->textures); free(gl->paths); free(gl->verts); free(gl->uniforms); free(gl->calls); free(gl); } #if defined NANOVG_GL2 NVGcontext* nvgCreateGL2(int flags) #elif defined NANOVG_GL3 NVGcontext* nvgCreateGL3(int flags) #elif defined NANOVG_GLES2 NVGcontext* nvgCreateGLES2(int flags) #elif defined NANOVG_GLES3 NVGcontext* nvgCreateGLES3(int flags) #endif { NVGparams params; NVGcontext* ctx = NULL; GLNVGcontext* gl = (GLNVGcontext*)malloc(sizeof(GLNVGcontext)); if (gl == NULL) goto error; memset(gl, 0, sizeof(GLNVGcontext)); memset(&params, 0, sizeof(params)); params.renderCreate = glnvg__renderCreate; params.renderCreateTexture = glnvg__renderCreateTexture; params.renderDeleteTexture = glnvg__renderDeleteTexture; params.renderUpdateTexture = glnvg__renderUpdateTexture; params.renderGetTextureSize = glnvg__renderGetTextureSize; params.renderViewport = glnvg__renderViewport; params.renderCancel = glnvg__renderCancel; params.renderFlush = glnvg__renderFlush; params.renderFill = glnvg__renderFill; params.renderStroke = glnvg__renderStroke; params.renderTriangles = glnvg__renderTriangles; params.renderDelete = glnvg__renderDelete; params.userPtr = gl; params.edgeAntiAlias = flags & NVG_ANTIALIAS ? 1 : 0; gl->flags = flags; ctx = nvgCreateInternal(&params); if (ctx == NULL) goto error; return ctx; error: // 'gl' is freed by nvgDeleteInternal. if (ctx != NULL) nvgDeleteInternal(ctx); return NULL; } #if defined NANOVG_GL2 void nvgDeleteGL2(NVGcontext* ctx) #elif defined NANOVG_GL3 void nvgDeleteGL3(NVGcontext* ctx) #elif defined NANOVG_GLES2 void nvgDeleteGLES2(NVGcontext* ctx) #elif defined NANOVG_GLES3 void nvgDeleteGLES3(NVGcontext* ctx) #endif { nvgDeleteInternal(ctx); } #if defined NANOVG_GL2 int nvglCreateImageFromHandleGL2(NVGcontext* ctx, GLuint textureId, int w, int h, int imageFlags) #elif defined NANOVG_GL3 int nvglCreateImageFromHandleGL3(NVGcontext* ctx, GLuint textureId, int w, int h, int imageFlags) #elif defined NANOVG_GLES2 int nvglCreateImageFromHandleGLES2(NVGcontext* ctx, GLuint textureId, int w, int h, int imageFlags) #elif defined NANOVG_GLES3 int nvglCreateImageFromHandleGLES3(NVGcontext* ctx, GLuint textureId, int w, int h, int imageFlags) #endif { GLNVGcontext* gl = (GLNVGcontext*)nvgInternalParams(ctx)->userPtr; GLNVGtexture* tex = glnvg__allocTexture(gl); if (tex == NULL) return 0; tex->type = NVG_TEXTURE_RGBA; tex->tex = textureId; tex->flags = imageFlags; tex->width = w; tex->height = h; return tex->id; } #if defined NANOVG_GL2 GLuint nvglImageHandleGL2(NVGcontext* ctx, int image) #elif defined NANOVG_GL3 GLuint nvglImageHandleGL3(NVGcontext* ctx, int image) #elif defined NANOVG_GLES2 GLuint nvglImageHandleGLES2(NVGcontext* ctx, int image) #elif defined NANOVG_GLES3 GLuint nvglImageHandleGLES3(NVGcontext* ctx, int image) #endif { GLNVGcontext* gl = (GLNVGcontext*)nvgInternalParams(ctx)->userPtr; GLNVGtexture* tex = glnvg__findTexture(gl, image); return tex->tex; } #endif /* NANOVG_GL_IMPLEMENTATION */
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/src/nanovg_gl_utils.h
// // Copyright (c) 2009-2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef NANOVG_GL_UTILS_H #define NANOVG_GL_UTILS_H struct NVGLUframebuffer { NVGcontext* ctx; GLuint fbo; GLuint rbo; GLuint texture; int image; }; typedef struct NVGLUframebuffer NVGLUframebuffer; // Helper function to create GL frame buffer to render to. void nvgluBindFramebuffer(NVGLUframebuffer* fb); NVGLUframebuffer* nvgluCreateFramebuffer(NVGcontext* ctx, int w, int h, int imageFlags); void nvgluDeleteFramebuffer(NVGLUframebuffer* fb); #endif // NANOVG_GL_UTILS_H #ifdef NANOVG_GL_IMPLEMENTATION #if defined(NANOVG_GL3) || defined(NANOVG_GLES2) || defined(NANOVG_GLES3) // FBO is core in OpenGL 3>. # define NANOVG_FBO_VALID 1 #elif defined(NANOVG_GL2) // On OS X including glext defines FBO on GL2 too. # ifdef __APPLE__ # include <OpenGL/glext.h> # define NANOVG_FBO_VALID 1 # endif #endif static GLint defaultFBO = -1; NVGLUframebuffer* nvgluCreateFramebuffer(NVGcontext* ctx, int w, int h, int imageFlags) { #ifdef NANOVG_FBO_VALID GLint defaultFBO; GLint defaultRBO; NVGLUframebuffer* fb = NULL; glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO); glGetIntegerv(GL_RENDERBUFFER_BINDING, &defaultRBO); fb = (NVGLUframebuffer*)malloc(sizeof(NVGLUframebuffer)); if (fb == NULL) goto error; memset(fb, 0, sizeof(NVGLUframebuffer)); fb->image = nvgCreateImageRGBA(ctx, w, h, imageFlags | NVG_IMAGE_FLIPY | NVG_IMAGE_PREMULTIPLIED, NULL); #if defined NANOVG_GL2 fb->texture = nvglImageHandleGL2(ctx, fb->image); #elif defined NANOVG_GL3 fb->texture = nvglImageHandleGL3(ctx, fb->image); #elif defined NANOVG_GLES2 fb->texture = nvglImageHandleGLES2(ctx, fb->image); #elif defined NANOVG_GLES3 fb->texture = nvglImageHandleGLES3(ctx, fb->image); #endif fb->ctx = ctx; // frame buffer object glGenFramebuffers(1, &fb->fbo); glBindFramebuffer(GL_FRAMEBUFFER, fb->fbo); // render buffer object glGenRenderbuffers(1, &fb->rbo); glBindRenderbuffer(GL_RENDERBUFFER, fb->rbo); glRenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX8, w, h); // combine all glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb->texture, 0); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, fb->rbo); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { #ifdef GL_DEPTH24_STENCIL8 // If GL_STENCIL_INDEX8 is not supported, try GL_DEPTH24_STENCIL8 as a fallback. // Some graphics cards require a depth buffer along with a stencil. glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, w, h); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb->texture, 0); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, fb->rbo); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) #endif // GL_DEPTH24_STENCIL8 goto error; } glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO); glBindRenderbuffer(GL_RENDERBUFFER, defaultRBO); return fb; error: glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO); glBindRenderbuffer(GL_RENDERBUFFER, defaultRBO); nvgluDeleteFramebuffer(fb); return NULL; #else NVG_NOTUSED(ctx); NVG_NOTUSED(w); NVG_NOTUSED(h); NVG_NOTUSED(imageFlags); return NULL; #endif } void nvgluBindFramebuffer(NVGLUframebuffer* fb) { #ifdef NANOVG_FBO_VALID if (defaultFBO == -1) glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO); glBindFramebuffer(GL_FRAMEBUFFER, fb != NULL ? fb->fbo : defaultFBO); #else NVG_NOTUSED(fb); #endif } void nvgluDeleteFramebuffer(NVGLUframebuffer* fb) { #ifdef NANOVG_FBO_VALID if (fb == NULL) return; if (fb->fbo != 0) glDeleteFramebuffers(1, &fb->fbo); if (fb->rbo != 0) glDeleteRenderbuffers(1, &fb->rbo); if (fb->image >= 0) nvgDeleteImage(fb->ctx, fb->image); fb->ctx = NULL; fb->fbo = 0; fb->rbo = 0; fb->texture = 0; fb->image = -1; free(fb); #else NVG_NOTUSED(fb); #endif } #endif // NANOVG_GL_IMPLEMENTATION
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/obsolete/nanovg_gl2.h
// // Copyright (c) 2009-2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef NANOVG_GL2_H #define NANOVG_GL2_H #ifdef __cplusplus extern "C" { #endif #define NVG_ANTIALIAS 1 #ifdef NANOVG_GLES2_IMPLEMENTATION # ifndef NANOVG_GLES2 # define NANOVG_GLES2 # endif # ifndef NANOVG_GL2_IMPLEMENTATION # define NANOVG_GL2_IMPLEMENTATION # endif #endif #ifdef NANOVG_GLES2 struct NVGcontext* nvgCreateGLES2(int atlasw, int atlash, int edgeaa); void nvgDeleteGLES2(struct NVGcontext* ctx); #else struct NVGcontext* nvgCreateGL2(int atlasw, int atlash, int edgeaa); void nvgDeleteGL2(struct NVGcontext* ctx); #endif #ifdef __cplusplus } #endif #endif #ifdef NANOVG_GL2_IMPLEMENTATION #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include "nanovg.h" enum GLNVGuniformLoc { GLNVG_LOC_VIEWSIZE, GLNVG_LOC_SCISSORMAT, GLNVG_LOC_SCISSOREXT, GLNVG_LOC_SCISSORSCALE, GLNVG_LOC_PAINTMAT, GLNVG_LOC_EXTENT, GLNVG_LOC_RADIUS, GLNVG_LOC_FEATHER, GLNVG_LOC_INNERCOL, GLNVG_LOC_OUTERCOL, GLNVG_LOC_STROKEMULT, GLNVG_LOC_TEX, GLNVG_LOC_TEXTYPE, GLNVG_LOC_TYPE, GLNVG_MAX_LOCS }; enum GLNVGshaderType { NSVG_SHADER_FILLGRAD, NSVG_SHADER_FILLIMG, NSVG_SHADER_SIMPLE, NSVG_SHADER_IMG }; struct GLNVGshader { GLuint prog; GLuint frag; GLuint vert; GLint loc[GLNVG_MAX_LOCS]; }; struct GLNVGtexture { int id; GLuint tex; int width, height; int type; }; struct GLNVGcontext { struct GLNVGshader shader; struct GLNVGtexture* textures; float viewWidth, viewHeight; int ntextures; int ctextures; int textureId; GLuint vertBuf; int edgeAntiAlias; }; static struct GLNVGtexture* glnvg__allocTexture(struct GLNVGcontext* gl) { struct GLNVGtexture* tex = NULL; int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == 0) { tex = &gl->textures[i]; break; } } if (tex == NULL) { if (gl->ntextures+1 > gl->ctextures) { gl->ctextures = (gl->ctextures == 0) ? 2 : gl->ctextures*2; gl->textures = (struct GLNVGtexture*)realloc(gl->textures, sizeof(struct GLNVGtexture)*gl->ctextures); if (gl->textures == NULL) return NULL; } tex = &gl->textures[gl->ntextures++]; } memset(tex, 0, sizeof(*tex)); tex->id = ++gl->textureId; return tex; } static struct GLNVGtexture* glnvg__findTexture(struct GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) if (gl->textures[i].id == id) return &gl->textures[i]; return NULL; } static int glnvg__deleteTexture(struct GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == id) { if (gl->textures[i].tex != 0) glDeleteTextures(1, &gl->textures[i].tex); memset(&gl->textures[i], 0, sizeof(gl->textures[i])); return 1; } } return 0; } static void glnvg__dumpShaderError(GLuint shader, const char* name, const char* type) { char str[512+1]; int len = 0; glGetShaderInfoLog(shader, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Shader %s/%s error:\n%s\n", name, type, str); } static void glnvg__dumpProgramError(GLuint prog, const char* name) { char str[512+1]; int len = 0; glGetProgramInfoLog(prog, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Program %s error:\n%s\n", name, str); } static int glnvg__checkError(const char* str) { GLenum err = glGetError(); if (err != GL_NO_ERROR) { printf("Error %08x after %s\n", err, str); return 1; } return 0; } static int glnvg__createShader(struct GLNVGshader* shader, const char* name, const char* vshader, const char* fshader) { GLint status; GLuint prog, vert, frag; memset(shader, 0, sizeof(*shader)); prog = glCreateProgram(); vert = glCreateShader(GL_VERTEX_SHADER); frag = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(vert, 1, &vshader, 0); glShaderSource(frag, 1, &fshader, 0); glCompileShader(vert); glGetShaderiv(vert, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(vert, name, "vert"); return 0; } glCompileShader(frag); glGetShaderiv(frag, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(frag, name, "frag"); return 0; } glAttachShader(prog, vert); glAttachShader(prog, frag); glBindAttribLocation(prog, 0, "vertex"); glBindAttribLocation(prog, 1, "tcoord"); glBindAttribLocation(prog, 2, "color"); glLinkProgram(prog); glGetProgramiv(prog, GL_LINK_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpProgramError(prog, name); return 0; } shader->prog = prog; shader->vert = vert; shader->frag = frag; return 1; } static void glnvg__deleteShader(struct GLNVGshader* shader) { if (shader->prog != 0) glDeleteProgram(shader->prog); if (shader->vert != 0) glDeleteShader(shader->vert); if (shader->frag != 0) glDeleteShader(shader->frag); } static void glnvg__getUniforms(struct GLNVGshader* shader) { shader->loc[GLNVG_LOC_VIEWSIZE] = glGetUniformLocation(shader->prog, "viewSize"); shader->loc[GLNVG_LOC_SCISSORMAT] = glGetUniformLocation(shader->prog, "scissorMat"); shader->loc[GLNVG_LOC_SCISSOREXT] = glGetUniformLocation(shader->prog, "scissorExt"); shader->loc[GLNVG_LOC_SCISSORSCALE] = glGetUniformLocation(shader->prog, "scissorScale"); shader->loc[GLNVG_LOC_PAINTMAT] = glGetUniformLocation(shader->prog, "paintMat"); shader->loc[GLNVG_LOC_EXTENT] = glGetUniformLocation(shader->prog, "extent"); shader->loc[GLNVG_LOC_RADIUS] = glGetUniformLocation(shader->prog, "radius"); shader->loc[GLNVG_LOC_FEATHER] = glGetUniformLocation(shader->prog, "feather"); shader->loc[GLNVG_LOC_INNERCOL] = glGetUniformLocation(shader->prog, "innerCol"); shader->loc[GLNVG_LOC_OUTERCOL] = glGetUniformLocation(shader->prog, "outerCol"); shader->loc[GLNVG_LOC_STROKEMULT] = glGetUniformLocation(shader->prog, "strokeMult"); shader->loc[GLNVG_LOC_TEX] = glGetUniformLocation(shader->prog, "tex"); shader->loc[GLNVG_LOC_TEXTYPE] = glGetUniformLocation(shader->prog, "texType"); shader->loc[GLNVG_LOC_TYPE] = glGetUniformLocation(shader->prog, "type"); } static int glnvg__renderCreate(void* uptr) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; static const char* fillVertShader = #ifdef NANOVG_GLES2 "#version 100\n" "precision mediump float;\n" #endif "uniform vec2 viewSize;\n" "attribute vec2 vertex;\n" "attribute vec2 tcoord;\n" "attribute vec4 color;\n" "varying vec2 ftcoord;\n" "varying vec4 fcolor;\n" "varying vec2 fpos;\n" "void main(void) {\n" " ftcoord = tcoord;\n" " fcolor = color;\n" " fpos = vertex;\n" " gl_Position = vec4(2.0*vertex.x/viewSize.x - 1.0, 1.0 - 2.0*vertex.y/viewSize.y, 0, 1);\n" "}\n"; static const char* fillFragShaderEdgeAA = #ifdef NANOVG_GLES2 "#version 100\n" "precision mediump float;\n" #endif "uniform mat3 scissorMat;\n" "uniform vec2 scissorExt;\n" "uniform vec2 scissorScale;\n" "uniform mat3 paintMat;\n" "uniform vec2 extent;\n" "uniform float radius;\n" "uniform float feather;\n" "uniform vec4 innerCol;\n" "uniform vec4 outerCol;\n" "uniform float strokeMult;\n" "uniform sampler2D tex;\n" "uniform int texType;\n" "uniform int type;\n" "varying vec2 ftcoord;\n" "varying vec4 fcolor;\n" "varying vec2 fpos;\n" "\n" "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n" " vec2 ext2 = ext - vec2(rad,rad);\n" " vec2 d = abs(pt) - ext2;\n" " return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n" "}\n" "\n" "// Scissoring\n" "float scissorMask(vec2 p) {\n" " vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n" " sc = vec2(0.5,0.5) - sc * scissorScale;\n" " return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n" "}\n" "\n" "// Stroke - from [0..1] to clipped pyramid, where the slope is 1px.\n" "float strokeMask() {\n" " return min(1.0, (1.0-abs(ftcoord.x*2.0-1.0))*strokeMult) * ftcoord.y;\n" "}\n" "\n" "void main(void) {\n" " if (type == 0) {\n" " float scissor = scissorMask(fpos);\n" " float strokeAlpha = strokeMask();\n" " // Calculate gradient color using box gradient\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n" " float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n" " vec4 color = mix(innerCol,outerCol,d);\n" " // Combine alpha\n" " color.w *= strokeAlpha * scissor;\n" " gl_FragColor = color;\n" " } else if (type == 1) {\n" " float scissor = scissorMask(fpos);\n" " float strokeAlpha = strokeMask();\n" " // Calculate color fron texture\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n" " vec4 color = texture2D(tex, pt);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " // Combine alpha\n" " color.w *= strokeAlpha * scissor;\n" " gl_FragColor = color;\n" " } else if (type == 2) {\n" " gl_FragColor = vec4(1,1,1,1);\n" " } else if (type == 3) {\n" " vec4 color = texture2D(tex, ftcoord);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " gl_FragColor = color * fcolor;\n" " }\n" "}\n"; static const char* fillFragShader = #ifdef NANOVG_GLES2 "#version 100\n" "precision mediump float;\n" #endif "uniform mat3 scissorMat;\n" "uniform vec2 scissorExt;\n" "uniform vec2 scissorScale;\n" "uniform mat3 paintMat;\n" "uniform vec2 extent;\n" "uniform float radius;\n" "uniform float feather;\n" "uniform vec4 innerCol;\n" "uniform vec4 outerCol;\n" "uniform float strokeMult;\n" "uniform sampler2D tex;\n" "uniform int texType;\n" "uniform int type;\n" "varying vec2 ftcoord;\n" "varying vec4 fcolor;\n" "varying vec2 fpos;\n" "\n" "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n" " vec2 ext2 = ext - vec2(rad,rad);\n" " vec2 d = abs(pt) - ext2;\n" " return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n" "}\n" "\n" "// Scissoring\n" "float scissorMask(vec2 p) {\n" " vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n" " sc = vec2(0.5,0.5) - sc * scissorScale;\n" " return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n" "}\n" "\n" "void main(void) {\n" " if (type == 0) {\n" " float scissor = scissorMask(fpos);\n" " // Calculate gradient color using box gradient\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n" " float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n" " vec4 color = mix(innerCol,outerCol,d);\n" " // Combine alpha\n" " color.w *= scissor;\n" " gl_FragColor = color;\n" " } else if (type == 1) {\n" " float scissor = scissorMask(fpos);\n" " // Calculate color fron texture\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n" " vec4 color = texture2D(tex, pt);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " // Combine alpha\n" " color.w *= scissor;\n" " gl_FragColor = color;\n" " } else if (type == 2) {\n" " gl_FragColor = vec4(1,1,1,1);\n" " } else if (type == 3) {\n" " vec4 color = texture2D(tex, ftcoord);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " gl_FragColor = color * fcolor;\n" " }\n" "}\n"; glnvg__checkError("init"); if (gl->edgeAntiAlias) { if (glnvg__createShader(&gl->shader, "shader", fillVertShader, fillFragShaderEdgeAA) == 0) return 0; } else { if (glnvg__createShader(&gl->shader, "shader", fillVertShader, fillFragShader) == 0) return 0; } glnvg__checkError("uniform locations"); glnvg__getUniforms(&gl->shader); // Create dynamic vertex array glGenBuffers(1, &gl->vertBuf); glnvg__checkError("done"); return 1; } static int glnvg__renderCreateTexture(void* uptr, int type, int w, int h, const unsigned char* data) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__allocTexture(gl); if (tex == NULL) return 0; glGenTextures(1, &tex->tex); tex->width = w; tex->height = h; tex->type = type; glBindTexture(GL_TEXTURE_2D, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); if (type == NVG_TEXTURE_RGBA) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); else glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, w, h, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, data); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (glnvg__checkError("create tex")) return 0; return tex->id; } static int glnvg__renderDeleteTexture(void* uptr, int image) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; return glnvg__deleteTexture(gl, image); } static int glnvg__renderUpdateTexture(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; glBindTexture(GL_TEXTURE_2D, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); #ifdef NANOVG_GLES2 // No support for all of unpack, need to update a whole row at a time. if (tex->type == NVG_TEXTURE_RGBA) data += y*tex->width*4; else data += y*tex->width; x = 0; w = tex->width; #else glPixelStorei(GL_UNPACK_ROW_LENGTH, tex->width); glPixelStorei(GL_UNPACK_SKIP_PIXELS, x); glPixelStorei(GL_UNPACK_SKIP_ROWS, y); #endif if (tex->type == NVG_TEXTURE_RGBA) glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_RGBA, GL_UNSIGNED_BYTE, data); else glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_LUMINANCE, GL_UNSIGNED_BYTE, data); return 1; } static int glnvg__renderGetTextureSize(void* uptr, int image, int* w, int* h) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; *w = tex->width; *h = tex->height; return 1; } static void glnvg__xformIdentity(float* t) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } static void glnvg__xformInverse(float* inv, float* t) { double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; if (det > -1e-6 && det < 1e-6) { glnvg__xformIdentity(t); return; } invdet = 1.0 / det; inv[0] = (float)(t[3] * invdet); inv[2] = (float)(-t[2] * invdet); inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); inv[1] = (float)(-t[1] * invdet); inv[3] = (float)(t[0] * invdet); inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); } static void glnvg__xformToMat3x3(float* m3, float* t) { m3[0] = t[0]; m3[1] = t[1]; m3[2] = 0.0f; m3[3] = t[2]; m3[4] = t[3]; m3[5] = 0.0f; m3[6] = t[4]; m3[7] = t[5]; m3[8] = 1.0f; } static int glnvg__setupPaint(struct GLNVGcontext* gl, struct NVGpaint* paint, struct NVGscissor* scissor, float width, float fringe) { struct NVGcolor innerCol; struct NVGcolor outerCol; struct GLNVGtexture* tex = NULL; float invxform[6], paintMat[9], scissorMat[9]; float scissorx = 0, scissory = 0; float scissorsx = 0, scissorsy = 0; innerCol = paint->innerColor; outerCol = paint->outerColor; glnvg__xformInverse(invxform, paint->xform); glnvg__xformToMat3x3(paintMat, invxform); if (scissor->extent[0] < 0.5f || scissor->extent[1] < 0.5f) { memset(scissorMat, 0, sizeof(scissorMat)); scissorx = 1.0f; scissory = 1.0f; scissorsx = 1.0f; scissorsy = 1.0f; } else { glnvg__xformInverse(invxform, scissor->xform); glnvg__xformToMat3x3(scissorMat, invxform); scissorx = scissor->extent[0]; scissory = scissor->extent[1]; scissorsx = sqrtf(scissor->xform[0]*scissor->xform[0] + scissor->xform[2]*scissor->xform[2]) / fringe; scissorsy = sqrtf(scissor->xform[1]*scissor->xform[1] + scissor->xform[3]*scissor->xform[3]) / fringe; } if (paint->image != 0) { tex = glnvg__findTexture(gl, paint->image); if (tex == NULL) return 0; glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_FILLIMG); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_SCISSORMAT], 1, GL_FALSE, scissorMat); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSOREXT], scissorx, scissory); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSORSCALE], scissorsx, scissorsy); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_PAINTMAT], 1, GL_FALSE, paintMat); glUniform2f(gl->shader.loc[GLNVG_LOC_EXTENT], paint->extent[0], paint->extent[1]); glUniform1f(gl->shader.loc[GLNVG_LOC_STROKEMULT], (width*0.5f + fringe*0.5f)/fringe); glUniform1i(gl->shader.loc[GLNVG_LOC_TEX], 0); glUniform1i(gl->shader.loc[GLNVG_LOC_TEXTYPE], tex->type == NVG_TEXTURE_RGBA ? 0 : 1); glnvg__checkError("tex paint loc"); glBindTexture(GL_TEXTURE_2D, tex->tex); glnvg__checkError("tex paint tex"); } else { glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_FILLGRAD); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_SCISSORMAT], 1, GL_FALSE, scissorMat); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSOREXT], scissorx, scissory); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSORSCALE], scissorsx, scissorsy); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_PAINTMAT], 1, GL_FALSE, paintMat); glUniform2f(gl->shader.loc[GLNVG_LOC_EXTENT], paint->extent[0], paint->extent[1]); glUniform1f(gl->shader.loc[GLNVG_LOC_RADIUS], paint->radius); glUniform1f(gl->shader.loc[GLNVG_LOC_FEATHER], paint->feather); glUniform4fv(gl->shader.loc[GLNVG_LOC_INNERCOL], 1, innerCol.rgba); glUniform4fv(gl->shader.loc[GLNVG_LOC_OUTERCOL], 1, outerCol.rgba); glUniform1f(gl->shader.loc[GLNVG_LOC_STROKEMULT], (width*0.5f + fringe*0.5f)/fringe); glnvg__checkError("grad paint loc"); } return 1; } static void glnvg__renderViewport(void* uptr, int width, int height, int alphaBlend) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; gl->viewWidth = (float)width; gl->viewHeight = (float)height; glEnable(GL_BLEND); glEnable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); if (alphaBlend == NVG_PREMULTIPLIED_ALPHA) glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); else glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } static void glnvg__renderFlush(void* uptr, int alphaBlend) { // struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; NVG_NOTUSED(uptr); NVG_NOTUSED(alphaBlend); } static int glnvg__maxVertCount(const struct NVGpath* paths, int npaths) { int i, count = 0; for (i = 0; i < npaths; i++) { count += paths[i].nfill; count += paths[i].nstroke; } return count; } static void glnvg__uploadPaths(const struct NVGpath* paths, int npaths) { const struct NVGpath* path; int i, n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; if (path->nfill > 0) { glBufferSubData(GL_ARRAY_BUFFER, n*sizeof(struct NVGvertex), path->nfill * sizeof(struct NVGvertex), &path->fill[0].x); n += path->nfill; } if (path->nstroke > 0) { glBufferSubData(GL_ARRAY_BUFFER, n*sizeof(struct NVGvertex), path->nstroke * sizeof(struct NVGvertex), &path->stroke[0].x); n += path->nstroke; } } } static void glnvg__renderFill(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, const float* bounds, const struct NVGpath* paths, int npaths) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; const struct NVGpath* path; int i, n, offset, maxCount; if (gl->shader.prog == 0) return; maxCount = glnvg__maxVertCount(paths, npaths); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, maxCount * sizeof(struct NVGvertex), NULL, GL_STREAM_DRAW); glnvg__uploadPaths(paths, npaths); if (npaths == 1 && paths[0].convex) { glEnable(GL_CULL_FACE); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glnvg__setupPaint(gl, paint, scissor, fringe, fringe); glDisable(GL_CULL_FACE); n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = n * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_FAN, 0, path->nfill); n += path->nfill + path->nstroke; } glEnable(GL_CULL_FACE); if (gl->edgeAntiAlias) { // Draw fringes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } } glUseProgram(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } else { float quad[6*2] = { bounds[0], bounds[3], bounds[2], bounds[3], bounds[2], bounds[1], bounds[0], bounds[3], bounds[2], bounds[1], bounds[0], bounds[1], }; glEnable(GL_CULL_FACE); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); // Draw shapes glDisable(GL_BLEND); glEnable(GL_STENCIL_TEST); glStencilMask(0xff); glStencilFunc(GL_ALWAYS, 0, ~0U); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_SIMPLE); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glnvg__checkError("fill solid loc"); glEnableVertexAttribArray(0); glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP); glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP); glDisable(GL_CULL_FACE); n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = n * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glDrawArrays(GL_TRIANGLE_FAN, 0, path->nfill); n += path->nfill + path->nstroke; } glEnable(GL_CULL_FACE); // Draw aliased off-pixels glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_BLEND); glEnableVertexAttribArray(1); glnvg__setupPaint(gl, paint, scissor, fringe, fringe); if (gl->edgeAntiAlias) { glStencilFunc(GL_EQUAL, 0x00, 0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // Draw fringes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } } // Draw fill glStencilFunc(GL_NOTEQUAL, 0x0, 0xff); glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO); glDisableVertexAttribArray(1); glBufferSubData(GL_ARRAY_BUFFER, 0, 6 * 2*sizeof(float), quad); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), (const GLvoid*)0); glVertexAttrib2f(1, 0.5f, 1.0f); glDrawArrays(GL_TRIANGLES, 0, 6); glUseProgram(0); glDisableVertexAttribArray(0); glDisable(GL_STENCIL_TEST); } } static void glnvg__renderStroke(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, float width, const struct NVGpath* paths, int npaths) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; const struct NVGpath* path; int i, n, offset, maxCount; if (gl->shader.prog == 0) return; glnvg__setupPaint(gl, paint, scissor, width, fringe); glEnable(GL_CULL_FACE); maxCount = glnvg__maxVertCount(paths, npaths); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, maxCount * sizeof(struct NVGvertex), NULL, GL_STREAM_DRAW); glnvg__uploadPaths(paths, npaths); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); // Draw Strokes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glUseProgram(0); } static void glnvg__renderTriangles(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, const struct NVGvertex* verts, int nverts) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, paint->image); struct NVGcolor color; NVG_NOTUSED(scissor); if (gl->shader.prog == 0) return; if (tex != NULL) { glBindTexture(GL_TEXTURE_2D, tex->tex); } glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_IMG); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniform1i(gl->shader.loc[GLNVG_LOC_TEX], 0); glUniform1i(gl->shader.loc[GLNVG_LOC_TEXTYPE], (tex != NULL && tex->type == NVG_TEXTURE_RGBA) ? 0 : 1); glnvg__checkError("tris solid img loc"); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, nverts * sizeof(struct NVGvertex), verts, GL_STREAM_DRAW); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)0); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(2 * sizeof(float))); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); color = paint->innerColor; glVertexAttrib4fv(2, color.rgba); glDrawArrays(GL_TRIANGLES, 0, nverts); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } static void glnvg__renderDelete(void* uptr) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; int i; if (gl == NULL) return; glnvg__deleteShader(&gl->shader); for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].tex != 0) glDeleteTextures(1, &gl->textures[i].tex); } free(gl->textures); free(gl); } #ifdef NANOVG_GLES2 struct NVGcontext* nvgCreateGLES2(int atlasw, int atlash, int edgeaa) #else struct NVGcontext* nvgCreateGL2(int atlasw, int atlash, int edgeaa) #endif { struct NVGparams params; struct NVGcontext* ctx = NULL; struct GLNVGcontext* gl = (struct GLNVGcontext*)malloc(sizeof(struct GLNVGcontext)); if (gl == NULL) goto error; memset(gl, 0, sizeof(struct GLNVGcontext)); memset(&params, 0, sizeof(params)); params.renderCreate = glnvg__renderCreate; params.renderCreateTexture = glnvg__renderCreateTexture; params.renderDeleteTexture = glnvg__renderDeleteTexture; params.renderUpdateTexture = glnvg__renderUpdateTexture; params.renderGetTextureSize = glnvg__renderGetTextureSize; params.renderViewport = glnvg__renderViewport; params.renderFlush = glnvg__renderFlush; params.renderFill = glnvg__renderFill; params.renderStroke = glnvg__renderStroke; params.renderTriangles = glnvg__renderTriangles; params.renderDelete = glnvg__renderDelete; params.userPtr = gl; params.atlasWidth = atlasw; params.atlasHeight = atlash; params.edgeAntiAlias = edgeaa; gl->edgeAntiAlias = edgeaa; ctx = nvgCreateInternal(&params); if (ctx == NULL) goto error; return ctx; error: // 'gl' is freed by nvgDeleteInternal. if (ctx != NULL) nvgDeleteInternal(ctx); return NULL; } #ifdef NANOVG_GLES2 void nvgDeleteGLES2(struct NVGcontext* ctx) #else void nvgDeleteGL2(struct NVGcontext* ctx) #endif { nvgDeleteInternal(ctx); } #endif
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/obsolete/nanovg_gl3.h
// // Copyright (c) 2009-2013 Mikko Mononen [email protected] // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef NANOVG_GL3_H #define NANOVG_GL3_H #ifdef __cplusplus extern "C" { #endif #define NVG_ANTIALIAS 1 #ifdef NANOVG_GLES3_IMPLEMENTATION # ifndef NANOVG_GLES3 # define NANOVG_GLES3 # endif # ifndef NANOVG_GL3_IMPLEMENTATION # define NANOVG_GL3_IMPLEMENTATION # endif #endif #ifdef NANOVG_GLES3 struct NVGcontext* nvgCreateGLES3(int atlasw, int atlash, int edgeaa); void nvgDeleteGLES3(struct NVGcontext* ctx); #else struct NVGcontext* nvgCreateGL3(int atlasw, int atlash, int edgeaa); void nvgDeleteGL3(struct NVGcontext* ctx); #endif #ifdef __cplusplus } #endif #endif #ifdef NANOVG_GL3_IMPLEMENTATION #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include "nanovg.h" enum GLNVGuniformLoc { GLNVG_LOC_VIEWSIZE, GLNVG_LOC_SCISSORMAT, GLNVG_LOC_SCISSOREXT, GLNVG_LOC_SCISSORSCALE, GLNVG_LOC_PAINTMAT, GLNVG_LOC_EXTENT, GLNVG_LOC_RADIUS, GLNVG_LOC_FEATHER, GLNVG_LOC_INNERCOL, GLNVG_LOC_OUTERCOL, GLNVG_LOC_STROKEMULT, GLNVG_LOC_TEX, GLNVG_LOC_TEXTYPE, GLNVG_LOC_TYPE, GLNVG_MAX_LOCS }; enum GLNVGshaderType { NSVG_SHADER_FILLGRAD, NSVG_SHADER_FILLIMG, NSVG_SHADER_SIMPLE, NSVG_SHADER_IMG }; struct GLNVGshader { GLuint prog; GLuint frag; GLuint vert; GLint loc[GLNVG_MAX_LOCS]; }; struct GLNVGtexture { int id; GLuint tex; int width, height; int type; }; struct GLNVGcontext { struct GLNVGshader shader; struct GLNVGtexture* textures; float viewWidth, viewHeight; int ntextures; int ctextures; int textureId; GLuint vertArr; GLuint vertBuf; int edgeAntiAlias; }; static struct GLNVGtexture* glnvg__allocTexture(struct GLNVGcontext* gl) { struct GLNVGtexture* tex = NULL; int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == 0) { tex = &gl->textures[i]; break; } } if (tex == NULL) { if (gl->ntextures+1 > gl->ctextures) { gl->ctextures = (gl->ctextures == 0) ? 2 : gl->ctextures*2; gl->textures = (struct GLNVGtexture*)realloc(gl->textures, sizeof(struct GLNVGtexture)*gl->ctextures); if (gl->textures == NULL) return NULL; } tex = &gl->textures[gl->ntextures++]; } memset(tex, 0, sizeof(*tex)); tex->id = ++gl->textureId; return tex; } static struct GLNVGtexture* glnvg__findTexture(struct GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) if (gl->textures[i].id == id) return &gl->textures[i]; return NULL; } static int glnvg__deleteTexture(struct GLNVGcontext* gl, int id) { int i; for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].id == id) { if (gl->textures[i].tex != 0) glDeleteTextures(1, &gl->textures[i].tex); memset(&gl->textures[i], 0, sizeof(gl->textures[i])); return 1; } } return 0; } static void glnvg__dumpShaderError(GLuint shader, const char* name, const char* type) { char str[512+1]; int len = 0; glGetShaderInfoLog(shader, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Shader %s/%s error:\n%s\n", name, type, str); } static void glnvg__dumpProgramError(GLuint prog, const char* name) { char str[512+1]; int len = 0; glGetProgramInfoLog(prog, 512, &len, str); if (len > 512) len = 512; str[len] = '\0'; printf("Program %s error:\n%s\n", name, str); } static int glnvg__checkError(const char* str) { GLenum err = glGetError(); if (err != GL_NO_ERROR) { printf("Error %08x after %s\n", err, str); return 1; } return 0; } static int glnvg__createShader(struct GLNVGshader* shader, const char* name, const char* vshader, const char* fshader) { GLint status; GLuint prog, vert, frag; memset(shader, 0, sizeof(*shader)); prog = glCreateProgram(); vert = glCreateShader(GL_VERTEX_SHADER); frag = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(vert, 1, &vshader, 0); glShaderSource(frag, 1, &fshader, 0); glCompileShader(vert); glGetShaderiv(vert, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(vert, name, "vert"); return 0; } glCompileShader(frag); glGetShaderiv(frag, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpShaderError(frag, name, "frag"); return 0; } glAttachShader(prog, vert); glAttachShader(prog, frag); glBindAttribLocation(prog, 0, "vertex"); glBindAttribLocation(prog, 1, "tcoord"); glBindAttribLocation(prog, 2, "color"); glLinkProgram(prog); glGetProgramiv(prog, GL_LINK_STATUS, &status); if (status != GL_TRUE) { glnvg__dumpProgramError(prog, name); return 0; } shader->prog = prog; shader->vert = vert; shader->frag = frag; return 1; } static void glnvg__deleteShader(struct GLNVGshader* shader) { if (shader->prog != 0) glDeleteProgram(shader->prog); if (shader->vert != 0) glDeleteShader(shader->vert); if (shader->frag != 0) glDeleteShader(shader->frag); } static void glnvg__getUniforms(struct GLNVGshader* shader) { shader->loc[GLNVG_LOC_VIEWSIZE] = glGetUniformLocation(shader->prog, "viewSize"); shader->loc[GLNVG_LOC_SCISSORMAT] = glGetUniformLocation(shader->prog, "scissorMat"); shader->loc[GLNVG_LOC_SCISSOREXT] = glGetUniformLocation(shader->prog, "scissorExt"); shader->loc[GLNVG_LOC_SCISSORSCALE] = glGetUniformLocation(shader->prog, "scissorScale"); shader->loc[GLNVG_LOC_PAINTMAT] = glGetUniformLocation(shader->prog, "paintMat"); shader->loc[GLNVG_LOC_EXTENT] = glGetUniformLocation(shader->prog, "extent"); shader->loc[GLNVG_LOC_RADIUS] = glGetUniformLocation(shader->prog, "radius"); shader->loc[GLNVG_LOC_FEATHER] = glGetUniformLocation(shader->prog, "feather"); shader->loc[GLNVG_LOC_INNERCOL] = glGetUniformLocation(shader->prog, "innerCol"); shader->loc[GLNVG_LOC_OUTERCOL] = glGetUniformLocation(shader->prog, "outerCol"); shader->loc[GLNVG_LOC_STROKEMULT] = glGetUniformLocation(shader->prog, "strokeMult"); shader->loc[GLNVG_LOC_TEX] = glGetUniformLocation(shader->prog, "tex"); shader->loc[GLNVG_LOC_TEXTYPE] = glGetUniformLocation(shader->prog, "texType"); shader->loc[GLNVG_LOC_TYPE] = glGetUniformLocation(shader->prog, "type"); } static int glnvg__renderCreate(void* uptr) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; static const char* fillVertShader = #ifdef NANOVG_GLES3 "#version 300 es\n" "precision mediump float;\n" #else "#version 150 core\n" #endif "uniform vec2 viewSize;\n" "in vec2 vertex;\n" "in vec2 tcoord;\n" "in vec4 color;\n" "out vec2 ftcoord;\n" "out vec4 fcolor;\n" "out vec2 fpos;\n" "void main(void) {\n" " ftcoord = tcoord;\n" " fcolor = color;\n" " fpos = vertex;\n" " gl_Position = vec4(2.0*vertex.x/viewSize.x - 1.0, 1.0 - 2.0*vertex.y/viewSize.y, 0, 1);\n" "}\n"; static const char* fillFragShaderEdgeAA = #ifdef NANOVG_GLES3 "#version 300 es\n" "precision mediump float;\n" #else "#version 150 core\n" #endif "uniform mat3 scissorMat;\n" "uniform vec2 scissorExt;\n" "uniform vec2 scissorScale;\n" "uniform mat3 paintMat;\n" "uniform vec2 extent;\n" "uniform float radius;\n" "uniform float feather;\n" "uniform vec4 innerCol;\n" "uniform vec4 outerCol;\n" "uniform float strokeMult;\n" "uniform sampler2D tex;\n" "uniform int texType;\n" "uniform int type;\n" "in vec2 ftcoord;\n" "in vec4 fcolor;\n" "in vec2 fpos;\n" "out vec4 outColor;\n" "\n" "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n" " vec2 ext2 = ext - vec2(rad,rad);\n" " vec2 d = abs(pt) - ext2;\n" " return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n" "}\n" "\n" "// Scissoring\n" "float scissorMask(vec2 p) {\n" " vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n" " sc = vec2(0.5,0.5) - sc * scissorScale;\n" " return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n" "}\n" "\n" "// Stroke - from [0..1] to clipped pyramid, where the slope is 1px.\n" "float strokeMask() {\n" " return min(1.0, (1.0-abs(ftcoord.x*2.0-1.0))*strokeMult) * ftcoord.y;\n" "}\n" "\n" "void main(void) {\n" " if (type == 0) { // Gradient\n" " float scissor = scissorMask(fpos);\n" " float strokeAlpha = strokeMask();\n" " // Calculate gradient color using box gradient\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n" " float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n" " vec4 color = mix(innerCol,outerCol,d);\n" " // Combine alpha\n" " color.w *= strokeAlpha * scissor;\n" " outColor = color;\n" " } else if (type == 1) { // Image\n" " float scissor = scissorMask(fpos);\n" " float strokeAlpha = strokeMask();\n" " // Calculate color fron texture\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n" " vec4 color = texture(tex, pt);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " // Combine alpha\n" " color.w *= strokeAlpha * scissor;\n" " outColor = color;\n" " } else if (type == 2) { // Stencil fill\n" " outColor = vec4(1,1,1,1);\n" " } else if (type == 3) { // Textured tris\n" " vec4 color = texture(tex, ftcoord);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " outColor = color * fcolor;\n" " }\n" "}\n"; static const char* fillFragShader = #ifdef NANOVG_GLES3 "#version 300 es\n" "precision mediump float;\n" #else "#version 150 core\n" #endif "uniform mat3 scissorMat;\n" "uniform vec2 scissorExt;\n" "uniform vec2 scissorScale;\n" "uniform mat3 paintMat;\n" "uniform vec2 extent;\n" "uniform float radius;\n" "uniform float feather;\n" "uniform vec4 innerCol;\n" "uniform vec4 outerCol;\n" "uniform float strokeMult;\n" "uniform sampler2D tex;\n" "uniform int texType;\n" "uniform int type;\n" "in vec2 ftcoord;\n" "in vec4 fcolor;\n" "in vec2 fpos;\n" "out vec4 outColor;\n" "\n" "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n" " vec2 ext2 = ext - vec2(rad,rad);\n" " vec2 d = abs(pt) - ext2;\n" " return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n" "}\n" "\n" "// Scissoring\n" "float scissorMask(vec2 p) {\n" " vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n" " sc = vec2(0.5,0.5) - sc * scissorScale;\n" " return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n" "}\n" "\n" "void main(void) {\n" " if (type == 0) { // Gradient\n" " float scissor = scissorMask(fpos);\n" " // Calculate gradient color using box gradient\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n" " float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n" " vec4 color = mix(innerCol,outerCol,d);\n" " // Combine alpha\n" " color.w *= scissor;\n" " outColor = color;\n" " } else if (type == 1) { // Image\n" " float scissor = scissorMask(fpos);\n" " // Calculate color fron texture\n" " vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n" " vec4 color = texture(tex, pt);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " // Combine alpha\n" " color.w *= scissor;\n" " outColor = color;\n" " } else if (type == 2) { // Stencil fill\n" " outColor = vec4(1,1,1,1);\n" " } else if (type == 3) { // Textured tris\n" " vec4 color = texture(tex, ftcoord);\n" " color = texType == 0 ? color : vec4(1,1,1,color.x);\n" " outColor = color * fcolor;\n" " }\n" "}\n"; glnvg__checkError("init"); if (gl->edgeAntiAlias) { if (glnvg__createShader(&gl->shader, "shader", fillVertShader, fillFragShaderEdgeAA) == 0) return 0; } else { if (glnvg__createShader(&gl->shader, "shader", fillVertShader, fillFragShader) == 0) return 0; } glnvg__checkError("uniform locations"); glnvg__getUniforms(&gl->shader); // Create dynamic vertex array glGenVertexArrays(1, &gl->vertArr); glGenBuffers(1, &gl->vertBuf); glnvg__checkError("done"); return 1; } static int glnvg__renderCreateTexture(void* uptr, int type, int w, int h, const unsigned char* data) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__allocTexture(gl); if (tex == NULL) return 0; glGenTextures(1, &tex->tex); tex->width = w; tex->height = h; tex->type = type; glBindTexture(GL_TEXTURE_2D, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glPixelStorei(GL_UNPACK_ROW_LENGTH, tex->width); glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); if (type == NVG_TEXTURE_RGBA) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); else #ifdef NANOVG_GLES3 glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, w, h, 0, GL_RED, GL_UNSIGNED_BYTE, data); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w, h, 0, GL_RED, GL_UNSIGNED_BYTE, data); #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (glnvg__checkError("create tex")) return 0; return tex->id; } static int glnvg__renderDeleteTexture(void* uptr, int image) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; return glnvg__deleteTexture(gl, image); } static int glnvg__renderUpdateTexture(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; glBindTexture(GL_TEXTURE_2D, tex->tex); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glPixelStorei(GL_UNPACK_ROW_LENGTH, tex->width); glPixelStorei(GL_UNPACK_SKIP_PIXELS, x); glPixelStorei(GL_UNPACK_SKIP_ROWS, y); if (tex->type == NVG_TEXTURE_RGBA) glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_RGBA, GL_UNSIGNED_BYTE, data); else glTexSubImage2D(GL_TEXTURE_2D, 0, x,y, w,h, GL_RED, GL_UNSIGNED_BYTE, data); return 1; } static int glnvg__renderGetTextureSize(void* uptr, int image, int* w, int* h) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, image); if (tex == NULL) return 0; *w = tex->width; *h = tex->height; return 1; } static void glnvg__xformIdentity(float* t) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } static void glnvg__xformInverse(float* inv, float* t) { double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; if (det > -1e-6 && det < 1e-6) { glnvg__xformIdentity(t); return; } invdet = 1.0 / det; inv[0] = (float)(t[3] * invdet); inv[2] = (float)(-t[2] * invdet); inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); inv[1] = (float)(-t[1] * invdet); inv[3] = (float)(t[0] * invdet); inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); } static void glnvg__xformToMat3x3(float* m3, float* t) { m3[0] = t[0]; m3[1] = t[1]; m3[2] = 0.0f; m3[3] = t[2]; m3[4] = t[3]; m3[5] = 0.0f; m3[6] = t[4]; m3[7] = t[5]; m3[8] = 1.0f; } static int glnvg__setupPaint(struct GLNVGcontext* gl, struct NVGpaint* paint, struct NVGscissor* scissor, float width, float fringe) { struct NVGcolor innerCol; struct NVGcolor outerCol; struct GLNVGtexture* tex = NULL; float invxform[6], paintMat[9], scissorMat[9]; float scissorx = 0, scissory = 0; float scissorsx = 0, scissorsy = 0; innerCol = paint->innerColor; outerCol = paint->outerColor; glnvg__xformInverse(invxform, paint->xform); glnvg__xformToMat3x3(paintMat, invxform); if (scissor->extent[0] < 0.5f || scissor->extent[1] < 0.5f) { memset(scissorMat, 0, sizeof(scissorMat)); scissorx = 1.0f; scissory = 1.0f; scissorsx = 1.0f; scissorsy = 1.0f; } else { glnvg__xformInverse(invxform, scissor->xform); glnvg__xformToMat3x3(scissorMat, invxform); scissorx = scissor->extent[0]; scissory = scissor->extent[1]; scissorsx = sqrtf(scissor->xform[0]*scissor->xform[0] + scissor->xform[2]*scissor->xform[2]) / fringe; scissorsy = sqrtf(scissor->xform[1]*scissor->xform[1] + scissor->xform[3]*scissor->xform[3]) / fringe; } if (paint->image != 0) { tex = glnvg__findTexture(gl, paint->image); if (tex == NULL) return 0; glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_FILLIMG); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_SCISSORMAT], 1, GL_FALSE, scissorMat); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSOREXT], scissorx, scissory); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSORSCALE], scissorsx, scissorsy); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_PAINTMAT], 1, GL_FALSE, paintMat); glUniform2f(gl->shader.loc[GLNVG_LOC_EXTENT], paint->extent[0], paint->extent[1]); glUniform1f(gl->shader.loc[GLNVG_LOC_STROKEMULT], (width*0.5f + fringe*0.5f)/fringe); glUniform1i(gl->shader.loc[GLNVG_LOC_TEX], 0); glUniform1i(gl->shader.loc[GLNVG_LOC_TEXTYPE], tex->type == NVG_TEXTURE_RGBA ? 0 : 1); glnvg__checkError("tex paint loc"); glBindTexture(GL_TEXTURE_2D, tex->tex); glnvg__checkError("tex paint tex"); } else { glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_FILLGRAD); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_SCISSORMAT], 1, GL_FALSE, scissorMat); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSOREXT], scissorx, scissory); glUniform2f(gl->shader.loc[GLNVG_LOC_SCISSORSCALE], scissorsx, scissorsy); glUniformMatrix3fv(gl->shader.loc[GLNVG_LOC_PAINTMAT], 1, GL_FALSE, paintMat); glUniform2f(gl->shader.loc[GLNVG_LOC_EXTENT], paint->extent[0], paint->extent[1]); glUniform1f(gl->shader.loc[GLNVG_LOC_RADIUS], paint->radius); glUniform1f(gl->shader.loc[GLNVG_LOC_FEATHER], paint->feather); glUniform4fv(gl->shader.loc[GLNVG_LOC_INNERCOL], 1, innerCol.rgba); glUniform4fv(gl->shader.loc[GLNVG_LOC_OUTERCOL], 1, outerCol.rgba); glUniform1f(gl->shader.loc[GLNVG_LOC_STROKEMULT], (width*0.5f + fringe*0.5f)/fringe); glnvg__checkError("grad paint loc"); } return 1; } static void glnvg__renderViewport(void* uptr, int width, int height, int alphaBlend) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; gl->viewWidth = (float)width; gl->viewHeight = (float)height; if (alphaBlend == NVG_PREMULTIPLIED_ALPHA) glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); else glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } static void glnvg__renderFlush(void* uptr, int alphaBlend) { // struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; NVG_NOTUSED(uptr); NVG_NOTUSED(alphaBlend); } static int glnvg__maxVertCount(const struct NVGpath* paths, int npaths) { int i, count = 0; for (i = 0; i < npaths; i++) { count += paths[i].nfill; count += paths[i].nstroke; } return count; } static void glnvg__uploadPaths(const struct NVGpath* paths, int npaths) { const struct NVGpath* path; int i, n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; if (path->nfill > 0) { glBufferSubData(GL_ARRAY_BUFFER, n*sizeof(struct NVGvertex), path->nfill * sizeof(struct NVGvertex), &path->fill[0].x); n += path->nfill; } if (path->nstroke > 0) { glBufferSubData(GL_ARRAY_BUFFER, n*sizeof(struct NVGvertex), path->nstroke * sizeof(struct NVGvertex), &path->stroke[0].x); n += path->nstroke; } } } static void glnvg__renderFill(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, const float* bounds, const struct NVGpath* paths, int npaths) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; const struct NVGpath* path; int i, n, offset, maxCount; if (gl->shader.prog == 0) return; maxCount = glnvg__maxVertCount(paths, npaths); glBindVertexArray(gl->vertArr); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, maxCount * sizeof(struct NVGvertex), NULL, GL_STREAM_DRAW); glnvg__uploadPaths(paths, npaths); if (npaths == 1 && paths[0].convex) { glEnable(GL_CULL_FACE); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glnvg__setupPaint(gl, paint, scissor, fringe, fringe); glDisable(GL_CULL_FACE); n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = n * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_FAN, 0, path->nfill); n += path->nfill + path->nstroke; } glEnable(GL_CULL_FACE); if (gl->edgeAntiAlias) { // Draw fringes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } } glUseProgram(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } else { glEnable(GL_CULL_FACE); glBindVertexArray(gl->vertArr); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); // Draw shapes glDisable(GL_BLEND); glEnable(GL_STENCIL_TEST); glStencilMask(0xff); glStencilFunc(GL_ALWAYS, 0, ~0); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_SIMPLE); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glnvg__checkError("fill solid loc"); glEnableVertexAttribArray(0); glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP); glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP); glDisable(GL_CULL_FACE); n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = n * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glDrawArrays(GL_TRIANGLE_FAN, 0, path->nfill); n += path->nfill + path->nstroke; } glEnable(GL_CULL_FACE); // Draw aliased off-pixels glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_BLEND); glEnableVertexAttribArray(1); glnvg__setupPaint(gl, paint, scissor, fringe, fringe); if (gl->edgeAntiAlias) { glStencilFunc(GL_EQUAL, 0x00, 0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // Draw fringes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } } // Draw fill glStencilFunc(GL_NOTEQUAL, 0x0, 0xff); glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO); glDisableVertexAttribArray(1); float quad[6*2] = { bounds[0], bounds[3], bounds[2], bounds[3], bounds[2], bounds[1], bounds[0], bounds[3], bounds[2], bounds[1], bounds[0], bounds[1], }; glBufferSubData(GL_ARRAY_BUFFER, 0, 6 * 2*sizeof(float), quad); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), (const GLvoid*)0); glVertexAttrib2f(1, 0.5f, 1.0f); glDrawArrays(GL_TRIANGLES, 0, 6); glUseProgram(0); glDisableVertexAttribArray(0); glDisable(GL_STENCIL_TEST); } } static void glnvg__renderStroke(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, float width, const struct NVGpath* paths, int npaths) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; const struct NVGpath* path; int i, n, offset, maxCount; if (gl->shader.prog == 0) return; glnvg__setupPaint(gl, paint, scissor, width, fringe); glEnable(GL_CULL_FACE); maxCount = glnvg__maxVertCount(paths, npaths); glBindVertexArray(gl->vertArr); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, maxCount * sizeof(struct NVGvertex), NULL, GL_STREAM_DRAW); glnvg__uploadPaths(paths, npaths); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); // Draw Strokes n = 0; for (i = 0; i < npaths; i++) { path = &paths[i]; offset = (n + path->nfill) * sizeof(struct NVGvertex); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(size_t)offset); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(offset + 2*sizeof(float))); glDrawArrays(GL_TRIANGLE_STRIP, 0, path->nstroke); n += path->nfill + path->nstroke; } glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glUseProgram(0); } static void glnvg__renderTriangles(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, const struct NVGvertex* verts, int nverts) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; struct GLNVGtexture* tex = glnvg__findTexture(gl, paint->image); struct NVGcolor color; NVG_NOTUSED(scissor); if (gl->shader.prog == 0) return; if (tex != NULL) { glBindTexture(GL_TEXTURE_2D, tex->tex); } glUseProgram(gl->shader.prog); glUniform1i(gl->shader.loc[GLNVG_LOC_TYPE], NSVG_SHADER_IMG); glUniform2f(gl->shader.loc[GLNVG_LOC_VIEWSIZE], gl->viewWidth, gl->viewHeight); glUniform1i(gl->shader.loc[GLNVG_LOC_TEX], 0); glUniform1i(gl->shader.loc[GLNVG_LOC_TEXTYPE], tex->type == NVG_TEXTURE_RGBA ? 0 : 1); glnvg__checkError("tris solid img loc"); glBindVertexArray(gl->vertArr); glBindBuffer(GL_ARRAY_BUFFER, gl->vertBuf); glBufferData(GL_ARRAY_BUFFER, nverts * sizeof(struct NVGvertex), verts, GL_STREAM_DRAW); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)0); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(struct NVGvertex), (const GLvoid*)(2 * sizeof(float))); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); color = paint->innerColor; glVertexAttrib4fv(2, color.rgba); glDrawArrays(GL_TRIANGLES, 0, nverts); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } static void glnvg__renderDelete(void* uptr) { struct GLNVGcontext* gl = (struct GLNVGcontext*)uptr; int i; if (gl == NULL) return; glnvg__deleteShader(&gl->shader); for (i = 0; i < gl->ntextures; i++) { if (gl->textures[i].tex != 0) glDeleteTextures(1, &gl->textures[i].tex); } free(gl->textures); free(gl); } #ifdef NANOVG_GLES3 struct NVGcontext* nvgCreateGLES3(int atlasw, int atlash, int edgeaa) #else struct NVGcontext* nvgCreateGL3(int atlasw, int atlash, int edgeaa) #endif { struct NVGparams params; struct NVGcontext* ctx = NULL; struct GLNVGcontext* gl = (struct GLNVGcontext*)malloc(sizeof(struct GLNVGcontext)); if (gl == NULL) goto error; memset(gl, 0, sizeof(struct GLNVGcontext)); memset(&params, 0, sizeof(params)); params.renderCreate = glnvg__renderCreate; params.renderCreateTexture = glnvg__renderCreateTexture; params.renderDeleteTexture = glnvg__renderDeleteTexture; params.renderUpdateTexture = glnvg__renderUpdateTexture; params.renderGetTextureSize = glnvg__renderGetTextureSize; params.renderViewport = glnvg__renderViewport; params.renderFlush = glnvg__renderFlush; params.renderFill = glnvg__renderFill; params.renderStroke = glnvg__renderStroke; params.renderTriangles = glnvg__renderTriangles; params.renderDelete = glnvg__renderDelete; params.userPtr = gl; params.atlasWidth = atlasw; params.atlasHeight = atlash; params.edgeAntiAlias = edgeaa; gl->edgeAntiAlias = edgeaa; ctx = nvgCreateInternal(&params); if (ctx == NULL) goto error; return ctx; error: // 'gl' is freed by nvgDeleteInternal. if (ctx != NULL) nvgDeleteInternal(ctx); return NULL; } #ifdef NANOVG_GLES3 void nvgDeleteGLES3(struct NVGcontext* ctx) #else void nvgDeleteGL3(struct NVGcontext* ctx) #endif { nvgDeleteInternal(ctx); } #endif
0
repos/zig-gorillas/lib/nanovg
repos/zig-gorillas/lib/nanovg/obsolete/obsolete.md
The files in this folder will be removed in near future. - nanovg_gl2.h and nanovg_gl3.h - These were the first GL2 and GL3 backends - an optimized version of the gl3 backed was build and later GL2 support was added to it - the new combined backend has superseded the individual backends
0
repos/zig-gorillas/lib/gl2/include
repos/zig-gorillas/lib/gl2/include/glad/glad.h
/* OpenGL loader generated by glad 0.1.27 on Tue Sep 4 23:27:29 2018. Language/Generator: C/C++ Specification: gl APIs: gl=2.1 Profile: compatibility Extensions: Loader: True Local files: False Omit khrplatform: False Commandline: --profile="compatibility" --api="gl=2.1" --generator="c" --spec="gl" --extensions="" Online: http://glad.dav1d.de/#profile=compatibility&language=c&specification=gl&loader=on&api=gl%3D2.1 */ #ifndef __glad_h_ #define __glad_h_ #ifdef __gl_h_ #error OpenGL header already included, remove this include, glad already provides it #endif #define __gl_h_ #if defined(_WIN32) && !defined(APIENTRY) && !defined(__CYGWIN__) && !defined(__SCITECH_SNAP__) #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN 1 #endif #ifndef NOMINMAX #define NOMINMAX 1 #endif #include <windows.h> #endif #ifndef APIENTRY #define APIENTRY #endif #ifndef APIENTRYP #define APIENTRYP APIENTRY * #endif #ifndef GLAPIENTRY #define GLAPIENTRY APIENTRY #endif #ifdef __cplusplus extern "C" { #endif struct gladGLversionStruct { int major; int minor; }; typedef void* (* GLADloadproc)(const char *name); #ifndef GLAPI # if defined(GLAD_GLAPI_EXPORT) # if defined(_WIN32) || defined(__CYGWIN__) # if defined(GLAD_GLAPI_EXPORT_BUILD) # if defined(__GNUC__) # define GLAPI __attribute__ ((dllexport)) extern # else # define GLAPI __declspec(dllexport) extern # endif # else # if defined(__GNUC__) # define GLAPI __attribute__ ((dllimport)) extern # else # define GLAPI __declspec(dllimport) extern # endif # endif # elif defined(__GNUC__) && defined(GLAD_GLAPI_EXPORT_BUILD) # define GLAPI __attribute__ ((visibility ("default"))) extern # else # define GLAPI extern # endif # else # define GLAPI extern # endif #endif GLAPI struct gladGLversionStruct GLVersion; GLAPI int gladLoadGL(void); GLAPI int gladLoadGLLoader(GLADloadproc); #include <stddef.h> #include <KHR/khrplatform.h> #ifndef GLEXT_64_TYPES_DEFINED /* This code block is duplicated in glxext.h, so must be protected */ #define GLEXT_64_TYPES_DEFINED /* Define int32_t, int64_t, and uint64_t types for UST/MSC */ /* (as used in the GL_EXT_timer_query extension). */ #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #include <inttypes.h> #elif defined(__sun__) || defined(__digital__) #include <inttypes.h> #if defined(__STDC__) #if defined(__arch64__) || defined(_LP64) typedef long int int64_t; typedef unsigned long int uint64_t; #else typedef long long int int64_t; typedef unsigned long long int uint64_t; #endif /* __arch64__ */ #endif /* __STDC__ */ #elif defined( __VMS ) || defined(__sgi) #include <inttypes.h> #elif defined(__SCO__) || defined(__USLC__) #include <stdint.h> #elif defined(__UNIXOS2__) || defined(__SOL64__) typedef long int int32_t; typedef long long int int64_t; typedef unsigned long long int uint64_t; #elif defined(_WIN32) && defined(__GNUC__) #include <stdint.h> #elif defined(_WIN32) typedef __int32 int32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; #else /* Fallback if nothing above works */ #include <inttypes.h> #endif #endif typedef unsigned int GLenum; typedef unsigned char GLboolean; typedef unsigned int GLbitfield; typedef void GLvoid; typedef signed char GLbyte; typedef short GLshort; typedef int GLint; typedef int GLclampx; typedef unsigned char GLubyte; typedef unsigned short GLushort; typedef unsigned int GLuint; typedef int GLsizei; typedef float GLfloat; typedef float GLclampf; typedef double GLdouble; typedef double GLclampd; typedef void *GLeglClientBufferEXT; typedef void *GLeglImageOES; typedef char GLchar; typedef char GLcharARB; #ifdef __APPLE__ typedef void *GLhandleARB; #else typedef unsigned int GLhandleARB; #endif typedef unsigned short GLhalfARB; typedef unsigned short GLhalf; typedef GLint GLfixed; typedef khronos_intptr_t GLintptr; typedef khronos_ssize_t GLsizeiptr; typedef int64_t GLint64; typedef uint64_t GLuint64; #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef long GLintptrARB; #else typedef ptrdiff_t GLintptrARB; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef long GLsizeiptrARB; #else typedef ptrdiff_t GLsizeiptrARB; #endif typedef int64_t GLint64EXT; typedef uint64_t GLuint64EXT; typedef struct __GLsync *GLsync; struct _cl_context; struct _cl_event; typedef void (APIENTRY *GLDEBUGPROC)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (APIENTRY *GLDEBUGPROCARB)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (APIENTRY *GLDEBUGPROCKHR)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (APIENTRY *GLDEBUGPROCAMD)(GLuint id,GLenum category,GLenum severity,GLsizei length,const GLchar *message,void *userParam); typedef unsigned short GLhalfNV; typedef GLintptr GLvdpauSurfaceNV; typedef void (APIENTRY *GLVULKANPROCNV)(void); #define GL_DEPTH_BUFFER_BIT 0x00000100 #define GL_STENCIL_BUFFER_BIT 0x00000400 #define GL_COLOR_BUFFER_BIT 0x00004000 #define GL_FALSE 0 #define GL_TRUE 1 #define GL_POINTS 0x0000 #define GL_LINES 0x0001 #define GL_LINE_LOOP 0x0002 #define GL_LINE_STRIP 0x0003 #define GL_TRIANGLES 0x0004 #define GL_TRIANGLE_STRIP 0x0005 #define GL_TRIANGLE_FAN 0x0006 #define GL_QUADS 0x0007 #define GL_NEVER 0x0200 #define GL_LESS 0x0201 #define GL_EQUAL 0x0202 #define GL_LEQUAL 0x0203 #define GL_GREATER 0x0204 #define GL_NOTEQUAL 0x0205 #define GL_GEQUAL 0x0206 #define GL_ALWAYS 0x0207 #define GL_ZERO 0 #define GL_ONE 1 #define GL_SRC_COLOR 0x0300 #define GL_ONE_MINUS_SRC_COLOR 0x0301 #define GL_SRC_ALPHA 0x0302 #define GL_ONE_MINUS_SRC_ALPHA 0x0303 #define GL_DST_ALPHA 0x0304 #define GL_ONE_MINUS_DST_ALPHA 0x0305 #define GL_DST_COLOR 0x0306 #define GL_ONE_MINUS_DST_COLOR 0x0307 #define GL_SRC_ALPHA_SATURATE 0x0308 #define GL_NONE 0 #define GL_FRONT_LEFT 0x0400 #define GL_FRONT_RIGHT 0x0401 #define GL_BACK_LEFT 0x0402 #define GL_BACK_RIGHT 0x0403 #define GL_FRONT 0x0404 #define GL_BACK 0x0405 #define GL_LEFT 0x0406 #define GL_RIGHT 0x0407 #define GL_FRONT_AND_BACK 0x0408 #define GL_NO_ERROR 0 #define GL_INVALID_ENUM 0x0500 #define GL_INVALID_VALUE 0x0501 #define GL_INVALID_OPERATION 0x0502 #define GL_OUT_OF_MEMORY 0x0505 #define GL_CW 0x0900 #define GL_CCW 0x0901 #define GL_POINT_SIZE 0x0B11 #define GL_POINT_SIZE_RANGE 0x0B12 #define GL_POINT_SIZE_GRANULARITY 0x0B13 #define GL_LINE_SMOOTH 0x0B20 #define GL_LINE_WIDTH 0x0B21 #define GL_LINE_WIDTH_RANGE 0x0B22 #define GL_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_POLYGON_MODE 0x0B40 #define GL_POLYGON_SMOOTH 0x0B41 #define GL_CULL_FACE 0x0B44 #define GL_CULL_FACE_MODE 0x0B45 #define GL_FRONT_FACE 0x0B46 #define GL_DEPTH_RANGE 0x0B70 #define GL_DEPTH_TEST 0x0B71 #define GL_DEPTH_WRITEMASK 0x0B72 #define GL_DEPTH_CLEAR_VALUE 0x0B73 #define GL_DEPTH_FUNC 0x0B74 #define GL_STENCIL_TEST 0x0B90 #define GL_STENCIL_CLEAR_VALUE 0x0B91 #define GL_STENCIL_FUNC 0x0B92 #define GL_STENCIL_VALUE_MASK 0x0B93 #define GL_STENCIL_FAIL 0x0B94 #define GL_STENCIL_PASS_DEPTH_FAIL 0x0B95 #define GL_STENCIL_PASS_DEPTH_PASS 0x0B96 #define GL_STENCIL_REF 0x0B97 #define GL_STENCIL_WRITEMASK 0x0B98 #define GL_VIEWPORT 0x0BA2 #define GL_DITHER 0x0BD0 #define GL_BLEND_DST 0x0BE0 #define GL_BLEND_SRC 0x0BE1 #define GL_BLEND 0x0BE2 #define GL_LOGIC_OP_MODE 0x0BF0 #define GL_DRAW_BUFFER 0x0C01 #define GL_READ_BUFFER 0x0C02 #define GL_SCISSOR_BOX 0x0C10 #define GL_SCISSOR_TEST 0x0C11 #define GL_COLOR_CLEAR_VALUE 0x0C22 #define GL_COLOR_WRITEMASK 0x0C23 #define GL_DOUBLEBUFFER 0x0C32 #define GL_STEREO 0x0C33 #define GL_LINE_SMOOTH_HINT 0x0C52 #define GL_POLYGON_SMOOTH_HINT 0x0C53 #define GL_UNPACK_SWAP_BYTES 0x0CF0 #define GL_UNPACK_LSB_FIRST 0x0CF1 #define GL_UNPACK_ROW_LENGTH 0x0CF2 #define GL_UNPACK_SKIP_ROWS 0x0CF3 #define GL_UNPACK_SKIP_PIXELS 0x0CF4 #define GL_UNPACK_ALIGNMENT 0x0CF5 #define GL_PACK_SWAP_BYTES 0x0D00 #define GL_PACK_LSB_FIRST 0x0D01 #define GL_PACK_ROW_LENGTH 0x0D02 #define GL_PACK_SKIP_ROWS 0x0D03 #define GL_PACK_SKIP_PIXELS 0x0D04 #define GL_PACK_ALIGNMENT 0x0D05 #define GL_MAX_TEXTURE_SIZE 0x0D33 #define GL_MAX_VIEWPORT_DIMS 0x0D3A #define GL_SUBPIXEL_BITS 0x0D50 #define GL_TEXTURE_1D 0x0DE0 #define GL_TEXTURE_2D 0x0DE1 #define GL_TEXTURE_WIDTH 0x1000 #define GL_TEXTURE_HEIGHT 0x1001 #define GL_TEXTURE_BORDER_COLOR 0x1004 #define GL_DONT_CARE 0x1100 #define GL_FASTEST 0x1101 #define GL_NICEST 0x1102 #define GL_BYTE 0x1400 #define GL_UNSIGNED_BYTE 0x1401 #define GL_SHORT 0x1402 #define GL_UNSIGNED_SHORT 0x1403 #define GL_INT 0x1404 #define GL_UNSIGNED_INT 0x1405 #define GL_FLOAT 0x1406 #define GL_STACK_OVERFLOW 0x0503 #define GL_STACK_UNDERFLOW 0x0504 #define GL_CLEAR 0x1500 #define GL_AND 0x1501 #define GL_AND_REVERSE 0x1502 #define GL_COPY 0x1503 #define GL_AND_INVERTED 0x1504 #define GL_NOOP 0x1505 #define GL_XOR 0x1506 #define GL_OR 0x1507 #define GL_NOR 0x1508 #define GL_EQUIV 0x1509 #define GL_INVERT 0x150A #define GL_OR_REVERSE 0x150B #define GL_COPY_INVERTED 0x150C #define GL_OR_INVERTED 0x150D #define GL_NAND 0x150E #define GL_SET 0x150F #define GL_TEXTURE 0x1702 #define GL_COLOR 0x1800 #define GL_DEPTH 0x1801 #define GL_STENCIL 0x1802 #define GL_STENCIL_INDEX 0x1901 #define GL_DEPTH_COMPONENT 0x1902 #define GL_RED 0x1903 #define GL_GREEN 0x1904 #define GL_BLUE 0x1905 #define GL_ALPHA 0x1906 #define GL_RGB 0x1907 #define GL_RGBA 0x1908 #define GL_POINT 0x1B00 #define GL_LINE 0x1B01 #define GL_FILL 0x1B02 #define GL_KEEP 0x1E00 #define GL_REPLACE 0x1E01 #define GL_INCR 0x1E02 #define GL_DECR 0x1E03 #define GL_VENDOR 0x1F00 #define GL_RENDERER 0x1F01 #define GL_VERSION 0x1F02 #define GL_EXTENSIONS 0x1F03 #define GL_NEAREST 0x2600 #define GL_LINEAR 0x2601 #define GL_NEAREST_MIPMAP_NEAREST 0x2700 #define GL_LINEAR_MIPMAP_NEAREST 0x2701 #define GL_NEAREST_MIPMAP_LINEAR 0x2702 #define GL_LINEAR_MIPMAP_LINEAR 0x2703 #define GL_TEXTURE_MAG_FILTER 0x2800 #define GL_TEXTURE_MIN_FILTER 0x2801 #define GL_TEXTURE_WRAP_S 0x2802 #define GL_TEXTURE_WRAP_T 0x2803 #define GL_REPEAT 0x2901 #define GL_CURRENT_BIT 0x00000001 #define GL_POINT_BIT 0x00000002 #define GL_LINE_BIT 0x00000004 #define GL_POLYGON_BIT 0x00000008 #define GL_POLYGON_STIPPLE_BIT 0x00000010 #define GL_PIXEL_MODE_BIT 0x00000020 #define GL_LIGHTING_BIT 0x00000040 #define GL_FOG_BIT 0x00000080 #define GL_ACCUM_BUFFER_BIT 0x00000200 #define GL_VIEWPORT_BIT 0x00000800 #define GL_TRANSFORM_BIT 0x00001000 #define GL_ENABLE_BIT 0x00002000 #define GL_HINT_BIT 0x00008000 #define GL_EVAL_BIT 0x00010000 #define GL_LIST_BIT 0x00020000 #define GL_TEXTURE_BIT 0x00040000 #define GL_SCISSOR_BIT 0x00080000 #define GL_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_QUAD_STRIP 0x0008 #define GL_POLYGON 0x0009 #define GL_ACCUM 0x0100 #define GL_LOAD 0x0101 #define GL_RETURN 0x0102 #define GL_MULT 0x0103 #define GL_ADD 0x0104 #define GL_AUX0 0x0409 #define GL_AUX1 0x040A #define GL_AUX2 0x040B #define GL_AUX3 0x040C #define GL_2D 0x0600 #define GL_3D 0x0601 #define GL_3D_COLOR 0x0602 #define GL_3D_COLOR_TEXTURE 0x0603 #define GL_4D_COLOR_TEXTURE 0x0604 #define GL_PASS_THROUGH_TOKEN 0x0700 #define GL_POINT_TOKEN 0x0701 #define GL_LINE_TOKEN 0x0702 #define GL_POLYGON_TOKEN 0x0703 #define GL_BITMAP_TOKEN 0x0704 #define GL_DRAW_PIXEL_TOKEN 0x0705 #define GL_COPY_PIXEL_TOKEN 0x0706 #define GL_LINE_RESET_TOKEN 0x0707 #define GL_EXP 0x0800 #define GL_EXP2 0x0801 #define GL_COEFF 0x0A00 #define GL_ORDER 0x0A01 #define GL_DOMAIN 0x0A02 #define GL_PIXEL_MAP_I_TO_I 0x0C70 #define GL_PIXEL_MAP_S_TO_S 0x0C71 #define GL_PIXEL_MAP_I_TO_R 0x0C72 #define GL_PIXEL_MAP_I_TO_G 0x0C73 #define GL_PIXEL_MAP_I_TO_B 0x0C74 #define GL_PIXEL_MAP_I_TO_A 0x0C75 #define GL_PIXEL_MAP_R_TO_R 0x0C76 #define GL_PIXEL_MAP_G_TO_G 0x0C77 #define GL_PIXEL_MAP_B_TO_B 0x0C78 #define GL_PIXEL_MAP_A_TO_A 0x0C79 #define GL_CURRENT_COLOR 0x0B00 #define GL_CURRENT_INDEX 0x0B01 #define GL_CURRENT_NORMAL 0x0B02 #define GL_CURRENT_TEXTURE_COORDS 0x0B03 #define GL_CURRENT_RASTER_COLOR 0x0B04 #define GL_CURRENT_RASTER_INDEX 0x0B05 #define GL_CURRENT_RASTER_TEXTURE_COORDS 0x0B06 #define GL_CURRENT_RASTER_POSITION 0x0B07 #define GL_CURRENT_RASTER_POSITION_VALID 0x0B08 #define GL_CURRENT_RASTER_DISTANCE 0x0B09 #define GL_POINT_SMOOTH 0x0B10 #define GL_LINE_STIPPLE 0x0B24 #define GL_LINE_STIPPLE_PATTERN 0x0B25 #define GL_LINE_STIPPLE_REPEAT 0x0B26 #define GL_LIST_MODE 0x0B30 #define GL_MAX_LIST_NESTING 0x0B31 #define GL_LIST_BASE 0x0B32 #define GL_LIST_INDEX 0x0B33 #define GL_POLYGON_STIPPLE 0x0B42 #define GL_EDGE_FLAG 0x0B43 #define GL_LIGHTING 0x0B50 #define GL_LIGHT_MODEL_LOCAL_VIEWER 0x0B51 #define GL_LIGHT_MODEL_TWO_SIDE 0x0B52 #define GL_LIGHT_MODEL_AMBIENT 0x0B53 #define GL_SHADE_MODEL 0x0B54 #define GL_COLOR_MATERIAL_FACE 0x0B55 #define GL_COLOR_MATERIAL_PARAMETER 0x0B56 #define GL_COLOR_MATERIAL 0x0B57 #define GL_FOG 0x0B60 #define GL_FOG_INDEX 0x0B61 #define GL_FOG_DENSITY 0x0B62 #define GL_FOG_START 0x0B63 #define GL_FOG_END 0x0B64 #define GL_FOG_MODE 0x0B65 #define GL_FOG_COLOR 0x0B66 #define GL_ACCUM_CLEAR_VALUE 0x0B80 #define GL_MATRIX_MODE 0x0BA0 #define GL_NORMALIZE 0x0BA1 #define GL_MODELVIEW_STACK_DEPTH 0x0BA3 #define GL_PROJECTION_STACK_DEPTH 0x0BA4 #define GL_TEXTURE_STACK_DEPTH 0x0BA5 #define GL_MODELVIEW_MATRIX 0x0BA6 #define GL_PROJECTION_MATRIX 0x0BA7 #define GL_TEXTURE_MATRIX 0x0BA8 #define GL_ATTRIB_STACK_DEPTH 0x0BB0 #define GL_ALPHA_TEST 0x0BC0 #define GL_ALPHA_TEST_FUNC 0x0BC1 #define GL_ALPHA_TEST_REF 0x0BC2 #define GL_LOGIC_OP 0x0BF1 #define GL_AUX_BUFFERS 0x0C00 #define GL_INDEX_CLEAR_VALUE 0x0C20 #define GL_INDEX_WRITEMASK 0x0C21 #define GL_INDEX_MODE 0x0C30 #define GL_RGBA_MODE 0x0C31 #define GL_RENDER_MODE 0x0C40 #define GL_PERSPECTIVE_CORRECTION_HINT 0x0C50 #define GL_POINT_SMOOTH_HINT 0x0C51 #define GL_FOG_HINT 0x0C54 #define GL_TEXTURE_GEN_S 0x0C60 #define GL_TEXTURE_GEN_T 0x0C61 #define GL_TEXTURE_GEN_R 0x0C62 #define GL_TEXTURE_GEN_Q 0x0C63 #define GL_PIXEL_MAP_I_TO_I_SIZE 0x0CB0 #define GL_PIXEL_MAP_S_TO_S_SIZE 0x0CB1 #define GL_PIXEL_MAP_I_TO_R_SIZE 0x0CB2 #define GL_PIXEL_MAP_I_TO_G_SIZE 0x0CB3 #define GL_PIXEL_MAP_I_TO_B_SIZE 0x0CB4 #define GL_PIXEL_MAP_I_TO_A_SIZE 0x0CB5 #define GL_PIXEL_MAP_R_TO_R_SIZE 0x0CB6 #define GL_PIXEL_MAP_G_TO_G_SIZE 0x0CB7 #define GL_PIXEL_MAP_B_TO_B_SIZE 0x0CB8 #define GL_PIXEL_MAP_A_TO_A_SIZE 0x0CB9 #define GL_MAP_COLOR 0x0D10 #define GL_MAP_STENCIL 0x0D11 #define GL_INDEX_SHIFT 0x0D12 #define GL_INDEX_OFFSET 0x0D13 #define GL_RED_SCALE 0x0D14 #define GL_RED_BIAS 0x0D15 #define GL_ZOOM_X 0x0D16 #define GL_ZOOM_Y 0x0D17 #define GL_GREEN_SCALE 0x0D18 #define GL_GREEN_BIAS 0x0D19 #define GL_BLUE_SCALE 0x0D1A #define GL_BLUE_BIAS 0x0D1B #define GL_ALPHA_SCALE 0x0D1C #define GL_ALPHA_BIAS 0x0D1D #define GL_DEPTH_SCALE 0x0D1E #define GL_DEPTH_BIAS 0x0D1F #define GL_MAX_EVAL_ORDER 0x0D30 #define GL_MAX_LIGHTS 0x0D31 #define GL_MAX_CLIP_PLANES 0x0D32 #define GL_MAX_PIXEL_MAP_TABLE 0x0D34 #define GL_MAX_ATTRIB_STACK_DEPTH 0x0D35 #define GL_MAX_MODELVIEW_STACK_DEPTH 0x0D36 #define GL_MAX_NAME_STACK_DEPTH 0x0D37 #define GL_MAX_PROJECTION_STACK_DEPTH 0x0D38 #define GL_MAX_TEXTURE_STACK_DEPTH 0x0D39 #define GL_INDEX_BITS 0x0D51 #define GL_RED_BITS 0x0D52 #define GL_GREEN_BITS 0x0D53 #define GL_BLUE_BITS 0x0D54 #define GL_ALPHA_BITS 0x0D55 #define GL_DEPTH_BITS 0x0D56 #define GL_STENCIL_BITS 0x0D57 #define GL_ACCUM_RED_BITS 0x0D58 #define GL_ACCUM_GREEN_BITS 0x0D59 #define GL_ACCUM_BLUE_BITS 0x0D5A #define GL_ACCUM_ALPHA_BITS 0x0D5B #define GL_NAME_STACK_DEPTH 0x0D70 #define GL_AUTO_NORMAL 0x0D80 #define GL_MAP1_COLOR_4 0x0D90 #define GL_MAP1_INDEX 0x0D91 #define GL_MAP1_NORMAL 0x0D92 #define GL_MAP1_TEXTURE_COORD_1 0x0D93 #define GL_MAP1_TEXTURE_COORD_2 0x0D94 #define GL_MAP1_TEXTURE_COORD_3 0x0D95 #define GL_MAP1_TEXTURE_COORD_4 0x0D96 #define GL_MAP1_VERTEX_3 0x0D97 #define GL_MAP1_VERTEX_4 0x0D98 #define GL_MAP2_COLOR_4 0x0DB0 #define GL_MAP2_INDEX 0x0DB1 #define GL_MAP2_NORMAL 0x0DB2 #define GL_MAP2_TEXTURE_COORD_1 0x0DB3 #define GL_MAP2_TEXTURE_COORD_2 0x0DB4 #define GL_MAP2_TEXTURE_COORD_3 0x0DB5 #define GL_MAP2_TEXTURE_COORD_4 0x0DB6 #define GL_MAP2_VERTEX_3 0x0DB7 #define GL_MAP2_VERTEX_4 0x0DB8 #define GL_MAP1_GRID_DOMAIN 0x0DD0 #define GL_MAP1_GRID_SEGMENTS 0x0DD1 #define GL_MAP2_GRID_DOMAIN 0x0DD2 #define GL_MAP2_GRID_SEGMENTS 0x0DD3 #define GL_TEXTURE_COMPONENTS 0x1003 #define GL_TEXTURE_BORDER 0x1005 #define GL_AMBIENT 0x1200 #define GL_DIFFUSE 0x1201 #define GL_SPECULAR 0x1202 #define GL_POSITION 0x1203 #define GL_SPOT_DIRECTION 0x1204 #define GL_SPOT_EXPONENT 0x1205 #define GL_SPOT_CUTOFF 0x1206 #define GL_CONSTANT_ATTENUATION 0x1207 #define GL_LINEAR_ATTENUATION 0x1208 #define GL_QUADRATIC_ATTENUATION 0x1209 #define GL_COMPILE 0x1300 #define GL_COMPILE_AND_EXECUTE 0x1301 #define GL_2_BYTES 0x1407 #define GL_3_BYTES 0x1408 #define GL_4_BYTES 0x1409 #define GL_EMISSION 0x1600 #define GL_SHININESS 0x1601 #define GL_AMBIENT_AND_DIFFUSE 0x1602 #define GL_COLOR_INDEXES 0x1603 #define GL_MODELVIEW 0x1700 #define GL_PROJECTION 0x1701 #define GL_COLOR_INDEX 0x1900 #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE_ALPHA 0x190A #define GL_BITMAP 0x1A00 #define GL_RENDER 0x1C00 #define GL_FEEDBACK 0x1C01 #define GL_SELECT 0x1C02 #define GL_FLAT 0x1D00 #define GL_SMOOTH 0x1D01 #define GL_S 0x2000 #define GL_T 0x2001 #define GL_R 0x2002 #define GL_Q 0x2003 #define GL_MODULATE 0x2100 #define GL_DECAL 0x2101 #define GL_TEXTURE_ENV_MODE 0x2200 #define GL_TEXTURE_ENV_COLOR 0x2201 #define GL_TEXTURE_ENV 0x2300 #define GL_EYE_LINEAR 0x2400 #define GL_OBJECT_LINEAR 0x2401 #define GL_SPHERE_MAP 0x2402 #define GL_TEXTURE_GEN_MODE 0x2500 #define GL_OBJECT_PLANE 0x2501 #define GL_EYE_PLANE 0x2502 #define GL_CLAMP 0x2900 #define GL_CLIP_PLANE0 0x3000 #define GL_CLIP_PLANE1 0x3001 #define GL_CLIP_PLANE2 0x3002 #define GL_CLIP_PLANE3 0x3003 #define GL_CLIP_PLANE4 0x3004 #define GL_CLIP_PLANE5 0x3005 #define GL_LIGHT0 0x4000 #define GL_LIGHT1 0x4001 #define GL_LIGHT2 0x4002 #define GL_LIGHT3 0x4003 #define GL_LIGHT4 0x4004 #define GL_LIGHT5 0x4005 #define GL_LIGHT6 0x4006 #define GL_LIGHT7 0x4007 #define GL_COLOR_LOGIC_OP 0x0BF2 #define GL_POLYGON_OFFSET_UNITS 0x2A00 #define GL_POLYGON_OFFSET_POINT 0x2A01 #define GL_POLYGON_OFFSET_LINE 0x2A02 #define GL_POLYGON_OFFSET_FILL 0x8037 #define GL_POLYGON_OFFSET_FACTOR 0x8038 #define GL_TEXTURE_BINDING_1D 0x8068 #define GL_TEXTURE_BINDING_2D 0x8069 #define GL_TEXTURE_INTERNAL_FORMAT 0x1003 #define GL_TEXTURE_RED_SIZE 0x805C #define GL_TEXTURE_GREEN_SIZE 0x805D #define GL_TEXTURE_BLUE_SIZE 0x805E #define GL_TEXTURE_ALPHA_SIZE 0x805F #define GL_DOUBLE 0x140A #define GL_PROXY_TEXTURE_1D 0x8063 #define GL_PROXY_TEXTURE_2D 0x8064 #define GL_R3_G3_B2 0x2A10 #define GL_RGB4 0x804F #define GL_RGB5 0x8050 #define GL_RGB8 0x8051 #define GL_RGB10 0x8052 #define GL_RGB12 0x8053 #define GL_RGB16 0x8054 #define GL_RGBA2 0x8055 #define GL_RGBA4 0x8056 #define GL_RGB5_A1 0x8057 #define GL_RGBA8 0x8058 #define GL_RGB10_A2 0x8059 #define GL_RGBA12 0x805A #define GL_RGBA16 0x805B #define GL_CLIENT_PIXEL_STORE_BIT 0x00000001 #define GL_CLIENT_VERTEX_ARRAY_BIT 0x00000002 #define GL_CLIENT_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_VERTEX_ARRAY_POINTER 0x808E #define GL_NORMAL_ARRAY_POINTER 0x808F #define GL_COLOR_ARRAY_POINTER 0x8090 #define GL_INDEX_ARRAY_POINTER 0x8091 #define GL_TEXTURE_COORD_ARRAY_POINTER 0x8092 #define GL_EDGE_FLAG_ARRAY_POINTER 0x8093 #define GL_FEEDBACK_BUFFER_POINTER 0x0DF0 #define GL_SELECTION_BUFFER_POINTER 0x0DF3 #define GL_CLIENT_ATTRIB_STACK_DEPTH 0x0BB1 #define GL_INDEX_LOGIC_OP 0x0BF1 #define GL_MAX_CLIENT_ATTRIB_STACK_DEPTH 0x0D3B #define GL_FEEDBACK_BUFFER_SIZE 0x0DF1 #define GL_FEEDBACK_BUFFER_TYPE 0x0DF2 #define GL_SELECTION_BUFFER_SIZE 0x0DF4 #define GL_VERTEX_ARRAY 0x8074 #define GL_NORMAL_ARRAY 0x8075 #define GL_COLOR_ARRAY 0x8076 #define GL_INDEX_ARRAY 0x8077 #define GL_TEXTURE_COORD_ARRAY 0x8078 #define GL_EDGE_FLAG_ARRAY 0x8079 #define GL_VERTEX_ARRAY_SIZE 0x807A #define GL_VERTEX_ARRAY_TYPE 0x807B #define GL_VERTEX_ARRAY_STRIDE 0x807C #define GL_NORMAL_ARRAY_TYPE 0x807E #define GL_NORMAL_ARRAY_STRIDE 0x807F #define GL_COLOR_ARRAY_SIZE 0x8081 #define GL_COLOR_ARRAY_TYPE 0x8082 #define GL_COLOR_ARRAY_STRIDE 0x8083 #define GL_INDEX_ARRAY_TYPE 0x8085 #define GL_INDEX_ARRAY_STRIDE 0x8086 #define GL_TEXTURE_COORD_ARRAY_SIZE 0x8088 #define GL_TEXTURE_COORD_ARRAY_TYPE 0x8089 #define GL_TEXTURE_COORD_ARRAY_STRIDE 0x808A #define GL_EDGE_FLAG_ARRAY_STRIDE 0x808C #define GL_TEXTURE_LUMINANCE_SIZE 0x8060 #define GL_TEXTURE_INTENSITY_SIZE 0x8061 #define GL_TEXTURE_PRIORITY 0x8066 #define GL_TEXTURE_RESIDENT 0x8067 #define GL_ALPHA4 0x803B #define GL_ALPHA8 0x803C #define GL_ALPHA12 0x803D #define GL_ALPHA16 0x803E #define GL_LUMINANCE4 0x803F #define GL_LUMINANCE8 0x8040 #define GL_LUMINANCE12 0x8041 #define GL_LUMINANCE16 0x8042 #define GL_LUMINANCE4_ALPHA4 0x8043 #define GL_LUMINANCE6_ALPHA2 0x8044 #define GL_LUMINANCE8_ALPHA8 0x8045 #define GL_LUMINANCE12_ALPHA4 0x8046 #define GL_LUMINANCE12_ALPHA12 0x8047 #define GL_LUMINANCE16_ALPHA16 0x8048 #define GL_INTENSITY 0x8049 #define GL_INTENSITY4 0x804A #define GL_INTENSITY8 0x804B #define GL_INTENSITY12 0x804C #define GL_INTENSITY16 0x804D #define GL_V2F 0x2A20 #define GL_V3F 0x2A21 #define GL_C4UB_V2F 0x2A22 #define GL_C4UB_V3F 0x2A23 #define GL_C3F_V3F 0x2A24 #define GL_N3F_V3F 0x2A25 #define GL_C4F_N3F_V3F 0x2A26 #define GL_T2F_V3F 0x2A27 #define GL_T4F_V4F 0x2A28 #define GL_T2F_C4UB_V3F 0x2A29 #define GL_T2F_C3F_V3F 0x2A2A #define GL_T2F_N3F_V3F 0x2A2B #define GL_T2F_C4F_N3F_V3F 0x2A2C #define GL_T4F_C4F_N3F_V4F 0x2A2D #define GL_UNSIGNED_BYTE_3_3_2 0x8032 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_INT_8_8_8_8 0x8035 #define GL_UNSIGNED_INT_10_10_10_2 0x8036 #define GL_TEXTURE_BINDING_3D 0x806A #define GL_PACK_SKIP_IMAGES 0x806B #define GL_PACK_IMAGE_HEIGHT 0x806C #define GL_UNPACK_SKIP_IMAGES 0x806D #define GL_UNPACK_IMAGE_HEIGHT 0x806E #define GL_TEXTURE_3D 0x806F #define GL_PROXY_TEXTURE_3D 0x8070 #define GL_TEXTURE_DEPTH 0x8071 #define GL_TEXTURE_WRAP_R 0x8072 #define GL_MAX_3D_TEXTURE_SIZE 0x8073 #define GL_UNSIGNED_BYTE_2_3_3_REV 0x8362 #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_6_5_REV 0x8364 #define GL_UNSIGNED_SHORT_4_4_4_4_REV 0x8365 #define GL_UNSIGNED_SHORT_1_5_5_5_REV 0x8366 #define GL_UNSIGNED_INT_8_8_8_8_REV 0x8367 #define GL_UNSIGNED_INT_2_10_10_10_REV 0x8368 #define GL_BGR 0x80E0 #define GL_BGRA 0x80E1 #define GL_MAX_ELEMENTS_VERTICES 0x80E8 #define GL_MAX_ELEMENTS_INDICES 0x80E9 #define GL_CLAMP_TO_EDGE 0x812F #define GL_TEXTURE_MIN_LOD 0x813A #define GL_TEXTURE_MAX_LOD 0x813B #define GL_TEXTURE_BASE_LEVEL 0x813C #define GL_TEXTURE_MAX_LEVEL 0x813D #define GL_SMOOTH_POINT_SIZE_RANGE 0x0B12 #define GL_SMOOTH_POINT_SIZE_GRANULARITY 0x0B13 #define GL_SMOOTH_LINE_WIDTH_RANGE 0x0B22 #define GL_SMOOTH_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_ALIASED_LINE_WIDTH_RANGE 0x846E #define GL_RESCALE_NORMAL 0x803A #define GL_LIGHT_MODEL_COLOR_CONTROL 0x81F8 #define GL_SINGLE_COLOR 0x81F9 #define GL_SEPARATE_SPECULAR_COLOR 0x81FA #define GL_ALIASED_POINT_SIZE_RANGE 0x846D #define GL_TEXTURE0 0x84C0 #define GL_TEXTURE1 0x84C1 #define GL_TEXTURE2 0x84C2 #define GL_TEXTURE3 0x84C3 #define GL_TEXTURE4 0x84C4 #define GL_TEXTURE5 0x84C5 #define GL_TEXTURE6 0x84C6 #define GL_TEXTURE7 0x84C7 #define GL_TEXTURE8 0x84C8 #define GL_TEXTURE9 0x84C9 #define GL_TEXTURE10 0x84CA #define GL_TEXTURE11 0x84CB #define GL_TEXTURE12 0x84CC #define GL_TEXTURE13 0x84CD #define GL_TEXTURE14 0x84CE #define GL_TEXTURE15 0x84CF #define GL_TEXTURE16 0x84D0 #define GL_TEXTURE17 0x84D1 #define GL_TEXTURE18 0x84D2 #define GL_TEXTURE19 0x84D3 #define GL_TEXTURE20 0x84D4 #define GL_TEXTURE21 0x84D5 #define GL_TEXTURE22 0x84D6 #define GL_TEXTURE23 0x84D7 #define GL_TEXTURE24 0x84D8 #define GL_TEXTURE25 0x84D9 #define GL_TEXTURE26 0x84DA #define GL_TEXTURE27 0x84DB #define GL_TEXTURE28 0x84DC #define GL_TEXTURE29 0x84DD #define GL_TEXTURE30 0x84DE #define GL_TEXTURE31 0x84DF #define GL_ACTIVE_TEXTURE 0x84E0 #define GL_MULTISAMPLE 0x809D #define GL_SAMPLE_ALPHA_TO_COVERAGE 0x809E #define GL_SAMPLE_ALPHA_TO_ONE 0x809F #define GL_SAMPLE_COVERAGE 0x80A0 #define GL_SAMPLE_BUFFERS 0x80A8 #define GL_SAMPLES 0x80A9 #define GL_SAMPLE_COVERAGE_VALUE 0x80AA #define GL_SAMPLE_COVERAGE_INVERT 0x80AB #define GL_TEXTURE_CUBE_MAP 0x8513 #define GL_TEXTURE_BINDING_CUBE_MAP 0x8514 #define GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x8515 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_X 0x8516 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Y 0x8517 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Y 0x8518 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Z 0x8519 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Z 0x851A #define GL_PROXY_TEXTURE_CUBE_MAP 0x851B #define GL_MAX_CUBE_MAP_TEXTURE_SIZE 0x851C #define GL_COMPRESSED_RGB 0x84ED #define GL_COMPRESSED_RGBA 0x84EE #define GL_TEXTURE_COMPRESSION_HINT 0x84EF #define GL_TEXTURE_COMPRESSED_IMAGE_SIZE 0x86A0 #define GL_TEXTURE_COMPRESSED 0x86A1 #define GL_NUM_COMPRESSED_TEXTURE_FORMATS 0x86A2 #define GL_COMPRESSED_TEXTURE_FORMATS 0x86A3 #define GL_CLAMP_TO_BORDER 0x812D #define GL_CLIENT_ACTIVE_TEXTURE 0x84E1 #define GL_MAX_TEXTURE_UNITS 0x84E2 #define GL_TRANSPOSE_MODELVIEW_MATRIX 0x84E3 #define GL_TRANSPOSE_PROJECTION_MATRIX 0x84E4 #define GL_TRANSPOSE_TEXTURE_MATRIX 0x84E5 #define GL_TRANSPOSE_COLOR_MATRIX 0x84E6 #define GL_MULTISAMPLE_BIT 0x20000000 #define GL_NORMAL_MAP 0x8511 #define GL_REFLECTION_MAP 0x8512 #define GL_COMPRESSED_ALPHA 0x84E9 #define GL_COMPRESSED_LUMINANCE 0x84EA #define GL_COMPRESSED_LUMINANCE_ALPHA 0x84EB #define GL_COMPRESSED_INTENSITY 0x84EC #define GL_COMBINE 0x8570 #define GL_COMBINE_RGB 0x8571 #define GL_COMBINE_ALPHA 0x8572 #define GL_SOURCE0_RGB 0x8580 #define GL_SOURCE1_RGB 0x8581 #define GL_SOURCE2_RGB 0x8582 #define GL_SOURCE0_ALPHA 0x8588 #define GL_SOURCE1_ALPHA 0x8589 #define GL_SOURCE2_ALPHA 0x858A #define GL_OPERAND0_RGB 0x8590 #define GL_OPERAND1_RGB 0x8591 #define GL_OPERAND2_RGB 0x8592 #define GL_OPERAND0_ALPHA 0x8598 #define GL_OPERAND1_ALPHA 0x8599 #define GL_OPERAND2_ALPHA 0x859A #define GL_RGB_SCALE 0x8573 #define GL_ADD_SIGNED 0x8574 #define GL_INTERPOLATE 0x8575 #define GL_SUBTRACT 0x84E7 #define GL_CONSTANT 0x8576 #define GL_PRIMARY_COLOR 0x8577 #define GL_PREVIOUS 0x8578 #define GL_DOT3_RGB 0x86AE #define GL_DOT3_RGBA 0x86AF #define GL_BLEND_DST_RGB 0x80C8 #define GL_BLEND_SRC_RGB 0x80C9 #define GL_BLEND_DST_ALPHA 0x80CA #define GL_BLEND_SRC_ALPHA 0x80CB #define GL_POINT_FADE_THRESHOLD_SIZE 0x8128 #define GL_DEPTH_COMPONENT16 0x81A5 #define GL_DEPTH_COMPONENT24 0x81A6 #define GL_DEPTH_COMPONENT32 0x81A7 #define GL_MIRRORED_REPEAT 0x8370 #define GL_MAX_TEXTURE_LOD_BIAS 0x84FD #define GL_TEXTURE_LOD_BIAS 0x8501 #define GL_INCR_WRAP 0x8507 #define GL_DECR_WRAP 0x8508 #define GL_TEXTURE_DEPTH_SIZE 0x884A #define GL_TEXTURE_COMPARE_MODE 0x884C #define GL_TEXTURE_COMPARE_FUNC 0x884D #define GL_POINT_SIZE_MIN 0x8126 #define GL_POINT_SIZE_MAX 0x8127 #define GL_POINT_DISTANCE_ATTENUATION 0x8129 #define GL_GENERATE_MIPMAP 0x8191 #define GL_GENERATE_MIPMAP_HINT 0x8192 #define GL_FOG_COORDINATE_SOURCE 0x8450 #define GL_FOG_COORDINATE 0x8451 #define GL_FRAGMENT_DEPTH 0x8452 #define GL_CURRENT_FOG_COORDINATE 0x8453 #define GL_FOG_COORDINATE_ARRAY_TYPE 0x8454 #define GL_FOG_COORDINATE_ARRAY_STRIDE 0x8455 #define GL_FOG_COORDINATE_ARRAY_POINTER 0x8456 #define GL_FOG_COORDINATE_ARRAY 0x8457 #define GL_COLOR_SUM 0x8458 #define GL_CURRENT_SECONDARY_COLOR 0x8459 #define GL_SECONDARY_COLOR_ARRAY_SIZE 0x845A #define GL_SECONDARY_COLOR_ARRAY_TYPE 0x845B #define GL_SECONDARY_COLOR_ARRAY_STRIDE 0x845C #define GL_SECONDARY_COLOR_ARRAY_POINTER 0x845D #define GL_SECONDARY_COLOR_ARRAY 0x845E #define GL_TEXTURE_FILTER_CONTROL 0x8500 #define GL_DEPTH_TEXTURE_MODE 0x884B #define GL_COMPARE_R_TO_TEXTURE 0x884E #define GL_BLEND_COLOR 0x8005 #define GL_BLEND_EQUATION 0x8009 #define GL_CONSTANT_COLOR 0x8001 #define GL_ONE_MINUS_CONSTANT_COLOR 0x8002 #define GL_CONSTANT_ALPHA 0x8003 #define GL_ONE_MINUS_CONSTANT_ALPHA 0x8004 #define GL_FUNC_ADD 0x8006 #define GL_FUNC_REVERSE_SUBTRACT 0x800B #define GL_FUNC_SUBTRACT 0x800A #define GL_MIN 0x8007 #define GL_MAX 0x8008 #define GL_BUFFER_SIZE 0x8764 #define GL_BUFFER_USAGE 0x8765 #define GL_QUERY_COUNTER_BITS 0x8864 #define GL_CURRENT_QUERY 0x8865 #define GL_QUERY_RESULT 0x8866 #define GL_QUERY_RESULT_AVAILABLE 0x8867 #define GL_ARRAY_BUFFER 0x8892 #define GL_ELEMENT_ARRAY_BUFFER 0x8893 #define GL_ARRAY_BUFFER_BINDING 0x8894 #define GL_ELEMENT_ARRAY_BUFFER_BINDING 0x8895 #define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING 0x889F #define GL_READ_ONLY 0x88B8 #define GL_WRITE_ONLY 0x88B9 #define GL_READ_WRITE 0x88BA #define GL_BUFFER_ACCESS 0x88BB #define GL_BUFFER_MAPPED 0x88BC #define GL_BUFFER_MAP_POINTER 0x88BD #define GL_STREAM_DRAW 0x88E0 #define GL_STREAM_READ 0x88E1 #define GL_STREAM_COPY 0x88E2 #define GL_STATIC_DRAW 0x88E4 #define GL_STATIC_READ 0x88E5 #define GL_STATIC_COPY 0x88E6 #define GL_DYNAMIC_DRAW 0x88E8 #define GL_DYNAMIC_READ 0x88E9 #define GL_DYNAMIC_COPY 0x88EA #define GL_SAMPLES_PASSED 0x8914 #define GL_SRC1_ALPHA 0x8589 #define GL_VERTEX_ARRAY_BUFFER_BINDING 0x8896 #define GL_NORMAL_ARRAY_BUFFER_BINDING 0x8897 #define GL_COLOR_ARRAY_BUFFER_BINDING 0x8898 #define GL_INDEX_ARRAY_BUFFER_BINDING 0x8899 #define GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING 0x889A #define GL_EDGE_FLAG_ARRAY_BUFFER_BINDING 0x889B #define GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING 0x889C #define GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING 0x889D #define GL_WEIGHT_ARRAY_BUFFER_BINDING 0x889E #define GL_FOG_COORD_SRC 0x8450 #define GL_FOG_COORD 0x8451 #define GL_CURRENT_FOG_COORD 0x8453 #define GL_FOG_COORD_ARRAY_TYPE 0x8454 #define GL_FOG_COORD_ARRAY_STRIDE 0x8455 #define GL_FOG_COORD_ARRAY_POINTER 0x8456 #define GL_FOG_COORD_ARRAY 0x8457 #define GL_FOG_COORD_ARRAY_BUFFER_BINDING 0x889D #define GL_SRC0_RGB 0x8580 #define GL_SRC1_RGB 0x8581 #define GL_SRC2_RGB 0x8582 #define GL_SRC0_ALPHA 0x8588 #define GL_SRC2_ALPHA 0x858A #define GL_BLEND_EQUATION_RGB 0x8009 #define GL_VERTEX_ATTRIB_ARRAY_ENABLED 0x8622 #define GL_VERTEX_ATTRIB_ARRAY_SIZE 0x8623 #define GL_VERTEX_ATTRIB_ARRAY_STRIDE 0x8624 #define GL_VERTEX_ATTRIB_ARRAY_TYPE 0x8625 #define GL_CURRENT_VERTEX_ATTRIB 0x8626 #define GL_VERTEX_PROGRAM_POINT_SIZE 0x8642 #define GL_VERTEX_ATTRIB_ARRAY_POINTER 0x8645 #define GL_STENCIL_BACK_FUNC 0x8800 #define GL_STENCIL_BACK_FAIL 0x8801 #define GL_STENCIL_BACK_PASS_DEPTH_FAIL 0x8802 #define GL_STENCIL_BACK_PASS_DEPTH_PASS 0x8803 #define GL_MAX_DRAW_BUFFERS 0x8824 #define GL_DRAW_BUFFER0 0x8825 #define GL_DRAW_BUFFER1 0x8826 #define GL_DRAW_BUFFER2 0x8827 #define GL_DRAW_BUFFER3 0x8828 #define GL_DRAW_BUFFER4 0x8829 #define GL_DRAW_BUFFER5 0x882A #define GL_DRAW_BUFFER6 0x882B #define GL_DRAW_BUFFER7 0x882C #define GL_DRAW_BUFFER8 0x882D #define GL_DRAW_BUFFER9 0x882E #define GL_DRAW_BUFFER10 0x882F #define GL_DRAW_BUFFER11 0x8830 #define GL_DRAW_BUFFER12 0x8831 #define GL_DRAW_BUFFER13 0x8832 #define GL_DRAW_BUFFER14 0x8833 #define GL_DRAW_BUFFER15 0x8834 #define GL_BLEND_EQUATION_ALPHA 0x883D #define GL_MAX_VERTEX_ATTRIBS 0x8869 #define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED 0x886A #define GL_MAX_TEXTURE_IMAGE_UNITS 0x8872 #define GL_FRAGMENT_SHADER 0x8B30 #define GL_VERTEX_SHADER 0x8B31 #define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 0x8B49 #define GL_MAX_VERTEX_UNIFORM_COMPONENTS 0x8B4A #define GL_MAX_VARYING_FLOATS 0x8B4B #define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 0x8B4C #define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 0x8B4D #define GL_SHADER_TYPE 0x8B4F #define GL_FLOAT_VEC2 0x8B50 #define GL_FLOAT_VEC3 0x8B51 #define GL_FLOAT_VEC4 0x8B52 #define GL_INT_VEC2 0x8B53 #define GL_INT_VEC3 0x8B54 #define GL_INT_VEC4 0x8B55 #define GL_BOOL 0x8B56 #define GL_BOOL_VEC2 0x8B57 #define GL_BOOL_VEC3 0x8B58 #define GL_BOOL_VEC4 0x8B59 #define GL_FLOAT_MAT2 0x8B5A #define GL_FLOAT_MAT3 0x8B5B #define GL_FLOAT_MAT4 0x8B5C #define GL_SAMPLER_1D 0x8B5D #define GL_SAMPLER_2D 0x8B5E #define GL_SAMPLER_3D 0x8B5F #define GL_SAMPLER_CUBE 0x8B60 #define GL_SAMPLER_1D_SHADOW 0x8B61 #define GL_SAMPLER_2D_SHADOW 0x8B62 #define GL_DELETE_STATUS 0x8B80 #define GL_COMPILE_STATUS 0x8B81 #define GL_LINK_STATUS 0x8B82 #define GL_VALIDATE_STATUS 0x8B83 #define GL_INFO_LOG_LENGTH 0x8B84 #define GL_ATTACHED_SHADERS 0x8B85 #define GL_ACTIVE_UNIFORMS 0x8B86 #define GL_ACTIVE_UNIFORM_MAX_LENGTH 0x8B87 #define GL_SHADER_SOURCE_LENGTH 0x8B88 #define GL_ACTIVE_ATTRIBUTES 0x8B89 #define GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 0x8B8A #define GL_FRAGMENT_SHADER_DERIVATIVE_HINT 0x8B8B #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #define GL_CURRENT_PROGRAM 0x8B8D #define GL_POINT_SPRITE_COORD_ORIGIN 0x8CA0 #define GL_LOWER_LEFT 0x8CA1 #define GL_UPPER_LEFT 0x8CA2 #define GL_STENCIL_BACK_REF 0x8CA3 #define GL_STENCIL_BACK_VALUE_MASK 0x8CA4 #define GL_STENCIL_BACK_WRITEMASK 0x8CA5 #define GL_VERTEX_PROGRAM_TWO_SIDE 0x8643 #define GL_POINT_SPRITE 0x8861 #define GL_COORD_REPLACE 0x8862 #define GL_MAX_TEXTURE_COORDS 0x8871 #define GL_PIXEL_PACK_BUFFER 0x88EB #define GL_PIXEL_UNPACK_BUFFER 0x88EC #define GL_PIXEL_PACK_BUFFER_BINDING 0x88ED #define GL_PIXEL_UNPACK_BUFFER_BINDING 0x88EF #define GL_FLOAT_MAT2x3 0x8B65 #define GL_FLOAT_MAT2x4 0x8B66 #define GL_FLOAT_MAT3x2 0x8B67 #define GL_FLOAT_MAT3x4 0x8B68 #define GL_FLOAT_MAT4x2 0x8B69 #define GL_FLOAT_MAT4x3 0x8B6A #define GL_SRGB 0x8C40 #define GL_SRGB8 0x8C41 #define GL_SRGB_ALPHA 0x8C42 #define GL_SRGB8_ALPHA8 0x8C43 #define GL_COMPRESSED_SRGB 0x8C48 #define GL_COMPRESSED_SRGB_ALPHA 0x8C49 #define GL_CURRENT_RASTER_SECONDARY_COLOR 0x845F #define GL_SLUMINANCE_ALPHA 0x8C44 #define GL_SLUMINANCE8_ALPHA8 0x8C45 #define GL_SLUMINANCE 0x8C46 #define GL_SLUMINANCE8 0x8C47 #define GL_COMPRESSED_SLUMINANCE 0x8C4A #define GL_COMPRESSED_SLUMINANCE_ALPHA 0x8C4B #ifndef GL_VERSION_1_0 #define GL_VERSION_1_0 1 GLAPI int GLAD_GL_VERSION_1_0; typedef void (APIENTRYP PFNGLCULLFACEPROC)(GLenum mode); GLAPI PFNGLCULLFACEPROC glad_glCullFace; #define glCullFace glad_glCullFace typedef void (APIENTRYP PFNGLFRONTFACEPROC)(GLenum mode); GLAPI PFNGLFRONTFACEPROC glad_glFrontFace; #define glFrontFace glad_glFrontFace typedef void (APIENTRYP PFNGLHINTPROC)(GLenum target, GLenum mode); GLAPI PFNGLHINTPROC glad_glHint; #define glHint glad_glHint typedef void (APIENTRYP PFNGLLINEWIDTHPROC)(GLfloat width); GLAPI PFNGLLINEWIDTHPROC glad_glLineWidth; #define glLineWidth glad_glLineWidth typedef void (APIENTRYP PFNGLPOINTSIZEPROC)(GLfloat size); GLAPI PFNGLPOINTSIZEPROC glad_glPointSize; #define glPointSize glad_glPointSize typedef void (APIENTRYP PFNGLPOLYGONMODEPROC)(GLenum face, GLenum mode); GLAPI PFNGLPOLYGONMODEPROC glad_glPolygonMode; #define glPolygonMode glad_glPolygonMode typedef void (APIENTRYP PFNGLSCISSORPROC)(GLint x, GLint y, GLsizei width, GLsizei height); GLAPI PFNGLSCISSORPROC glad_glScissor; #define glScissor glad_glScissor typedef void (APIENTRYP PFNGLTEXPARAMETERFPROC)(GLenum target, GLenum pname, GLfloat param); GLAPI PFNGLTEXPARAMETERFPROC glad_glTexParameterf; #define glTexParameterf glad_glTexParameterf typedef void (APIENTRYP PFNGLTEXPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat *params); GLAPI PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv; #define glTexParameterfv glad_glTexParameterfv typedef void (APIENTRYP PFNGLTEXPARAMETERIPROC)(GLenum target, GLenum pname, GLint param); GLAPI PFNGLTEXPARAMETERIPROC glad_glTexParameteri; #define glTexParameteri glad_glTexParameteri typedef void (APIENTRYP PFNGLTEXPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint *params); GLAPI PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv; #define glTexParameteriv glad_glTexParameteriv typedef void (APIENTRYP PFNGLTEXIMAGE1DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLint border, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXIMAGE1DPROC glad_glTexImage1D; #define glTexImage1D glad_glTexImage1D typedef void (APIENTRYP PFNGLTEXIMAGE2DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXIMAGE2DPROC glad_glTexImage2D; #define glTexImage2D glad_glTexImage2D typedef void (APIENTRYP PFNGLDRAWBUFFERPROC)(GLenum buf); GLAPI PFNGLDRAWBUFFERPROC glad_glDrawBuffer; #define glDrawBuffer glad_glDrawBuffer typedef void (APIENTRYP PFNGLCLEARPROC)(GLbitfield mask); GLAPI PFNGLCLEARPROC glad_glClear; #define glClear glad_glClear typedef void (APIENTRYP PFNGLCLEARCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); GLAPI PFNGLCLEARCOLORPROC glad_glClearColor; #define glClearColor glad_glClearColor typedef void (APIENTRYP PFNGLCLEARSTENCILPROC)(GLint s); GLAPI PFNGLCLEARSTENCILPROC glad_glClearStencil; #define glClearStencil glad_glClearStencil typedef void (APIENTRYP PFNGLCLEARDEPTHPROC)(GLdouble depth); GLAPI PFNGLCLEARDEPTHPROC glad_glClearDepth; #define glClearDepth glad_glClearDepth typedef void (APIENTRYP PFNGLSTENCILMASKPROC)(GLuint mask); GLAPI PFNGLSTENCILMASKPROC glad_glStencilMask; #define glStencilMask glad_glStencilMask typedef void (APIENTRYP PFNGLCOLORMASKPROC)(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha); GLAPI PFNGLCOLORMASKPROC glad_glColorMask; #define glColorMask glad_glColorMask typedef void (APIENTRYP PFNGLDEPTHMASKPROC)(GLboolean flag); GLAPI PFNGLDEPTHMASKPROC glad_glDepthMask; #define glDepthMask glad_glDepthMask typedef void (APIENTRYP PFNGLDISABLEPROC)(GLenum cap); GLAPI PFNGLDISABLEPROC glad_glDisable; #define glDisable glad_glDisable typedef void (APIENTRYP PFNGLENABLEPROC)(GLenum cap); GLAPI PFNGLENABLEPROC glad_glEnable; #define glEnable glad_glEnable typedef void (APIENTRYP PFNGLFINISHPROC)(void); GLAPI PFNGLFINISHPROC glad_glFinish; #define glFinish glad_glFinish typedef void (APIENTRYP PFNGLFLUSHPROC)(void); GLAPI PFNGLFLUSHPROC glad_glFlush; #define glFlush glad_glFlush typedef void (APIENTRYP PFNGLBLENDFUNCPROC)(GLenum sfactor, GLenum dfactor); GLAPI PFNGLBLENDFUNCPROC glad_glBlendFunc; #define glBlendFunc glad_glBlendFunc typedef void (APIENTRYP PFNGLLOGICOPPROC)(GLenum opcode); GLAPI PFNGLLOGICOPPROC glad_glLogicOp; #define glLogicOp glad_glLogicOp typedef void (APIENTRYP PFNGLSTENCILFUNCPROC)(GLenum func, GLint ref, GLuint mask); GLAPI PFNGLSTENCILFUNCPROC glad_glStencilFunc; #define glStencilFunc glad_glStencilFunc typedef void (APIENTRYP PFNGLSTENCILOPPROC)(GLenum fail, GLenum zfail, GLenum zpass); GLAPI PFNGLSTENCILOPPROC glad_glStencilOp; #define glStencilOp glad_glStencilOp typedef void (APIENTRYP PFNGLDEPTHFUNCPROC)(GLenum func); GLAPI PFNGLDEPTHFUNCPROC glad_glDepthFunc; #define glDepthFunc glad_glDepthFunc typedef void (APIENTRYP PFNGLPIXELSTOREFPROC)(GLenum pname, GLfloat param); GLAPI PFNGLPIXELSTOREFPROC glad_glPixelStoref; #define glPixelStoref glad_glPixelStoref typedef void (APIENTRYP PFNGLPIXELSTOREIPROC)(GLenum pname, GLint param); GLAPI PFNGLPIXELSTOREIPROC glad_glPixelStorei; #define glPixelStorei glad_glPixelStorei typedef void (APIENTRYP PFNGLREADBUFFERPROC)(GLenum src); GLAPI PFNGLREADBUFFERPROC glad_glReadBuffer; #define glReadBuffer glad_glReadBuffer typedef void (APIENTRYP PFNGLREADPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, void *pixels); GLAPI PFNGLREADPIXELSPROC glad_glReadPixels; #define glReadPixels glad_glReadPixels typedef void (APIENTRYP PFNGLGETBOOLEANVPROC)(GLenum pname, GLboolean *data); GLAPI PFNGLGETBOOLEANVPROC glad_glGetBooleanv; #define glGetBooleanv glad_glGetBooleanv typedef void (APIENTRYP PFNGLGETDOUBLEVPROC)(GLenum pname, GLdouble *data); GLAPI PFNGLGETDOUBLEVPROC glad_glGetDoublev; #define glGetDoublev glad_glGetDoublev typedef GLenum (APIENTRYP PFNGLGETERRORPROC)(void); GLAPI PFNGLGETERRORPROC glad_glGetError; #define glGetError glad_glGetError typedef void (APIENTRYP PFNGLGETFLOATVPROC)(GLenum pname, GLfloat *data); GLAPI PFNGLGETFLOATVPROC glad_glGetFloatv; #define glGetFloatv glad_glGetFloatv typedef void (APIENTRYP PFNGLGETINTEGERVPROC)(GLenum pname, GLint *data); GLAPI PFNGLGETINTEGERVPROC glad_glGetIntegerv; #define glGetIntegerv glad_glGetIntegerv typedef const GLubyte * (APIENTRYP PFNGLGETSTRINGPROC)(GLenum name); GLAPI PFNGLGETSTRINGPROC glad_glGetString; #define glGetString glad_glGetString typedef void (APIENTRYP PFNGLGETTEXIMAGEPROC)(GLenum target, GLint level, GLenum format, GLenum type, void *pixels); GLAPI PFNGLGETTEXIMAGEPROC glad_glGetTexImage; #define glGetTexImage glad_glGetTexImage typedef void (APIENTRYP PFNGLGETTEXPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat *params); GLAPI PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv; #define glGetTexParameterfv glad_glGetTexParameterfv typedef void (APIENTRYP PFNGLGETTEXPARAMETERIVPROC)(GLenum target, GLenum pname, GLint *params); GLAPI PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv; #define glGetTexParameteriv glad_glGetTexParameteriv typedef void (APIENTRYP PFNGLGETTEXLEVELPARAMETERFVPROC)(GLenum target, GLint level, GLenum pname, GLfloat *params); GLAPI PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv; #define glGetTexLevelParameterfv glad_glGetTexLevelParameterfv typedef void (APIENTRYP PFNGLGETTEXLEVELPARAMETERIVPROC)(GLenum target, GLint level, GLenum pname, GLint *params); GLAPI PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv; #define glGetTexLevelParameteriv glad_glGetTexLevelParameteriv typedef GLboolean (APIENTRYP PFNGLISENABLEDPROC)(GLenum cap); GLAPI PFNGLISENABLEDPROC glad_glIsEnabled; #define glIsEnabled glad_glIsEnabled typedef void (APIENTRYP PFNGLDEPTHRANGEPROC)(GLdouble n, GLdouble f); GLAPI PFNGLDEPTHRANGEPROC glad_glDepthRange; #define glDepthRange glad_glDepthRange typedef void (APIENTRYP PFNGLVIEWPORTPROC)(GLint x, GLint y, GLsizei width, GLsizei height); GLAPI PFNGLVIEWPORTPROC glad_glViewport; #define glViewport glad_glViewport typedef void (APIENTRYP PFNGLNEWLISTPROC)(GLuint list, GLenum mode); GLAPI PFNGLNEWLISTPROC glad_glNewList; #define glNewList glad_glNewList typedef void (APIENTRYP PFNGLENDLISTPROC)(void); GLAPI PFNGLENDLISTPROC glad_glEndList; #define glEndList glad_glEndList typedef void (APIENTRYP PFNGLCALLLISTPROC)(GLuint list); GLAPI PFNGLCALLLISTPROC glad_glCallList; #define glCallList glad_glCallList typedef void (APIENTRYP PFNGLCALLLISTSPROC)(GLsizei n, GLenum type, const void *lists); GLAPI PFNGLCALLLISTSPROC glad_glCallLists; #define glCallLists glad_glCallLists typedef void (APIENTRYP PFNGLDELETELISTSPROC)(GLuint list, GLsizei range); GLAPI PFNGLDELETELISTSPROC glad_glDeleteLists; #define glDeleteLists glad_glDeleteLists typedef GLuint (APIENTRYP PFNGLGENLISTSPROC)(GLsizei range); GLAPI PFNGLGENLISTSPROC glad_glGenLists; #define glGenLists glad_glGenLists typedef void (APIENTRYP PFNGLLISTBASEPROC)(GLuint base); GLAPI PFNGLLISTBASEPROC glad_glListBase; #define glListBase glad_glListBase typedef void (APIENTRYP PFNGLBEGINPROC)(GLenum mode); GLAPI PFNGLBEGINPROC glad_glBegin; #define glBegin glad_glBegin typedef void (APIENTRYP PFNGLBITMAPPROC)(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, const GLubyte *bitmap); GLAPI PFNGLBITMAPPROC glad_glBitmap; #define glBitmap glad_glBitmap typedef void (APIENTRYP PFNGLCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); GLAPI PFNGLCOLOR3BPROC glad_glColor3b; #define glColor3b glad_glColor3b typedef void (APIENTRYP PFNGLCOLOR3BVPROC)(const GLbyte *v); GLAPI PFNGLCOLOR3BVPROC glad_glColor3bv; #define glColor3bv glad_glColor3bv typedef void (APIENTRYP PFNGLCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); GLAPI PFNGLCOLOR3DPROC glad_glColor3d; #define glColor3d glad_glColor3d typedef void (APIENTRYP PFNGLCOLOR3DVPROC)(const GLdouble *v); GLAPI PFNGLCOLOR3DVPROC glad_glColor3dv; #define glColor3dv glad_glColor3dv typedef void (APIENTRYP PFNGLCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); GLAPI PFNGLCOLOR3FPROC glad_glColor3f; #define glColor3f glad_glColor3f typedef void (APIENTRYP PFNGLCOLOR3FVPROC)(const GLfloat *v); GLAPI PFNGLCOLOR3FVPROC glad_glColor3fv; #define glColor3fv glad_glColor3fv typedef void (APIENTRYP PFNGLCOLOR3IPROC)(GLint red, GLint green, GLint blue); GLAPI PFNGLCOLOR3IPROC glad_glColor3i; #define glColor3i glad_glColor3i typedef void (APIENTRYP PFNGLCOLOR3IVPROC)(const GLint *v); GLAPI PFNGLCOLOR3IVPROC glad_glColor3iv; #define glColor3iv glad_glColor3iv typedef void (APIENTRYP PFNGLCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); GLAPI PFNGLCOLOR3SPROC glad_glColor3s; #define glColor3s glad_glColor3s typedef void (APIENTRYP PFNGLCOLOR3SVPROC)(const GLshort *v); GLAPI PFNGLCOLOR3SVPROC glad_glColor3sv; #define glColor3sv glad_glColor3sv typedef void (APIENTRYP PFNGLCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); GLAPI PFNGLCOLOR3UBPROC glad_glColor3ub; #define glColor3ub glad_glColor3ub typedef void (APIENTRYP PFNGLCOLOR3UBVPROC)(const GLubyte *v); GLAPI PFNGLCOLOR3UBVPROC glad_glColor3ubv; #define glColor3ubv glad_glColor3ubv typedef void (APIENTRYP PFNGLCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); GLAPI PFNGLCOLOR3UIPROC glad_glColor3ui; #define glColor3ui glad_glColor3ui typedef void (APIENTRYP PFNGLCOLOR3UIVPROC)(const GLuint *v); GLAPI PFNGLCOLOR3UIVPROC glad_glColor3uiv; #define glColor3uiv glad_glColor3uiv typedef void (APIENTRYP PFNGLCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); GLAPI PFNGLCOLOR3USPROC glad_glColor3us; #define glColor3us glad_glColor3us typedef void (APIENTRYP PFNGLCOLOR3USVPROC)(const GLushort *v); GLAPI PFNGLCOLOR3USVPROC glad_glColor3usv; #define glColor3usv glad_glColor3usv typedef void (APIENTRYP PFNGLCOLOR4BPROC)(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha); GLAPI PFNGLCOLOR4BPROC glad_glColor4b; #define glColor4b glad_glColor4b typedef void (APIENTRYP PFNGLCOLOR4BVPROC)(const GLbyte *v); GLAPI PFNGLCOLOR4BVPROC glad_glColor4bv; #define glColor4bv glad_glColor4bv typedef void (APIENTRYP PFNGLCOLOR4DPROC)(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha); GLAPI PFNGLCOLOR4DPROC glad_glColor4d; #define glColor4d glad_glColor4d typedef void (APIENTRYP PFNGLCOLOR4DVPROC)(const GLdouble *v); GLAPI PFNGLCOLOR4DVPROC glad_glColor4dv; #define glColor4dv glad_glColor4dv typedef void (APIENTRYP PFNGLCOLOR4FPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); GLAPI PFNGLCOLOR4FPROC glad_glColor4f; #define glColor4f glad_glColor4f typedef void (APIENTRYP PFNGLCOLOR4FVPROC)(const GLfloat *v); GLAPI PFNGLCOLOR4FVPROC glad_glColor4fv; #define glColor4fv glad_glColor4fv typedef void (APIENTRYP PFNGLCOLOR4IPROC)(GLint red, GLint green, GLint blue, GLint alpha); GLAPI PFNGLCOLOR4IPROC glad_glColor4i; #define glColor4i glad_glColor4i typedef void (APIENTRYP PFNGLCOLOR4IVPROC)(const GLint *v); GLAPI PFNGLCOLOR4IVPROC glad_glColor4iv; #define glColor4iv glad_glColor4iv typedef void (APIENTRYP PFNGLCOLOR4SPROC)(GLshort red, GLshort green, GLshort blue, GLshort alpha); GLAPI PFNGLCOLOR4SPROC glad_glColor4s; #define glColor4s glad_glColor4s typedef void (APIENTRYP PFNGLCOLOR4SVPROC)(const GLshort *v); GLAPI PFNGLCOLOR4SVPROC glad_glColor4sv; #define glColor4sv glad_glColor4sv typedef void (APIENTRYP PFNGLCOLOR4UBPROC)(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha); GLAPI PFNGLCOLOR4UBPROC glad_glColor4ub; #define glColor4ub glad_glColor4ub typedef void (APIENTRYP PFNGLCOLOR4UBVPROC)(const GLubyte *v); GLAPI PFNGLCOLOR4UBVPROC glad_glColor4ubv; #define glColor4ubv glad_glColor4ubv typedef void (APIENTRYP PFNGLCOLOR4UIPROC)(GLuint red, GLuint green, GLuint blue, GLuint alpha); GLAPI PFNGLCOLOR4UIPROC glad_glColor4ui; #define glColor4ui glad_glColor4ui typedef void (APIENTRYP PFNGLCOLOR4UIVPROC)(const GLuint *v); GLAPI PFNGLCOLOR4UIVPROC glad_glColor4uiv; #define glColor4uiv glad_glColor4uiv typedef void (APIENTRYP PFNGLCOLOR4USPROC)(GLushort red, GLushort green, GLushort blue, GLushort alpha); GLAPI PFNGLCOLOR4USPROC glad_glColor4us; #define glColor4us glad_glColor4us typedef void (APIENTRYP PFNGLCOLOR4USVPROC)(const GLushort *v); GLAPI PFNGLCOLOR4USVPROC glad_glColor4usv; #define glColor4usv glad_glColor4usv typedef void (APIENTRYP PFNGLEDGEFLAGPROC)(GLboolean flag); GLAPI PFNGLEDGEFLAGPROC glad_glEdgeFlag; #define glEdgeFlag glad_glEdgeFlag typedef void (APIENTRYP PFNGLEDGEFLAGVPROC)(const GLboolean *flag); GLAPI PFNGLEDGEFLAGVPROC glad_glEdgeFlagv; #define glEdgeFlagv glad_glEdgeFlagv typedef void (APIENTRYP PFNGLENDPROC)(void); GLAPI PFNGLENDPROC glad_glEnd; #define glEnd glad_glEnd typedef void (APIENTRYP PFNGLINDEXDPROC)(GLdouble c); GLAPI PFNGLINDEXDPROC glad_glIndexd; #define glIndexd glad_glIndexd typedef void (APIENTRYP PFNGLINDEXDVPROC)(const GLdouble *c); GLAPI PFNGLINDEXDVPROC glad_glIndexdv; #define glIndexdv glad_glIndexdv typedef void (APIENTRYP PFNGLINDEXFPROC)(GLfloat c); GLAPI PFNGLINDEXFPROC glad_glIndexf; #define glIndexf glad_glIndexf typedef void (APIENTRYP PFNGLINDEXFVPROC)(const GLfloat *c); GLAPI PFNGLINDEXFVPROC glad_glIndexfv; #define glIndexfv glad_glIndexfv typedef void (APIENTRYP PFNGLINDEXIPROC)(GLint c); GLAPI PFNGLINDEXIPROC glad_glIndexi; #define glIndexi glad_glIndexi typedef void (APIENTRYP PFNGLINDEXIVPROC)(const GLint *c); GLAPI PFNGLINDEXIVPROC glad_glIndexiv; #define glIndexiv glad_glIndexiv typedef void (APIENTRYP PFNGLINDEXSPROC)(GLshort c); GLAPI PFNGLINDEXSPROC glad_glIndexs; #define glIndexs glad_glIndexs typedef void (APIENTRYP PFNGLINDEXSVPROC)(const GLshort *c); GLAPI PFNGLINDEXSVPROC glad_glIndexsv; #define glIndexsv glad_glIndexsv typedef void (APIENTRYP PFNGLNORMAL3BPROC)(GLbyte nx, GLbyte ny, GLbyte nz); GLAPI PFNGLNORMAL3BPROC glad_glNormal3b; #define glNormal3b glad_glNormal3b typedef void (APIENTRYP PFNGLNORMAL3BVPROC)(const GLbyte *v); GLAPI PFNGLNORMAL3BVPROC glad_glNormal3bv; #define glNormal3bv glad_glNormal3bv typedef void (APIENTRYP PFNGLNORMAL3DPROC)(GLdouble nx, GLdouble ny, GLdouble nz); GLAPI PFNGLNORMAL3DPROC glad_glNormal3d; #define glNormal3d glad_glNormal3d typedef void (APIENTRYP PFNGLNORMAL3DVPROC)(const GLdouble *v); GLAPI PFNGLNORMAL3DVPROC glad_glNormal3dv; #define glNormal3dv glad_glNormal3dv typedef void (APIENTRYP PFNGLNORMAL3FPROC)(GLfloat nx, GLfloat ny, GLfloat nz); GLAPI PFNGLNORMAL3FPROC glad_glNormal3f; #define glNormal3f glad_glNormal3f typedef void (APIENTRYP PFNGLNORMAL3FVPROC)(const GLfloat *v); GLAPI PFNGLNORMAL3FVPROC glad_glNormal3fv; #define glNormal3fv glad_glNormal3fv typedef void (APIENTRYP PFNGLNORMAL3IPROC)(GLint nx, GLint ny, GLint nz); GLAPI PFNGLNORMAL3IPROC glad_glNormal3i; #define glNormal3i glad_glNormal3i typedef void (APIENTRYP PFNGLNORMAL3IVPROC)(const GLint *v); GLAPI PFNGLNORMAL3IVPROC glad_glNormal3iv; #define glNormal3iv glad_glNormal3iv typedef void (APIENTRYP PFNGLNORMAL3SPROC)(GLshort nx, GLshort ny, GLshort nz); GLAPI PFNGLNORMAL3SPROC glad_glNormal3s; #define glNormal3s glad_glNormal3s typedef void (APIENTRYP PFNGLNORMAL3SVPROC)(const GLshort *v); GLAPI PFNGLNORMAL3SVPROC glad_glNormal3sv; #define glNormal3sv glad_glNormal3sv typedef void (APIENTRYP PFNGLRASTERPOS2DPROC)(GLdouble x, GLdouble y); GLAPI PFNGLRASTERPOS2DPROC glad_glRasterPos2d; #define glRasterPos2d glad_glRasterPos2d typedef void (APIENTRYP PFNGLRASTERPOS2DVPROC)(const GLdouble *v); GLAPI PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv; #define glRasterPos2dv glad_glRasterPos2dv typedef void (APIENTRYP PFNGLRASTERPOS2FPROC)(GLfloat x, GLfloat y); GLAPI PFNGLRASTERPOS2FPROC glad_glRasterPos2f; #define glRasterPos2f glad_glRasterPos2f typedef void (APIENTRYP PFNGLRASTERPOS2FVPROC)(const GLfloat *v); GLAPI PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv; #define glRasterPos2fv glad_glRasterPos2fv typedef void (APIENTRYP PFNGLRASTERPOS2IPROC)(GLint x, GLint y); GLAPI PFNGLRASTERPOS2IPROC glad_glRasterPos2i; #define glRasterPos2i glad_glRasterPos2i typedef void (APIENTRYP PFNGLRASTERPOS2IVPROC)(const GLint *v); GLAPI PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv; #define glRasterPos2iv glad_glRasterPos2iv typedef void (APIENTRYP PFNGLRASTERPOS2SPROC)(GLshort x, GLshort y); GLAPI PFNGLRASTERPOS2SPROC glad_glRasterPos2s; #define glRasterPos2s glad_glRasterPos2s typedef void (APIENTRYP PFNGLRASTERPOS2SVPROC)(const GLshort *v); GLAPI PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv; #define glRasterPos2sv glad_glRasterPos2sv typedef void (APIENTRYP PFNGLRASTERPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLRASTERPOS3DPROC glad_glRasterPos3d; #define glRasterPos3d glad_glRasterPos3d typedef void (APIENTRYP PFNGLRASTERPOS3DVPROC)(const GLdouble *v); GLAPI PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv; #define glRasterPos3dv glad_glRasterPos3dv typedef void (APIENTRYP PFNGLRASTERPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLRASTERPOS3FPROC glad_glRasterPos3f; #define glRasterPos3f glad_glRasterPos3f typedef void (APIENTRYP PFNGLRASTERPOS3FVPROC)(const GLfloat *v); GLAPI PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv; #define glRasterPos3fv glad_glRasterPos3fv typedef void (APIENTRYP PFNGLRASTERPOS3IPROC)(GLint x, GLint y, GLint z); GLAPI PFNGLRASTERPOS3IPROC glad_glRasterPos3i; #define glRasterPos3i glad_glRasterPos3i typedef void (APIENTRYP PFNGLRASTERPOS3IVPROC)(const GLint *v); GLAPI PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv; #define glRasterPos3iv glad_glRasterPos3iv typedef void (APIENTRYP PFNGLRASTERPOS3SPROC)(GLshort x, GLshort y, GLshort z); GLAPI PFNGLRASTERPOS3SPROC glad_glRasterPos3s; #define glRasterPos3s glad_glRasterPos3s typedef void (APIENTRYP PFNGLRASTERPOS3SVPROC)(const GLshort *v); GLAPI PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv; #define glRasterPos3sv glad_glRasterPos3sv typedef void (APIENTRYP PFNGLRASTERPOS4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); GLAPI PFNGLRASTERPOS4DPROC glad_glRasterPos4d; #define glRasterPos4d glad_glRasterPos4d typedef void (APIENTRYP PFNGLRASTERPOS4DVPROC)(const GLdouble *v); GLAPI PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv; #define glRasterPos4dv glad_glRasterPos4dv typedef void (APIENTRYP PFNGLRASTERPOS4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); GLAPI PFNGLRASTERPOS4FPROC glad_glRasterPos4f; #define glRasterPos4f glad_glRasterPos4f typedef void (APIENTRYP PFNGLRASTERPOS4FVPROC)(const GLfloat *v); GLAPI PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv; #define glRasterPos4fv glad_glRasterPos4fv typedef void (APIENTRYP PFNGLRASTERPOS4IPROC)(GLint x, GLint y, GLint z, GLint w); GLAPI PFNGLRASTERPOS4IPROC glad_glRasterPos4i; #define glRasterPos4i glad_glRasterPos4i typedef void (APIENTRYP PFNGLRASTERPOS4IVPROC)(const GLint *v); GLAPI PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv; #define glRasterPos4iv glad_glRasterPos4iv typedef void (APIENTRYP PFNGLRASTERPOS4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); GLAPI PFNGLRASTERPOS4SPROC glad_glRasterPos4s; #define glRasterPos4s glad_glRasterPos4s typedef void (APIENTRYP PFNGLRASTERPOS4SVPROC)(const GLshort *v); GLAPI PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv; #define glRasterPos4sv glad_glRasterPos4sv typedef void (APIENTRYP PFNGLRECTDPROC)(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2); GLAPI PFNGLRECTDPROC glad_glRectd; #define glRectd glad_glRectd typedef void (APIENTRYP PFNGLRECTDVPROC)(const GLdouble *v1, const GLdouble *v2); GLAPI PFNGLRECTDVPROC glad_glRectdv; #define glRectdv glad_glRectdv typedef void (APIENTRYP PFNGLRECTFPROC)(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2); GLAPI PFNGLRECTFPROC glad_glRectf; #define glRectf glad_glRectf typedef void (APIENTRYP PFNGLRECTFVPROC)(const GLfloat *v1, const GLfloat *v2); GLAPI PFNGLRECTFVPROC glad_glRectfv; #define glRectfv glad_glRectfv typedef void (APIENTRYP PFNGLRECTIPROC)(GLint x1, GLint y1, GLint x2, GLint y2); GLAPI PFNGLRECTIPROC glad_glRecti; #define glRecti glad_glRecti typedef void (APIENTRYP PFNGLRECTIVPROC)(const GLint *v1, const GLint *v2); GLAPI PFNGLRECTIVPROC glad_glRectiv; #define glRectiv glad_glRectiv typedef void (APIENTRYP PFNGLRECTSPROC)(GLshort x1, GLshort y1, GLshort x2, GLshort y2); GLAPI PFNGLRECTSPROC glad_glRects; #define glRects glad_glRects typedef void (APIENTRYP PFNGLRECTSVPROC)(const GLshort *v1, const GLshort *v2); GLAPI PFNGLRECTSVPROC glad_glRectsv; #define glRectsv glad_glRectsv typedef void (APIENTRYP PFNGLTEXCOORD1DPROC)(GLdouble s); GLAPI PFNGLTEXCOORD1DPROC glad_glTexCoord1d; #define glTexCoord1d glad_glTexCoord1d typedef void (APIENTRYP PFNGLTEXCOORD1DVPROC)(const GLdouble *v); GLAPI PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv; #define glTexCoord1dv glad_glTexCoord1dv typedef void (APIENTRYP PFNGLTEXCOORD1FPROC)(GLfloat s); GLAPI PFNGLTEXCOORD1FPROC glad_glTexCoord1f; #define glTexCoord1f glad_glTexCoord1f typedef void (APIENTRYP PFNGLTEXCOORD1FVPROC)(const GLfloat *v); GLAPI PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv; #define glTexCoord1fv glad_glTexCoord1fv typedef void (APIENTRYP PFNGLTEXCOORD1IPROC)(GLint s); GLAPI PFNGLTEXCOORD1IPROC glad_glTexCoord1i; #define glTexCoord1i glad_glTexCoord1i typedef void (APIENTRYP PFNGLTEXCOORD1IVPROC)(const GLint *v); GLAPI PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv; #define glTexCoord1iv glad_glTexCoord1iv typedef void (APIENTRYP PFNGLTEXCOORD1SPROC)(GLshort s); GLAPI PFNGLTEXCOORD1SPROC glad_glTexCoord1s; #define glTexCoord1s glad_glTexCoord1s typedef void (APIENTRYP PFNGLTEXCOORD1SVPROC)(const GLshort *v); GLAPI PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv; #define glTexCoord1sv glad_glTexCoord1sv typedef void (APIENTRYP PFNGLTEXCOORD2DPROC)(GLdouble s, GLdouble t); GLAPI PFNGLTEXCOORD2DPROC glad_glTexCoord2d; #define glTexCoord2d glad_glTexCoord2d typedef void (APIENTRYP PFNGLTEXCOORD2DVPROC)(const GLdouble *v); GLAPI PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv; #define glTexCoord2dv glad_glTexCoord2dv typedef void (APIENTRYP PFNGLTEXCOORD2FPROC)(GLfloat s, GLfloat t); GLAPI PFNGLTEXCOORD2FPROC glad_glTexCoord2f; #define glTexCoord2f glad_glTexCoord2f typedef void (APIENTRYP PFNGLTEXCOORD2FVPROC)(const GLfloat *v); GLAPI PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv; #define glTexCoord2fv glad_glTexCoord2fv typedef void (APIENTRYP PFNGLTEXCOORD2IPROC)(GLint s, GLint t); GLAPI PFNGLTEXCOORD2IPROC glad_glTexCoord2i; #define glTexCoord2i glad_glTexCoord2i typedef void (APIENTRYP PFNGLTEXCOORD2IVPROC)(const GLint *v); GLAPI PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv; #define glTexCoord2iv glad_glTexCoord2iv typedef void (APIENTRYP PFNGLTEXCOORD2SPROC)(GLshort s, GLshort t); GLAPI PFNGLTEXCOORD2SPROC glad_glTexCoord2s; #define glTexCoord2s glad_glTexCoord2s typedef void (APIENTRYP PFNGLTEXCOORD2SVPROC)(const GLshort *v); GLAPI PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv; #define glTexCoord2sv glad_glTexCoord2sv typedef void (APIENTRYP PFNGLTEXCOORD3DPROC)(GLdouble s, GLdouble t, GLdouble r); GLAPI PFNGLTEXCOORD3DPROC glad_glTexCoord3d; #define glTexCoord3d glad_glTexCoord3d typedef void (APIENTRYP PFNGLTEXCOORD3DVPROC)(const GLdouble *v); GLAPI PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv; #define glTexCoord3dv glad_glTexCoord3dv typedef void (APIENTRYP PFNGLTEXCOORD3FPROC)(GLfloat s, GLfloat t, GLfloat r); GLAPI PFNGLTEXCOORD3FPROC glad_glTexCoord3f; #define glTexCoord3f glad_glTexCoord3f typedef void (APIENTRYP PFNGLTEXCOORD3FVPROC)(const GLfloat *v); GLAPI PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv; #define glTexCoord3fv glad_glTexCoord3fv typedef void (APIENTRYP PFNGLTEXCOORD3IPROC)(GLint s, GLint t, GLint r); GLAPI PFNGLTEXCOORD3IPROC glad_glTexCoord3i; #define glTexCoord3i glad_glTexCoord3i typedef void (APIENTRYP PFNGLTEXCOORD3IVPROC)(const GLint *v); GLAPI PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv; #define glTexCoord3iv glad_glTexCoord3iv typedef void (APIENTRYP PFNGLTEXCOORD3SPROC)(GLshort s, GLshort t, GLshort r); GLAPI PFNGLTEXCOORD3SPROC glad_glTexCoord3s; #define glTexCoord3s glad_glTexCoord3s typedef void (APIENTRYP PFNGLTEXCOORD3SVPROC)(const GLshort *v); GLAPI PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv; #define glTexCoord3sv glad_glTexCoord3sv typedef void (APIENTRYP PFNGLTEXCOORD4DPROC)(GLdouble s, GLdouble t, GLdouble r, GLdouble q); GLAPI PFNGLTEXCOORD4DPROC glad_glTexCoord4d; #define glTexCoord4d glad_glTexCoord4d typedef void (APIENTRYP PFNGLTEXCOORD4DVPROC)(const GLdouble *v); GLAPI PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv; #define glTexCoord4dv glad_glTexCoord4dv typedef void (APIENTRYP PFNGLTEXCOORD4FPROC)(GLfloat s, GLfloat t, GLfloat r, GLfloat q); GLAPI PFNGLTEXCOORD4FPROC glad_glTexCoord4f; #define glTexCoord4f glad_glTexCoord4f typedef void (APIENTRYP PFNGLTEXCOORD4FVPROC)(const GLfloat *v); GLAPI PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv; #define glTexCoord4fv glad_glTexCoord4fv typedef void (APIENTRYP PFNGLTEXCOORD4IPROC)(GLint s, GLint t, GLint r, GLint q); GLAPI PFNGLTEXCOORD4IPROC glad_glTexCoord4i; #define glTexCoord4i glad_glTexCoord4i typedef void (APIENTRYP PFNGLTEXCOORD4IVPROC)(const GLint *v); GLAPI PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv; #define glTexCoord4iv glad_glTexCoord4iv typedef void (APIENTRYP PFNGLTEXCOORD4SPROC)(GLshort s, GLshort t, GLshort r, GLshort q); GLAPI PFNGLTEXCOORD4SPROC glad_glTexCoord4s; #define glTexCoord4s glad_glTexCoord4s typedef void (APIENTRYP PFNGLTEXCOORD4SVPROC)(const GLshort *v); GLAPI PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv; #define glTexCoord4sv glad_glTexCoord4sv typedef void (APIENTRYP PFNGLVERTEX2DPROC)(GLdouble x, GLdouble y); GLAPI PFNGLVERTEX2DPROC glad_glVertex2d; #define glVertex2d glad_glVertex2d typedef void (APIENTRYP PFNGLVERTEX2DVPROC)(const GLdouble *v); GLAPI PFNGLVERTEX2DVPROC glad_glVertex2dv; #define glVertex2dv glad_glVertex2dv typedef void (APIENTRYP PFNGLVERTEX2FPROC)(GLfloat x, GLfloat y); GLAPI PFNGLVERTEX2FPROC glad_glVertex2f; #define glVertex2f glad_glVertex2f typedef void (APIENTRYP PFNGLVERTEX2FVPROC)(const GLfloat *v); GLAPI PFNGLVERTEX2FVPROC glad_glVertex2fv; #define glVertex2fv glad_glVertex2fv typedef void (APIENTRYP PFNGLVERTEX2IPROC)(GLint x, GLint y); GLAPI PFNGLVERTEX2IPROC glad_glVertex2i; #define glVertex2i glad_glVertex2i typedef void (APIENTRYP PFNGLVERTEX2IVPROC)(const GLint *v); GLAPI PFNGLVERTEX2IVPROC glad_glVertex2iv; #define glVertex2iv glad_glVertex2iv typedef void (APIENTRYP PFNGLVERTEX2SPROC)(GLshort x, GLshort y); GLAPI PFNGLVERTEX2SPROC glad_glVertex2s; #define glVertex2s glad_glVertex2s typedef void (APIENTRYP PFNGLVERTEX2SVPROC)(const GLshort *v); GLAPI PFNGLVERTEX2SVPROC glad_glVertex2sv; #define glVertex2sv glad_glVertex2sv typedef void (APIENTRYP PFNGLVERTEX3DPROC)(GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLVERTEX3DPROC glad_glVertex3d; #define glVertex3d glad_glVertex3d typedef void (APIENTRYP PFNGLVERTEX3DVPROC)(const GLdouble *v); GLAPI PFNGLVERTEX3DVPROC glad_glVertex3dv; #define glVertex3dv glad_glVertex3dv typedef void (APIENTRYP PFNGLVERTEX3FPROC)(GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLVERTEX3FPROC glad_glVertex3f; #define glVertex3f glad_glVertex3f typedef void (APIENTRYP PFNGLVERTEX3FVPROC)(const GLfloat *v); GLAPI PFNGLVERTEX3FVPROC glad_glVertex3fv; #define glVertex3fv glad_glVertex3fv typedef void (APIENTRYP PFNGLVERTEX3IPROC)(GLint x, GLint y, GLint z); GLAPI PFNGLVERTEX3IPROC glad_glVertex3i; #define glVertex3i glad_glVertex3i typedef void (APIENTRYP PFNGLVERTEX3IVPROC)(const GLint *v); GLAPI PFNGLVERTEX3IVPROC glad_glVertex3iv; #define glVertex3iv glad_glVertex3iv typedef void (APIENTRYP PFNGLVERTEX3SPROC)(GLshort x, GLshort y, GLshort z); GLAPI PFNGLVERTEX3SPROC glad_glVertex3s; #define glVertex3s glad_glVertex3s typedef void (APIENTRYP PFNGLVERTEX3SVPROC)(const GLshort *v); GLAPI PFNGLVERTEX3SVPROC glad_glVertex3sv; #define glVertex3sv glad_glVertex3sv typedef void (APIENTRYP PFNGLVERTEX4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); GLAPI PFNGLVERTEX4DPROC glad_glVertex4d; #define glVertex4d glad_glVertex4d typedef void (APIENTRYP PFNGLVERTEX4DVPROC)(const GLdouble *v); GLAPI PFNGLVERTEX4DVPROC glad_glVertex4dv; #define glVertex4dv glad_glVertex4dv typedef void (APIENTRYP PFNGLVERTEX4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); GLAPI PFNGLVERTEX4FPROC glad_glVertex4f; #define glVertex4f glad_glVertex4f typedef void (APIENTRYP PFNGLVERTEX4FVPROC)(const GLfloat *v); GLAPI PFNGLVERTEX4FVPROC glad_glVertex4fv; #define glVertex4fv glad_glVertex4fv typedef void (APIENTRYP PFNGLVERTEX4IPROC)(GLint x, GLint y, GLint z, GLint w); GLAPI PFNGLVERTEX4IPROC glad_glVertex4i; #define glVertex4i glad_glVertex4i typedef void (APIENTRYP PFNGLVERTEX4IVPROC)(const GLint *v); GLAPI PFNGLVERTEX4IVPROC glad_glVertex4iv; #define glVertex4iv glad_glVertex4iv typedef void (APIENTRYP PFNGLVERTEX4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); GLAPI PFNGLVERTEX4SPROC glad_glVertex4s; #define glVertex4s glad_glVertex4s typedef void (APIENTRYP PFNGLVERTEX4SVPROC)(const GLshort *v); GLAPI PFNGLVERTEX4SVPROC glad_glVertex4sv; #define glVertex4sv glad_glVertex4sv typedef void (APIENTRYP PFNGLCLIPPLANEPROC)(GLenum plane, const GLdouble *equation); GLAPI PFNGLCLIPPLANEPROC glad_glClipPlane; #define glClipPlane glad_glClipPlane typedef void (APIENTRYP PFNGLCOLORMATERIALPROC)(GLenum face, GLenum mode); GLAPI PFNGLCOLORMATERIALPROC glad_glColorMaterial; #define glColorMaterial glad_glColorMaterial typedef void (APIENTRYP PFNGLFOGFPROC)(GLenum pname, GLfloat param); GLAPI PFNGLFOGFPROC glad_glFogf; #define glFogf glad_glFogf typedef void (APIENTRYP PFNGLFOGFVPROC)(GLenum pname, const GLfloat *params); GLAPI PFNGLFOGFVPROC glad_glFogfv; #define glFogfv glad_glFogfv typedef void (APIENTRYP PFNGLFOGIPROC)(GLenum pname, GLint param); GLAPI PFNGLFOGIPROC glad_glFogi; #define glFogi glad_glFogi typedef void (APIENTRYP PFNGLFOGIVPROC)(GLenum pname, const GLint *params); GLAPI PFNGLFOGIVPROC glad_glFogiv; #define glFogiv glad_glFogiv typedef void (APIENTRYP PFNGLLIGHTFPROC)(GLenum light, GLenum pname, GLfloat param); GLAPI PFNGLLIGHTFPROC glad_glLightf; #define glLightf glad_glLightf typedef void (APIENTRYP PFNGLLIGHTFVPROC)(GLenum light, GLenum pname, const GLfloat *params); GLAPI PFNGLLIGHTFVPROC glad_glLightfv; #define glLightfv glad_glLightfv typedef void (APIENTRYP PFNGLLIGHTIPROC)(GLenum light, GLenum pname, GLint param); GLAPI PFNGLLIGHTIPROC glad_glLighti; #define glLighti glad_glLighti typedef void (APIENTRYP PFNGLLIGHTIVPROC)(GLenum light, GLenum pname, const GLint *params); GLAPI PFNGLLIGHTIVPROC glad_glLightiv; #define glLightiv glad_glLightiv typedef void (APIENTRYP PFNGLLIGHTMODELFPROC)(GLenum pname, GLfloat param); GLAPI PFNGLLIGHTMODELFPROC glad_glLightModelf; #define glLightModelf glad_glLightModelf typedef void (APIENTRYP PFNGLLIGHTMODELFVPROC)(GLenum pname, const GLfloat *params); GLAPI PFNGLLIGHTMODELFVPROC glad_glLightModelfv; #define glLightModelfv glad_glLightModelfv typedef void (APIENTRYP PFNGLLIGHTMODELIPROC)(GLenum pname, GLint param); GLAPI PFNGLLIGHTMODELIPROC glad_glLightModeli; #define glLightModeli glad_glLightModeli typedef void (APIENTRYP PFNGLLIGHTMODELIVPROC)(GLenum pname, const GLint *params); GLAPI PFNGLLIGHTMODELIVPROC glad_glLightModeliv; #define glLightModeliv glad_glLightModeliv typedef void (APIENTRYP PFNGLLINESTIPPLEPROC)(GLint factor, GLushort pattern); GLAPI PFNGLLINESTIPPLEPROC glad_glLineStipple; #define glLineStipple glad_glLineStipple typedef void (APIENTRYP PFNGLMATERIALFPROC)(GLenum face, GLenum pname, GLfloat param); GLAPI PFNGLMATERIALFPROC glad_glMaterialf; #define glMaterialf glad_glMaterialf typedef void (APIENTRYP PFNGLMATERIALFVPROC)(GLenum face, GLenum pname, const GLfloat *params); GLAPI PFNGLMATERIALFVPROC glad_glMaterialfv; #define glMaterialfv glad_glMaterialfv typedef void (APIENTRYP PFNGLMATERIALIPROC)(GLenum face, GLenum pname, GLint param); GLAPI PFNGLMATERIALIPROC glad_glMateriali; #define glMateriali glad_glMateriali typedef void (APIENTRYP PFNGLMATERIALIVPROC)(GLenum face, GLenum pname, const GLint *params); GLAPI PFNGLMATERIALIVPROC glad_glMaterialiv; #define glMaterialiv glad_glMaterialiv typedef void (APIENTRYP PFNGLPOLYGONSTIPPLEPROC)(const GLubyte *mask); GLAPI PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple; #define glPolygonStipple glad_glPolygonStipple typedef void (APIENTRYP PFNGLSHADEMODELPROC)(GLenum mode); GLAPI PFNGLSHADEMODELPROC glad_glShadeModel; #define glShadeModel glad_glShadeModel typedef void (APIENTRYP PFNGLTEXENVFPROC)(GLenum target, GLenum pname, GLfloat param); GLAPI PFNGLTEXENVFPROC glad_glTexEnvf; #define glTexEnvf glad_glTexEnvf typedef void (APIENTRYP PFNGLTEXENVFVPROC)(GLenum target, GLenum pname, const GLfloat *params); GLAPI PFNGLTEXENVFVPROC glad_glTexEnvfv; #define glTexEnvfv glad_glTexEnvfv typedef void (APIENTRYP PFNGLTEXENVIPROC)(GLenum target, GLenum pname, GLint param); GLAPI PFNGLTEXENVIPROC glad_glTexEnvi; #define glTexEnvi glad_glTexEnvi typedef void (APIENTRYP PFNGLTEXENVIVPROC)(GLenum target, GLenum pname, const GLint *params); GLAPI PFNGLTEXENVIVPROC glad_glTexEnviv; #define glTexEnviv glad_glTexEnviv typedef void (APIENTRYP PFNGLTEXGENDPROC)(GLenum coord, GLenum pname, GLdouble param); GLAPI PFNGLTEXGENDPROC glad_glTexGend; #define glTexGend glad_glTexGend typedef void (APIENTRYP PFNGLTEXGENDVPROC)(GLenum coord, GLenum pname, const GLdouble *params); GLAPI PFNGLTEXGENDVPROC glad_glTexGendv; #define glTexGendv glad_glTexGendv typedef void (APIENTRYP PFNGLTEXGENFPROC)(GLenum coord, GLenum pname, GLfloat param); GLAPI PFNGLTEXGENFPROC glad_glTexGenf; #define glTexGenf glad_glTexGenf typedef void (APIENTRYP PFNGLTEXGENFVPROC)(GLenum coord, GLenum pname, const GLfloat *params); GLAPI PFNGLTEXGENFVPROC glad_glTexGenfv; #define glTexGenfv glad_glTexGenfv typedef void (APIENTRYP PFNGLTEXGENIPROC)(GLenum coord, GLenum pname, GLint param); GLAPI PFNGLTEXGENIPROC glad_glTexGeni; #define glTexGeni glad_glTexGeni typedef void (APIENTRYP PFNGLTEXGENIVPROC)(GLenum coord, GLenum pname, const GLint *params); GLAPI PFNGLTEXGENIVPROC glad_glTexGeniv; #define glTexGeniv glad_glTexGeniv typedef void (APIENTRYP PFNGLFEEDBACKBUFFERPROC)(GLsizei size, GLenum type, GLfloat *buffer); GLAPI PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer; #define glFeedbackBuffer glad_glFeedbackBuffer typedef void (APIENTRYP PFNGLSELECTBUFFERPROC)(GLsizei size, GLuint *buffer); GLAPI PFNGLSELECTBUFFERPROC glad_glSelectBuffer; #define glSelectBuffer glad_glSelectBuffer typedef GLint (APIENTRYP PFNGLRENDERMODEPROC)(GLenum mode); GLAPI PFNGLRENDERMODEPROC glad_glRenderMode; #define glRenderMode glad_glRenderMode typedef void (APIENTRYP PFNGLINITNAMESPROC)(void); GLAPI PFNGLINITNAMESPROC glad_glInitNames; #define glInitNames glad_glInitNames typedef void (APIENTRYP PFNGLLOADNAMEPROC)(GLuint name); GLAPI PFNGLLOADNAMEPROC glad_glLoadName; #define glLoadName glad_glLoadName typedef void (APIENTRYP PFNGLPASSTHROUGHPROC)(GLfloat token); GLAPI PFNGLPASSTHROUGHPROC glad_glPassThrough; #define glPassThrough glad_glPassThrough typedef void (APIENTRYP PFNGLPOPNAMEPROC)(void); GLAPI PFNGLPOPNAMEPROC glad_glPopName; #define glPopName glad_glPopName typedef void (APIENTRYP PFNGLPUSHNAMEPROC)(GLuint name); GLAPI PFNGLPUSHNAMEPROC glad_glPushName; #define glPushName glad_glPushName typedef void (APIENTRYP PFNGLCLEARACCUMPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); GLAPI PFNGLCLEARACCUMPROC glad_glClearAccum; #define glClearAccum glad_glClearAccum typedef void (APIENTRYP PFNGLCLEARINDEXPROC)(GLfloat c); GLAPI PFNGLCLEARINDEXPROC glad_glClearIndex; #define glClearIndex glad_glClearIndex typedef void (APIENTRYP PFNGLINDEXMASKPROC)(GLuint mask); GLAPI PFNGLINDEXMASKPROC glad_glIndexMask; #define glIndexMask glad_glIndexMask typedef void (APIENTRYP PFNGLACCUMPROC)(GLenum op, GLfloat value); GLAPI PFNGLACCUMPROC glad_glAccum; #define glAccum glad_glAccum typedef void (APIENTRYP PFNGLPOPATTRIBPROC)(void); GLAPI PFNGLPOPATTRIBPROC glad_glPopAttrib; #define glPopAttrib glad_glPopAttrib typedef void (APIENTRYP PFNGLPUSHATTRIBPROC)(GLbitfield mask); GLAPI PFNGLPUSHATTRIBPROC glad_glPushAttrib; #define glPushAttrib glad_glPushAttrib typedef void (APIENTRYP PFNGLMAP1DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble *points); GLAPI PFNGLMAP1DPROC glad_glMap1d; #define glMap1d glad_glMap1d typedef void (APIENTRYP PFNGLMAP1FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat *points); GLAPI PFNGLMAP1FPROC glad_glMap1f; #define glMap1f glad_glMap1f typedef void (APIENTRYP PFNGLMAP2DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble *points); GLAPI PFNGLMAP2DPROC glad_glMap2d; #define glMap2d glad_glMap2d typedef void (APIENTRYP PFNGLMAP2FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points); GLAPI PFNGLMAP2FPROC glad_glMap2f; #define glMap2f glad_glMap2f typedef void (APIENTRYP PFNGLMAPGRID1DPROC)(GLint un, GLdouble u1, GLdouble u2); GLAPI PFNGLMAPGRID1DPROC glad_glMapGrid1d; #define glMapGrid1d glad_glMapGrid1d typedef void (APIENTRYP PFNGLMAPGRID1FPROC)(GLint un, GLfloat u1, GLfloat u2); GLAPI PFNGLMAPGRID1FPROC glad_glMapGrid1f; #define glMapGrid1f glad_glMapGrid1f typedef void (APIENTRYP PFNGLMAPGRID2DPROC)(GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2); GLAPI PFNGLMAPGRID2DPROC glad_glMapGrid2d; #define glMapGrid2d glad_glMapGrid2d typedef void (APIENTRYP PFNGLMAPGRID2FPROC)(GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2); GLAPI PFNGLMAPGRID2FPROC glad_glMapGrid2f; #define glMapGrid2f glad_glMapGrid2f typedef void (APIENTRYP PFNGLEVALCOORD1DPROC)(GLdouble u); GLAPI PFNGLEVALCOORD1DPROC glad_glEvalCoord1d; #define glEvalCoord1d glad_glEvalCoord1d typedef void (APIENTRYP PFNGLEVALCOORD1DVPROC)(const GLdouble *u); GLAPI PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv; #define glEvalCoord1dv glad_glEvalCoord1dv typedef void (APIENTRYP PFNGLEVALCOORD1FPROC)(GLfloat u); GLAPI PFNGLEVALCOORD1FPROC glad_glEvalCoord1f; #define glEvalCoord1f glad_glEvalCoord1f typedef void (APIENTRYP PFNGLEVALCOORD1FVPROC)(const GLfloat *u); GLAPI PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv; #define glEvalCoord1fv glad_glEvalCoord1fv typedef void (APIENTRYP PFNGLEVALCOORD2DPROC)(GLdouble u, GLdouble v); GLAPI PFNGLEVALCOORD2DPROC glad_glEvalCoord2d; #define glEvalCoord2d glad_glEvalCoord2d typedef void (APIENTRYP PFNGLEVALCOORD2DVPROC)(const GLdouble *u); GLAPI PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv; #define glEvalCoord2dv glad_glEvalCoord2dv typedef void (APIENTRYP PFNGLEVALCOORD2FPROC)(GLfloat u, GLfloat v); GLAPI PFNGLEVALCOORD2FPROC glad_glEvalCoord2f; #define glEvalCoord2f glad_glEvalCoord2f typedef void (APIENTRYP PFNGLEVALCOORD2FVPROC)(const GLfloat *u); GLAPI PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv; #define glEvalCoord2fv glad_glEvalCoord2fv typedef void (APIENTRYP PFNGLEVALMESH1PROC)(GLenum mode, GLint i1, GLint i2); GLAPI PFNGLEVALMESH1PROC glad_glEvalMesh1; #define glEvalMesh1 glad_glEvalMesh1 typedef void (APIENTRYP PFNGLEVALPOINT1PROC)(GLint i); GLAPI PFNGLEVALPOINT1PROC glad_glEvalPoint1; #define glEvalPoint1 glad_glEvalPoint1 typedef void (APIENTRYP PFNGLEVALMESH2PROC)(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2); GLAPI PFNGLEVALMESH2PROC glad_glEvalMesh2; #define glEvalMesh2 glad_glEvalMesh2 typedef void (APIENTRYP PFNGLEVALPOINT2PROC)(GLint i, GLint j); GLAPI PFNGLEVALPOINT2PROC glad_glEvalPoint2; #define glEvalPoint2 glad_glEvalPoint2 typedef void (APIENTRYP PFNGLALPHAFUNCPROC)(GLenum func, GLfloat ref); GLAPI PFNGLALPHAFUNCPROC glad_glAlphaFunc; #define glAlphaFunc glad_glAlphaFunc typedef void (APIENTRYP PFNGLPIXELZOOMPROC)(GLfloat xfactor, GLfloat yfactor); GLAPI PFNGLPIXELZOOMPROC glad_glPixelZoom; #define glPixelZoom glad_glPixelZoom typedef void (APIENTRYP PFNGLPIXELTRANSFERFPROC)(GLenum pname, GLfloat param); GLAPI PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf; #define glPixelTransferf glad_glPixelTransferf typedef void (APIENTRYP PFNGLPIXELTRANSFERIPROC)(GLenum pname, GLint param); GLAPI PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi; #define glPixelTransferi glad_glPixelTransferi typedef void (APIENTRYP PFNGLPIXELMAPFVPROC)(GLenum map, GLsizei mapsize, const GLfloat *values); GLAPI PFNGLPIXELMAPFVPROC glad_glPixelMapfv; #define glPixelMapfv glad_glPixelMapfv typedef void (APIENTRYP PFNGLPIXELMAPUIVPROC)(GLenum map, GLsizei mapsize, const GLuint *values); GLAPI PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv; #define glPixelMapuiv glad_glPixelMapuiv typedef void (APIENTRYP PFNGLPIXELMAPUSVPROC)(GLenum map, GLsizei mapsize, const GLushort *values); GLAPI PFNGLPIXELMAPUSVPROC glad_glPixelMapusv; #define glPixelMapusv glad_glPixelMapusv typedef void (APIENTRYP PFNGLCOPYPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type); GLAPI PFNGLCOPYPIXELSPROC glad_glCopyPixels; #define glCopyPixels glad_glCopyPixels typedef void (APIENTRYP PFNGLDRAWPIXELSPROC)(GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLDRAWPIXELSPROC glad_glDrawPixels; #define glDrawPixels glad_glDrawPixels typedef void (APIENTRYP PFNGLGETCLIPPLANEPROC)(GLenum plane, GLdouble *equation); GLAPI PFNGLGETCLIPPLANEPROC glad_glGetClipPlane; #define glGetClipPlane glad_glGetClipPlane typedef void (APIENTRYP PFNGLGETLIGHTFVPROC)(GLenum light, GLenum pname, GLfloat *params); GLAPI PFNGLGETLIGHTFVPROC glad_glGetLightfv; #define glGetLightfv glad_glGetLightfv typedef void (APIENTRYP PFNGLGETLIGHTIVPROC)(GLenum light, GLenum pname, GLint *params); GLAPI PFNGLGETLIGHTIVPROC glad_glGetLightiv; #define glGetLightiv glad_glGetLightiv typedef void (APIENTRYP PFNGLGETMAPDVPROC)(GLenum target, GLenum query, GLdouble *v); GLAPI PFNGLGETMAPDVPROC glad_glGetMapdv; #define glGetMapdv glad_glGetMapdv typedef void (APIENTRYP PFNGLGETMAPFVPROC)(GLenum target, GLenum query, GLfloat *v); GLAPI PFNGLGETMAPFVPROC glad_glGetMapfv; #define glGetMapfv glad_glGetMapfv typedef void (APIENTRYP PFNGLGETMAPIVPROC)(GLenum target, GLenum query, GLint *v); GLAPI PFNGLGETMAPIVPROC glad_glGetMapiv; #define glGetMapiv glad_glGetMapiv typedef void (APIENTRYP PFNGLGETMATERIALFVPROC)(GLenum face, GLenum pname, GLfloat *params); GLAPI PFNGLGETMATERIALFVPROC glad_glGetMaterialfv; #define glGetMaterialfv glad_glGetMaterialfv typedef void (APIENTRYP PFNGLGETMATERIALIVPROC)(GLenum face, GLenum pname, GLint *params); GLAPI PFNGLGETMATERIALIVPROC glad_glGetMaterialiv; #define glGetMaterialiv glad_glGetMaterialiv typedef void (APIENTRYP PFNGLGETPIXELMAPFVPROC)(GLenum map, GLfloat *values); GLAPI PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv; #define glGetPixelMapfv glad_glGetPixelMapfv typedef void (APIENTRYP PFNGLGETPIXELMAPUIVPROC)(GLenum map, GLuint *values); GLAPI PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv; #define glGetPixelMapuiv glad_glGetPixelMapuiv typedef void (APIENTRYP PFNGLGETPIXELMAPUSVPROC)(GLenum map, GLushort *values); GLAPI PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv; #define glGetPixelMapusv glad_glGetPixelMapusv typedef void (APIENTRYP PFNGLGETPOLYGONSTIPPLEPROC)(GLubyte *mask); GLAPI PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple; #define glGetPolygonStipple glad_glGetPolygonStipple typedef void (APIENTRYP PFNGLGETTEXENVFVPROC)(GLenum target, GLenum pname, GLfloat *params); GLAPI PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv; #define glGetTexEnvfv glad_glGetTexEnvfv typedef void (APIENTRYP PFNGLGETTEXENVIVPROC)(GLenum target, GLenum pname, GLint *params); GLAPI PFNGLGETTEXENVIVPROC glad_glGetTexEnviv; #define glGetTexEnviv glad_glGetTexEnviv typedef void (APIENTRYP PFNGLGETTEXGENDVPROC)(GLenum coord, GLenum pname, GLdouble *params); GLAPI PFNGLGETTEXGENDVPROC glad_glGetTexGendv; #define glGetTexGendv glad_glGetTexGendv typedef void (APIENTRYP PFNGLGETTEXGENFVPROC)(GLenum coord, GLenum pname, GLfloat *params); GLAPI PFNGLGETTEXGENFVPROC glad_glGetTexGenfv; #define glGetTexGenfv glad_glGetTexGenfv typedef void (APIENTRYP PFNGLGETTEXGENIVPROC)(GLenum coord, GLenum pname, GLint *params); GLAPI PFNGLGETTEXGENIVPROC glad_glGetTexGeniv; #define glGetTexGeniv glad_glGetTexGeniv typedef GLboolean (APIENTRYP PFNGLISLISTPROC)(GLuint list); GLAPI PFNGLISLISTPROC glad_glIsList; #define glIsList glad_glIsList typedef void (APIENTRYP PFNGLFRUSTUMPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); GLAPI PFNGLFRUSTUMPROC glad_glFrustum; #define glFrustum glad_glFrustum typedef void (APIENTRYP PFNGLLOADIDENTITYPROC)(void); GLAPI PFNGLLOADIDENTITYPROC glad_glLoadIdentity; #define glLoadIdentity glad_glLoadIdentity typedef void (APIENTRYP PFNGLLOADMATRIXFPROC)(const GLfloat *m); GLAPI PFNGLLOADMATRIXFPROC glad_glLoadMatrixf; #define glLoadMatrixf glad_glLoadMatrixf typedef void (APIENTRYP PFNGLLOADMATRIXDPROC)(const GLdouble *m); GLAPI PFNGLLOADMATRIXDPROC glad_glLoadMatrixd; #define glLoadMatrixd glad_glLoadMatrixd typedef void (APIENTRYP PFNGLMATRIXMODEPROC)(GLenum mode); GLAPI PFNGLMATRIXMODEPROC glad_glMatrixMode; #define glMatrixMode glad_glMatrixMode typedef void (APIENTRYP PFNGLMULTMATRIXFPROC)(const GLfloat *m); GLAPI PFNGLMULTMATRIXFPROC glad_glMultMatrixf; #define glMultMatrixf glad_glMultMatrixf typedef void (APIENTRYP PFNGLMULTMATRIXDPROC)(const GLdouble *m); GLAPI PFNGLMULTMATRIXDPROC glad_glMultMatrixd; #define glMultMatrixd glad_glMultMatrixd typedef void (APIENTRYP PFNGLORTHOPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); GLAPI PFNGLORTHOPROC glad_glOrtho; #define glOrtho glad_glOrtho typedef void (APIENTRYP PFNGLPOPMATRIXPROC)(void); GLAPI PFNGLPOPMATRIXPROC glad_glPopMatrix; #define glPopMatrix glad_glPopMatrix typedef void (APIENTRYP PFNGLPUSHMATRIXPROC)(void); GLAPI PFNGLPUSHMATRIXPROC glad_glPushMatrix; #define glPushMatrix glad_glPushMatrix typedef void (APIENTRYP PFNGLROTATEDPROC)(GLdouble angle, GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLROTATEDPROC glad_glRotated; #define glRotated glad_glRotated typedef void (APIENTRYP PFNGLROTATEFPROC)(GLfloat angle, GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLROTATEFPROC glad_glRotatef; #define glRotatef glad_glRotatef typedef void (APIENTRYP PFNGLSCALEDPROC)(GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLSCALEDPROC glad_glScaled; #define glScaled glad_glScaled typedef void (APIENTRYP PFNGLSCALEFPROC)(GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLSCALEFPROC glad_glScalef; #define glScalef glad_glScalef typedef void (APIENTRYP PFNGLTRANSLATEDPROC)(GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLTRANSLATEDPROC glad_glTranslated; #define glTranslated glad_glTranslated typedef void (APIENTRYP PFNGLTRANSLATEFPROC)(GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLTRANSLATEFPROC glad_glTranslatef; #define glTranslatef glad_glTranslatef #endif #ifndef GL_VERSION_1_1 #define GL_VERSION_1_1 1 GLAPI int GLAD_GL_VERSION_1_1; typedef void (APIENTRYP PFNGLDRAWARRAYSPROC)(GLenum mode, GLint first, GLsizei count); GLAPI PFNGLDRAWARRAYSPROC glad_glDrawArrays; #define glDrawArrays glad_glDrawArrays typedef void (APIENTRYP PFNGLDRAWELEMENTSPROC)(GLenum mode, GLsizei count, GLenum type, const void *indices); GLAPI PFNGLDRAWELEMENTSPROC glad_glDrawElements; #define glDrawElements glad_glDrawElements typedef void (APIENTRYP PFNGLGETPOINTERVPROC)(GLenum pname, void **params); GLAPI PFNGLGETPOINTERVPROC glad_glGetPointerv; #define glGetPointerv glad_glGetPointerv typedef void (APIENTRYP PFNGLPOLYGONOFFSETPROC)(GLfloat factor, GLfloat units); GLAPI PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset; #define glPolygonOffset glad_glPolygonOffset typedef void (APIENTRYP PFNGLCOPYTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border); GLAPI PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D; #define glCopyTexImage1D glad_glCopyTexImage1D typedef void (APIENTRYP PFNGLCOPYTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border); GLAPI PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D; #define glCopyTexImage2D glad_glCopyTexImage2D typedef void (APIENTRYP PFNGLCOPYTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); GLAPI PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D; #define glCopyTexSubImage1D glad_glCopyTexSubImage1D typedef void (APIENTRYP PFNGLCOPYTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); GLAPI PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D; #define glCopyTexSubImage2D glad_glCopyTexSubImage2D typedef void (APIENTRYP PFNGLTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D; #define glTexSubImage1D glad_glTexSubImage1D typedef void (APIENTRYP PFNGLTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D; #define glTexSubImage2D glad_glTexSubImage2D typedef void (APIENTRYP PFNGLBINDTEXTUREPROC)(GLenum target, GLuint texture); GLAPI PFNGLBINDTEXTUREPROC glad_glBindTexture; #define glBindTexture glad_glBindTexture typedef void (APIENTRYP PFNGLDELETETEXTURESPROC)(GLsizei n, const GLuint *textures); GLAPI PFNGLDELETETEXTURESPROC glad_glDeleteTextures; #define glDeleteTextures glad_glDeleteTextures typedef void (APIENTRYP PFNGLGENTEXTURESPROC)(GLsizei n, GLuint *textures); GLAPI PFNGLGENTEXTURESPROC glad_glGenTextures; #define glGenTextures glad_glGenTextures typedef GLboolean (APIENTRYP PFNGLISTEXTUREPROC)(GLuint texture); GLAPI PFNGLISTEXTUREPROC glad_glIsTexture; #define glIsTexture glad_glIsTexture typedef void (APIENTRYP PFNGLARRAYELEMENTPROC)(GLint i); GLAPI PFNGLARRAYELEMENTPROC glad_glArrayElement; #define glArrayElement glad_glArrayElement typedef void (APIENTRYP PFNGLCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLCOLORPOINTERPROC glad_glColorPointer; #define glColorPointer glad_glColorPointer typedef void (APIENTRYP PFNGLDISABLECLIENTSTATEPROC)(GLenum array); GLAPI PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState; #define glDisableClientState glad_glDisableClientState typedef void (APIENTRYP PFNGLEDGEFLAGPOINTERPROC)(GLsizei stride, const void *pointer); GLAPI PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer; #define glEdgeFlagPointer glad_glEdgeFlagPointer typedef void (APIENTRYP PFNGLENABLECLIENTSTATEPROC)(GLenum array); GLAPI PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState; #define glEnableClientState glad_glEnableClientState typedef void (APIENTRYP PFNGLINDEXPOINTERPROC)(GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLINDEXPOINTERPROC glad_glIndexPointer; #define glIndexPointer glad_glIndexPointer typedef void (APIENTRYP PFNGLINTERLEAVEDARRAYSPROC)(GLenum format, GLsizei stride, const void *pointer); GLAPI PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays; #define glInterleavedArrays glad_glInterleavedArrays typedef void (APIENTRYP PFNGLNORMALPOINTERPROC)(GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLNORMALPOINTERPROC glad_glNormalPointer; #define glNormalPointer glad_glNormalPointer typedef void (APIENTRYP PFNGLTEXCOORDPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer; #define glTexCoordPointer glad_glTexCoordPointer typedef void (APIENTRYP PFNGLVERTEXPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLVERTEXPOINTERPROC glad_glVertexPointer; #define glVertexPointer glad_glVertexPointer typedef GLboolean (APIENTRYP PFNGLARETEXTURESRESIDENTPROC)(GLsizei n, const GLuint *textures, GLboolean *residences); GLAPI PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident; #define glAreTexturesResident glad_glAreTexturesResident typedef void (APIENTRYP PFNGLPRIORITIZETEXTURESPROC)(GLsizei n, const GLuint *textures, const GLfloat *priorities); GLAPI PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures; #define glPrioritizeTextures glad_glPrioritizeTextures typedef void (APIENTRYP PFNGLINDEXUBPROC)(GLubyte c); GLAPI PFNGLINDEXUBPROC glad_glIndexub; #define glIndexub glad_glIndexub typedef void (APIENTRYP PFNGLINDEXUBVPROC)(const GLubyte *c); GLAPI PFNGLINDEXUBVPROC glad_glIndexubv; #define glIndexubv glad_glIndexubv typedef void (APIENTRYP PFNGLPOPCLIENTATTRIBPROC)(void); GLAPI PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib; #define glPopClientAttrib glad_glPopClientAttrib typedef void (APIENTRYP PFNGLPUSHCLIENTATTRIBPROC)(GLbitfield mask); GLAPI PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib; #define glPushClientAttrib glad_glPushClientAttrib #endif #ifndef GL_VERSION_1_2 #define GL_VERSION_1_2 1 GLAPI int GLAD_GL_VERSION_1_2; typedef void (APIENTRYP PFNGLDRAWRANGEELEMENTSPROC)(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void *indices); GLAPI PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements; #define glDrawRangeElements glad_glDrawRangeElements typedef void (APIENTRYP PFNGLTEXIMAGE3DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXIMAGE3DPROC glad_glTexImage3D; #define glTexImage3D glad_glTexImage3D typedef void (APIENTRYP PFNGLTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void *pixels); GLAPI PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D; #define glTexSubImage3D glad_glTexSubImage3D typedef void (APIENTRYP PFNGLCOPYTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); GLAPI PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D; #define glCopyTexSubImage3D glad_glCopyTexSubImage3D #endif #ifndef GL_VERSION_1_3 #define GL_VERSION_1_3 1 GLAPI int GLAD_GL_VERSION_1_3; typedef void (APIENTRYP PFNGLACTIVETEXTUREPROC)(GLenum texture); GLAPI PFNGLACTIVETEXTUREPROC glad_glActiveTexture; #define glActiveTexture glad_glActiveTexture typedef void (APIENTRYP PFNGLSAMPLECOVERAGEPROC)(GLfloat value, GLboolean invert); GLAPI PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage; #define glSampleCoverage glad_glSampleCoverage typedef void (APIENTRYP PFNGLCOMPRESSEDTEXIMAGE3DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D; #define glCompressedTexImage3D glad_glCompressedTexImage3D typedef void (APIENTRYP PFNGLCOMPRESSEDTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D; #define glCompressedTexImage2D glad_glCompressedTexImage2D typedef void (APIENTRYP PFNGLCOMPRESSEDTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLint border, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D; #define glCompressedTexImage1D glad_glCompressedTexImage1D typedef void (APIENTRYP PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D; #define glCompressedTexSubImage3D glad_glCompressedTexSubImage3D typedef void (APIENTRYP PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D; #define glCompressedTexSubImage2D glad_glCompressedTexSubImage2D typedef void (APIENTRYP PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void *data); GLAPI PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D; #define glCompressedTexSubImage1D glad_glCompressedTexSubImage1D typedef void (APIENTRYP PFNGLGETCOMPRESSEDTEXIMAGEPROC)(GLenum target, GLint level, void *img); GLAPI PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage; #define glGetCompressedTexImage glad_glGetCompressedTexImage typedef void (APIENTRYP PFNGLCLIENTACTIVETEXTUREPROC)(GLenum texture); GLAPI PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture; #define glClientActiveTexture glad_glClientActiveTexture typedef void (APIENTRYP PFNGLMULTITEXCOORD1DPROC)(GLenum target, GLdouble s); GLAPI PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d; #define glMultiTexCoord1d glad_glMultiTexCoord1d typedef void (APIENTRYP PFNGLMULTITEXCOORD1DVPROC)(GLenum target, const GLdouble *v); GLAPI PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv; #define glMultiTexCoord1dv glad_glMultiTexCoord1dv typedef void (APIENTRYP PFNGLMULTITEXCOORD1FPROC)(GLenum target, GLfloat s); GLAPI PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f; #define glMultiTexCoord1f glad_glMultiTexCoord1f typedef void (APIENTRYP PFNGLMULTITEXCOORD1FVPROC)(GLenum target, const GLfloat *v); GLAPI PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv; #define glMultiTexCoord1fv glad_glMultiTexCoord1fv typedef void (APIENTRYP PFNGLMULTITEXCOORD1IPROC)(GLenum target, GLint s); GLAPI PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i; #define glMultiTexCoord1i glad_glMultiTexCoord1i typedef void (APIENTRYP PFNGLMULTITEXCOORD1IVPROC)(GLenum target, const GLint *v); GLAPI PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv; #define glMultiTexCoord1iv glad_glMultiTexCoord1iv typedef void (APIENTRYP PFNGLMULTITEXCOORD1SPROC)(GLenum target, GLshort s); GLAPI PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s; #define glMultiTexCoord1s glad_glMultiTexCoord1s typedef void (APIENTRYP PFNGLMULTITEXCOORD1SVPROC)(GLenum target, const GLshort *v); GLAPI PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv; #define glMultiTexCoord1sv glad_glMultiTexCoord1sv typedef void (APIENTRYP PFNGLMULTITEXCOORD2DPROC)(GLenum target, GLdouble s, GLdouble t); GLAPI PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d; #define glMultiTexCoord2d glad_glMultiTexCoord2d typedef void (APIENTRYP PFNGLMULTITEXCOORD2DVPROC)(GLenum target, const GLdouble *v); GLAPI PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv; #define glMultiTexCoord2dv glad_glMultiTexCoord2dv typedef void (APIENTRYP PFNGLMULTITEXCOORD2FPROC)(GLenum target, GLfloat s, GLfloat t); GLAPI PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f; #define glMultiTexCoord2f glad_glMultiTexCoord2f typedef void (APIENTRYP PFNGLMULTITEXCOORD2FVPROC)(GLenum target, const GLfloat *v); GLAPI PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv; #define glMultiTexCoord2fv glad_glMultiTexCoord2fv typedef void (APIENTRYP PFNGLMULTITEXCOORD2IPROC)(GLenum target, GLint s, GLint t); GLAPI PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i; #define glMultiTexCoord2i glad_glMultiTexCoord2i typedef void (APIENTRYP PFNGLMULTITEXCOORD2IVPROC)(GLenum target, const GLint *v); GLAPI PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv; #define glMultiTexCoord2iv glad_glMultiTexCoord2iv typedef void (APIENTRYP PFNGLMULTITEXCOORD2SPROC)(GLenum target, GLshort s, GLshort t); GLAPI PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s; #define glMultiTexCoord2s glad_glMultiTexCoord2s typedef void (APIENTRYP PFNGLMULTITEXCOORD2SVPROC)(GLenum target, const GLshort *v); GLAPI PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv; #define glMultiTexCoord2sv glad_glMultiTexCoord2sv typedef void (APIENTRYP PFNGLMULTITEXCOORD3DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r); GLAPI PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d; #define glMultiTexCoord3d glad_glMultiTexCoord3d typedef void (APIENTRYP PFNGLMULTITEXCOORD3DVPROC)(GLenum target, const GLdouble *v); GLAPI PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv; #define glMultiTexCoord3dv glad_glMultiTexCoord3dv typedef void (APIENTRYP PFNGLMULTITEXCOORD3FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r); GLAPI PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f; #define glMultiTexCoord3f glad_glMultiTexCoord3f typedef void (APIENTRYP PFNGLMULTITEXCOORD3FVPROC)(GLenum target, const GLfloat *v); GLAPI PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv; #define glMultiTexCoord3fv glad_glMultiTexCoord3fv typedef void (APIENTRYP PFNGLMULTITEXCOORD3IPROC)(GLenum target, GLint s, GLint t, GLint r); GLAPI PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i; #define glMultiTexCoord3i glad_glMultiTexCoord3i typedef void (APIENTRYP PFNGLMULTITEXCOORD3IVPROC)(GLenum target, const GLint *v); GLAPI PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv; #define glMultiTexCoord3iv glad_glMultiTexCoord3iv typedef void (APIENTRYP PFNGLMULTITEXCOORD3SPROC)(GLenum target, GLshort s, GLshort t, GLshort r); GLAPI PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s; #define glMultiTexCoord3s glad_glMultiTexCoord3s typedef void (APIENTRYP PFNGLMULTITEXCOORD3SVPROC)(GLenum target, const GLshort *v); GLAPI PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv; #define glMultiTexCoord3sv glad_glMultiTexCoord3sv typedef void (APIENTRYP PFNGLMULTITEXCOORD4DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r, GLdouble q); GLAPI PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d; #define glMultiTexCoord4d glad_glMultiTexCoord4d typedef void (APIENTRYP PFNGLMULTITEXCOORD4DVPROC)(GLenum target, const GLdouble *v); GLAPI PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv; #define glMultiTexCoord4dv glad_glMultiTexCoord4dv typedef void (APIENTRYP PFNGLMULTITEXCOORD4FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q); GLAPI PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f; #define glMultiTexCoord4f glad_glMultiTexCoord4f typedef void (APIENTRYP PFNGLMULTITEXCOORD4FVPROC)(GLenum target, const GLfloat *v); GLAPI PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv; #define glMultiTexCoord4fv glad_glMultiTexCoord4fv typedef void (APIENTRYP PFNGLMULTITEXCOORD4IPROC)(GLenum target, GLint s, GLint t, GLint r, GLint q); GLAPI PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i; #define glMultiTexCoord4i glad_glMultiTexCoord4i typedef void (APIENTRYP PFNGLMULTITEXCOORD4IVPROC)(GLenum target, const GLint *v); GLAPI PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv; #define glMultiTexCoord4iv glad_glMultiTexCoord4iv typedef void (APIENTRYP PFNGLMULTITEXCOORD4SPROC)(GLenum target, GLshort s, GLshort t, GLshort r, GLshort q); GLAPI PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s; #define glMultiTexCoord4s glad_glMultiTexCoord4s typedef void (APIENTRYP PFNGLMULTITEXCOORD4SVPROC)(GLenum target, const GLshort *v); GLAPI PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv; #define glMultiTexCoord4sv glad_glMultiTexCoord4sv typedef void (APIENTRYP PFNGLLOADTRANSPOSEMATRIXFPROC)(const GLfloat *m); GLAPI PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf; #define glLoadTransposeMatrixf glad_glLoadTransposeMatrixf typedef void (APIENTRYP PFNGLLOADTRANSPOSEMATRIXDPROC)(const GLdouble *m); GLAPI PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd; #define glLoadTransposeMatrixd glad_glLoadTransposeMatrixd typedef void (APIENTRYP PFNGLMULTTRANSPOSEMATRIXFPROC)(const GLfloat *m); GLAPI PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf; #define glMultTransposeMatrixf glad_glMultTransposeMatrixf typedef void (APIENTRYP PFNGLMULTTRANSPOSEMATRIXDPROC)(const GLdouble *m); GLAPI PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd; #define glMultTransposeMatrixd glad_glMultTransposeMatrixd #endif #ifndef GL_VERSION_1_4 #define GL_VERSION_1_4 1 GLAPI int GLAD_GL_VERSION_1_4; typedef void (APIENTRYP PFNGLBLENDFUNCSEPARATEPROC)(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorAlpha, GLenum dfactorAlpha); GLAPI PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate; #define glBlendFuncSeparate glad_glBlendFuncSeparate typedef void (APIENTRYP PFNGLMULTIDRAWARRAYSPROC)(GLenum mode, const GLint *first, const GLsizei *count, GLsizei drawcount); GLAPI PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays; #define glMultiDrawArrays glad_glMultiDrawArrays typedef void (APIENTRYP PFNGLMULTIDRAWELEMENTSPROC)(GLenum mode, const GLsizei *count, GLenum type, const void *const*indices, GLsizei drawcount); GLAPI PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements; #define glMultiDrawElements glad_glMultiDrawElements typedef void (APIENTRYP PFNGLPOINTPARAMETERFPROC)(GLenum pname, GLfloat param); GLAPI PFNGLPOINTPARAMETERFPROC glad_glPointParameterf; #define glPointParameterf glad_glPointParameterf typedef void (APIENTRYP PFNGLPOINTPARAMETERFVPROC)(GLenum pname, const GLfloat *params); GLAPI PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv; #define glPointParameterfv glad_glPointParameterfv typedef void (APIENTRYP PFNGLPOINTPARAMETERIPROC)(GLenum pname, GLint param); GLAPI PFNGLPOINTPARAMETERIPROC glad_glPointParameteri; #define glPointParameteri glad_glPointParameteri typedef void (APIENTRYP PFNGLPOINTPARAMETERIVPROC)(GLenum pname, const GLint *params); GLAPI PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv; #define glPointParameteriv glad_glPointParameteriv typedef void (APIENTRYP PFNGLFOGCOORDFPROC)(GLfloat coord); GLAPI PFNGLFOGCOORDFPROC glad_glFogCoordf; #define glFogCoordf glad_glFogCoordf typedef void (APIENTRYP PFNGLFOGCOORDFVPROC)(const GLfloat *coord); GLAPI PFNGLFOGCOORDFVPROC glad_glFogCoordfv; #define glFogCoordfv glad_glFogCoordfv typedef void (APIENTRYP PFNGLFOGCOORDDPROC)(GLdouble coord); GLAPI PFNGLFOGCOORDDPROC glad_glFogCoordd; #define glFogCoordd glad_glFogCoordd typedef void (APIENTRYP PFNGLFOGCOORDDVPROC)(const GLdouble *coord); GLAPI PFNGLFOGCOORDDVPROC glad_glFogCoorddv; #define glFogCoorddv glad_glFogCoorddv typedef void (APIENTRYP PFNGLFOGCOORDPOINTERPROC)(GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer; #define glFogCoordPointer glad_glFogCoordPointer typedef void (APIENTRYP PFNGLSECONDARYCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); GLAPI PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b; #define glSecondaryColor3b glad_glSecondaryColor3b typedef void (APIENTRYP PFNGLSECONDARYCOLOR3BVPROC)(const GLbyte *v); GLAPI PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv; #define glSecondaryColor3bv glad_glSecondaryColor3bv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); GLAPI PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d; #define glSecondaryColor3d glad_glSecondaryColor3d typedef void (APIENTRYP PFNGLSECONDARYCOLOR3DVPROC)(const GLdouble *v); GLAPI PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv; #define glSecondaryColor3dv glad_glSecondaryColor3dv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); GLAPI PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f; #define glSecondaryColor3f glad_glSecondaryColor3f typedef void (APIENTRYP PFNGLSECONDARYCOLOR3FVPROC)(const GLfloat *v); GLAPI PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv; #define glSecondaryColor3fv glad_glSecondaryColor3fv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3IPROC)(GLint red, GLint green, GLint blue); GLAPI PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i; #define glSecondaryColor3i glad_glSecondaryColor3i typedef void (APIENTRYP PFNGLSECONDARYCOLOR3IVPROC)(const GLint *v); GLAPI PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv; #define glSecondaryColor3iv glad_glSecondaryColor3iv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); GLAPI PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s; #define glSecondaryColor3s glad_glSecondaryColor3s typedef void (APIENTRYP PFNGLSECONDARYCOLOR3SVPROC)(const GLshort *v); GLAPI PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv; #define glSecondaryColor3sv glad_glSecondaryColor3sv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); GLAPI PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub; #define glSecondaryColor3ub glad_glSecondaryColor3ub typedef void (APIENTRYP PFNGLSECONDARYCOLOR3UBVPROC)(const GLubyte *v); GLAPI PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv; #define glSecondaryColor3ubv glad_glSecondaryColor3ubv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); GLAPI PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui; #define glSecondaryColor3ui glad_glSecondaryColor3ui typedef void (APIENTRYP PFNGLSECONDARYCOLOR3UIVPROC)(const GLuint *v); GLAPI PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv; #define glSecondaryColor3uiv glad_glSecondaryColor3uiv typedef void (APIENTRYP PFNGLSECONDARYCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); GLAPI PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us; #define glSecondaryColor3us glad_glSecondaryColor3us typedef void (APIENTRYP PFNGLSECONDARYCOLOR3USVPROC)(const GLushort *v); GLAPI PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv; #define glSecondaryColor3usv glad_glSecondaryColor3usv typedef void (APIENTRYP PFNGLSECONDARYCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void *pointer); GLAPI PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer; #define glSecondaryColorPointer glad_glSecondaryColorPointer typedef void (APIENTRYP PFNGLWINDOWPOS2DPROC)(GLdouble x, GLdouble y); GLAPI PFNGLWINDOWPOS2DPROC glad_glWindowPos2d; #define glWindowPos2d glad_glWindowPos2d typedef void (APIENTRYP PFNGLWINDOWPOS2DVPROC)(const GLdouble *v); GLAPI PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv; #define glWindowPos2dv glad_glWindowPos2dv typedef void (APIENTRYP PFNGLWINDOWPOS2FPROC)(GLfloat x, GLfloat y); GLAPI PFNGLWINDOWPOS2FPROC glad_glWindowPos2f; #define glWindowPos2f glad_glWindowPos2f typedef void (APIENTRYP PFNGLWINDOWPOS2FVPROC)(const GLfloat *v); GLAPI PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv; #define glWindowPos2fv glad_glWindowPos2fv typedef void (APIENTRYP PFNGLWINDOWPOS2IPROC)(GLint x, GLint y); GLAPI PFNGLWINDOWPOS2IPROC glad_glWindowPos2i; #define glWindowPos2i glad_glWindowPos2i typedef void (APIENTRYP PFNGLWINDOWPOS2IVPROC)(const GLint *v); GLAPI PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv; #define glWindowPos2iv glad_glWindowPos2iv typedef void (APIENTRYP PFNGLWINDOWPOS2SPROC)(GLshort x, GLshort y); GLAPI PFNGLWINDOWPOS2SPROC glad_glWindowPos2s; #define glWindowPos2s glad_glWindowPos2s typedef void (APIENTRYP PFNGLWINDOWPOS2SVPROC)(const GLshort *v); GLAPI PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv; #define glWindowPos2sv glad_glWindowPos2sv typedef void (APIENTRYP PFNGLWINDOWPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLWINDOWPOS3DPROC glad_glWindowPos3d; #define glWindowPos3d glad_glWindowPos3d typedef void (APIENTRYP PFNGLWINDOWPOS3DVPROC)(const GLdouble *v); GLAPI PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv; #define glWindowPos3dv glad_glWindowPos3dv typedef void (APIENTRYP PFNGLWINDOWPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLWINDOWPOS3FPROC glad_glWindowPos3f; #define glWindowPos3f glad_glWindowPos3f typedef void (APIENTRYP PFNGLWINDOWPOS3FVPROC)(const GLfloat *v); GLAPI PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv; #define glWindowPos3fv glad_glWindowPos3fv typedef void (APIENTRYP PFNGLWINDOWPOS3IPROC)(GLint x, GLint y, GLint z); GLAPI PFNGLWINDOWPOS3IPROC glad_glWindowPos3i; #define glWindowPos3i glad_glWindowPos3i typedef void (APIENTRYP PFNGLWINDOWPOS3IVPROC)(const GLint *v); GLAPI PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv; #define glWindowPos3iv glad_glWindowPos3iv typedef void (APIENTRYP PFNGLWINDOWPOS3SPROC)(GLshort x, GLshort y, GLshort z); GLAPI PFNGLWINDOWPOS3SPROC glad_glWindowPos3s; #define glWindowPos3s glad_glWindowPos3s typedef void (APIENTRYP PFNGLWINDOWPOS3SVPROC)(const GLshort *v); GLAPI PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv; #define glWindowPos3sv glad_glWindowPos3sv typedef void (APIENTRYP PFNGLBLENDCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); GLAPI PFNGLBLENDCOLORPROC glad_glBlendColor; #define glBlendColor glad_glBlendColor typedef void (APIENTRYP PFNGLBLENDEQUATIONPROC)(GLenum mode); GLAPI PFNGLBLENDEQUATIONPROC glad_glBlendEquation; #define glBlendEquation glad_glBlendEquation #endif #ifndef GL_VERSION_1_5 #define GL_VERSION_1_5 1 GLAPI int GLAD_GL_VERSION_1_5; typedef void (APIENTRYP PFNGLGENQUERIESPROC)(GLsizei n, GLuint *ids); GLAPI PFNGLGENQUERIESPROC glad_glGenQueries; #define glGenQueries glad_glGenQueries typedef void (APIENTRYP PFNGLDELETEQUERIESPROC)(GLsizei n, const GLuint *ids); GLAPI PFNGLDELETEQUERIESPROC glad_glDeleteQueries; #define glDeleteQueries glad_glDeleteQueries typedef GLboolean (APIENTRYP PFNGLISQUERYPROC)(GLuint id); GLAPI PFNGLISQUERYPROC glad_glIsQuery; #define glIsQuery glad_glIsQuery typedef void (APIENTRYP PFNGLBEGINQUERYPROC)(GLenum target, GLuint id); GLAPI PFNGLBEGINQUERYPROC glad_glBeginQuery; #define glBeginQuery glad_glBeginQuery typedef void (APIENTRYP PFNGLENDQUERYPROC)(GLenum target); GLAPI PFNGLENDQUERYPROC glad_glEndQuery; #define glEndQuery glad_glEndQuery typedef void (APIENTRYP PFNGLGETQUERYIVPROC)(GLenum target, GLenum pname, GLint *params); GLAPI PFNGLGETQUERYIVPROC glad_glGetQueryiv; #define glGetQueryiv glad_glGetQueryiv typedef void (APIENTRYP PFNGLGETQUERYOBJECTIVPROC)(GLuint id, GLenum pname, GLint *params); GLAPI PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv; #define glGetQueryObjectiv glad_glGetQueryObjectiv typedef void (APIENTRYP PFNGLGETQUERYOBJECTUIVPROC)(GLuint id, GLenum pname, GLuint *params); GLAPI PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv; #define glGetQueryObjectuiv glad_glGetQueryObjectuiv typedef void (APIENTRYP PFNGLBINDBUFFERPROC)(GLenum target, GLuint buffer); GLAPI PFNGLBINDBUFFERPROC glad_glBindBuffer; #define glBindBuffer glad_glBindBuffer typedef void (APIENTRYP PFNGLDELETEBUFFERSPROC)(GLsizei n, const GLuint *buffers); GLAPI PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers; #define glDeleteBuffers glad_glDeleteBuffers typedef void (APIENTRYP PFNGLGENBUFFERSPROC)(GLsizei n, GLuint *buffers); GLAPI PFNGLGENBUFFERSPROC glad_glGenBuffers; #define glGenBuffers glad_glGenBuffers typedef GLboolean (APIENTRYP PFNGLISBUFFERPROC)(GLuint buffer); GLAPI PFNGLISBUFFERPROC glad_glIsBuffer; #define glIsBuffer glad_glIsBuffer typedef void (APIENTRYP PFNGLBUFFERDATAPROC)(GLenum target, GLsizeiptr size, const void *data, GLenum usage); GLAPI PFNGLBUFFERDATAPROC glad_glBufferData; #define glBufferData glad_glBufferData typedef void (APIENTRYP PFNGLBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, const void *data); GLAPI PFNGLBUFFERSUBDATAPROC glad_glBufferSubData; #define glBufferSubData glad_glBufferSubData typedef void (APIENTRYP PFNGLGETBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, void *data); GLAPI PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData; #define glGetBufferSubData glad_glGetBufferSubData typedef void * (APIENTRYP PFNGLMAPBUFFERPROC)(GLenum target, GLenum access); GLAPI PFNGLMAPBUFFERPROC glad_glMapBuffer; #define glMapBuffer glad_glMapBuffer typedef GLboolean (APIENTRYP PFNGLUNMAPBUFFERPROC)(GLenum target); GLAPI PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer; #define glUnmapBuffer glad_glUnmapBuffer typedef void (APIENTRYP PFNGLGETBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint *params); GLAPI PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv; #define glGetBufferParameteriv glad_glGetBufferParameteriv typedef void (APIENTRYP PFNGLGETBUFFERPOINTERVPROC)(GLenum target, GLenum pname, void **params); GLAPI PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv; #define glGetBufferPointerv glad_glGetBufferPointerv #endif #ifndef GL_VERSION_2_0 #define GL_VERSION_2_0 1 GLAPI int GLAD_GL_VERSION_2_0; typedef void (APIENTRYP PFNGLBLENDEQUATIONSEPARATEPROC)(GLenum modeRGB, GLenum modeAlpha); GLAPI PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate; #define glBlendEquationSeparate glad_glBlendEquationSeparate typedef void (APIENTRYP PFNGLDRAWBUFFERSPROC)(GLsizei n, const GLenum *bufs); GLAPI PFNGLDRAWBUFFERSPROC glad_glDrawBuffers; #define glDrawBuffers glad_glDrawBuffers typedef void (APIENTRYP PFNGLSTENCILOPSEPARATEPROC)(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass); GLAPI PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate; #define glStencilOpSeparate glad_glStencilOpSeparate typedef void (APIENTRYP PFNGLSTENCILFUNCSEPARATEPROC)(GLenum face, GLenum func, GLint ref, GLuint mask); GLAPI PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate; #define glStencilFuncSeparate glad_glStencilFuncSeparate typedef void (APIENTRYP PFNGLSTENCILMASKSEPARATEPROC)(GLenum face, GLuint mask); GLAPI PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate; #define glStencilMaskSeparate glad_glStencilMaskSeparate typedef void (APIENTRYP PFNGLATTACHSHADERPROC)(GLuint program, GLuint shader); GLAPI PFNGLATTACHSHADERPROC glad_glAttachShader; #define glAttachShader glad_glAttachShader typedef void (APIENTRYP PFNGLBINDATTRIBLOCATIONPROC)(GLuint program, GLuint index, const GLchar *name); GLAPI PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation; #define glBindAttribLocation glad_glBindAttribLocation typedef void (APIENTRYP PFNGLCOMPILESHADERPROC)(GLuint shader); GLAPI PFNGLCOMPILESHADERPROC glad_glCompileShader; #define glCompileShader glad_glCompileShader typedef GLuint (APIENTRYP PFNGLCREATEPROGRAMPROC)(void); GLAPI PFNGLCREATEPROGRAMPROC glad_glCreateProgram; #define glCreateProgram glad_glCreateProgram typedef GLuint (APIENTRYP PFNGLCREATESHADERPROC)(GLenum type); GLAPI PFNGLCREATESHADERPROC glad_glCreateShader; #define glCreateShader glad_glCreateShader typedef void (APIENTRYP PFNGLDELETEPROGRAMPROC)(GLuint program); GLAPI PFNGLDELETEPROGRAMPROC glad_glDeleteProgram; #define glDeleteProgram glad_glDeleteProgram typedef void (APIENTRYP PFNGLDELETESHADERPROC)(GLuint shader); GLAPI PFNGLDELETESHADERPROC glad_glDeleteShader; #define glDeleteShader glad_glDeleteShader typedef void (APIENTRYP PFNGLDETACHSHADERPROC)(GLuint program, GLuint shader); GLAPI PFNGLDETACHSHADERPROC glad_glDetachShader; #define glDetachShader glad_glDetachShader typedef void (APIENTRYP PFNGLDISABLEVERTEXATTRIBARRAYPROC)(GLuint index); GLAPI PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray; #define glDisableVertexAttribArray glad_glDisableVertexAttribArray typedef void (APIENTRYP PFNGLENABLEVERTEXATTRIBARRAYPROC)(GLuint index); GLAPI PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray; #define glEnableVertexAttribArray glad_glEnableVertexAttribArray typedef void (APIENTRYP PFNGLGETACTIVEATTRIBPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei *length, GLint *size, GLenum *type, GLchar *name); GLAPI PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib; #define glGetActiveAttrib glad_glGetActiveAttrib typedef void (APIENTRYP PFNGLGETACTIVEUNIFORMPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei *length, GLint *size, GLenum *type, GLchar *name); GLAPI PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform; #define glGetActiveUniform glad_glGetActiveUniform typedef void (APIENTRYP PFNGLGETATTACHEDSHADERSPROC)(GLuint program, GLsizei maxCount, GLsizei *count, GLuint *shaders); GLAPI PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders; #define glGetAttachedShaders glad_glGetAttachedShaders typedef GLint (APIENTRYP PFNGLGETATTRIBLOCATIONPROC)(GLuint program, const GLchar *name); GLAPI PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation; #define glGetAttribLocation glad_glGetAttribLocation typedef void (APIENTRYP PFNGLGETPROGRAMIVPROC)(GLuint program, GLenum pname, GLint *params); GLAPI PFNGLGETPROGRAMIVPROC glad_glGetProgramiv; #define glGetProgramiv glad_glGetProgramiv typedef void (APIENTRYP PFNGLGETPROGRAMINFOLOGPROC)(GLuint program, GLsizei bufSize, GLsizei *length, GLchar *infoLog); GLAPI PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog; #define glGetProgramInfoLog glad_glGetProgramInfoLog typedef void (APIENTRYP PFNGLGETSHADERIVPROC)(GLuint shader, GLenum pname, GLint *params); GLAPI PFNGLGETSHADERIVPROC glad_glGetShaderiv; #define glGetShaderiv glad_glGetShaderiv typedef void (APIENTRYP PFNGLGETSHADERINFOLOGPROC)(GLuint shader, GLsizei bufSize, GLsizei *length, GLchar *infoLog); GLAPI PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog; #define glGetShaderInfoLog glad_glGetShaderInfoLog typedef void (APIENTRYP PFNGLGETSHADERSOURCEPROC)(GLuint shader, GLsizei bufSize, GLsizei *length, GLchar *source); GLAPI PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource; #define glGetShaderSource glad_glGetShaderSource typedef GLint (APIENTRYP PFNGLGETUNIFORMLOCATIONPROC)(GLuint program, const GLchar *name); GLAPI PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation; #define glGetUniformLocation glad_glGetUniformLocation typedef void (APIENTRYP PFNGLGETUNIFORMFVPROC)(GLuint program, GLint location, GLfloat *params); GLAPI PFNGLGETUNIFORMFVPROC glad_glGetUniformfv; #define glGetUniformfv glad_glGetUniformfv typedef void (APIENTRYP PFNGLGETUNIFORMIVPROC)(GLuint program, GLint location, GLint *params); GLAPI PFNGLGETUNIFORMIVPROC glad_glGetUniformiv; #define glGetUniformiv glad_glGetUniformiv typedef void (APIENTRYP PFNGLGETVERTEXATTRIBDVPROC)(GLuint index, GLenum pname, GLdouble *params); GLAPI PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv; #define glGetVertexAttribdv glad_glGetVertexAttribdv typedef void (APIENTRYP PFNGLGETVERTEXATTRIBFVPROC)(GLuint index, GLenum pname, GLfloat *params); GLAPI PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv; #define glGetVertexAttribfv glad_glGetVertexAttribfv typedef void (APIENTRYP PFNGLGETVERTEXATTRIBIVPROC)(GLuint index, GLenum pname, GLint *params); GLAPI PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv; #define glGetVertexAttribiv glad_glGetVertexAttribiv typedef void (APIENTRYP PFNGLGETVERTEXATTRIBPOINTERVPROC)(GLuint index, GLenum pname, void **pointer); GLAPI PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv; #define glGetVertexAttribPointerv glad_glGetVertexAttribPointerv typedef GLboolean (APIENTRYP PFNGLISPROGRAMPROC)(GLuint program); GLAPI PFNGLISPROGRAMPROC glad_glIsProgram; #define glIsProgram glad_glIsProgram typedef GLboolean (APIENTRYP PFNGLISSHADERPROC)(GLuint shader); GLAPI PFNGLISSHADERPROC glad_glIsShader; #define glIsShader glad_glIsShader typedef void (APIENTRYP PFNGLLINKPROGRAMPROC)(GLuint program); GLAPI PFNGLLINKPROGRAMPROC glad_glLinkProgram; #define glLinkProgram glad_glLinkProgram typedef void (APIENTRYP PFNGLSHADERSOURCEPROC)(GLuint shader, GLsizei count, const GLchar *const*string, const GLint *length); GLAPI PFNGLSHADERSOURCEPROC glad_glShaderSource; #define glShaderSource glad_glShaderSource typedef void (APIENTRYP PFNGLUSEPROGRAMPROC)(GLuint program); GLAPI PFNGLUSEPROGRAMPROC glad_glUseProgram; #define glUseProgram glad_glUseProgram typedef void (APIENTRYP PFNGLUNIFORM1FPROC)(GLint location, GLfloat v0); GLAPI PFNGLUNIFORM1FPROC glad_glUniform1f; #define glUniform1f glad_glUniform1f typedef void (APIENTRYP PFNGLUNIFORM2FPROC)(GLint location, GLfloat v0, GLfloat v1); GLAPI PFNGLUNIFORM2FPROC glad_glUniform2f; #define glUniform2f glad_glUniform2f typedef void (APIENTRYP PFNGLUNIFORM3FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2); GLAPI PFNGLUNIFORM3FPROC glad_glUniform3f; #define glUniform3f glad_glUniform3f typedef void (APIENTRYP PFNGLUNIFORM4FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); GLAPI PFNGLUNIFORM4FPROC glad_glUniform4f; #define glUniform4f glad_glUniform4f typedef void (APIENTRYP PFNGLUNIFORM1IPROC)(GLint location, GLint v0); GLAPI PFNGLUNIFORM1IPROC glad_glUniform1i; #define glUniform1i glad_glUniform1i typedef void (APIENTRYP PFNGLUNIFORM2IPROC)(GLint location, GLint v0, GLint v1); GLAPI PFNGLUNIFORM2IPROC glad_glUniform2i; #define glUniform2i glad_glUniform2i typedef void (APIENTRYP PFNGLUNIFORM3IPROC)(GLint location, GLint v0, GLint v1, GLint v2); GLAPI PFNGLUNIFORM3IPROC glad_glUniform3i; #define glUniform3i glad_glUniform3i typedef void (APIENTRYP PFNGLUNIFORM4IPROC)(GLint location, GLint v0, GLint v1, GLint v2, GLint v3); GLAPI PFNGLUNIFORM4IPROC glad_glUniform4i; #define glUniform4i glad_glUniform4i typedef void (APIENTRYP PFNGLUNIFORM1FVPROC)(GLint location, GLsizei count, const GLfloat *value); GLAPI PFNGLUNIFORM1FVPROC glad_glUniform1fv; #define glUniform1fv glad_glUniform1fv typedef void (APIENTRYP PFNGLUNIFORM2FVPROC)(GLint location, GLsizei count, const GLfloat *value); GLAPI PFNGLUNIFORM2FVPROC glad_glUniform2fv; #define glUniform2fv glad_glUniform2fv typedef void (APIENTRYP PFNGLUNIFORM3FVPROC)(GLint location, GLsizei count, const GLfloat *value); GLAPI PFNGLUNIFORM3FVPROC glad_glUniform3fv; #define glUniform3fv glad_glUniform3fv typedef void (APIENTRYP PFNGLUNIFORM4FVPROC)(GLint location, GLsizei count, const GLfloat *value); GLAPI PFNGLUNIFORM4FVPROC glad_glUniform4fv; #define glUniform4fv glad_glUniform4fv typedef void (APIENTRYP PFNGLUNIFORM1IVPROC)(GLint location, GLsizei count, const GLint *value); GLAPI PFNGLUNIFORM1IVPROC glad_glUniform1iv; #define glUniform1iv glad_glUniform1iv typedef void (APIENTRYP PFNGLUNIFORM2IVPROC)(GLint location, GLsizei count, const GLint *value); GLAPI PFNGLUNIFORM2IVPROC glad_glUniform2iv; #define glUniform2iv glad_glUniform2iv typedef void (APIENTRYP PFNGLUNIFORM3IVPROC)(GLint location, GLsizei count, const GLint *value); GLAPI PFNGLUNIFORM3IVPROC glad_glUniform3iv; #define glUniform3iv glad_glUniform3iv typedef void (APIENTRYP PFNGLUNIFORM4IVPROC)(GLint location, GLsizei count, const GLint *value); GLAPI PFNGLUNIFORM4IVPROC glad_glUniform4iv; #define glUniform4iv glad_glUniform4iv typedef void (APIENTRYP PFNGLUNIFORMMATRIX2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv; #define glUniformMatrix2fv glad_glUniformMatrix2fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv; #define glUniformMatrix3fv glad_glUniformMatrix3fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv; #define glUniformMatrix4fv glad_glUniformMatrix4fv typedef void (APIENTRYP PFNGLVALIDATEPROGRAMPROC)(GLuint program); GLAPI PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram; #define glValidateProgram glad_glValidateProgram typedef void (APIENTRYP PFNGLVERTEXATTRIB1DPROC)(GLuint index, GLdouble x); GLAPI PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d; #define glVertexAttrib1d glad_glVertexAttrib1d typedef void (APIENTRYP PFNGLVERTEXATTRIB1DVPROC)(GLuint index, const GLdouble *v); GLAPI PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv; #define glVertexAttrib1dv glad_glVertexAttrib1dv typedef void (APIENTRYP PFNGLVERTEXATTRIB1FPROC)(GLuint index, GLfloat x); GLAPI PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f; #define glVertexAttrib1f glad_glVertexAttrib1f typedef void (APIENTRYP PFNGLVERTEXATTRIB1FVPROC)(GLuint index, const GLfloat *v); GLAPI PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv; #define glVertexAttrib1fv glad_glVertexAttrib1fv typedef void (APIENTRYP PFNGLVERTEXATTRIB1SPROC)(GLuint index, GLshort x); GLAPI PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s; #define glVertexAttrib1s glad_glVertexAttrib1s typedef void (APIENTRYP PFNGLVERTEXATTRIB1SVPROC)(GLuint index, const GLshort *v); GLAPI PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv; #define glVertexAttrib1sv glad_glVertexAttrib1sv typedef void (APIENTRYP PFNGLVERTEXATTRIB2DPROC)(GLuint index, GLdouble x, GLdouble y); GLAPI PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d; #define glVertexAttrib2d glad_glVertexAttrib2d typedef void (APIENTRYP PFNGLVERTEXATTRIB2DVPROC)(GLuint index, const GLdouble *v); GLAPI PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv; #define glVertexAttrib2dv glad_glVertexAttrib2dv typedef void (APIENTRYP PFNGLVERTEXATTRIB2FPROC)(GLuint index, GLfloat x, GLfloat y); GLAPI PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f; #define glVertexAttrib2f glad_glVertexAttrib2f typedef void (APIENTRYP PFNGLVERTEXATTRIB2FVPROC)(GLuint index, const GLfloat *v); GLAPI PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv; #define glVertexAttrib2fv glad_glVertexAttrib2fv typedef void (APIENTRYP PFNGLVERTEXATTRIB2SPROC)(GLuint index, GLshort x, GLshort y); GLAPI PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s; #define glVertexAttrib2s glad_glVertexAttrib2s typedef void (APIENTRYP PFNGLVERTEXATTRIB2SVPROC)(GLuint index, const GLshort *v); GLAPI PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv; #define glVertexAttrib2sv glad_glVertexAttrib2sv typedef void (APIENTRYP PFNGLVERTEXATTRIB3DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); GLAPI PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d; #define glVertexAttrib3d glad_glVertexAttrib3d typedef void (APIENTRYP PFNGLVERTEXATTRIB3DVPROC)(GLuint index, const GLdouble *v); GLAPI PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv; #define glVertexAttrib3dv glad_glVertexAttrib3dv typedef void (APIENTRYP PFNGLVERTEXATTRIB3FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z); GLAPI PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f; #define glVertexAttrib3f glad_glVertexAttrib3f typedef void (APIENTRYP PFNGLVERTEXATTRIB3FVPROC)(GLuint index, const GLfloat *v); GLAPI PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv; #define glVertexAttrib3fv glad_glVertexAttrib3fv typedef void (APIENTRYP PFNGLVERTEXATTRIB3SPROC)(GLuint index, GLshort x, GLshort y, GLshort z); GLAPI PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s; #define glVertexAttrib3s glad_glVertexAttrib3s typedef void (APIENTRYP PFNGLVERTEXATTRIB3SVPROC)(GLuint index, const GLshort *v); GLAPI PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv; #define glVertexAttrib3sv glad_glVertexAttrib3sv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NBVPROC)(GLuint index, const GLbyte *v); GLAPI PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv; #define glVertexAttrib4Nbv glad_glVertexAttrib4Nbv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NIVPROC)(GLuint index, const GLint *v); GLAPI PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv; #define glVertexAttrib4Niv glad_glVertexAttrib4Niv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NSVPROC)(GLuint index, const GLshort *v); GLAPI PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv; #define glVertexAttrib4Nsv glad_glVertexAttrib4Nsv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NUBPROC)(GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w); GLAPI PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub; #define glVertexAttrib4Nub glad_glVertexAttrib4Nub typedef void (APIENTRYP PFNGLVERTEXATTRIB4NUBVPROC)(GLuint index, const GLubyte *v); GLAPI PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv; #define glVertexAttrib4Nubv glad_glVertexAttrib4Nubv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NUIVPROC)(GLuint index, const GLuint *v); GLAPI PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv; #define glVertexAttrib4Nuiv glad_glVertexAttrib4Nuiv typedef void (APIENTRYP PFNGLVERTEXATTRIB4NUSVPROC)(GLuint index, const GLushort *v); GLAPI PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv; #define glVertexAttrib4Nusv glad_glVertexAttrib4Nusv typedef void (APIENTRYP PFNGLVERTEXATTRIB4BVPROC)(GLuint index, const GLbyte *v); GLAPI PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv; #define glVertexAttrib4bv glad_glVertexAttrib4bv typedef void (APIENTRYP PFNGLVERTEXATTRIB4DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); GLAPI PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d; #define glVertexAttrib4d glad_glVertexAttrib4d typedef void (APIENTRYP PFNGLVERTEXATTRIB4DVPROC)(GLuint index, const GLdouble *v); GLAPI PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv; #define glVertexAttrib4dv glad_glVertexAttrib4dv typedef void (APIENTRYP PFNGLVERTEXATTRIB4FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); GLAPI PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f; #define glVertexAttrib4f glad_glVertexAttrib4f typedef void (APIENTRYP PFNGLVERTEXATTRIB4FVPROC)(GLuint index, const GLfloat *v); GLAPI PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv; #define glVertexAttrib4fv glad_glVertexAttrib4fv typedef void (APIENTRYP PFNGLVERTEXATTRIB4IVPROC)(GLuint index, const GLint *v); GLAPI PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv; #define glVertexAttrib4iv glad_glVertexAttrib4iv typedef void (APIENTRYP PFNGLVERTEXATTRIB4SPROC)(GLuint index, GLshort x, GLshort y, GLshort z, GLshort w); GLAPI PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s; #define glVertexAttrib4s glad_glVertexAttrib4s typedef void (APIENTRYP PFNGLVERTEXATTRIB4SVPROC)(GLuint index, const GLshort *v); GLAPI PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv; #define glVertexAttrib4sv glad_glVertexAttrib4sv typedef void (APIENTRYP PFNGLVERTEXATTRIB4UBVPROC)(GLuint index, const GLubyte *v); GLAPI PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv; #define glVertexAttrib4ubv glad_glVertexAttrib4ubv typedef void (APIENTRYP PFNGLVERTEXATTRIB4UIVPROC)(GLuint index, const GLuint *v); GLAPI PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv; #define glVertexAttrib4uiv glad_glVertexAttrib4uiv typedef void (APIENTRYP PFNGLVERTEXATTRIB4USVPROC)(GLuint index, const GLushort *v); GLAPI PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv; #define glVertexAttrib4usv glad_glVertexAttrib4usv typedef void (APIENTRYP PFNGLVERTEXATTRIBPOINTERPROC)(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void *pointer); GLAPI PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer; #define glVertexAttribPointer glad_glVertexAttribPointer #endif #ifndef GL_VERSION_2_1 #define GL_VERSION_2_1 1 GLAPI int GLAD_GL_VERSION_2_1; typedef void (APIENTRYP PFNGLUNIFORMMATRIX2X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv; #define glUniformMatrix2x3fv glad_glUniformMatrix2x3fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX3X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv; #define glUniformMatrix3x2fv glad_glUniformMatrix3x2fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX2X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv; #define glUniformMatrix2x4fv glad_glUniformMatrix2x4fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX4X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv; #define glUniformMatrix4x2fv glad_glUniformMatrix4x2fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX3X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv; #define glUniformMatrix3x4fv glad_glUniformMatrix3x4fv typedef void (APIENTRYP PFNGLUNIFORMMATRIX4X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value); GLAPI PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv; #define glUniformMatrix4x3fv glad_glUniformMatrix4x3fv #endif #ifdef __cplusplus } #endif #endif
0
repos/zig-gorillas/lib/gl2/include
repos/zig-gorillas/lib/gl2/include/KHR/khrplatform.h
#ifndef __khrplatform_h_ #define __khrplatform_h_ /* ** Copyright (c) 2008-2018 The Khronos Group Inc. ** ** Permission is hereby granted, free of charge, to any person obtaining a ** copy of this software and/or associated documentation files (the ** "Materials"), to deal in the Materials without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Materials, and to ** permit persons to whom the Materials are furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be included ** in all copies or substantial portions of the Materials. ** ** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. */ /* Khronos platform-specific types and definitions. * * The master copy of khrplatform.h is maintained in the Khronos EGL * Registry repository at https://github.com/KhronosGroup/EGL-Registry * The last semantic modification to khrplatform.h was at commit ID: * 67a3e0864c2d75ea5287b9f3d2eb74a745936692 * * Adopters may modify this file to suit their platform. Adopters are * encouraged to submit platform specific modifications to the Khronos * group so that they can be included in future versions of this file. * Please submit changes by filing pull requests or issues on * the EGL Registry repository linked above. * * * See the Implementer's Guidelines for information about where this file * should be located on your system and for more details of its use: * http://www.khronos.org/registry/implementers_guide.pdf * * This file should be included as * #include <KHR/khrplatform.h> * by Khronos client API header files that use its types and defines. * * The types in khrplatform.h should only be used to define API-specific types. * * Types defined in khrplatform.h: * khronos_int8_t signed 8 bit * khronos_uint8_t unsigned 8 bit * khronos_int16_t signed 16 bit * khronos_uint16_t unsigned 16 bit * khronos_int32_t signed 32 bit * khronos_uint32_t unsigned 32 bit * khronos_int64_t signed 64 bit * khronos_uint64_t unsigned 64 bit * khronos_intptr_t signed same number of bits as a pointer * khronos_uintptr_t unsigned same number of bits as a pointer * khronos_ssize_t signed size * khronos_usize_t unsigned size * khronos_float_t signed 32 bit floating point * khronos_time_ns_t unsigned 64 bit time in nanoseconds * khronos_utime_nanoseconds_t unsigned time interval or absolute time in * nanoseconds * khronos_stime_nanoseconds_t signed time interval in nanoseconds * khronos_boolean_enum_t enumerated boolean type. This should * only be used as a base type when a client API's boolean type is * an enum. Client APIs which use an integer or other type for * booleans cannot use this as the base type for their boolean. * * Tokens defined in khrplatform.h: * * KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values. * * KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0. * KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0. * * Calling convention macros defined in this file: * KHRONOS_APICALL * KHRONOS_APIENTRY * KHRONOS_APIATTRIBUTES * * These may be used in function prototypes as: * * KHRONOS_APICALL void KHRONOS_APIENTRY funcname( * int arg1, * int arg2) KHRONOS_APIATTRIBUTES; */ /*------------------------------------------------------------------------- * Definition of KHRONOS_APICALL *------------------------------------------------------------------------- * This precedes the return type of the function in the function prototype. */ #if defined(_WIN32) && !defined(__SCITECH_SNAP__) # define KHRONOS_APICALL __declspec(dllimport) #elif defined (__SYMBIAN32__) # define KHRONOS_APICALL IMPORT_C #elif defined(__ANDROID__) # define KHRONOS_APICALL __attribute__((visibility("default"))) #else # define KHRONOS_APICALL #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APIENTRY *------------------------------------------------------------------------- * This follows the return type of the function and precedes the function * name in the function prototype. */ #if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(__SCITECH_SNAP__) /* Win32 but not WinCE */ # define KHRONOS_APIENTRY __stdcall #else # define KHRONOS_APIENTRY #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APIATTRIBUTES *------------------------------------------------------------------------- * This follows the closing parenthesis of the function prototype arguments. */ #if defined (__ARMCC_2__) #define KHRONOS_APIATTRIBUTES __softfp #else #define KHRONOS_APIATTRIBUTES #endif /*------------------------------------------------------------------------- * basic type definitions *-----------------------------------------------------------------------*/ #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__) /* * Using <stdint.h> */ #include <stdint.h> typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__VMS ) || defined(__sgi) /* * Using <inttypes.h> */ #include <inttypes.h> typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(_WIN32) && !defined(__SCITECH_SNAP__) /* * Win32 */ typedef __int32 khronos_int32_t; typedef unsigned __int32 khronos_uint32_t; typedef __int64 khronos_int64_t; typedef unsigned __int64 khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__sun__) || defined(__digital__) /* * Sun or Digital */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #if defined(__arch64__) || defined(_LP64) typedef long int khronos_int64_t; typedef unsigned long int khronos_uint64_t; #else typedef long long int khronos_int64_t; typedef unsigned long long int khronos_uint64_t; #endif /* __arch64__ */ #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif 0 /* * Hypothetical platform with no float or int64 support */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #define KHRONOS_SUPPORT_INT64 0 #define KHRONOS_SUPPORT_FLOAT 0 #else /* * Generic fallback */ #include <stdint.h> typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #endif /* * Types that are (so far) the same on all platforms */ typedef signed char khronos_int8_t; typedef unsigned char khronos_uint8_t; typedef signed short int khronos_int16_t; typedef unsigned short int khronos_uint16_t; /* * Types that differ between LLP64 and LP64 architectures - in LLP64, * pointers are 64 bits, but 'long' is still 32 bits. Win64 appears * to be the only LLP64 architecture in current use. */ #ifdef _WIN64 typedef signed long long int khronos_intptr_t; typedef unsigned long long int khronos_uintptr_t; typedef signed long long int khronos_ssize_t; typedef unsigned long long int khronos_usize_t; #else typedef signed long int khronos_intptr_t; typedef unsigned long int khronos_uintptr_t; typedef signed long int khronos_ssize_t; typedef unsigned long int khronos_usize_t; #endif #if KHRONOS_SUPPORT_FLOAT /* * Float type */ typedef float khronos_float_t; #endif #if KHRONOS_SUPPORT_INT64 /* Time types * * These types can be used to represent a time interval in nanoseconds or * an absolute Unadjusted System Time. Unadjusted System Time is the number * of nanoseconds since some arbitrary system event (e.g. since the last * time the system booted). The Unadjusted System Time is an unsigned * 64 bit value that wraps back to 0 every 584 years. Time intervals * may be either signed or unsigned. */ typedef khronos_uint64_t khronos_utime_nanoseconds_t; typedef khronos_int64_t khronos_stime_nanoseconds_t; #endif /* * Dummy value used to pad enum types to 32 bits. */ #ifndef KHRONOS_MAX_ENUM #define KHRONOS_MAX_ENUM 0x7FFFFFFF #endif /* * Enumerated boolean type * * Values other than zero should be considered to be true. Therefore * comparisons should not be made against KHRONOS_TRUE. */ typedef enum { KHRONOS_FALSE = 0, KHRONOS_TRUE = 1, KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM } khronos_boolean_enum_t; #endif /* __khrplatform_h_ */
0
repos/zig-gorillas/lib/gl2
repos/zig-gorillas/lib/gl2/src/glad.c
/* OpenGL loader generated by glad 0.1.27 on Tue Sep 4 23:27:29 2018. Language/Generator: C/C++ Specification: gl APIs: gl=2.1 Profile: compatibility Extensions: Loader: True Local files: False Omit khrplatform: False Commandline: --profile="compatibility" --api="gl=2.1" --generator="c" --spec="gl" --extensions="" Online: http://glad.dav1d.de/#profile=compatibility&language=c&specification=gl&loader=on&api=gl%3D2.1 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <glad/glad.h> static void* get_proc(const char *namez); #if defined(_WIN32) || defined(__CYGWIN__) #include <windows.h> static HMODULE libGL; typedef void* (APIENTRYP PFNWGLGETPROCADDRESSPROC_PRIVATE)(const char*); static PFNWGLGETPROCADDRESSPROC_PRIVATE gladGetProcAddressPtr; #ifdef _MSC_VER #ifdef __has_include #if __has_include(<winapifamily.h>) #define HAVE_WINAPIFAMILY 1 #endif #elif _MSC_VER >= 1700 && !_USING_V110_SDK71_ #define HAVE_WINAPIFAMILY 1 #endif #endif #ifdef HAVE_WINAPIFAMILY #include <winapifamily.h> #if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) && WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) #define IS_UWP 1 #endif #endif static int open_gl(void) { #ifndef IS_UWP libGL = LoadLibraryW(L"opengl32.dll"); if(libGL != NULL) { void (* tmp)(void); tmp = (void(*)(void)) GetProcAddress(libGL, "wglGetProcAddress"); gladGetProcAddressPtr = (PFNWGLGETPROCADDRESSPROC_PRIVATE) tmp; return gladGetProcAddressPtr != NULL; } #endif return 0; } static void close_gl(void) { if(libGL != NULL) { FreeLibrary((HMODULE) libGL); libGL = NULL; } } #else #include <dlfcn.h> static void* libGL; #if !defined(__APPLE__) && !defined(__HAIKU__) typedef void* (APIENTRYP PFNGLXGETPROCADDRESSPROC_PRIVATE)(const char*); static PFNGLXGETPROCADDRESSPROC_PRIVATE gladGetProcAddressPtr; #endif static int open_gl(void) { #ifdef __APPLE__ static const char *NAMES[] = { "../Frameworks/OpenGL.framework/OpenGL", "/Library/Frameworks/OpenGL.framework/OpenGL", "/System/Library/Frameworks/OpenGL.framework/OpenGL", "/System/Library/Frameworks/OpenGL.framework/Versions/Current/OpenGL" }; #else static const char *NAMES[] = {"libGL.so.1", "libGL.so"}; #endif unsigned int index = 0; for(index = 0; index < (sizeof(NAMES) / sizeof(NAMES[0])); index++) { libGL = dlopen(NAMES[index], RTLD_NOW | RTLD_GLOBAL); if(libGL != NULL) { #if defined(__APPLE__) || defined(__HAIKU__) return 1; #else gladGetProcAddressPtr = (PFNGLXGETPROCADDRESSPROC_PRIVATE)dlsym(libGL, "glXGetProcAddressARB"); return gladGetProcAddressPtr != NULL; #endif } } return 0; } static void close_gl(void) { if(libGL != NULL) { dlclose(libGL); libGL = NULL; } } #endif static void* get_proc(const char *namez) { void* result = NULL; if(libGL == NULL) return NULL; #if !defined(__APPLE__) && !defined(__HAIKU__) if(gladGetProcAddressPtr != NULL) { result = gladGetProcAddressPtr(namez); } #endif if(result == NULL) { #if defined(_WIN32) || defined(__CYGWIN__) result = (void*)GetProcAddress((HMODULE) libGL, namez); #else result = dlsym(libGL, namez); #endif } return result; } int gladLoadGL(void) { int status = 0; if(open_gl()) { status = gladLoadGLLoader(&get_proc); close_gl(); } return status; } struct gladGLversionStruct GLVersion = { 0, 0 }; #if defined(GL_ES_VERSION_3_0) || defined(GL_VERSION_3_0) #define _GLAD_IS_SOME_NEW_VERSION 1 #endif static int max_loaded_major; static int max_loaded_minor; static const char *exts = NULL; static int num_exts_i = 0; static char **exts_i = NULL; static int get_exts(void) { #ifdef _GLAD_IS_SOME_NEW_VERSION if(max_loaded_major < 3) { #endif exts = (const char *)glGetString(GL_EXTENSIONS); #ifdef _GLAD_IS_SOME_NEW_VERSION } else { unsigned int index; num_exts_i = 0; glGetIntegerv(GL_NUM_EXTENSIONS, &num_exts_i); if (num_exts_i > 0) { exts_i = (char **)realloc((void *)exts_i, (size_t)num_exts_i * (sizeof *exts_i)); } if (exts_i == NULL) { return 0; } for(index = 0; index < (unsigned)num_exts_i; index++) { const char *gl_str_tmp = (const char*)glGetStringi(GL_EXTENSIONS, index); size_t len = strlen(gl_str_tmp); char *local_str = (char*)malloc((len+1) * sizeof(char)); if(local_str != NULL) { memcpy(local_str, gl_str_tmp, (len+1) * sizeof(char)); } exts_i[index] = local_str; } } #endif return 1; } static void free_exts(void) { if (exts_i != NULL) { int index; for(index = 0; index < num_exts_i; index++) { free((char *)exts_i[index]); } free((void *)exts_i); exts_i = NULL; } } static int has_ext(const char *ext) { #ifdef _GLAD_IS_SOME_NEW_VERSION if(max_loaded_major < 3) { #endif const char *extensions; const char *loc; const char *terminator; extensions = exts; if(extensions == NULL || ext == NULL) { return 0; } while(1) { loc = strstr(extensions, ext); if(loc == NULL) { return 0; } terminator = loc + strlen(ext); if((loc == extensions || *(loc - 1) == ' ') && (*terminator == ' ' || *terminator == '\0')) { return 1; } extensions = terminator; } #ifdef _GLAD_IS_SOME_NEW_VERSION } else { int index; if(exts_i == NULL) return 0; for(index = 0; index < num_exts_i; index++) { const char *e = exts_i[index]; if(exts_i[index] != NULL && strcmp(e, ext) == 0) { return 1; } } } #endif return 0; } int GLAD_GL_VERSION_1_0 = 0; int GLAD_GL_VERSION_1_1 = 0; int GLAD_GL_VERSION_1_2 = 0; int GLAD_GL_VERSION_1_3 = 0; int GLAD_GL_VERSION_1_4 = 0; int GLAD_GL_VERSION_1_5 = 0; int GLAD_GL_VERSION_2_0 = 0; int GLAD_GL_VERSION_2_1 = 0; PFNGLACCUMPROC glad_glAccum = NULL; PFNGLACTIVETEXTUREPROC glad_glActiveTexture = NULL; PFNGLALPHAFUNCPROC glad_glAlphaFunc = NULL; PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident = NULL; PFNGLARRAYELEMENTPROC glad_glArrayElement = NULL; PFNGLATTACHSHADERPROC glad_glAttachShader = NULL; PFNGLBEGINPROC glad_glBegin = NULL; PFNGLBEGINQUERYPROC glad_glBeginQuery = NULL; PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation = NULL; PFNGLBINDBUFFERPROC glad_glBindBuffer = NULL; PFNGLBINDTEXTUREPROC glad_glBindTexture = NULL; PFNGLBITMAPPROC glad_glBitmap = NULL; PFNGLBLENDCOLORPROC glad_glBlendColor = NULL; PFNGLBLENDEQUATIONPROC glad_glBlendEquation = NULL; PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate = NULL; PFNGLBLENDFUNCPROC glad_glBlendFunc = NULL; PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate = NULL; PFNGLBUFFERDATAPROC glad_glBufferData = NULL; PFNGLBUFFERSUBDATAPROC glad_glBufferSubData = NULL; PFNGLCALLLISTPROC glad_glCallList = NULL; PFNGLCALLLISTSPROC glad_glCallLists = NULL; PFNGLCLEARPROC glad_glClear = NULL; PFNGLCLEARACCUMPROC glad_glClearAccum = NULL; PFNGLCLEARCOLORPROC glad_glClearColor = NULL; PFNGLCLEARDEPTHPROC glad_glClearDepth = NULL; PFNGLCLEARINDEXPROC glad_glClearIndex = NULL; PFNGLCLEARSTENCILPROC glad_glClearStencil = NULL; PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture = NULL; PFNGLCLIPPLANEPROC glad_glClipPlane = NULL; PFNGLCOLOR3BPROC glad_glColor3b = NULL; PFNGLCOLOR3BVPROC glad_glColor3bv = NULL; PFNGLCOLOR3DPROC glad_glColor3d = NULL; PFNGLCOLOR3DVPROC glad_glColor3dv = NULL; PFNGLCOLOR3FPROC glad_glColor3f = NULL; PFNGLCOLOR3FVPROC glad_glColor3fv = NULL; PFNGLCOLOR3IPROC glad_glColor3i = NULL; PFNGLCOLOR3IVPROC glad_glColor3iv = NULL; PFNGLCOLOR3SPROC glad_glColor3s = NULL; PFNGLCOLOR3SVPROC glad_glColor3sv = NULL; PFNGLCOLOR3UBPROC glad_glColor3ub = NULL; PFNGLCOLOR3UBVPROC glad_glColor3ubv = NULL; PFNGLCOLOR3UIPROC glad_glColor3ui = NULL; PFNGLCOLOR3UIVPROC glad_glColor3uiv = NULL; PFNGLCOLOR3USPROC glad_glColor3us = NULL; PFNGLCOLOR3USVPROC glad_glColor3usv = NULL; PFNGLCOLOR4BPROC glad_glColor4b = NULL; PFNGLCOLOR4BVPROC glad_glColor4bv = NULL; PFNGLCOLOR4DPROC glad_glColor4d = NULL; PFNGLCOLOR4DVPROC glad_glColor4dv = NULL; PFNGLCOLOR4FPROC glad_glColor4f = NULL; PFNGLCOLOR4FVPROC glad_glColor4fv = NULL; PFNGLCOLOR4IPROC glad_glColor4i = NULL; PFNGLCOLOR4IVPROC glad_glColor4iv = NULL; PFNGLCOLOR4SPROC glad_glColor4s = NULL; PFNGLCOLOR4SVPROC glad_glColor4sv = NULL; PFNGLCOLOR4UBPROC glad_glColor4ub = NULL; PFNGLCOLOR4UBVPROC glad_glColor4ubv = NULL; PFNGLCOLOR4UIPROC glad_glColor4ui = NULL; PFNGLCOLOR4UIVPROC glad_glColor4uiv = NULL; PFNGLCOLOR4USPROC glad_glColor4us = NULL; PFNGLCOLOR4USVPROC glad_glColor4usv = NULL; PFNGLCOLORMASKPROC glad_glColorMask = NULL; PFNGLCOLORMATERIALPROC glad_glColorMaterial = NULL; PFNGLCOLORPOINTERPROC glad_glColorPointer = NULL; PFNGLCOMPILESHADERPROC glad_glCompileShader = NULL; PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D = NULL; PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D = NULL; PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D = NULL; PFNGLCOPYPIXELSPROC glad_glCopyPixels = NULL; PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D = NULL; PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D = NULL; PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D = NULL; PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D = NULL; PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D = NULL; PFNGLCREATEPROGRAMPROC glad_glCreateProgram = NULL; PFNGLCREATESHADERPROC glad_glCreateShader = NULL; PFNGLCULLFACEPROC glad_glCullFace = NULL; PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers = NULL; PFNGLDELETELISTSPROC glad_glDeleteLists = NULL; PFNGLDELETEPROGRAMPROC glad_glDeleteProgram = NULL; PFNGLDELETEQUERIESPROC glad_glDeleteQueries = NULL; PFNGLDELETESHADERPROC glad_glDeleteShader = NULL; PFNGLDELETETEXTURESPROC glad_glDeleteTextures = NULL; PFNGLDEPTHFUNCPROC glad_glDepthFunc = NULL; PFNGLDEPTHMASKPROC glad_glDepthMask = NULL; PFNGLDEPTHRANGEPROC glad_glDepthRange = NULL; PFNGLDETACHSHADERPROC glad_glDetachShader = NULL; PFNGLDISABLEPROC glad_glDisable = NULL; PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState = NULL; PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray = NULL; PFNGLDRAWARRAYSPROC glad_glDrawArrays = NULL; PFNGLDRAWBUFFERPROC glad_glDrawBuffer = NULL; PFNGLDRAWBUFFERSPROC glad_glDrawBuffers = NULL; PFNGLDRAWELEMENTSPROC glad_glDrawElements = NULL; PFNGLDRAWPIXELSPROC glad_glDrawPixels = NULL; PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements = NULL; PFNGLEDGEFLAGPROC glad_glEdgeFlag = NULL; PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer = NULL; PFNGLEDGEFLAGVPROC glad_glEdgeFlagv = NULL; PFNGLENABLEPROC glad_glEnable = NULL; PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState = NULL; PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray = NULL; PFNGLENDPROC glad_glEnd = NULL; PFNGLENDLISTPROC glad_glEndList = NULL; PFNGLENDQUERYPROC glad_glEndQuery = NULL; PFNGLEVALCOORD1DPROC glad_glEvalCoord1d = NULL; PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv = NULL; PFNGLEVALCOORD1FPROC glad_glEvalCoord1f = NULL; PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv = NULL; PFNGLEVALCOORD2DPROC glad_glEvalCoord2d = NULL; PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv = NULL; PFNGLEVALCOORD2FPROC glad_glEvalCoord2f = NULL; PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv = NULL; PFNGLEVALMESH1PROC glad_glEvalMesh1 = NULL; PFNGLEVALMESH2PROC glad_glEvalMesh2 = NULL; PFNGLEVALPOINT1PROC glad_glEvalPoint1 = NULL; PFNGLEVALPOINT2PROC glad_glEvalPoint2 = NULL; PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer = NULL; PFNGLFINISHPROC glad_glFinish = NULL; PFNGLFLUSHPROC glad_glFlush = NULL; PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer = NULL; PFNGLFOGCOORDDPROC glad_glFogCoordd = NULL; PFNGLFOGCOORDDVPROC glad_glFogCoorddv = NULL; PFNGLFOGCOORDFPROC glad_glFogCoordf = NULL; PFNGLFOGCOORDFVPROC glad_glFogCoordfv = NULL; PFNGLFOGFPROC glad_glFogf = NULL; PFNGLFOGFVPROC glad_glFogfv = NULL; PFNGLFOGIPROC glad_glFogi = NULL; PFNGLFOGIVPROC glad_glFogiv = NULL; PFNGLFRONTFACEPROC glad_glFrontFace = NULL; PFNGLFRUSTUMPROC glad_glFrustum = NULL; PFNGLGENBUFFERSPROC glad_glGenBuffers = NULL; PFNGLGENLISTSPROC glad_glGenLists = NULL; PFNGLGENQUERIESPROC glad_glGenQueries = NULL; PFNGLGENTEXTURESPROC glad_glGenTextures = NULL; PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib = NULL; PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform = NULL; PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders = NULL; PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation = NULL; PFNGLGETBOOLEANVPROC glad_glGetBooleanv = NULL; PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv = NULL; PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv = NULL; PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData = NULL; PFNGLGETCLIPPLANEPROC glad_glGetClipPlane = NULL; PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage = NULL; PFNGLGETDOUBLEVPROC glad_glGetDoublev = NULL; PFNGLGETERRORPROC glad_glGetError = NULL; PFNGLGETFLOATVPROC glad_glGetFloatv = NULL; PFNGLGETINTEGERVPROC glad_glGetIntegerv = NULL; PFNGLGETLIGHTFVPROC glad_glGetLightfv = NULL; PFNGLGETLIGHTIVPROC glad_glGetLightiv = NULL; PFNGLGETMAPDVPROC glad_glGetMapdv = NULL; PFNGLGETMAPFVPROC glad_glGetMapfv = NULL; PFNGLGETMAPIVPROC glad_glGetMapiv = NULL; PFNGLGETMATERIALFVPROC glad_glGetMaterialfv = NULL; PFNGLGETMATERIALIVPROC glad_glGetMaterialiv = NULL; PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv = NULL; PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv = NULL; PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv = NULL; PFNGLGETPOINTERVPROC glad_glGetPointerv = NULL; PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple = NULL; PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog = NULL; PFNGLGETPROGRAMIVPROC glad_glGetProgramiv = NULL; PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv = NULL; PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv = NULL; PFNGLGETQUERYIVPROC glad_glGetQueryiv = NULL; PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog = NULL; PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource = NULL; PFNGLGETSHADERIVPROC glad_glGetShaderiv = NULL; PFNGLGETSTRINGPROC glad_glGetString = NULL; PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv = NULL; PFNGLGETTEXENVIVPROC glad_glGetTexEnviv = NULL; PFNGLGETTEXGENDVPROC glad_glGetTexGendv = NULL; PFNGLGETTEXGENFVPROC glad_glGetTexGenfv = NULL; PFNGLGETTEXGENIVPROC glad_glGetTexGeniv = NULL; PFNGLGETTEXIMAGEPROC glad_glGetTexImage = NULL; PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv = NULL; PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv = NULL; PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv = NULL; PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv = NULL; PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation = NULL; PFNGLGETUNIFORMFVPROC glad_glGetUniformfv = NULL; PFNGLGETUNIFORMIVPROC glad_glGetUniformiv = NULL; PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv = NULL; PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv = NULL; PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv = NULL; PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv = NULL; PFNGLHINTPROC glad_glHint = NULL; PFNGLINDEXMASKPROC glad_glIndexMask = NULL; PFNGLINDEXPOINTERPROC glad_glIndexPointer = NULL; PFNGLINDEXDPROC glad_glIndexd = NULL; PFNGLINDEXDVPROC glad_glIndexdv = NULL; PFNGLINDEXFPROC glad_glIndexf = NULL; PFNGLINDEXFVPROC glad_glIndexfv = NULL; PFNGLINDEXIPROC glad_glIndexi = NULL; PFNGLINDEXIVPROC glad_glIndexiv = NULL; PFNGLINDEXSPROC glad_glIndexs = NULL; PFNGLINDEXSVPROC glad_glIndexsv = NULL; PFNGLINDEXUBPROC glad_glIndexub = NULL; PFNGLINDEXUBVPROC glad_glIndexubv = NULL; PFNGLINITNAMESPROC glad_glInitNames = NULL; PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays = NULL; PFNGLISBUFFERPROC glad_glIsBuffer = NULL; PFNGLISENABLEDPROC glad_glIsEnabled = NULL; PFNGLISLISTPROC glad_glIsList = NULL; PFNGLISPROGRAMPROC glad_glIsProgram = NULL; PFNGLISQUERYPROC glad_glIsQuery = NULL; PFNGLISSHADERPROC glad_glIsShader = NULL; PFNGLISTEXTUREPROC glad_glIsTexture = NULL; PFNGLLIGHTMODELFPROC glad_glLightModelf = NULL; PFNGLLIGHTMODELFVPROC glad_glLightModelfv = NULL; PFNGLLIGHTMODELIPROC glad_glLightModeli = NULL; PFNGLLIGHTMODELIVPROC glad_glLightModeliv = NULL; PFNGLLIGHTFPROC glad_glLightf = NULL; PFNGLLIGHTFVPROC glad_glLightfv = NULL; PFNGLLIGHTIPROC glad_glLighti = NULL; PFNGLLIGHTIVPROC glad_glLightiv = NULL; PFNGLLINESTIPPLEPROC glad_glLineStipple = NULL; PFNGLLINEWIDTHPROC glad_glLineWidth = NULL; PFNGLLINKPROGRAMPROC glad_glLinkProgram = NULL; PFNGLLISTBASEPROC glad_glListBase = NULL; PFNGLLOADIDENTITYPROC glad_glLoadIdentity = NULL; PFNGLLOADMATRIXDPROC glad_glLoadMatrixd = NULL; PFNGLLOADMATRIXFPROC glad_glLoadMatrixf = NULL; PFNGLLOADNAMEPROC glad_glLoadName = NULL; PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd = NULL; PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf = NULL; PFNGLLOGICOPPROC glad_glLogicOp = NULL; PFNGLMAP1DPROC glad_glMap1d = NULL; PFNGLMAP1FPROC glad_glMap1f = NULL; PFNGLMAP2DPROC glad_glMap2d = NULL; PFNGLMAP2FPROC glad_glMap2f = NULL; PFNGLMAPBUFFERPROC glad_glMapBuffer = NULL; PFNGLMAPGRID1DPROC glad_glMapGrid1d = NULL; PFNGLMAPGRID1FPROC glad_glMapGrid1f = NULL; PFNGLMAPGRID2DPROC glad_glMapGrid2d = NULL; PFNGLMAPGRID2FPROC glad_glMapGrid2f = NULL; PFNGLMATERIALFPROC glad_glMaterialf = NULL; PFNGLMATERIALFVPROC glad_glMaterialfv = NULL; PFNGLMATERIALIPROC glad_glMateriali = NULL; PFNGLMATERIALIVPROC glad_glMaterialiv = NULL; PFNGLMATRIXMODEPROC glad_glMatrixMode = NULL; PFNGLMULTMATRIXDPROC glad_glMultMatrixd = NULL; PFNGLMULTMATRIXFPROC glad_glMultMatrixf = NULL; PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd = NULL; PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf = NULL; PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays = NULL; PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements = NULL; PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d = NULL; PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv = NULL; PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f = NULL; PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv = NULL; PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i = NULL; PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv = NULL; PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s = NULL; PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv = NULL; PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d = NULL; PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv = NULL; PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f = NULL; PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv = NULL; PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i = NULL; PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv = NULL; PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s = NULL; PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv = NULL; PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d = NULL; PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv = NULL; PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f = NULL; PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv = NULL; PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i = NULL; PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv = NULL; PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s = NULL; PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv = NULL; PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d = NULL; PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv = NULL; PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f = NULL; PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv = NULL; PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i = NULL; PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv = NULL; PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s = NULL; PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv = NULL; PFNGLNEWLISTPROC glad_glNewList = NULL; PFNGLNORMAL3BPROC glad_glNormal3b = NULL; PFNGLNORMAL3BVPROC glad_glNormal3bv = NULL; PFNGLNORMAL3DPROC glad_glNormal3d = NULL; PFNGLNORMAL3DVPROC glad_glNormal3dv = NULL; PFNGLNORMAL3FPROC glad_glNormal3f = NULL; PFNGLNORMAL3FVPROC glad_glNormal3fv = NULL; PFNGLNORMAL3IPROC glad_glNormal3i = NULL; PFNGLNORMAL3IVPROC glad_glNormal3iv = NULL; PFNGLNORMAL3SPROC glad_glNormal3s = NULL; PFNGLNORMAL3SVPROC glad_glNormal3sv = NULL; PFNGLNORMALPOINTERPROC glad_glNormalPointer = NULL; PFNGLORTHOPROC glad_glOrtho = NULL; PFNGLPASSTHROUGHPROC glad_glPassThrough = NULL; PFNGLPIXELMAPFVPROC glad_glPixelMapfv = NULL; PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv = NULL; PFNGLPIXELMAPUSVPROC glad_glPixelMapusv = NULL; PFNGLPIXELSTOREFPROC glad_glPixelStoref = NULL; PFNGLPIXELSTOREIPROC glad_glPixelStorei = NULL; PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf = NULL; PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi = NULL; PFNGLPIXELZOOMPROC glad_glPixelZoom = NULL; PFNGLPOINTPARAMETERFPROC glad_glPointParameterf = NULL; PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv = NULL; PFNGLPOINTPARAMETERIPROC glad_glPointParameteri = NULL; PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv = NULL; PFNGLPOINTSIZEPROC glad_glPointSize = NULL; PFNGLPOLYGONMODEPROC glad_glPolygonMode = NULL; PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset = NULL; PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple = NULL; PFNGLPOPATTRIBPROC glad_glPopAttrib = NULL; PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib = NULL; PFNGLPOPMATRIXPROC glad_glPopMatrix = NULL; PFNGLPOPNAMEPROC glad_glPopName = NULL; PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures = NULL; PFNGLPUSHATTRIBPROC glad_glPushAttrib = NULL; PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib = NULL; PFNGLPUSHMATRIXPROC glad_glPushMatrix = NULL; PFNGLPUSHNAMEPROC glad_glPushName = NULL; PFNGLRASTERPOS2DPROC glad_glRasterPos2d = NULL; PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv = NULL; PFNGLRASTERPOS2FPROC glad_glRasterPos2f = NULL; PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv = NULL; PFNGLRASTERPOS2IPROC glad_glRasterPos2i = NULL; PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv = NULL; PFNGLRASTERPOS2SPROC glad_glRasterPos2s = NULL; PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv = NULL; PFNGLRASTERPOS3DPROC glad_glRasterPos3d = NULL; PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv = NULL; PFNGLRASTERPOS3FPROC glad_glRasterPos3f = NULL; PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv = NULL; PFNGLRASTERPOS3IPROC glad_glRasterPos3i = NULL; PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv = NULL; PFNGLRASTERPOS3SPROC glad_glRasterPos3s = NULL; PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv = NULL; PFNGLRASTERPOS4DPROC glad_glRasterPos4d = NULL; PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv = NULL; PFNGLRASTERPOS4FPROC glad_glRasterPos4f = NULL; PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv = NULL; PFNGLRASTERPOS4IPROC glad_glRasterPos4i = NULL; PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv = NULL; PFNGLRASTERPOS4SPROC glad_glRasterPos4s = NULL; PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv = NULL; PFNGLREADBUFFERPROC glad_glReadBuffer = NULL; PFNGLREADPIXELSPROC glad_glReadPixels = NULL; PFNGLRECTDPROC glad_glRectd = NULL; PFNGLRECTDVPROC glad_glRectdv = NULL; PFNGLRECTFPROC glad_glRectf = NULL; PFNGLRECTFVPROC glad_glRectfv = NULL; PFNGLRECTIPROC glad_glRecti = NULL; PFNGLRECTIVPROC glad_glRectiv = NULL; PFNGLRECTSPROC glad_glRects = NULL; PFNGLRECTSVPROC glad_glRectsv = NULL; PFNGLRENDERMODEPROC glad_glRenderMode = NULL; PFNGLROTATEDPROC glad_glRotated = NULL; PFNGLROTATEFPROC glad_glRotatef = NULL; PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage = NULL; PFNGLSCALEDPROC glad_glScaled = NULL; PFNGLSCALEFPROC glad_glScalef = NULL; PFNGLSCISSORPROC glad_glScissor = NULL; PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b = NULL; PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv = NULL; PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d = NULL; PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv = NULL; PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f = NULL; PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv = NULL; PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i = NULL; PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv = NULL; PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s = NULL; PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv = NULL; PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub = NULL; PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv = NULL; PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui = NULL; PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv = NULL; PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us = NULL; PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv = NULL; PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer = NULL; PFNGLSELECTBUFFERPROC glad_glSelectBuffer = NULL; PFNGLSHADEMODELPROC glad_glShadeModel = NULL; PFNGLSHADERSOURCEPROC glad_glShaderSource = NULL; PFNGLSTENCILFUNCPROC glad_glStencilFunc = NULL; PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate = NULL; PFNGLSTENCILMASKPROC glad_glStencilMask = NULL; PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate = NULL; PFNGLSTENCILOPPROC glad_glStencilOp = NULL; PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate = NULL; PFNGLTEXCOORD1DPROC glad_glTexCoord1d = NULL; PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv = NULL; PFNGLTEXCOORD1FPROC glad_glTexCoord1f = NULL; PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv = NULL; PFNGLTEXCOORD1IPROC glad_glTexCoord1i = NULL; PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv = NULL; PFNGLTEXCOORD1SPROC glad_glTexCoord1s = NULL; PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv = NULL; PFNGLTEXCOORD2DPROC glad_glTexCoord2d = NULL; PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv = NULL; PFNGLTEXCOORD2FPROC glad_glTexCoord2f = NULL; PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv = NULL; PFNGLTEXCOORD2IPROC glad_glTexCoord2i = NULL; PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv = NULL; PFNGLTEXCOORD2SPROC glad_glTexCoord2s = NULL; PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv = NULL; PFNGLTEXCOORD3DPROC glad_glTexCoord3d = NULL; PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv = NULL; PFNGLTEXCOORD3FPROC glad_glTexCoord3f = NULL; PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv = NULL; PFNGLTEXCOORD3IPROC glad_glTexCoord3i = NULL; PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv = NULL; PFNGLTEXCOORD3SPROC glad_glTexCoord3s = NULL; PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv = NULL; PFNGLTEXCOORD4DPROC glad_glTexCoord4d = NULL; PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv = NULL; PFNGLTEXCOORD4FPROC glad_glTexCoord4f = NULL; PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv = NULL; PFNGLTEXCOORD4IPROC glad_glTexCoord4i = NULL; PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv = NULL; PFNGLTEXCOORD4SPROC glad_glTexCoord4s = NULL; PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv = NULL; PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer = NULL; PFNGLTEXENVFPROC glad_glTexEnvf = NULL; PFNGLTEXENVFVPROC glad_glTexEnvfv = NULL; PFNGLTEXENVIPROC glad_glTexEnvi = NULL; PFNGLTEXENVIVPROC glad_glTexEnviv = NULL; PFNGLTEXGENDPROC glad_glTexGend = NULL; PFNGLTEXGENDVPROC glad_glTexGendv = NULL; PFNGLTEXGENFPROC glad_glTexGenf = NULL; PFNGLTEXGENFVPROC glad_glTexGenfv = NULL; PFNGLTEXGENIPROC glad_glTexGeni = NULL; PFNGLTEXGENIVPROC glad_glTexGeniv = NULL; PFNGLTEXIMAGE1DPROC glad_glTexImage1D = NULL; PFNGLTEXIMAGE2DPROC glad_glTexImage2D = NULL; PFNGLTEXIMAGE3DPROC glad_glTexImage3D = NULL; PFNGLTEXPARAMETERFPROC glad_glTexParameterf = NULL; PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv = NULL; PFNGLTEXPARAMETERIPROC glad_glTexParameteri = NULL; PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv = NULL; PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D = NULL; PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D = NULL; PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D = NULL; PFNGLTRANSLATEDPROC glad_glTranslated = NULL; PFNGLTRANSLATEFPROC glad_glTranslatef = NULL; PFNGLUNIFORM1FPROC glad_glUniform1f = NULL; PFNGLUNIFORM1FVPROC glad_glUniform1fv = NULL; PFNGLUNIFORM1IPROC glad_glUniform1i = NULL; PFNGLUNIFORM1IVPROC glad_glUniform1iv = NULL; PFNGLUNIFORM2FPROC glad_glUniform2f = NULL; PFNGLUNIFORM2FVPROC glad_glUniform2fv = NULL; PFNGLUNIFORM2IPROC glad_glUniform2i = NULL; PFNGLUNIFORM2IVPROC glad_glUniform2iv = NULL; PFNGLUNIFORM3FPROC glad_glUniform3f = NULL; PFNGLUNIFORM3FVPROC glad_glUniform3fv = NULL; PFNGLUNIFORM3IPROC glad_glUniform3i = NULL; PFNGLUNIFORM3IVPROC glad_glUniform3iv = NULL; PFNGLUNIFORM4FPROC glad_glUniform4f = NULL; PFNGLUNIFORM4FVPROC glad_glUniform4fv = NULL; PFNGLUNIFORM4IPROC glad_glUniform4i = NULL; PFNGLUNIFORM4IVPROC glad_glUniform4iv = NULL; PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv = NULL; PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv = NULL; PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv = NULL; PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv = NULL; PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv = NULL; PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv = NULL; PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv = NULL; PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv = NULL; PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv = NULL; PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer = NULL; PFNGLUSEPROGRAMPROC glad_glUseProgram = NULL; PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram = NULL; PFNGLVERTEX2DPROC glad_glVertex2d = NULL; PFNGLVERTEX2DVPROC glad_glVertex2dv = NULL; PFNGLVERTEX2FPROC glad_glVertex2f = NULL; PFNGLVERTEX2FVPROC glad_glVertex2fv = NULL; PFNGLVERTEX2IPROC glad_glVertex2i = NULL; PFNGLVERTEX2IVPROC glad_glVertex2iv = NULL; PFNGLVERTEX2SPROC glad_glVertex2s = NULL; PFNGLVERTEX2SVPROC glad_glVertex2sv = NULL; PFNGLVERTEX3DPROC glad_glVertex3d = NULL; PFNGLVERTEX3DVPROC glad_glVertex3dv = NULL; PFNGLVERTEX3FPROC glad_glVertex3f = NULL; PFNGLVERTEX3FVPROC glad_glVertex3fv = NULL; PFNGLVERTEX3IPROC glad_glVertex3i = NULL; PFNGLVERTEX3IVPROC glad_glVertex3iv = NULL; PFNGLVERTEX3SPROC glad_glVertex3s = NULL; PFNGLVERTEX3SVPROC glad_glVertex3sv = NULL; PFNGLVERTEX4DPROC glad_glVertex4d = NULL; PFNGLVERTEX4DVPROC glad_glVertex4dv = NULL; PFNGLVERTEX4FPROC glad_glVertex4f = NULL; PFNGLVERTEX4FVPROC glad_glVertex4fv = NULL; PFNGLVERTEX4IPROC glad_glVertex4i = NULL; PFNGLVERTEX4IVPROC glad_glVertex4iv = NULL; PFNGLVERTEX4SPROC glad_glVertex4s = NULL; PFNGLVERTEX4SVPROC glad_glVertex4sv = NULL; PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d = NULL; PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv = NULL; PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f = NULL; PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv = NULL; PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s = NULL; PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv = NULL; PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d = NULL; PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv = NULL; PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f = NULL; PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv = NULL; PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s = NULL; PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv = NULL; PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d = NULL; PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv = NULL; PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f = NULL; PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv = NULL; PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s = NULL; PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv = NULL; PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv = NULL; PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv = NULL; PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv = NULL; PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub = NULL; PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv = NULL; PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv = NULL; PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv = NULL; PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv = NULL; PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d = NULL; PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv = NULL; PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f = NULL; PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv = NULL; PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv = NULL; PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s = NULL; PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv = NULL; PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv = NULL; PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv = NULL; PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv = NULL; PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer = NULL; PFNGLVERTEXPOINTERPROC glad_glVertexPointer = NULL; PFNGLVIEWPORTPROC glad_glViewport = NULL; PFNGLWINDOWPOS2DPROC glad_glWindowPos2d = NULL; PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv = NULL; PFNGLWINDOWPOS2FPROC glad_glWindowPos2f = NULL; PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv = NULL; PFNGLWINDOWPOS2IPROC glad_glWindowPos2i = NULL; PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv = NULL; PFNGLWINDOWPOS2SPROC glad_glWindowPos2s = NULL; PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv = NULL; PFNGLWINDOWPOS3DPROC glad_glWindowPos3d = NULL; PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv = NULL; PFNGLWINDOWPOS3FPROC glad_glWindowPos3f = NULL; PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv = NULL; PFNGLWINDOWPOS3IPROC glad_glWindowPos3i = NULL; PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv = NULL; PFNGLWINDOWPOS3SPROC glad_glWindowPos3s = NULL; PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv = NULL; static void load_GL_VERSION_1_0(GLADloadproc load) { if(!GLAD_GL_VERSION_1_0) return; glad_glCullFace = (PFNGLCULLFACEPROC)load("glCullFace"); glad_glFrontFace = (PFNGLFRONTFACEPROC)load("glFrontFace"); glad_glHint = (PFNGLHINTPROC)load("glHint"); glad_glLineWidth = (PFNGLLINEWIDTHPROC)load("glLineWidth"); glad_glPointSize = (PFNGLPOINTSIZEPROC)load("glPointSize"); glad_glPolygonMode = (PFNGLPOLYGONMODEPROC)load("glPolygonMode"); glad_glScissor = (PFNGLSCISSORPROC)load("glScissor"); glad_glTexParameterf = (PFNGLTEXPARAMETERFPROC)load("glTexParameterf"); glad_glTexParameterfv = (PFNGLTEXPARAMETERFVPROC)load("glTexParameterfv"); glad_glTexParameteri = (PFNGLTEXPARAMETERIPROC)load("glTexParameteri"); glad_glTexParameteriv = (PFNGLTEXPARAMETERIVPROC)load("glTexParameteriv"); glad_glTexImage1D = (PFNGLTEXIMAGE1DPROC)load("glTexImage1D"); glad_glTexImage2D = (PFNGLTEXIMAGE2DPROC)load("glTexImage2D"); glad_glDrawBuffer = (PFNGLDRAWBUFFERPROC)load("glDrawBuffer"); glad_glClear = (PFNGLCLEARPROC)load("glClear"); glad_glClearColor = (PFNGLCLEARCOLORPROC)load("glClearColor"); glad_glClearStencil = (PFNGLCLEARSTENCILPROC)load("glClearStencil"); glad_glClearDepth = (PFNGLCLEARDEPTHPROC)load("glClearDepth"); glad_glStencilMask = (PFNGLSTENCILMASKPROC)load("glStencilMask"); glad_glColorMask = (PFNGLCOLORMASKPROC)load("glColorMask"); glad_glDepthMask = (PFNGLDEPTHMASKPROC)load("glDepthMask"); glad_glDisable = (PFNGLDISABLEPROC)load("glDisable"); glad_glEnable = (PFNGLENABLEPROC)load("glEnable"); glad_glFinish = (PFNGLFINISHPROC)load("glFinish"); glad_glFlush = (PFNGLFLUSHPROC)load("glFlush"); glad_glBlendFunc = (PFNGLBLENDFUNCPROC)load("glBlendFunc"); glad_glLogicOp = (PFNGLLOGICOPPROC)load("glLogicOp"); glad_glStencilFunc = (PFNGLSTENCILFUNCPROC)load("glStencilFunc"); glad_glStencilOp = (PFNGLSTENCILOPPROC)load("glStencilOp"); glad_glDepthFunc = (PFNGLDEPTHFUNCPROC)load("glDepthFunc"); glad_glPixelStoref = (PFNGLPIXELSTOREFPROC)load("glPixelStoref"); glad_glPixelStorei = (PFNGLPIXELSTOREIPROC)load("glPixelStorei"); glad_glReadBuffer = (PFNGLREADBUFFERPROC)load("glReadBuffer"); glad_glReadPixels = (PFNGLREADPIXELSPROC)load("glReadPixels"); glad_glGetBooleanv = (PFNGLGETBOOLEANVPROC)load("glGetBooleanv"); glad_glGetDoublev = (PFNGLGETDOUBLEVPROC)load("glGetDoublev"); glad_glGetError = (PFNGLGETERRORPROC)load("glGetError"); glad_glGetFloatv = (PFNGLGETFLOATVPROC)load("glGetFloatv"); glad_glGetIntegerv = (PFNGLGETINTEGERVPROC)load("glGetIntegerv"); glad_glGetString = (PFNGLGETSTRINGPROC)load("glGetString"); glad_glGetTexImage = (PFNGLGETTEXIMAGEPROC)load("glGetTexImage"); glad_glGetTexParameterfv = (PFNGLGETTEXPARAMETERFVPROC)load("glGetTexParameterfv"); glad_glGetTexParameteriv = (PFNGLGETTEXPARAMETERIVPROC)load("glGetTexParameteriv"); glad_glGetTexLevelParameterfv = (PFNGLGETTEXLEVELPARAMETERFVPROC)load("glGetTexLevelParameterfv"); glad_glGetTexLevelParameteriv = (PFNGLGETTEXLEVELPARAMETERIVPROC)load("glGetTexLevelParameteriv"); glad_glIsEnabled = (PFNGLISENABLEDPROC)load("glIsEnabled"); glad_glDepthRange = (PFNGLDEPTHRANGEPROC)load("glDepthRange"); glad_glViewport = (PFNGLVIEWPORTPROC)load("glViewport"); glad_glNewList = (PFNGLNEWLISTPROC)load("glNewList"); glad_glEndList = (PFNGLENDLISTPROC)load("glEndList"); glad_glCallList = (PFNGLCALLLISTPROC)load("glCallList"); glad_glCallLists = (PFNGLCALLLISTSPROC)load("glCallLists"); glad_glDeleteLists = (PFNGLDELETELISTSPROC)load("glDeleteLists"); glad_glGenLists = (PFNGLGENLISTSPROC)load("glGenLists"); glad_glListBase = (PFNGLLISTBASEPROC)load("glListBase"); glad_glBegin = (PFNGLBEGINPROC)load("glBegin"); glad_glBitmap = (PFNGLBITMAPPROC)load("glBitmap"); glad_glColor3b = (PFNGLCOLOR3BPROC)load("glColor3b"); glad_glColor3bv = (PFNGLCOLOR3BVPROC)load("glColor3bv"); glad_glColor3d = (PFNGLCOLOR3DPROC)load("glColor3d"); glad_glColor3dv = (PFNGLCOLOR3DVPROC)load("glColor3dv"); glad_glColor3f = (PFNGLCOLOR3FPROC)load("glColor3f"); glad_glColor3fv = (PFNGLCOLOR3FVPROC)load("glColor3fv"); glad_glColor3i = (PFNGLCOLOR3IPROC)load("glColor3i"); glad_glColor3iv = (PFNGLCOLOR3IVPROC)load("glColor3iv"); glad_glColor3s = (PFNGLCOLOR3SPROC)load("glColor3s"); glad_glColor3sv = (PFNGLCOLOR3SVPROC)load("glColor3sv"); glad_glColor3ub = (PFNGLCOLOR3UBPROC)load("glColor3ub"); glad_glColor3ubv = (PFNGLCOLOR3UBVPROC)load("glColor3ubv"); glad_glColor3ui = (PFNGLCOLOR3UIPROC)load("glColor3ui"); glad_glColor3uiv = (PFNGLCOLOR3UIVPROC)load("glColor3uiv"); glad_glColor3us = (PFNGLCOLOR3USPROC)load("glColor3us"); glad_glColor3usv = (PFNGLCOLOR3USVPROC)load("glColor3usv"); glad_glColor4b = (PFNGLCOLOR4BPROC)load("glColor4b"); glad_glColor4bv = (PFNGLCOLOR4BVPROC)load("glColor4bv"); glad_glColor4d = (PFNGLCOLOR4DPROC)load("glColor4d"); glad_glColor4dv = (PFNGLCOLOR4DVPROC)load("glColor4dv"); glad_glColor4f = (PFNGLCOLOR4FPROC)load("glColor4f"); glad_glColor4fv = (PFNGLCOLOR4FVPROC)load("glColor4fv"); glad_glColor4i = (PFNGLCOLOR4IPROC)load("glColor4i"); glad_glColor4iv = (PFNGLCOLOR4IVPROC)load("glColor4iv"); glad_glColor4s = (PFNGLCOLOR4SPROC)load("glColor4s"); glad_glColor4sv = (PFNGLCOLOR4SVPROC)load("glColor4sv"); glad_glColor4ub = (PFNGLCOLOR4UBPROC)load("glColor4ub"); glad_glColor4ubv = (PFNGLCOLOR4UBVPROC)load("glColor4ubv"); glad_glColor4ui = (PFNGLCOLOR4UIPROC)load("glColor4ui"); glad_glColor4uiv = (PFNGLCOLOR4UIVPROC)load("glColor4uiv"); glad_glColor4us = (PFNGLCOLOR4USPROC)load("glColor4us"); glad_glColor4usv = (PFNGLCOLOR4USVPROC)load("glColor4usv"); glad_glEdgeFlag = (PFNGLEDGEFLAGPROC)load("glEdgeFlag"); glad_glEdgeFlagv = (PFNGLEDGEFLAGVPROC)load("glEdgeFlagv"); glad_glEnd = (PFNGLENDPROC)load("glEnd"); glad_glIndexd = (PFNGLINDEXDPROC)load("glIndexd"); glad_glIndexdv = (PFNGLINDEXDVPROC)load("glIndexdv"); glad_glIndexf = (PFNGLINDEXFPROC)load("glIndexf"); glad_glIndexfv = (PFNGLINDEXFVPROC)load("glIndexfv"); glad_glIndexi = (PFNGLINDEXIPROC)load("glIndexi"); glad_glIndexiv = (PFNGLINDEXIVPROC)load("glIndexiv"); glad_glIndexs = (PFNGLINDEXSPROC)load("glIndexs"); glad_glIndexsv = (PFNGLINDEXSVPROC)load("glIndexsv"); glad_glNormal3b = (PFNGLNORMAL3BPROC)load("glNormal3b"); glad_glNormal3bv = (PFNGLNORMAL3BVPROC)load("glNormal3bv"); glad_glNormal3d = (PFNGLNORMAL3DPROC)load("glNormal3d"); glad_glNormal3dv = (PFNGLNORMAL3DVPROC)load("glNormal3dv"); glad_glNormal3f = (PFNGLNORMAL3FPROC)load("glNormal3f"); glad_glNormal3fv = (PFNGLNORMAL3FVPROC)load("glNormal3fv"); glad_glNormal3i = (PFNGLNORMAL3IPROC)load("glNormal3i"); glad_glNormal3iv = (PFNGLNORMAL3IVPROC)load("glNormal3iv"); glad_glNormal3s = (PFNGLNORMAL3SPROC)load("glNormal3s"); glad_glNormal3sv = (PFNGLNORMAL3SVPROC)load("glNormal3sv"); glad_glRasterPos2d = (PFNGLRASTERPOS2DPROC)load("glRasterPos2d"); glad_glRasterPos2dv = (PFNGLRASTERPOS2DVPROC)load("glRasterPos2dv"); glad_glRasterPos2f = (PFNGLRASTERPOS2FPROC)load("glRasterPos2f"); glad_glRasterPos2fv = (PFNGLRASTERPOS2FVPROC)load("glRasterPos2fv"); glad_glRasterPos2i = (PFNGLRASTERPOS2IPROC)load("glRasterPos2i"); glad_glRasterPos2iv = (PFNGLRASTERPOS2IVPROC)load("glRasterPos2iv"); glad_glRasterPos2s = (PFNGLRASTERPOS2SPROC)load("glRasterPos2s"); glad_glRasterPos2sv = (PFNGLRASTERPOS2SVPROC)load("glRasterPos2sv"); glad_glRasterPos3d = (PFNGLRASTERPOS3DPROC)load("glRasterPos3d"); glad_glRasterPos3dv = (PFNGLRASTERPOS3DVPROC)load("glRasterPos3dv"); glad_glRasterPos3f = (PFNGLRASTERPOS3FPROC)load("glRasterPos3f"); glad_glRasterPos3fv = (PFNGLRASTERPOS3FVPROC)load("glRasterPos3fv"); glad_glRasterPos3i = (PFNGLRASTERPOS3IPROC)load("glRasterPos3i"); glad_glRasterPos3iv = (PFNGLRASTERPOS3IVPROC)load("glRasterPos3iv"); glad_glRasterPos3s = (PFNGLRASTERPOS3SPROC)load("glRasterPos3s"); glad_glRasterPos3sv = (PFNGLRASTERPOS3SVPROC)load("glRasterPos3sv"); glad_glRasterPos4d = (PFNGLRASTERPOS4DPROC)load("glRasterPos4d"); glad_glRasterPos4dv = (PFNGLRASTERPOS4DVPROC)load("glRasterPos4dv"); glad_glRasterPos4f = (PFNGLRASTERPOS4FPROC)load("glRasterPos4f"); glad_glRasterPos4fv = (PFNGLRASTERPOS4FVPROC)load("glRasterPos4fv"); glad_glRasterPos4i = (PFNGLRASTERPOS4IPROC)load("glRasterPos4i"); glad_glRasterPos4iv = (PFNGLRASTERPOS4IVPROC)load("glRasterPos4iv"); glad_glRasterPos4s = (PFNGLRASTERPOS4SPROC)load("glRasterPos4s"); glad_glRasterPos4sv = (PFNGLRASTERPOS4SVPROC)load("glRasterPos4sv"); glad_glRectd = (PFNGLRECTDPROC)load("glRectd"); glad_glRectdv = (PFNGLRECTDVPROC)load("glRectdv"); glad_glRectf = (PFNGLRECTFPROC)load("glRectf"); glad_glRectfv = (PFNGLRECTFVPROC)load("glRectfv"); glad_glRecti = (PFNGLRECTIPROC)load("glRecti"); glad_glRectiv = (PFNGLRECTIVPROC)load("glRectiv"); glad_glRects = (PFNGLRECTSPROC)load("glRects"); glad_glRectsv = (PFNGLRECTSVPROC)load("glRectsv"); glad_glTexCoord1d = (PFNGLTEXCOORD1DPROC)load("glTexCoord1d"); glad_glTexCoord1dv = (PFNGLTEXCOORD1DVPROC)load("glTexCoord1dv"); glad_glTexCoord1f = (PFNGLTEXCOORD1FPROC)load("glTexCoord1f"); glad_glTexCoord1fv = (PFNGLTEXCOORD1FVPROC)load("glTexCoord1fv"); glad_glTexCoord1i = (PFNGLTEXCOORD1IPROC)load("glTexCoord1i"); glad_glTexCoord1iv = (PFNGLTEXCOORD1IVPROC)load("glTexCoord1iv"); glad_glTexCoord1s = (PFNGLTEXCOORD1SPROC)load("glTexCoord1s"); glad_glTexCoord1sv = (PFNGLTEXCOORD1SVPROC)load("glTexCoord1sv"); glad_glTexCoord2d = (PFNGLTEXCOORD2DPROC)load("glTexCoord2d"); glad_glTexCoord2dv = (PFNGLTEXCOORD2DVPROC)load("glTexCoord2dv"); glad_glTexCoord2f = (PFNGLTEXCOORD2FPROC)load("glTexCoord2f"); glad_glTexCoord2fv = (PFNGLTEXCOORD2FVPROC)load("glTexCoord2fv"); glad_glTexCoord2i = (PFNGLTEXCOORD2IPROC)load("glTexCoord2i"); glad_glTexCoord2iv = (PFNGLTEXCOORD2IVPROC)load("glTexCoord2iv"); glad_glTexCoord2s = (PFNGLTEXCOORD2SPROC)load("glTexCoord2s"); glad_glTexCoord2sv = (PFNGLTEXCOORD2SVPROC)load("glTexCoord2sv"); glad_glTexCoord3d = (PFNGLTEXCOORD3DPROC)load("glTexCoord3d"); glad_glTexCoord3dv = (PFNGLTEXCOORD3DVPROC)load("glTexCoord3dv"); glad_glTexCoord3f = (PFNGLTEXCOORD3FPROC)load("glTexCoord3f"); glad_glTexCoord3fv = (PFNGLTEXCOORD3FVPROC)load("glTexCoord3fv"); glad_glTexCoord3i = (PFNGLTEXCOORD3IPROC)load("glTexCoord3i"); glad_glTexCoord3iv = (PFNGLTEXCOORD3IVPROC)load("glTexCoord3iv"); glad_glTexCoord3s = (PFNGLTEXCOORD3SPROC)load("glTexCoord3s"); glad_glTexCoord3sv = (PFNGLTEXCOORD3SVPROC)load("glTexCoord3sv"); glad_glTexCoord4d = (PFNGLTEXCOORD4DPROC)load("glTexCoord4d"); glad_glTexCoord4dv = (PFNGLTEXCOORD4DVPROC)load("glTexCoord4dv"); glad_glTexCoord4f = (PFNGLTEXCOORD4FPROC)load("glTexCoord4f"); glad_glTexCoord4fv = (PFNGLTEXCOORD4FVPROC)load("glTexCoord4fv"); glad_glTexCoord4i = (PFNGLTEXCOORD4IPROC)load("glTexCoord4i"); glad_glTexCoord4iv = (PFNGLTEXCOORD4IVPROC)load("glTexCoord4iv"); glad_glTexCoord4s = (PFNGLTEXCOORD4SPROC)load("glTexCoord4s"); glad_glTexCoord4sv = (PFNGLTEXCOORD4SVPROC)load("glTexCoord4sv"); glad_glVertex2d = (PFNGLVERTEX2DPROC)load("glVertex2d"); glad_glVertex2dv = (PFNGLVERTEX2DVPROC)load("glVertex2dv"); glad_glVertex2f = (PFNGLVERTEX2FPROC)load("glVertex2f"); glad_glVertex2fv = (PFNGLVERTEX2FVPROC)load("glVertex2fv"); glad_glVertex2i = (PFNGLVERTEX2IPROC)load("glVertex2i"); glad_glVertex2iv = (PFNGLVERTEX2IVPROC)load("glVertex2iv"); glad_glVertex2s = (PFNGLVERTEX2SPROC)load("glVertex2s"); glad_glVertex2sv = (PFNGLVERTEX2SVPROC)load("glVertex2sv"); glad_glVertex3d = (PFNGLVERTEX3DPROC)load("glVertex3d"); glad_glVertex3dv = (PFNGLVERTEX3DVPROC)load("glVertex3dv"); glad_glVertex3f = (PFNGLVERTEX3FPROC)load("glVertex3f"); glad_glVertex3fv = (PFNGLVERTEX3FVPROC)load("glVertex3fv"); glad_glVertex3i = (PFNGLVERTEX3IPROC)load("glVertex3i"); glad_glVertex3iv = (PFNGLVERTEX3IVPROC)load("glVertex3iv"); glad_glVertex3s = (PFNGLVERTEX3SPROC)load("glVertex3s"); glad_glVertex3sv = (PFNGLVERTEX3SVPROC)load("glVertex3sv"); glad_glVertex4d = (PFNGLVERTEX4DPROC)load("glVertex4d"); glad_glVertex4dv = (PFNGLVERTEX4DVPROC)load("glVertex4dv"); glad_glVertex4f = (PFNGLVERTEX4FPROC)load("glVertex4f"); glad_glVertex4fv = (PFNGLVERTEX4FVPROC)load("glVertex4fv"); glad_glVertex4i = (PFNGLVERTEX4IPROC)load("glVertex4i"); glad_glVertex4iv = (PFNGLVERTEX4IVPROC)load("glVertex4iv"); glad_glVertex4s = (PFNGLVERTEX4SPROC)load("glVertex4s"); glad_glVertex4sv = (PFNGLVERTEX4SVPROC)load("glVertex4sv"); glad_glClipPlane = (PFNGLCLIPPLANEPROC)load("glClipPlane"); glad_glColorMaterial = (PFNGLCOLORMATERIALPROC)load("glColorMaterial"); glad_glFogf = (PFNGLFOGFPROC)load("glFogf"); glad_glFogfv = (PFNGLFOGFVPROC)load("glFogfv"); glad_glFogi = (PFNGLFOGIPROC)load("glFogi"); glad_glFogiv = (PFNGLFOGIVPROC)load("glFogiv"); glad_glLightf = (PFNGLLIGHTFPROC)load("glLightf"); glad_glLightfv = (PFNGLLIGHTFVPROC)load("glLightfv"); glad_glLighti = (PFNGLLIGHTIPROC)load("glLighti"); glad_glLightiv = (PFNGLLIGHTIVPROC)load("glLightiv"); glad_glLightModelf = (PFNGLLIGHTMODELFPROC)load("glLightModelf"); glad_glLightModelfv = (PFNGLLIGHTMODELFVPROC)load("glLightModelfv"); glad_glLightModeli = (PFNGLLIGHTMODELIPROC)load("glLightModeli"); glad_glLightModeliv = (PFNGLLIGHTMODELIVPROC)load("glLightModeliv"); glad_glLineStipple = (PFNGLLINESTIPPLEPROC)load("glLineStipple"); glad_glMaterialf = (PFNGLMATERIALFPROC)load("glMaterialf"); glad_glMaterialfv = (PFNGLMATERIALFVPROC)load("glMaterialfv"); glad_glMateriali = (PFNGLMATERIALIPROC)load("glMateriali"); glad_glMaterialiv = (PFNGLMATERIALIVPROC)load("glMaterialiv"); glad_glPolygonStipple = (PFNGLPOLYGONSTIPPLEPROC)load("glPolygonStipple"); glad_glShadeModel = (PFNGLSHADEMODELPROC)load("glShadeModel"); glad_glTexEnvf = (PFNGLTEXENVFPROC)load("glTexEnvf"); glad_glTexEnvfv = (PFNGLTEXENVFVPROC)load("glTexEnvfv"); glad_glTexEnvi = (PFNGLTEXENVIPROC)load("glTexEnvi"); glad_glTexEnviv = (PFNGLTEXENVIVPROC)load("glTexEnviv"); glad_glTexGend = (PFNGLTEXGENDPROC)load("glTexGend"); glad_glTexGendv = (PFNGLTEXGENDVPROC)load("glTexGendv"); glad_glTexGenf = (PFNGLTEXGENFPROC)load("glTexGenf"); glad_glTexGenfv = (PFNGLTEXGENFVPROC)load("glTexGenfv"); glad_glTexGeni = (PFNGLTEXGENIPROC)load("glTexGeni"); glad_glTexGeniv = (PFNGLTEXGENIVPROC)load("glTexGeniv"); glad_glFeedbackBuffer = (PFNGLFEEDBACKBUFFERPROC)load("glFeedbackBuffer"); glad_glSelectBuffer = (PFNGLSELECTBUFFERPROC)load("glSelectBuffer"); glad_glRenderMode = (PFNGLRENDERMODEPROC)load("glRenderMode"); glad_glInitNames = (PFNGLINITNAMESPROC)load("glInitNames"); glad_glLoadName = (PFNGLLOADNAMEPROC)load("glLoadName"); glad_glPassThrough = (PFNGLPASSTHROUGHPROC)load("glPassThrough"); glad_glPopName = (PFNGLPOPNAMEPROC)load("glPopName"); glad_glPushName = (PFNGLPUSHNAMEPROC)load("glPushName"); glad_glClearAccum = (PFNGLCLEARACCUMPROC)load("glClearAccum"); glad_glClearIndex = (PFNGLCLEARINDEXPROC)load("glClearIndex"); glad_glIndexMask = (PFNGLINDEXMASKPROC)load("glIndexMask"); glad_glAccum = (PFNGLACCUMPROC)load("glAccum"); glad_glPopAttrib = (PFNGLPOPATTRIBPROC)load("glPopAttrib"); glad_glPushAttrib = (PFNGLPUSHATTRIBPROC)load("glPushAttrib"); glad_glMap1d = (PFNGLMAP1DPROC)load("glMap1d"); glad_glMap1f = (PFNGLMAP1FPROC)load("glMap1f"); glad_glMap2d = (PFNGLMAP2DPROC)load("glMap2d"); glad_glMap2f = (PFNGLMAP2FPROC)load("glMap2f"); glad_glMapGrid1d = (PFNGLMAPGRID1DPROC)load("glMapGrid1d"); glad_glMapGrid1f = (PFNGLMAPGRID1FPROC)load("glMapGrid1f"); glad_glMapGrid2d = (PFNGLMAPGRID2DPROC)load("glMapGrid2d"); glad_glMapGrid2f = (PFNGLMAPGRID2FPROC)load("glMapGrid2f"); glad_glEvalCoord1d = (PFNGLEVALCOORD1DPROC)load("glEvalCoord1d"); glad_glEvalCoord1dv = (PFNGLEVALCOORD1DVPROC)load("glEvalCoord1dv"); glad_glEvalCoord1f = (PFNGLEVALCOORD1FPROC)load("glEvalCoord1f"); glad_glEvalCoord1fv = (PFNGLEVALCOORD1FVPROC)load("glEvalCoord1fv"); glad_glEvalCoord2d = (PFNGLEVALCOORD2DPROC)load("glEvalCoord2d"); glad_glEvalCoord2dv = (PFNGLEVALCOORD2DVPROC)load("glEvalCoord2dv"); glad_glEvalCoord2f = (PFNGLEVALCOORD2FPROC)load("glEvalCoord2f"); glad_glEvalCoord2fv = (PFNGLEVALCOORD2FVPROC)load("glEvalCoord2fv"); glad_glEvalMesh1 = (PFNGLEVALMESH1PROC)load("glEvalMesh1"); glad_glEvalPoint1 = (PFNGLEVALPOINT1PROC)load("glEvalPoint1"); glad_glEvalMesh2 = (PFNGLEVALMESH2PROC)load("glEvalMesh2"); glad_glEvalPoint2 = (PFNGLEVALPOINT2PROC)load("glEvalPoint2"); glad_glAlphaFunc = (PFNGLALPHAFUNCPROC)load("glAlphaFunc"); glad_glPixelZoom = (PFNGLPIXELZOOMPROC)load("glPixelZoom"); glad_glPixelTransferf = (PFNGLPIXELTRANSFERFPROC)load("glPixelTransferf"); glad_glPixelTransferi = (PFNGLPIXELTRANSFERIPROC)load("glPixelTransferi"); glad_glPixelMapfv = (PFNGLPIXELMAPFVPROC)load("glPixelMapfv"); glad_glPixelMapuiv = (PFNGLPIXELMAPUIVPROC)load("glPixelMapuiv"); glad_glPixelMapusv = (PFNGLPIXELMAPUSVPROC)load("glPixelMapusv"); glad_glCopyPixels = (PFNGLCOPYPIXELSPROC)load("glCopyPixels"); glad_glDrawPixels = (PFNGLDRAWPIXELSPROC)load("glDrawPixels"); glad_glGetClipPlane = (PFNGLGETCLIPPLANEPROC)load("glGetClipPlane"); glad_glGetLightfv = (PFNGLGETLIGHTFVPROC)load("glGetLightfv"); glad_glGetLightiv = (PFNGLGETLIGHTIVPROC)load("glGetLightiv"); glad_glGetMapdv = (PFNGLGETMAPDVPROC)load("glGetMapdv"); glad_glGetMapfv = (PFNGLGETMAPFVPROC)load("glGetMapfv"); glad_glGetMapiv = (PFNGLGETMAPIVPROC)load("glGetMapiv"); glad_glGetMaterialfv = (PFNGLGETMATERIALFVPROC)load("glGetMaterialfv"); glad_glGetMaterialiv = (PFNGLGETMATERIALIVPROC)load("glGetMaterialiv"); glad_glGetPixelMapfv = (PFNGLGETPIXELMAPFVPROC)load("glGetPixelMapfv"); glad_glGetPixelMapuiv = (PFNGLGETPIXELMAPUIVPROC)load("glGetPixelMapuiv"); glad_glGetPixelMapusv = (PFNGLGETPIXELMAPUSVPROC)load("glGetPixelMapusv"); glad_glGetPolygonStipple = (PFNGLGETPOLYGONSTIPPLEPROC)load("glGetPolygonStipple"); glad_glGetTexEnvfv = (PFNGLGETTEXENVFVPROC)load("glGetTexEnvfv"); glad_glGetTexEnviv = (PFNGLGETTEXENVIVPROC)load("glGetTexEnviv"); glad_glGetTexGendv = (PFNGLGETTEXGENDVPROC)load("glGetTexGendv"); glad_glGetTexGenfv = (PFNGLGETTEXGENFVPROC)load("glGetTexGenfv"); glad_glGetTexGeniv = (PFNGLGETTEXGENIVPROC)load("glGetTexGeniv"); glad_glIsList = (PFNGLISLISTPROC)load("glIsList"); glad_glFrustum = (PFNGLFRUSTUMPROC)load("glFrustum"); glad_glLoadIdentity = (PFNGLLOADIDENTITYPROC)load("glLoadIdentity"); glad_glLoadMatrixf = (PFNGLLOADMATRIXFPROC)load("glLoadMatrixf"); glad_glLoadMatrixd = (PFNGLLOADMATRIXDPROC)load("glLoadMatrixd"); glad_glMatrixMode = (PFNGLMATRIXMODEPROC)load("glMatrixMode"); glad_glMultMatrixf = (PFNGLMULTMATRIXFPROC)load("glMultMatrixf"); glad_glMultMatrixd = (PFNGLMULTMATRIXDPROC)load("glMultMatrixd"); glad_glOrtho = (PFNGLORTHOPROC)load("glOrtho"); glad_glPopMatrix = (PFNGLPOPMATRIXPROC)load("glPopMatrix"); glad_glPushMatrix = (PFNGLPUSHMATRIXPROC)load("glPushMatrix"); glad_glRotated = (PFNGLROTATEDPROC)load("glRotated"); glad_glRotatef = (PFNGLROTATEFPROC)load("glRotatef"); glad_glScaled = (PFNGLSCALEDPROC)load("glScaled"); glad_glScalef = (PFNGLSCALEFPROC)load("glScalef"); glad_glTranslated = (PFNGLTRANSLATEDPROC)load("glTranslated"); glad_glTranslatef = (PFNGLTRANSLATEFPROC)load("glTranslatef"); } static void load_GL_VERSION_1_1(GLADloadproc load) { if(!GLAD_GL_VERSION_1_1) return; glad_glDrawArrays = (PFNGLDRAWARRAYSPROC)load("glDrawArrays"); glad_glDrawElements = (PFNGLDRAWELEMENTSPROC)load("glDrawElements"); glad_glGetPointerv = (PFNGLGETPOINTERVPROC)load("glGetPointerv"); glad_glPolygonOffset = (PFNGLPOLYGONOFFSETPROC)load("glPolygonOffset"); glad_glCopyTexImage1D = (PFNGLCOPYTEXIMAGE1DPROC)load("glCopyTexImage1D"); glad_glCopyTexImage2D = (PFNGLCOPYTEXIMAGE2DPROC)load("glCopyTexImage2D"); glad_glCopyTexSubImage1D = (PFNGLCOPYTEXSUBIMAGE1DPROC)load("glCopyTexSubImage1D"); glad_glCopyTexSubImage2D = (PFNGLCOPYTEXSUBIMAGE2DPROC)load("glCopyTexSubImage2D"); glad_glTexSubImage1D = (PFNGLTEXSUBIMAGE1DPROC)load("glTexSubImage1D"); glad_glTexSubImage2D = (PFNGLTEXSUBIMAGE2DPROC)load("glTexSubImage2D"); glad_glBindTexture = (PFNGLBINDTEXTUREPROC)load("glBindTexture"); glad_glDeleteTextures = (PFNGLDELETETEXTURESPROC)load("glDeleteTextures"); glad_glGenTextures = (PFNGLGENTEXTURESPROC)load("glGenTextures"); glad_glIsTexture = (PFNGLISTEXTUREPROC)load("glIsTexture"); glad_glArrayElement = (PFNGLARRAYELEMENTPROC)load("glArrayElement"); glad_glColorPointer = (PFNGLCOLORPOINTERPROC)load("glColorPointer"); glad_glDisableClientState = (PFNGLDISABLECLIENTSTATEPROC)load("glDisableClientState"); glad_glEdgeFlagPointer = (PFNGLEDGEFLAGPOINTERPROC)load("glEdgeFlagPointer"); glad_glEnableClientState = (PFNGLENABLECLIENTSTATEPROC)load("glEnableClientState"); glad_glIndexPointer = (PFNGLINDEXPOINTERPROC)load("glIndexPointer"); glad_glInterleavedArrays = (PFNGLINTERLEAVEDARRAYSPROC)load("glInterleavedArrays"); glad_glNormalPointer = (PFNGLNORMALPOINTERPROC)load("glNormalPointer"); glad_glTexCoordPointer = (PFNGLTEXCOORDPOINTERPROC)load("glTexCoordPointer"); glad_glVertexPointer = (PFNGLVERTEXPOINTERPROC)load("glVertexPointer"); glad_glAreTexturesResident = (PFNGLARETEXTURESRESIDENTPROC)load("glAreTexturesResident"); glad_glPrioritizeTextures = (PFNGLPRIORITIZETEXTURESPROC)load("glPrioritizeTextures"); glad_glIndexub = (PFNGLINDEXUBPROC)load("glIndexub"); glad_glIndexubv = (PFNGLINDEXUBVPROC)load("glIndexubv"); glad_glPopClientAttrib = (PFNGLPOPCLIENTATTRIBPROC)load("glPopClientAttrib"); glad_glPushClientAttrib = (PFNGLPUSHCLIENTATTRIBPROC)load("glPushClientAttrib"); } static void load_GL_VERSION_1_2(GLADloadproc load) { if(!GLAD_GL_VERSION_1_2) return; glad_glDrawRangeElements = (PFNGLDRAWRANGEELEMENTSPROC)load("glDrawRangeElements"); glad_glTexImage3D = (PFNGLTEXIMAGE3DPROC)load("glTexImage3D"); glad_glTexSubImage3D = (PFNGLTEXSUBIMAGE3DPROC)load("glTexSubImage3D"); glad_glCopyTexSubImage3D = (PFNGLCOPYTEXSUBIMAGE3DPROC)load("glCopyTexSubImage3D"); } static void load_GL_VERSION_1_3(GLADloadproc load) { if(!GLAD_GL_VERSION_1_3) return; glad_glActiveTexture = (PFNGLACTIVETEXTUREPROC)load("glActiveTexture"); glad_glSampleCoverage = (PFNGLSAMPLECOVERAGEPROC)load("glSampleCoverage"); glad_glCompressedTexImage3D = (PFNGLCOMPRESSEDTEXIMAGE3DPROC)load("glCompressedTexImage3D"); glad_glCompressedTexImage2D = (PFNGLCOMPRESSEDTEXIMAGE2DPROC)load("glCompressedTexImage2D"); glad_glCompressedTexImage1D = (PFNGLCOMPRESSEDTEXIMAGE1DPROC)load("glCompressedTexImage1D"); glad_glCompressedTexSubImage3D = (PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC)load("glCompressedTexSubImage3D"); glad_glCompressedTexSubImage2D = (PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC)load("glCompressedTexSubImage2D"); glad_glCompressedTexSubImage1D = (PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC)load("glCompressedTexSubImage1D"); glad_glGetCompressedTexImage = (PFNGLGETCOMPRESSEDTEXIMAGEPROC)load("glGetCompressedTexImage"); glad_glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREPROC)load("glClientActiveTexture"); glad_glMultiTexCoord1d = (PFNGLMULTITEXCOORD1DPROC)load("glMultiTexCoord1d"); glad_glMultiTexCoord1dv = (PFNGLMULTITEXCOORD1DVPROC)load("glMultiTexCoord1dv"); glad_glMultiTexCoord1f = (PFNGLMULTITEXCOORD1FPROC)load("glMultiTexCoord1f"); glad_glMultiTexCoord1fv = (PFNGLMULTITEXCOORD1FVPROC)load("glMultiTexCoord1fv"); glad_glMultiTexCoord1i = (PFNGLMULTITEXCOORD1IPROC)load("glMultiTexCoord1i"); glad_glMultiTexCoord1iv = (PFNGLMULTITEXCOORD1IVPROC)load("glMultiTexCoord1iv"); glad_glMultiTexCoord1s = (PFNGLMULTITEXCOORD1SPROC)load("glMultiTexCoord1s"); glad_glMultiTexCoord1sv = (PFNGLMULTITEXCOORD1SVPROC)load("glMultiTexCoord1sv"); glad_glMultiTexCoord2d = (PFNGLMULTITEXCOORD2DPROC)load("glMultiTexCoord2d"); glad_glMultiTexCoord2dv = (PFNGLMULTITEXCOORD2DVPROC)load("glMultiTexCoord2dv"); glad_glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FPROC)load("glMultiTexCoord2f"); glad_glMultiTexCoord2fv = (PFNGLMULTITEXCOORD2FVPROC)load("glMultiTexCoord2fv"); glad_glMultiTexCoord2i = (PFNGLMULTITEXCOORD2IPROC)load("glMultiTexCoord2i"); glad_glMultiTexCoord2iv = (PFNGLMULTITEXCOORD2IVPROC)load("glMultiTexCoord2iv"); glad_glMultiTexCoord2s = (PFNGLMULTITEXCOORD2SPROC)load("glMultiTexCoord2s"); glad_glMultiTexCoord2sv = (PFNGLMULTITEXCOORD2SVPROC)load("glMultiTexCoord2sv"); glad_glMultiTexCoord3d = (PFNGLMULTITEXCOORD3DPROC)load("glMultiTexCoord3d"); glad_glMultiTexCoord3dv = (PFNGLMULTITEXCOORD3DVPROC)load("glMultiTexCoord3dv"); glad_glMultiTexCoord3f = (PFNGLMULTITEXCOORD3FPROC)load("glMultiTexCoord3f"); glad_glMultiTexCoord3fv = (PFNGLMULTITEXCOORD3FVPROC)load("glMultiTexCoord3fv"); glad_glMultiTexCoord3i = (PFNGLMULTITEXCOORD3IPROC)load("glMultiTexCoord3i"); glad_glMultiTexCoord3iv = (PFNGLMULTITEXCOORD3IVPROC)load("glMultiTexCoord3iv"); glad_glMultiTexCoord3s = (PFNGLMULTITEXCOORD3SPROC)load("glMultiTexCoord3s"); glad_glMultiTexCoord3sv = (PFNGLMULTITEXCOORD3SVPROC)load("glMultiTexCoord3sv"); glad_glMultiTexCoord4d = (PFNGLMULTITEXCOORD4DPROC)load("glMultiTexCoord4d"); glad_glMultiTexCoord4dv = (PFNGLMULTITEXCOORD4DVPROC)load("glMultiTexCoord4dv"); glad_glMultiTexCoord4f = (PFNGLMULTITEXCOORD4FPROC)load("glMultiTexCoord4f"); glad_glMultiTexCoord4fv = (PFNGLMULTITEXCOORD4FVPROC)load("glMultiTexCoord4fv"); glad_glMultiTexCoord4i = (PFNGLMULTITEXCOORD4IPROC)load("glMultiTexCoord4i"); glad_glMultiTexCoord4iv = (PFNGLMULTITEXCOORD4IVPROC)load("glMultiTexCoord4iv"); glad_glMultiTexCoord4s = (PFNGLMULTITEXCOORD4SPROC)load("glMultiTexCoord4s"); glad_glMultiTexCoord4sv = (PFNGLMULTITEXCOORD4SVPROC)load("glMultiTexCoord4sv"); glad_glLoadTransposeMatrixf = (PFNGLLOADTRANSPOSEMATRIXFPROC)load("glLoadTransposeMatrixf"); glad_glLoadTransposeMatrixd = (PFNGLLOADTRANSPOSEMATRIXDPROC)load("glLoadTransposeMatrixd"); glad_glMultTransposeMatrixf = (PFNGLMULTTRANSPOSEMATRIXFPROC)load("glMultTransposeMatrixf"); glad_glMultTransposeMatrixd = (PFNGLMULTTRANSPOSEMATRIXDPROC)load("glMultTransposeMatrixd"); } static void load_GL_VERSION_1_4(GLADloadproc load) { if(!GLAD_GL_VERSION_1_4) return; glad_glBlendFuncSeparate = (PFNGLBLENDFUNCSEPARATEPROC)load("glBlendFuncSeparate"); glad_glMultiDrawArrays = (PFNGLMULTIDRAWARRAYSPROC)load("glMultiDrawArrays"); glad_glMultiDrawElements = (PFNGLMULTIDRAWELEMENTSPROC)load("glMultiDrawElements"); glad_glPointParameterf = (PFNGLPOINTPARAMETERFPROC)load("glPointParameterf"); glad_glPointParameterfv = (PFNGLPOINTPARAMETERFVPROC)load("glPointParameterfv"); glad_glPointParameteri = (PFNGLPOINTPARAMETERIPROC)load("glPointParameteri"); glad_glPointParameteriv = (PFNGLPOINTPARAMETERIVPROC)load("glPointParameteriv"); glad_glFogCoordf = (PFNGLFOGCOORDFPROC)load("glFogCoordf"); glad_glFogCoordfv = (PFNGLFOGCOORDFVPROC)load("glFogCoordfv"); glad_glFogCoordd = (PFNGLFOGCOORDDPROC)load("glFogCoordd"); glad_glFogCoorddv = (PFNGLFOGCOORDDVPROC)load("glFogCoorddv"); glad_glFogCoordPointer = (PFNGLFOGCOORDPOINTERPROC)load("glFogCoordPointer"); glad_glSecondaryColor3b = (PFNGLSECONDARYCOLOR3BPROC)load("glSecondaryColor3b"); glad_glSecondaryColor3bv = (PFNGLSECONDARYCOLOR3BVPROC)load("glSecondaryColor3bv"); glad_glSecondaryColor3d = (PFNGLSECONDARYCOLOR3DPROC)load("glSecondaryColor3d"); glad_glSecondaryColor3dv = (PFNGLSECONDARYCOLOR3DVPROC)load("glSecondaryColor3dv"); glad_glSecondaryColor3f = (PFNGLSECONDARYCOLOR3FPROC)load("glSecondaryColor3f"); glad_glSecondaryColor3fv = (PFNGLSECONDARYCOLOR3FVPROC)load("glSecondaryColor3fv"); glad_glSecondaryColor3i = (PFNGLSECONDARYCOLOR3IPROC)load("glSecondaryColor3i"); glad_glSecondaryColor3iv = (PFNGLSECONDARYCOLOR3IVPROC)load("glSecondaryColor3iv"); glad_glSecondaryColor3s = (PFNGLSECONDARYCOLOR3SPROC)load("glSecondaryColor3s"); glad_glSecondaryColor3sv = (PFNGLSECONDARYCOLOR3SVPROC)load("glSecondaryColor3sv"); glad_glSecondaryColor3ub = (PFNGLSECONDARYCOLOR3UBPROC)load("glSecondaryColor3ub"); glad_glSecondaryColor3ubv = (PFNGLSECONDARYCOLOR3UBVPROC)load("glSecondaryColor3ubv"); glad_glSecondaryColor3ui = (PFNGLSECONDARYCOLOR3UIPROC)load("glSecondaryColor3ui"); glad_glSecondaryColor3uiv = (PFNGLSECONDARYCOLOR3UIVPROC)load("glSecondaryColor3uiv"); glad_glSecondaryColor3us = (PFNGLSECONDARYCOLOR3USPROC)load("glSecondaryColor3us"); glad_glSecondaryColor3usv = (PFNGLSECONDARYCOLOR3USVPROC)load("glSecondaryColor3usv"); glad_glSecondaryColorPointer = (PFNGLSECONDARYCOLORPOINTERPROC)load("glSecondaryColorPointer"); glad_glWindowPos2d = (PFNGLWINDOWPOS2DPROC)load("glWindowPos2d"); glad_glWindowPos2dv = (PFNGLWINDOWPOS2DVPROC)load("glWindowPos2dv"); glad_glWindowPos2f = (PFNGLWINDOWPOS2FPROC)load("glWindowPos2f"); glad_glWindowPos2fv = (PFNGLWINDOWPOS2FVPROC)load("glWindowPos2fv"); glad_glWindowPos2i = (PFNGLWINDOWPOS2IPROC)load("glWindowPos2i"); glad_glWindowPos2iv = (PFNGLWINDOWPOS2IVPROC)load("glWindowPos2iv"); glad_glWindowPos2s = (PFNGLWINDOWPOS2SPROC)load("glWindowPos2s"); glad_glWindowPos2sv = (PFNGLWINDOWPOS2SVPROC)load("glWindowPos2sv"); glad_glWindowPos3d = (PFNGLWINDOWPOS3DPROC)load("glWindowPos3d"); glad_glWindowPos3dv = (PFNGLWINDOWPOS3DVPROC)load("glWindowPos3dv"); glad_glWindowPos3f = (PFNGLWINDOWPOS3FPROC)load("glWindowPos3f"); glad_glWindowPos3fv = (PFNGLWINDOWPOS3FVPROC)load("glWindowPos3fv"); glad_glWindowPos3i = (PFNGLWINDOWPOS3IPROC)load("glWindowPos3i"); glad_glWindowPos3iv = (PFNGLWINDOWPOS3IVPROC)load("glWindowPos3iv"); glad_glWindowPos3s = (PFNGLWINDOWPOS3SPROC)load("glWindowPos3s"); glad_glWindowPos3sv = (PFNGLWINDOWPOS3SVPROC)load("glWindowPos3sv"); glad_glBlendColor = (PFNGLBLENDCOLORPROC)load("glBlendColor"); glad_glBlendEquation = (PFNGLBLENDEQUATIONPROC)load("glBlendEquation"); } static void load_GL_VERSION_1_5(GLADloadproc load) { if(!GLAD_GL_VERSION_1_5) return; glad_glGenQueries = (PFNGLGENQUERIESPROC)load("glGenQueries"); glad_glDeleteQueries = (PFNGLDELETEQUERIESPROC)load("glDeleteQueries"); glad_glIsQuery = (PFNGLISQUERYPROC)load("glIsQuery"); glad_glBeginQuery = (PFNGLBEGINQUERYPROC)load("glBeginQuery"); glad_glEndQuery = (PFNGLENDQUERYPROC)load("glEndQuery"); glad_glGetQueryiv = (PFNGLGETQUERYIVPROC)load("glGetQueryiv"); glad_glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC)load("glGetQueryObjectiv"); glad_glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC)load("glGetQueryObjectuiv"); glad_glBindBuffer = (PFNGLBINDBUFFERPROC)load("glBindBuffer"); glad_glDeleteBuffers = (PFNGLDELETEBUFFERSPROC)load("glDeleteBuffers"); glad_glGenBuffers = (PFNGLGENBUFFERSPROC)load("glGenBuffers"); glad_glIsBuffer = (PFNGLISBUFFERPROC)load("glIsBuffer"); glad_glBufferData = (PFNGLBUFFERDATAPROC)load("glBufferData"); glad_glBufferSubData = (PFNGLBUFFERSUBDATAPROC)load("glBufferSubData"); glad_glGetBufferSubData = (PFNGLGETBUFFERSUBDATAPROC)load("glGetBufferSubData"); glad_glMapBuffer = (PFNGLMAPBUFFERPROC)load("glMapBuffer"); glad_glUnmapBuffer = (PFNGLUNMAPBUFFERPROC)load("glUnmapBuffer"); glad_glGetBufferParameteriv = (PFNGLGETBUFFERPARAMETERIVPROC)load("glGetBufferParameteriv"); glad_glGetBufferPointerv = (PFNGLGETBUFFERPOINTERVPROC)load("glGetBufferPointerv"); } static void load_GL_VERSION_2_0(GLADloadproc load) { if(!GLAD_GL_VERSION_2_0) return; glad_glBlendEquationSeparate = (PFNGLBLENDEQUATIONSEPARATEPROC)load("glBlendEquationSeparate"); glad_glDrawBuffers = (PFNGLDRAWBUFFERSPROC)load("glDrawBuffers"); glad_glStencilOpSeparate = (PFNGLSTENCILOPSEPARATEPROC)load("glStencilOpSeparate"); glad_glStencilFuncSeparate = (PFNGLSTENCILFUNCSEPARATEPROC)load("glStencilFuncSeparate"); glad_glStencilMaskSeparate = (PFNGLSTENCILMASKSEPARATEPROC)load("glStencilMaskSeparate"); glad_glAttachShader = (PFNGLATTACHSHADERPROC)load("glAttachShader"); glad_glBindAttribLocation = (PFNGLBINDATTRIBLOCATIONPROC)load("glBindAttribLocation"); glad_glCompileShader = (PFNGLCOMPILESHADERPROC)load("glCompileShader"); glad_glCreateProgram = (PFNGLCREATEPROGRAMPROC)load("glCreateProgram"); glad_glCreateShader = (PFNGLCREATESHADERPROC)load("glCreateShader"); glad_glDeleteProgram = (PFNGLDELETEPROGRAMPROC)load("glDeleteProgram"); glad_glDeleteShader = (PFNGLDELETESHADERPROC)load("glDeleteShader"); glad_glDetachShader = (PFNGLDETACHSHADERPROC)load("glDetachShader"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC)load("glDisableVertexAttribArray"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC)load("glEnableVertexAttribArray"); glad_glGetActiveAttrib = (PFNGLGETACTIVEATTRIBPROC)load("glGetActiveAttrib"); glad_glGetActiveUniform = (PFNGLGETACTIVEUNIFORMPROC)load("glGetActiveUniform"); glad_glGetAttachedShaders = (PFNGLGETATTACHEDSHADERSPROC)load("glGetAttachedShaders"); glad_glGetAttribLocation = (PFNGLGETATTRIBLOCATIONPROC)load("glGetAttribLocation"); glad_glGetProgramiv = (PFNGLGETPROGRAMIVPROC)load("glGetProgramiv"); glad_glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC)load("glGetProgramInfoLog"); glad_glGetShaderiv = (PFNGLGETSHADERIVPROC)load("glGetShaderiv"); glad_glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC)load("glGetShaderInfoLog"); glad_glGetShaderSource = (PFNGLGETSHADERSOURCEPROC)load("glGetShaderSource"); glad_glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC)load("glGetUniformLocation"); glad_glGetUniformfv = (PFNGLGETUNIFORMFVPROC)load("glGetUniformfv"); glad_glGetUniformiv = (PFNGLGETUNIFORMIVPROC)load("glGetUniformiv"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC)load("glGetVertexAttribdv"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC)load("glGetVertexAttribfv"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC)load("glGetVertexAttribiv"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC)load("glGetVertexAttribPointerv"); glad_glIsProgram = (PFNGLISPROGRAMPROC)load("glIsProgram"); glad_glIsShader = (PFNGLISSHADERPROC)load("glIsShader"); glad_glLinkProgram = (PFNGLLINKPROGRAMPROC)load("glLinkProgram"); glad_glShaderSource = (PFNGLSHADERSOURCEPROC)load("glShaderSource"); glad_glUseProgram = (PFNGLUSEPROGRAMPROC)load("glUseProgram"); glad_glUniform1f = (PFNGLUNIFORM1FPROC)load("glUniform1f"); glad_glUniform2f = (PFNGLUNIFORM2FPROC)load("glUniform2f"); glad_glUniform3f = (PFNGLUNIFORM3FPROC)load("glUniform3f"); glad_glUniform4f = (PFNGLUNIFORM4FPROC)load("glUniform4f"); glad_glUniform1i = (PFNGLUNIFORM1IPROC)load("glUniform1i"); glad_glUniform2i = (PFNGLUNIFORM2IPROC)load("glUniform2i"); glad_glUniform3i = (PFNGLUNIFORM3IPROC)load("glUniform3i"); glad_glUniform4i = (PFNGLUNIFORM4IPROC)load("glUniform4i"); glad_glUniform1fv = (PFNGLUNIFORM1FVPROC)load("glUniform1fv"); glad_glUniform2fv = (PFNGLUNIFORM2FVPROC)load("glUniform2fv"); glad_glUniform3fv = (PFNGLUNIFORM3FVPROC)load("glUniform3fv"); glad_glUniform4fv = (PFNGLUNIFORM4FVPROC)load("glUniform4fv"); glad_glUniform1iv = (PFNGLUNIFORM1IVPROC)load("glUniform1iv"); glad_glUniform2iv = (PFNGLUNIFORM2IVPROC)load("glUniform2iv"); glad_glUniform3iv = (PFNGLUNIFORM3IVPROC)load("glUniform3iv"); glad_glUniform4iv = (PFNGLUNIFORM4IVPROC)load("glUniform4iv"); glad_glUniformMatrix2fv = (PFNGLUNIFORMMATRIX2FVPROC)load("glUniformMatrix2fv"); glad_glUniformMatrix3fv = (PFNGLUNIFORMMATRIX3FVPROC)load("glUniformMatrix3fv"); glad_glUniformMatrix4fv = (PFNGLUNIFORMMATRIX4FVPROC)load("glUniformMatrix4fv"); glad_glValidateProgram = (PFNGLVALIDATEPROGRAMPROC)load("glValidateProgram"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC)load("glVertexAttrib1d"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC)load("glVertexAttrib1dv"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC)load("glVertexAttrib1f"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC)load("glVertexAttrib1fv"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC)load("glVertexAttrib1s"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC)load("glVertexAttrib1sv"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC)load("glVertexAttrib2d"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC)load("glVertexAttrib2dv"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC)load("glVertexAttrib2f"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC)load("glVertexAttrib2fv"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC)load("glVertexAttrib2s"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC)load("glVertexAttrib2sv"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC)load("glVertexAttrib3d"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC)load("glVertexAttrib3dv"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC)load("glVertexAttrib3f"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC)load("glVertexAttrib3fv"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC)load("glVertexAttrib3s"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC)load("glVertexAttrib3sv"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC)load("glVertexAttrib4Nbv"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC)load("glVertexAttrib4Niv"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC)load("glVertexAttrib4Nsv"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC)load("glVertexAttrib4Nub"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC)load("glVertexAttrib4Nubv"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC)load("glVertexAttrib4Nuiv"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC)load("glVertexAttrib4Nusv"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC)load("glVertexAttrib4bv"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC)load("glVertexAttrib4d"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC)load("glVertexAttrib4dv"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC)load("glVertexAttrib4f"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC)load("glVertexAttrib4fv"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC)load("glVertexAttrib4iv"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC)load("glVertexAttrib4s"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC)load("glVertexAttrib4sv"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC)load("glVertexAttrib4ubv"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC)load("glVertexAttrib4uiv"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC)load("glVertexAttrib4usv"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC)load("glVertexAttribPointer"); } static void load_GL_VERSION_2_1(GLADloadproc load) { if(!GLAD_GL_VERSION_2_1) return; glad_glUniformMatrix2x3fv = (PFNGLUNIFORMMATRIX2X3FVPROC)load("glUniformMatrix2x3fv"); glad_glUniformMatrix3x2fv = (PFNGLUNIFORMMATRIX3X2FVPROC)load("glUniformMatrix3x2fv"); glad_glUniformMatrix2x4fv = (PFNGLUNIFORMMATRIX2X4FVPROC)load("glUniformMatrix2x4fv"); glad_glUniformMatrix4x2fv = (PFNGLUNIFORMMATRIX4X2FVPROC)load("glUniformMatrix4x2fv"); glad_glUniformMatrix3x4fv = (PFNGLUNIFORMMATRIX3X4FVPROC)load("glUniformMatrix3x4fv"); glad_glUniformMatrix4x3fv = (PFNGLUNIFORMMATRIX4X3FVPROC)load("glUniformMatrix4x3fv"); } static int find_extensionsGL(void) { if (!get_exts()) return 0; (void)&has_ext; free_exts(); return 1; } static void find_coreGL(void) { /* Thank you @elmindreda * https://github.com/elmindreda/greg/blob/master/templates/greg.c.in#L176 * https://github.com/glfw/glfw/blob/master/src/context.c#L36 */ int i, major, minor; const char* version; const char* prefixes[] = { "OpenGL ES-CM ", "OpenGL ES-CL ", "OpenGL ES ", NULL }; version = (const char*) glGetString(GL_VERSION); if (!version) return; for (i = 0; prefixes[i]; i++) { const size_t length = strlen(prefixes[i]); if (strncmp(version, prefixes[i], length) == 0) { version += length; break; } } /* PR #18 */ #ifdef _MSC_VER sscanf_s(version, "%d.%d", &major, &minor); #else sscanf(version, "%d.%d", &major, &minor); #endif GLVersion.major = major; GLVersion.minor = minor; max_loaded_major = major; max_loaded_minor = minor; GLAD_GL_VERSION_1_0 = (major == 1 && minor >= 0) || major > 1; GLAD_GL_VERSION_1_1 = (major == 1 && minor >= 1) || major > 1; GLAD_GL_VERSION_1_2 = (major == 1 && minor >= 2) || major > 1; GLAD_GL_VERSION_1_3 = (major == 1 && minor >= 3) || major > 1; GLAD_GL_VERSION_1_4 = (major == 1 && minor >= 4) || major > 1; GLAD_GL_VERSION_1_5 = (major == 1 && minor >= 5) || major > 1; GLAD_GL_VERSION_2_0 = (major == 2 && minor >= 0) || major > 2; GLAD_GL_VERSION_2_1 = (major == 2 && minor >= 1) || major > 2; if (GLVersion.major > 2 || (GLVersion.major >= 2 && GLVersion.minor >= 1)) { max_loaded_major = 2; max_loaded_minor = 1; } } int gladLoadGLLoader(GLADloadproc load) { GLVersion.major = 0; GLVersion.minor = 0; glGetString = (PFNGLGETSTRINGPROC)load("glGetString"); if(glGetString == NULL) return 0; if(glGetString(GL_VERSION) == NULL) return 0; find_coreGL(); load_GL_VERSION_1_0(load); load_GL_VERSION_1_1(load); load_GL_VERSION_1_2(load); load_GL_VERSION_1_3(load); load_GL_VERSION_1_4(load); load_GL_VERSION_1_5(load); load_GL_VERSION_2_0(load); load_GL_VERSION_2_1(load); if (!find_extensionsGL()) return 0; return GLVersion.major != 0 || GLVersion.minor != 0; }
0
repos/zig-gorillas/lib
repos/zig-gorillas/lib/stb/stb_textedit.h
// stb_textedit.h - v1.13 - public domain - Sean Barrett // Development of this library was sponsored by RAD Game Tools // // This C header file implements the guts of a multi-line text-editing // widget; you implement display, word-wrapping, and low-level string // insertion/deletion, and stb_textedit will map user inputs into // insertions & deletions, plus updates to the cursor position, // selection state, and undo state. // // It is intended for use in games and other systems that need to build // their own custom widgets and which do not have heavy text-editing // requirements (this library is not recommended for use for editing large // texts, as its performance does not scale and it has limited undo). // // Non-trivial behaviors are modelled after Windows text controls. // // // LICENSE // // See end of file for license information. // // // DEPENDENCIES // // Uses the C runtime function 'memmove', which you can override // by defining STB_TEXTEDIT_memmove before the implementation. // Uses no other functions. Performs no runtime allocations. // // // VERSION HISTORY // // 1.13 (2019-02-07) fix bug in undo size management // 1.12 (2018-01-29) user can change STB_TEXTEDIT_KEYTYPE, fix redo to avoid crash // 1.11 (2017-03-03) fix HOME on last line, dragging off single-line textfield // 1.10 (2016-10-25) supress warnings about casting away const with -Wcast-qual // 1.9 (2016-08-27) customizable move-by-word // 1.8 (2016-04-02) better keyboard handling when mouse button is down // 1.7 (2015-09-13) change y range handling in case baseline is non-0 // 1.6 (2015-04-15) allow STB_TEXTEDIT_memmove // 1.5 (2014-09-10) add support for secondary keys for OS X // 1.4 (2014-08-17) fix signed/unsigned warnings // 1.3 (2014-06-19) fix mouse clicking to round to nearest char boundary // 1.2 (2014-05-27) fix some RAD types that had crept into the new code // 1.1 (2013-12-15) move-by-word (requires STB_TEXTEDIT_IS_SPACE ) // 1.0 (2012-07-26) improve documentation, initial public release // 0.3 (2012-02-24) bugfixes, single-line mode; insert mode // 0.2 (2011-11-28) fixes to undo/redo // 0.1 (2010-07-08) initial version // // ADDITIONAL CONTRIBUTORS // // Ulf Winklemann: move-by-word in 1.1 // Fabian Giesen: secondary key inputs in 1.5 // Martins Mozeiko: STB_TEXTEDIT_memmove in 1.6 // // Bugfixes: // Scott Graham // Daniel Keller // Omar Cornut // Dan Thompson // // USAGE // // This file behaves differently depending on what symbols you define // before including it. // // // Header-file mode: // // If you do not define STB_TEXTEDIT_IMPLEMENTATION before including this, // it will operate in "header file" mode. In this mode, it declares a // single public symbol, STB_TexteditState, which encapsulates the current // state of a text widget (except for the string, which you will store // separately). // // To compile in this mode, you must define STB_TEXTEDIT_CHARTYPE to a // primitive type that defines a single character (e.g. char, wchar_t, etc). // // To save space or increase undo-ability, you can optionally define the // following things that are used by the undo system: // // STB_TEXTEDIT_POSITIONTYPE small int type encoding a valid cursor position // STB_TEXTEDIT_UNDOSTATECOUNT the number of undo states to allow // STB_TEXTEDIT_UNDOCHARCOUNT the number of characters to store in the undo buffer // // If you don't define these, they are set to permissive types and // moderate sizes. The undo system does no memory allocations, so // it grows STB_TexteditState by the worst-case storage which is (in bytes): // // [4 + 3 * sizeof(STB_TEXTEDIT_POSITIONTYPE)] * STB_TEXTEDIT_UNDOSTATE_COUNT // + sizeof(STB_TEXTEDIT_CHARTYPE) * STB_TEXTEDIT_UNDOCHAR_COUNT // // // Implementation mode: // // If you define STB_TEXTEDIT_IMPLEMENTATION before including this, it // will compile the implementation of the text edit widget, depending // on a large number of symbols which must be defined before the include. // // The implementation is defined only as static functions. You will then // need to provide your own APIs in the same file which will access the // static functions. // // The basic concept is that you provide a "string" object which // behaves like an array of characters. stb_textedit uses indices to // refer to positions in the string, implicitly representing positions // in the displayed textedit. This is true for both plain text and // rich text; even with rich text stb_truetype interacts with your // code as if there was an array of all the displayed characters. // // Symbols that must be the same in header-file and implementation mode: // // STB_TEXTEDIT_CHARTYPE the character type // STB_TEXTEDIT_POSITIONTYPE small type that is a valid cursor position // STB_TEXTEDIT_UNDOSTATECOUNT the number of undo states to allow // STB_TEXTEDIT_UNDOCHARCOUNT the number of characters to store in the undo buffer // // Symbols you must define for implementation mode: // // STB_TEXTEDIT_STRING the type of object representing a string being edited, // typically this is a wrapper object with other data you need // // STB_TEXTEDIT_STRINGLEN(obj) the length of the string (ideally O(1)) // STB_TEXTEDIT_LAYOUTROW(&r,obj,n) returns the results of laying out a line of characters // starting from character #n (see discussion below) // STB_TEXTEDIT_GETWIDTH(obj,n,i) returns the pixel delta from the xpos of the i'th character // to the xpos of the i+1'th char for a line of characters // starting at character #n (i.e. accounts for kerning // with previous char) // STB_TEXTEDIT_KEYTOTEXT(k) maps a keyboard input to an insertable character // (return type is int, -1 means not valid to insert) // STB_TEXTEDIT_GETCHAR(obj,i) returns the i'th character of obj, 0-based // STB_TEXTEDIT_NEWLINE the character returned by _GETCHAR() we recognize // as manually wordwrapping for end-of-line positioning // // STB_TEXTEDIT_DELETECHARS(obj,i,n) delete n characters starting at i // STB_TEXTEDIT_INSERTCHARS(obj,i,c*,n) insert n characters at i (pointed to by STB_TEXTEDIT_CHARTYPE*) // // STB_TEXTEDIT_K_SHIFT a power of two that is or'd in to a keyboard input to represent the shift key // // STB_TEXTEDIT_K_LEFT keyboard input to move cursor left // STB_TEXTEDIT_K_RIGHT keyboard input to move cursor right // STB_TEXTEDIT_K_UP keyboard input to move cursor up // STB_TEXTEDIT_K_DOWN keyboard input to move cursor down // STB_TEXTEDIT_K_LINESTART keyboard input to move cursor to start of line // e.g. HOME // STB_TEXTEDIT_K_LINEEND keyboard input to move cursor to end of line // e.g. END // STB_TEXTEDIT_K_TEXTSTART keyboard input to move cursor to start of text // e.g. ctrl-HOME // STB_TEXTEDIT_K_TEXTEND keyboard input to move cursor to end of text // e.g. ctrl-END // STB_TEXTEDIT_K_DELETE keyboard input to delete selection or character under cursor // STB_TEXTEDIT_K_BACKSPACE keyboard input to delete selection or character left of cursor // STB_TEXTEDIT_K_UNDO keyboard input to perform undo // STB_TEXTEDIT_K_REDO keyboard input to perform redo // // Optional: // STB_TEXTEDIT_K_INSERT keyboard input to toggle insert mode // STB_TEXTEDIT_IS_SPACE(ch) true if character is whitespace (e.g. 'isspace'), // required for default WORDLEFT/WORDRIGHT handlers // STB_TEXTEDIT_MOVEWORDLEFT(obj,i) custom handler for WORDLEFT, returns index to move cursor to // STB_TEXTEDIT_MOVEWORDRIGHT(obj,i) custom handler for WORDRIGHT, returns index to move cursor to // STB_TEXTEDIT_K_WORDLEFT keyboard input to move cursor left one word // e.g. ctrl-LEFT // STB_TEXTEDIT_K_WORDRIGHT keyboard input to move cursor right one word // e.g. ctrl-RIGHT // STB_TEXTEDIT_K_LINESTART2 secondary keyboard input to move cursor to start of line // STB_TEXTEDIT_K_LINEEND2 secondary keyboard input to move cursor to end of line // STB_TEXTEDIT_K_TEXTSTART2 secondary keyboard input to move cursor to start of text // STB_TEXTEDIT_K_TEXTEND2 secondary keyboard input to move cursor to end of text // // Todo: // STB_TEXTEDIT_K_PGUP keyboard input to move cursor up a page // STB_TEXTEDIT_K_PGDOWN keyboard input to move cursor down a page // // Keyboard input must be encoded as a single integer value; e.g. a character code // and some bitflags that represent shift states. to simplify the interface, SHIFT must // be a bitflag, so we can test the shifted state of cursor movements to allow selection, // i.e. (STB_TEXTEDIT_K_RIGHT|STB_TEXTEDIT_K_SHIFT) should be shifted right-arrow. // // You can encode other things, such as CONTROL or ALT, in additional bits, and // then test for their presence in e.g. STB_TEXTEDIT_K_WORDLEFT. For example, // my Windows implementations add an additional CONTROL bit, and an additional KEYDOWN // bit. Then all of the STB_TEXTEDIT_K_ values bitwise-or in the KEYDOWN bit, // and I pass both WM_KEYDOWN and WM_CHAR events to the "key" function in the // API below. The control keys will only match WM_KEYDOWN events because of the // keydown bit I add, and STB_TEXTEDIT_KEYTOTEXT only tests for the KEYDOWN // bit so it only decodes WM_CHAR events. // // STB_TEXTEDIT_LAYOUTROW returns information about the shape of one displayed // row of characters assuming they start on the i'th character--the width and // the height and the number of characters consumed. This allows this library // to traverse the entire layout incrementally. You need to compute word-wrapping // here. // // Each textfield keeps its own insert mode state, which is not how normal // applications work. To keep an app-wide insert mode, update/copy the // "insert_mode" field of STB_TexteditState before/after calling API functions. // // API // // void stb_textedit_initialize_state(STB_TexteditState *state, int is_single_line) // // void stb_textedit_click(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, float x, float y) // void stb_textedit_drag(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, float x, float y) // int stb_textedit_cut(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) // int stb_textedit_paste(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, STB_TEXTEDIT_CHARTYPE *text, int len) // void stb_textedit_key(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, STB_TEXEDIT_KEYTYPE key) // // Each of these functions potentially updates the string and updates the // state. // // initialize_state: // set the textedit state to a known good default state when initially // constructing the textedit. // // click: // call this with the mouse x,y on a mouse down; it will update the cursor // and reset the selection start/end to the cursor point. the x,y must // be relative to the text widget, with (0,0) being the top left. // // drag: // call this with the mouse x,y on a mouse drag/up; it will update the // cursor and the selection end point // // cut: // call this to delete the current selection; returns true if there was // one. you should FIRST copy the current selection to the system paste buffer. // (To copy, just copy the current selection out of the string yourself.) // // paste: // call this to paste text at the current cursor point or over the current // selection if there is one. // // key: // call this for keyboard inputs sent to the textfield. you can use it // for "key down" events or for "translated" key events. if you need to // do both (as in Win32), or distinguish Unicode characters from control // inputs, set a high bit to distinguish the two; then you can define the // various definitions like STB_TEXTEDIT_K_LEFT have the is-key-event bit // set, and make STB_TEXTEDIT_KEYTOCHAR check that the is-key-event bit is // clear. STB_TEXTEDIT_KEYTYPE defaults to int, but you can #define it to // anything other type you wante before including. // // // When rendering, you can read the cursor position and selection state from // the STB_TexteditState. // // // Notes: // // This is designed to be usable in IMGUI, so it allows for the possibility of // running in an IMGUI that has NOT cached the multi-line layout. For this // reason, it provides an interface that is compatible with computing the // layout incrementally--we try to make sure we make as few passes through // as possible. (For example, to locate the mouse pointer in the text, we // could define functions that return the X and Y positions of characters // and binary search Y and then X, but if we're doing dynamic layout this // will run the layout algorithm many times, so instead we manually search // forward in one pass. Similar logic applies to e.g. up-arrow and // down-arrow movement.) // // If it's run in a widget that *has* cached the layout, then this is less // efficient, but it's not horrible on modern computers. But you wouldn't // want to edit million-line files with it. //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //// //// Header-file mode //// //// #ifndef INCLUDE_STB_TEXTEDIT_H #define INCLUDE_STB_TEXTEDIT_H //////////////////////////////////////////////////////////////////////// // // STB_TexteditState // // Definition of STB_TexteditState which you should store // per-textfield; it includes cursor position, selection state, // and undo state. // #ifndef STB_TEXTEDIT_UNDOSTATECOUNT #define STB_TEXTEDIT_UNDOSTATECOUNT 99 #endif #ifndef STB_TEXTEDIT_UNDOCHARCOUNT #define STB_TEXTEDIT_UNDOCHARCOUNT 999 #endif #ifndef STB_TEXTEDIT_CHARTYPE #define STB_TEXTEDIT_CHARTYPE int #endif #ifndef STB_TEXTEDIT_POSITIONTYPE #define STB_TEXTEDIT_POSITIONTYPE int #endif typedef struct { // private data STB_TEXTEDIT_POSITIONTYPE where; STB_TEXTEDIT_POSITIONTYPE insert_length; STB_TEXTEDIT_POSITIONTYPE delete_length; int char_storage; } StbUndoRecord; typedef struct { // private data StbUndoRecord undo_rec [STB_TEXTEDIT_UNDOSTATECOUNT]; STB_TEXTEDIT_CHARTYPE undo_char[STB_TEXTEDIT_UNDOCHARCOUNT]; short undo_point, redo_point; int undo_char_point, redo_char_point; } StbUndoState; typedef struct { ///////////////////// // // public data // int cursor; // position of the text cursor within the string int select_start; // selection start point int select_end; // selection start and end point in characters; if equal, no selection. // note that start may be less than or greater than end (e.g. when // dragging the mouse, start is where the initial click was, and you // can drag in either direction) unsigned char insert_mode; // each textfield keeps its own insert mode state. to keep an app-wide // insert mode, copy this value in/out of the app state ///////////////////// // // private data // unsigned char cursor_at_end_of_line; // not implemented yet unsigned char initialized; unsigned char has_preferred_x; unsigned char single_line; unsigned char padding1, padding2, padding3; float preferred_x; // this determines where the cursor up/down tries to seek to along x StbUndoState undostate; } STB_TexteditState; //////////////////////////////////////////////////////////////////////// // // StbTexteditRow // // Result of layout query, used by stb_textedit to determine where // the text in each row is. // result of layout query typedef struct { float x0,x1; // starting x location, end x location (allows for align=right, etc) float baseline_y_delta; // position of baseline relative to previous row's baseline float ymin,ymax; // height of row above and below baseline int num_chars; } StbTexteditRow; #endif //INCLUDE_STB_TEXTEDIT_H //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //// //// Implementation mode //// //// // implementation isn't include-guarded, since it might have indirectly // included just the "header" portion #ifdef STB_TEXTEDIT_IMPLEMENTATION #ifndef STB_TEXTEDIT_memmove #include <string.h> #define STB_TEXTEDIT_memmove memmove #endif ///////////////////////////////////////////////////////////////////////////// // // Mouse input handling // // traverse the layout to locate the nearest character to a display position static int stb_text_locate_coord(STB_TEXTEDIT_STRING *str, float x, float y) { StbTexteditRow r; int n = STB_TEXTEDIT_STRINGLEN(str); float base_y = 0, prev_x; int i=0, k; r.x0 = r.x1 = 0; r.ymin = r.ymax = 0; r.num_chars = 0; // search rows to find one that straddles 'y' while (i < n) { STB_TEXTEDIT_LAYOUTROW(&r, str, i); if (r.num_chars <= 0) return n; if (i==0 && y < base_y + r.ymin) return 0; if (y < base_y + r.ymax) break; i += r.num_chars; base_y += r.baseline_y_delta; } // below all text, return 'after' last character if (i >= n) return n; // check if it's before the beginning of the line if (x < r.x0) return i; // check if it's before the end of the line if (x < r.x1) { // search characters in row for one that straddles 'x' prev_x = r.x0; for (k=0; k < r.num_chars; ++k) { float w = STB_TEXTEDIT_GETWIDTH(str, i, k); if (x < prev_x+w) { if (x < prev_x+w/2) return k+i; else return k+i+1; } prev_x += w; } // shouldn't happen, but if it does, fall through to end-of-line case } // if the last character is a newline, return that. otherwise return 'after' the last character if (STB_TEXTEDIT_GETCHAR(str, i+r.num_chars-1) == STB_TEXTEDIT_NEWLINE) return i+r.num_chars-1; else return i+r.num_chars; } // API click: on mouse down, move the cursor to the clicked location, and reset the selection static void stb_textedit_click(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, float x, float y) { // In single-line mode, just always make y = 0. This lets the drag keep working if the mouse // goes off the top or bottom of the text if( state->single_line ) { StbTexteditRow r; STB_TEXTEDIT_LAYOUTROW(&r, str, 0); y = r.ymin; } state->cursor = stb_text_locate_coord(str, x, y); state->select_start = state->cursor; state->select_end = state->cursor; state->has_preferred_x = 0; } // API drag: on mouse drag, move the cursor and selection endpoint to the clicked location static void stb_textedit_drag(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, float x, float y) { int p = 0; // In single-line mode, just always make y = 0. This lets the drag keep working if the mouse // goes off the top or bottom of the text if( state->single_line ) { StbTexteditRow r; STB_TEXTEDIT_LAYOUTROW(&r, str, 0); y = r.ymin; } if (state->select_start == state->select_end) state->select_start = state->cursor; p = stb_text_locate_coord(str, x, y); state->cursor = state->select_end = p; } ///////////////////////////////////////////////////////////////////////////// // // Keyboard input handling // // forward declarations static void stb_text_undo(STB_TEXTEDIT_STRING *str, STB_TexteditState *state); static void stb_text_redo(STB_TEXTEDIT_STRING *str, STB_TexteditState *state); static void stb_text_makeundo_delete(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, int where, int length); static void stb_text_makeundo_insert(STB_TexteditState *state, int where, int length); static void stb_text_makeundo_replace(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, int where, int old_length, int new_length); typedef struct { float x,y; // position of n'th character float height; // height of line int first_char, length; // first char of row, and length int prev_first; // first char of previous row } StbFindState; // find the x/y location of a character, and remember info about the previous row in // case we get a move-up event (for page up, we'll have to rescan) static void stb_textedit_find_charpos(StbFindState *find, STB_TEXTEDIT_STRING *str, int n, int single_line) { StbTexteditRow r; int prev_start = 0; int z = STB_TEXTEDIT_STRINGLEN(str); int i=0, first; if (n == z) { // if it's at the end, then find the last line -- simpler than trying to // explicitly handle this case in the regular code if (single_line) { STB_TEXTEDIT_LAYOUTROW(&r, str, 0); find->y = 0; find->first_char = 0; find->length = z; find->height = r.ymax - r.ymin; find->x = r.x1; } else { find->y = 0; find->x = 0; find->height = 1; while (i < z) { STB_TEXTEDIT_LAYOUTROW(&r, str, i); prev_start = i; i += r.num_chars; } find->first_char = i; find->length = 0; find->prev_first = prev_start; } return; } // search rows to find the one that straddles character n find->y = 0; for(;;) { STB_TEXTEDIT_LAYOUTROW(&r, str, i); if (n < i + r.num_chars) break; prev_start = i; i += r.num_chars; find->y += r.baseline_y_delta; } find->first_char = first = i; find->length = r.num_chars; find->height = r.ymax - r.ymin; find->prev_first = prev_start; // now scan to find xpos find->x = r.x0; for (i=0; first+i < n; ++i) find->x += STB_TEXTEDIT_GETWIDTH(str, first, i); } #define STB_TEXT_HAS_SELECTION(s) ((s)->select_start != (s)->select_end) // make the selection/cursor state valid if client altered the string static void stb_textedit_clamp(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { int n = STB_TEXTEDIT_STRINGLEN(str); if (STB_TEXT_HAS_SELECTION(state)) { if (state->select_start > n) state->select_start = n; if (state->select_end > n) state->select_end = n; // if clamping forced them to be equal, move the cursor to match if (state->select_start == state->select_end) state->cursor = state->select_start; } if (state->cursor > n) state->cursor = n; } // delete characters while updating undo static void stb_textedit_delete(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, int where, int len) { stb_text_makeundo_delete(str, state, where, len); STB_TEXTEDIT_DELETECHARS(str, where, len); state->has_preferred_x = 0; } // delete the section static void stb_textedit_delete_selection(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { stb_textedit_clamp(str, state); if (STB_TEXT_HAS_SELECTION(state)) { if (state->select_start < state->select_end) { stb_textedit_delete(str, state, state->select_start, state->select_end - state->select_start); state->select_end = state->cursor = state->select_start; } else { stb_textedit_delete(str, state, state->select_end, state->select_start - state->select_end); state->select_start = state->cursor = state->select_end; } state->has_preferred_x = 0; } } // canoncialize the selection so start <= end static void stb_textedit_sortselection(STB_TexteditState *state) { if (state->select_end < state->select_start) { int temp = state->select_end; state->select_end = state->select_start; state->select_start = temp; } } // move cursor to first character of selection static void stb_textedit_move_to_first(STB_TexteditState *state) { if (STB_TEXT_HAS_SELECTION(state)) { stb_textedit_sortselection(state); state->cursor = state->select_start; state->select_end = state->select_start; state->has_preferred_x = 0; } } // move cursor to last character of selection static void stb_textedit_move_to_last(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { if (STB_TEXT_HAS_SELECTION(state)) { stb_textedit_sortselection(state); stb_textedit_clamp(str, state); state->cursor = state->select_end; state->select_start = state->select_end; state->has_preferred_x = 0; } } #ifdef STB_TEXTEDIT_IS_SPACE static int is_word_boundary( STB_TEXTEDIT_STRING *str, int idx ) { return idx > 0 ? (STB_TEXTEDIT_IS_SPACE( STB_TEXTEDIT_GETCHAR(str,idx-1) ) && !STB_TEXTEDIT_IS_SPACE( STB_TEXTEDIT_GETCHAR(str, idx) ) ) : 1; } #ifndef STB_TEXTEDIT_MOVEWORDLEFT static int stb_textedit_move_to_word_previous( STB_TEXTEDIT_STRING *str, int c ) { --c; // always move at least one character while( c >= 0 && !is_word_boundary( str, c ) ) --c; if( c < 0 ) c = 0; return c; } #define STB_TEXTEDIT_MOVEWORDLEFT stb_textedit_move_to_word_previous #endif #ifndef STB_TEXTEDIT_MOVEWORDRIGHT static int stb_textedit_move_to_word_next( STB_TEXTEDIT_STRING *str, int c ) { const int len = STB_TEXTEDIT_STRINGLEN(str); ++c; // always move at least one character while( c < len && !is_word_boundary( str, c ) ) ++c; if( c > len ) c = len; return c; } #define STB_TEXTEDIT_MOVEWORDRIGHT stb_textedit_move_to_word_next #endif #endif // update selection and cursor to match each other static void stb_textedit_prep_selection_at_cursor(STB_TexteditState *state) { if (!STB_TEXT_HAS_SELECTION(state)) state->select_start = state->select_end = state->cursor; else state->cursor = state->select_end; } // API cut: delete selection static int stb_textedit_cut(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { if (STB_TEXT_HAS_SELECTION(state)) { stb_textedit_delete_selection(str,state); // implicitly clamps state->has_preferred_x = 0; return 1; } return 0; } // API paste: replace existing selection with passed-in text static int stb_textedit_paste_internal(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, STB_TEXTEDIT_CHARTYPE *text, int len) { // if there's a selection, the paste should delete it stb_textedit_clamp(str, state); stb_textedit_delete_selection(str,state); // try to insert the characters if (STB_TEXTEDIT_INSERTCHARS(str, state->cursor, text, len)) { stb_text_makeundo_insert(state, state->cursor, len); state->cursor += len; state->has_preferred_x = 0; return 1; } // remove the undo since we didn't actually insert the characters if (state->undostate.undo_point) --state->undostate.undo_point; return 0; } #ifndef STB_TEXTEDIT_KEYTYPE #define STB_TEXTEDIT_KEYTYPE int #endif // API key: process a keyboard input static void stb_textedit_key(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, STB_TEXTEDIT_KEYTYPE key) { retry: switch (key) { default: { int c = STB_TEXTEDIT_KEYTOTEXT(key); if (c > 0) { STB_TEXTEDIT_CHARTYPE ch = (STB_TEXTEDIT_CHARTYPE) c; // can't add newline in single-line mode if (c == '\n' && state->single_line) break; if (state->insert_mode && !STB_TEXT_HAS_SELECTION(state) && state->cursor < STB_TEXTEDIT_STRINGLEN(str)) { stb_text_makeundo_replace(str, state, state->cursor, 1, 1); STB_TEXTEDIT_DELETECHARS(str, state->cursor, 1); if (STB_TEXTEDIT_INSERTCHARS(str, state->cursor, &ch, 1)) { ++state->cursor; state->has_preferred_x = 0; } } else { stb_textedit_delete_selection(str,state); // implicitly clamps if (STB_TEXTEDIT_INSERTCHARS(str, state->cursor, &ch, 1)) { stb_text_makeundo_insert(state, state->cursor, 1); ++state->cursor; state->has_preferred_x = 0; } } } break; } #ifdef STB_TEXTEDIT_K_INSERT case STB_TEXTEDIT_K_INSERT: state->insert_mode = !state->insert_mode; break; #endif case STB_TEXTEDIT_K_UNDO: stb_text_undo(str, state); state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_REDO: stb_text_redo(str, state); state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_LEFT: // if currently there's a selection, move cursor to start of selection if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_first(state); else if (state->cursor > 0) --state->cursor; state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_RIGHT: // if currently there's a selection, move cursor to end of selection if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_last(str, state); else ++state->cursor; stb_textedit_clamp(str, state); state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_LEFT | STB_TEXTEDIT_K_SHIFT: stb_textedit_clamp(str, state); stb_textedit_prep_selection_at_cursor(state); // move selection left if (state->select_end > 0) --state->select_end; state->cursor = state->select_end; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_MOVEWORDLEFT case STB_TEXTEDIT_K_WORDLEFT: if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_first(state); else { state->cursor = STB_TEXTEDIT_MOVEWORDLEFT(str, state->cursor); stb_textedit_clamp( str, state ); } break; case STB_TEXTEDIT_K_WORDLEFT | STB_TEXTEDIT_K_SHIFT: if( !STB_TEXT_HAS_SELECTION( state ) ) stb_textedit_prep_selection_at_cursor(state); state->cursor = STB_TEXTEDIT_MOVEWORDLEFT(str, state->cursor); state->select_end = state->cursor; stb_textedit_clamp( str, state ); break; #endif #ifdef STB_TEXTEDIT_MOVEWORDRIGHT case STB_TEXTEDIT_K_WORDRIGHT: if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_last(str, state); else { state->cursor = STB_TEXTEDIT_MOVEWORDRIGHT(str, state->cursor); stb_textedit_clamp( str, state ); } break; case STB_TEXTEDIT_K_WORDRIGHT | STB_TEXTEDIT_K_SHIFT: if( !STB_TEXT_HAS_SELECTION( state ) ) stb_textedit_prep_selection_at_cursor(state); state->cursor = STB_TEXTEDIT_MOVEWORDRIGHT(str, state->cursor); state->select_end = state->cursor; stb_textedit_clamp( str, state ); break; #endif case STB_TEXTEDIT_K_RIGHT | STB_TEXTEDIT_K_SHIFT: stb_textedit_prep_selection_at_cursor(state); // move selection right ++state->select_end; stb_textedit_clamp(str, state); state->cursor = state->select_end; state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_DOWN: case STB_TEXTEDIT_K_DOWN | STB_TEXTEDIT_K_SHIFT: { StbFindState find; StbTexteditRow row; int i, sel = (key & STB_TEXTEDIT_K_SHIFT) != 0; if (state->single_line) { // on windows, up&down in single-line behave like left&right key = STB_TEXTEDIT_K_RIGHT | (key & STB_TEXTEDIT_K_SHIFT); goto retry; } if (sel) stb_textedit_prep_selection_at_cursor(state); else if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_last(str,state); // compute current position of cursor point stb_textedit_clamp(str, state); stb_textedit_find_charpos(&find, str, state->cursor, state->single_line); // now find character position down a row if (find.length) { float goal_x = state->has_preferred_x ? state->preferred_x : find.x; float x; int start = find.first_char + find.length; state->cursor = start; STB_TEXTEDIT_LAYOUTROW(&row, str, state->cursor); x = row.x0; for (i=0; i < row.num_chars; ++i) { float dx = STB_TEXTEDIT_GETWIDTH(str, start, i); #ifdef STB_TEXTEDIT_GETWIDTH_NEWLINE if (dx == STB_TEXTEDIT_GETWIDTH_NEWLINE) break; #endif x += dx; if (x > goal_x) break; ++state->cursor; } stb_textedit_clamp(str, state); state->has_preferred_x = 1; state->preferred_x = goal_x; if (sel) state->select_end = state->cursor; } break; } case STB_TEXTEDIT_K_UP: case STB_TEXTEDIT_K_UP | STB_TEXTEDIT_K_SHIFT: { StbFindState find; StbTexteditRow row; int i, sel = (key & STB_TEXTEDIT_K_SHIFT) != 0; if (state->single_line) { // on windows, up&down become left&right key = STB_TEXTEDIT_K_LEFT | (key & STB_TEXTEDIT_K_SHIFT); goto retry; } if (sel) stb_textedit_prep_selection_at_cursor(state); else if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_move_to_first(state); // compute current position of cursor point stb_textedit_clamp(str, state); stb_textedit_find_charpos(&find, str, state->cursor, state->single_line); // can only go up if there's a previous row if (find.prev_first != find.first_char) { // now find character position up a row float goal_x = state->has_preferred_x ? state->preferred_x : find.x; float x; state->cursor = find.prev_first; STB_TEXTEDIT_LAYOUTROW(&row, str, state->cursor); x = row.x0; for (i=0; i < row.num_chars; ++i) { float dx = STB_TEXTEDIT_GETWIDTH(str, find.prev_first, i); #ifdef STB_TEXTEDIT_GETWIDTH_NEWLINE if (dx == STB_TEXTEDIT_GETWIDTH_NEWLINE) break; #endif x += dx; if (x > goal_x) break; ++state->cursor; } stb_textedit_clamp(str, state); state->has_preferred_x = 1; state->preferred_x = goal_x; if (sel) state->select_end = state->cursor; } break; } case STB_TEXTEDIT_K_DELETE: case STB_TEXTEDIT_K_DELETE | STB_TEXTEDIT_K_SHIFT: if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_delete_selection(str, state); else { int n = STB_TEXTEDIT_STRINGLEN(str); if (state->cursor < n) stb_textedit_delete(str, state, state->cursor, 1); } state->has_preferred_x = 0; break; case STB_TEXTEDIT_K_BACKSPACE: case STB_TEXTEDIT_K_BACKSPACE | STB_TEXTEDIT_K_SHIFT: if (STB_TEXT_HAS_SELECTION(state)) stb_textedit_delete_selection(str, state); else { stb_textedit_clamp(str, state); if (state->cursor > 0) { stb_textedit_delete(str, state, state->cursor-1, 1); --state->cursor; } } state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_TEXTSTART2 case STB_TEXTEDIT_K_TEXTSTART2: #endif case STB_TEXTEDIT_K_TEXTSTART: state->cursor = state->select_start = state->select_end = 0; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_TEXTEND2 case STB_TEXTEDIT_K_TEXTEND2: #endif case STB_TEXTEDIT_K_TEXTEND: state->cursor = STB_TEXTEDIT_STRINGLEN(str); state->select_start = state->select_end = 0; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_TEXTSTART2 case STB_TEXTEDIT_K_TEXTSTART2 | STB_TEXTEDIT_K_SHIFT: #endif case STB_TEXTEDIT_K_TEXTSTART | STB_TEXTEDIT_K_SHIFT: stb_textedit_prep_selection_at_cursor(state); state->cursor = state->select_end = 0; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_TEXTEND2 case STB_TEXTEDIT_K_TEXTEND2 | STB_TEXTEDIT_K_SHIFT: #endif case STB_TEXTEDIT_K_TEXTEND | STB_TEXTEDIT_K_SHIFT: stb_textedit_prep_selection_at_cursor(state); state->cursor = state->select_end = STB_TEXTEDIT_STRINGLEN(str); state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_LINESTART2 case STB_TEXTEDIT_K_LINESTART2: #endif case STB_TEXTEDIT_K_LINESTART: stb_textedit_clamp(str, state); stb_textedit_move_to_first(state); if (state->single_line) state->cursor = 0; else while (state->cursor > 0 && STB_TEXTEDIT_GETCHAR(str, state->cursor-1) != STB_TEXTEDIT_NEWLINE) --state->cursor; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_LINEEND2 case STB_TEXTEDIT_K_LINEEND2: #endif case STB_TEXTEDIT_K_LINEEND: { int n = STB_TEXTEDIT_STRINGLEN(str); stb_textedit_clamp(str, state); stb_textedit_move_to_first(state); if (state->single_line) state->cursor = n; else while (state->cursor < n && STB_TEXTEDIT_GETCHAR(str, state->cursor) != STB_TEXTEDIT_NEWLINE) ++state->cursor; state->has_preferred_x = 0; break; } #ifdef STB_TEXTEDIT_K_LINESTART2 case STB_TEXTEDIT_K_LINESTART2 | STB_TEXTEDIT_K_SHIFT: #endif case STB_TEXTEDIT_K_LINESTART | STB_TEXTEDIT_K_SHIFT: stb_textedit_clamp(str, state); stb_textedit_prep_selection_at_cursor(state); if (state->single_line) state->cursor = 0; else while (state->cursor > 0 && STB_TEXTEDIT_GETCHAR(str, state->cursor-1) != STB_TEXTEDIT_NEWLINE) --state->cursor; state->select_end = state->cursor; state->has_preferred_x = 0; break; #ifdef STB_TEXTEDIT_K_LINEEND2 case STB_TEXTEDIT_K_LINEEND2 | STB_TEXTEDIT_K_SHIFT: #endif case STB_TEXTEDIT_K_LINEEND | STB_TEXTEDIT_K_SHIFT: { int n = STB_TEXTEDIT_STRINGLEN(str); stb_textedit_clamp(str, state); stb_textedit_prep_selection_at_cursor(state); if (state->single_line) state->cursor = n; else while (state->cursor < n && STB_TEXTEDIT_GETCHAR(str, state->cursor) != STB_TEXTEDIT_NEWLINE) ++state->cursor; state->select_end = state->cursor; state->has_preferred_x = 0; break; } // @TODO: // STB_TEXTEDIT_K_PGUP - move cursor up a page // STB_TEXTEDIT_K_PGDOWN - move cursor down a page } } ///////////////////////////////////////////////////////////////////////////// // // Undo processing // // @OPTIMIZE: the undo/redo buffer should be circular static void stb_textedit_flush_redo(StbUndoState *state) { state->redo_point = STB_TEXTEDIT_UNDOSTATECOUNT; state->redo_char_point = STB_TEXTEDIT_UNDOCHARCOUNT; } // discard the oldest entry in the undo list static void stb_textedit_discard_undo(StbUndoState *state) { if (state->undo_point > 0) { // if the 0th undo state has characters, clean those up if (state->undo_rec[0].char_storage >= 0) { int n = state->undo_rec[0].insert_length, i; // delete n characters from all other records state->undo_char_point -= n; STB_TEXTEDIT_memmove(state->undo_char, state->undo_char + n, (size_t) (state->undo_char_point*sizeof(STB_TEXTEDIT_CHARTYPE))); for (i=0; i < state->undo_point; ++i) if (state->undo_rec[i].char_storage >= 0) state->undo_rec[i].char_storage -= n; // @OPTIMIZE: get rid of char_storage and infer it } --state->undo_point; STB_TEXTEDIT_memmove(state->undo_rec, state->undo_rec+1, (size_t) (state->undo_point*sizeof(state->undo_rec[0]))); } } // discard the oldest entry in the redo list--it's bad if this // ever happens, but because undo & redo have to store the actual // characters in different cases, the redo character buffer can // fill up even though the undo buffer didn't static void stb_textedit_discard_redo(StbUndoState *state) { int k = STB_TEXTEDIT_UNDOSTATECOUNT-1; if (state->redo_point <= k) { // if the k'th undo state has characters, clean those up if (state->undo_rec[k].char_storage >= 0) { int n = state->undo_rec[k].insert_length, i; // move the remaining redo character data to the end of the buffer state->redo_char_point += n; STB_TEXTEDIT_memmove(state->undo_char + state->redo_char_point, state->undo_char + state->redo_char_point-n, (size_t) ((STB_TEXTEDIT_UNDOCHARCOUNT - state->redo_char_point)*sizeof(STB_TEXTEDIT_CHARTYPE))); // adjust the position of all the other records to account for above memmove for (i=state->redo_point; i < k; ++i) if (state->undo_rec[i].char_storage >= 0) state->undo_rec[i].char_storage += n; } // now move all the redo records towards the end of the buffer; the first one is at 'redo_point' STB_TEXTEDIT_memmove(state->undo_rec + state->redo_point+1, state->undo_rec + state->redo_point, (size_t) ((STB_TEXTEDIT_UNDOSTATECOUNT - state->redo_point)*sizeof(state->undo_rec[0]))); // now move redo_point to point to the new one ++state->redo_point; } } static StbUndoRecord *stb_text_create_undo_record(StbUndoState *state, int numchars) { // any time we create a new undo record, we discard redo stb_textedit_flush_redo(state); // if we have no free records, we have to make room, by sliding the // existing records down if (state->undo_point == STB_TEXTEDIT_UNDOSTATECOUNT) stb_textedit_discard_undo(state); // if the characters to store won't possibly fit in the buffer, we can't undo if (numchars > STB_TEXTEDIT_UNDOCHARCOUNT) { state->undo_point = 0; state->undo_char_point = 0; return NULL; } // if we don't have enough free characters in the buffer, we have to make room while (state->undo_char_point + numchars > STB_TEXTEDIT_UNDOCHARCOUNT) stb_textedit_discard_undo(state); return &state->undo_rec[state->undo_point++]; } static STB_TEXTEDIT_CHARTYPE *stb_text_createundo(StbUndoState *state, int pos, int insert_len, int delete_len) { StbUndoRecord *r = stb_text_create_undo_record(state, insert_len); if (r == NULL) return NULL; r->where = pos; r->insert_length = (STB_TEXTEDIT_POSITIONTYPE) insert_len; r->delete_length = (STB_TEXTEDIT_POSITIONTYPE) delete_len; if (insert_len == 0) { r->char_storage = -1; return NULL; } else { r->char_storage = state->undo_char_point; state->undo_char_point += insert_len; return &state->undo_char[r->char_storage]; } } static void stb_text_undo(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { StbUndoState *s = &state->undostate; StbUndoRecord u, *r; if (s->undo_point == 0) return; // we need to do two things: apply the undo record, and create a redo record u = s->undo_rec[s->undo_point-1]; r = &s->undo_rec[s->redo_point-1]; r->char_storage = -1; r->insert_length = u.delete_length; r->delete_length = u.insert_length; r->where = u.where; if (u.delete_length) { // if the undo record says to delete characters, then the redo record will // need to re-insert the characters that get deleted, so we need to store // them. // there are three cases: // there's enough room to store the characters // characters stored for *redoing* don't leave room for redo // characters stored for *undoing* don't leave room for redo // if the last is true, we have to bail if (s->undo_char_point + u.delete_length >= STB_TEXTEDIT_UNDOCHARCOUNT) { // the undo records take up too much character space; there's no space to store the redo characters r->insert_length = 0; } else { int i; // there's definitely room to store the characters eventually while (s->undo_char_point + u.delete_length > s->redo_char_point) { // should never happen: if (s->redo_point == STB_TEXTEDIT_UNDOSTATECOUNT) return; // there's currently not enough room, so discard a redo record stb_textedit_discard_redo(s); } r = &s->undo_rec[s->redo_point-1]; r->char_storage = s->redo_char_point - u.delete_length; s->redo_char_point = s->redo_char_point - u.delete_length; // now save the characters for (i=0; i < u.delete_length; ++i) s->undo_char[r->char_storage + i] = STB_TEXTEDIT_GETCHAR(str, u.where + i); } // now we can carry out the deletion STB_TEXTEDIT_DELETECHARS(str, u.where, u.delete_length); } // check type of recorded action: if (u.insert_length) { // easy case: was a deletion, so we need to insert n characters STB_TEXTEDIT_INSERTCHARS(str, u.where, &s->undo_char[u.char_storage], u.insert_length); s->undo_char_point -= u.insert_length; } state->cursor = u.where + u.insert_length; s->undo_point--; s->redo_point--; } static void stb_text_redo(STB_TEXTEDIT_STRING *str, STB_TexteditState *state) { StbUndoState *s = &state->undostate; StbUndoRecord *u, r; if (s->redo_point == STB_TEXTEDIT_UNDOSTATECOUNT) return; // we need to do two things: apply the redo record, and create an undo record u = &s->undo_rec[s->undo_point]; r = s->undo_rec[s->redo_point]; // we KNOW there must be room for the undo record, because the redo record // was derived from an undo record u->delete_length = r.insert_length; u->insert_length = r.delete_length; u->where = r.where; u->char_storage = -1; if (r.delete_length) { // the redo record requires us to delete characters, so the undo record // needs to store the characters if (s->undo_char_point + u->insert_length > s->redo_char_point) { u->insert_length = 0; u->delete_length = 0; } else { int i; u->char_storage = s->undo_char_point; s->undo_char_point = s->undo_char_point + u->insert_length; // now save the characters for (i=0; i < u->insert_length; ++i) s->undo_char[u->char_storage + i] = STB_TEXTEDIT_GETCHAR(str, u->where + i); } STB_TEXTEDIT_DELETECHARS(str, r.where, r.delete_length); } if (r.insert_length) { // easy case: need to insert n characters STB_TEXTEDIT_INSERTCHARS(str, r.where, &s->undo_char[r.char_storage], r.insert_length); s->redo_char_point += r.insert_length; } state->cursor = r.where + r.insert_length; s->undo_point++; s->redo_point++; } static void stb_text_makeundo_insert(STB_TexteditState *state, int where, int length) { stb_text_createundo(&state->undostate, where, 0, length); } static void stb_text_makeundo_delete(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, int where, int length) { int i; STB_TEXTEDIT_CHARTYPE *p = stb_text_createundo(&state->undostate, where, length, 0); if (p) { for (i=0; i < length; ++i) p[i] = STB_TEXTEDIT_GETCHAR(str, where+i); } } static void stb_text_makeundo_replace(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, int where, int old_length, int new_length) { int i; STB_TEXTEDIT_CHARTYPE *p = stb_text_createundo(&state->undostate, where, old_length, new_length); if (p) { for (i=0; i < old_length; ++i) p[i] = STB_TEXTEDIT_GETCHAR(str, where+i); } } // reset the state to default static void stb_textedit_clear_state(STB_TexteditState *state, int is_single_line) { state->undostate.undo_point = 0; state->undostate.undo_char_point = 0; state->undostate.redo_point = STB_TEXTEDIT_UNDOSTATECOUNT; state->undostate.redo_char_point = STB_TEXTEDIT_UNDOCHARCOUNT; state->select_end = state->select_start = 0; state->cursor = 0; state->has_preferred_x = 0; state->preferred_x = 0; state->cursor_at_end_of_line = 0; state->initialized = 1; state->single_line = (unsigned char) is_single_line; state->insert_mode = 0; } // API initialize static void stb_textedit_initialize_state(STB_TexteditState *state, int is_single_line) { stb_textedit_clear_state(state, is_single_line); } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif static int stb_textedit_paste(STB_TEXTEDIT_STRING *str, STB_TexteditState *state, STB_TEXTEDIT_CHARTYPE const *ctext, int len) { return stb_textedit_paste_internal(str, state, (STB_TEXTEDIT_CHARTYPE *) ctext, len); } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif #endif//STB_TEXTEDIT_IMPLEMENTATION /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */
0
repos/zig-gorillas
repos/zig-gorillas/src/gfx.zig
const std = @import("std"); const nvg = @import("nvg.zig"); fn readNumber(data: []const u8, len: *usize) f32 { var i: usize = 0; while (i < data.len) : (i += 1) { if (!(data[i] == '.' or data[i] == '-' or (data[i] >= '0' and data[i] <= '9'))) break; } len.* = i; return std.fmt.parseFloat(f32, data[0..i]) catch unreachable; } fn fillPath(data: []const u8, color: nvg.Color) void { nvg.beginPath(); //var odd: bool = false; var pos: usize = 0; var len: usize = 0; while (pos < data.len) { switch (data[pos]) { 'M' => { //nvg.pathWinding(if (odd) .Clockwise else .CounterClockwise); //odd = !odd; pos += 1; const x = readNumber(data[pos..], &len); pos += len + 1; const y = readNumber(data[pos..], &len); pos += len; nvg.moveTo(x, y); }, 'L' => { pos += 1; const x = readNumber(data[pos..], &len); pos += len + 1; const y = readNumber(data[pos..], &len); pos += len; nvg.lineTo(x, y); }, 'C' => { pos += 1; const c1x = readNumber(data[pos..], &len); pos += len + 1; const c1y = readNumber(data[pos..], &len); pos += len + 1; const c2x = readNumber(data[pos..], &len); pos += len + 1; const c2y = readNumber(data[pos..], &len); pos += len + 1; const x = readNumber(data[pos..], &len); pos += len + 1; const y = readNumber(data[pos..], &len); pos += len; nvg.bezierTo(c1x, c1y, c2x, c2y, x, y); }, 'Z' => { pos += 1; nvg.closePath(); }, else => unreachable, } } nvg.fillColor(color); nvg.fill(); } fn fillCircle(cx: f32, cy: f32, r: f32, color: nvg.Color) void { nvg.beginPath(); nvg.circle(cx, cy, r); nvg.fillColor(color); nvg.fill(); } pub fn drawGorilla(x: f32, y: f32, mirror_x: bool, arm_up: bool) void { nvg.save(); defer nvg.restore(); nvg.translate(if (mirror_x) x + 48 else x - 48, y - 96); if (mirror_x) nvg.scale(-1, 1); // outline if (arm_up) { fillPath("M72.98,49.57C74.904,51.488 76,54.309 76,57.4L76,58.343C73.67,59.167 72,61.39 72,64C72,64 72,72 72,72C72,75.311 74.689,78 78,78L86,78C91.519,78 96,73.519 96,68L96,51.841C96,34.846 82.656,20.942 65.883,20.047C65.961,19.544 66,19.027 66,18.5C66,16.475 65.425,14.583 64.431,12.978C61.72,4.583 55.833,0 48,0C40.146,0 34.263,4.553 31.557,13C30.571,14.597 30,16.482 30,18.5C30,19.009 30.037,19.51 30.109,20L29.4,20C23.736,20 20,15.264 20,9.6L20,8.657C22.33,7.833 24,5.61 24,3L24,-5C24,-8.311 21.311,-11 18,-11C18,-11 10,-11 10,-11C4.481,-11 0,-6.519 0,-1L0,15.159C0,29.664 9.722,41.916 23,45.753C23,45.753 23,49 23,49C23,53.967 27.033,58 32,58L64,58C68.776,58 72.688,54.272 72.98,49.57ZM17.215,4.839C16.767,5.582 16.382,6.285 16.171,6.677L16,7L16,9.6C16,17.548 21.452,24 29.4,24L34,24C34.001,22.629 34.066,21.319 34.191,20.071C34.066,19.568 34,19.042 34,18.5C34,17.092 34.449,15.788 35.211,14.723C37.247,7.865 41.755,4 48,4C54.23,4 58.74,7.894 60.782,14.713C61.549,15.78 62,17.088 62,18.5C62,19.039 61.934,19.564 61.81,20.065C61.937,21.315 62.001,22.628 62,24L64.159,24C79.525,24 92,36.475 92,51.841L92,68C92,71.311 89.311,74 86,74L78,74C76.896,74 76,73.104 76,72L76,64C76,62.896 76.896,62 78,62C79.095,62 79.986,62.882 80,63.974L80,64L80,57.4C80,50.281 75.625,44.361 69,43.205L69,49C69,51.76 66.76,54 64,54L32,54C29.24,54 27,51.76 27,49L27,42.58C13.937,40.284 4,28.873 4,15.159L4,-1C4,-4.311 6.689,-7 10,-7L18,-7C19.104,-7 20,-6.104 20,-5L20,3C20,4.104 19.104,5 18,5C17.721,5 17.456,4.943 17.215,4.839Z", nvg.rgb(0, 0, 0)); fillPath("M16.917,83L14.25,83C10.801,83 8,85.801 8,89.25L8,96C8,98.209 9.791,100 12,100L36,100C38.209,100 40,98.209 40,96L40,89.25C40,87.441 39.23,85.812 38,84.67C38,84.671 38,81.632 38,81.632C38,81.632 46.654,73 46.654,73C46.654,73 49.346,73 49.346,73C49.346,73 58,81.632 58,81.632C58,81.632 58,84.671 58,84.671C56.77,85.812 56,87.441 56,89.25L56,96C56,98.209 57.791,100 60,100L84,100C86.209,100 88,98.209 88,96L88,89.25C88,85.801 85.199,83 81.75,83L79.083,83C79.673,81.618 80,80.097 80,78.5C80,74.331 77.962,71.879 74.46,68.804C74.466,68.809 67,61.343 67,61.343C67,61.343 67,54 67,54C67,51.791 65.209,50 63,50L33,50C30.791,50 29,51.791 29,54L29,61.343C29,61.343 21.534,68.809 21.534,68.809C18.036,71.881 16,74.333 16,78.5C16,80.097 16.327,81.618 16.917,83ZM63,54L63,63L71.731,71.731C74.255,73.939 76,75.517 76,78.5C76,79.991 75.564,81.38 74.813,82.548L72,87L81.75,87C82.992,87 84,88.008 84,89.25L84,96L60,96L60,89.25C60,88.093 60.876,87.138 62,87.014L62,79.972L51,69L45,69L34,79.972L34,87.014C35.124,87.138 36,88.093 36,89.25L36,96L12,96L12,89.25C12,88.008 13.008,87 14.25,87L24,87L21.187,82.548C20.436,81.38 20,79.991 20,78.5C20,75.517 21.745,73.939 24.269,71.731L33,63L33,54L63,54Z", nvg.rgb(0, 0, 0)); } else { fillPath("M29,57.485L29,61.343C29,61.343 21.534,68.809 21.534,68.809C18.036,71.881 16,74.333 16,78.5C16,80.097 16.327,81.618 16.917,83L14.25,83C10.801,83 8,85.801 8,89.25L8,96C8,98.209 9.791,100 12,100L36,100C38.209,100 40,98.209 40,96L40,89.25C40,87.441 39.23,85.812 38,84.67C38,84.671 38,81.632 38,81.632C38,81.632 46.654,73 46.654,73C46.654,73 49.346,73 49.346,73C49.346,73 58,81.632 58,81.632C58,81.632 58,84.671 58,84.671C56.77,85.812 56,87.441 56,89.25L56,96C56,98.209 57.791,100 60,100L84,100C86.209,100 88,98.209 88,96L88,89.25C88,85.801 85.199,83 81.75,83L79.083,83C79.673,81.618 80,80.097 80,78.5C80,74.331 77.962,71.879 74.46,68.804C74.466,68.809 67,61.343 67,61.343L67,57.485C70.495,56.25 73,52.915 73,49L73,40C73,37.791 71.209,36 69,36L27,36C24.791,36 23,37.791 23,40L23,49C23,52.915 25.505,56.25 29,57.485ZM69,40L69,49C69,51.76 66.76,54 64,54L63,54L63,63L71.731,71.731C74.255,73.939 76,75.517 76,78.5C76,79.991 75.564,81.38 74.813,82.548L72,87L81.75,87C82.992,87 84,88.008 84,89.25L84,96L60,96L60,89.25C60,88.093 60.876,87.138 62,87.014L62,79.972L51,69L45,69L34,79.972L34,87.014C35.124,87.138 36,88.093 36,89.25L36,96L12,96L12,89.25C12,88.008 13.008,87 14.25,87L24,87L21.187,82.548C20.436,81.38 20,79.991 20,78.5C20,75.517 21.745,73.939 24.269,71.731L33,63L33,54L32,54C29.24,54 27,51.76 27,49L27,40L69,40Z", nvg.rgb(0, 0, 0)); fillPath("M30.116,20.047C13.344,20.942 0,34.846 0,51.841L0,68C0,73.519 4.481,78 10,78L18,78C21.311,78 24,75.311 24,72L24,64C24,61.39 22.33,59.167 20,58.343L20,57.4C20,52.432 22.83,48.164 27.376,47.205C27.378,47.205 68.622,47.205 68.622,47.205L68.625,47.205C73.17,48.164 76,52.432 76,57.4L76,58.343C73.67,59.167 72,61.39 72,64C72,64 72,72 72,72C72,75.311 74.689,78 78,78L86,78C91.519,78 96,73.519 96,68L96,51.841C96,34.846 82.656,20.942 65.883,20.047C65.961,19.544 66,19.027 66,18.5C66,16.475 65.425,14.583 64.431,12.978C61.72,4.583 55.833,0 48,0C40.146,0 34.263,4.553 31.557,13C30.571,14.597 30,16.482 30,18.5C30,19.026 30.039,19.542 30.116,20.047ZM69,43.205L27,43.205C20.375,44.361 16,50.281 16,57.4L16,63.974C16.014,62.882 16.905,62 18,62C19.104,62 20,62.896 20,64L20,72C20,73.104 19.104,74 18,74L10,74C6.689,74 4,71.311 4,68L4,51.841C4,36.475 16.475,24 31.841,24L34,24C34.001,22.629 34.066,21.319 34.191,20.071C34.066,19.568 34,19.042 34,18.5C34,17.092 34.449,15.788 35.211,14.723C37.247,7.865 41.755,4 48,4C54.23,4 58.74,7.894 60.782,14.713C61.549,15.78 62,17.088 62,18.5C62,19.039 61.934,19.564 61.81,20.065C61.937,21.315 62.001,22.628 62,24L64.159,24C79.525,24 92,36.475 92,51.841L92,68C92,71.311 89.311,74 86,74L78,74C76.896,74 76,73.104 76,72L76,64C76,62.896 76.896,62 78,62C79.095,62 79.986,62.882 80,63.974L80,64L80,57.4C80,50.281 75.625,44.361 69,43.205Z", nvg.rgb(0, 0, 0)); } // left arm if (arm_up) { fillPath("M48,43L48,24L29.4,24C21.452,24 16,17.548 16,9.6L16,2C16,1.448 15.552,1 15,1C14.448,1 14,1.448 14,2L14,3L4,3L4,15.159C4,30.525 16.475,43 31.841,43L48,43Z", nvg.rgb(118, 118, 118)); fillPath("M16,3.026C16.014,4.118 16.905,5 18,5C19.104,5 20,4.104 20,3L20,-5C20,-6.104 19.104,-7 18,-7L10,-7C6.689,-7 4,-4.311 4,-1L4,3L16,3L16,3.026Z", nvg.rgb(205, 205, 205)); } else { fillPath("M48,24L48,43L29.4,43C21.452,43 16,49.452 16,57.4L16,65C16,65.552 15.552,66 15,66C14.448,66 14,65.552 14,65L14,64L4,64L4,51.841C4,36.475 16.475,24 31.841,24L48,24Z", nvg.rgb(118, 118, 118)); fillPath("M16,63.974C16.014,62.882 16.905,62 18,62C19.104,62 20,62.896 20,64L20,72C20,73.104 19.104,74 18,74L10,74C6.689,74 4,71.311 4,68L4,64L16,64L16,63.974Z", nvg.rgb(205, 205, 205)); } // right arm fillPath("M48,24L48,43L66.6,43C74.548,43 80,49.452 80,57.4L80,65C80,65.552 80.448,66 81,66C81.552,66 82,65.552 82,65L82,64L92,64L92,51.841C92,36.475 79.525,24 64.159,24L48,24Z", nvg.rgb(118, 118, 118)); fillPath("M80,63.974C79.986,62.882 79.095,62 78,62C76.896,62 76,62.896 76,64L76,72C76,73.104 76.896,74 78,74L86,74C89.311,74 92,71.311 92,68L92,64L80,64L80,63.974Z", nvg.rgb(205, 205, 205)); // legs fillPath("M24.269,71.731L33,63L45,69L34,79.972L34,88L24,87L21.187,82.548L21.187,82.548C20.436,81.38 20,79.991 20,78.5C20,75.517 21.745,73.939 24.269,71.731Z", nvg.rgb(118, 118, 118)); fillPath("M71.731,71.731L63,63L51,69L62,79.972L62,88L72,87L74.813,82.548L74.813,82.548C75.564,81.38 76,79.991 76,78.5C76,75.517 74.255,73.939 71.731,71.731Z", nvg.rgb(118, 118, 118)); // feet fillPath("M36,96L36,89.25C36,88.008 34.992,87 33.75,87L14.25,87C13.008,87 12,88.008 12,89.25L12,96L36,96Z", nvg.rgb(205, 205, 205)); fillPath("M60,96L60,89.25C60,88.008 61.008,87 62.25,87L81.75,87C82.992,87 84,88.008 84,89.25L84,96L60,96Z", nvg.rgb(205, 205, 205)); // belly fillPath("M63,53.25C63,50.352 60.648,48 57.75,48L38.25,48C35.352,48 33,50.352 33,53.25L33,63.75C33,66.648 35.352,69 38.25,69L57.75,69C60.648,69 63,66.648 63,63.75L63,53.25Z", nvg.rgb(205, 205, 205)); fillPath("M50,64C50,63.448 49.552,63 49,63L47,63C46.448,63 46,63.448 46,64C46,64.552 46.448,65 47,65L49,65C49.552,65 50,64.552 50,64Z", nvg.rgb(118, 118, 118)); // chest fillPath("M33,31L33,56L42,56C45.863,56 49,52.863 49,49C49,49 49,38 49,38C49,34.137 45.863,31 42,31L33,31Z", nvg.rgb(118, 118, 118)); fillPath("M47,38C47,35.24 44.76,33 42,33L32,33C29.24,33 27,35.24 27,38L27,49C27,51.76 29.24,54 32,54L42,54C44.76,54 47,51.76 47,49L47,38Z", nvg.rgb(205, 205, 205)); fillCircle(32, 49, 1, nvg.rgb(118, 118, 118)); fillPath("M63,31L63,56L54,56C50.137,56 47,52.863 47,49C47,49 47,38 47,38C47,34.137 50.137,31 54,31L63,31Z", nvg.rgb(118, 118, 118)); fillPath("M49,38C49,35.24 51.24,33 54,33L64,33C66.76,33 69,35.24 69,38L69,49C69,51.76 66.76,54 64,54L54,54C51.24,54 49,51.76 49,49L49,38Z", nvg.rgb(205, 205, 205)); fillCircle(64, 49, 1, nvg.rgb(118, 118, 118)); // head fillPath("M48,4C39.333,4 34.012,11.443 34,24C33.992,32.569 41.691,36.99 48,37C54.309,37.01 61.996,32.488 62,24C62.006,11.536 56.667,4 48,4Z", nvg.rgb(118, 118, 118)); fillPath("M40.5,12C36.913,12 34,14.913 34,18.5C34,20.009 34.515,21.4 35.38,22.503C34.49,24.022 34,25.717 34,27.5C34,33.707 40.16,39 48,39C55.84,39 62,33.707 62,27.5C62,25.717 61.51,24.022 60.62,22.503C61.485,21.399 62,20.009 62,18.5C62,14.913 59.087,12 55.5,12L40.5,12Z", nvg.rgb(118, 118, 118)); fillPath("M40.5,14L55.5,14C57.984,14 60,16.016 60,18.5C60,20.061 59.204,21.437 57.995,22.244C59.262,23.75 60,25.557 60,27.5C60,32.743 54.623,37 48,37C41.377,37 36,32.743 36,27.5C36,25.557 36.738,23.75 38.005,22.244C36.796,21.437 36,20.061 36,18.5C36,16.016 38.016,14 40.5,14Z", nvg.rgb(205, 205, 205)); fillPath("M39,18C39,17.448 39.448,17 40,17L44,17C44.548,17 44.993,17.441 45,17.987L45,18C45,19.656 43.656,21 42,21C40.344,21 39,19.656 39,18Z", nvg.rgb(0, 0, 0)); fillPath("M51,18C51,17.448 51.448,17 52,17L56,17C56.548,17 56.993,17.441 57,17.987L57,18C57,19.656 55.656,21 54,21C52.344,21 51,19.656 51,18Z", nvg.rgb(0, 0, 0)); fillPath("M40,32C39.448,32 39,31.552 39,31C39,29.344 40.344,28 42,28L54,28C55.656,28 57,29.344 57,31C57,31.552 56.552,32 56,32L40,32Z", nvg.rgb(0, 0, 0)); fillCircle(45.5, 24.5, 1.5, nvg.rgb(0, 0, 0)); fillCircle(50.5, 24.5, 1.5, nvg.rgb(0, 0, 0)); } pub fn drawBanana(x: f32, y: f32, angle: f32) void { nvg.save(); defer nvg.restore(); nvg.translate(x, y); nvg.rotate(angle); nvg.translate(-16, -16); fillPath("M16,16.016C14.127,16.016 12.53,14.506 11.159,13.373C9.427,11.941 7.922,10.713 6.902,10.279C4.959,9.45 3.374,9.825 2.147,10.722C1.277,11.358 0.016,12.802 0.016,16C0.016,24.822 7.178,31.984 16,31.984C24.822,31.984 31.984,24.822 31.984,16C31.984,12.802 30.723,11.358 29.853,10.722C28.626,9.825 27.041,9.45 25.098,10.279C24.078,10.713 22.573,11.941 20.841,13.373C19.47,14.506 17.873,16.016 16,16.016ZM16,20C22.623,20 28,9.377 28,16C28,22.623 22.623,28 16,28C9.377,28 4,22.623 4,16C4,9.377 9.377,20 16,20Z", nvg.rgb(0, 0, 0)); fillPath("M16,20C22.623,20 28,9.377 28,16C28,22.623 22.623,28 16,28C9.377,28 4,22.623 4,16C4,9.377 9.377,20 16,20Z", nvg.rgb(255, 217, 18)); fillPath("M4.224,14.316C5.304,19.832 10.169,24 16,24C21.831,24 26.696,19.832 27.776,14.316C27.923,14.662 28,15.208 28,16C28,22.623 22.623,28 16,28C9.377,28 4,22.623 4,16C4,15.208 4.077,14.662 4.224,14.316Z", nvg.rgb(225, 166, 58)); } pub fn drawExplosion(x: f32, y: f32, r: f32) void { nvg.save(); defer nvg.restore(); nvg.translate(x, y); const n: usize = 8; const angle: f32 = 2 * std.math.pi / @as(f32, @floatFromInt(n)); var k: usize = 0; while (k < 3) : (k += 1) { const kr = @as(f32, @floatFromInt(3 - k)) * r / 3; nvg.beginPath(); var i: usize = 0; while (i < n) : (i += 1) { const f: f32 = @floatFromInt(i); var c = @cos(f * angle); var s = @sin(f * angle); if (i == 0) nvg.moveTo(kr * c, kr * s) else nvg.lineTo(kr * c, kr * s); c = @cos((f + 0.5) * angle); s = @sin((f + 0.5) * angle); nvg.lineTo(0.6 * kr * c, 0.6 * kr * s); } nvg.closePath(); if (k == 0) { nvg.strokeWidth(8); nvg.stroke(); } nvg.fillColor(switch (k) { 0 => nvg.rgb(233, 10, 31), 1 => nvg.rgb(255, 201, 58), 2 => nvg.rgbf(1, 1, 1), else => unreachable, }); nvg.fill(); } } fn calcGaze(cx: f32, cy: f32, tx: f32, ty: f32, r_max: f32) struct { x: f32, y: f32 } { var dx = tx - cx; var dy = ty - cy; var len_sqr = dx * dx + dy * dy; if (len_sqr > r_max * r_max) { const s = r_max / std.math.sqrt(len_sqr); dx *= s; dy *= s; } return .{ .x = dx, .y = dy }; } pub fn drawSun(x: f32, y: f32, gaze: bool, tx: f32, ty: f32) void { nvg.save(); defer nvg.restore(); nvg.translate(x - 48, y - 48); fillPath("M51.368,1.842C50.633,0.694 49.363,0 48,-0C46.637,-0 45.367,0.694 44.632,1.842L38.286,11.746C38.286,11.746 27.838,6.342 27.838,6.342C26.627,5.716 25.181,5.749 24,6.431C22.819,7.112 22.067,8.348 22.004,9.71L21.461,21.461C21.461,21.461 9.71,22.004 9.71,22.004C8.348,22.067 7.112,22.819 6.431,24C5.749,25.181 5.716,26.627 6.342,27.838L11.746,38.286C11.746,38.286 1.842,44.632 1.842,44.632C0.694,45.367 -0,46.637 -0,48C0,49.363 0.694,50.633 1.842,51.368L11.746,57.714C11.746,57.714 6.342,68.162 6.342,68.162C5.716,69.373 5.749,70.819 6.431,72C7.112,73.181 8.348,73.933 9.71,73.996L21.461,74.539C21.461,74.539 22.004,86.29 22.004,86.29C22.067,87.652 22.819,88.888 24,89.569C25.181,90.251 26.627,90.284 27.838,89.658L38.286,84.254C38.286,84.254 44.632,94.158 44.632,94.158C45.367,95.306 46.637,96 48,96C49.363,96 50.633,95.306 51.368,94.158L57.714,84.254C57.714,84.254 68.162,89.658 68.162,89.658C69.373,90.284 70.819,90.251 72,89.569C73.181,88.888 73.933,87.652 73.996,86.29L74.539,74.539C74.539,74.539 86.29,73.996 86.29,73.996C87.652,73.933 88.888,73.181 89.569,72C90.251,70.819 90.284,69.373 89.658,68.162L84.254,57.714C84.254,57.714 94.158,51.368 94.158,51.368C95.306,50.633 96,49.363 96,48C96,46.637 95.306,45.367 94.158,44.632L84.254,38.286C84.254,38.286 89.658,27.838 89.658,27.838C90.284,26.627 90.251,25.181 89.569,24C88.888,22.819 87.652,22.067 86.29,22.004L74.539,21.461C74.539,21.461 73.996,9.71 73.996,9.71C73.933,8.348 73.181,7.112 72,6.431C70.819,5.749 69.373,5.716 68.162,6.342L57.714,11.746C57.714,11.746 51.368,1.842 51.368,1.842ZM48,4L56.313,16.974L70,9.895L70.712,25.288L86.105,26L79.026,39.687L92,48L79.026,56.313L86.105,70L70.712,70.712L70,86.105L56.313,79.026L48,92L39.687,79.026L26,86.105L25.288,70.712L9.895,70L16.974,56.313L4,48L16.974,39.687L9.895,26L25.288,25.288L26,9.895L39.687,16.974L48,4Z", nvg.rgb(0, 0, 0)); fillPath("M48,4L56.313,16.974L70,9.895L70.712,25.288L86.105,26L79.026,39.687L92,48L79.026,56.313L86.105,70L70.712,70.712L70,86.105L56.313,79.026L48,92L39.687,79.026L26,86.105L25.288,70.712L9.895,70L16.974,56.313L4,48L16.974,39.687L9.895,26L25.288,25.288L26,9.895L39.687,16.974L48,4Z", nvg.rgb(255, 186, 0)); fillCircle(48, 48, 32, nvg.rgb(255, 225, 0)); // mouth if (gaze) { fillCircle(48, 64, 5, nvg.rgb(0, 0, 0)); } else { fillPath("M64,56.104C63.944,64.886 56.796,72 48,72C39.17,72 32,64.83 32,56L64,56L64,56.104Z", nvg.rgb(0, 0, 0)); fillPath("M42.038,68.668C43.504,67.032 45.632,66 48,66C50.368,66 52.496,67.032 53.962,68.668C52.154,69.522 50.132,70 48,70C45.868,70 43.846,69.522 42.038,68.668Z", nvg.rgb(255, 0, 16)); fillPath("M61.856,58C61.654,59.412 61.242,60.756 60.65,62L35.35,62C34.758,60.756 34.344,59.412 34.142,58L61.856,58Z", nvg.rgbf(1, 1, 1)); } fillCircle(34, 42, 10, nvg.rgbf(1, 1, 1)); fillCircle(62, 42, 10, nvg.rgbf(1, 1, 1)); if (gaze) { const gl = calcGaze(x - 14, y - 6, tx, ty, 5); const gr = calcGaze(x + 14, y - 6, tx, ty, 5); fillCircle(34 + gl.x, 42 + gl.y, 5, nvg.rgb(0, 0, 0)); fillCircle(62 + gr.x, 42 + gr.y, 5, nvg.rgb(0, 0, 0)); } else { fillCircle(34, 42, 5, nvg.rgb(0, 0, 0)); fillCircle(62, 42, 5, nvg.rgb(0, 0, 0)); } } pub fn drawHighVoltage() void { nvg.beginPath(); nvg.moveTo(3, -14); nvg.lineTo(-13, 2); nvg.lineTo(1, 2); nvg.lineTo(-3, 14); nvg.lineTo(13, -2); nvg.lineTo(-1, -2); nvg.closePath(); nvg.lineJoin(.Round); nvg.strokeWidth(4); nvg.stroke(); nvg.fillColor(nvg.rgb(255, 200, 61)); nvg.fill(); }
0
repos/zig-gorillas
repos/zig-gorillas/src/c.zig
pub usingnamespace @cImport({ @cInclude("SDL2/SDL.h"); @cInclude("SDL2/SDL_opengl.h"); @cInclude("nanovg.h"); @cDefine("NANOVG_GL2", "1"); @cInclude("nanovg_gl.h"); });
0
repos/zig-gorillas
repos/zig-gorillas/src/main.zig
const std = @import("std"); const builtin = @import("builtin"); const mem = std.mem; const Allocator = mem.Allocator; const c = @import("c.zig"); const nvg = @import("nvg.zig"); const Game = @import("game.zig"); extern fn gladLoadGL() callconv(.C) c_int; // init OpenGL function pointers on Windows and Linux extern fn SetProcessDPIAware() callconv(.C) c_int; var sdl_window: ?*c.SDL_Window = null; var sdl_gl_context: c.SDL_GLContext = undefined; var video_width: f32 = 1280; var video_height: f32 = 720; var video_scale: f32 = 1; var fullscreen: bool = false; var game: Game = undefined; fn draw() void { sdlSetupFrame(); c.glClearColor(0.3, 0.5, 0.8, 1); c.glClear(c.GL_COLOR_BUFFER_BIT); nvg.beginFrame(video_width, video_height, video_scale); game.draw(); nvg.endFrame(); //c.glFlush(); c.SDL_GL_SwapWindow(sdl_window); } var first_surrogate_half: ?u16 = null; fn sdlProcessTextInput(text_event: c.SDL_TextInputEvent) !void { const text = mem.sliceTo(&text_event.text, 0); if (std.unicode.utf8ValidateSlice(text)) { try game.onTextInput(text); } else if (text.len == 3) { // Windows specific? _ = std.unicode.utf8Decode(text) catch |err| switch (err) { error.Utf8EncodesSurrogateHalf => { var codepoint: u21 = text[0] & 0b00001111; codepoint <<= 6; codepoint |= text[1] & 0b00111111; codepoint <<= 6; codepoint |= text[2] & 0b00111111; const surrogate: u16 = @intCast(codepoint); if (first_surrogate_half) |first_surrogate0| { const utf16 = [_]u16{ first_surrogate0, surrogate }; var utf8 = [_]u8{0} ** 4; _ = std.unicode.utf16leToUtf8(&utf8, &utf16) catch unreachable; first_surrogate_half = null; try game.onTextInput(&utf8); } else { first_surrogate_half = surrogate; } }, else => {}, }; } } fn getVideoScale() f32 { const default_dpi: f32 = switch (builtin.os.tag) { .windows => 96, .macos => 72, else => 96, // TODO }; const display = if (sdl_window) |_| c.SDL_GetWindowDisplayIndex(sdl_window) else 0; var dpi: f32 = undefined; _ = c.SDL_GetDisplayDPI(display, &dpi, null, null); return dpi / default_dpi; } fn sdlSetupFrame() void { const new_video_scale = getVideoScale(); if (new_video_scale != video_scale) { // DPI change //std.debug.print("new_video_scale {} {}\n", .{ new_video_scale, dpi }); video_scale = new_video_scale; var window_width: i32 = undefined; var window_height: i32 = undefined; if (builtin.os.tag == .macos) { window_width = @intFromFloat(video_width); window_height = @intFromFloat(video_height); } else { window_width = @intFromFloat(video_scale * video_width); window_height = @intFromFloat(video_scale * video_height); } c.SDL_SetWindowSize(sdl_window, window_width, window_height); } var drawable_width: i32 = undefined; var drawable_height: i32 = undefined; c.SDL_GL_GetDrawableSize(sdl_window, &drawable_width, &drawable_height); c.glViewport(0, 0, drawable_width, drawable_height); // only when window is resizable video_width = @as(f32, @floatFromInt(drawable_width)) / video_scale; video_height = @as(f32, @floatFromInt(drawable_height)) / video_scale; game.setSize(video_width, video_height); } fn sdlToggleFullscreen() void { fullscreen = !fullscreen; _ = c.SDL_SetWindowFullscreen(sdl_window, if (fullscreen) c.SDL_WINDOW_FULLSCREEN_DESKTOP else 0); _ = c.SDL_ShowCursor(if (fullscreen) c.SDL_DISABLE else c.SDL_ENABLE); } fn sdlEventWatch(userdata: ?*anyopaque, sdl_event_ptr: [*c]c.SDL_Event) callconv(.C) c_int { _ = userdata; const sdl_event = sdl_event_ptr[0]; if (sdl_event.type == c.SDL_WINDOWEVENT and sdl_event.window.event == c.SDL_WINDOWEVENT_RESIZED) { draw(); return 0; } return 1; // unhandled } pub fn main() !void { if (builtin.os.tag == .windows) { _ = SetProcessDPIAware(); } if (c.SDL_Init(c.SDL_INIT_VIDEO | c.SDL_INIT_TIMER) != 0) { c.SDL_Log("Unable to initialize SDL: %s", c.SDL_GetError()); return error.SDLInitializationFailed; } defer c.SDL_Quit(); _ = c.SDL_GL_SetAttribute(c.SDL_GL_STENCIL_SIZE, 1); _ = c.SDL_GL_SetAttribute(c.SDL_GL_MULTISAMPLEBUFFERS, 1); _ = c.SDL_GL_SetAttribute(c.SDL_GL_MULTISAMPLESAMPLES, 4); const window_flags = c.SDL_WINDOW_OPENGL | c.SDL_WINDOW_ALLOW_HIGHDPI | c.SDL_WINDOW_RESIZABLE; var window_width: i32 = undefined; var window_height: i32 = undefined; video_scale = getVideoScale(); if (builtin.os.tag == .macos) { window_width = @intFromFloat(video_width); window_height = @intFromFloat(video_height); } else { window_width = @intFromFloat(video_scale * video_width); window_height = @intFromFloat(video_scale * video_height); } sdl_window = c.SDL_CreateWindow("Zig Gorillas", c.SDL_WINDOWPOS_CENTERED, c.SDL_WINDOWPOS_CENTERED, window_width, window_height, window_flags); if (sdl_window == null) { c.SDL_Log("Unable to create window: %s", c.SDL_GetError()); return error.SDLCreateWindowFailed; } defer c.SDL_DestroyWindow(sdl_window); sdl_gl_context = c.SDL_GL_CreateContext(sdl_window); if (sdl_gl_context == null) { c.SDL_Log("Unable to create gl context: %s", c.SDL_GetError()); return error.SDLCreateGLContextFailed; } defer c.SDL_GL_DeleteContext(sdl_gl_context); _ = c.SDL_GL_SetSwapInterval(1); if (builtin.os.tag == .windows or builtin.os.tag == .linux) { _ = gladLoadGL(); } c.SDL_AddEventWatch(sdlEventWatch, null); nvg.init(); defer nvg.quit(); _ = nvg.createFontMem("font", @embedFile("../art/PressStart2P-Regular.ttf")); var gpa = std.heap.GeneralPurposeAllocator(.{ .enable_memory_limit = true, }){}; defer { const check = gpa.deinit(); if (check == .leak) @panic("Memory leak :("); } game = try Game.init(gpa.allocator()); defer game.deinit(); mainLoop: while (true) { var sdl_event: c.SDL_Event = undefined; while (c.SDL_PollEvent(&sdl_event) != 0) { switch (sdl_event.type) { c.SDL_QUIT => break :mainLoop, c.SDL_TEXTINPUT => try sdlProcessTextInput(sdl_event.text), c.SDL_KEYDOWN => switch (sdl_event.key.keysym.sym) { c.SDLK_RETURN, c.SDLK_KP_ENTER => game.onKeyReturn(), c.SDLK_BACKSPACE => game.onKeyBackspace(), c.SDLK_F11 => sdlToggleFullscreen(), else => {}, }, else => {}, } } game.tick(); draw(); } }
0
repos/zig-gorillas
repos/zig-gorillas/src/game.zig
const std = @import("std"); const nvg = @import("nvg.zig"); const gfx = @import("gfx.zig"); const Game = @This(); const GameState = enum(u1) { title, play, }; const BuildingColor = enum(u2) { grey, teal, red, }; const Building = struct { const Hole = struct { x: f32, y: f32, r: f32, }; x: f32, y: f32, w: f32, h: f32, color: BuildingColor, holes: std.ArrayList(Hole), fn init(allocator: std.mem.Allocator, x: f32, y: f32, w: f32, h: f32, color: BuildingColor) !*Building { var self = try allocator.create(Building); self.* = Building{ .x = x, .y = y, .w = w, .h = h, .color = color, .holes = std.ArrayList(Hole).init(allocator), }; return self; } fn deinit(self: Building) void { self.holes.deinit(); } fn addHole(self: *Building, x: f32, y: f32, r: f32) void { self.holes.append(Hole{ .x = x, .y = y, .r = r }) catch unreachable; } fn hit(self: *Building, x: f32, y: f32, r: f32) bool { const wh = 0.5 * self.w; const hh = 0.5 * self.h; var dist = sdRect(x - (self.x + wh), y - (self.y + hh), wh, hh); if (dist < r) { for (self.holes.items) |hole| { const holeDist = sdCircle(x - hole.x, y - hole.y, hole.r); dist = sdSubtraction(dist, holeDist); } if (dist < r) { self.addHole(x, y, 48); return true; } } return false; } fn draw(self: Building) void { nvg.scissor(self.x, self.y, self.w, self.h); defer nvg.resetScissor(); nvg.beginPath(); nvg.rect(self.x + 4, self.y + 4, self.w - 8, self.h); nvg.strokeWidth(10); nvg.stroke(); nvg.fillColor(switch (self.color) { .grey => nvg.rgb(168, 168, 168), .teal => nvg.rgb(96, 200, 136), .red => nvg.rgb(168, 0, 0), }); nvg.fill(); // windows const seed: u64 = @intFromFloat(self.x); // stable var rng = std.rand.DefaultPrng.init(seed); const random = rng.random(); nvg.beginPath(); var wy = self.y; while (wy < self.y + self.h) : (wy += 40) { var wx = self.x + 0.5 * @rem(self.w, 30); while (wx + 15 < self.x + self.w) : (wx += 30) { const on = random.uintLessThan(u8, 100) < 70; if (on) nvg.rect(wx + 10, wy + 18, 12, 20); } } nvg.fillColor(nvg.rgb(255, 255, 0)); nvg.fill(); nvg.beginPath(); wy = self.y; while (wy < self.y + self.h) : (wy += 40) { var wx = self.x + 0.5 * @rem(self.w, 30); while (wx + 15 < self.x + self.w) : (wx += 30) { const on = random.uintLessThan(u8, 100) < 70; if (!on) nvg.rect(wx + 10, wy + 18, 12, 20); } } nvg.fillColor(nvg.rgb(80, 80, 80)); nvg.fill(); // holes nvg.beginPath(); for (self.holes.items) |hole| { nvg.circle(hole.x, hole.y, hole.r - 4); } nvg.stroke(); nvg.scissor(self.x - 1, self.y - 1, self.w + 2, self.h + 2); // HACK nvg.fillColor(nvg.rgbf(0.3, 0.5, 0.8)); // background color nvg.fill(); } }; const TextEntry = enum(u2) { player1_name, player2_name, angle, velocity, }; const world_width: f32 = 1920; const world_height: f32 = 1080; const player_r: f32 = 48; const banana_r: f32 = 16 - 4; const wind_max: f32 = 0.002; allocator: std.mem.Allocator, width: f32 = 1280, height: f32 = 720, state: GameState = .title, player_turn: u2 = 1, player_win: u2 = 0, player1_name: std.ArrayList(u8), player1_x: f32 = undefined, player1_y: f32 = undefined, player1_arm: u8 = 0, player2_name: std.ArrayList(u8), player2_x: f32 = undefined, player2_y: f32 = undefined, player2_arm: u8 = 0, banana_x: f32 = undefined, banana_y: f32 = undefined, banana_vx: f32 = undefined, banana_vy: f32 = undefined, banana_flying: bool = false, explosion_x: f32 = undefined, explosion_y: f32 = undefined, explosion_r: f32 = undefined, explosion_frames: u32 = 0, wind: f32 = 0, text_entry: TextEntry = .player1_name, text_buffer: std.ArrayList(u8), angle: u32 = 45, velocity: u32 = 50, buildings: std.ArrayList(*Building), screenshake_amplitude: f32 = 0, screenshake_frequency: f32 = 0, frame: usize = 0, rng: std.rand.DefaultPrng, pub fn init(allocator: std.mem.Allocator) !Game { var self = Game{ .allocator = allocator, .player1_name = std.ArrayList(u8).init(allocator), .player2_name = std.ArrayList(u8).init(allocator), .text_buffer = std.ArrayList(u8).init(allocator), .buildings = std.ArrayList(*Building).init(allocator), .rng = undefined, }; try self.player1_name.appendSlice("Player 1"); try self.player2_name.appendSlice("Player 2"); const seed: u64 = @bitCast(std.time.milliTimestamp()); self.rng = std.rand.DefaultPrng.init(seed); try self.reset(); return self; } pub fn deinit(self: *Game) void { self.player1_name.deinit(); self.player2_name.deinit(); self.text_buffer.deinit(); self.clearBuildings(); self.buildings.deinit(); } fn reset(self: *Game) !void { self.state = .title; self.text_entry = .player1_name; self.player_win = 0; self.player_turn = 1; self.frame = 0; try self.generateBuildings(12); self.randomizeWind(); } pub fn setSize(self: *Game, width: f32, height: f32) void { self.width = width; self.height = height; } pub fn onTextInput(self: *Game, text: []const u8) !void { switch (self.text_entry) { .player1_name => if (self.player1_name.items.len + text.len < 16) try self.player1_name.appendSlice(text), .player2_name => if (self.player2_name.items.len + text.len < 16) try self.player2_name.appendSlice(text), else => { if (self.banana_flying or self.player_win != 0) return; if (self.text_buffer.items.len >= 3) return; const c = text[0]; if (c >= '0' and c <= '9') { try self.text_buffer.append(c); } }, } } pub fn onKeyBackspace(self: *Game) void { switch (self.text_entry) { .player1_name => { if (self.player1_name.items.len > 0) self.player1_name.items.len -= 1; }, .player2_name => { if (self.player2_name.items.len > 0) self.player2_name.items.len -= 1; }, else => { if (self.text_buffer.items.len > 0) self.text_buffer.items.len -= 1; }, } } pub fn onKeyReturn(self: *Game) void { switch (self.state) { .title => { switch (self.text_entry) { .player1_name => { if (self.player1_name.items.len > 0) self.text_entry = .player2_name; }, .player2_name => { if (self.player1_name.items.len > 0) { self.state = .play; self.text_entry = .angle; } }, else => unreachable, } }, .play => { if (self.banana_flying) return; if (self.player_win != 0) { self.reset() catch unreachable; } else { if (self.text_entry == .angle) { if (self.text_buffer.items.len == 0) return; self.angle = std.fmt.parseInt(u32, self.text_buffer.items, 10) catch unreachable; self.text_buffer.items.len = 0; self.text_entry = .velocity; } else if (self.text_entry == .velocity) { if (self.text_buffer.items.len == 0) return; self.velocity = std.fmt.parseInt(u32, self.text_buffer.items, 10) catch unreachable; self.text_buffer.items.len = 0; self.text_entry = .angle; self.launchBanana(self.player_turn, @floatFromInt(self.angle), @floatFromInt(self.velocity)); } } }, } } fn clearBuildings(self: *Game) void { for (self.buildings.items) |building| { building.deinit(); self.allocator.destroy(building); } self.buildings.items.len = 0; } fn generateBuildings(self: *Game, n: usize) !void { self.clearBuildings(); try self.buildings.ensureTotalCapacity(n); var random = self.rng.random(); var total_width: f32 = 0; const spacing: f32 = 12; var i: usize = 0; while (i < n) : (i += 1) { const color: BuildingColor = @enumFromInt(random.uintLessThan(u2, @typeInfo(BuildingColor).Enum.fields.len)); const width: f32 = @floatFromInt(random.intRangeAtMost(i32, 120, 250)); const height: f32 = @floatFromInt(random.intRangeAtMost(i32, 200, 750)); self.buildings.appendAssumeCapacity(try Building.init(self.allocator, total_width, world_height - height, width, height, color)); total_width += width; } const s = (world_width - @as(f32, @floatFromInt(n - 1)) * spacing) / total_width; var x: f32 = 0; for (self.buildings.items) |building| { building.x = x; building.w *= s; x += building.w + spacing; } const building1 = self.buildings.items[1]; const building2 = self.buildings.items[n - 2]; self.player1_x = building1.x + 0.5 * building1.w; self.player1_y = building1.y; self.player2_x = building2.x + 0.5 * building2.w; self.player2_y = building2.y; } fn randomizeWind(self: *Game) void { self.wind = wind_max * (self.rng.random().float(f32) * 2 - 1); } fn launchBanana(self: *Game, player: u2, angle: f32, velocity: f32) void { const rad = angle * std.math.pi / 180; const power = std.math.clamp(velocity, 1, 100) / 20; if (player == 1) { self.player1_arm = 20; self.banana_x = self.player1_x + 10 - player_r; self.banana_y = self.player1_y - 10 - 2 * player_r; self.banana_vx = @cos(rad) * power; self.banana_vy = -@sin(rad) * power; } else if (player == 2) { self.player2_arm = 20; self.banana_x = self.player2_x - 10 + player_r; self.banana_y = self.player2_y - 10 - 2 * player_r; self.banana_vx = -@cos(rad) * power; self.banana_vy = -@sin(rad) * power; } self.banana_flying = true; } fn checkBuildingCollision(self: *Game, x: f32, y: f32, r: f32) bool { for (self.buildings.items) |building| { if (building.hit(x, y, r)) { return true; } } return false; } fn explode(self: *Game, x: f32, y: f32, r: f32) void { self.explosion_x = x; self.explosion_y = y; self.explosion_r = r; self.explosion_frames = 30; } pub fn tick(self: *Game) void { if (self.banana_flying) { self.banana_x += self.banana_vx; self.banana_y += self.banana_vy; self.banana_vx += self.wind; self.banana_vy += 0.004; // gravity const oob = self.banana_x < -banana_r or self.banana_x > world_width + banana_r; if (oob or self.checkBuildingCollision(self.banana_x, self.banana_y, banana_r)) { self.explode(self.banana_x, self.banana_y, 48); self.banana_flying = false; self.randomizeWind(); self.player_turn = 3 - self.player_turn; } else { // check player collision if (self.player_turn == 1) { const d_x = self.player2_x - self.banana_x; const d_y = self.player2_y - player_r - self.banana_y; if (d_x * d_x + d_y * d_y < player_r * player_r) { self.explode(self.player2_x, self.player2_y - player_r, 3 * player_r); for (self.buildings.items) |building| building.addHole(self.explosion_x, self.explosion_y, self.explosion_r); self.banana_flying = false; self.player_win = self.player_turn; } } else if (self.player_turn == 2) { const d_x = self.player1_x - self.banana_x; const d_y = self.player1_y - player_r - self.banana_y; if (d_x * d_x + d_y * d_y < player_r * player_r) { self.explode(self.player1_x, self.player1_y - player_r, 3 * player_r); for (self.buildings.items) |building| building.addHole(self.explosion_x, self.explosion_y, self.explosion_r); self.banana_flying = false; self.player_win = self.player_turn; } } } } if (self.player1_arm > 0) self.player1_arm -= 1; if (self.player2_arm > 0) self.player2_arm -= 1; if (self.explosion_frames > 0) self.explosion_frames -= 1; self.screenshake_frequency = 0.8; self.screenshake_amplitude = @floatFromInt(self.explosion_frames); self.frame += 1; } fn drawParametersEntry(self: Game) void { nvg.save(); defer nvg.restore(); if (self.player_turn == 2) nvg.translate(self.width - 280, 0); const cursor_blink = self.frame % 60 < 30; var buf: [20]u8 = undefined; var x = nvg.text(10, 80, "Angle:"); if (self.text_entry == .angle) { if (self.text_buffer.items.len > 0) x = nvg.text(x, 80, self.text_buffer.items); if (cursor_blink) _ = nvg.text(x, 80, "_"); } else { _ = nvg.text(x, 80, std.fmt.bufPrint(&buf, "{}", .{self.angle}) catch unreachable); } x = nvg.text(10, 110, "Power:"); if (self.text_entry == .velocity) { if (self.text_buffer.items.len > 0) x = nvg.text(x, 110, self.text_buffer.items); if (cursor_blink) _ = nvg.text(x, 110, "_"); } _ = nvg.text(10, 140, "1-100"); } fn drawTitle(self: Game) void { const s = self.width / world_width; nvg.translate(0, (self.height - s * world_height) / 2); nvg.scale(s, s); nvg.save(); nvg.translate(300, 250); nvg.scale(4, 4); gfx.drawHighVoltage(); nvg.translate((world_width - 600) / 4, 0); gfx.drawHighVoltage(); nvg.restore(); nvg.fillColor(nvg.rgbf(1, 1, 1)); nvg.fontSize(96); nvg.textAlign(.center); _ = nvg.text(world_width / 2, 300, "Zig Gorillas"); _ = nvg.text(world_width / 2, 600, "VS"); nvg.fontSize(48); var x1: f32 = 600; if (self.player1_name.items.len > 0) x1 = nvg.text(x1, 800, self.player1_name.items); var x2: f32 = world_width - 600; if (self.player2_name.items.len > 0) x2 = nvg.text(x2, 800, self.player2_name.items); nvg.textAlign(.left); if (self.frame % 60 < 30) _ = nvg.text(if (self.text_entry == .player1_name) x1 else x2, 800, "_"); nvg.scale(2, 2); gfx.drawGorilla(600 / 2, 320, self.frame % 60 < 30, true); gfx.drawGorilla((world_width - 600) / 2, 320, self.frame % 60 >= 30, true); } fn drawWindIndicator(self: Game) void { const b = self.buildings.items[self.buildings.items.len / 2]; const x = b.x + b.w / 2; const y = b.y; const h = 96; nvg.beginPath(); nvg.moveTo(x, y); nvg.lineTo(x, y - h); nvg.strokeWidth(4); nvg.stroke(); nvg.beginPath(); nvg.moveTo(x, y - h); nvg.lineTo(x, y - h + 24); nvg.lineTo(x + 64 * self.wind / wind_max, y - h + 12 + 8 * @sin(0.06 * @as(f32, @floatFromInt(self.frame)))); nvg.closePath(); nvg.fillColor(nvg.rgbf(1, 0, 0)); nvg.fill(); nvg.lineJoin(.Round); nvg.stroke(); } fn drawGameplay(self: Game) void { // background nvg.beginPath(); nvg.rect(0, 0, self.width, self.height); nvg.fillPaint(nvg.linearGradient(0, 0, 0, self.height, nvg.rgb(2, 124, 255), nvg.rgb(153, 202, 255))); nvg.fill(); // player names nvg.fillColor(nvg.rgbf(1, 1, 1)); nvg.fontSize(24); _ = nvg.text(10, 34, self.player1_name.items); _ = nvg.textAlign(.right); _ = nvg.text(self.width - 10, 34, self.player2_name.items); _ = nvg.textAlign(.left); if (self.player_win == 1) { _ = nvg.text(10, 80, "WIN"); } else if (self.player_win == 2) { _ = nvg.textAlign(.right); _ = nvg.text(self.width - 10, 80, "WIN"); _ = nvg.textAlign(.left); } else { if (!self.banana_flying) { self.drawParametersEntry(); } } nvg.save(); defer nvg.restore(); const s = self.width / world_width; nvg.translate(0, self.height - s * world_height); nvg.scale(s, s); const screenshake = @sin(self.screenshake_frequency * @as(f32, @floatFromInt(self.frame))) * self.screenshake_amplitude; nvg.translate(screenshake, 0); gfx.drawSun(world_width / 2, world_height - 970, self.banana_flying, self.banana_x, self.banana_y); for (self.buildings.items) |building| { building.draw(); } self.drawWindIndicator(); if (self.player_win == 1) { gfx.drawGorilla(self.player1_x, self.player1_y, self.frame % 20 < 10, true); } else if (self.player_win == 2) { gfx.drawGorilla(self.player2_x, self.player2_y, self.frame % 20 < 10, true); } else { gfx.drawGorilla(self.player1_x, self.player1_y, false, self.player1_arm > 0); gfx.drawGorilla(self.player2_x, self.player2_y, true, self.player2_arm > 0); } if (self.banana_flying) { gfx.drawBanana(self.banana_x, self.banana_y, @as(f32, @floatFromInt(self.frame)) * 0.1); } if (self.explosion_frames > 0) { if (self.explosion_frames >= 25) { nvg.beginPath(); nvg.circle(self.explosion_x, self.explosion_y, self.explosion_r); nvg.fillColor(nvg.rgbf(1, 1, 1)); nvg.fill(); } else if (self.explosion_frames <= 20) { gfx.drawExplosion(self.explosion_x, self.explosion_y, self.explosion_r); } } } pub fn draw(self: Game) void { switch (self.state) { .title => self.drawTitle(), .play => self.drawGameplay(), } } // https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm fn sdCircle(x: f32, y: f32, r: f32) f32 { return std.math.sqrt(x * x + y * y) - r; } fn sdRect(x: f32, y: f32, hw: f32, hh: f32) f32 { const q_x = @fabs(x) - hw; const q_y = @fabs(y) - hh; const q_x0 = @max(q_x, 0); const q_y0 = @max(q_y, 0); return std.math.sqrt(q_x0 * q_x0 + q_y0 * q_y0) + @min(@max(q_x, q_y), 0.0); } fn sdSubtraction(d1: f32, d2: f32) f32 { return @max(d1, -d2); }
0
repos/zig-gorillas
repos/zig-gorillas/src/nvg.zig
const std = @import("std"); const c = @import("c.zig"); pub const Pi: f32 = 3.14159265358979323846264338327; pub const Color = c.NVGcolor; pub const Paint = c.NVGpaint; pub const Winding = enum(u2) { CounterClockwise = 1, // Winding for solid shapes Clockwise = 2, // Winding for holes }; pub const Solidity = enum(u1) { Solid = 1, // CCW Hole = 2, // CW }; pub const LineCap = enum(u2) { Butt, Round, Square, }; pub const LineJoin = enum(u2) { Miter, Round, Bevel, }; pub const TextAlign = enum(u8) { // Horizontal align left = 1 << 0, center = 1 << 1, right = 1 << 2, // Vertical align top = 1 << 3, middle = 1 << 4, bottom = 1 << 5, baseline = 1 << 6, // Default, align text vertically to baseline. _, }; pub const GlyphPosition = c.NVGglyphPosition; pub const Image = struct { handle: i32, }; pub const ImageFlags = packed struct { generate_mipmaps: bool = false, // Generate mipmaps during creation of the image. repeat_x: bool = false, // Repeat image in X direction. repeat_y: bool = false, // Repeat image in Y direction. flip_y: bool = false, // Flips (inverses) image in Y direction when rendered. premultiplied: bool = false, // Image data has premultiplied alpha. nearest: bool = false, // Image interpolation is Nearest instead Linear }; var ctx: ?*c.NVGcontext = undefined; pub fn init() void { ctx = c.nvgCreateGL2(c.NVG_STENCIL_STROKES); } pub fn quit() void { c.nvgDeleteGL2(ctx); } // Begin drawing a new frame // Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame() // nvgBeginFrame() defines the size of the window to render to in relation currently // set viewport (i.e. glViewport on GL backends). Device pixel ration allows to // control the rendering on Hi-DPI devices. // For example, GLFW returns two dimension for an opened window: window size and // frame buffer size. In that case you would set windowWidth/Height to the window size // devicePixelRatio to: frameBufferWidth / windowWidth. pub fn beginFrame(window_width: f32, window_height: f32, device_pixel_ratio: f32) void { c.nvgBeginFrame(ctx, window_width, window_height, device_pixel_ratio); } // Cancels drawing the current frame. pub fn cancelFrame() void { c.nvgCancelFrame(ctx); } // Ends drawing flushing remaining render state. pub fn endFrame() void { c.nvgEndFrame(ctx); } // // Color utils // // Colors in NanoVG are stored as unsigned ints in ABGR format. // Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f). pub fn rgb(r: u8, g: u8, b: u8) Color { return c.nvgRGB(r, g, b); } // Returns a color value from red, green, blue values. Alpha will be set to 1.0f. pub fn rgbf(r: f32, g: f32, b: f32) Color { return c.nvgRGBf(r, g, b); } // Returns a color value from red, green, blue and alpha values. pub fn rgba(r: u8, g: u8, b: u8, a: u8) Color { return c.nvgRGBA(r, g, b, a); } // Returns a color value from red, green, blue and alpha values. pub fn rgbaf(r: f32, g: f32, b: f32, a: f32) Color { return c.nvgRGBAf(r, g, b, a); } // // Linearly interpolates from color c0 to c1, and returns resulting color value. // NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u); // // Sets transparency of a color value. // NVGcolor nvgTransRGBA(NVGcolor c0, unsigned char a); // // Sets transparency of a color value. // NVGcolor nvgTransRGBAf(NVGcolor c0, float a); // // Returns color value specified by hue, saturation and lightness. // // HSL values are all in range [0..1], alpha will be set to 255. // NVGcolor nvgHSL(float h, float s, float l); // // Returns color value specified by hue, saturation and lightness and alpha. // // HSL values are all in range [0..1], alpha in range [0..255] // NVGcolor nvgHSLA(float h, float s, float l, unsigned char a); // // State Handling // // NanoVG contains state which represents how paths will be rendered. // The state contains transform, fill and stroke styles, text and font styles, // and scissor clipping. // Pushes and saves the current render state into a state stack. // A matching nvgRestore() must be used to restore the state. pub fn save() void { c.nvgSave(ctx); } // Pops and restores current render state. pub fn restore() void { c.nvgRestore(ctx); } // Resets current render state to default values. Does not affect the render state stack. pub fn reset() void { c.nvgReset(ctx); } // // Render styles // // Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern. // Solid color is simply defined as a color value, different kinds of paints can be created // using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern(). // // Current render style can be saved and restored using nvgSave() and nvgRestore(). // // Sets whether to draw antialias for nvgStroke() and nvgFill(). It's enabled by default. // void nvgShapeAntiAlias(NVGcontext* ctx, int enabled); // // Sets current stroke style to a solid color. pub fn strokeColor(color: Color) void { c.nvgStrokeColor(ctx, color); } // Sets current stroke style to a paint, which can be a one of the gradients or a pattern. pub fn strokePaint(paint: Paint) void { c.nvgStrokePaint(ctx, paint); } // // Sets current fill style to a solid color. pub fn fillColor(color: Color) void { c.nvgFillColor(ctx, color); } // Sets current fill style to a paint, which can be a one of the gradients or a pattern. pub fn fillPaint(paint: Paint) void { c.nvgFillPaint(ctx, paint); } // // Sets the miter limit of the stroke style. // // Miter limit controls when a sharp corner is beveled. // void nvgMiterLimit(NVGcontext* ctx, float limit); // // Sets the stroke width of the stroke style. pub fn strokeWidth(size: f32) void { c.nvgStrokeWidth(ctx, size); } // Sets how the end of the line (cap) is drawn, // Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE. pub fn lineCap(cap: LineCap) void { const c_cap: c_int = switch (cap) { .Butt => c.NVG_BUTT, .Round => c.NVG_ROUND, .Square => c.NVG_SQUARE, }; c.nvgLineCap(ctx, c_cap); } // Sets how sharp path corners are drawn. // Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL. pub fn lineJoin(join: LineJoin) void { const c_join: c_int = switch (join) { .Miter => c.NVG_MITER, .Round => c.NVG_ROUND, .Bevel => c.NVG_BEVEL, }; c.nvgLineJoin(ctx, c_join); } // Sets the transparency applied to all rendered shapes. // Already transparent paths will get proportionally more transparent as well. pub fn globalAlpha(alpha: f32) void { c.nvgGlobalAlpha(ctx, alpha); } // // Transforms // // The paths, gradients, patterns and scissor region are transformed by an transformation // matrix at the time when they are passed to the API. // The current transformation matrix is a affine matrix: // [sx kx tx] // [ky sy ty] // [ 0 0 1] // Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation. // The last row is assumed to be 0,0,1 and is not stored. // // Apart from nvgResetTransform(), each transformation function first creates // specific transformation matrix and pre-multiplies the current transformation by it. // // Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore(). // Resets current transform to a identity matrix. pub fn resetTransform() void { c.nvgResetTransform(ctx); } // Premultiplies current coordinate system by specified matrix. // The parameters are interpreted as matrix as follows: // [a c e] // [b d f] // [0 0 1] // void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f); // Translates current coordinate system. pub fn translate(x: f32, y: f32) void { c.nvgTranslate(ctx, x, y); } // Rotates current coordinate system. Angle is specified in radians. pub fn rotate(angle: f32) void { c.nvgRotate(ctx, angle); } // Skews the current coordinate system along X axis. Angle is specified in radians. // void nvgSkewX(NVGcontext* ctx, float angle); // Skews the current coordinate system along Y axis. Angle is specified in radians. // void nvgSkewY(NVGcontext* ctx, float angle); // Scales the current coordinate system. pub fn scale(x: f32, y: f32) void { c.nvgScale(ctx, x, y); } // Stores the top part (a-f) of the current transformation matrix in to the specified buffer. // [a c e] // [b d f] // [0 0 1] // There should be space for 6 floats in the return buffer for the values a-f. // void nvgCurrentTransform(NVGcontext* ctx, float* xform); // The following functions can be used to make calculations on 2x3 transformation matrices. // A 2x3 matrix is represented as float[6]. // Sets the transform to identity matrix. // void nvgTransformIdentity(float* dst); // Sets the transform to translation matrix matrix. // void nvgTransformTranslate(float* dst, float tx, float ty); // Sets the transform to scale matrix. // void nvgTransformScale(float* dst, float sx, float sy); // Sets the transform to rotate matrix. Angle is specified in radians. // void nvgTransformRotate(float* dst, float a); // Sets the transform to skew-x matrix. Angle is specified in radians. // void nvgTransformSkewX(float* dst, float a); // Sets the transform to skew-y matrix. Angle is specified in radians. // void nvgTransformSkewY(float* dst, float a); // Sets the transform to the result of multiplication of two transforms, of A = A*B. // void nvgTransformMultiply(float* dst, const float* src); // Sets the transform to the result of multiplication of two transforms, of A = B*A. // void nvgTransformPremultiply(float* dst, const float* src); // Sets the destination to inverse of specified transform. // Returns 1 if the inverse could be calculated, else 0. // int nvgTransformInverse(float* dst, const float* src); // Transform a point by given transform. // void nvgTransformPoint(float* dstx, float* dsty, const float* xform, float srcx, float srcy); // Converts degrees to radians and vice versa. // float nvgDegToRad(float deg); // float nvgRadToDeg(float rad); // // Images // // NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering. // In addition you can upload your own image. The image loading is provided by stb_image. // The parameter imageFlags is combination of flags defined in NVGimageFlags. // Creates image by loading it from the disk from specified file name. // Returns handle to the image. pub fn createImage(filename: []const u8, flags: ImageFlags) Image { return Image{ .handle = c.nvgCreateImage(ctx, filename.ptr, @as(u6, @bitCast(flags))) }; } // // Creates image by loading it from the specified chunk of memory. // // Returns handle to the image. // int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata); // Creates image from specified image data. // Returns handle to the image. pub fn createImageRgba(w: i32, h: i32, flags: ImageFlags, data: []const u8) Image { return Image{ .handle = c.nvgCreateImageRGBA(ctx, w, h, @as(u6, @bitCast(flags)), data.ptr) }; } // // Updates image data specified by image handle. // void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data); // // Returns the dimensions of a created image. // void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h); // Deletes created image. pub fn deleteImage(image: Image) void { c.nvgDeleteImage(ctx, image.handle); } // // Paints // // NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern. // These can be used as paints for strokes and fills. // Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates // of the linear gradient, icol specifies the start color and ocol the end color. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). pub fn linearGradient(sx: f32, sy: f32, ex: f32, ey: f32, icol: Color, ocol: Color) Paint { return c.nvgLinearGradient(ctx, sx, sy, ex, ey, icol, ocol); } // // Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering // // drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle, // // (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry // // the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient. // // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). // NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, // float r, float f, NVGcolor icol, NVGcolor ocol); // // Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify // // the inner and outer radius of the gradient, icol specifies the start color and ocol the end color. // // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). // NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, // NVGcolor icol, NVGcolor ocol); // Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern, // (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render. // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). pub fn imagePattern(ox: f32, oy: f32, ex: f32, ey: f32, angle: f32, image: Image, alpha: f32) Paint { return c.nvgImagePattern(ctx, ox, oy, ex, ey, angle, image.handle, alpha); } // // Scissoring // // Scissoring allows you to clip the rendering into a rectangle. This is useful for various // user interface cases like rendering a text edit or a timeline. // Sets the current scissor rectangle. // The scissor rectangle is transformed by the current transform. pub fn scissor(x: f32, y: f32, w: f32, h: f32) void { c.nvgScissor(ctx, x, y, w, h); } // // Intersects current scissor rectangle with the specified rectangle. // // The scissor rectangle is transformed by the current transform. // // Note: in case the rotation of previous scissor rect differs from // // the current one, the intersection will be done between the specified // // rectangle and the previous scissor rectangle transformed in the current // // transform space. The resulting shape is always rectangle. // void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h); // Reset and disables scissoring. pub fn resetScissor() void { c.nvgResetScissor(ctx); } // // Paths // // Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths. // Then you define one or more paths and sub-paths which describe the shape. The are functions // to draw common shapes like rectangles and circles, and lower level step-by-step functions, // which allow to define a path curve by curve. // // NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise // winding and holes should have counter clockwise order. To specify winding of a path you can // call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW. // // Finally you can fill the path using current fill style by calling nvgFill(), and stroke it // with current stroke style by calling nvgStroke(). // // The curve segments and sub-paths are transformed by the current transform. // Clears the current path and sub-paths. pub fn beginPath() void { c.nvgBeginPath(ctx); } // Starts new sub-path with specified point as first point. pub fn moveTo(x: f32, y: f32) void { c.nvgMoveTo(ctx, x, y); } // Adds line segment from the last point in the path to the specified point. pub fn lineTo(x: f32, y: f32) void { c.nvgLineTo(ctx, x, y); } // Adds cubic bezier segment from last point in the path via two control points to the specified point. pub fn bezierTo(c1x: f32, c1y: f32, c2x: f32, c2y: f32, x: f32, y: f32) void { c.nvgBezierTo(ctx, c1x, c1y, c2x, c2y, x, y); } // Adds quadratic bezier segment from last point in the path via a control point to the specified point. pub fn quadTo(cx: f32, cy: f32, x: f32, y: f32) void { c.nvgQuadTo(ctx, cx, cy, x, y); } // Adds an arc segment at the corner defined by the last path point, and two specified points. pub fn arcTo(x1: f32, y1: f32, x2: f32, y2: f32, r: f32) void { c.nvgArcTo(ctx, x1, y1, x2, y2, r); } // Closes current sub-path with a line segment. pub fn closePath() void { c.nvgClosePath(ctx); } // Sets the current sub-path winding, see NVGwinding and NVGsolidity. pub fn pathWinding(dir: Winding) void { c.nvgPathWinding(ctx, @intFromEnum(dir)); } // Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r, // and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW). // Angles are specified in radians. pub fn arc(cx: f32, cy: f32, r: f32, a0: f32, a1: f32, dir: Winding) void { c.nvgArc(ctx, cx, cy, r, a0, a1, @intFromEnum(dir)); } // Creates new rectangle shaped sub-path. pub fn rect(x: f32, y: f32, w: f32, h: f32) void { c.nvgRect(ctx, x, y, w, h); } // Creates new rounded rectangle shaped sub-path. pub fn roundedRect(x: f32, y: f32, w: f32, h: f32, r: f32) void { c.nvgRoundedRect(ctx, x, y, w, h, r); } // // Creates new rounded rectangle shaped sub-path with varying radii for each corner. // void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft); // Creates new ellipse shaped sub-path. pub fn ellipse(cx: f32, cy: f32, rx: f32, ry: f32) void { c.nvgEllipse(ctx, cx, cy, rx, ry); } // Creates new circle shaped sub-path. pub fn circle(cx: f32, cy: f32, r: f32) void { c.nvgCircle(ctx, cx, cy, r); } // Fills the current path with current fill style. pub fn fill() void { c.nvgFill(ctx); } // Fills the current path with current stroke style. pub fn stroke() void { c.nvgStroke(ctx); } // // Text // // NanoVG allows you to load .ttf files and use the font to render text. // // The appearance of the text can be defined by setting the current text style // and by specifying the fill color. Common text and font settings such as // font size, letter spacing and text align are supported. Font blur allows you // to create simple text effects such as drop shadows. // // At render time the font face can be set based on the font handles or name. // // Font measure functions return values in local space, the calculations are // carried in the same resolution as the final rendering. This is done because // the text glyph positions are snapped to the nearest pixels sharp rendering. // // The local space means that values are not rotated or scale as per the current // transformation. For example if you set font size to 12, which would mean that // line height is 16, then regardless of the current scaling and rotation, the // returned line height is always 16. Some measures may vary because of the scaling // since aforementioned pixel snapping. // // While this may sound a little odd, the setup allows you to always render the // same way regardless of scaling. I.e. following works regardless of scaling: // // const char* txt = "Text me up."; // nvgTextBounds(vg, x,y, txt, NULL, bounds); // nvgBeginPath(vg); // nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]); // nvgFill(vg); // // Note: currently only solid color fill is supported for text. // Creates font by loading it from the disk from specified file name. // Returns handle to the font. pub fn createFont(name: [:0]const u8, filename: [:0]const u8) i32 { return c.nvgCreateFont(ctx, name, filename); } // // fontIndex specifies which font face to load from a .ttf/.ttc file. // int nvgCreateFontAtIndex(NVGcontext* ctx, const char* name, const char* filename, const int fontIndex); // Creates font by loading it from the specified memory chunk. // Returns handle to the font. pub fn createFontMem(name: [:0]const u8, data: []const u8) i32 { return c.nvgCreateFontMem(ctx, name, data.ptr, @as(c_int, @intCast(data.len)), 0); } // // fontIndex specifies which font face to load from a .ttf/.ttc file. // int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex); // // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found. // int nvgFindFont(NVGcontext* ctx, const char* name); // Adds a fallback font by handle. pub fn addFallbackFontId(base_font: i32, fallback_font: i32) i32 { return c.nvgAddFallbackFontId(ctx, base_font, fallback_font); } // // Adds a fallback font by name. // int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont); // // Resets fallback fonts by handle. // void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont); // // Resets fallback fonts by name. // void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont); // Sets the font size of current text style. pub fn fontSize(size: f32) void { c.nvgFontSize(ctx, size); } // // Sets the blur of current text style. // void nvgFontBlur(NVGcontext* ctx, float blur); // // Sets the letter spacing of current text style. // void nvgTextLetterSpacing(NVGcontext* ctx, float spacing); // // Sets the proportional line height of current text style. The line height is specified as multiple of font size. // void nvgTextLineHeight(NVGcontext* ctx, float lineHeight); // Sets the text align of current text style, see NVGalign for options. pub fn textAlign(text_align: TextAlign) void { c.nvgTextAlign(ctx, @intFromEnum(text_align)); } // // Sets the font face based on specified id of current text style. // void nvgFontFaceId(NVGcontext* ctx, int font); // Sets the font face based on specified name of current text style. pub fn fontFace(font: [:0]const u8) void { c.nvgFontFace(ctx, font); } // Draws text string at specified location. If end is specified only the sub-string up to the end is drawn. pub fn text(x: f32, y: f32, string: []const u8) f32 { if (string.len == 0) return 0; return c.nvgText(ctx, x, y, string.ptr, string.ptr + string.len); } // // Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn. // // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. // // Words longer than the max width are slit at nearest character (i.e. no hyphenation). // void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end); // // Measures the specified text string. Parameter bounds should be a pointer to float[4], // // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] // // Returns the horizontal advance of the measured text (i.e. where the next character should drawn). // // Measured values are returned in local coordinate space. // float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds); // // Measures the specified multi-text string. Parameter bounds should be a pointer to float[4], // // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] // // Measured values are returned in local coordinate space. // void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds); // Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used. // Measured values are returned in local coordinate space. pub fn textGlyphPositions(x: f32, y: f32, string: []const u8, positions: []GlyphPosition) usize { return @as(usize, @intCast(c.nvgTextGlyphPositions(ctx, x, y, std.meta.assumeSentinel(string, 0), string.ptr + string.len, positions.ptr, @as(c_int, @intCast(positions.len))))); } // Returns the vertical metrics based on the current text style. // Measured values are returned in local coordinate space. pub fn textMetrics(ascender: ?*f32, descender: ?*f32, line_height: ?*f32) void { c.nvgTextMetrics(ctx, ascender, descender, line_height); } // // Breaks the specified text into lines. If end is specified only the sub-string will be used. // // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. // // Words longer than the max width are slit at nearest character (i.e. no hyphenation). // int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows);
0
repos/zig-gorillas/src
repos/zig-gorillas/src/c/nanovg_gl2_impl.c
#if defined(_WIN32) || defined(__linux__) #include "glad/glad.h" #include "../src/glad.c" #else #define GL_GLEXT_PROTOTYPES #endif #include <SDL2/SDL_opengl.h> #include "nanovg.h" #define NANOVG_GL2_IMPLEMENTATION #include "nanovg_gl.h" #include "nanovg.c"
0
repos/zig-gorillas
repos/zig-gorillas/.vscode/launch.json
{ // Use IntelliSense to learn about possible attributes. // Hover to view descriptions of existing attributes. // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 "version": "0.2.0", "configurations": [ { "name": "(lldb) Launch", "type": "cppdbg", "request": "launch", "program": "${workspaceFolder}/zig-out/bin/ZigGorillas", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}", "environment": [], "externalConsole": false, "MIMode": "lldb", "preLaunchTask": "build" }, { "name": "(gdb) Launch", "type": "cppdbg", "request": "launch", "program": "${workspaceRoot}/zig-out/bin/ZigGorillas", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}", "environment": [], "externalConsole": false, "MIMode": "gdb", "preLaunchTask": "build" }, { "name": "(Windows) Launch", "type": "cppvsdbg", "request": "launch", "program": "${workspaceRoot}/zig-out/bin/ZigGorillas.exe", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}", "environment": [], "console": "integratedTerminal", "preLaunchTask": "build" } ] }
0
repos/zig-gorillas
repos/zig-gorillas/.vscode/tasks.json
{ // See https://go.microsoft.com/fwlink/?LinkId=733558 // for the documentation about the tasks.json format "version": "2.0.0", "tasks": [ { "label": "build", "type": "shell", "command": "zig build", "options": { "cwd": "${workspaceFolder}" }, "problemMatcher": { "base": "$gcc", "fileLocation":"autoDetect" }, "group": "build" } ] }
0
repos/zig-gorillas
repos/zig-gorillas/.vscode/settings.json
{ "C_Cpp.errorSquiggles": "Disabled" }
0
repos/zig-gorillas
repos/zig-gorillas/.vscode/c_cpp_properties.json
{ "configurations": [ { "name": "Linux", "includePath": [ "${workspaceFolder}/**", "/usr/include/SDL2", "/usr/local/include/SDL2" ], "defines": [], "compilerPath": "/usr/bin/clang", "cStandard": "c11", "cppStandard": "c++14", "intelliSenseMode": "clang-x64" }, { "name": "Win32", "includePath": [ "${workspaceFolder}/**", "${vcpkgRoot}/x64-windows/include", "${vcpkgRoot}/x64-windows-static/include", "${vcpkgRoot}/x86-windows/include" ], "defines": [ "_DEBUG", "UNICODE", "_UNICODE" ], "windowsSdkVersion": "10.0.18362.0", "compilerPath": "C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.28.29333/bin/Hostx64/x64/cl.exe", "cStandard": "c17", "cppStandard": "c++17", "intelliSenseMode": "${default}" } ], "version": 4 }
0
repos
repos/zaml/zamlmodule.zig
const py = @cImport({ @cDefine("Py_LIMITED_API", "3"); @cDefine("PY_SSIZE_T_CLEAN", {}); @cInclude("Python.h"); }); const PyObject = py.PyObject; const PyMethodDef = py.PyMethodDef; const PyModuleDef = py.PyModuleDef; const PyModuleDef_Base = py.PyModuleDef_Base; const Py_BuildValue = py.Py_BuildValue; const PyModule_Create = py.PyModule_Create; const METH_NOARGS = py.METH_NOARGS; fn zaml_load(self: [*c]PyObject, args: [*c]PyObject) callconv(.C) [*]PyObject { _ = self; _ = args; return Py_BuildValue("i", @as(c_int, 1)); } var ZamlMethods = [_]PyMethodDef{ PyMethodDef{ .ml_name = "load", .ml_meth = zaml_load, .ml_flags = METH_NOARGS, .ml_doc = "Load some tasty YAML.", }, PyMethodDef{ .ml_name = null, .ml_meth = null, .ml_flags = 0, .ml_doc = null, }, }; var zamlmodule = PyModuleDef{ .m_base = PyModuleDef_Base{ .ob_base = PyObject{ .ob_refcnt = 1, .ob_type = null, }, .m_init = null, .m_index = 0, .m_copy = null, }, .m_name = "zaml", .m_doc = null, .m_size = -1, .m_methods = &ZamlMethods, .m_slots = null, .m_traverse = null, .m_clear = null, .m_free = null, }; pub export fn PyInit_zaml() [*]PyObject { return PyModule_Create(&zamlmodule); }
0
repos
repos/zaml/setup.py
from setuptools import setup, Extension from pathlib import Path from builder import ZigBuilder zaml = Extension("zaml", sources=["zamlmodule.zig"]) setup( name="zaml", version="0.0.9", url="https://github.com/adamserafini/zaml", description="Fast YAML 1.2 Parser for Python 3.6+", ext_modules=[zaml], cmdclass={"build_ext": ZigBuilder}, long_description=(Path(__file__).parent / "README.md").read_text(encoding="utf-8"), long_description_content_type="text/markdown", py_modules=["builder"], )
0
repos
repos/zaml/pyproject.toml
[tool.cibuildwheel.linux] # Only build CPython (no PyPy) on x86_64 architecture build = "cp*x86_64" before-all = [ # Install Zig on CentOS "cd /tmp", "curl -O https://ziglang.org/download/0.9.1/zig-linux-x86_64-0.9.1.tar.xz", "tar xf zig-linux-x86_64-0.9.1.tar.xz", "mv zig-linux-x86_64-0.9.1 /usr/local/bin/zig-linux-0.9.1" ] environment = { PATH="$PATH:/usr/local/bin/zig-linux-0.9.1" } test-command = 'python -c "import zaml; assert zaml.load() == 1"'
0
repos
repos/zaml/.pre-commit-config.yaml
repos: - repo: https://github.com/psf/black rev: 22.3.0 hooks: - id: black
0
repos
repos/zaml/README.md
# 🚀 zaml Fast YAML 1.2 parsing library for Python 3.6+ 🐍 ## What's This? Proof-of-concept for my PyCon DE 2022 [talk](https://2022.pycon.de/program/DFWSQR/), [video](https://www.youtube.com/watch?v=O0MmmZxdct4), **Speeding Up Python with Zig**, not yet recommended for production use! Library with the following objectives: - [x] Written in pure Zig, importing `Python.h` headers directly, no FFI, `ctypes` or `cffi`. - [x] Compiled using the Zig toolchain / CLI, no other tool (eg. `clang`) required. - [x] Tested to be compatible with mac OSX, Linux and Windows. - [x] Installable via PyPI - [ ] Should not require Zig toolchain locally in order to install and use. - [ ] Fastest available YAML 1.2 parser for Python. Help wanted to achieve the full objectives, PRs welcome. ### Installation ``` pip install zaml ``` **Note**: currently source distribution only, ie. `sdist` - no binary `wheels` (yet), therefore requires Zig 0.10.0 installed locally. Any other Zig version is untested. ### Installing Locally Some pre-requisites (linting etc.), `pyenv` also recommended: ```bash pre-commit install pre-commit run --all-files ``` The simplest possible extension module is a module with one function, that takes no arguments and returns an integer. This repo demonstrates a pure Zig module that does exactly that: ```bash python -m venv .venv source .venv/bin/activate pip install -e . ``` ### Tests Tests that the most basic possible Zig extension can in-fact be installed and returns the expected result: ```bash python test.py ``` ### Benchmark To run a benchmark of the current `zaml` prototype (also runs in CI and asserts that the YAML structure is correctly parsed): ```bash cd benchmark python benchmark.py ``` Results on my 2,3 GHz Quad-Core Intel Core i7 Mac: ```bash Running benchmarks... Benchmark results: zaml took 0.89 seconds PyYAML CSafeLoader took 13.36 seconds ruamel took 38.86 seconds PyYAML SafeLoader took 81.78 seconds ``` ### Credits Would not exist without [kubkon's](https://github.com/kubkon), `zig-yaml`: https://github.com/kubkon/zig-yaml ### Cross-platform Local Testing #### Linux To test in Linux, the easiest way is probably to use Docker: ```bash docker run --name zaml -v $PWD:/root/zaml -it fedora ``` This kicks you into a shell in a running a container with this library mounted in the `/root/zaml` directory. Changes you make on your host machine will be immediately reflected in the container. Install Python 3 headers, zig and test the library: ```bash dnf install zig python3-devel cd /root/zaml python3 -m venv .venvlinux source .venvlinux/bin/activate pip install -e . ``` To re-attach to the container after exiting: ```bash docker start -ia zaml ``` #### Windows To test in Windows from a Mac, the easiest way I have found is to use [Parallels](https://www.parallels.com/). #### MacOSX I am writing this `README` on a Mac. Consequently, I have not attempted testing this library in MacOSX from another operating system host. If you manage this, please do add documentation about it here. ### Publishing to PyPI **Note**: Temporary instructions (until full CI setup). You may need to upgrade `build` and `twine` (with your `virtualenv` activated): ``` python -m pip install --upgrade build python -m pip install --upgrade twine ``` Then: ``` rm -rf dist python3 -m build --sdist python3 -m twine upload --repository pypi dist/* ```
0
repos
repos/zaml/builder.py
import os import platform from setuptools.command.build_ext import build_ext import sysconfig class ZigBuilder(build_ext): def build_extension(self, ext): assert len(ext.sources) == 1 if not os.path.exists(self.build_lib): os.makedirs(self.build_lib) windows = platform.system() == "Windows" self.spawn( [ "zig", "build-lib", "-O", "ReleaseFast", "-lc", *(["-target", "x86_64-windows-msvc"] if windows else []), f"-femit-bin={self.get_ext_fullpath(ext.name)}", "-fallow-shlib-undefined", "-dynamic", *[f"-I{d}" for d in self.include_dirs], *( [ f"-L{sysconfig.get_config_var('installed_base')}\Libs", "-lpython3", ] if windows else [] ), ext.sources[0], ] )
0
repos
repos/zaml/test.py
import subprocess failed = subprocess.call(["pip", "install", "-e", ".", "--verbose"]) assert not failed import zaml assert zaml.load() == 1
0
repos/zaml
repos/zaml/benchmark/setup.py
from setuptools import setup, Extension from builder import ZigBuilder benchmark = Extension("benchmark", sources=["benchmark.zig"]) setup( name="benchmark", version="0.0.1", description="Benchmark of Fast YAML 1.2 Parser for Python 3.10.x", ext_modules=[benchmark], cmdclass={"build_ext": ZigBuilder}, setup_requires=["cython"], # Required by pyyaml install_requires=["pyyaml", "ruamel.yaml"], )
0
repos/zaml
repos/zaml/benchmark/benchmark.zig
const py = @cImport({ @cDefine("PY_SSIZE_T_CLEAN", {}); @cInclude("Python.h"); }); const std = @import("std"); // Zig library for parsing yaml // https://github.com/kubkon/zig-yaml // TODO: include this as a Git submodule or as a package (when Zig gets official package manager) const yaml = @import("libs/zig-yaml/src/main.zig"); const PyArg_ParseTuple = py.PyArg_ParseTuple; const PyObject = py.PyObject; const PyDict_New = py.PyDict_New; const PyMethodDef = py.PyMethodDef; const PyModuleDef = py.PyModuleDef; const PyModuleDef_Base = py.PyModuleDef_Base; const PyModule_Create = py.PyModule_Create; const PyDict_SetItem = py.PyDict_SetItem; const Py_BuildValue = py.Py_BuildValue; const METH_VARARGS = py.METH_VARARGS; // Would not use "testing" allocator for production const test_allocator = std.testing.allocator; // Don't think about using this in production, it probably has bugs + memory leaks fn benchmark_load(self: [*c]PyObject, args: [*c]PyObject) callconv(.C) [*]PyObject { _ = self; var string: [*:0]const u8 = undefined; // TODO: handle errors / unexpected input. Probably not a good idea to silently ignore them. _ = PyArg_ParseTuple(args, "s", &string); // "catch unreachable" tells Zig compiler this can't possibly fail // Of course, it might fail: this is just a benchmark. // Did I mention not to use this in production? var untyped = yaml.Yaml.load(std.testing.allocator, std.mem.sliceTo(string, 0)) catch unreachable; // Free all memory at the end of the current scope defer untyped.deinit(); // Our friend "catch unreachable" again :) var map = untyped.docs.items[0].asMap() catch unreachable; var dict = PyDict_New(); const keys = map.keys(); for (keys) |key| { const value = map.get(key) orelse unreachable; var pyKey = Py_BuildValue("s#", @ptrCast([*]const u8, key), key.len); var valueStr = value.asString() catch unreachable; const pyValue = Py_BuildValue("s#", @ptrCast([*]const u8, valueStr), valueStr.len); // TODO: again, we just ignore the potential errors that could happen here. // Don't do that in real life! _ = PyDict_SetItem(dict, pyKey, pyValue); } return Py_BuildValue("O", dict); } var BenchmarkMethods = [_]PyMethodDef{ PyMethodDef{ .ml_name = "load", .ml_meth = benchmark_load, .ml_flags = METH_VARARGS, .ml_doc = "Load some tasty YAML.", }, PyMethodDef{ .ml_name = null, .ml_meth = null, .ml_flags = 0, .ml_doc = null, }, }; var benchmarkmodule = PyModuleDef{ .m_base = PyModuleDef_Base{ .ob_base = PyObject{ .ob_refcnt = 1, .ob_type = null, }, .m_init = null, .m_index = 0, .m_copy = null, }, .m_name = "benchmark", .m_doc = null, .m_size = -1, .m_methods = &BenchmarkMethods, .m_slots = null, .m_traverse = null, .m_clear = null, .m_free = null, }; pub export fn PyInit_benchmark() [*]PyObject { return PyModule_Create(&benchmarkmodule); }
0
repos/zaml
repos/zaml/benchmark/benchmark.py
import subprocess # Test the benchmark installs failed = subprocess.call(["pip", "install", "-e", "."]) assert not failed import yaml as pyyaml import benchmark as zaml from ruamel.yaml import YAML import time # Test it returns correct results: assert zaml.load("a0: b1") == {"a0": "b1"} print("\nRunning benchmarks...\n") # One million line YAML string: big_yaml = pyyaml.dump( {"a" + str(i): "b" + str(i + 1) for i in range(1000000)}, Dumper=pyyaml.CSafeDumper ) # Parsing with zaml: Prototype YAML parser written in Zig: start = time.time() zaml_result = zaml.load(big_yaml) print(f"Benchmark results:\nzaml took {(time.time() - start):.2f} seconds") # Parsing with PyYAML in C: start = time.time() pyyaml_c_result = pyyaml.load(big_yaml, Loader=pyyaml.CSafeLoader) print(f"PyYAML CSafeLoader took {(time.time() - start):.2f} seconds") # Parsing with ruamel: start = time.time() yaml = YAML(typ="safe") yaml.load(big_yaml) rueaml_result = yaml.load(big_yaml) print(f"ruamel took {(time.time() - start):.2f} seconds") # Parsing with PyYAML: start = time.time() pyyaml_result = pyyaml.load(big_yaml, Loader=pyyaml.SafeLoader) print(f"PyYAML SafeLoader took {(time.time() - start):.2f} seconds") assert zaml_result == pyyaml_result == pyyaml_c_result == rueaml_result
0
repos/zaml/benchmark/libs
repos/zaml/benchmark/libs/zig-yaml/README.md
# zig-yaml YAML parser for Zig ## What is it? This lib is meant to serve as a basic (or maybe not?) YAML parser for Zig. It will strive to be YAML 1.2 compatible but one step at a time. This is very much a work-in-progress, so expect things to break on a regular basis. Oh, I'd love to get the community involved in helping out with this btw! Feel free to fork and submit patches, enhancements, and of course issues. ## Basic usage The parser currently understands a few YAML primitives such as: * explicit documents (`---`, `...`) * mappings (`:`) * sequences (`-`, `[`, `]`) In fact, if you head over to `examples/` dir, you will find YAML examples that have been tested against this parser. You can also have a look at end-to-end test inputs in `test/` directory. If you want to use the parser as a library, add it as a package the usual way, and then: ```zig const std = @import("std"); const yaml = @import("yaml"); const source = \\names: [ John Doe, MacIntosh, Jane Austin ] \\numbers: \\ - 10 \\ - -8 \\ - 6 \\nested: \\ some: one \\ wick: john doe \\finally: [ 8.17, \\ 19.78 , 17 , \\ 21 ] ; ``` 1. For untyped, raw representation of YAML, use `Yaml.load`: ```zig var untyped = try yaml.Yaml.load(std.testing.allocator, source); defer untyped.deinit(); try std.testing.expectEqual(untyped.docs.items.len, 1); const map = untyped.docs.items[0].map; try std.testing.expect(map.contains("names")); try std.testing.expectEqual(map.get("names").?.list.len, 3); ``` 2. For typed representation of YAML, use `Yaml.parse`: ```zig const Simple = struct { names: []const []const u8, numbers: []const i16, nested: struct { some: []const u8, wick: []const u8, }, finally: [4]f16, }; const simple = try untyped.parse(Simple); try std.testing.expectEqual(simple.names.len, 3); ``` 3. To convert `Yaml` structure back into text representation, use `Yaml.stringify`: ```zig try untyped.stringify(std.io.getStdOut().writer()); ``` which should write the following output to standard output when run: ```sh names: [ John Doe, MacIntosh, Jane Austin ] numbers: [ 10, -8, 6 ] nested: some: one wick: john doe finally: [ 8.17, 19.78, 17, 21 ] ```
0
repos/zaml/benchmark/libs
repos/zaml/benchmark/libs/zig-yaml/build.zig
const std = @import("std"); pub fn build(b: *std.build.Builder) void { // Standard release options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. const mode = b.standardReleaseOptions(); const lib = b.addStaticLibrary("yaml", "src/main.zig"); lib.setBuildMode(mode); lib.install(); var main_tests = b.addTest("src/main.zig"); main_tests.setBuildMode(mode); // main_tests.addPackagePath("e2e_tests", "test/test.zig"); var e2e_tests = b.addTest("test/test.zig"); e2e_tests.setBuildMode(mode); e2e_tests.addPackagePath("yaml", "src/main.zig"); const test_step = b.step("test", "Run library tests"); test_step.dependOn(&main_tests.step); test_step.dependOn(&e2e_tests.step); const example = b.addExecutable("yaml", "examples/yaml.zig"); example.setBuildMode(mode); example.addPackagePath("yaml", "src/main.zig"); example.step.dependOn(b.getInstallStep()); const path_to_yaml = b.option([]const u8, "input-yaml", "Path to input yaml file") orelse "examples/simple.yml"; const run_example = example.run(); run_example.addArg(path_to_yaml); const run_example_step = b.step("run", "Runs examples/yaml.zig"); run_example_step.dependOn(&run_example.step); }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/src/parse.zig
const std = @import("std"); const assert = std.debug.assert; const log = std.log.scoped(.parse); const mem = std.mem; const testing = std.testing; const Allocator = mem.Allocator; const Tokenizer = @import("Tokenizer.zig"); const Token = Tokenizer.Token; const TokenIndex = Tokenizer.TokenIndex; const TokenIterator = Tokenizer.TokenIterator; pub const ParseError = error{ MalformedYaml, NestedDocuments, UnexpectedTag, UnexpectedEof, UnexpectedToken, Unhandled, } || Allocator.Error; pub const Node = struct { tag: Tag, tree: *const Tree, pub const Tag = enum { doc, map, list, value, }; pub fn cast(self: *const Node, comptime T: type) ?*const T { if (self.tag != T.base_tag) { return null; } return @fieldParentPtr(T, "base", self); } pub fn deinit(self: *Node, allocator: Allocator) void { switch (self.tag) { .doc => @fieldParentPtr(Node.Doc, "base", self).deinit(allocator), .map => @fieldParentPtr(Node.Map, "base", self).deinit(allocator), .list => @fieldParentPtr(Node.List, "base", self).deinit(allocator), .value => @fieldParentPtr(Node.Value, "base", self).deinit(allocator), } } pub fn format( self: *const Node, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { return switch (self.tag) { .doc => @fieldParentPtr(Node.Doc, "base", self).format(fmt, options, writer), .map => @fieldParentPtr(Node.Map, "base", self).format(fmt, options, writer), .list => @fieldParentPtr(Node.List, "base", self).format(fmt, options, writer), .value => @fieldParentPtr(Node.Value, "base", self).format(fmt, options, writer), }; } pub const Doc = struct { base: Node = Node{ .tag = Tag.doc, .tree = undefined }, start: ?TokenIndex = null, end: ?TokenIndex = null, directive: ?TokenIndex = null, value: ?*Node = null, pub const base_tag: Node.Tag = .doc; pub fn deinit(self: *Doc, allocator: Allocator) void { if (self.value) |node| { node.deinit(allocator); allocator.destroy(node); } } pub fn format( self: *const Doc, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; if (self.directive) |id| { try std.fmt.format(writer, "{{ ", .{}); const directive = self.base.tree.tokens[id]; try std.fmt.format(writer, ".directive = {s}, ", .{ self.base.tree.source[directive.start..directive.end], }); } if (self.value) |node| { try std.fmt.format(writer, "{}", .{node}); } if (self.directive != null) { try std.fmt.format(writer, " }}", .{}); } } }; pub const Map = struct { base: Node = Node{ .tag = Tag.map, .tree = undefined }, start: ?TokenIndex = null, end: ?TokenIndex = null, values: std.ArrayListUnmanaged(Entry) = .{}, pub const base_tag: Node.Tag = .map; pub const Entry = struct { key: TokenIndex, value: *Node, }; pub fn deinit(self: *Map, allocator: Allocator) void { for (self.values.items) |entry| { entry.value.deinit(allocator); allocator.destroy(entry.value); } self.values.deinit(allocator); } pub fn format( self: *const Map, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; try std.fmt.format(writer, "{{ ", .{}); for (self.values.items) |entry| { const key = self.base.tree.tokens[entry.key]; try std.fmt.format(writer, "{s} => {}, ", .{ self.base.tree.source[key.start..key.end], entry.value, }); } return std.fmt.format(writer, " }}", .{}); } }; pub const List = struct { base: Node = Node{ .tag = Tag.list, .tree = undefined }, start: ?TokenIndex = null, end: ?TokenIndex = null, values: std.ArrayListUnmanaged(*Node) = .{}, pub const base_tag: Node.Tag = .list; pub fn deinit(self: *List, allocator: Allocator) void { for (self.values.items) |node| { node.deinit(allocator); allocator.destroy(node); } self.values.deinit(allocator); } pub fn format( self: *const List, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; try std.fmt.format(writer, "[ ", .{}); for (self.values.items) |node| { try std.fmt.format(writer, "{}, ", .{node}); } return std.fmt.format(writer, " ]", .{}); } }; pub const Value = struct { base: Node = Node{ .tag = Tag.value, .tree = undefined }, start: ?TokenIndex = null, end: ?TokenIndex = null, string_value: std.ArrayListUnmanaged(u8) = .{}, pub const base_tag: Node.Tag = .value; pub fn deinit(self: *Value, allocator: Allocator) void { self.string_value.deinit(allocator); } pub fn format( self: *const Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; const start = self.base.tree.tokens[self.start.?]; const end = self.base.tree.tokens[self.end.?]; return std.fmt.format(writer, "{s}", .{ self.base.tree.source[start.start..end.end], }); } }; }; pub const Tree = struct { allocator: Allocator, source: []const u8, tokens: []Token, docs: std.ArrayListUnmanaged(*Node) = .{}, pub fn init(allocator: Allocator) Tree { return .{ .allocator = allocator, .source = undefined, .tokens = undefined, }; } pub fn deinit(self: *Tree) void { self.allocator.free(self.tokens); for (self.docs.items) |doc| { doc.deinit(self.allocator); self.allocator.destroy(doc); } self.docs.deinit(self.allocator); } pub fn parse(self: *Tree, source: []const u8) !void { var tokenizer = Tokenizer{ .buffer = source }; var tokens = std.ArrayList(Token).init(self.allocator); errdefer tokens.deinit(); while (true) { const token = tokenizer.next(); try tokens.append(token); if (token.id == .Eof) break; } self.source = source; self.tokens = tokens.toOwnedSlice(); var it = TokenIterator{ .buffer = self.tokens }; var parser = Parser{ .allocator = self.allocator, .tree = self, .token_it = &it, }; defer parser.deinit(); try parser.scopes.append(self.allocator, .{ .indent = 0, }); while (true) { if (parser.token_it.peek() == null) return; const pos = parser.token_it.pos; const token = parser.token_it.next(); log.debug("Next token: {}, {}", .{ pos, token }); switch (token.id) { .Space, .Comment, .NewLine => {}, .Eof => break, else => { const doc = try parser.doc(pos); try self.docs.append(self.allocator, &doc.base); }, } } } }; const Parser = struct { allocator: Allocator, tree: *Tree, token_it: *TokenIterator, scopes: std.ArrayListUnmanaged(Scope) = .{}, const Scope = struct { indent: usize, }; fn deinit(self: *Parser) void { self.scopes.deinit(self.allocator); } fn doc(self: *Parser, start: TokenIndex) ParseError!*Node.Doc { const node = try self.allocator.create(Node.Doc); errdefer self.allocator.destroy(node); node.* = .{ .start = start, }; node.base.tree = self.tree; self.token_it.seekTo(start); log.debug("Doc start: {}, {}", .{ start, self.tree.tokens[start] }); const explicit_doc: bool = if (self.eatToken(.DocStart)) |_| explicit_doc: { if (self.eatToken(.Tag)) |_| { node.directive = try self.expectToken(.Literal); } _ = try self.expectToken(.NewLine); break :explicit_doc true; } else false; while (true) { const pos = self.token_it.pos; const token = self.token_it.next(); log.debug("Next token: {}, {}", .{ pos, token }); switch (token.id) { .Tag => { return error.UnexpectedTag; }, .Literal, .SingleQuote, .DoubleQuote => { _ = try self.expectToken(.MapValueInd); const map_node = try self.map(pos); node.value = &map_node.base; }, .SeqItemInd => { const list_node = try self.list(pos); node.value = &list_node.base; }, .FlowSeqStart => { const list_node = try self.list_bracketed(pos); node.value = &list_node.base; }, .DocEnd => { if (explicit_doc) break; return error.UnexpectedToken; }, .DocStart, .Eof => { self.token_it.seekBy(-1); break; }, else => { return error.UnexpectedToken; }, } } node.end = self.token_it.pos - 1; log.debug("Doc end: {}, {}", .{ node.end.?, self.tree.tokens[node.end.?] }); return node; } fn map(self: *Parser, start: TokenIndex) ParseError!*Node.Map { const node = try self.allocator.create(Node.Map); errdefer self.allocator.destroy(node); node.* = .{ .start = start, }; node.base.tree = self.tree; self.token_it.seekTo(start); log.debug("Map start: {}, {}", .{ start, self.tree.tokens[start] }); log.debug("Current scope: {}", .{self.scopes.items[self.scopes.items.len - 1]}); while (true) { // Parse key. const key_pos = self.token_it.pos; const key = self.token_it.next(); switch (key.id) { .Literal => {}, else => { self.token_it.seekBy(-1); break; }, } log.debug("Map key: {}, '{s}'", .{ key, self.tree.source[key.start..key.end] }); // Separator _ = try self.expectToken(.MapValueInd); self.eatCommentsAndSpace(); // Parse value. const value: *Node = value: { if (self.eatToken(.NewLine)) |_| { // Explicit, complex value such as list or map. try self.openScope(); const value_pos = self.token_it.pos; const value = self.token_it.next(); switch (value.id) { .Literal, .SingleQuote, .DoubleQuote => { // Assume nested map. const map_node = try self.map(value_pos); break :value &map_node.base; }, .SeqItemInd => { // Assume list of values. const list_node = try self.list(value_pos); break :value &list_node.base; }, else => { log.err("{}", .{key}); return error.Unhandled; }, } } else { const value_pos = self.token_it.pos; const value = self.token_it.next(); switch (value.id) { .Literal, .SingleQuote, .DoubleQuote => { // Assume leaf value. const leaf_node = try self.leaf_value(value_pos); break :value &leaf_node.base; }, .FlowSeqStart => { const list_node = try self.list_bracketed(value_pos); break :value &list_node.base; }, else => { log.err("{}", .{key}); return error.Unhandled; }, } } }; log.debug("Map value: {}", .{value}); try node.values.append(self.allocator, .{ .key = key_pos, .value = value, }); if (self.eatToken(.NewLine)) |_| { if (try self.closeScope()) { break; } } } node.end = self.token_it.pos - 1; log.debug("Map end: {}, {}", .{ node.end.?, self.tree.tokens[node.end.?] }); return node; } fn list(self: *Parser, start: TokenIndex) ParseError!*Node.List { const node = try self.allocator.create(Node.List); errdefer self.allocator.destroy(node); node.* = .{ .start = start, }; node.base.tree = self.tree; self.token_it.seekTo(start); log.debug("List start: {}, {}", .{ start, self.tree.tokens[start] }); log.debug("Current scope: {}", .{self.scopes.items[self.scopes.items.len - 1]}); while (true) { _ = self.eatToken(.SeqItemInd) orelse { _ = try self.closeScope(); break; }; self.eatCommentsAndSpace(); const pos = self.token_it.pos; const token = self.token_it.next(); const value: *Node = value: { switch (token.id) { .Literal, .SingleQuote, .DoubleQuote => { if (self.eatToken(.MapValueInd)) |_| { if (self.eatToken(.NewLine)) |_| { try self.openScope(); } // nested map const map_node = try self.map(pos); break :value &map_node.base; } else { // standalone (leaf) value const leaf_node = try self.leaf_value(pos); break :value &leaf_node.base; } }, .FlowSeqStart => { const list_node = try self.list_bracketed(pos); break :value &list_node.base; }, else => { log.err("{}", .{token}); return error.Unhandled; }, } }; try node.values.append(self.allocator, value); _ = self.eatToken(.NewLine); } node.end = self.token_it.pos - 1; log.debug("List end: {}, {}", .{ node.end.?, self.tree.tokens[node.end.?] }); return node; } fn list_bracketed(self: *Parser, start: TokenIndex) ParseError!*Node.List { const node = try self.allocator.create(Node.List); errdefer self.allocator.destroy(node); node.* = .{ .start = start, }; node.base.tree = self.tree; self.token_it.seekTo(start); log.debug("List start: {}, {}", .{ start, self.tree.tokens[start] }); log.debug("Current scope: {}", .{self.scopes.items[self.scopes.items.len - 1]}); _ = try self.expectToken(.FlowSeqStart); while (true) { _ = self.eatToken(.NewLine); self.eatCommentsAndSpace(); const pos = self.token_it.pos; const token = self.token_it.next(); log.debug("Next token: {}, {}", .{ pos, token }); const value: *Node = value: { switch (token.id) { .FlowSeqStart => { const list_node = try self.list_bracketed(pos); break :value &list_node.base; }, .FlowSeqEnd => { break; }, .Literal, .SingleQuote, .DoubleQuote => { const leaf_node = try self.leaf_value(pos); _ = self.eatToken(.Comma); // TODO newline break :value &leaf_node.base; }, else => { log.err("{}", .{token}); return error.Unhandled; }, } }; try node.values.append(self.allocator, value); } node.end = self.token_it.pos - 1; log.debug("List end: {}, {}", .{ node.end.?, self.tree.tokens[node.end.?] }); return node; } fn leaf_value(self: *Parser, start: TokenIndex) ParseError!*Node.Value { const node = try self.allocator.create(Node.Value); errdefer self.allocator.destroy(node); node.* = .{ .start = start, .string_value = .{}, }; errdefer node.string_value.deinit(self.allocator); node.base.tree = self.tree; self.token_it.seekTo(start); log.debug("Leaf start: {}, {}", .{ node.start.?, self.tree.tokens[node.start.?] }); parse: { if (self.eatToken(.SingleQuote)) |_| { node.start = node.start.? + 1; while (true) { const tok = self.token_it.next(); switch (tok.id) { .SingleQuote => { node.end = self.token_it.pos - 2; break :parse; }, .NewLine => return error.UnexpectedToken, .EscapeSeq => { try node.string_value.append(self.allocator, self.tree.source[tok.start + 1]); }, else => { try node.string_value.appendSlice(self.allocator, self.tree.source[tok.start..tok.end]); }, } } } if (self.eatToken(.DoubleQuote)) |_| { node.start = node.start.? + 1; while (true) { const tok = self.token_it.next(); switch (tok.id) { .DoubleQuote => { node.end = self.token_it.pos - 2; break :parse; }, .NewLine => return error.UnexpectedToken, .EscapeSeq => { switch (self.tree.source[tok.start + 1]) { 'n' => { try node.string_value.append(self.allocator, '\n'); }, 't' => { try node.string_value.append(self.allocator, '\t'); }, '"' => { try node.string_value.append(self.allocator, '"'); }, else => {}, } }, else => { try node.string_value.appendSlice(self.allocator, self.tree.source[tok.start..tok.end]); }, } } } // TODO handle multiline strings in new block scope while (true) { const tok = self.token_it.next(); switch (tok.id) { .Literal => {}, .Space => { const trailing = self.token_it.pos - 2; self.eatCommentsAndSpace(); if (self.token_it.peek()) |peek| { if (peek.id != .Literal) { node.end = trailing; const start_token = self.tree.tokens[node.start.?]; const end_token = self.tree.tokens[node.end.?]; const raw = self.tree.source[start_token.start..end_token.end]; try node.string_value.appendSlice(self.allocator, raw); break; } } }, else => { self.token_it.seekBy(-1); node.end = self.token_it.pos - 1; const start_token = self.tree.tokens[node.start.?]; const end_token = self.tree.tokens[node.end.?]; const raw = self.tree.source[start_token.start..end_token.end]; try node.string_value.appendSlice(self.allocator, raw); break; }, } } } log.debug("Leaf end: {}, {}", .{ node.end.?, self.tree.tokens[node.end.?] }); return node; } fn openScope(self: *Parser) !void { const peek = self.token_it.peek() orelse return error.UnexpectedEof; if (peek.id != .Space and peek.id != .Tab) { // No need to open scope. return; } const indent = self.token_it.next().count.?; const prev_scope = self.scopes.items[self.scopes.items.len - 1]; if (indent < prev_scope.indent) { return error.MalformedYaml; } log.debug("Opening scope...", .{}); try self.scopes.append(self.allocator, .{ .indent = indent, }); } fn closeScope(self: *Parser) !bool { const indent = indent: { const peek = self.token_it.peek() orelse return error.UnexpectedEof; switch (peek.id) { .Space, .Tab => { break :indent self.token_it.next().count.?; }, else => { break :indent 0; }, } }; const scope = self.scopes.items[self.scopes.items.len - 1]; if (indent < scope.indent) { log.debug("Closing scope...", .{}); _ = self.scopes.pop(); return true; } return false; } fn eatCommentsAndSpace(self: *Parser) void { while (true) { _ = self.token_it.peek() orelse return; const token = self.token_it.next(); switch (token.id) { .Comment, .Space => {}, else => { self.token_it.seekBy(-1); break; }, } } } fn eatToken(self: *Parser, id: Token.Id) ?TokenIndex { while (true) { const pos = self.token_it.pos; _ = self.token_it.peek() orelse return null; const token = self.token_it.next(); switch (token.id) { .Comment, .Space => continue, else => |next_id| if (next_id == id) { return pos; } else { self.token_it.seekTo(pos); return null; }, } } } fn expectToken(self: *Parser, id: Token.Id) ParseError!TokenIndex { return self.eatToken(id) orelse error.UnexpectedToken; } }; test { _ = @import("parse/test.zig"); }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/src/main.zig
const std = @import("std"); const assert = std.debug.assert; const math = std.math; const mem = std.mem; const testing = std.testing; const log = std.log.scoped(.yaml); const Allocator = mem.Allocator; const ArenaAllocator = std.heap.ArenaAllocator; pub const Tokenizer = @import("Tokenizer.zig"); pub const parse = @import("parse.zig"); const Node = parse.Node; const Tree = parse.Tree; const ParseError = parse.ParseError; pub const YamlError = error{ UnexpectedNodeType, OutOfMemory, } || ParseError || std.fmt.ParseIntError; pub const ValueType = enum { empty, int, float, string, list, map, }; pub const List = []Value; pub const Map = std.StringArrayHashMap(Value); pub const Value = union(ValueType) { empty, int: i64, float: f64, string: []const u8, list: List, map: Map, pub fn asInt(self: Value) !i64 { if (self != .int) return error.TypeMismatch; return self.int; } pub fn asFloat(self: Value) !f64 { if (self != .float) return error.TypeMismatch; return self.float; } pub fn asString(self: Value) ![]const u8 { if (self != .string) return error.TypeMismatch; return self.string; } pub fn asList(self: Value) !List { if (self != .list) return error.TypeMismatch; return self.list; } pub fn asMap(self: Value) !Map { if (self != .map) return error.TypeMismatch; return self.map; } const StringifyArgs = struct { indentation: usize = 0, should_inline_first_key: bool = false, }; pub const StringifyError = std.os.WriteError; pub fn stringify(self: Value, writer: anytype, args: StringifyArgs) StringifyError!void { switch (self) { .empty => return, .int => |int| return writer.print("{}", .{int}), .float => |float| return writer.print("{d}", .{float}), .string => |string| return writer.print("{s}", .{string}), .list => |list| { const len = list.len; if (len == 0) return; const first = list[0]; if (first.is_compound()) { for (list) |elem, i| { try writer.writeByteNTimes(' ', args.indentation); try writer.writeAll("- "); try elem.stringify(writer, .{ .indentation = args.indentation + 2, .should_inline_first_key = true, }); if (i < len - 1) { try writer.writeByte('\n'); } } return; } try writer.writeAll("[ "); for (list) |elem, i| { try elem.stringify(writer, args); if (i < len - 1) { try writer.writeAll(", "); } } try writer.writeAll(" ]"); }, .map => |map| { const keys = map.keys(); const len = keys.len; if (len == 0) return; for (keys) |key, i| { if (!args.should_inline_first_key or i != 0) { try writer.writeByteNTimes(' ', args.indentation); } try writer.print("{s}: ", .{key}); const value = map.get(key) orelse unreachable; const should_inline = blk: { if (!value.is_compound()) break :blk true; if (value == .list and value.list.len > 0 and !value.list[0].is_compound()) break :blk true; break :blk false; }; if (should_inline) { try value.stringify(writer, args); } else { try writer.writeByte('\n'); try value.stringify(writer, .{ .indentation = args.indentation + 4, }); } if (i < len - 1) { try writer.writeByte('\n'); } } }, } } fn is_compound(self: Value) bool { return switch (self) { .list, .map => true, else => false, }; } fn fromNode(arena: Allocator, tree: *const Tree, node: *const Node, type_hint: ?ValueType) YamlError!Value { if (node.cast(Node.Doc)) |doc| { const inner = doc.value orelse { // empty doc return Value{ .empty = .{} }; }; return Value.fromNode(arena, tree, inner, null); } else if (node.cast(Node.Map)) |map| { var out_map = std.StringArrayHashMap(Value).init(arena); try out_map.ensureUnusedCapacity(map.values.items.len); for (map.values.items) |entry| { const key_tok = tree.tokens[entry.key]; const key = try arena.dupe(u8, tree.source[key_tok.start..key_tok.end]); const value = try Value.fromNode(arena, tree, entry.value, null); out_map.putAssumeCapacityNoClobber(key, value); } return Value{ .map = out_map }; } else if (node.cast(Node.List)) |list| { var out_list = std.ArrayList(Value).init(arena); try out_list.ensureUnusedCapacity(list.values.items.len); if (list.values.items.len > 0) { const hint = if (list.values.items[0].cast(Node.Value)) |value| hint: { const start = tree.tokens[value.start.?]; const end = tree.tokens[value.end.?]; const raw = tree.source[start.start..end.end]; _ = std.fmt.parseInt(i64, raw, 10) catch { _ = std.fmt.parseFloat(f64, raw) catch { break :hint ValueType.string; }; break :hint ValueType.float; }; break :hint ValueType.int; } else null; for (list.values.items) |elem| { const value = try Value.fromNode(arena, tree, elem, hint); out_list.appendAssumeCapacity(value); } } return Value{ .list = out_list.toOwnedSlice() }; } else if (node.cast(Node.Value)) |value| { const start = tree.tokens[value.start.?]; const end = tree.tokens[value.end.?]; const raw = tree.source[start.start..end.end]; if (type_hint) |hint| { return switch (hint) { .int => Value{ .int = try std.fmt.parseInt(i64, raw, 10) }, .float => Value{ .float = try std.fmt.parseFloat(f64, raw) }, .string => Value{ .string = try arena.dupe(u8, value.string_value.items) }, else => unreachable, }; } try_int: { // TODO infer base for int const int = std.fmt.parseInt(i64, raw, 10) catch break :try_int; return Value{ .int = int }; } try_float: { const float = std.fmt.parseFloat(f64, raw) catch break :try_float; return Value{ .float = float }; } return Value{ .string = try arena.dupe(u8, raw) }; } else { log.err("Unexpected node type: {}", .{node.tag}); return error.UnexpectedNodeType; } } }; pub const Yaml = struct { arena: ArenaAllocator, tree: ?Tree = null, docs: std.ArrayList(Value), pub fn deinit(self: *Yaml) void { self.arena.deinit(); } pub fn stringify(self: Yaml, writer: anytype) !void { for (self.docs.items) |doc| { // if (doc.directive) |directive| { // try writer.print("--- !{s}\n", .{directive}); // } try doc.stringify(writer, .{}); // if (doc.directive != null) { // try writer.writeAll("...\n"); // } } } pub fn load(allocator: Allocator, source: []const u8) !Yaml { var arena = ArenaAllocator.init(allocator); var tree = Tree.init(arena.allocator()); try tree.parse(source); var docs = std.ArrayList(Value).init(arena.allocator()); try docs.ensureUnusedCapacity(tree.docs.items.len); for (tree.docs.items) |node| { const value = try Value.fromNode(arena.allocator(), &tree, node, null); docs.appendAssumeCapacity(value); } return Yaml{ .arena = arena, .tree = tree, .docs = docs, }; } pub const Error = error{ Unimplemented, TypeMismatch, StructFieldMissing, ArraySizeMismatch, UntaggedUnion, UnionTagMissing, Overflow, OutOfMemory, }; pub fn parse(self: *Yaml, comptime T: type) Error!T { if (self.docs.items.len == 0) { if (@typeInfo(T) == .Void) return {}; return error.TypeMismatch; } if (self.docs.items.len == 1) { return self.parseValue(T, self.docs.items[0]); } switch (@typeInfo(T)) { .Array => |info| { var parsed: T = undefined; for (self.docs.items) |doc, i| { parsed[i] = try self.parseValue(info.child, doc); } return parsed; }, .Pointer => |info| { switch (info.size) { .Slice => { var parsed = try self.arena.allocator().alloc(info.child, self.docs.items.len); for (self.docs.items) |doc, i| { parsed[i] = try self.parseValue(info.child, doc); } return parsed; }, else => return error.TypeMismatch, } }, .Union => return error.Unimplemented, else => return error.TypeMismatch, } } fn parseValue(self: *Yaml, comptime T: type, value: Value) Error!T { return switch (@typeInfo(T)) { .Int => math.cast(T, try value.asInt()), .Float => math.lossyCast(T, try value.asFloat()), .Struct => self.parseStruct(T, try value.asMap()), .Union => self.parseUnion(T, value), .Array => self.parseArray(T, try value.asList()), .Pointer => { if (value.asList()) |list| { return self.parsePointer(T, .{ .list = list }); } else |_| { return self.parsePointer(T, .{ .string = try value.asString() }); } }, .Void => error.TypeMismatch, .Optional => unreachable, else => error.Unimplemented, }; } fn parseUnion(self: *Yaml, comptime T: type, value: Value) Error!T { const union_info = @typeInfo(T).Union; if (union_info.tag_type) |_| { inline for (union_info.fields) |field| { if (self.parseValue(field.field_type, value)) |u_value| { return @unionInit(T, field.name, u_value); } else |err| { if (@as(@TypeOf(err) || error{TypeMismatch}, err) != error.TypeMismatch) return err; } } } else return error.UntaggedUnion; return error.UnionTagMissing; } fn parseOptional(self: *Yaml, comptime T: type, value: ?Value) Error!T { const unwrapped = value orelse return null; const opt_info = @typeInfo(T).Optional; return @as(T, try self.parseValue(opt_info.child, unwrapped)); } fn parseStruct(self: *Yaml, comptime T: type, map: Map) Error!T { const struct_info = @typeInfo(T).Struct; var parsed: T = undefined; inline for (struct_info.fields) |field| { const value: ?Value = map.get(field.name) orelse blk: { const field_name = try mem.replaceOwned(u8, self.arena.allocator(), field.name, "_", "-"); break :blk map.get(field_name); }; if (@typeInfo(field.field_type) == .Optional) { @field(parsed, field.name) = try self.parseOptional(field.field_type, value); continue; } const unwrapped = value orelse { log.err("missing struct field: {s}: {s}", .{ field.name, @typeName(field.field_type) }); return error.StructFieldMissing; }; @field(parsed, field.name) = try self.parseValue(field.field_type, unwrapped); } return parsed; } fn parsePointer(self: *Yaml, comptime T: type, value: Value) Error!T { const ptr_info = @typeInfo(T).Pointer; const arena = self.arena.allocator(); switch (ptr_info.size) { .Slice => { const child_info = @typeInfo(ptr_info.child); if (child_info == .Int and child_info.Int.bits == 8) { return value.asString(); } var parsed = try arena.alloc(ptr_info.child, value.list.len); for (value.list) |elem, i| { parsed[i] = try self.parseValue(ptr_info.child, elem); } return parsed; }, else => return error.Unimplemented, } } fn parseArray(self: *Yaml, comptime T: type, list: List) Error!T { const array_info = @typeInfo(T).Array; if (array_info.len != list.len) return error.ArraySizeMismatch; var parsed: T = undefined; for (list) |elem, i| { parsed[i] = try self.parseValue(array_info.child, elem); } return parsed; } }; test { testing.refAllDecls(@This()); } test "simple list" { const source = \\- a \\- b \\- c ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const list = yaml.docs.items[0].list; try testing.expectEqual(list.len, 3); try testing.expect(mem.eql(u8, list[0].string, "a")); try testing.expect(mem.eql(u8, list[1].string, "b")); try testing.expect(mem.eql(u8, list[2].string, "c")); } test "simple list typed as array of strings" { const source = \\- a \\- b \\- c ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3][]const u8); try testing.expectEqual(arr.len, 3); try testing.expect(mem.eql(u8, arr[0], "a")); try testing.expect(mem.eql(u8, arr[1], "b")); try testing.expect(mem.eql(u8, arr[2], "c")); } test "simple list typed as array of ints" { const source = \\- 0 \\- 1 \\- 2 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3]u8); try testing.expectEqual(arr.len, 3); try testing.expectEqual(arr[0], 0); try testing.expectEqual(arr[1], 1); try testing.expectEqual(arr[2], 2); } test "list of mixed sign integer" { const source = \\- 0 \\- -1 \\- 2 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3]i8); try testing.expectEqual(arr.len, 3); try testing.expectEqual(arr[0], 0); try testing.expectEqual(arr[1], -1); try testing.expectEqual(arr[2], 2); } test "simple map untyped" { const source = \\a: 0 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const map = yaml.docs.items[0].map; try testing.expect(map.contains("a")); try testing.expectEqual(map.get("a").?.int, 0); } test "simple map typed" { const source = \\a: 0 \\b: hello there \\c: 'wait, what?' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { a: usize, b: []const u8, c: []const u8 }); try testing.expectEqual(simple.a, 0); try testing.expect(mem.eql(u8, simple.b, "hello there")); try testing.expect(mem.eql(u8, simple.c, "wait, what?")); } test "typed nested structs" { const source = \\a: \\ b: hello there \\ c: 'wait, what?' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { a: struct { b: []const u8, c: []const u8, }, }); try testing.expect(mem.eql(u8, simple.a.b, "hello there")); try testing.expect(mem.eql(u8, simple.a.c, "wait, what?")); } test "single quoted string" { const source = \\- 'hello' \\- 'here''s an escaped quote' \\- 'newlines and tabs\nare not\tsupported' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const arr = try yaml.parse([3][]const u8); try testing.expectEqual(arr.len, 3); try testing.expect(mem.eql(u8, arr[0], "hello")); try testing.expect(mem.eql(u8, arr[1], "here's an escaped quote")); try testing.expect(mem.eql(u8, arr[2], "newlines and tabs\\nare not\\tsupported")); } test "double quoted string" { const source = \\- "hello" \\- "\"here\" are some escaped quotes" \\- "newlines and tabs\nare\tsupported" ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const arr = try yaml.parse([3][]const u8); try testing.expectEqual(arr.len, 3); try testing.expect(mem.eql(u8, arr[0], "hello")); try testing.expect(mem.eql(u8, arr[1], \\"here" are some escaped quotes )); try testing.expect(mem.eql(u8, arr[2], \\newlines and tabs \\are supported )); } test "multidoc typed as a slice of structs" { const source = \\--- \\a: 0 \\--- \\a: 1 \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); { const result = try yaml.parse([2]struct { a: usize }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expectEqual(result[1].a, 1); } { const result = try yaml.parse([]struct { a: usize }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expectEqual(result[1].a, 1); } } test "multidoc typed as a struct is an error" { const source = \\--- \\a: 0 \\--- \\b: 1 \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { a: usize })); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { b: usize })); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { a: usize, b: usize })); } test "multidoc typed as a slice of structs with optionals" { const source = \\--- \\a: 0 \\c: 1.0 \\--- \\a: 1 \\b: different field \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const result = try yaml.parse([]struct { a: usize, b: ?[]const u8, c: ?f16 }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expect(result[0].b == null); try testing.expect(result[0].c != null); try testing.expectEqual(result[0].c.?, 1.0); try testing.expectEqual(result[1].a, 1); try testing.expect(result[1].b != null); try testing.expect(mem.eql(u8, result[1].b.?, "different field")); try testing.expect(result[1].c == null); } test "empty yaml can be represented as void" { const source = ""; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const result = try yaml.parse(void); try testing.expect(@TypeOf(result) == void); } test "nonempty yaml cannot be represented as void" { const source = \\a: b ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(void)); } test "typed array size mismatch" { const source = \\- 0 \\- 0 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.ArraySizeMismatch, yaml.parse([1]usize)); try testing.expectError(Yaml.Error.ArraySizeMismatch, yaml.parse([5]usize)); }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/src/Tokenizer.zig
const Tokenizer = @This(); const std = @import("std"); const log = std.log.scoped(.tokenizer); const testing = std.testing; buffer: []const u8, index: usize = 0, string_type: StringType = .Unquoted, const StringType = enum { Unquoted, SingleQuoted, DoubleQuoted, }; pub const Token = struct { id: Id, start: usize, end: usize, // Count of spaces/tabs. // Only active for .Space and .Tab tokens. count: ?usize = null, pub const Id = enum { Eof, NewLine, DocStart, // --- DocEnd, // ... SeqItemInd, // - MapValueInd, // : FlowMapStart, // { FlowMapEnd, // } FlowSeqStart, // [ FlowSeqEnd, // ] Comma, Space, Tab, Comment, // # Alias, // * Anchor, // & Tag, // ! SingleQuote, // ' DoubleQuote, // " EscapeSeq, // '' for single quoted strings, starts with \ for double quoted strings Literal, }; }; pub const TokenIndex = usize; pub const TokenIterator = struct { buffer: []const Token, pos: TokenIndex = 0, pub fn next(self: *TokenIterator) Token { const token = self.buffer[self.pos]; self.pos += 1; return token; } pub fn peek(self: TokenIterator) ?Token { if (self.pos >= self.buffer.len) return null; return self.buffer[self.pos]; } pub fn reset(self: *TokenIterator) void { self.pos = 0; } pub fn seekTo(self: *TokenIterator, pos: TokenIndex) void { self.pos = pos; } pub fn seekBy(self: *TokenIterator, offset: isize) void { const new_pos = @bitCast(isize, self.pos) + offset; if (new_pos < 0) { self.pos = 0; } else { self.pos = @intCast(usize, new_pos); } } }; pub fn next(self: *Tokenizer) Token { var result = Token{ .id = .Eof, .start = self.index, .end = undefined, }; var state: union(enum) { Start, NewLine, Space: usize, Tab: usize, Hyphen: usize, Dot: usize, SingleQuoteOrEscape, Literal, EscapeSeq, } = .Start; while (self.index < self.buffer.len) : (self.index += 1) { const c = self.buffer[self.index]; switch (state) { .Start => switch (c) { ' ' => { state = .{ .Space = 1 }; }, '\t' => { state = .{ .Tab = 1 }; }, '\n' => { result.id = .NewLine; self.index += 1; break; }, '\r' => { state = .NewLine; }, '-' => { state = .{ .Hyphen = 1 }; }, '.' => { state = .{ .Dot = 1 }; }, ',' => { result.id = .Comma; self.index += 1; break; }, '#' => { result.id = .Comment; self.index += 1; break; }, '*' => { result.id = .Alias; self.index += 1; break; }, '&' => { result.id = .Anchor; self.index += 1; break; }, '!' => { result.id = .Tag; self.index += 1; break; }, '\'' => { switch (self.string_type) { .Unquoted => { result.id = .SingleQuote; self.string_type = if (self.string_type == .SingleQuoted) .Unquoted else .SingleQuoted; self.index += 1; break; }, .SingleQuoted => { state = .SingleQuoteOrEscape; }, .DoubleQuoted => { result.id = .SingleQuote; self.index += 1; break; }, } }, '"' => { result.id = .DoubleQuote; self.string_type = if (self.string_type == .DoubleQuoted) .Unquoted else .DoubleQuoted; self.index += 1; break; }, '[' => { result.id = .FlowSeqStart; self.index += 1; break; }, ']' => { result.id = .FlowSeqEnd; self.index += 1; break; }, ':' => { result.id = .MapValueInd; self.index += 1; break; }, '{' => { result.id = .FlowMapStart; self.index += 1; break; }, '}' => { result.id = .FlowMapEnd; self.index += 1; break; }, '\\' => { if (self.string_type == .DoubleQuoted) { state = .EscapeSeq; } else { state = .Literal; } }, else => { state = .Literal; }, }, .Space => |*count| switch (c) { ' ' => { count.* += 1; }, else => { result.id = .Space; result.count = count.*; break; }, }, .Tab => |*count| switch (c) { ' ' => { count.* += 1; }, else => { result.id = .Tab; result.count = count.*; break; }, }, .NewLine => switch (c) { '\n' => { result.id = .NewLine; self.index += 1; break; }, else => {}, // TODO this should be an error condition }, .Hyphen => |*count| switch (c) { ' ' => { result.id = .SeqItemInd; self.index += 1; break; }, '-' => { count.* += 1; if (count.* == 3) { result.id = .DocStart; self.index += 1; break; } }, else => { state = .Literal; }, }, .Dot => |*count| switch (c) { '.' => { count.* += 1; if (count.* == 3) { result.id = .DocEnd; self.index += 1; break; } }, else => { state = .Literal; }, }, .SingleQuoteOrEscape => switch (c) { '\'' => { result.id = .EscapeSeq; self.index += 1; break; }, else => { self.string_type = .Unquoted; result.id = .SingleQuote; break; }, }, .Literal => switch (c) { '\\' => { result.id = .Literal; if (self.string_type == .DoubleQuoted) { // escape sequence break; } }, '\r', '\n', ' ', '\'', '"', ',', ':', ']', '}' => { result.id = .Literal; break; }, else => { result.id = .Literal; }, }, .EscapeSeq => { // Only support single character escape codes for now... result.id = .EscapeSeq; self.index += 1; break; }, } } if (self.index >= self.buffer.len) { switch (state) { .Literal => { result.id = .Literal; }, .SingleQuoteOrEscape => { result.id = .SingleQuote; }, else => {}, } } result.end = self.index; log.debug("{any}", .{result}); log.debug(" | {s}", .{self.buffer[result.start..result.end]}); return result; } fn testExpected(source: []const u8, expected: []const Token.Id) !void { var tokenizer = Tokenizer{ .buffer = source, }; for (expected) |exp| { const token = tokenizer.next(); try testing.expectEqual(exp, token.id); } } test "empty doc" { try testExpected("", &[_]Token.Id{.Eof}); } test "empty doc with explicit markers" { try testExpected( \\--- \\... , &[_]Token.Id{ .DocStart, .NewLine, .DocEnd, .Eof, }); } test "sequence of values" { try testExpected( \\- 0 \\- 1 \\- 2 , &[_]Token.Id{ .SeqItemInd, .Literal, .NewLine, .SeqItemInd, .Literal, .NewLine, .SeqItemInd, .Literal, .Eof, }); } test "sequence of sequences" { try testExpected( \\- [ val1, val2] \\- [val3, val4 ] , &[_]Token.Id{ .SeqItemInd, .FlowSeqStart, .Space, .Literal, .Comma, .Space, .Literal, .FlowSeqEnd, .NewLine, .SeqItemInd, .FlowSeqStart, .Literal, .Comma, .Space, .Literal, .Space, .FlowSeqEnd, .Eof, }); } test "mappings" { try testExpected( \\key1: value1 \\key2: value2 , &[_]Token.Id{ .Literal, .MapValueInd, .Space, .Literal, .NewLine, .Literal, .MapValueInd, .Space, .Literal, .Eof, }); } test "inline mapped sequence of values" { try testExpected( \\key : [ val1, \\ val2 ] , &[_]Token.Id{ .Literal, .Space, .MapValueInd, .Space, .FlowSeqStart, .Space, .Literal, .Comma, .Space, .NewLine, .Space, .Literal, .Space, .FlowSeqEnd, .Eof, }); } test "part of tdb" { try testExpected( \\--- !tapi-tbd \\tbd-version: 4 \\targets: [ x86_64-macos ] \\ \\uuids: \\ - target: x86_64-macos \\ value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 \\ \\install-name: '/usr/lib/libSystem.B.dylib' \\... , &[_]Token.Id{ .DocStart, .Space, .Tag, .Literal, .NewLine, .Literal, .MapValueInd, .Space, .Literal, .NewLine, .Literal, .MapValueInd, .Space, .FlowSeqStart, .Space, .Literal, .Space, .FlowSeqEnd, .NewLine, .NewLine, .Literal, .MapValueInd, .NewLine, .Space, .SeqItemInd, .Literal, .MapValueInd, .Space, .Literal, .NewLine, .Space, .Literal, .MapValueInd, .Space, .Literal, .NewLine, .NewLine, .Literal, .MapValueInd, .Space, .SingleQuote, .Literal, .SingleQuote, .NewLine, .DocEnd, .Eof, }); } test "escape sequences" { try testExpected( \\a: 'here''s an apostrophe' \\b: "a newline\nand a\ttab" , &[_]Token.Id{ .Literal, .MapValueInd, .Space, .SingleQuote, .Literal, .EscapeSeq, .Literal, .Space, .Literal, .Space, .Literal, .SingleQuote, .NewLine, .Literal, .MapValueInd, .Space, .DoubleQuote, .Literal, .Space, .Literal, .EscapeSeq, .Literal, .Space, .Literal, .EscapeSeq, .Literal, .DoubleQuote, .Eof, }); }
0
repos/zaml/benchmark/libs/zig-yaml/src
repos/zaml/benchmark/libs/zig-yaml/src/parse/test.zig
const std = @import("std"); const mem = std.mem; const testing = std.testing; const parse = @import("../parse.zig"); const Node = parse.Node; const Tree = parse.Tree; test "explicit doc" { const source = \\--- !tapi-tbd \\tbd-version: 4 \\abc-version: 5 \\... ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); const directive = tree.tokens[doc.directive.?]; try testing.expectEqual(directive.id, .Literal); try testing.expect(mem.eql(u8, "tapi-tbd", tree.source[directive.start..directive.end])); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 5); try testing.expectEqual(map.end.?, 14); try testing.expectEqual(map.values.items.len, 2); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "tbd-version", tree.source[key.start..key.end])); const value = entry.value.cast(Node.Value).?; const value_tok = tree.tokens[value.start.?]; try testing.expectEqual(value_tok.id, .Literal); try testing.expect(mem.eql(u8, "4", tree.source[value_tok.start..value_tok.end])); } { const entry = map.values.items[1]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "abc-version", tree.source[key.start..key.end])); const value = entry.value.cast(Node.Value).?; const value_tok = tree.tokens[value.start.?]; try testing.expectEqual(value_tok.id, .Literal); try testing.expect(mem.eql(u8, "5", tree.source[value_tok.start..value_tok.end])); } } test "leaf in quotes" { const source = \\key1: no quotes \\key2: 'single quoted' \\key3: "double quoted" ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.directive == null); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 0); try testing.expectEqual(map.end.?, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 3); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql( u8, "key1", tree.source[key.start..key.end], )); const value = entry.value.cast(Node.Value).?; const start = tree.tokens[value.start.?]; const end = tree.tokens[value.end.?]; try testing.expectEqual(start.id, .Literal); try testing.expectEqual(end.id, .Literal); try testing.expect(mem.eql( u8, "no quotes", tree.source[start.start..end.end], )); } } test "nested maps" { const source = \\key1: \\ key1_1 : value1_1 \\ key1_2 : value1_2 \\key2 : value2 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.directive == null); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 0); try testing.expectEqual(map.end.?, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 2); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "key1", tree.source[key.start..key.end])); const nested_map = entry.value.cast(Node.Map).?; try testing.expectEqual(nested_map.start.?, 4); try testing.expectEqual(nested_map.end.?, 16); try testing.expectEqual(nested_map.values.items.len, 2); { const nested_entry = nested_map.values.items[0]; const nested_key = tree.tokens[nested_entry.key]; try testing.expectEqual(nested_key.id, .Literal); try testing.expect(mem.eql( u8, "key1_1", tree.source[nested_key.start..nested_key.end], )); const nested_value = nested_entry.value.cast(Node.Value).?; const nested_value_tok = tree.tokens[nested_value.start.?]; try testing.expectEqual(nested_value_tok.id, .Literal); try testing.expect(mem.eql( u8, "value1_1", tree.source[nested_value_tok.start..nested_value_tok.end], )); } { const nested_entry = nested_map.values.items[1]; const nested_key = tree.tokens[nested_entry.key]; try testing.expectEqual(nested_key.id, .Literal); try testing.expect(mem.eql( u8, "key1_2", tree.source[nested_key.start..nested_key.end], )); const nested_value = nested_entry.value.cast(Node.Value).?; const nested_value_tok = tree.tokens[nested_value.start.?]; try testing.expectEqual(nested_value_tok.id, .Literal); try testing.expect(mem.eql( u8, "value1_2", tree.source[nested_value_tok.start..nested_value_tok.end], )); } } { const entry = map.values.items[1]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "key2", tree.source[key.start..key.end])); const value = entry.value.cast(Node.Value).?; const value_tok = tree.tokens[value.start.?]; try testing.expectEqual(value_tok.id, .Literal); try testing.expect(mem.eql( u8, "value2", tree.source[value_tok.start..value_tok.end], )); } } test "map of list of values" { const source = \\ints: \\ - 0 \\ - 1 \\ - 2 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 0); try testing.expectEqual(map.end.?, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "ints", tree.source[key.start..key.end])); const value = entry.value.cast(Node.List).?; try testing.expectEqual(value.start.?, 4); try testing.expectEqual(value.end.?, tree.tokens.len - 2); try testing.expectEqual(value.values.items.len, 3); { const elem = value.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[elem.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "0", tree.source[leaf.start..leaf.end])); } { const elem = value.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[elem.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "1", tree.source[leaf.start..leaf.end])); } { const elem = value.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[elem.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "2", tree.source[leaf.start..leaf.end])); } } test "map of list of maps" { const source = \\key1: \\- key2 : value2 \\- key3 : value3 \\- key4 : value4 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 0); try testing.expectEqual(map.end.?, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "key1", tree.source[key.start..key.end])); const value = entry.value.cast(Node.List).?; try testing.expectEqual(value.start.?, 3); try testing.expectEqual(value.end.?, tree.tokens.len - 2); try testing.expectEqual(value.values.items.len, 3); { const elem = value.values.items[0].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .Literal); try testing.expect(mem.eql(u8, "key2", tree.source[nested_key.start..nested_key.end])); const nested_v = nested.value.cast(Node.Value).?; const leaf = tree.tokens[nested_v.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "value2", tree.source[leaf.start..leaf.end])); } { const elem = value.values.items[1].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .Literal); try testing.expect(mem.eql(u8, "key3", tree.source[nested_key.start..nested_key.end])); const nested_v = nested.value.cast(Node.Value).?; const leaf = tree.tokens[nested_v.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "value3", tree.source[leaf.start..leaf.end])); } { const elem = value.values.items[2].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .Literal); try testing.expect(mem.eql(u8, "key4", tree.source[nested_key.start..nested_key.end])); const nested_v = nested.value.cast(Node.Value).?; const leaf = tree.tokens[nested_v.start.?]; try testing.expectEqual(leaf.id, .Literal); try testing.expect(mem.eql(u8, "value4", tree.source[leaf.start..leaf.end])); } } test "list of lists" { const source = \\- [name , hr, avg ] \\- [Mark McGwire , 65, 0.278] \\- [Sammy Sosa , 63, 0.288] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .list); const list = doc.value.?.cast(Node.List).?; try testing.expectEqual(list.start.?, 0); try testing.expectEqual(list.end.?, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .list); const nested = list.values.items[0].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "name", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "hr", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "avg", tree.source[leaf.start..leaf.end])); } } { try testing.expectEqual(list.values.items[1].tag, .list); const nested = list.values.items[1].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const start = tree.tokens[value.start.?]; const end = tree.tokens[value.end.?]; try testing.expect(mem.eql(u8, "Mark McGwire", tree.source[start.start..end.end])); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "65", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "0.278", tree.source[leaf.start..leaf.end])); } } { try testing.expectEqual(list.values.items[2].tag, .list); const nested = list.values.items[2].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const start = tree.tokens[value.start.?]; const end = tree.tokens[value.end.?]; try testing.expect(mem.eql(u8, "Sammy Sosa", tree.source[start.start..end.end])); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "63", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "0.288", tree.source[leaf.start..leaf.end])); } } } test "inline list" { const source = \\[name , hr, avg ] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .list); const list = doc.value.?.cast(Node.List).?; try testing.expectEqual(list.start.?, 0); try testing.expectEqual(list.end.?, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .value); const value = list.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "name", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(list.values.items[1].tag, .value); const value = list.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "hr", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(list.values.items[2].tag, .value); const value = list.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "avg", tree.source[leaf.start..leaf.end])); } } test "inline list as mapping value" { const source = \\key : [ \\ name , \\ hr, avg ] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.start.?, 0); try testing.expectEqual(doc.end.?, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.start.?, 0); try testing.expectEqual(map.end.?, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .Literal); try testing.expect(mem.eql(u8, "key", tree.source[key.start..key.end])); const list = entry.value.cast(Node.List).?; try testing.expectEqual(list.start.?, 4); try testing.expectEqual(list.end.?, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .value); const value = list.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "name", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(list.values.items[1].tag, .value); const value = list.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "hr", tree.source[leaf.start..leaf.end])); } { try testing.expectEqual(list.values.items[2].tag, .value); const value = list.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.start.?]; try testing.expect(mem.eql(u8, "avg", tree.source[leaf.start..leaf.end])); } }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/explicit_doc.yml
--- !tapi-tbd a: b c : d ...
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/maps.yml
key1: key1_1: value1_1 key1_2: value1_2 key2: value2 key3: key3_1: value3_1 key3_2: value3_2 key3_3: value3_3
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/yaml.zig
const std = @import("std"); const yaml = @import("yaml"); const io = std.io; const mem = std.mem; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const usage = \\Usage: yaml <path-to-yaml> \\ \\General options: \\-h, --help Print this help and exit ; pub fn main() !void { var arena = std.heap.ArenaAllocator.init(gpa.allocator()); defer arena.deinit(); const allocator = arena.allocator(); const args = try std.process.argsAlloc(allocator); if (args.len == 1) { try io.getStdErr().writeAll("fatal: no input path to yaml file specified"); try io.getStdOut().writeAll(usage); return; } if (mem.eql(u8, "-h", args[1]) or mem.eql(u8, "--help", args[1])) { try io.getStdOut().writeAll(usage); return; } else { const file_path = args[1]; const file = try std.fs.cwd().openFile(file_path, .{}); defer file.close(); const source = try file.readToEndAlloc(allocator, std.math.maxInt(u32)); var parsed = try yaml.Yaml.load(allocator, source); try parsed.stringify(io.getStdOut().writer()); } }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/lists.yml
- a - b - c - d: - 0 - 1 - 2
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/simple.yml
key: value other_key: other_value
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/examples/map_of_lists.yml
map: - 0 - 1 - 2 another: - key: value - keys: [ a, b, c, d ] final: what is that?
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/test/multi_lib.tbd
--- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos ] uuids: - target: x86_64-macos value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 install-name: '/usr/lib/libSystem.B.dylib' current-version: 1292.60.1 reexported-libraries: - targets: [ x86_64-macos ] libraries: [ '/usr/lib/system/libcache.dylib' ] exports: - targets: [ x86_64-macos ] symbols: [ 'R8289209$_close', 'R8289209$_fork' ] - targets: [ x86_64-macos ] symbols: [ ___crashreporter_info__, _libSystem_atfork_child ] --- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos ] uuids: - target: x86_64-macos value: 2F7F7303-DB23-359E-85CD-8B2F93223E2A install-name: '/usr/lib/system/libcache.dylib' current-version: 83 parent-umbrella: - targets: [ x86_64-macos ] umbrella: System exports: - targets: [ x86_64-macos ] symbols: [ _cache_create, _cache_destroy ] ...
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/test/single_lib.tbd
--- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos, x86_64-maccatalyst, arm64-macos, arm64-maccatalyst, arm64e-macos, arm64e-maccatalyst ] uuids: - target: x86_64-macos value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 - target: x86_64-maccatalyst value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 - target: arm64-macos value: 00000000-0000-0000-0000-000000000000 - target: arm64-maccatalyst value: 00000000-0000-0000-0000-000000000000 - target: arm64e-macos value: A17E8744-051E-356E-8619-66F2A6E89AD4 - target: arm64e-maccatalyst value: A17E8744-051E-356E-8619-66F2A6E89AD4 install-name: '/usr/lib/libSystem.B.dylib' current-version: 1292.60.1 reexported-libraries: - targets: [ x86_64-macos, x86_64-maccatalyst, arm64-macos, arm64-maccatalyst, arm64e-macos, arm64e-maccatalyst ] libraries: [ '/usr/lib/system/libcache.dylib', '/usr/lib/system/libcommonCrypto.dylib', '/usr/lib/system/libcompiler_rt.dylib', '/usr/lib/system/libcopyfile.dylib', '/usr/lib/system/libxpc.dylib' ] exports: - targets: [ x86_64-maccatalyst, x86_64-macos ] symbols: [ 'R8289209$_close', 'R8289209$_fork', 'R8289209$_fsync', 'R8289209$_getattrlist', 'R8289209$_write' ] - targets: [ x86_64-maccatalyst, x86_64-macos, arm64e-maccatalyst, arm64e-macos, arm64-macos, arm64-maccatalyst ] symbols: [ ___crashreporter_info__, _libSystem_atfork_child, _libSystem_atfork_parent, _libSystem_atfork_prepare, _mach_init_routine ]
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/test/test.zig
const std = @import("std"); const mem = std.mem; const testing = std.testing; const Allocator = mem.Allocator; const Yaml = @import("yaml").Yaml; const gpa = testing.allocator; fn loadFromFile(file_path: []const u8) !Yaml { const file = try std.fs.cwd().openFile(file_path, .{}); defer file.close(); const source = try file.readToEndAlloc(gpa, std.math.maxInt(u32)); defer gpa.free(source); return Yaml.load(gpa, source); } test "simple" { const Simple = struct { names: []const []const u8, numbers: []const i16, nested: struct { some: []const u8, wick: []const u8, }, finally: [4]f16, pub fn eql(self: @This(), other: @This()) bool { if (self.names.len != other.names.len) return false; if (self.numbers.len != other.numbers.len) return false; if (self.finally.len != other.finally.len) return false; for (self.names) |lhs, i| { if (!mem.eql(u8, lhs, other.names[i])) return false; } for (self.numbers) |lhs, i| { if (lhs != other.numbers[i]) return false; } for (self.finally) |lhs, i| { if (lhs != other.finally[i]) return false; } if (!mem.eql(u8, self.nested.some, other.nested.some)) return false; if (!mem.eql(u8, self.nested.wick, other.nested.wick)) return false; return true; } }; var parsed = try loadFromFile("test/simple.yaml"); defer parsed.deinit(); const result = try parsed.parse(Simple); const expected = .{ .names = &[_][]const u8{ "John Doe", "MacIntosh", "Jane Austin" }, .numbers = &[_]i16{ 10, -8, 6 }, .nested = .{ .some = "one", .wick = "john doe", }, .finally = [_]f16{ 8.17, 19.78, 17, 21 }, }; try testing.expect(result.eql(expected)); } const LibTbd = struct { tbd_version: u3, targets: []const []const u8, uuids: []const struct { target: []const u8, value: []const u8, }, install_name: []const u8, current_version: union(enum) { string: []const u8, int: usize, }, reexported_libraries: ?[]const struct { targets: []const []const u8, libraries: []const []const u8, }, parent_umbrella: ?[]const struct { targets: []const []const u8, umbrella: []const u8, }, exports: []const struct { targets: []const []const u8, symbols: []const []const u8, }, pub fn eql(self: LibTbd, other: LibTbd) bool { if (self.tbd_version != other.tbd_version) return false; if (self.targets.len != other.targets.len) return false; for (self.targets) |target, i| { if (!mem.eql(u8, target, other.targets[i])) return false; } if (!mem.eql(u8, self.install_name, other.install_name)) return false; switch (self.current_version) { .string => |string| { if (other.current_version != .string) return false; if (!mem.eql(u8, string, other.current_version.string)) return false; }, .int => |int| { if (other.current_version != .int) return false; if (int != other.current_version.int) return false; }, } if (self.reexported_libraries) |reexported_libraries| { const o_reexported_libraries = other.reexported_libraries orelse return false; if (reexported_libraries.len != o_reexported_libraries.len) return false; for (reexported_libraries) |reexport, i| { const o_reexport = o_reexported_libraries[i]; if (reexport.targets.len != o_reexport.targets.len) return false; if (reexport.libraries.len != o_reexport.libraries.len) return false; for (reexport.targets) |target, j| { const o_target = o_reexport.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } for (reexport.libraries) |library, j| { const o_library = o_reexport.libraries[j]; if (!mem.eql(u8, library, o_library)) return false; } } } if (self.parent_umbrella) |parent_umbrella| { const o_parent_umbrella = other.parent_umbrella orelse return false; if (parent_umbrella.len != o_parent_umbrella.len) return false; for (parent_umbrella) |pumbrella, i| { const o_pumbrella = o_parent_umbrella[i]; if (pumbrella.targets.len != o_pumbrella.targets.len) return false; for (pumbrella.targets) |target, j| { const o_target = o_pumbrella.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } if (!mem.eql(u8, pumbrella.umbrella, o_pumbrella.umbrella)) return false; } } if (self.exports.len != other.exports.len) return false; for (self.exports) |exp, i| { const o_exp = other.exports[i]; if (exp.targets.len != o_exp.targets.len) return false; if (exp.symbols.len != o_exp.symbols.len) return false; for (exp.targets) |target, j| { const o_target = o_exp.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } for (exp.symbols) |symbol, j| { const o_symbol = o_exp.symbols[j]; if (!mem.eql(u8, symbol, o_symbol)) return false; } } return true; } }; test "single lib tbd" { var parsed = try loadFromFile("test/single_lib.tbd"); defer parsed.deinit(); const result = try parsed.parse(LibTbd); const expected = .{ .tbd_version = 4, .targets = &[_][]const u8{ "x86_64-macos", "x86_64-maccatalyst", "arm64-macos", "arm64-maccatalyst", "arm64e-macos", "arm64e-maccatalyst", }, .uuids = &.{ .{ .target = "x86_64-macos", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, .{ .target = "x86_64-maccatalyst", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, .{ .target = "arm64-macos", .value = "00000000-0000-0000-0000-000000000000" }, .{ .target = "arm64-maccatalyst", .value = "00000000-0000-0000-0000-000000000000" }, .{ .target = "arm64e-macos", .value = "A17E8744-051E-356E-8619-66F2A6E89AD4" }, .{ .target = "arm64e-maccatalyst", .value = "A17E8744-051E-356E-8619-66F2A6E89AD4" }, }, .install_name = "/usr/lib/libSystem.B.dylib", .current_version = .{ .string = "1292.60.1" }, .reexported_libraries = &.{ .{ .targets = &.{ "x86_64-macos", "x86_64-maccatalyst", "arm64-macos", "arm64-maccatalyst", "arm64e-macos", "arm64e-maccatalyst", }, .libraries = &.{ "/usr/lib/system/libcache.dylib", "/usr/lib/system/libcommonCrypto.dylib", "/usr/lib/system/libcompiler_rt.dylib", "/usr/lib/system/libcopyfile.dylib", "/usr/lib/system/libxpc.dylib", }, }, }, .exports = &.{ .{ .targets = &.{ "x86_64-maccatalyst", "x86_64-macos", }, .symbols = &.{ "R8289209$_close", "R8289209$_fork", "R8289209$_fsync", "R8289209$_getattrlist", "R8289209$_write", }, }, .{ .targets = &.{ "x86_64-maccatalyst", "x86_64-macos", "arm64e-maccatalyst", "arm64e-macos", "arm64-macos", "arm64-maccatalyst", }, .symbols = &.{ "___crashreporter_info__", "_libSystem_atfork_child", "_libSystem_atfork_parent", "_libSystem_atfork_prepare", "_mach_init_routine", }, }, }, .parent_umbrella = null, }; try testing.expect(result.eql(expected)); } test "multi lib tbd" { var parsed = try loadFromFile("test/multi_lib.tbd"); defer parsed.deinit(); const result = try parsed.parse([]LibTbd); const expected = &[_]LibTbd{ .{ .tbd_version = 4, .targets = &[_][]const u8{"x86_64-macos"}, .uuids = &.{ .{ .target = "x86_64-macos", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, }, .install_name = "/usr/lib/libSystem.B.dylib", .current_version = .{ .string = "1292.60.1" }, .reexported_libraries = &.{ .{ .targets = &.{"x86_64-macos"}, .libraries = &.{"/usr/lib/system/libcache.dylib"}, }, }, .exports = &.{ .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "R8289209$_close", "R8289209$_fork" }, }, .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "___crashreporter_info__", "_libSystem_atfork_child" }, }, }, .parent_umbrella = null, }, .{ .tbd_version = 4, .targets = &[_][]const u8{"x86_64-macos"}, .uuids = &.{ .{ .target = "x86_64-macos", .value = "2F7F7303-DB23-359E-85CD-8B2F93223E2A" }, }, .install_name = "/usr/lib/system/libcache.dylib", .current_version = .{ .int = 83 }, .parent_umbrella = &.{ .{ .targets = &.{"x86_64-macos"}, .umbrella = "System", }, }, .exports = &.{ .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "_cache_create", "_cache_destroy" }, }, }, .reexported_libraries = null, }, }; for (result) |lib, i| { try testing.expect(lib.eql(expected[i])); } }
0
repos/zaml/benchmark/libs/zig-yaml
repos/zaml/benchmark/libs/zig-yaml/test/simple.yaml
names: [ John Doe, MacIntosh, Jane Austin ] numbers: - 10 - -8 - 6 nested: some: one wick: john doe finally: [ 8.17, 19.78 , 17 , 21 ]
0
repos
repos/canidoom/README.md
# Can I DOOM? Not yet ## Final Product? Coming soon... ## Current Status ![](https://github.com/Kerplunkx/media/blob/main/canidoom/status.gif) ## Resources - https://github.com/vinibiavatti1/RayCastingTutorial
0
repos
repos/canidoom/build.zig
const std = @import("std"); const Sdk = @import("libs/SDL.zig/Sdk.zig"); pub fn build(b: *std.Build) void { const target = b.standardTargetOptions(.{}); const optimize = b.standardOptimizeOption(.{}); const sdk = Sdk.init(b, null); const exe = b.addExecutable(.{ .name = "canidoom", .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); b.installArtifact(exe); sdk.link(exe, .dynamic); exe.addModule("sdl2", sdk.getWrapperModule()); const run_cmd = b.addRunArtifact(exe); run_cmd.step.dependOn(b.getInstallStep()); if (b.args) |args| { run_cmd.addArgs(args); } const run_step = b.step("run", "Run the app"); run_step.dependOn(&run_cmd.step); }
0
repos/canidoom
repos/canidoom/src/settings.zig
pub const fps = 60; pub const frame_delay: u32 = 1000 / fps; pub const screen_width = 640.0; pub const screen_height = 480.0; pub const render_delay = 30; pub const player_fov = 60.0; pub const player_x = 2.0; pub const player_y = 2.0; pub const player_movement = 5.0; pub const player_rotation = 5.0; pub const raycasting_precision = 64; pub const player_angle = 90.0; pub const increment_angle = player_fov / screen_width; pub const map = [10][10]u8{ [10]u8{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, [10]u8{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, [10]u8{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, [10]u8{ 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }, [10]u8{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 }, [10]u8{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 }, [10]u8{ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1 }, [10]u8{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, [10]u8{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, [10]u8{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, };
0
repos/canidoom
repos/canidoom/src/main.zig
const std = @import("std"); const sdl = @import("sdl2"); const settings = @import("settings.zig"); const ray = @import("ray.zig"); const p = @import("player.zig"); pub fn main() !void { sdl.init(.{ .video = true, .events = true }) catch { std.log.err("SDL2 failed to initialize.", .{}); return; }; defer sdl.quit(); const window = sdl.createWindow("DEMO", .{ .centered = {} }, .{ .centered = {} }, settings.screen_width, settings.screen_height, .{ .vis = .shown }) catch { std.log.err("SDL couldn't create the window.", .{}); return; }; defer window.destroy(); const render = sdl.createRenderer(window, null, .{ .accelerated = true }) catch { std.log.err("SDL couldn't create renderer.", .{}); return; }; defer render.destroy(); var frame_start: u32 = undefined; var frame_time: u32 = undefined; var r = ray.Ray{}; var player = p.Player{}; mainLoop: while (true) { frame_start = sdl.getTicks(); while (sdl.pollEvent()) |event| { switch (event) { .quit => break :mainLoop, else => {}, } } try render.setColorRGB(0x19, 0x19, 0x19); try render.clear(); try r.casting(render, &player); render.present(); frame_time = sdl.getTicks() - frame_start; if (settings.frame_delay > frame_time) { sdl.delay(settings.frame_delay - frame_time); } } }
0
repos/canidoom
repos/canidoom/src/player.zig
const std = @import("std"); const math = std.math; const sdl = @import("sdl2"); const settings = @import("settings.zig"); pub const Player = struct { x: f32 = settings.player_x, y: f32 = settings.player_y, angle: f32 = settings.player_angle, fov: f32 = settings.player_fov, movement: f32 = settings.player_movement, rotation: f32 = settings.player_rotation, pub fn update(self: *Player) void { const key_states = sdl.getKeyboardState(); if (key_states.isPressed(sdl.Scancode.w)) { const cos = math.cos(math.degreesToRadians(f32, self.angle)) / self.movement; const sin = math.sin(math.degreesToRadians(f32, self.angle)) / self.movement; var new_x = self.x + cos; var new_y = self.y + sin; // Collision test if (settings.map[@as(usize, @intFromFloat(math.floor(new_y)))][@as(usize, @intFromFloat(math.floor(new_x)))] == 0) { self.x = new_x; self.y = new_y; } } else if (key_states.isPressed(sdl.Scancode.s)) { const cos = math.cos(math.degreesToRadians(f32, self.angle)) / self.movement; const sin = math.sin(math.degreesToRadians(f32, self.angle)) / self.movement; var new_x = self.x - cos; var new_y = self.y - sin; // Collision test if (settings.map[@as(usize, @intFromFloat(math.floor(new_y)))][@as(usize, @intFromFloat(math.floor(new_x)))] == 0) { self.x = new_x; self.y = new_y; } } else if (key_states.isPressed(sdl.Scancode.d)) { self.angle += self.rotation; } else if (key_states.isPressed(sdl.Scancode.a)) { self.angle -= self.rotation; } else {} } };
0
repos/canidoom
repos/canidoom/src/ray.zig
const std = @import("std"); const math = std.math; const sdl = @import("sdl2"); const settings = @import("settings.zig"); const p = @import("player.zig"); pub const Ray = struct { x: f32 = undefined, y: f32 = undefined, /// rayCasting function on reference pub fn casting(self: *Ray, render: sdl.Renderer, player: *p.Player) !void { var angle: f32 = player.angle - player.fov / 2.0; player.update(); for (0..@as(usize, @intFromFloat(settings.screen_width))) |count| { self.x = player.x; self.y = player.y; var cos = math.cos(math.degreesToRadians(f32, angle)) / settings.raycasting_precision; var sin = math.sin(math.degreesToRadians(f32, angle)) / settings.raycasting_precision; // Wall checking var wall: i32 = 0; while (wall == 0) { self.x += cos; self.y += sin; wall = settings.map[@as(usize, @intFromFloat(math.floor(self.y)))][@as(usize, @intFromFloat(math.floor(self.x)))]; } // Pythagoras theorem var distance = math.sqrt(math.pow(f32, player.x - self.x, 2) + math.pow(f32, player.y - self.y, 2)); // Fisheye fix distance = distance * math.cos(math.degreesToRadians(f32, angle - player.angle)); // Wall height var wall_height: f32 = math.floor((settings.screen_height / 2) / distance); // Drawing // Ceiling try render.setColor(sdl.Color.cyan); try render.drawLineF(@as(f32, @floatFromInt(count)), 0, @as(f32, @floatFromInt(count)), (settings.screen_height / 2) - wall_height); // Walls try render.setColor(sdl.Color.red); try render.drawLineF(@as(f32, @floatFromInt(count)), (settings.screen_height / 2) - wall_height, @as(f32, @floatFromInt(count)), (settings.screen_height / 2) + wall_height); // Floor try render.setColor(sdl.Color.green); try render.drawLineF(@as(f32, @floatFromInt(count)), (settings.screen_height / 2) + wall_height, @as(f32, @floatFromInt(count)), settings.screen_height); angle += settings.increment_angle; } } };
0
repos
repos/zig-yaml/gyro.zzz
pkgs: yaml: version: 0.0.1 license: MIT description: YAML parser for Zig source_url: "https://github.com/kubkon/zig-yaml" root: src/yaml.zig files: README.md LICENSE build.zig src/*.zig src/parse/*.zig src/yaml/*.zig examples/*.zig examples/*.yml test/*.zig test/*.tbd test/*.yaml
0
repos
repos/zig-yaml/README.md
# zig-yaml YAML parser for Zig ## What is it? This lib is meant to serve as a basic (or maybe not?) YAML parser for Zig. It will strive to be YAML 1.2 compatible but one step at a time. This is very much a work-in-progress, so expect things to break on a regular basis. Oh, I'd love to get the community involved in helping out with this btw! Feel free to fork and submit patches, enhancements, and of course issues. ## Basic usage The parser currently understands a few YAML primitives such as: * explicit documents (`---`, `...`) * mappings (`:`) * sequences (`-`, `[`, `]`) In fact, if you head over to `examples/` dir, you will find YAML examples that have been tested against this parser. You can also have a look at end-to-end test inputs in `test/` directory. If you want to use the parser as a library, add it as a package the usual way, and then: ```zig const std = @import("std"); const yaml = @import("yaml"); const source = \\names: [ John Doe, MacIntosh, Jane Austin ] \\numbers: \\ - 10 \\ - -8 \\ - 6 \\nested: \\ some: one \\ wick: john doe \\finally: [ 8.17, \\ 19.78 , 17 , \\ 21 ] ; ``` 1. For untyped, raw representation of YAML, use `Yaml.load`: ```zig var untyped = try yaml.Yaml.load(std.testing.allocator, source); defer untyped.deinit(); try std.testing.expectEqual(untyped.docs.items.len, 1); const map = untyped.docs.items[0].map; try std.testing.expect(map.contains("names")); try std.testing.expectEqual(map.get("names").?.list.len, 3); ``` 2. For typed representation of YAML, use `Yaml.parse`: ```zig const Simple = struct { names: []const []const u8, numbers: []const i16, nested: struct { some: []const u8, wick: []const u8, }, finally: [4]f16, }; const simple = try untyped.parse(Simple); try std.testing.expectEqual(simple.names.len, 3); ``` 3. To convert `Yaml` structure back into text representation, use `Yaml.stringify`: ```zig try untyped.stringify(std.io.getStdOut().writer()); ``` which should write the following output to standard output when run: ```sh names: [ John Doe, MacIntosh, Jane Austin ] numbers: [ 10, -8, 6 ] nested: some: one wick: john doe finally: [ 8.17, 19.78, 17, 21 ] ```
0
repos
repos/zig-yaml/build.zig.zon
.{ .name = "zig-yaml", .version = "0.0.1", .paths = .{ "src", "build.zig", "build.zig.zon", "LICENSE", "README.md", }, }
0
repos
repos/zig-yaml/build.zig
const std = @import("std"); pub fn build(b: *std.Build) void { const target = b.standardTargetOptions(.{}); const optimize = b.standardOptimizeOption(.{}); const enable_logging = b.option(bool, "log", "Whether to enable logging") orelse false; const yaml_module = b.addModule("yaml", .{ .root_source_file = b.path("src/yaml.zig"), }); const yaml_tests = b.addTest(.{ .root_source_file = b.path("src/yaml.zig"), .target = target, .optimize = optimize, }); const example = b.addExecutable(.{ .name = "yaml", .root_source_file = b.path("examples/yaml.zig"), .target = target, .optimize = optimize, }); example.root_module.addImport("yaml", yaml_module); const example_opts = b.addOptions(); example.root_module.addOptions("build_options", example_opts); example_opts.addOption(bool, "enable_logging", enable_logging); b.installArtifact(example); const run_cmd = b.addRunArtifact(example); run_cmd.step.dependOn(b.getInstallStep()); if (b.args) |args| { run_cmd.addArgs(args); } const run_step = b.step("run", "Run example program parser"); run_step.dependOn(&run_cmd.step); const test_step = b.step("test", "Run library tests"); test_step.dependOn(&b.addRunArtifact(yaml_tests).step); var e2e_tests = b.addTest(.{ .root_source_file = b.path("test/test.zig"), .target = target, .optimize = optimize, }); e2e_tests.root_module.addImport("yaml", yaml_module); test_step.dependOn(&b.addRunArtifact(e2e_tests).step); }
0
repos
repos/zig-yaml/zigmod.yml
id: r42g91zzbj8nebr5bt7zroo1jskkvdl4b983gpyk4m2esxtb name: yaml main: src/yaml.zig license: MIT description: YAML parser for Zig dependencies:
0
repos/zig-yaml
repos/zig-yaml/src/parse.zig
const std = @import("std"); const assert = std.debug.assert; const log = std.log.scoped(.parse); const mem = std.mem; const Allocator = mem.Allocator; const Tokenizer = @import("Tokenizer.zig"); const Token = Tokenizer.Token; const TokenIndex = Tokenizer.TokenIndex; const TokenIterator = Tokenizer.TokenIterator; pub const ParseError = error{ InvalidEscapeSequence, MalformedYaml, NestedDocuments, UnexpectedEof, UnexpectedToken, Unhandled, } || Allocator.Error; pub const Node = struct { tag: Tag, tree: *const Tree, start: TokenIndex, end: TokenIndex, pub const Tag = enum { doc, map, list, value, }; pub fn cast(self: *const Node, comptime T: type) ?*const T { if (self.tag != T.base_tag) { return null; } return @fieldParentPtr("base", self); } pub fn deinit(self: *Node, allocator: Allocator) void { switch (self.tag) { .doc => { const parent: *Node.Doc = @fieldParentPtr("base", self); parent.deinit(allocator); allocator.destroy(parent); }, .map => { const parent: *Node.Map = @fieldParentPtr("base", self); parent.deinit(allocator); allocator.destroy(parent); }, .list => { const parent: *Node.List = @fieldParentPtr("base", self); parent.deinit(allocator); allocator.destroy(parent); }, .value => { const parent: *Node.Value = @fieldParentPtr("base", self); parent.deinit(allocator); allocator.destroy(parent); }, } } pub fn format( self: *const Node, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { return switch (self.tag) { .doc => @as(*const Node.Doc, @fieldParentPtr("base", self)).format(fmt, options, writer), .map => @as(*const Node.Map, @fieldParentPtr("base", self)).format(fmt, options, writer), .list => @as(*const Node.List, @fieldParentPtr("base", self)).format(fmt, options, writer), .value => @as(*const Node.Value, @fieldParentPtr("base", self)).format(fmt, options, writer), }; } pub const Doc = struct { base: Node = Node{ .tag = Tag.doc, .tree = undefined, .start = undefined, .end = undefined, }, directive: ?TokenIndex = null, value: ?*Node = null, pub const base_tag: Node.Tag = .doc; pub fn deinit(self: *Doc, allocator: Allocator) void { if (self.value) |node| { node.deinit(allocator); } } pub fn format( self: *const Doc, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; if (self.directive) |id| { try std.fmt.format(writer, "{{ ", .{}); const directive = self.base.tree.getRaw(id, id); try std.fmt.format(writer, ".directive = {s}, ", .{directive}); } if (self.value) |node| { try std.fmt.format(writer, "{}", .{node}); } if (self.directive != null) { try std.fmt.format(writer, " }}", .{}); } } }; pub const Map = struct { base: Node = Node{ .tag = Tag.map, .tree = undefined, .start = undefined, .end = undefined, }, values: std.ArrayListUnmanaged(Entry) = .{}, pub const base_tag: Node.Tag = .map; pub const Entry = struct { key: TokenIndex, value: ?*Node, }; pub fn deinit(self: *Map, allocator: Allocator) void { for (self.values.items) |entry| { if (entry.value) |value| { value.deinit(allocator); } } self.values.deinit(allocator); } pub fn format( self: *const Map, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; try std.fmt.format(writer, "{{ ", .{}); for (self.values.items) |entry| { const key = self.base.tree.getRaw(entry.key, entry.key); if (entry.value) |value| { try std.fmt.format(writer, "{s} => {}, ", .{ key, value }); } else { try std.fmt.format(writer, "{s} => null, ", .{key}); } } return std.fmt.format(writer, " }}", .{}); } }; pub const List = struct { base: Node = Node{ .tag = Tag.list, .tree = undefined, .start = undefined, .end = undefined, }, values: std.ArrayListUnmanaged(*Node) = .{}, pub const base_tag: Node.Tag = .list; pub fn deinit(self: *List, allocator: Allocator) void { for (self.values.items) |node| { node.deinit(allocator); } self.values.deinit(allocator); } pub fn format( self: *const List, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; try std.fmt.format(writer, "[ ", .{}); for (self.values.items) |node| { try std.fmt.format(writer, "{}, ", .{node}); } return std.fmt.format(writer, " ]", .{}); } }; pub const Value = struct { base: Node = Node{ .tag = Tag.value, .tree = undefined, .start = undefined, .end = undefined, }, string_value: std.ArrayListUnmanaged(u8) = .{}, pub const base_tag: Node.Tag = .value; pub fn deinit(self: *Value, allocator: Allocator) void { self.string_value.deinit(allocator); } pub fn format( self: *const Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; const raw = self.base.tree.getRaw(self.base.start, self.base.end); return std.fmt.format(writer, "{s}", .{raw}); } }; }; pub const LineCol = struct { line: usize, col: usize, }; pub const Tree = struct { allocator: Allocator, source: []const u8, tokens: []Token, line_cols: std.AutoHashMap(TokenIndex, LineCol), docs: std.ArrayListUnmanaged(*Node) = .{}, pub fn init(allocator: Allocator) Tree { return .{ .allocator = allocator, .source = undefined, .tokens = undefined, .line_cols = std.AutoHashMap(TokenIndex, LineCol).init(allocator), }; } pub fn deinit(self: *Tree) void { self.allocator.free(self.tokens); self.line_cols.deinit(); for (self.docs.items) |doc| { doc.deinit(self.allocator); } self.docs.deinit(self.allocator); } pub fn getDirective(self: Tree, doc_index: usize) ?[]const u8 { assert(doc_index < self.docs.items.len); const doc = self.docs.items[doc_index].cast(Node.Doc) orelse return null; const id = doc.directive orelse return null; return self.getRaw(id, id); } pub fn getRaw(self: Tree, start: TokenIndex, end: TokenIndex) []const u8 { assert(start <= end); assert(start < self.tokens.len and end < self.tokens.len); const start_token = self.tokens[start]; const end_token = self.tokens[end]; return self.source[start_token.start..end_token.end]; } pub fn parse(self: *Tree, source: []const u8) !void { var tokenizer = Tokenizer{ .buffer = source }; var tokens = std.ArrayList(Token).init(self.allocator); defer tokens.deinit(); var line: usize = 0; var prev_line_last_col: usize = 0; while (true) { const token = tokenizer.next(); const tok_id = tokens.items.len; try tokens.append(token); try self.line_cols.putNoClobber(tok_id, .{ .line = line, .col = token.start - prev_line_last_col, }); switch (token.id) { .eof => break, .new_line => { line += 1; prev_line_last_col = token.end; }, else => {}, } } self.source = source; self.tokens = try tokens.toOwnedSlice(); var it = TokenIterator{ .buffer = self.tokens }; var parser = Parser{ .allocator = self.allocator, .tree = self, .token_it = &it, .line_cols = &self.line_cols, }; parser.eatCommentsAndSpace(&.{}); while (true) { parser.eatCommentsAndSpace(&.{}); const token = parser.token_it.next() orelse break; log.debug("(main) next {s}@{d}", .{ @tagName(token.id), parser.token_it.pos - 1 }); switch (token.id) { .eof => break, else => { parser.token_it.seekBy(-1); const doc = try parser.doc(); try self.docs.append(self.allocator, doc); }, } } } }; const Parser = struct { allocator: Allocator, tree: *Tree, token_it: *TokenIterator, line_cols: *const std.AutoHashMap(TokenIndex, LineCol), fn value(self: *Parser) ParseError!?*Node { self.eatCommentsAndSpace(&.{}); const pos = self.token_it.pos; const token = self.token_it.next() orelse return error.UnexpectedEof; log.debug(" next {s}@{d}", .{ @tagName(token.id), pos }); switch (token.id) { .literal => if (self.eatToken(.map_value_ind, &.{ .new_line, .comment })) |_| { // map self.token_it.seekTo(pos); return self.map(); } else { // leaf value self.token_it.seekTo(pos); return self.leaf_value(); }, .single_quoted, .double_quoted => { // leaf value self.token_it.seekBy(-1); return self.leaf_value(); }, .seq_item_ind => { // list self.token_it.seekBy(-1); return self.list(); }, .flow_seq_start => { // list self.token_it.seekBy(-1); return self.list_bracketed(); }, else => return null, } } fn doc(self: *Parser) ParseError!*Node { const node = try self.allocator.create(Node.Doc); errdefer self.allocator.destroy(node); node.* = .{}; node.base.tree = self.tree; node.base.start = self.token_it.pos; log.debug("(doc) begin {s}@{d}", .{ @tagName(self.tree.tokens[node.base.start].id), node.base.start }); // Parse header const explicit_doc: bool = if (self.eatToken(.doc_start, &.{})) |doc_pos| explicit_doc: { if (self.getCol(doc_pos) > 0) return error.MalformedYaml; if (self.eatToken(.tag, &.{ .new_line, .comment })) |_| { node.directive = try self.expectToken(.literal, &.{ .new_line, .comment }); } break :explicit_doc true; } else false; // Parse value node.value = try self.value(); if (node.value == null) { self.token_it.seekBy(-1); } errdefer if (node.value) |val| { val.deinit(self.allocator); }; // Parse footer footer: { if (self.eatToken(.doc_end, &.{})) |pos| { if (!explicit_doc) return error.UnexpectedToken; if (self.getCol(pos) > 0) return error.MalformedYaml; node.base.end = pos; break :footer; } if (self.eatToken(.doc_start, &.{})) |pos| { if (!explicit_doc) return error.UnexpectedToken; if (self.getCol(pos) > 0) return error.MalformedYaml; self.token_it.seekBy(-1); node.base.end = pos - 1; break :footer; } if (self.eatToken(.eof, &.{})) |pos| { node.base.end = pos - 1; break :footer; } return error.UnexpectedToken; } log.debug("(doc) end {s}@{d}", .{ @tagName(self.tree.tokens[node.base.end].id), node.base.end }); return &node.base; } fn map(self: *Parser) ParseError!*Node { const node = try self.allocator.create(Node.Map); errdefer self.allocator.destroy(node); node.* = .{}; node.base.tree = self.tree; node.base.start = self.token_it.pos; errdefer { for (node.values.items) |entry| { if (entry.value) |val| { val.deinit(self.allocator); } } node.values.deinit(self.allocator); } log.debug("(map) begin {s}@{d}", .{ @tagName(self.tree.tokens[node.base.start].id), node.base.start }); const col = self.getCol(node.base.start); while (true) { self.eatCommentsAndSpace(&.{}); // Parse key const key_pos = self.token_it.pos; if (self.getCol(key_pos) < col) { break; } const key = self.token_it.next() orelse return error.UnexpectedEof; switch (key.id) { .literal => {}, .doc_start, .doc_end, .eof => { self.token_it.seekBy(-1); break; }, else => { // TODO key not being a literal return error.Unhandled; }, } log.debug("(map) key {s}@{d}", .{ self.tree.getRaw(key_pos, key_pos), key_pos }); // Separator _ = try self.expectToken(.map_value_ind, &.{ .new_line, .comment }); // Parse value const val = try self.value(); errdefer if (val) |v| { v.deinit(self.allocator); }; if (val) |v| { if (self.getCol(v.start) < self.getCol(key_pos)) { return error.MalformedYaml; } if (v.cast(Node.Value)) |_| { if (self.getCol(v.start) == self.getCol(key_pos)) { return error.MalformedYaml; } } } try node.values.append(self.allocator, .{ .key = key_pos, .value = val, }); } node.base.end = self.token_it.pos - 1; log.debug("(map) end {s}@{d}", .{ @tagName(self.tree.tokens[node.base.end].id), node.base.end }); return &node.base; } fn list(self: *Parser) ParseError!*Node { const node = try self.allocator.create(Node.List); errdefer self.allocator.destroy(node); node.* = .{}; node.base.tree = self.tree; node.base.start = self.token_it.pos; errdefer { for (node.values.items) |val| { val.deinit(self.allocator); } node.values.deinit(self.allocator); } log.debug("(list) begin {s}@{d}", .{ @tagName(self.tree.tokens[node.base.start].id), node.base.start }); while (true) { self.eatCommentsAndSpace(&.{}); _ = self.eatToken(.seq_item_ind, &.{}) orelse break; const val = (try self.value()) orelse return error.MalformedYaml; try node.values.append(self.allocator, val); } node.base.end = self.token_it.pos - 1; log.debug("(list) end {s}@{d}", .{ @tagName(self.tree.tokens[node.base.end].id), node.base.end }); return &node.base; } fn list_bracketed(self: *Parser) ParseError!*Node { const node = try self.allocator.create(Node.List); errdefer self.allocator.destroy(node); node.* = .{}; node.base.tree = self.tree; node.base.start = self.token_it.pos; errdefer { for (node.values.items) |val| { val.deinit(self.allocator); } node.values.deinit(self.allocator); } log.debug("(list) begin {s}@{d}", .{ @tagName(self.tree.tokens[node.base.start].id), node.base.start }); _ = try self.expectToken(.flow_seq_start, &.{}); while (true) { self.eatCommentsAndSpace(&.{.comment}); if (self.eatToken(.flow_seq_end, &.{.comment})) |pos| { node.base.end = pos; break; } _ = self.eatToken(.comma, &.{.comment}); const val = (try self.value()) orelse return error.MalformedYaml; try node.values.append(self.allocator, val); } log.debug("(list) end {s}@{d}", .{ @tagName(self.tree.tokens[node.base.end].id), node.base.end }); return &node.base; } fn leaf_value(self: *Parser) ParseError!*Node { const node = try self.allocator.create(Node.Value); errdefer self.allocator.destroy(node); node.* = .{ .string_value = .{} }; node.base.tree = self.tree; node.base.start = self.token_it.pos; errdefer node.string_value.deinit(self.allocator); // TODO handle multiline strings in new block scope while (self.token_it.next()) |tok| { switch (tok.id) { .single_quoted => { node.base.end = self.token_it.pos - 1; const raw = self.tree.getRaw(node.base.start, node.base.end); try self.parseSingleQuoted(node, raw); break; }, .double_quoted => { node.base.end = self.token_it.pos - 1; const raw = self.tree.getRaw(node.base.start, node.base.end); try self.parseDoubleQuoted(node, raw); break; }, .literal => {}, .space => { const trailing = self.token_it.pos - 2; self.eatCommentsAndSpace(&.{}); if (self.token_it.peek()) |peek| { if (peek.id != .literal) { node.base.end = trailing; const raw = self.tree.getRaw(node.base.start, node.base.end); try node.string_value.appendSlice(self.allocator, raw); break; } } }, else => { self.token_it.seekBy(-1); node.base.end = self.token_it.pos - 1; const raw = self.tree.getRaw(node.base.start, node.base.end); try node.string_value.appendSlice(self.allocator, raw); break; }, } } log.debug("(leaf) {s}", .{self.tree.getRaw(node.base.start, node.base.end)}); return &node.base; } fn eatCommentsAndSpace(self: *Parser, comptime exclusions: []const Token.Id) void { log.debug("eatCommentsAndSpace", .{}); outer: while (self.token_it.next()) |token| { log.debug(" (token '{s}')", .{@tagName(token.id)}); switch (token.id) { .comment, .space, .new_line => |space| { inline for (exclusions) |excl| { if (excl == space) { self.token_it.seekBy(-1); break :outer; } } else continue; }, else => { self.token_it.seekBy(-1); break; }, } } } fn eatToken(self: *Parser, id: Token.Id, comptime exclusions: []const Token.Id) ?TokenIndex { log.debug("eatToken('{s}')", .{@tagName(id)}); self.eatCommentsAndSpace(exclusions); const pos = self.token_it.pos; const token = self.token_it.next() orelse return null; if (token.id == id) { log.debug(" (found at {d})", .{pos}); return pos; } else { log.debug(" (not found)", .{}); self.token_it.seekBy(-1); return null; } } fn expectToken(self: *Parser, id: Token.Id, comptime exclusions: []const Token.Id) ParseError!TokenIndex { log.debug("expectToken('{s}')", .{@tagName(id)}); return self.eatToken(id, exclusions) orelse error.UnexpectedToken; } fn getLine(self: *Parser, index: TokenIndex) usize { return self.line_cols.get(index).?.line; } fn getCol(self: *Parser, index: TokenIndex) usize { return self.line_cols.get(index).?.col; } fn parseSingleQuoted(self: *Parser, node: *Node.Value, raw: []const u8) ParseError!void { assert(raw[0] == '\'' and raw[raw.len - 1] == '\''); const raw_no_quotes = raw[1 .. raw.len - 1]; try node.string_value.ensureTotalCapacity(self.allocator, raw_no_quotes.len); var state: enum { start, escape, } = .start; var index: usize = 0; while (index < raw_no_quotes.len) : (index += 1) { const c = raw_no_quotes[index]; switch (state) { .start => switch (c) { '\'' => { state = .escape; }, else => { node.string_value.appendAssumeCapacity(c); }, }, .escape => switch (c) { '\'' => { state = .start; node.string_value.appendAssumeCapacity(c); }, else => return error.InvalidEscapeSequence, }, } } } fn parseDoubleQuoted(self: *Parser, node: *Node.Value, raw: []const u8) ParseError!void { assert(raw[0] == '"' and raw[raw.len - 1] == '"'); const raw_no_quotes = raw[1 .. raw.len - 1]; try node.string_value.ensureTotalCapacity(self.allocator, raw_no_quotes.len); var state: enum { start, escape, } = .start; var index: usize = 0; while (index < raw_no_quotes.len) : (index += 1) { const c = raw_no_quotes[index]; switch (state) { .start => switch (c) { '\\' => { state = .escape; }, else => { node.string_value.appendAssumeCapacity(c); }, }, .escape => switch (c) { 'n' => { state = .start; node.string_value.appendAssumeCapacity('\n'); }, 't' => { state = .start; node.string_value.appendAssumeCapacity('\t'); }, '"' => { state = .start; node.string_value.appendAssumeCapacity('"'); }, else => return error.InvalidEscapeSequence, }, } } } }; test { std.testing.refAllDecls(@This()); _ = @import("parse/test.zig"); }
0
repos/zig-yaml
repos/zig-yaml/src/Tokenizer.zig
const Tokenizer = @This(); const std = @import("std"); const log = std.log.scoped(.tokenizer); const testing = std.testing; buffer: []const u8, index: usize = 0, pub const Token = struct { id: Id, start: usize, end: usize, pub const Id = enum { // zig fmt: off eof, new_line, doc_start, // --- doc_end, // ... seq_item_ind, // - map_value_ind, // : flow_map_start, // { flow_map_end, // } flow_seq_start, // [ flow_seq_end, // ] comma, space, tab, comment, // # alias, // * anchor, // & tag, // ! single_quoted, // '...' double_quoted, // "..." literal, // zig fmt: on }; }; pub const TokenIndex = usize; pub const TokenIterator = struct { buffer: []const Token, pos: TokenIndex = 0, pub fn next(self: *TokenIterator) ?Token { const token = self.peek() orelse return null; self.pos += 1; return token; } pub fn peek(self: TokenIterator) ?Token { if (self.pos >= self.buffer.len) return null; return self.buffer[self.pos]; } pub fn reset(self: *TokenIterator) void { self.pos = 0; } pub fn seekTo(self: *TokenIterator, pos: TokenIndex) void { self.pos = pos; } pub fn seekBy(self: *TokenIterator, offset: isize) void { const new_pos = @as(isize, @bitCast(self.pos)) + offset; if (new_pos < 0) { self.pos = 0; } else { self.pos = @as(usize, @intCast(new_pos)); } } }; fn stringMatchesPattern(comptime pattern: []const u8, slice: []const u8) bool { comptime var count: usize = 0; inline while (count < pattern.len) : (count += 1) { if (count >= slice.len) return false; const c = slice[count]; if (pattern[count] != c) return false; } return true; } fn matchesPattern(self: Tokenizer, comptime pattern: []const u8) bool { return stringMatchesPattern(pattern, self.buffer[self.index..]); } pub fn next(self: *Tokenizer) Token { var result = Token{ .id = .eof, .start = self.index, .end = undefined, }; var state: enum { start, new_line, space, tab, comment, single_quoted, double_quoted, literal, } = .start; while (self.index < self.buffer.len) : (self.index += 1) { const c = self.buffer[self.index]; switch (state) { .start => switch (c) { ' ' => { state = .space; }, '\t' => { state = .tab; }, '\n' => { result.id = .new_line; self.index += 1; break; }, '\r' => { state = .new_line; }, '-' => if (self.matchesPattern("---")) { result.id = .doc_start; self.index += "---".len; break; } else if (self.matchesPattern("- ")) { result.id = .seq_item_ind; self.index += "- ".len; break; } else { state = .literal; }, '.' => if (self.matchesPattern("...")) { result.id = .doc_end; self.index += "...".len; break; } else { state = .literal; }, ',' => { result.id = .comma; self.index += 1; break; }, '#' => { state = .comment; }, '*' => { result.id = .alias; self.index += 1; break; }, '&' => { result.id = .anchor; self.index += 1; break; }, '!' => { result.id = .tag; self.index += 1; break; }, '[' => { result.id = .flow_seq_start; self.index += 1; break; }, ']' => { result.id = .flow_seq_end; self.index += 1; break; }, ':' => { result.id = .map_value_ind; self.index += 1; break; }, '{' => { result.id = .flow_map_start; self.index += 1; break; }, '}' => { result.id = .flow_map_end; self.index += 1; break; }, '\'' => { state = .single_quoted; }, '"' => { state = .double_quoted; }, else => { state = .literal; }, }, .comment => switch (c) { '\r', '\n' => { result.id = .comment; break; }, else => {}, }, .space => switch (c) { ' ' => {}, else => { result.id = .space; break; }, }, .tab => switch (c) { '\t' => {}, else => { result.id = .tab; break; }, }, .new_line => switch (c) { '\n' => { result.id = .new_line; self.index += 1; break; }, else => {}, // TODO this should be an error condition }, .single_quoted => switch (c) { '\'' => if (!self.matchesPattern("''")) { result.id = .single_quoted; self.index += 1; break; } else { self.index += "''".len - 1; }, else => {}, }, .double_quoted => switch (c) { '"' => { if (stringMatchesPattern("\\", self.buffer[self.index - 1 ..])) { self.index += 1; } else { result.id = .double_quoted; self.index += 1; break; } }, else => {}, }, .literal => switch (c) { '\r', '\n', ' ', '\'', '"', ',', ':', ']', '}' => { result.id = .literal; break; }, else => { result.id = .literal; }, }, } } if (self.index >= self.buffer.len) { switch (state) { .literal => { result.id = .literal; }, else => {}, } } result.end = self.index; log.debug("{any}", .{result}); log.debug(" | {s}", .{self.buffer[result.start..result.end]}); return result; } fn testExpected(source: []const u8, expected: []const Token.Id) !void { var tokenizer = Tokenizer{ .buffer = source, }; var given = std.ArrayList(Token.Id).init(testing.allocator); defer given.deinit(); while (true) { const token = tokenizer.next(); try given.append(token.id); if (token.id == .eof) break; } try testing.expectEqualSlices(Token.Id, expected, given.items); } test { std.testing.refAllDecls(@This()); } test "empty doc" { try testExpected("", &[_]Token.Id{.eof}); } test "empty doc with explicit markers" { try testExpected( \\--- \\... , &[_]Token.Id{ .doc_start, .new_line, .doc_end, .eof, }); } test "empty doc with explicit markers and a directive" { try testExpected( \\--- !tbd-v1 \\... , &[_]Token.Id{ .doc_start, .space, .tag, .literal, .new_line, .doc_end, .eof, }); } test "sequence of values" { try testExpected( \\- 0 \\- 1 \\- 2 , &[_]Token.Id{ .seq_item_ind, .literal, .new_line, .seq_item_ind, .literal, .new_line, .seq_item_ind, .literal, .eof, }); } test "sequence of sequences" { try testExpected( \\- [ val1, val2] \\- [val3, val4 ] , &[_]Token.Id{ .seq_item_ind, .flow_seq_start, .space, .literal, .comma, .space, .literal, .flow_seq_end, .new_line, .seq_item_ind, .flow_seq_start, .literal, .comma, .space, .literal, .space, .flow_seq_end, .eof, }); } test "mappings" { try testExpected( \\key1: value1 \\key2: value2 , &[_]Token.Id{ .literal, .map_value_ind, .space, .literal, .new_line, .literal, .map_value_ind, .space, .literal, .eof, }); } test "inline mapped sequence of values" { try testExpected( \\key : [ val1, \\ val2 ] , &[_]Token.Id{ .literal, .space, .map_value_ind, .space, .flow_seq_start, .space, .literal, .comma, .space, .new_line, .space, .literal, .space, .flow_seq_end, .eof, }); } test "part of tbd" { try testExpected( \\--- !tapi-tbd \\tbd-version: 4 \\targets: [ x86_64-macos ] \\ \\uuids: \\ - target: x86_64-macos \\ value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 \\ \\install-name: '/usr/lib/libSystem.B.dylib' \\... , &[_]Token.Id{ .doc_start, .space, .tag, .literal, .new_line, .literal, .map_value_ind, .space, .literal, .new_line, .literal, .map_value_ind, .space, .flow_seq_start, .space, .literal, .space, .flow_seq_end, .new_line, .new_line, .literal, .map_value_ind, .new_line, .space, .seq_item_ind, .literal, .map_value_ind, .space, .literal, .new_line, .space, .literal, .map_value_ind, .space, .literal, .new_line, .new_line, .literal, .map_value_ind, .space, .single_quoted, .new_line, .doc_end, .eof, }); } test "Unindented list" { try testExpected( \\b: \\- foo: 1 \\c: 1 , &[_]Token.Id{ .literal, .map_value_ind, .new_line, .seq_item_ind, .literal, .map_value_ind, .space, .literal, .new_line, .literal, .map_value_ind, .space, .literal, .eof, }); } test "escape sequences" { try testExpected( \\a: 'here''s an apostrophe' \\b: "a newline\nand a\ttab" \\c: "\"here\" and there" , &[_]Token.Id{ .literal, .map_value_ind, .space, .single_quoted, .new_line, .literal, .map_value_ind, .space, .double_quoted, .new_line, .literal, .map_value_ind, .space, .double_quoted, .eof, }); } test "comments" { try testExpected( \\key: # some comment about the key \\# first value \\- val1 \\# second value \\- val2 , &[_]Token.Id{ .literal, .map_value_ind, .space, .comment, .new_line, .comment, .new_line, .seq_item_ind, .literal, .new_line, .comment, .new_line, .seq_item_ind, .literal, .eof, }); } test "quoted literals" { try testExpected( \\'#000000' \\'[000000' \\"&someString" , &[_]Token.Id{ .single_quoted, .new_line, .single_quoted, .new_line, .double_quoted, .eof, }); }
0
repos/zig-yaml
repos/zig-yaml/src/yaml.zig
const std = @import("std"); const assert = std.debug.assert; const math = std.math; const mem = std.mem; const log = std.log.scoped(.yaml); const Allocator = mem.Allocator; const ArenaAllocator = std.heap.ArenaAllocator; pub const Tokenizer = @import("Tokenizer.zig"); pub const parse = @import("parse.zig"); const Node = parse.Node; const Tree = parse.Tree; const ParseError = parse.ParseError; pub const YamlError = error{ UnexpectedNodeType, DuplicateMapKey, OutOfMemory, CannotEncodeValue, } || ParseError || std.fmt.ParseIntError; pub const List = []Value; pub const Map = std.StringArrayHashMap(Value); pub const Value = union(enum) { empty, int: i64, float: f64, string: []const u8, list: List, map: Map, pub fn asInt(self: Value) !i64 { if (self != .int) return error.TypeMismatch; return self.int; } pub fn asFloat(self: Value) !f64 { if (self != .float) return error.TypeMismatch; return self.float; } pub fn asString(self: Value) ![]const u8 { if (self != .string) return error.TypeMismatch; return self.string; } pub fn asList(self: Value) !List { if (self != .list) return error.TypeMismatch; return self.list; } pub fn asMap(self: Value) !Map { if (self != .map) return error.TypeMismatch; return self.map; } const StringifyArgs = struct { indentation: usize = 0, should_inline_first_key: bool = false, }; pub fn stringify(self: Value, writer: anytype, args: StringifyArgs) anyerror!void { switch (self) { .empty => return, .int => |int| return writer.print("{}", .{int}), .float => |float| return writer.print("{d}", .{float}), .string => |string| return writer.print("{s}", .{string}), .list => |list| { const len = list.len; if (len == 0) return; const first = list[0]; if (first.isCompound()) { for (list, 0..) |elem, i| { try writer.writeByteNTimes(' ', args.indentation); try writer.writeAll("- "); try elem.stringify(writer, .{ .indentation = args.indentation + 2, .should_inline_first_key = true, }); if (i < len - 1) { try writer.writeByte('\n'); } } return; } try writer.writeAll("[ "); for (list, 0..) |elem, i| { try elem.stringify(writer, args); if (i < len - 1) { try writer.writeAll(", "); } } try writer.writeAll(" ]"); }, .map => |map| { const len = map.count(); if (len == 0) return; var i: usize = 0; for (map.keys(), map.values()) |key, value| { if (!args.should_inline_first_key or i != 0) { try writer.writeByteNTimes(' ', args.indentation); } try writer.print("{s}: ", .{key}); const should_inline = blk: { if (!value.isCompound()) break :blk true; if (value == .list and value.list.len > 0 and !value.list[0].isCompound()) break :blk true; break :blk false; }; if (should_inline) { try value.stringify(writer, args); } else { try writer.writeByte('\n'); try value.stringify(writer, .{ .indentation = args.indentation + 4, }); } if (i < len - 1) { try writer.writeByte('\n'); } i += 1; } }, } } fn isCompound(self: Value) bool { return switch (self) { .list, .map => true, else => false, }; } fn fromNode(arena: Allocator, tree: *const Tree, node: *const Node) YamlError!Value { if (node.cast(Node.Doc)) |doc| { const inner = doc.value orelse { // empty doc return Value{ .empty = {} }; }; return Value.fromNode(arena, tree, inner); } else if (node.cast(Node.Map)) |map| { // TODO use ContextAdapted HashMap and do not duplicate keys, intern // in a contiguous string buffer. var out_map = std.StringArrayHashMap(Value).init(arena); try out_map.ensureUnusedCapacity(math.cast(u32, map.values.items.len) orelse return error.Overflow); for (map.values.items) |entry| { const key = try arena.dupe(u8, tree.getRaw(entry.key, entry.key)); const gop = out_map.getOrPutAssumeCapacity(key); if (gop.found_existing) { return error.DuplicateMapKey; } const value = if (entry.value) |value| try Value.fromNode(arena, tree, value) else .empty; gop.value_ptr.* = value; } return Value{ .map = out_map }; } else if (node.cast(Node.List)) |list| { var out_list = std.ArrayList(Value).init(arena); try out_list.ensureUnusedCapacity(list.values.items.len); for (list.values.items) |elem| { const value = try Value.fromNode(arena, tree, elem); out_list.appendAssumeCapacity(value); } return Value{ .list = try out_list.toOwnedSlice() }; } else if (node.cast(Node.Value)) |value| { const raw = tree.getRaw(node.start, node.end); try_int: { const int = std.fmt.parseInt(i64, raw, 0) catch break :try_int; return Value{ .int = int }; } try_float: { const float = std.fmt.parseFloat(f64, raw) catch break :try_float; return Value{ .float = float }; } return Value{ .string = try arena.dupe(u8, value.string_value.items) }; } else { log.debug("Unexpected node type: {}", .{node.tag}); return error.UnexpectedNodeType; } } fn encode(arena: Allocator, input: anytype) YamlError!?Value { switch (@typeInfo(@TypeOf(input))) { .ComptimeInt, .Int, => return Value{ .int = math.cast(i64, input) orelse return error.Overflow }, .Float => return Value{ .float = math.lossyCast(f64, input) }, .Struct => |info| if (info.is_tuple) { var list = std.ArrayList(Value).init(arena); errdefer list.deinit(); try list.ensureTotalCapacityPrecise(info.fields.len); inline for (info.fields) |field| { if (try encode(arena, @field(input, field.name))) |value| { list.appendAssumeCapacity(value); } } return Value{ .list = try list.toOwnedSlice() }; } else { var map = Map.init(arena); errdefer map.deinit(); try map.ensureTotalCapacity(info.fields.len); inline for (info.fields) |field| { if (try encode(arena, @field(input, field.name))) |value| { const key = try arena.dupe(u8, field.name); map.putAssumeCapacityNoClobber(key, value); } } return Value{ .map = map }; }, .Union => |info| if (info.tag_type) |tag_type| { inline for (info.fields) |field| { if (@field(tag_type, field.name) == input) { return try encode(arena, @field(input, field.name)); } } else unreachable; } else return error.UntaggedUnion, .Array => return encode(arena, &input), .Pointer => |info| switch (info.size) { .One => switch (@typeInfo(info.child)) { .Array => |child_info| { const Slice = []const child_info.child; return encode(arena, @as(Slice, input)); }, else => { @compileError("Unhandled type: {s}" ++ @typeName(info.child)); }, }, .Slice => { if (info.child == u8) { return Value{ .string = try arena.dupe(u8, input) }; } var list = std.ArrayList(Value).init(arena); errdefer list.deinit(); try list.ensureTotalCapacityPrecise(input.len); for (input) |elem| { if (try encode(arena, elem)) |value| { list.appendAssumeCapacity(value); } else { log.debug("Could not encode value in a list: {any}", .{elem}); return error.CannotEncodeValue; } } return Value{ .list = try list.toOwnedSlice() }; }, else => { @compileError("Unhandled type: {s}" ++ @typeName(@TypeOf(input))); }, }, // TODO we should probably have an option to encode `null` and also // allow for some default value too. .Optional => return if (input) |val| encode(arena, val) else null, .Null => return null, else => { @compileError("Unhandled type: {s}" ++ @typeName(@TypeOf(input))); }, } } }; pub const Yaml = struct { arena: ArenaAllocator, tree: ?Tree = null, docs: std.ArrayList(Value), pub fn deinit(self: *Yaml) void { self.arena.deinit(); } pub fn load(allocator: Allocator, source: []const u8) !Yaml { var arena = ArenaAllocator.init(allocator); errdefer arena.deinit(); var tree = Tree.init(arena.allocator()); try tree.parse(source); var docs = std.ArrayList(Value).init(arena.allocator()); try docs.ensureTotalCapacityPrecise(tree.docs.items.len); for (tree.docs.items) |node| { const value = try Value.fromNode(arena.allocator(), &tree, node); docs.appendAssumeCapacity(value); } return Yaml{ .arena = arena, .tree = tree, .docs = docs, }; } pub const Error = error{ Unimplemented, TypeMismatch, StructFieldMissing, ArraySizeMismatch, UntaggedUnion, UnionTagMissing, Overflow, OutOfMemory, }; pub fn parse(self: *Yaml, comptime T: type) Error!T { if (self.docs.items.len == 0) { if (@typeInfo(T) == .Void) return {}; return error.TypeMismatch; } if (self.docs.items.len == 1) { return self.parseValue(T, self.docs.items[0]); } switch (@typeInfo(T)) { .Array => |info| { var parsed: T = undefined; for (self.docs.items, 0..) |doc, i| { parsed[i] = try self.parseValue(info.child, doc); } return parsed; }, .Pointer => |info| { switch (info.size) { .Slice => { var parsed = try self.arena.allocator().alloc(info.child, self.docs.items.len); for (self.docs.items, 0..) |doc, i| { parsed[i] = try self.parseValue(info.child, doc); } return parsed; }, else => return error.TypeMismatch, } }, .Union => return error.Unimplemented, else => return error.TypeMismatch, } } fn parseValue(self: *Yaml, comptime T: type, value: Value) Error!T { return switch (@typeInfo(T)) { .Int => math.cast(T, try value.asInt()) orelse return error.Overflow, .Float => if (value.asFloat()) |float| { return math.lossyCast(T, float); } else |_| { return math.lossyCast(T, try value.asInt()); }, .Struct => self.parseStruct(T, try value.asMap()), .Union => self.parseUnion(T, value), .Array => self.parseArray(T, try value.asList()), .Pointer => if (value.asList()) |list| { return self.parsePointer(T, .{ .list = list }); } else |_| { return self.parsePointer(T, .{ .string = try value.asString() }); }, .Void => error.TypeMismatch, .Optional => unreachable, else => error.Unimplemented, }; } fn parseUnion(self: *Yaml, comptime T: type, value: Value) Error!T { const union_info = @typeInfo(T).Union; if (union_info.tag_type) |_| { inline for (union_info.fields) |field| { if (self.parseValue(field.type, value)) |u_value| { return @unionInit(T, field.name, u_value); } else |err| switch (err) { error.TypeMismatch => {}, error.StructFieldMissing => {}, else => return err, } } } else return error.UntaggedUnion; return error.UnionTagMissing; } fn parseOptional(self: *Yaml, comptime T: type, value: ?Value) Error!T { const unwrapped = value orelse return null; const opt_info = @typeInfo(T).Optional; return @as(T, try self.parseValue(opt_info.child, unwrapped)); } fn parseStruct(self: *Yaml, comptime T: type, map: Map) Error!T { const struct_info = @typeInfo(T).Struct; var parsed: T = undefined; inline for (struct_info.fields) |field| { const value: ?Value = map.get(field.name) orelse blk: { const field_name = try mem.replaceOwned(u8, self.arena.allocator(), field.name, "_", "-"); break :blk map.get(field_name); }; if (@typeInfo(field.type) == .Optional) { @field(parsed, field.name) = try self.parseOptional(field.type, value); continue; } const unwrapped = value orelse { log.debug("missing struct field: {s}: {s}", .{ field.name, @typeName(field.type) }); return error.StructFieldMissing; }; @field(parsed, field.name) = try self.parseValue(field.type, unwrapped); } return parsed; } fn parsePointer(self: *Yaml, comptime T: type, value: Value) Error!T { const ptr_info = @typeInfo(T).Pointer; const arena = self.arena.allocator(); switch (ptr_info.size) { .Slice => { if (ptr_info.child == u8) { return value.asString(); } var parsed = try arena.alloc(ptr_info.child, value.list.len); for (value.list, 0..) |elem, i| { parsed[i] = try self.parseValue(ptr_info.child, elem); } return parsed; }, else => return error.Unimplemented, } } fn parseArray(self: *Yaml, comptime T: type, list: List) Error!T { const array_info = @typeInfo(T).Array; if (array_info.len != list.len) return error.ArraySizeMismatch; var parsed: T = undefined; for (list, 0..) |elem, i| { parsed[i] = try self.parseValue(array_info.child, elem); } return parsed; } pub fn stringify(self: Yaml, writer: anytype) !void { for (self.docs.items, 0..) |doc, i| { try writer.writeAll("---"); if (self.tree.?.getDirective(i)) |directive| { try writer.print(" !{s}", .{directive}); } try writer.writeByte('\n'); try doc.stringify(writer, .{}); try writer.writeByte('\n'); } try writer.writeAll("...\n"); } }; pub fn stringify(allocator: Allocator, input: anytype, writer: anytype) !void { var arena = ArenaAllocator.init(allocator); defer arena.deinit(); const maybe_value = try Value.encode(arena.allocator(), input); if (maybe_value) |value| { // TODO should we output as an explicit doc? // How can allow the user to specify? try value.stringify(writer, .{}); } } test { std.testing.refAllDecls(Tokenizer); std.testing.refAllDecls(parse); _ = @import("yaml/test.zig"); }
0
repos/zig-yaml/src
repos/zig-yaml/src/yaml/test.zig
const std = @import("std"); const mem = std.mem; const testing = std.testing; const yaml_mod = @import("../yaml.zig"); const Yaml = yaml_mod.Yaml; test "simple list" { const source = \\- a \\- b \\- c ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const list = yaml.docs.items[0].list; try testing.expectEqual(list.len, 3); try testing.expectEqualStrings("a", list[0].string); try testing.expectEqualStrings("b", list[1].string); try testing.expectEqualStrings("c", list[2].string); } test "simple list typed as array of strings" { const source = \\- a \\- b \\- c ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3][]const u8); try testing.expectEqual(3, arr.len); try testing.expectEqualStrings("a", arr[0]); try testing.expectEqualStrings("b", arr[1]); try testing.expectEqualStrings("c", arr[2]); } test "simple list typed as array of ints" { const source = \\- 0 \\- 1 \\- 2 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3]u8); try testing.expectEqualSlices(u8, &[_]u8{ 0, 1, 2 }, &arr); } test "list of mixed sign integer" { const source = \\- 0 \\- -1 \\- 2 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([3]i8); try testing.expectEqualSlices(i8, &[_]i8{ 0, -1, 2 }, &arr); } test "several integer bases" { const source = \\- 10 \\- -10 \\- 0x10 \\- -0X10 \\- 0o10 \\- -0O10 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const arr = try yaml.parse([6]i8); try testing.expectEqualSlices(i8, &[_]i8{ 10, -10, 16, -16, 8, -8 }, &arr); } test "simple map untyped" { const source = \\a: 0 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const map = yaml.docs.items[0].map; try testing.expect(map.contains("a")); try testing.expectEqual(@as(i64, 0), map.get("a").?.int); } test "simple map untyped with a list of maps" { const source = \\a: 0 \\b: \\ - foo: 1 \\ bar: 2 \\ - foo: 3 \\ bar: 4 \\c: 1 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const map = yaml.docs.items[0].map; try testing.expect(map.contains("a")); try testing.expect(map.contains("b")); try testing.expect(map.contains("c")); try testing.expectEqual(@as(i64, 0), map.get("a").?.int); try testing.expectEqual(@as(i64, 1), map.get("c").?.int); try testing.expectEqual(@as(i64, 1), map.get("b").?.list[0].map.get("foo").?.int); try testing.expectEqual(@as(i64, 2), map.get("b").?.list[0].map.get("bar").?.int); try testing.expectEqual(@as(i64, 3), map.get("b").?.list[1].map.get("foo").?.int); try testing.expectEqual(@as(i64, 4), map.get("b").?.list[1].map.get("bar").?.int); } test "simple map untyped with a list of maps. no indent" { const source = \\b: \\- foo: 1 \\c: 1 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const map = yaml.docs.items[0].map; try testing.expect(map.contains("b")); try testing.expect(map.contains("c")); try testing.expectEqual(@as(i64, 1), map.get("c").?.int); try testing.expectEqual(@as(i64, 1), map.get("b").?.list[0].map.get("foo").?.int); } test "simple map untyped with a list of maps. no indent 2" { const source = \\a: 0 \\b: \\- foo: 1 \\ bar: 2 \\- foo: 3 \\ bar: 4 \\c: 1 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectEqual(yaml.docs.items.len, 1); const map = yaml.docs.items[0].map; try testing.expect(map.contains("a")); try testing.expect(map.contains("b")); try testing.expect(map.contains("c")); try testing.expectEqual(@as(i64, 0), map.get("a").?.int); try testing.expectEqual(@as(i64, 1), map.get("c").?.int); try testing.expectEqual(@as(i64, 1), map.get("b").?.list[0].map.get("foo").?.int); try testing.expectEqual(@as(i64, 2), map.get("b").?.list[0].map.get("bar").?.int); try testing.expectEqual(@as(i64, 3), map.get("b").?.list[1].map.get("foo").?.int); try testing.expectEqual(@as(i64, 4), map.get("b").?.list[1].map.get("bar").?.int); } test "simple map typed" { const source = \\a: 0 \\b: hello there \\c: 'wait, what?' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { a: usize, b: []const u8, c: []const u8 }); try testing.expectEqual(@as(usize, 0), simple.a); try testing.expectEqualStrings("hello there", simple.b); try testing.expectEqualStrings("wait, what?", simple.c); } test "typed nested structs" { const source = \\a: \\ b: hello there \\ c: 'wait, what?' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { a: struct { b: []const u8, c: []const u8, }, }); try testing.expectEqualStrings("hello there", simple.a.b); try testing.expectEqualStrings("wait, what?", simple.a.c); } test "typed union with nested struct" { const source = \\a: \\ b: hello there ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(union(enum) { tag_a: struct { a: struct { b: []const u8, }, }, tag_c: struct { c: struct { d: []const u8, }, }, }); try testing.expectEqualStrings("hello there", simple.tag_a.a.b); } test "typed union with nested struct 2" { const source = \\c: \\ d: hello there ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(union(enum) { tag_a: struct { a: struct { b: []const u8, }, }, tag_c: struct { c: struct { d: []const u8, }, }, }); try testing.expectEqualStrings("hello there", simple.tag_c.c.d); } test "single quoted string" { const source = \\- 'hello' \\- 'here''s an escaped quote' \\- 'newlines and tabs\nare not\tsupported' ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const arr = try yaml.parse([3][]const u8); try testing.expectEqual(arr.len, 3); try testing.expectEqualStrings("hello", arr[0]); try testing.expectEqualStrings("here's an escaped quote", arr[1]); try testing.expectEqualStrings("newlines and tabs\\nare not\\tsupported", arr[2]); } test "double quoted string" { const source = \\- "hello" \\- "\"here\" are some escaped quotes" \\- "newlines and tabs\nare\tsupported" \\- "let's have \\some fun!" ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const arr = try yaml.parse([4][]const u8); try testing.expectEqual(arr.len, 4); try testing.expectEqualStrings("hello", arr[0]); try testing.expectEqualStrings( \\"here" are some escaped quotes , arr[1]); try testing.expectEqualStrings("newlines and tabs\nare\tsupported", arr[2]); try testing.expectEqualStrings( \\let's have \\some fun! , arr[3]); } test "multidoc typed as a slice of structs" { const source = \\--- \\a: 0 \\--- \\a: 1 \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); { const result = try yaml.parse([2]struct { a: usize }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expectEqual(result[1].a, 1); } { const result = try yaml.parse([]struct { a: usize }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expectEqual(result[1].a, 1); } } test "multidoc typed as a struct is an error" { const source = \\--- \\a: 0 \\--- \\b: 1 \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { a: usize })); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { b: usize })); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(struct { a: usize, b: usize })); } test "multidoc typed as a slice of structs with optionals" { const source = \\--- \\a: 0 \\c: 1.0 \\--- \\a: 1 \\b: different field \\... ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const result = try yaml.parse([]struct { a: usize, b: ?[]const u8, c: ?f16 }); try testing.expectEqual(result.len, 2); try testing.expectEqual(result[0].a, 0); try testing.expect(result[0].b == null); try testing.expect(result[0].c != null); try testing.expectEqual(result[0].c.?, 1.0); try testing.expectEqual(result[1].a, 1); try testing.expect(result[1].b != null); try testing.expectEqualStrings("different field", result[1].b.?); try testing.expect(result[1].c == null); } test "empty yaml can be represented as void" { const source = ""; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const result = try yaml.parse(void); try testing.expect(@TypeOf(result) == void); } test "nonempty yaml cannot be represented as void" { const source = \\a: b ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.TypeMismatch, yaml.parse(void)); } test "typed array size mismatch" { const source = \\- 0 \\- 0 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(Yaml.Error.ArraySizeMismatch, yaml.parse([1]usize)); try testing.expectError(Yaml.Error.ArraySizeMismatch, yaml.parse([5]usize)); } test "comments" { const source = \\ \\key: # this is the key \\# first value \\ \\- val1 \\ \\# second value \\- val2 ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { key: []const []const u8, }); try testing.expect(simple.key.len == 2); try testing.expectEqualStrings("val1", simple.key[0]); try testing.expectEqualStrings("val2", simple.key[1]); } test "promote ints to floats in a list mixed numeric types" { const source = \\a_list: [0, 1.0] ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); const simple = try yaml.parse(struct { a_list: []const f64, }); try testing.expectEqualSlices(f64, &[_]f64{ 0.0, 1.0 }, simple.a_list); } test "demoting floats to ints in a list is an error" { const source = \\a_list: [0, 1.0] ; var yaml = try Yaml.load(testing.allocator, source); defer yaml.deinit(); try testing.expectError(error.TypeMismatch, yaml.parse(struct { a_list: []const u64, })); } test "duplicate map keys" { const source = \\a: b \\a: c ; try testing.expectError(error.DuplicateMapKey, Yaml.load(testing.allocator, source)); } fn testStringify(expected: []const u8, input: anytype) !void { var output = std.ArrayList(u8).init(testing.allocator); defer output.deinit(); try yaml_mod.stringify(testing.allocator, input, output.writer()); try testing.expectEqualStrings(expected, output.items); } test "stringify an int" { try testStringify("128", @as(u32, 128)); } test "stringify a simple struct" { try testStringify( \\a: 1 \\b: 2 \\c: 2.5 , struct { a: i64, b: f64, c: f64 }{ .a = 1, .b = 2.0, .c = 2.5 }); } test "stringify a struct with an optional" { try testStringify( \\a: 1 \\b: 2 \\c: 2.5 , struct { a: i64, b: ?f64, c: f64 }{ .a = 1, .b = 2.0, .c = 2.5 }); try testStringify( \\a: 1 \\c: 2.5 , struct { a: i64, b: ?f64, c: f64 }{ .a = 1, .b = null, .c = 2.5 }); } test "stringify a struct with all optionals" { try testStringify("", struct { a: ?i64, b: ?f64 }{ .a = null, .b = null }); } test "stringify an optional" { try testStringify("", null); try testStringify("", @as(?u64, null)); } test "stringify a union" { const Dummy = union(enum) { x: u64, y: f64, }; try testStringify("a: 1", struct { a: Dummy }{ .a = .{ .x = 1 } }); try testStringify("a: 2.1", struct { a: Dummy }{ .a = .{ .y = 2.1 } }); } test "stringify a string" { try testStringify("a: name", struct { a: []const u8 }{ .a = "name" }); try testStringify("name", "name"); } test "stringify a list" { try testStringify("[ 1, 2, 3 ]", @as([]const u64, &.{ 1, 2, 3 })); try testStringify("[ 1, 2, 3 ]", .{ @as(i64, 1), 2, 3 }); try testStringify("[ 1, name, 3 ]", .{ 1, "name", 3 }); const arr: [3]i64 = .{ 1, 2, 3 }; try testStringify("[ 1, 2, 3 ]", arr); }
0
repos/zig-yaml/src
repos/zig-yaml/src/parse/test.zig
const std = @import("std"); const mem = std.mem; const testing = std.testing; const parse = @import("../parse.zig"); const Node = parse.Node; const Tree = parse.Tree; test "explicit doc" { const source = \\--- !tapi-tbd \\tbd-version: 4 \\abc-version: 5 \\... ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); const directive = tree.tokens[doc.directive.?]; try testing.expectEqual(directive.id, .literal); try testing.expectEqualStrings("tapi-tbd", tree.source[directive.start..directive.end]); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 5); try testing.expectEqual(map.base.end, 14); try testing.expectEqual(map.values.items.len, 2); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("tbd-version", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.Value).?; const value_tok = tree.tokens[value.base.start]; try testing.expectEqual(value_tok.id, .literal); try testing.expectEqualStrings("4", tree.source[value_tok.start..value_tok.end]); } { const entry = map.values.items[1]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("abc-version", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.Value).?; const value_tok = tree.tokens[value.base.start]; try testing.expectEqual(value_tok.id, .literal); try testing.expectEqualStrings("5", tree.source[value_tok.start..value_tok.end]); } } test "leaf in quotes" { const source = \\key1: no quotes \\key2: 'single quoted' \\key3: "double quoted" ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.directive == null); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 0); try testing.expectEqual(map.base.end, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 3); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("key1", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.Value).?; const start = tree.tokens[value.base.start]; const end = tree.tokens[value.base.end]; try testing.expectEqual(start.id, .literal); try testing.expectEqual(end.id, .literal); try testing.expectEqualStrings("no quotes", tree.source[start.start..end.end]); } } test "nested maps" { const source = \\key1: \\ key1_1 : value1_1 \\ key1_2 : value1_2 \\key2 : value2 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.directive == null); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 0); try testing.expectEqual(map.base.end, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 2); { const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("key1", tree.source[key.start..key.end]); const nested_map = entry.value.?.cast(Node.Map).?; try testing.expectEqual(nested_map.base.start, 4); try testing.expectEqual(nested_map.base.end, 16); try testing.expectEqual(nested_map.values.items.len, 2); { const nested_entry = nested_map.values.items[0]; const nested_key = tree.tokens[nested_entry.key]; try testing.expectEqual(nested_key.id, .literal); try testing.expectEqualStrings("key1_1", tree.source[nested_key.start..nested_key.end]); const nested_value = nested_entry.value.?.cast(Node.Value).?; const nested_value_tok = tree.tokens[nested_value.base.start]; try testing.expectEqual(nested_value_tok.id, .literal); try testing.expectEqualStrings( "value1_1", tree.source[nested_value_tok.start..nested_value_tok.end], ); } { const nested_entry = nested_map.values.items[1]; const nested_key = tree.tokens[nested_entry.key]; try testing.expectEqual(nested_key.id, .literal); try testing.expectEqualStrings("key1_2", tree.source[nested_key.start..nested_key.end]); const nested_value = nested_entry.value.?.cast(Node.Value).?; const nested_value_tok = tree.tokens[nested_value.base.start]; try testing.expectEqual(nested_value_tok.id, .literal); try testing.expectEqualStrings( "value1_2", tree.source[nested_value_tok.start..nested_value_tok.end], ); } } { const entry = map.values.items[1]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("key2", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.Value).?; const value_tok = tree.tokens[value.base.start]; try testing.expectEqual(value_tok.id, .literal); try testing.expectEqualStrings("value2", tree.source[value_tok.start..value_tok.end]); } } test "map of list of values" { const source = \\ints: \\ - 0 \\ - 1 \\ - 2 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 0); try testing.expectEqual(map.base.end, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("ints", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.List).?; try testing.expectEqual(value.base.start, 4); try testing.expectEqual(value.base.end, tree.tokens.len - 2); try testing.expectEqual(value.values.items.len, 3); { const elem = value.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[elem.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("0", tree.source[leaf.start..leaf.end]); } { const elem = value.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[elem.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("1", tree.source[leaf.start..leaf.end]); } { const elem = value.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[elem.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("2", tree.source[leaf.start..leaf.end]); } } test "map of list of maps" { const source = \\key1: \\- key2 : value2 \\- key3 : value3 \\- key4 : value4 ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 0); try testing.expectEqual(map.base.end, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("key1", tree.source[key.start..key.end]); const value = entry.value.?.cast(Node.List).?; try testing.expectEqual(value.base.start, 3); try testing.expectEqual(value.base.end, tree.tokens.len - 2); try testing.expectEqual(value.values.items.len, 3); { const elem = value.values.items[0].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .literal); try testing.expectEqualStrings("key2", tree.source[nested_key.start..nested_key.end]); const nested_v = nested.value.?.cast(Node.Value).?; const leaf = tree.tokens[nested_v.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("value2", tree.source[leaf.start..leaf.end]); } { const elem = value.values.items[1].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .literal); try testing.expectEqualStrings("key3", tree.source[nested_key.start..nested_key.end]); const nested_v = nested.value.?.cast(Node.Value).?; const leaf = tree.tokens[nested_v.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("value3", tree.source[leaf.start..leaf.end]); } { const elem = value.values.items[2].cast(Node.Map).?; const nested = elem.values.items[0]; const nested_key = tree.tokens[nested.key]; try testing.expectEqual(nested_key.id, .literal); try testing.expectEqualStrings("key4", tree.source[nested_key.start..nested_key.end]); const nested_v = nested.value.?.cast(Node.Value).?; const leaf = tree.tokens[nested_v.base.start]; try testing.expectEqual(leaf.id, .literal); try testing.expectEqualStrings("value4", tree.source[leaf.start..leaf.end]); } } test "list of lists" { const source = \\- [name , hr, avg ] \\- [Mark McGwire , 65, 0.278] \\- [Sammy Sosa , 63, 0.288] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .list); const list = doc.value.?.cast(Node.List).?; try testing.expectEqual(list.base.start, 0); try testing.expectEqual(list.base.end, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .list); const nested = list.values.items[0].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("name", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("hr", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("avg", tree.source[leaf.start..leaf.end]); } } { try testing.expectEqual(list.values.items[1].tag, .list); const nested = list.values.items[1].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const start = tree.tokens[value.base.start]; const end = tree.tokens[value.base.end]; try testing.expectEqualStrings("Mark McGwire", tree.source[start.start..end.end]); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("65", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("0.278", tree.source[leaf.start..leaf.end]); } } { try testing.expectEqual(list.values.items[2].tag, .list); const nested = list.values.items[2].cast(Node.List).?; try testing.expectEqual(nested.values.items.len, 3); { try testing.expectEqual(nested.values.items[0].tag, .value); const value = nested.values.items[0].cast(Node.Value).?; const start = tree.tokens[value.base.start]; const end = tree.tokens[value.base.end]; try testing.expectEqualStrings("Sammy Sosa", tree.source[start.start..end.end]); } { try testing.expectEqual(nested.values.items[1].tag, .value); const value = nested.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("63", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(nested.values.items[2].tag, .value); const value = nested.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("0.288", tree.source[leaf.start..leaf.end]); } } } test "inline list" { const source = \\[name , hr, avg ] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .list); const list = doc.value.?.cast(Node.List).?; try testing.expectEqual(list.base.start, 0); try testing.expectEqual(list.base.end, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .value); const value = list.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("name", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(list.values.items[1].tag, .value); const value = list.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("hr", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(list.values.items[2].tag, .value); const value = list.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("avg", tree.source[leaf.start..leaf.end]); } } test "inline list as mapping value" { const source = \\key : [ \\ name , \\ hr, avg ] ; var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); try testing.expectEqual(tree.docs.items.len, 1); const doc = tree.docs.items[0].cast(Node.Doc).?; try testing.expectEqual(doc.base.start, 0); try testing.expectEqual(doc.base.end, tree.tokens.len - 2); try testing.expect(doc.value != null); try testing.expectEqual(doc.value.?.tag, .map); const map = doc.value.?.cast(Node.Map).?; try testing.expectEqual(map.base.start, 0); try testing.expectEqual(map.base.end, tree.tokens.len - 2); try testing.expectEqual(map.values.items.len, 1); const entry = map.values.items[0]; const key = tree.tokens[entry.key]; try testing.expectEqual(key.id, .literal); try testing.expectEqualStrings("key", tree.source[key.start..key.end]); const list = entry.value.?.cast(Node.List).?; try testing.expectEqual(list.base.start, 4); try testing.expectEqual(list.base.end, tree.tokens.len - 2); try testing.expectEqual(list.values.items.len, 3); { try testing.expectEqual(list.values.items[0].tag, .value); const value = list.values.items[0].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("name", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(list.values.items[1].tag, .value); const value = list.values.items[1].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("hr", tree.source[leaf.start..leaf.end]); } { try testing.expectEqual(list.values.items[2].tag, .value); const value = list.values.items[2].cast(Node.Value).?; const leaf = tree.tokens[value.base.start]; try testing.expectEqualStrings("avg", tree.source[leaf.start..leaf.end]); } } fn parseSuccess(comptime source: []const u8) !void { var tree = Tree.init(testing.allocator); defer tree.deinit(); try tree.parse(source); } fn parseError(comptime source: []const u8, err: parse.ParseError) !void { var tree = Tree.init(testing.allocator); defer tree.deinit(); try testing.expectError(err, tree.parse(source)); } test "empty doc with spaces and comments" { try parseSuccess( \\ \\ \\ # this is a comment in a weird place \\# and this one is too ); } test "comment between --- and ! in document start" { try parseError( \\--- # what is it? \\! , error.UnexpectedToken); } test "correct doc start with tag" { try parseSuccess( \\--- !some-tag \\ ); } test "doc close without explicit doc open" { try parseError( \\ \\ \\# something cool \\... , error.UnexpectedToken); } test "doc open and close are ok" { try parseSuccess( \\--- \\# first doc \\ \\ \\--- \\# second doc \\ \\ \\... ); } test "doc with a single string is ok" { try parseSuccess( \\a string of some sort \\ ); } test "explicit doc with a single string is ok" { try parseSuccess( \\--- !anchor \\# nothing to see here except one string \\ # not a lot to go on with \\a single string \\... ); } test "doc with two string is bad" { try parseError( \\first \\second \\# this should fail already , error.UnexpectedToken); } test "single quote string can have new lines" { try parseSuccess( \\'what is this \\ thing?' ); } test "single quote string on one line is fine" { try parseSuccess( \\'here''s an apostrophe' ); } test "double quote string can have new lines" { try parseSuccess( \\"what is this \\ thing?" ); } test "double quote string on one line is fine" { try parseSuccess( \\"a newline\nand a\ttab" ); } test "map with key and value literals" { try parseSuccess( \\key1: val1 \\key2 : val2 ); } test "map of maps" { try parseSuccess( \\ \\# the first key \\key1: \\ # the first subkey \\ key1_1: 0 \\ key1_2: 1 \\# the second key \\key2: \\ key2_1: -1 \\ key2_2: -2 \\# the end of map ); } test "map value indicator needs to be on the same line" { try parseError( \\a \\ : b , error.UnexpectedToken); } test "value needs to be indented" { try parseError( \\a: \\b , error.MalformedYaml); } test "comment between a key and a value is fine" { try parseSuccess( \\a: \\ # this is a value \\ b ); } test "simple list" { try parseSuccess( \\# first el \\- a \\# second el \\- b \\# third el \\- c ); } test "list indentation matters" { try parseSuccess( \\ - a \\- b ); try parseSuccess( \\- a \\ - b ); } test "unindented list is fine too" { try parseSuccess( \\a: \\- 0 \\- 1 ); } test "empty values in a map" { try parseSuccess( \\a: \\b: \\- 0 ); } test "weirdly nested map of maps of lists" { try parseSuccess( \\a: \\ b: \\ - 0 \\ - 1 ); } test "square brackets denote a list" { try parseSuccess( \\[ a, \\ b, c ] ); } test "empty list" { try parseSuccess( \\[ ] ); } test "comment within a bracketed list is an error" { try parseError( \\[ # something \\] , error.MalformedYaml); } test "mixed ints with floats in a list" { try parseSuccess( \\[0, 1.0] ); }
0
repos/zig-yaml
repos/zig-yaml/examples/explicit_doc.yml
--- !tapi-tbd a: b c : d ...
0
repos/zig-yaml
repos/zig-yaml/examples/maps.yml
key1: key1_1: value1_1 key1_2: value1_2 key2: value2 key3: key3_1: value3_1 key3_2: value3_2 key3_3: value3_3
0
repos/zig-yaml
repos/zig-yaml/examples/yaml.zig
const std = @import("std"); const build_options = @import("build_options"); const yaml = @import("yaml"); const io = std.io; const mem = std.mem; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const usage = \\Usage: yaml <path-to-yaml> \\ \\General options: \\--debug-log [scope] Turn on debugging logs for [scope] (requires program compiled with -Dlog) \\-h, --help Print this help and exit \\ ; var log_scopes: std.ArrayList([]const u8) = std.ArrayList([]const u8).init(gpa.allocator()); pub fn log( comptime level: std.log.Level, comptime scope: @TypeOf(.EnumLiteral), comptime format: []const u8, args: anytype, ) void { // Hide debug messages unless: // * logging enabled with `-Dlog`. // * the --debug-log arg for the scope has been provided if (@intFromEnum(level) > @intFromEnum(std.log.level) or @intFromEnum(level) > @intFromEnum(std.log.Level.info)) { if (!build_options.enable_logging) return; const scope_name = @tagName(scope); for (log_scopes.items) |log_scope| { if (mem.eql(u8, log_scope, scope_name)) break; } else return; } // We only recognize 4 log levels in this application. const level_txt = switch (level) { .err => "error", .warn => "warning", .info => "info", .debug => "debug", }; const prefix1 = level_txt; const prefix2 = if (scope == .default) ": " else "(" ++ @tagName(scope) ++ "): "; // Print the message to stderr, silently ignoring any errors std.debug.print(prefix1 ++ prefix2 ++ format ++ "\n", args); } pub fn main() !void { var arena = std.heap.ArenaAllocator.init(gpa.allocator()); defer arena.deinit(); const allocator = arena.allocator(); const all_args = try std.process.argsAlloc(allocator); const args = all_args[1..]; const stdout = io.getStdOut().writer(); const stderr = io.getStdErr().writer(); var file_path: ?[]const u8 = null; var arg_index: usize = 0; while (arg_index < args.len) : (arg_index += 1) { if (mem.eql(u8, "-h", args[arg_index]) or mem.eql(u8, "--help", args[arg_index])) { return io.getStdOut().writeAll(usage); } else if (mem.eql(u8, "--debug-log", args[arg_index])) { if (arg_index + 1 >= args.len) { return stderr.writeAll("fatal: expected [scope] after --debug-log\n\n"); } arg_index += 1; if (!build_options.enable_logging) { try stderr.writeAll("warn: --debug-log will have no effect as program was not built with -Dlog\n\n"); } else { try log_scopes.append(args[arg_index]); } } else { file_path = args[arg_index]; } } if (file_path == null) { return stderr.writeAll("fatal: no input path to yaml file specified\n\n"); } const file = try std.fs.cwd().openFile(file_path.?, .{}); defer file.close(); const source = try file.readToEndAlloc(allocator, std.math.maxInt(u32)); var parsed = try yaml.Yaml.load(allocator, source); try parsed.stringify(stdout); }
0
repos/zig-yaml
repos/zig-yaml/examples/lists.yml
- a - b - c - d: - 0 - 1 - 2
0
repos/zig-yaml
repos/zig-yaml/examples/simple.yml
key: value other_key: other_value
0
repos/zig-yaml
repos/zig-yaml/examples/map_of_lists.yml
map: - 0 - 1 - 2 another: - key: value - keys: [ a, b, c, d ] final: what is that?
0
repos/zig-yaml
repos/zig-yaml/test/multi_lib.tbd
--- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos ] uuids: - target: x86_64-macos value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 install-name: '/usr/lib/libSystem.B.dylib' current-version: 1292.60.1 reexported-libraries: - targets: [ x86_64-macos ] libraries: [ '/usr/lib/system/libcache.dylib' ] exports: - targets: [ x86_64-macos ] symbols: [ 'R8289209$_close', 'R8289209$_fork' ] - targets: [ x86_64-macos ] symbols: [ ___crashreporter_info__, _libSystem_atfork_child ] --- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos ] uuids: - target: x86_64-macos value: 2F7F7303-DB23-359E-85CD-8B2F93223E2A install-name: '/usr/lib/system/libcache.dylib' current-version: 83 parent-umbrella: - targets: [ x86_64-macos ] umbrella: System exports: - targets: [ x86_64-macos ] symbols: [ _cache_create, _cache_destroy ] ...
0
repos/zig-yaml
repos/zig-yaml/test/single_lib.tbd
--- !tapi-tbd tbd-version: 4 targets: [ x86_64-macos, x86_64-maccatalyst, arm64-macos, arm64-maccatalyst, arm64e-macos, arm64e-maccatalyst ] uuids: - target: x86_64-macos value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 - target: x86_64-maccatalyst value: F86CC732-D5E4-30B5-AA7D-167DF5EC2708 - target: arm64-macos value: 00000000-0000-0000-0000-000000000000 - target: arm64-maccatalyst value: 00000000-0000-0000-0000-000000000000 - target: arm64e-macos value: A17E8744-051E-356E-8619-66F2A6E89AD4 - target: arm64e-maccatalyst value: A17E8744-051E-356E-8619-66F2A6E89AD4 install-name: '/usr/lib/libSystem.B.dylib' current-version: 1292.60.1 reexported-libraries: - targets: [ x86_64-macos, x86_64-maccatalyst, arm64-macos, arm64-maccatalyst, arm64e-macos, arm64e-maccatalyst ] libraries: [ '/usr/lib/system/libcache.dylib', '/usr/lib/system/libcommonCrypto.dylib', '/usr/lib/system/libcompiler_rt.dylib', '/usr/lib/system/libcopyfile.dylib', '/usr/lib/system/libxpc.dylib' ] exports: - targets: [ x86_64-maccatalyst, x86_64-macos ] symbols: [ 'R8289209$_close', 'R8289209$_fork', 'R8289209$_fsync', 'R8289209$_getattrlist', 'R8289209$_write' ] - targets: [ x86_64-maccatalyst, x86_64-macos, arm64e-maccatalyst, arm64e-macos, arm64-macos, arm64-maccatalyst ] symbols: [ ___crashreporter_info__, _libSystem_atfork_child, _libSystem_atfork_parent, _libSystem_atfork_prepare, _mach_init_routine ]
0
repos/zig-yaml
repos/zig-yaml/test/test.zig
const std = @import("std"); const mem = std.mem; const testing = std.testing; const Allocator = mem.Allocator; const Yaml = @import("yaml").Yaml; const gpa = testing.allocator; fn loadFromFile(file_path: []const u8) !Yaml { const file = try std.fs.cwd().openFile(file_path, .{}); defer file.close(); const source = try file.readToEndAlloc(gpa, std.math.maxInt(u32)); defer gpa.free(source); return Yaml.load(gpa, source); } test "simple" { const Simple = struct { names: []const []const u8, numbers: []const i16, nested: struct { some: []const u8, wick: []const u8, }, finally: [4]f16, pub fn eql(self: @This(), other: @This()) bool { if (self.names.len != other.names.len) return false; if (self.numbers.len != other.numbers.len) return false; if (self.finally.len != other.finally.len) return false; for (self.names, 0..) |lhs, i| { if (!mem.eql(u8, lhs, other.names[i])) return false; } for (self.numbers, 0..) |lhs, i| { if (lhs != other.numbers[i]) return false; } for (self.finally, 0..) |lhs, i| { if (lhs != other.finally[i]) return false; } if (!mem.eql(u8, self.nested.some, other.nested.some)) return false; if (!mem.eql(u8, self.nested.wick, other.nested.wick)) return false; return true; } }; var parsed = try loadFromFile("test/simple.yaml"); defer parsed.deinit(); const result = try parsed.parse(Simple); const expected = .{ .names = &[_][]const u8{ "John Doe", "MacIntosh", "Jane Austin" }, .numbers = &[_]i16{ 10, -8, 6 }, .nested = .{ .some = "one", .wick = "john doe", }, .finally = [_]f16{ 8.17, 19.78, 17, 21 }, }; try testing.expect(result.eql(expected)); } const LibTbd = struct { tbd_version: u3, targets: []const []const u8, uuids: []const struct { target: []const u8, value: []const u8, }, install_name: []const u8, current_version: union(enum) { string: []const u8, int: usize, }, reexported_libraries: ?[]const struct { targets: []const []const u8, libraries: []const []const u8, }, parent_umbrella: ?[]const struct { targets: []const []const u8, umbrella: []const u8, }, exports: []const struct { targets: []const []const u8, symbols: []const []const u8, }, pub fn eql(self: LibTbd, other: LibTbd) bool { if (self.tbd_version != other.tbd_version) return false; if (self.targets.len != other.targets.len) return false; for (self.targets, 0..) |target, i| { if (!mem.eql(u8, target, other.targets[i])) return false; } if (!mem.eql(u8, self.install_name, other.install_name)) return false; switch (self.current_version) { .string => |string| { if (other.current_version != .string) return false; if (!mem.eql(u8, string, other.current_version.string)) return false; }, .int => |int| { if (other.current_version != .int) return false; if (int != other.current_version.int) return false; }, } if (self.reexported_libraries) |reexported_libraries| { const o_reexported_libraries = other.reexported_libraries orelse return false; if (reexported_libraries.len != o_reexported_libraries.len) return false; for (reexported_libraries, 0..) |reexport, i| { const o_reexport = o_reexported_libraries[i]; if (reexport.targets.len != o_reexport.targets.len) return false; if (reexport.libraries.len != o_reexport.libraries.len) return false; for (reexport.targets, 0..) |target, j| { const o_target = o_reexport.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } for (reexport.libraries, 0..) |library, j| { const o_library = o_reexport.libraries[j]; if (!mem.eql(u8, library, o_library)) return false; } } } if (self.parent_umbrella) |parent_umbrella| { const o_parent_umbrella = other.parent_umbrella orelse return false; if (parent_umbrella.len != o_parent_umbrella.len) return false; for (parent_umbrella, 0..) |pumbrella, i| { const o_pumbrella = o_parent_umbrella[i]; if (pumbrella.targets.len != o_pumbrella.targets.len) return false; for (pumbrella.targets, 0..) |target, j| { const o_target = o_pumbrella.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } if (!mem.eql(u8, pumbrella.umbrella, o_pumbrella.umbrella)) return false; } } if (self.exports.len != other.exports.len) return false; for (self.exports, 0..) |exp, i| { const o_exp = other.exports[i]; if (exp.targets.len != o_exp.targets.len) return false; if (exp.symbols.len != o_exp.symbols.len) return false; for (exp.targets, 0..) |target, j| { const o_target = o_exp.targets[j]; if (!mem.eql(u8, target, o_target)) return false; } for (exp.symbols, 0..) |symbol, j| { const o_symbol = o_exp.symbols[j]; if (!mem.eql(u8, symbol, o_symbol)) return false; } } return true; } }; test "single lib tbd" { var parsed = try loadFromFile("test/single_lib.tbd"); defer parsed.deinit(); const result = try parsed.parse(LibTbd); const expected = .{ .tbd_version = 4, .targets = &[_][]const u8{ "x86_64-macos", "x86_64-maccatalyst", "arm64-macos", "arm64-maccatalyst", "arm64e-macos", "arm64e-maccatalyst", }, .uuids = &.{ .{ .target = "x86_64-macos", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, .{ .target = "x86_64-maccatalyst", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, .{ .target = "arm64-macos", .value = "00000000-0000-0000-0000-000000000000" }, .{ .target = "arm64-maccatalyst", .value = "00000000-0000-0000-0000-000000000000" }, .{ .target = "arm64e-macos", .value = "A17E8744-051E-356E-8619-66F2A6E89AD4" }, .{ .target = "arm64e-maccatalyst", .value = "A17E8744-051E-356E-8619-66F2A6E89AD4" }, }, .install_name = "/usr/lib/libSystem.B.dylib", .current_version = .{ .string = "1292.60.1" }, .reexported_libraries = &.{ .{ .targets = &.{ "x86_64-macos", "x86_64-maccatalyst", "arm64-macos", "arm64-maccatalyst", "arm64e-macos", "arm64e-maccatalyst", }, .libraries = &.{ "/usr/lib/system/libcache.dylib", "/usr/lib/system/libcommonCrypto.dylib", "/usr/lib/system/libcompiler_rt.dylib", "/usr/lib/system/libcopyfile.dylib", "/usr/lib/system/libxpc.dylib", }, }, }, .exports = &.{ .{ .targets = &.{ "x86_64-maccatalyst", "x86_64-macos", }, .symbols = &.{ "R8289209$_close", "R8289209$_fork", "R8289209$_fsync", "R8289209$_getattrlist", "R8289209$_write", }, }, .{ .targets = &.{ "x86_64-maccatalyst", "x86_64-macos", "arm64e-maccatalyst", "arm64e-macos", "arm64-macos", "arm64-maccatalyst", }, .symbols = &.{ "___crashreporter_info__", "_libSystem_atfork_child", "_libSystem_atfork_parent", "_libSystem_atfork_prepare", "_mach_init_routine", }, }, }, .parent_umbrella = null, }; try testing.expect(result.eql(expected)); } test "multi lib tbd" { var parsed = try loadFromFile("test/multi_lib.tbd"); defer parsed.deinit(); const result = try parsed.parse([]LibTbd); const expected = &[_]LibTbd{ .{ .tbd_version = 4, .targets = &[_][]const u8{"x86_64-macos"}, .uuids = &.{ .{ .target = "x86_64-macos", .value = "F86CC732-D5E4-30B5-AA7D-167DF5EC2708" }, }, .install_name = "/usr/lib/libSystem.B.dylib", .current_version = .{ .string = "1292.60.1" }, .reexported_libraries = &.{ .{ .targets = &.{"x86_64-macos"}, .libraries = &.{"/usr/lib/system/libcache.dylib"}, }, }, .exports = &.{ .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "R8289209$_close", "R8289209$_fork" }, }, .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "___crashreporter_info__", "_libSystem_atfork_child" }, }, }, .parent_umbrella = null, }, .{ .tbd_version = 4, .targets = &[_][]const u8{"x86_64-macos"}, .uuids = &.{ .{ .target = "x86_64-macos", .value = "2F7F7303-DB23-359E-85CD-8B2F93223E2A" }, }, .install_name = "/usr/lib/system/libcache.dylib", .current_version = .{ .int = 83 }, .parent_umbrella = &.{ .{ .targets = &.{"x86_64-macos"}, .umbrella = "System", }, }, .exports = &.{ .{ .targets = &.{"x86_64-macos"}, .symbols = &.{ "_cache_create", "_cache_destroy" }, }, }, .reexported_libraries = null, }, }; for (result, 0..) |lib, i| { try testing.expect(lib.eql(expected[i])); } }
0
repos/zig-yaml
repos/zig-yaml/test/simple.yaml
names: [ John Doe, MacIntosh, Jane Austin ] numbers: - 10 - -8 - 6 nested: some: one wick: john doe finally: [ 8.17, 19.78 , 17 , 21 ]
0
repos
repos/glslang.zig/README.md
# glslang.zig This is a fork of [KhronosGroup/glslang][1] packaged for [Zig][2] ## Why this fork ? The intention under this fork is to package [KhronosGroup/glslang][1] for [Zig][2]. So: * Unnecessary files have been deleted, * The build system has been replaced with `build.zig`, * A cron runs every day to check [KhronosGroup/glslang][1]. Then it updates this repository if a new release is available. ## How to use it The goal of this repository is not to provide a [Zig][2] binding for [KhronosGroup/glslang][1]. There are at least as many legit ways as possible to make a binding as there are active accounts on Github. So you are not going to find an answer for this question here. The point of this repository is to abstract the [KhronosGroup/glslang][1] compilation process with [Zig][2] (which is not new comers friendly and not easy to maintain) to let you focus on your application. So you can use **glslang.zig**: - as raw (no available example, open an issue if you are interested in, we will be happy to help you), - as a daily updated interface for your [Zig][2] binding of [KhronosGroup/glslang][1] (again: no available example). ## Important note The current usage of this repository is centered around [tiawl/shaderc.zig][3] compilation. So for your usage it could break because some files have been filtered in the process. If it happens, open an issue: this repository is open to potential usage evolution. ## Dependencies The [Zig][2] part of this package is relying on the latest [Zig][2] release (0.13.0) and will only be updated for the next one (so for the 0.14.0). Here the repositories' version used by this fork: * [KhronosGroup/glslang](https://github.com/tiawl/glslang.zig/blob/trunk/.references/glslang) ## CICD reminder These repositories are automatically updated when a new release is available: * [tiawl/shaderc.zig][3] This repository is automatically updated when a new release is available from these repositories: * [KhronosGroup/glslang][1] * [tiawl/toolbox][4] * [tiawl/spaceporn-action-bot][5] * [tiawl/spaceporn-action-ci][6] * [tiawl/spaceporn-action-cd-ping][7] * [tiawl/spaceporn-action-cd-pong][8] ## `zig build` options These additional options have been implemented for maintainability tasks: ``` -Dfetch Update .references folder and build.zig.zon then stop execution -Dupdate Update binding ``` ## License The unprotected parts of this repository are under MIT License. For everything else, see with their respective owners. [1]:https://github.com/KhronosGroup/glslang [2]:https://github.com/ziglang/zig [3]:https://github.com/tiawl/shaderc.zig [4]:https://github.com/tiawl/toolbox [5]:https://github.com/tiawl/spaceporn-action-bot [6]:https://github.com/tiawl/spaceporn-action-ci [7]:https://github.com/tiawl/spaceporn-action-cd-ping [8]:https://github.com/tiawl/spaceporn-action-cd-pong
0
repos
repos/glslang.zig/build.zig.zon
.{ .name = "glslang.zig", .version = "1.0.0", .minimum_zig_version = "0.13.0", .paths = .{ "build.zig", "build.zig.zon", "glslang", }, .dependencies = .{ .toolbox = .{ .url = "https://github.com/tiawl/toolbox/archive/refs/tags/1.11.0.tar.gz", .hash = "12201f1054079c650ec2e3b482ec8635577fc461751a884728947b01f8dcf22d5126", }, }, }
0
repos
repos/glslang.zig/build.zig
const std = @import ("std"); const toolbox = @import ("toolbox"); const Paths = struct { // prefixed attributes __glslang: [] const u8 = undefined, __glslang_in: [] const u8 = undefined, // mandatory getters pub fn getGlslang (self: @This ()) [] const u8 { return self.__glslang; } pub fn getGlslangIn (self: @This ()) [] const u8 { return self.__glslang_in; } // mandatory init pub fn init (builder: *std.Build) !@This () { var self = @This () { .__glslang = try builder.build_root.join (builder.allocator, &.{ "glslang", }), }; self.__glslang_in = try std.fs.path.join (builder.allocator, &.{ self.getGlslang (), "glslang", }); return self; } }; fn update (builder: *std.Build, path: *const Paths, dependencies: *const toolbox.Dependencies) !void { std.fs.deleteTreeAbsolute (path.getGlslang ()) catch |err| { switch (err) { error.FileNotFound => {}, else => return err, } }; try dependencies.clone (builder, "glslang", path.getGlslang ()); try toolbox.run (builder, .{ .argv = &[_][] const u8 { "python3", try std.fs.path.join (builder.allocator, &.{ path.getGlslang (), "build_info.py", }), path.getGlslang (), "-i", try std.fs.path.join (builder.allocator, &.{ path.getGlslang (), "build_info.h.tmpl", }), "-o", try std.fs.path.join (builder.allocator, &.{ path.getGlslangIn (), "build_info.h", }), }, }); var glslang_dir = try std.fs.openDirAbsolute (path.getGlslang (), .{ .iterate = true, }); defer glslang_dir.close (); var it = glslang_dir.iterate (); while (try it.next ()) |*entry| { if (!std.mem.eql (u8, "SPIRV", entry.name) and !std.mem.eql (u8, "StandAlone", entry.name) and !std.mem.eql (u8, "glslang", entry.name)) try std.fs.deleteTreeAbsolute (try std.fs.path.join ( builder.allocator, &.{ path.getGlslang (), entry.name, })); } const standalone_path = try std.fs.path.join (builder.allocator, &.{ path.getGlslang (), "StandAlone", }); var standalone_dir = try std.fs.openDirAbsolute (standalone_path, .{ .iterate = true, }); defer standalone_dir.close (); it = standalone_dir.iterate (); while (try it.next ()) |*entry| { if (!toolbox.isCHeader (entry.name) and entry.kind == .file) try std.fs.deleteFileAbsolute (try std.fs.path.join (builder.allocator, &.{ standalone_path, entry.name, })); } try toolbox.clean (builder, &.{ "glslang", }, &.{}); } pub fn build (builder: *std.Build) !void { const target = builder.standardTargetOptions (.{}); const optimize = builder.standardOptimizeOption (.{}); const path = try Paths.init (builder); const dependencies = try toolbox.Dependencies.init (builder, "glslang.zig", &.{ "glslang", }, .{ .toolbox = .{ .name = "tiawl/toolbox", .host = toolbox.Repository.Host.github, .ref = toolbox.Repository.Reference.tag, }, }, .{ .glslang = .{ .name = "KhronosGroup/glslang", .host = toolbox.Repository.Host.github, .ref = toolbox.Repository.Reference.tag, }, }); if (builder.option (bool, "update", "Update binding") orelse false) try update (builder, &path, &dependencies); const lib = builder.addStaticLibrary (.{ .name = "glslang", .root_source_file = builder.addWriteFiles ().add ("empty.c", ""), .target = target, .optimize = optimize, }); const flags = [_][] const u8 { "-DENABLE_HLSL", "-fno-sanitize=undefined", }; for ([_][] const u8 { "glslang", try std.fs.path.join (builder.allocator, &.{ "glslang", "glslang", }), try std.fs.path.join (builder.allocator, &.{ "glslang", "SPIRV", }), try std.fs.path.join (builder.allocator, &.{ "glslang", "StandAlone", }), }) |include| toolbox.addInclude (lib, include); toolbox.addHeader (lib, path.getGlslangIn (), "glslang", &.{ ".h", }); toolbox.addHeader (lib, try std.fs.path.join (builder.allocator, &.{ path.getGlslang (), "SPIRV", }), "SPIRV", &.{ ".h", }); lib.linkLibCpp (); var glslang_dir = try std.fs.openDirAbsolute (path.getGlslang (), .{ .iterate = true, }); defer glslang_dir.close (); var walker = try glslang_dir.walk (builder.allocator); defer walker.deinit (); walk: while (try walker.next ()) |*entry| { switch (entry.kind) { .file => { var it = try std.fs.path.componentIterator (entry.path); while (it.next ()) |*component| { if (std.mem.eql (u8, component.name, "OSDependent")) continue :walk; } if (toolbox.isCppSource (entry.basename)) try toolbox.addSource (lib, path.getGlslang (), entry.path, &flags); }, else => {}, } } const os = switch (target.result.os.tag) { .linux => "Unix", .windows => "Windows", else => return error.UnsupportedOs, }; const os_path = try std.fs.path.join (builder.allocator, &.{ path.getGlslangIn (), "OSDependent", os, }); var os_dir = try std.fs.openDirAbsolute (os_path, .{ .iterate = true, }); defer os_dir.close (); var it = os_dir.iterate (); while (try it.next ()) |*entry| { switch (entry.kind) { .file => { if (toolbox.isCppSource (entry.name)) try toolbox.addSource (lib, os_path, entry.name, &flags); }, else => {}, } } builder.installArtifact (lib); }
0
repos
repos/glslang.zig/LICENSE.md
Copyright © 2022 **Pablo Tomas** - *tiawl* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0
repos/glslang.zig/glslang
repos/glslang.zig/glslang/StandAlone/DirStackFileIncluder.h
// // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. // Copyright (C) 2017 Google, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #pragma once #include <vector> #include <string> #include <fstream> #include <algorithm> #include <set> #include "./../glslang/Public/ShaderLang.h" // Default include class for normal include convention of search backward // through the stack of active include paths (for nested includes). // Can be overridden to customize. class DirStackFileIncluder : public glslang::TShader::Includer { public: DirStackFileIncluder() : externalLocalDirectoryCount(0) { } virtual IncludeResult* includeLocal(const char* headerName, const char* includerName, size_t inclusionDepth) override { return readLocalPath(headerName, includerName, (int)inclusionDepth); } virtual IncludeResult* includeSystem(const char* headerName, const char* /*includerName*/, size_t /*inclusionDepth*/) override { return readSystemPath(headerName); } // Externally set directories. E.g., from a command-line -I<dir>. // - Most-recently pushed are checked first. // - All these are checked after the parse-time stack of local directories // is checked. // - This only applies to the "local" form of #include. // - Makes its own copy of the path. virtual void pushExternalLocalDirectory(const std::string& dir) { directoryStack.push_back(dir); externalLocalDirectoryCount = (int)directoryStack.size(); } virtual void releaseInclude(IncludeResult* result) override { if (result != nullptr) { delete [] static_cast<tUserDataElement*>(result->userData); delete result; } } virtual std::set<std::string> getIncludedFiles() { return includedFiles; } virtual ~DirStackFileIncluder() override { } protected: typedef char tUserDataElement; std::vector<std::string> directoryStack; int externalLocalDirectoryCount; std::set<std::string> includedFiles; // Search for a valid "local" path based on combining the stack of include // directories and the nominal name of the header. virtual IncludeResult* readLocalPath(const char* headerName, const char* includerName, int depth) { // Discard popped include directories, and // initialize when at parse-time first level. directoryStack.resize(depth + externalLocalDirectoryCount); if (depth == 1) directoryStack.back() = getDirectory(includerName); // Find a directory that works, using a reverse search of the include stack. for (auto it = directoryStack.rbegin(); it != directoryStack.rend(); ++it) { std::string path = *it + '/' + headerName; std::replace(path.begin(), path.end(), '\\', '/'); std::ifstream file(path, std::ios_base::binary | std::ios_base::ate); if (file) { directoryStack.push_back(getDirectory(path)); includedFiles.insert(path); return newIncludeResult(path, file, (int)file.tellg()); } } return nullptr; } // Search for a valid <system> path. // Not implemented yet; returning nullptr signals failure to find. virtual IncludeResult* readSystemPath(const char* /*headerName*/) const { return nullptr; } // Do actual reading of the file, filling in a new include result. virtual IncludeResult* newIncludeResult(const std::string& path, std::ifstream& file, int length) const { char* content = new tUserDataElement [length]; file.seekg(0, file.beg); file.read(content, length); return new IncludeResult(path, content, length, content); } // If no path markers, return current working directory. // Otherwise, strip file name and return path leading up to it. virtual std::string getDirectory(const std::string path) const { size_t last = path.find_last_of("/\\"); return last == std::string::npos ? "." : path.substr(0, last); } };
0
repos/glslang.zig/glslang
repos/glslang.zig/glslang/StandAlone/Worklist.h
// // Copyright (C) 2013 LunarG, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #ifndef WORKLIST_H_INCLUDED #define WORKLIST_H_INCLUDED #include "../glslang/OSDependent/osinclude.h" #include <list> #include <mutex> #include <string> namespace glslang { class TWorkItem { public: TWorkItem() { } explicit TWorkItem(const std::string& s) : name(s) { } std::string name; std::string results; std::string resultsIndex; }; class TWorklist { public: TWorklist() { } virtual ~TWorklist() { } void add(TWorkItem* item) { std::lock_guard<std::mutex> guard(mutex); worklist.push_back(item); } bool remove(TWorkItem*& item) { std::lock_guard<std::mutex> guard(mutex); if (worklist.empty()) return false; item = worklist.front(); worklist.pop_front(); return true; } int size() { return (int)worklist.size(); } bool empty() { return worklist.empty(); } protected: std::mutex mutex; std::list<TWorkItem*> worklist; }; } // end namespace glslang #endif // WORKLIST_H_INCLUDED
0
repos/glslang.zig/glslang
repos/glslang.zig/glslang/glslang/build_info.h
// Copyright (C) 2020 The Khronos Group Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of The Khronos Group Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. #ifndef GLSLANG_BUILD_INFO #define GLSLANG_BUILD_INFO #define GLSLANG_VERSION_MAJOR 14 #define GLSLANG_VERSION_MINOR 3 #define GLSLANG_VERSION_PATCH 0 #define GLSLANG_VERSION_FLAVOR "" #define GLSLANG_VERSION_GREATER_THAN(major, minor, patch) \ ((GLSLANG_VERSION_MAJOR) > (major) || ((major) == GLSLANG_VERSION_MAJOR && \ ((GLSLANG_VERSION_MINOR) > (minor) || ((minor) == GLSLANG_VERSION_MINOR && \ (GLSLANG_VERSION_PATCH) > (patch))))) #define GLSLANG_VERSION_GREATER_OR_EQUAL_TO(major, minor, patch) \ ((GLSLANG_VERSION_MAJOR) > (major) || ((major) == GLSLANG_VERSION_MAJOR && \ ((GLSLANG_VERSION_MINOR) > (minor) || ((minor) == GLSLANG_VERSION_MINOR && \ (GLSLANG_VERSION_PATCH >= (patch)))))) #define GLSLANG_VERSION_LESS_THAN(major, minor, patch) \ ((GLSLANG_VERSION_MAJOR) < (major) || ((major) == GLSLANG_VERSION_MAJOR && \ ((GLSLANG_VERSION_MINOR) < (minor) || ((minor) == GLSLANG_VERSION_MINOR && \ (GLSLANG_VERSION_PATCH) < (patch))))) #define GLSLANG_VERSION_LESS_OR_EQUAL_TO(major, minor, patch) \ ((GLSLANG_VERSION_MAJOR) < (major) || ((major) == GLSLANG_VERSION_MAJOR && \ ((GLSLANG_VERSION_MINOR) < (minor) || ((minor) == GLSLANG_VERSION_MINOR && \ (GLSLANG_VERSION_PATCH <= (patch)))))) #endif // GLSLANG_BUILD_INFO
0
repos/glslang.zig/glslang/glslang
repos/glslang.zig/glslang/glslang/ResourceLimits/resource_limits_c.cpp
/** BSD 2-Clause License Copyright (c) 2020, Travis Fort All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **/ #include "glslang/Public/resource_limits_c.h" #include "glslang/Public/ResourceLimits.h" #include <stdlib.h> #include <string.h> #include <string> glslang_resource_t* glslang_resource(void) { return reinterpret_cast<glslang_resource_t*>(GetResources()); } const glslang_resource_t* glslang_default_resource(void) { return reinterpret_cast<const glslang_resource_t*>(GetDefaultResources()); } const char* glslang_default_resource_string() { std::string cpp_str = GetDefaultTBuiltInResourceString(); char* c_str = (char*)malloc(cpp_str.length() + 1); strncpy(c_str, cpp_str.c_str(), cpp_str.length() + 1); return c_str; } void glslang_decode_resource_limits(glslang_resource_t* resources, char* config) { DecodeResourceLimits(reinterpret_cast<TBuiltInResource*>(resources), config); }
0
repos/glslang.zig/glslang/glslang
repos/glslang.zig/glslang/glslang/ResourceLimits/ResourceLimits.cpp
// // Copyright (C) 2016 Google, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. #include <cstdlib> #include <cstring> #include <sstream> #include <cctype> #include "glslang/Public/ResourceLimits.h" TBuiltInResource Resources; const TBuiltInResource DefaultTBuiltInResource = { /* .MaxLights = */ 32, /* .MaxClipPlanes = */ 6, /* .MaxTextureUnits = */ 32, /* .MaxTextureCoords = */ 32, /* .MaxVertexAttribs = */ 64, /* .MaxVertexUniformComponents = */ 4096, /* .MaxVaryingFloats = */ 64, /* .MaxVertexTextureImageUnits = */ 32, /* .MaxCombinedTextureImageUnits = */ 80, /* .MaxTextureImageUnits = */ 32, /* .MaxFragmentUniformComponents = */ 4096, /* .MaxDrawBuffers = */ 32, /* .MaxVertexUniformVectors = */ 128, /* .MaxVaryingVectors = */ 8, /* .MaxFragmentUniformVectors = */ 16, /* .MaxVertexOutputVectors = */ 16, /* .MaxFragmentInputVectors = */ 15, /* .MinProgramTexelOffset = */ -8, /* .MaxProgramTexelOffset = */ 7, /* .MaxClipDistances = */ 8, /* .MaxComputeWorkGroupCountX = */ 65535, /* .MaxComputeWorkGroupCountY = */ 65535, /* .MaxComputeWorkGroupCountZ = */ 65535, /* .MaxComputeWorkGroupSizeX = */ 1024, /* .MaxComputeWorkGroupSizeY = */ 1024, /* .MaxComputeWorkGroupSizeZ = */ 64, /* .MaxComputeUniformComponents = */ 1024, /* .MaxComputeTextureImageUnits = */ 16, /* .MaxComputeImageUniforms = */ 8, /* .MaxComputeAtomicCounters = */ 8, /* .MaxComputeAtomicCounterBuffers = */ 1, /* .MaxVaryingComponents = */ 60, /* .MaxVertexOutputComponents = */ 64, /* .MaxGeometryInputComponents = */ 64, /* .MaxGeometryOutputComponents = */ 128, /* .MaxFragmentInputComponents = */ 128, /* .MaxImageUnits = */ 8, /* .MaxCombinedImageUnitsAndFragmentOutputs = */ 8, /* .MaxCombinedShaderOutputResources = */ 8, /* .MaxImageSamples = */ 0, /* .MaxVertexImageUniforms = */ 0, /* .MaxTessControlImageUniforms = */ 0, /* .MaxTessEvaluationImageUniforms = */ 0, /* .MaxGeometryImageUniforms = */ 0, /* .MaxFragmentImageUniforms = */ 8, /* .MaxCombinedImageUniforms = */ 8, /* .MaxGeometryTextureImageUnits = */ 16, /* .MaxGeometryOutputVertices = */ 256, /* .MaxGeometryTotalOutputComponents = */ 1024, /* .MaxGeometryUniformComponents = */ 1024, /* .MaxGeometryVaryingComponents = */ 64, /* .MaxTessControlInputComponents = */ 128, /* .MaxTessControlOutputComponents = */ 128, /* .MaxTessControlTextureImageUnits = */ 16, /* .MaxTessControlUniformComponents = */ 1024, /* .MaxTessControlTotalOutputComponents = */ 4096, /* .MaxTessEvaluationInputComponents = */ 128, /* .MaxTessEvaluationOutputComponents = */ 128, /* .MaxTessEvaluationTextureImageUnits = */ 16, /* .MaxTessEvaluationUniformComponents = */ 1024, /* .MaxTessPatchComponents = */ 120, /* .MaxPatchVertices = */ 32, /* .MaxTessGenLevel = */ 64, /* .MaxViewports = */ 16, /* .MaxVertexAtomicCounters = */ 0, /* .MaxTessControlAtomicCounters = */ 0, /* .MaxTessEvaluationAtomicCounters = */ 0, /* .MaxGeometryAtomicCounters = */ 0, /* .MaxFragmentAtomicCounters = */ 8, /* .MaxCombinedAtomicCounters = */ 8, /* .MaxAtomicCounterBindings = */ 1, /* .MaxVertexAtomicCounterBuffers = */ 0, /* .MaxTessControlAtomicCounterBuffers = */ 0, /* .MaxTessEvaluationAtomicCounterBuffers = */ 0, /* .MaxGeometryAtomicCounterBuffers = */ 0, /* .MaxFragmentAtomicCounterBuffers = */ 1, /* .MaxCombinedAtomicCounterBuffers = */ 1, /* .MaxAtomicCounterBufferSize = */ 16384, /* .MaxTransformFeedbackBuffers = */ 4, /* .MaxTransformFeedbackInterleavedComponents = */ 64, /* .MaxCullDistances = */ 8, /* .MaxCombinedClipAndCullDistances = */ 8, /* .MaxSamples = */ 4, /* .maxMeshOutputVerticesNV = */ 256, /* .maxMeshOutputPrimitivesNV = */ 512, /* .maxMeshWorkGroupSizeX_NV = */ 32, /* .maxMeshWorkGroupSizeY_NV = */ 1, /* .maxMeshWorkGroupSizeZ_NV = */ 1, /* .maxTaskWorkGroupSizeX_NV = */ 32, /* .maxTaskWorkGroupSizeY_NV = */ 1, /* .maxTaskWorkGroupSizeZ_NV = */ 1, /* .maxMeshViewCountNV = */ 4, /* .maxMeshOutputVerticesEXT = */ 256, /* .maxMeshOutputPrimitivesEXT = */ 256, /* .maxMeshWorkGroupSizeX_EXT = */ 128, /* .maxMeshWorkGroupSizeY_EXT = */ 128, /* .maxMeshWorkGroupSizeZ_EXT = */ 128, /* .maxTaskWorkGroupSizeX_EXT = */ 128, /* .maxTaskWorkGroupSizeY_EXT = */ 128, /* .maxTaskWorkGroupSizeZ_EXT = */ 128, /* .maxMeshViewCountEXT = */ 4, /* .maxDualSourceDrawBuffersEXT = */ 1, /* .limits = */ { /* .nonInductiveForLoops = */ 1, /* .whileLoops = */ 1, /* .doWhileLoops = */ 1, /* .generalUniformIndexing = */ 1, /* .generalAttributeMatrixVectorIndexing = */ 1, /* .generalVaryingIndexing = */ 1, /* .generalSamplerIndexing = */ 1, /* .generalVariableIndexing = */ 1, /* .generalConstantMatrixVectorIndexing = */ 1, }}; std::string GetDefaultTBuiltInResourceString() { std::ostringstream ostream; ostream << "MaxLights " << DefaultTBuiltInResource.maxLights << "\n" << "MaxClipPlanes " << DefaultTBuiltInResource.maxClipPlanes << "\n" << "MaxTextureUnits " << DefaultTBuiltInResource.maxTextureUnits << "\n" << "MaxTextureCoords " << DefaultTBuiltInResource.maxTextureCoords << "\n" << "MaxVertexAttribs " << DefaultTBuiltInResource.maxVertexAttribs << "\n" << "MaxVertexUniformComponents " << DefaultTBuiltInResource.maxVertexUniformComponents << "\n" << "MaxVaryingFloats " << DefaultTBuiltInResource.maxVaryingFloats << "\n" << "MaxVertexTextureImageUnits " << DefaultTBuiltInResource.maxVertexTextureImageUnits << "\n" << "MaxCombinedTextureImageUnits " << DefaultTBuiltInResource.maxCombinedTextureImageUnits << "\n" << "MaxTextureImageUnits " << DefaultTBuiltInResource.maxTextureImageUnits << "\n" << "MaxFragmentUniformComponents " << DefaultTBuiltInResource.maxFragmentUniformComponents << "\n" << "MaxDrawBuffers " << DefaultTBuiltInResource.maxDrawBuffers << "\n" << "MaxVertexUniformVectors " << DefaultTBuiltInResource.maxVertexUniformVectors << "\n" << "MaxVaryingVectors " << DefaultTBuiltInResource.maxVaryingVectors << "\n" << "MaxFragmentUniformVectors " << DefaultTBuiltInResource.maxFragmentUniformVectors << "\n" << "MaxVertexOutputVectors " << DefaultTBuiltInResource.maxVertexOutputVectors << "\n" << "MaxFragmentInputVectors " << DefaultTBuiltInResource.maxFragmentInputVectors << "\n" << "MinProgramTexelOffset " << DefaultTBuiltInResource.minProgramTexelOffset << "\n" << "MaxProgramTexelOffset " << DefaultTBuiltInResource.maxProgramTexelOffset << "\n" << "MaxClipDistances " << DefaultTBuiltInResource.maxClipDistances << "\n" << "MaxComputeWorkGroupCountX " << DefaultTBuiltInResource.maxComputeWorkGroupCountX << "\n" << "MaxComputeWorkGroupCountY " << DefaultTBuiltInResource.maxComputeWorkGroupCountY << "\n" << "MaxComputeWorkGroupCountZ " << DefaultTBuiltInResource.maxComputeWorkGroupCountZ << "\n" << "MaxComputeWorkGroupSizeX " << DefaultTBuiltInResource.maxComputeWorkGroupSizeX << "\n" << "MaxComputeWorkGroupSizeY " << DefaultTBuiltInResource.maxComputeWorkGroupSizeY << "\n" << "MaxComputeWorkGroupSizeZ " << DefaultTBuiltInResource.maxComputeWorkGroupSizeZ << "\n" << "MaxComputeUniformComponents " << DefaultTBuiltInResource.maxComputeUniformComponents << "\n" << "MaxComputeTextureImageUnits " << DefaultTBuiltInResource.maxComputeTextureImageUnits << "\n" << "MaxComputeImageUniforms " << DefaultTBuiltInResource.maxComputeImageUniforms << "\n" << "MaxComputeAtomicCounters " << DefaultTBuiltInResource.maxComputeAtomicCounters << "\n" << "MaxComputeAtomicCounterBuffers " << DefaultTBuiltInResource.maxComputeAtomicCounterBuffers << "\n" << "MaxVaryingComponents " << DefaultTBuiltInResource.maxVaryingComponents << "\n" << "MaxVertexOutputComponents " << DefaultTBuiltInResource.maxVertexOutputComponents << "\n" << "MaxGeometryInputComponents " << DefaultTBuiltInResource.maxGeometryInputComponents << "\n" << "MaxGeometryOutputComponents " << DefaultTBuiltInResource.maxGeometryOutputComponents << "\n" << "MaxFragmentInputComponents " << DefaultTBuiltInResource.maxFragmentInputComponents << "\n" << "MaxImageUnits " << DefaultTBuiltInResource.maxImageUnits << "\n" << "MaxCombinedImageUnitsAndFragmentOutputs " << DefaultTBuiltInResource.maxCombinedImageUnitsAndFragmentOutputs << "\n" << "MaxCombinedShaderOutputResources " << DefaultTBuiltInResource.maxCombinedShaderOutputResources << "\n" << "MaxImageSamples " << DefaultTBuiltInResource.maxImageSamples << "\n" << "MaxVertexImageUniforms " << DefaultTBuiltInResource.maxVertexImageUniforms << "\n" << "MaxTessControlImageUniforms " << DefaultTBuiltInResource.maxTessControlImageUniforms << "\n" << "MaxTessEvaluationImageUniforms " << DefaultTBuiltInResource.maxTessEvaluationImageUniforms << "\n" << "MaxGeometryImageUniforms " << DefaultTBuiltInResource.maxGeometryImageUniforms << "\n" << "MaxFragmentImageUniforms " << DefaultTBuiltInResource.maxFragmentImageUniforms << "\n" << "MaxCombinedImageUniforms " << DefaultTBuiltInResource.maxCombinedImageUniforms << "\n" << "MaxGeometryTextureImageUnits " << DefaultTBuiltInResource.maxGeometryTextureImageUnits << "\n" << "MaxGeometryOutputVertices " << DefaultTBuiltInResource.maxGeometryOutputVertices << "\n" << "MaxGeometryTotalOutputComponents " << DefaultTBuiltInResource.maxGeometryTotalOutputComponents << "\n" << "MaxGeometryUniformComponents " << DefaultTBuiltInResource.maxGeometryUniformComponents << "\n" << "MaxGeometryVaryingComponents " << DefaultTBuiltInResource.maxGeometryVaryingComponents << "\n" << "MaxTessControlInputComponents " << DefaultTBuiltInResource.maxTessControlInputComponents << "\n" << "MaxTessControlOutputComponents " << DefaultTBuiltInResource.maxTessControlOutputComponents << "\n" << "MaxTessControlTextureImageUnits " << DefaultTBuiltInResource.maxTessControlTextureImageUnits << "\n" << "MaxTessControlUniformComponents " << DefaultTBuiltInResource.maxTessControlUniformComponents << "\n" << "MaxTessControlTotalOutputComponents " << DefaultTBuiltInResource.maxTessControlTotalOutputComponents << "\n" << "MaxTessEvaluationInputComponents " << DefaultTBuiltInResource.maxTessEvaluationInputComponents << "\n" << "MaxTessEvaluationOutputComponents " << DefaultTBuiltInResource.maxTessEvaluationOutputComponents << "\n" << "MaxTessEvaluationTextureImageUnits " << DefaultTBuiltInResource.maxTessEvaluationTextureImageUnits << "\n" << "MaxTessEvaluationUniformComponents " << DefaultTBuiltInResource.maxTessEvaluationUniformComponents << "\n" << "MaxTessPatchComponents " << DefaultTBuiltInResource.maxTessPatchComponents << "\n" << "MaxPatchVertices " << DefaultTBuiltInResource.maxPatchVertices << "\n" << "MaxTessGenLevel " << DefaultTBuiltInResource.maxTessGenLevel << "\n" << "MaxViewports " << DefaultTBuiltInResource.maxViewports << "\n" << "MaxVertexAtomicCounters " << DefaultTBuiltInResource.maxVertexAtomicCounters << "\n" << "MaxTessControlAtomicCounters " << DefaultTBuiltInResource.maxTessControlAtomicCounters << "\n" << "MaxTessEvaluationAtomicCounters " << DefaultTBuiltInResource.maxTessEvaluationAtomicCounters << "\n" << "MaxGeometryAtomicCounters " << DefaultTBuiltInResource.maxGeometryAtomicCounters << "\n" << "MaxFragmentAtomicCounters " << DefaultTBuiltInResource.maxFragmentAtomicCounters << "\n" << "MaxCombinedAtomicCounters " << DefaultTBuiltInResource.maxCombinedAtomicCounters << "\n" << "MaxAtomicCounterBindings " << DefaultTBuiltInResource.maxAtomicCounterBindings << "\n" << "MaxVertexAtomicCounterBuffers " << DefaultTBuiltInResource.maxVertexAtomicCounterBuffers << "\n" << "MaxTessControlAtomicCounterBuffers " << DefaultTBuiltInResource.maxTessControlAtomicCounterBuffers << "\n" << "MaxTessEvaluationAtomicCounterBuffers " << DefaultTBuiltInResource.maxTessEvaluationAtomicCounterBuffers << "\n" << "MaxGeometryAtomicCounterBuffers " << DefaultTBuiltInResource.maxGeometryAtomicCounterBuffers << "\n" << "MaxFragmentAtomicCounterBuffers " << DefaultTBuiltInResource.maxFragmentAtomicCounterBuffers << "\n" << "MaxCombinedAtomicCounterBuffers " << DefaultTBuiltInResource.maxCombinedAtomicCounterBuffers << "\n" << "MaxAtomicCounterBufferSize " << DefaultTBuiltInResource.maxAtomicCounterBufferSize << "\n" << "MaxTransformFeedbackBuffers " << DefaultTBuiltInResource.maxTransformFeedbackBuffers << "\n" << "MaxTransformFeedbackInterleavedComponents " << DefaultTBuiltInResource.maxTransformFeedbackInterleavedComponents << "\n" << "MaxCullDistances " << DefaultTBuiltInResource.maxCullDistances << "\n" << "MaxCombinedClipAndCullDistances " << DefaultTBuiltInResource.maxCombinedClipAndCullDistances << "\n" << "MaxSamples " << DefaultTBuiltInResource.maxSamples << "\n" << "MaxMeshOutputVerticesNV " << DefaultTBuiltInResource.maxMeshOutputVerticesNV << "\n" << "MaxMeshOutputPrimitivesNV " << DefaultTBuiltInResource.maxMeshOutputPrimitivesNV << "\n" << "MaxMeshWorkGroupSizeX_NV " << DefaultTBuiltInResource.maxMeshWorkGroupSizeX_NV << "\n" << "MaxMeshWorkGroupSizeY_NV " << DefaultTBuiltInResource.maxMeshWorkGroupSizeY_NV << "\n" << "MaxMeshWorkGroupSizeZ_NV " << DefaultTBuiltInResource.maxMeshWorkGroupSizeZ_NV << "\n" << "MaxTaskWorkGroupSizeX_NV " << DefaultTBuiltInResource.maxTaskWorkGroupSizeX_NV << "\n" << "MaxTaskWorkGroupSizeY_NV " << DefaultTBuiltInResource.maxTaskWorkGroupSizeY_NV << "\n" << "MaxTaskWorkGroupSizeZ_NV " << DefaultTBuiltInResource.maxTaskWorkGroupSizeZ_NV << "\n" << "MaxMeshViewCountNV " << DefaultTBuiltInResource.maxMeshViewCountNV << "\n" << "MaxMeshOutputVerticesEXT " << DefaultTBuiltInResource.maxMeshOutputVerticesEXT << "\n" << "MaxMeshOutputPrimitivesEXT " << DefaultTBuiltInResource.maxMeshOutputPrimitivesEXT << "\n" << "MaxMeshWorkGroupSizeX_EXT " << DefaultTBuiltInResource.maxMeshWorkGroupSizeX_EXT << "\n" << "MaxMeshWorkGroupSizeY_EXT " << DefaultTBuiltInResource.maxMeshWorkGroupSizeY_EXT << "\n" << "MaxMeshWorkGroupSizeZ_EXT " << DefaultTBuiltInResource.maxMeshWorkGroupSizeZ_EXT << "\n" << "MaxTaskWorkGroupSizeX_EXT " << DefaultTBuiltInResource.maxTaskWorkGroupSizeX_EXT << "\n" << "MaxTaskWorkGroupSizeY_EXT " << DefaultTBuiltInResource.maxTaskWorkGroupSizeY_EXT << "\n" << "MaxTaskWorkGroupSizeZ_EXT " << DefaultTBuiltInResource.maxTaskWorkGroupSizeZ_EXT << "\n" << "MaxMeshViewCountEXT " << DefaultTBuiltInResource.maxMeshViewCountEXT << "\n" << "MaxDualSourceDrawBuffersEXT " << DefaultTBuiltInResource.maxDualSourceDrawBuffersEXT << "\n" << "nonInductiveForLoops " << DefaultTBuiltInResource.limits.nonInductiveForLoops << "\n" << "whileLoops " << DefaultTBuiltInResource.limits.whileLoops << "\n" << "doWhileLoops " << DefaultTBuiltInResource.limits.doWhileLoops << "\n" << "generalUniformIndexing " << DefaultTBuiltInResource.limits.generalUniformIndexing << "\n" << "generalAttributeMatrixVectorIndexing " << DefaultTBuiltInResource.limits.generalAttributeMatrixVectorIndexing << "\n" << "generalVaryingIndexing " << DefaultTBuiltInResource.limits.generalVaryingIndexing << "\n" << "generalSamplerIndexing " << DefaultTBuiltInResource.limits.generalSamplerIndexing << "\n" << "generalVariableIndexing " << DefaultTBuiltInResource.limits.generalVariableIndexing << "\n" << "generalConstantMatrixVectorIndexing " << DefaultTBuiltInResource.limits.generalConstantMatrixVectorIndexing << "\n" ; return ostream.str(); } void DecodeResourceLimits(TBuiltInResource* resources, char* config) { static const char* delims = " \t\n\r"; size_t pos = 0; std::string configStr(config); while ((pos = configStr.find_first_not_of(delims, pos)) != std::string::npos) { const size_t token_s = pos; const size_t token_e = configStr.find_first_of(delims, token_s); const size_t value_s = configStr.find_first_not_of(delims, token_e); const size_t value_e = configStr.find_first_of(delims, value_s); pos = value_e; // Faster to use compare(), but prefering readability. const std::string tokenStr = configStr.substr(token_s, token_e-token_s); const std::string valueStr = configStr.substr(value_s, value_e-value_s); if (value_s == std::string::npos || ! (valueStr[0] == '-' || isdigit(valueStr[0]))) { printf("Error: '%s' bad .conf file. Each name must be followed by one number.\n", valueStr.c_str()); return; } const int value = std::atoi(valueStr.c_str()); if (tokenStr == "MaxLights") resources->maxLights = value; else if (tokenStr == "MaxClipPlanes") resources->maxClipPlanes = value; else if (tokenStr == "MaxTextureUnits") resources->maxTextureUnits = value; else if (tokenStr == "MaxTextureCoords") resources->maxTextureCoords = value; else if (tokenStr == "MaxVertexAttribs") resources->maxVertexAttribs = value; else if (tokenStr == "MaxVertexUniformComponents") resources->maxVertexUniformComponents = value; else if (tokenStr == "MaxVaryingFloats") resources->maxVaryingFloats = value; else if (tokenStr == "MaxVertexTextureImageUnits") resources->maxVertexTextureImageUnits = value; else if (tokenStr == "MaxCombinedTextureImageUnits") resources->maxCombinedTextureImageUnits = value; else if (tokenStr == "MaxTextureImageUnits") resources->maxTextureImageUnits = value; else if (tokenStr == "MaxFragmentUniformComponents") resources->maxFragmentUniformComponents = value; else if (tokenStr == "MaxDrawBuffers") resources->maxDrawBuffers = value; else if (tokenStr == "MaxVertexUniformVectors") resources->maxVertexUniformVectors = value; else if (tokenStr == "MaxVaryingVectors") resources->maxVaryingVectors = value; else if (tokenStr == "MaxFragmentUniformVectors") resources->maxFragmentUniformVectors = value; else if (tokenStr == "MaxVertexOutputVectors") resources->maxVertexOutputVectors = value; else if (tokenStr == "MaxFragmentInputVectors") resources->maxFragmentInputVectors = value; else if (tokenStr == "MinProgramTexelOffset") resources->minProgramTexelOffset = value; else if (tokenStr == "MaxProgramTexelOffset") resources->maxProgramTexelOffset = value; else if (tokenStr == "MaxClipDistances") resources->maxClipDistances = value; else if (tokenStr == "MaxComputeWorkGroupCountX") resources->maxComputeWorkGroupCountX = value; else if (tokenStr == "MaxComputeWorkGroupCountY") resources->maxComputeWorkGroupCountY = value; else if (tokenStr == "MaxComputeWorkGroupCountZ") resources->maxComputeWorkGroupCountZ = value; else if (tokenStr == "MaxComputeWorkGroupSizeX") resources->maxComputeWorkGroupSizeX = value; else if (tokenStr == "MaxComputeWorkGroupSizeY") resources->maxComputeWorkGroupSizeY = value; else if (tokenStr == "MaxComputeWorkGroupSizeZ") resources->maxComputeWorkGroupSizeZ = value; else if (tokenStr == "MaxComputeUniformComponents") resources->maxComputeUniformComponents = value; else if (tokenStr == "MaxComputeTextureImageUnits") resources->maxComputeTextureImageUnits = value; else if (tokenStr == "MaxComputeImageUniforms") resources->maxComputeImageUniforms = value; else if (tokenStr == "MaxComputeAtomicCounters") resources->maxComputeAtomicCounters = value; else if (tokenStr == "MaxComputeAtomicCounterBuffers") resources->maxComputeAtomicCounterBuffers = value; else if (tokenStr == "MaxVaryingComponents") resources->maxVaryingComponents = value; else if (tokenStr == "MaxVertexOutputComponents") resources->maxVertexOutputComponents = value; else if (tokenStr == "MaxGeometryInputComponents") resources->maxGeometryInputComponents = value; else if (tokenStr == "MaxGeometryOutputComponents") resources->maxGeometryOutputComponents = value; else if (tokenStr == "MaxFragmentInputComponents") resources->maxFragmentInputComponents = value; else if (tokenStr == "MaxImageUnits") resources->maxImageUnits = value; else if (tokenStr == "MaxCombinedImageUnitsAndFragmentOutputs") resources->maxCombinedImageUnitsAndFragmentOutputs = value; else if (tokenStr == "MaxCombinedShaderOutputResources") resources->maxCombinedShaderOutputResources = value; else if (tokenStr == "MaxImageSamples") resources->maxImageSamples = value; else if (tokenStr == "MaxVertexImageUniforms") resources->maxVertexImageUniforms = value; else if (tokenStr == "MaxTessControlImageUniforms") resources->maxTessControlImageUniforms = value; else if (tokenStr == "MaxTessEvaluationImageUniforms") resources->maxTessEvaluationImageUniforms = value; else if (tokenStr == "MaxGeometryImageUniforms") resources->maxGeometryImageUniforms = value; else if (tokenStr == "MaxFragmentImageUniforms") resources->maxFragmentImageUniforms = value; else if (tokenStr == "MaxCombinedImageUniforms") resources->maxCombinedImageUniforms = value; else if (tokenStr == "MaxGeometryTextureImageUnits") resources->maxGeometryTextureImageUnits = value; else if (tokenStr == "MaxGeometryOutputVertices") resources->maxGeometryOutputVertices = value; else if (tokenStr == "MaxGeometryTotalOutputComponents") resources->maxGeometryTotalOutputComponents = value; else if (tokenStr == "MaxGeometryUniformComponents") resources->maxGeometryUniformComponents = value; else if (tokenStr == "MaxGeometryVaryingComponents") resources->maxGeometryVaryingComponents = value; else if (tokenStr == "MaxTessControlInputComponents") resources->maxTessControlInputComponents = value; else if (tokenStr == "MaxTessControlOutputComponents") resources->maxTessControlOutputComponents = value; else if (tokenStr == "MaxTessControlTextureImageUnits") resources->maxTessControlTextureImageUnits = value; else if (tokenStr == "MaxTessControlUniformComponents") resources->maxTessControlUniformComponents = value; else if (tokenStr == "MaxTessControlTotalOutputComponents") resources->maxTessControlTotalOutputComponents = value; else if (tokenStr == "MaxTessEvaluationInputComponents") resources->maxTessEvaluationInputComponents = value; else if (tokenStr == "MaxTessEvaluationOutputComponents") resources->maxTessEvaluationOutputComponents = value; else if (tokenStr == "MaxTessEvaluationTextureImageUnits") resources->maxTessEvaluationTextureImageUnits = value; else if (tokenStr == "MaxTessEvaluationUniformComponents") resources->maxTessEvaluationUniformComponents = value; else if (tokenStr == "MaxTessPatchComponents") resources->maxTessPatchComponents = value; else if (tokenStr == "MaxPatchVertices") resources->maxPatchVertices = value; else if (tokenStr == "MaxTessGenLevel") resources->maxTessGenLevel = value; else if (tokenStr == "MaxViewports") resources->maxViewports = value; else if (tokenStr == "MaxVertexAtomicCounters") resources->maxVertexAtomicCounters = value; else if (tokenStr == "MaxTessControlAtomicCounters") resources->maxTessControlAtomicCounters = value; else if (tokenStr == "MaxTessEvaluationAtomicCounters") resources->maxTessEvaluationAtomicCounters = value; else if (tokenStr == "MaxGeometryAtomicCounters") resources->maxGeometryAtomicCounters = value; else if (tokenStr == "MaxFragmentAtomicCounters") resources->maxFragmentAtomicCounters = value; else if (tokenStr == "MaxCombinedAtomicCounters") resources->maxCombinedAtomicCounters = value; else if (tokenStr == "MaxAtomicCounterBindings") resources->maxAtomicCounterBindings = value; else if (tokenStr == "MaxVertexAtomicCounterBuffers") resources->maxVertexAtomicCounterBuffers = value; else if (tokenStr == "MaxTessControlAtomicCounterBuffers") resources->maxTessControlAtomicCounterBuffers = value; else if (tokenStr == "MaxTessEvaluationAtomicCounterBuffers") resources->maxTessEvaluationAtomicCounterBuffers = value; else if (tokenStr == "MaxGeometryAtomicCounterBuffers") resources->maxGeometryAtomicCounterBuffers = value; else if (tokenStr == "MaxFragmentAtomicCounterBuffers") resources->maxFragmentAtomicCounterBuffers = value; else if (tokenStr == "MaxCombinedAtomicCounterBuffers") resources->maxCombinedAtomicCounterBuffers = value; else if (tokenStr == "MaxAtomicCounterBufferSize") resources->maxAtomicCounterBufferSize = value; else if (tokenStr == "MaxTransformFeedbackBuffers") resources->maxTransformFeedbackBuffers = value; else if (tokenStr == "MaxTransformFeedbackInterleavedComponents") resources->maxTransformFeedbackInterleavedComponents = value; else if (tokenStr == "MaxCullDistances") resources->maxCullDistances = value; else if (tokenStr == "MaxCombinedClipAndCullDistances") resources->maxCombinedClipAndCullDistances = value; else if (tokenStr == "MaxSamples") resources->maxSamples = value; else if (tokenStr == "MaxMeshOutputVerticesNV") resources->maxMeshOutputVerticesNV = value; else if (tokenStr == "MaxMeshOutputPrimitivesNV") resources->maxMeshOutputPrimitivesNV = value; else if (tokenStr == "MaxMeshWorkGroupSizeX_NV") resources->maxMeshWorkGroupSizeX_NV = value; else if (tokenStr == "MaxMeshWorkGroupSizeY_NV") resources->maxMeshWorkGroupSizeY_NV = value; else if (tokenStr == "MaxMeshWorkGroupSizeZ_NV") resources->maxMeshWorkGroupSizeZ_NV = value; else if (tokenStr == "MaxTaskWorkGroupSizeX_NV") resources->maxTaskWorkGroupSizeX_NV = value; else if (tokenStr == "MaxTaskWorkGroupSizeY_NV") resources->maxTaskWorkGroupSizeY_NV = value; else if (tokenStr == "MaxTaskWorkGroupSizeZ_NV") resources->maxTaskWorkGroupSizeZ_NV = value; else if (tokenStr == "MaxMeshViewCountNV") resources->maxMeshViewCountNV = value; else if (tokenStr == "MaxMeshOutputVerticesEXT") resources->maxMeshOutputVerticesEXT = value; else if (tokenStr == "MaxMeshOutputPrimitivesEXT") resources->maxMeshOutputPrimitivesEXT = value; else if (tokenStr == "MaxMeshWorkGroupSizeX_EXT") resources->maxMeshWorkGroupSizeX_EXT = value; else if (tokenStr == "MaxMeshWorkGroupSizeY_EXT") resources->maxMeshWorkGroupSizeY_EXT = value; else if (tokenStr == "MaxMeshWorkGroupSizeZ_EXT") resources->maxMeshWorkGroupSizeZ_EXT = value; else if (tokenStr == "MaxTaskWorkGroupSizeX_EXT") resources->maxTaskWorkGroupSizeX_EXT = value; else if (tokenStr == "MaxTaskWorkGroupSizeY_EXT") resources->maxTaskWorkGroupSizeY_EXT = value; else if (tokenStr == "MaxTaskWorkGroupSizeZ_EXT") resources->maxTaskWorkGroupSizeZ_EXT = value; else if (tokenStr == "MaxMeshViewCountEXT") resources->maxMeshViewCountEXT = value; else if (tokenStr == "MaxDualSourceDrawBuffersEXT") resources->maxDualSourceDrawBuffersEXT = value; else if (tokenStr == "nonInductiveForLoops") resources->limits.nonInductiveForLoops = (value != 0); else if (tokenStr == "whileLoops") resources->limits.whileLoops = (value != 0); else if (tokenStr == "doWhileLoops") resources->limits.doWhileLoops = (value != 0); else if (tokenStr == "generalUniformIndexing") resources->limits.generalUniformIndexing = (value != 0); else if (tokenStr == "generalAttributeMatrixVectorIndexing") resources->limits.generalAttributeMatrixVectorIndexing = (value != 0); else if (tokenStr == "generalVaryingIndexing") resources->limits.generalVaryingIndexing = (value != 0); else if (tokenStr == "generalSamplerIndexing") resources->limits.generalSamplerIndexing = (value != 0); else if (tokenStr == "generalVariableIndexing") resources->limits.generalVariableIndexing = (value != 0); else if (tokenStr == "generalConstantMatrixVectorIndexing") resources->limits.generalConstantMatrixVectorIndexing = (value != 0); else printf("Warning: unrecognized limit (%s) in configuration file.\n", tokenStr.c_str()); } } TBuiltInResource* GetResources() { return &Resources; } const TBuiltInResource* GetDefaultResources() { return &DefaultTBuiltInResource; }
0
repos/glslang.zig/glslang/glslang
repos/glslang.zig/glslang/glslang/CInterface/glslang_c_interface.cpp
/** This code is based on the glslang_c_interface implementation by Viktor Latypov **/ /** BSD 2-Clause License Copyright (c) 2019, Viktor Latypov All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **/ #include "glslang/Include/glslang_c_interface.h" #include "StandAlone/DirStackFileIncluder.h" #include "glslang/Public/ResourceLimits.h" #include "glslang/Include/ShHandle.h" #include "glslang/Include/ResourceLimits.h" #include "glslang/MachineIndependent/Versions.h" #include "glslang/MachineIndependent/localintermediate.h" static_assert(int(GLSLANG_STAGE_COUNT) == EShLangCount, ""); static_assert(int(GLSLANG_STAGE_MASK_COUNT) == EShLanguageMaskCount, ""); static_assert(int(GLSLANG_SOURCE_COUNT) == glslang::EShSourceCount, ""); static_assert(int(GLSLANG_CLIENT_COUNT) == glslang::EShClientCount, ""); static_assert(int(GLSLANG_TARGET_COUNT) == glslang::EShTargetCount, ""); static_assert(int(GLSLANG_TARGET_CLIENT_VERSION_COUNT) == glslang::EShTargetClientVersionCount, ""); static_assert(int(GLSLANG_TARGET_LANGUAGE_VERSION_COUNT) == glslang::EShTargetLanguageVersionCount, ""); static_assert(int(GLSLANG_OPT_LEVEL_COUNT) == EshOptLevelCount, ""); static_assert(int(GLSLANG_TEX_SAMP_TRANS_COUNT) == EShTexSampTransCount, ""); static_assert(int(GLSLANG_MSG_COUNT) == EShMsgCount, ""); static_assert(int(GLSLANG_REFLECTION_COUNT) == EShReflectionCount, ""); static_assert(int(GLSLANG_PROFILE_COUNT) == EProfileCount, ""); static_assert(sizeof(glslang_limits_t) == sizeof(TLimits), ""); static_assert(sizeof(glslang_resource_t) == sizeof(TBuiltInResource), ""); typedef struct glslang_shader_s { glslang::TShader* shader; std::string preprocessedGLSL; } glslang_shader_t; typedef struct glslang_program_s { glslang::TProgram* program; std::vector<unsigned int> spirv; std::string loggerMessages; } glslang_program_t; /* Wrapper/Adapter for C glsl_include_callbacks_t functions This class contains a 'glsl_include_callbacks_t' structure with C include_local/include_system callback pointers. This class implement TShader::Includer interface by redirecting C++ virtual methods to C callbacks. The 'IncludeResult' instances produced by this Includer contain a reference to glsl_include_result_t C structure to allow its lifetime management by another C callback (CallbackIncluder::callbacks::free_include_result) */ class CallbackIncluder : public glslang::TShader::Includer { public: CallbackIncluder(glsl_include_callbacks_t _callbacks, void* _context) : callbacks(_callbacks), context(_context) {} virtual ~CallbackIncluder() {} virtual IncludeResult* includeSystem(const char* headerName, const char* includerName, size_t inclusionDepth) override { if (this->callbacks.include_system) { glsl_include_result_t* result = this->callbacks.include_system(this->context, headerName, includerName, inclusionDepth); return makeIncludeResult(result); } return glslang::TShader::Includer::includeSystem(headerName, includerName, inclusionDepth); } virtual IncludeResult* includeLocal(const char* headerName, const char* includerName, size_t inclusionDepth) override { if (this->callbacks.include_local) { glsl_include_result_t* result = this->callbacks.include_local(this->context, headerName, includerName, inclusionDepth); return makeIncludeResult(result); } return glslang::TShader::Includer::includeLocal(headerName, includerName, inclusionDepth); } /* This function only calls free_include_result callback when the IncludeResult instance is allocated by a C function */ virtual void releaseInclude(IncludeResult* result) override { if (result == nullptr) return; if (this->callbacks.free_include_result) { this->callbacks.free_include_result(this->context, static_cast<glsl_include_result_t*>(result->userData)); } delete result; } private: CallbackIncluder() {} IncludeResult* makeIncludeResult(glsl_include_result_t* result) { if (!result) { return nullptr; } return new glslang::TShader::Includer::IncludeResult( std::string(result->header_name), result->header_data, result->header_length, result); } /* C callback pointers */ glsl_include_callbacks_t callbacks; /* User-defined context */ void* context; }; GLSLANG_EXPORT int glslang_initialize_process() { return static_cast<int>(glslang::InitializeProcess()); } GLSLANG_EXPORT void glslang_finalize_process() { glslang::FinalizeProcess(); } static EShLanguage c_shader_stage(glslang_stage_t stage) { switch (stage) { case GLSLANG_STAGE_VERTEX: return EShLangVertex; case GLSLANG_STAGE_TESSCONTROL: return EShLangTessControl; case GLSLANG_STAGE_TESSEVALUATION: return EShLangTessEvaluation; case GLSLANG_STAGE_GEOMETRY: return EShLangGeometry; case GLSLANG_STAGE_FRAGMENT: return EShLangFragment; case GLSLANG_STAGE_COMPUTE: return EShLangCompute; case GLSLANG_STAGE_RAYGEN_NV: return EShLangRayGen; case GLSLANG_STAGE_INTERSECT_NV: return EShLangIntersect; case GLSLANG_STAGE_ANYHIT_NV: return EShLangAnyHit; case GLSLANG_STAGE_CLOSESTHIT_NV: return EShLangClosestHit; case GLSLANG_STAGE_MISS_NV: return EShLangMiss; case GLSLANG_STAGE_CALLABLE_NV: return EShLangCallable; case GLSLANG_STAGE_TASK: return EShLangTask; case GLSLANG_STAGE_MESH: return EShLangMesh; default: break; } return EShLangCount; } static int c_shader_messages(glslang_messages_t messages) { #define CONVERT_MSG(in, out) \ if ((messages & in) == in) \ res |= out; int res = 0; CONVERT_MSG(GLSLANG_MSG_RELAXED_ERRORS_BIT, EShMsgRelaxedErrors); CONVERT_MSG(GLSLANG_MSG_SUPPRESS_WARNINGS_BIT, EShMsgSuppressWarnings); CONVERT_MSG(GLSLANG_MSG_AST_BIT, EShMsgAST); CONVERT_MSG(GLSLANG_MSG_SPV_RULES_BIT, EShMsgSpvRules); CONVERT_MSG(GLSLANG_MSG_VULKAN_RULES_BIT, EShMsgVulkanRules); CONVERT_MSG(GLSLANG_MSG_ONLY_PREPROCESSOR_BIT, EShMsgOnlyPreprocessor); CONVERT_MSG(GLSLANG_MSG_READ_HLSL_BIT, EShMsgReadHlsl); CONVERT_MSG(GLSLANG_MSG_CASCADING_ERRORS_BIT, EShMsgCascadingErrors); CONVERT_MSG(GLSLANG_MSG_KEEP_UNCALLED_BIT, EShMsgKeepUncalled); CONVERT_MSG(GLSLANG_MSG_HLSL_OFFSETS_BIT, EShMsgHlslOffsets); CONVERT_MSG(GLSLANG_MSG_DEBUG_INFO_BIT, EShMsgDebugInfo); CONVERT_MSG(GLSLANG_MSG_HLSL_ENABLE_16BIT_TYPES_BIT, EShMsgHlslEnable16BitTypes); CONVERT_MSG(GLSLANG_MSG_HLSL_LEGALIZATION_BIT, EShMsgHlslLegalization); CONVERT_MSG(GLSLANG_MSG_HLSL_DX9_COMPATIBLE_BIT, EShMsgHlslDX9Compatible); CONVERT_MSG(GLSLANG_MSG_BUILTIN_SYMBOL_TABLE_BIT, EShMsgBuiltinSymbolTable); CONVERT_MSG(GLSLANG_MSG_ABSOLUTE_PATH, EShMsgAbsolutePath); return res; #undef CONVERT_MSG } static glslang::EShTargetLanguageVersion c_shader_target_language_version(glslang_target_language_version_t target_language_version) { switch (target_language_version) { case GLSLANG_TARGET_SPV_1_0: return glslang::EShTargetSpv_1_0; case GLSLANG_TARGET_SPV_1_1: return glslang::EShTargetSpv_1_1; case GLSLANG_TARGET_SPV_1_2: return glslang::EShTargetSpv_1_2; case GLSLANG_TARGET_SPV_1_3: return glslang::EShTargetSpv_1_3; case GLSLANG_TARGET_SPV_1_4: return glslang::EShTargetSpv_1_4; case GLSLANG_TARGET_SPV_1_5: return glslang::EShTargetSpv_1_5; case GLSLANG_TARGET_SPV_1_6: return glslang::EShTargetSpv_1_6; default: break; } return glslang::EShTargetSpv_1_0; } static glslang::EShClient c_shader_client(glslang_client_t client) { switch (client) { case GLSLANG_CLIENT_VULKAN: return glslang::EShClientVulkan; case GLSLANG_CLIENT_OPENGL: return glslang::EShClientOpenGL; default: break; } return glslang::EShClientNone; } static glslang::EShTargetClientVersion c_shader_client_version(glslang_target_client_version_t client_version) { switch (client_version) { case GLSLANG_TARGET_VULKAN_1_1: return glslang::EShTargetVulkan_1_1; case GLSLANG_TARGET_VULKAN_1_2: return glslang::EShTargetVulkan_1_2; case GLSLANG_TARGET_VULKAN_1_3: return glslang::EShTargetVulkan_1_3; case GLSLANG_TARGET_OPENGL_450: return glslang::EShTargetOpenGL_450; default: break; } return glslang::EShTargetVulkan_1_0; } static glslang::EShTargetLanguage c_shader_target_language(glslang_target_language_t target_language) { if (target_language == GLSLANG_TARGET_NONE) return glslang::EShTargetNone; return glslang::EShTargetSpv; } static glslang::EShSource c_shader_source(glslang_source_t source) { switch (source) { case GLSLANG_SOURCE_GLSL: return glslang::EShSourceGlsl; case GLSLANG_SOURCE_HLSL: return glslang::EShSourceHlsl; default: break; } return glslang::EShSourceNone; } static EProfile c_shader_profile(glslang_profile_t profile) { switch (profile) { case GLSLANG_BAD_PROFILE: return EBadProfile; case GLSLANG_NO_PROFILE: return ENoProfile; case GLSLANG_CORE_PROFILE: return ECoreProfile; case GLSLANG_COMPATIBILITY_PROFILE: return ECompatibilityProfile; case GLSLANG_ES_PROFILE: return EEsProfile; case GLSLANG_PROFILE_COUNT: // Should not use this break; } return EProfile(); } GLSLANG_EXPORT glslang_shader_t* glslang_shader_create(const glslang_input_t* input) { if (!input || !input->code) { printf("Error creating shader: null input(%p)/input->code\n", input); if (input) printf("input->code = %p\n", input->code); return nullptr; } glslang_shader_t* shader = new glslang_shader_t(); shader->shader = new glslang::TShader(c_shader_stage(input->stage)); shader->shader->setStrings(&input->code, 1); shader->shader->setEnvInput(c_shader_source(input->language), c_shader_stage(input->stage), c_shader_client(input->client), input->default_version); shader->shader->setEnvClient(c_shader_client(input->client), c_shader_client_version(input->client_version)); shader->shader->setEnvTarget(c_shader_target_language(input->target_language), c_shader_target_language_version(input->target_language_version)); return shader; } GLSLANG_EXPORT void glslang_shader_set_preamble(glslang_shader_t* shader, const char* s) { shader->shader->setPreamble(s); } GLSLANG_EXPORT void glslang_shader_shift_binding(glslang_shader_t* shader, glslang_resource_type_t res, unsigned int base) { const glslang::TResourceType res_type = glslang::TResourceType(res); shader->shader->setShiftBinding(res_type, base); } GLSLANG_EXPORT void glslang_shader_shift_binding_for_set(glslang_shader_t* shader, glslang_resource_type_t res, unsigned int base, unsigned int set) { const glslang::TResourceType res_type = glslang::TResourceType(res); shader->shader->setShiftBindingForSet(res_type, base, set); } GLSLANG_EXPORT void glslang_shader_set_options(glslang_shader_t* shader, int options) { if (options & GLSLANG_SHADER_AUTO_MAP_BINDINGS) { shader->shader->setAutoMapBindings(true); } if (options & GLSLANG_SHADER_AUTO_MAP_LOCATIONS) { shader->shader->setAutoMapLocations(true); } if (options & GLSLANG_SHADER_VULKAN_RULES_RELAXED) { shader->shader->setEnvInputVulkanRulesRelaxed(); } } GLSLANG_EXPORT void glslang_shader_set_glsl_version(glslang_shader_t* shader, int version) { shader->shader->setOverrideVersion(version); } GLSLANG_EXPORT const char* glslang_shader_get_preprocessed_code(glslang_shader_t* shader) { return shader->preprocessedGLSL.c_str(); } GLSLANG_EXPORT int glslang_shader_preprocess(glslang_shader_t* shader, const glslang_input_t* input) { DirStackFileIncluder dirStackFileIncluder; CallbackIncluder callbackIncluder(input->callbacks, input->callbacks_ctx); glslang::TShader::Includer& Includer = (input->callbacks.include_local||input->callbacks.include_system) ? static_cast<glslang::TShader::Includer&>(callbackIncluder) : static_cast<glslang::TShader::Includer&>(dirStackFileIncluder); return shader->shader->preprocess( reinterpret_cast<const TBuiltInResource*>(input->resource), input->default_version, c_shader_profile(input->default_profile), input->force_default_version_and_profile != 0, input->forward_compatible != 0, (EShMessages)c_shader_messages(input->messages), &shader->preprocessedGLSL, Includer ); } GLSLANG_EXPORT int glslang_shader_parse(glslang_shader_t* shader, const glslang_input_t* input) { const char* preprocessedCStr = shader->preprocessedGLSL.c_str(); shader->shader->setStrings(&preprocessedCStr, 1); return shader->shader->parse( reinterpret_cast<const TBuiltInResource*>(input->resource), input->default_version, input->forward_compatible != 0, (EShMessages)c_shader_messages(input->messages) ); } GLSLANG_EXPORT const char* glslang_shader_get_info_log(glslang_shader_t* shader) { return shader->shader->getInfoLog(); } GLSLANG_EXPORT const char* glslang_shader_get_info_debug_log(glslang_shader_t* shader) { return shader->shader->getInfoDebugLog(); } GLSLANG_EXPORT void glslang_shader_delete(glslang_shader_t* shader) { if (!shader) return; delete (shader->shader); delete (shader); } GLSLANG_EXPORT glslang_program_t* glslang_program_create() { glslang_program_t* p = new glslang_program_t(); p->program = new glslang::TProgram(); return p; } GLSLANG_EXPORT void glslang_program_delete(glslang_program_t* program) { if (!program) return; delete (program->program); delete (program); } GLSLANG_EXPORT void glslang_program_add_shader(glslang_program_t* program, glslang_shader_t* shader) { program->program->addShader(shader->shader); } GLSLANG_EXPORT int glslang_program_link(glslang_program_t* program, int messages) { return (int)program->program->link((EShMessages)messages); } GLSLANG_EXPORT void glslang_program_add_source_text(glslang_program_t* program, glslang_stage_t stage, const char* text, size_t len) { glslang::TIntermediate* intermediate = program->program->getIntermediate(c_shader_stage(stage)); intermediate->addSourceText(text, len); } GLSLANG_EXPORT void glslang_program_set_source_file(glslang_program_t* program, glslang_stage_t stage, const char* file) { glslang::TIntermediate* intermediate = program->program->getIntermediate(c_shader_stage(stage)); intermediate->setSourceFile(file); } GLSLANG_EXPORT int glslang_program_map_io(glslang_program_t* program) { return (int)program->program->mapIO(); } GLSLANG_EXPORT const char* glslang_program_get_info_log(glslang_program_t* program) { return program->program->getInfoLog(); } GLSLANG_EXPORT const char* glslang_program_get_info_debug_log(glslang_program_t* program) { return program->program->getInfoDebugLog(); }