Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/buffered_read_stream_fwd.hpp | //
// buffered_read_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_READ_STREAM_FWD_HPP
#define ASIO_BUFFERED_READ_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
namespace asio {
template <typename Stream>
class buffered_read_stream;
} // namespace asio
#endif // ASIO_BUFFERED_READ_STREAM_FWD_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/placeholders.hpp | //
// placeholders.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_PLACEHOLDERS_HPP
#define ASIO_PLACEHOLDERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/functional.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace placeholders {
#if defined(GENERATING_DOCUMENTATION)
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the error argument of a handler for any of the asynchronous
/// functions.
unspecified error;
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the bytes_transferred argument of a handler for asynchronous
/// functions such as asio::basic_stream_socket::async_write_some or
/// asio::async_write.
unspecified bytes_transferred;
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the iterator argument of a handler for asynchronous functions
/// such as asio::async_connect.
unspecified iterator;
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the results argument of a handler for asynchronous functions
/// such as asio::basic_resolver::async_resolve.
unspecified results;
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the results argument of a handler for asynchronous functions
/// such as asio::async_connect.
unspecified endpoint;
/// An argument placeholder, for use with std::bind() or boost::bind(), that
/// corresponds to the signal_number argument of a handler for asynchronous
/// functions such as asio::signal_set::async_wait.
unspecified signal_number;
#else
static ASIO_INLINE_VARIABLE constexpr auto& error
= std::placeholders::_1;
static ASIO_INLINE_VARIABLE constexpr auto& bytes_transferred
= std::placeholders::_2;
static ASIO_INLINE_VARIABLE constexpr auto& iterator
= std::placeholders::_2;
static ASIO_INLINE_VARIABLE constexpr auto& results
= std::placeholders::_2;
static ASIO_INLINE_VARIABLE constexpr auto& endpoint
= std::placeholders::_2;
static ASIO_INLINE_VARIABLE constexpr auto& signal_number
= std::placeholders::_2;
#endif
} // namespace placeholders
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_PLACEHOLDERS_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/spawn.hpp | //
// spawn.hpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SPAWN_HPP
#define ASIO_SPAWN_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/any_io_executor.hpp"
#include "asio/cancellation_signal.hpp"
#include "asio/cancellation_state.hpp"
#include "asio/detail/exception.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/io_context.hpp"
#include "asio/is_executor.hpp"
#include "asio/strand.hpp"
#if defined(ASIO_HAS_BOOST_COROUTINE)
# include <boost/coroutine/all.hpp>
#endif // defined(ASIO_HAS_BOOST_COROUTINE)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Base class for all spawn()-ed thread implementations.
class spawned_thread_base
{
public:
spawned_thread_base()
: owner_(0),
has_context_switched_(false),
throw_if_cancelled_(false),
terminal_(false)
{
}
virtual ~spawned_thread_base() {}
virtual void resume() = 0;
virtual void suspend_with(void (*fn)(void*), void* arg) = 0;
virtual void destroy() = 0;
void attach(spawned_thread_base** owner)
{
owner_ = owner;
*owner_ = this;
}
void detach()
{
if (owner_)
*owner_ = 0;
owner_ = 0;
}
void suspend()
{
suspend_with(0, 0);
}
template <typename F>
void suspend_with(F f)
{
suspend_with(&spawned_thread_base::call<F>, &f);
}
cancellation_slot get_cancellation_slot() const noexcept
{
return cancellation_state_.slot();
}
cancellation_state get_cancellation_state() const noexcept
{
return cancellation_state_;
}
void reset_cancellation_state()
{
cancellation_state_ = cancellation_state(parent_cancellation_slot_);
}
template <typename Filter>
void reset_cancellation_state(Filter filter)
{
cancellation_state_ = cancellation_state(
parent_cancellation_slot_, filter, filter);
}
template <typename InFilter, typename OutFilter>
void reset_cancellation_state(InFilter in_filter, OutFilter out_filter)
{
cancellation_state_ = cancellation_state(
parent_cancellation_slot_, in_filter, out_filter);
}
cancellation_type_t cancelled() const noexcept
{
return cancellation_state_.cancelled();
}
bool has_context_switched() const noexcept
{
return has_context_switched_;
}
bool throw_if_cancelled() const noexcept
{
return throw_if_cancelled_;
}
void throw_if_cancelled(bool value) noexcept
{
throw_if_cancelled_ = value;
}
protected:
spawned_thread_base** owner_; // Points to data member in active handler.
asio::cancellation_slot parent_cancellation_slot_;
asio::cancellation_state cancellation_state_;
bool has_context_switched_;
bool throw_if_cancelled_;
bool terminal_;
private:
// Disallow copying and assignment.
spawned_thread_base(const spawned_thread_base&) = delete;
spawned_thread_base& operator=(const spawned_thread_base&) = delete;
template <typename F>
static void call(void* f)
{
(*static_cast<F*>(f))();
}
};
template <typename T>
struct spawn_signature
{
typedef void type(exception_ptr, T);
};
template <>
struct spawn_signature<void>
{
typedef void type(exception_ptr);
};
template <typename Executor>
class initiate_spawn;
} // namespace detail
/// A @ref completion_token that represents the currently executing coroutine.
/**
* The basic_yield_context class is a completion token type that is used to
* represent the currently executing stackful coroutine. A basic_yield_context
* object may be passed as a completion token to an asynchronous operation. For
* example:
*
* @code template <typename Executor>
* void my_coroutine(basic_yield_context<Executor> yield)
* {
* ...
* std::size_t n = my_socket.async_read_some(buffer, yield);
* ...
* } @endcode
*
* The initiating function (async_read_some in the above example) suspends the
* current coroutine. The coroutine is resumed when the asynchronous operation
* completes, and the result of the operation is returned.
*/
template <typename Executor>
class basic_yield_context
{
public:
/// The executor type associated with the yield context.
typedef Executor executor_type;
/// The cancellation slot type associated with the yield context.
typedef cancellation_slot cancellation_slot_type;
/// Construct a yield context from another yield context type.
/**
* Requires that OtherExecutor be convertible to Executor.
*/
template <typename OtherExecutor>
basic_yield_context(const basic_yield_context<OtherExecutor>& other,
constraint_t<
is_convertible<OtherExecutor, Executor>::value
> = 0)
: spawned_thread_(other.spawned_thread_),
executor_(other.executor_),
ec_(other.ec_)
{
}
/// Get the executor associated with the yield context.
executor_type get_executor() const noexcept
{
return executor_;
}
/// Get the cancellation slot associated with the coroutine.
cancellation_slot_type get_cancellation_slot() const noexcept
{
return spawned_thread_->get_cancellation_slot();
}
/// Get the cancellation state associated with the coroutine.
cancellation_state get_cancellation_state() const noexcept
{
return spawned_thread_->get_cancellation_state();
}
/// Reset the cancellation state associated with the coroutine.
/**
* Let <tt>P</tt> be the cancellation slot associated with the current
* coroutine's @ref spawn completion handler. Assigns a new
* asio::cancellation_state object <tt>S</tt>, constructed as
* <tt>S(P)</tt>, into the current coroutine's cancellation state object.
*/
void reset_cancellation_state() const
{
spawned_thread_->reset_cancellation_state();
}
/// Reset the cancellation state associated with the coroutine.
/**
* Let <tt>P</tt> be the cancellation slot associated with the current
* coroutine's @ref spawn completion handler. Assigns a new
* asio::cancellation_state object <tt>S</tt>, constructed as <tt>S(P,
* std::forward<Filter>(filter))</tt>, into the current coroutine's
* cancellation state object.
*/
template <typename Filter>
void reset_cancellation_state(Filter&& filter) const
{
spawned_thread_->reset_cancellation_state(
static_cast<Filter&&>(filter));
}
/// Reset the cancellation state associated with the coroutine.
/**
* Let <tt>P</tt> be the cancellation slot associated with the current
* coroutine's @ref spawn completion handler. Assigns a new
* asio::cancellation_state object <tt>S</tt>, constructed as <tt>S(P,
* std::forward<InFilter>(in_filter),
* std::forward<OutFilter>(out_filter))</tt>, into the current coroutine's
* cancellation state object.
*/
template <typename InFilter, typename OutFilter>
void reset_cancellation_state(InFilter&& in_filter,
OutFilter&& out_filter) const
{
spawned_thread_->reset_cancellation_state(
static_cast<InFilter&&>(in_filter),
static_cast<OutFilter&&>(out_filter));
}
/// Determine whether the current coroutine has been cancelled.
cancellation_type_t cancelled() const noexcept
{
return spawned_thread_->cancelled();
}
/// Determine whether the coroutine throws if trying to suspend when it has
/// been cancelled.
bool throw_if_cancelled() const noexcept
{
return spawned_thread_->throw_if_cancelled();
}
/// Set whether the coroutine throws if trying to suspend when it has been
/// cancelled.
void throw_if_cancelled(bool value) const noexcept
{
spawned_thread_->throw_if_cancelled(value);
}
/// Return a yield context that sets the specified error_code.
/**
* By default, when a yield context is used with an asynchronous operation, a
* non-success error_code is converted to system_error and thrown. This
* operator may be used to specify an error_code object that should instead be
* set with the asynchronous operation's result. For example:
*
* @code template <typename Executor>
* void my_coroutine(basic_yield_context<Executor> yield)
* {
* ...
* std::size_t n = my_socket.async_read_some(buffer, yield[ec]);
* if (ec)
* {
* // An error occurred.
* }
* ...
* } @endcode
*/
basic_yield_context operator[](asio::error_code& ec) const
{
basic_yield_context tmp(*this);
tmp.ec_ = &ec;
return tmp;
}
#if !defined(GENERATING_DOCUMENTATION)
//private:
basic_yield_context(detail::spawned_thread_base* spawned_thread,
const Executor& ex)
: spawned_thread_(spawned_thread),
executor_(ex),
ec_(0)
{
}
detail::spawned_thread_base* spawned_thread_;
Executor executor_;
asio::error_code* ec_;
#endif // !defined(GENERATING_DOCUMENTATION)
};
/// A @ref completion_token object that represents the currently executing
/// coroutine.
typedef basic_yield_context<any_io_executor> yield_context;
/**
* @defgroup spawn asio::spawn
*
* @brief Start a new stackful coroutine.
*
* The spawn() function is a high-level wrapper over the Boost.Coroutine
* library. This function enables programs to implement asynchronous logic in a
* synchronous manner, as illustrated by the following example:
*
* @code asio::spawn(my_strand, do_echo, asio::detached);
*
* // ...
*
* void do_echo(asio::yield_context yield)
* {
* try
* {
* char data[128];
* for (;;)
* {
* std::size_t length =
* my_socket.async_read_some(
* asio::buffer(data), yield);
*
* asio::async_write(my_socket,
* asio::buffer(data, length), yield);
* }
* }
* catch (std::exception& e)
* {
* // ...
* }
* } @endcode
*/
/*@{*/
/// Start a new stackful coroutine that executes on a given executor.
/**
* This function is used to launch a new stackful coroutine.
*
* @param ex Identifies the executor that will run the stackful coroutine.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename Executor, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type)
CompletionToken = default_completion_token_t<Executor>>
auto spawn(const Executor& ex, F&& function,
CompletionToken&& token = default_completion_token_t<Executor>(),
#if defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
!is_same<
decay_t<CompletionToken>,
boost::coroutines::attributes
>::value
> = 0,
#endif // defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type>(
declval<detail::initiate_spawn<Executor>>(),
token, static_cast<F&&>(function)));
/// Start a new stackful coroutine that executes on a given execution context.
/**
* This function is used to launch a new stackful coroutine.
*
* @param ctx Identifies the execution context that will run the stackful
* coroutine.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename ExecutionContext, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<
typename ExecutionContext::executor_type>)>>::type)
CompletionToken = default_completion_token_t<
typename ExecutionContext::executor_type>>
auto spawn(ExecutionContext& ctx, F&& function,
CompletionToken&& token
= default_completion_token_t<typename ExecutionContext::executor_type>(),
#if defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
!is_same<
decay_t<CompletionToken>,
boost::coroutines::attributes
>::value
> = 0,
#endif // defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<
typename ExecutionContext::executor_type>)>>::type>(
declval<detail::initiate_spawn<
typename ExecutionContext::executor_type>>(),
token, static_cast<F&&>(function)));
/// Start a new stackful coroutine, inheriting the executor of another.
/**
* This function is used to launch a new stackful coroutine.
*
* @param ctx Identifies the current coroutine as a parent of the new
* coroutine. This specifies that the new coroutine should inherit the executor
* of the parent. For example, if the parent coroutine is executing in a
* particular strand, then the new coroutine will execute in the same strand.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename Executor, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type)
CompletionToken = default_completion_token_t<Executor>>
auto spawn(const basic_yield_context<Executor>& ctx, F&& function,
CompletionToken&& token = default_completion_token_t<Executor>(),
#if defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
!is_same<
decay_t<CompletionToken>,
boost::coroutines::attributes
>::value
> = 0,
#endif // defined(ASIO_HAS_BOOST_COROUTINE)
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type>(
declval<detail::initiate_spawn<Executor>>(),
token, static_cast<F&&>(function)));
#if defined(ASIO_HAS_BOOST_CONTEXT_FIBER) \
|| defined(GENERATING_DOCUMENTATION)
/// Start a new stackful coroutine that executes on a given executor.
/**
* This function is used to launch a new stackful coroutine using the
* specified stack allocator.
*
* @param ex Identifies the executor that will run the stackful coroutine.
*
* @param stack_allocator Denotes the allocator to be used to allocate the
* underlying coroutine's stack. The type must satisfy the stack-allocator
* concept defined by the Boost.Context library.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename Executor, typename StackAllocator, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type)
CompletionToken = default_completion_token_t<Executor>>
auto spawn(const Executor& ex, allocator_arg_t,
StackAllocator&& stack_allocator, F&& function,
CompletionToken&& token = default_completion_token_t<Executor>(),
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type>(
declval<detail::initiate_spawn<Executor>>(),
token, allocator_arg_t(),
static_cast<StackAllocator&&>(stack_allocator),
static_cast<F&&>(function)));
/// Start a new stackful coroutine that executes on a given execution context.
/**
* This function is used to launch a new stackful coroutine.
*
* @param ctx Identifies the execution context that will run the stackful
* coroutine.
*
* @param stack_allocator Denotes the allocator to be used to allocate the
* underlying coroutine's stack. The type must satisfy the stack-allocator
* concept defined by the Boost.Context library.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename ExecutionContext, typename StackAllocator, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<
typename ExecutionContext::executor_type>)>>::type)
CompletionToken = default_completion_token_t<
typename ExecutionContext::executor_type>>
auto spawn(ExecutionContext& ctx, allocator_arg_t,
StackAllocator&& stack_allocator, F&& function,
CompletionToken&& token
= default_completion_token_t<typename ExecutionContext::executor_type>(),
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<
typename ExecutionContext::executor_type>)>>::type>(
declval<detail::initiate_spawn<
typename ExecutionContext::executor_type>>(),
token, allocator_arg_t(),
static_cast<StackAllocator&&>(stack_allocator),
static_cast<F&&>(function)));
/// Start a new stackful coroutine, inheriting the executor of another.
/**
* This function is used to launch a new stackful coroutine using the
* specified stack allocator.
*
* @param ctx Identifies the current coroutine as a parent of the new
* coroutine. This specifies that the new coroutine should inherit the
* executor of the parent. For example, if the parent coroutine is executing
* in a particular strand, then the new coroutine will execute in the same
* strand.
*
* @param stack_allocator Denotes the allocator to be used to allocate the
* underlying coroutine's stack. The type must satisfy the stack-allocator
* concept defined by the Boost.Context library.
*
* @param function The coroutine function. The function must be callable the
* signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param token The @ref completion_token that will handle the notification
* that the coroutine has completed. If the return type @c R of @c function is
* @c void, the function signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
* @par Completion Signature
* @code void(std::exception_ptr, R) @endcode
* where @c R is the return type of the function object.
*
* @par Per-Operation Cancellation
* The new thread of execution is created with a cancellation state that
* supports @c cancellation_type::terminal values only. To change the
* cancellation state, call the basic_yield_context member function
* @c reset_cancellation_state.
*/
template <typename Executor, typename StackAllocator, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type)
CompletionToken = default_completion_token_t<Executor>>
auto spawn(const basic_yield_context<Executor>& ctx, allocator_arg_t,
StackAllocator&& stack_allocator, F&& function,
CompletionToken&& token = default_completion_token_t<Executor>(),
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
-> decltype(
async_initiate<CompletionToken,
typename detail::spawn_signature<
result_of_t<F(basic_yield_context<Executor>)>>::type>(
declval<detail::initiate_spawn<Executor>>(),
token, allocator_arg_t(),
static_cast<StackAllocator&&>(stack_allocator),
static_cast<F&&>(function)));
#endif // defined(ASIO_HAS_BOOST_CONTEXT_FIBER)
// || defined(GENERATING_DOCUMENTATION)
#if defined(ASIO_HAS_BOOST_COROUTINE) \
|| defined(GENERATING_DOCUMENTATION)
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine, calling the specified handler when it completes.
/**
* This function is used to launch a new coroutine.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
* where Executor is the associated executor type of @c Function.
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Function>
void spawn(Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes());
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine, calling the specified handler when it completes.
/**
* This function is used to launch a new coroutine.
*
* @param handler A handler to be called when the coroutine exits. More
* importantly, the handler provides an execution context (via the the handler
* invocation hook) for the coroutine. The handler must have the signature:
* @code void handler(); @endcode
*
* @param function The coroutine function. The function must have the signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
* where Executor is the associated executor type of @c Handler.
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Handler, typename Function>
void spawn(Handler&& handler, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes(),
constraint_t<
!is_executor<decay_t<Handler>>::value &&
!execution::is_executor<decay_t<Handler>>::value &&
!is_convertible<Handler&, execution_context&>::value
> = 0);
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine, inheriting the execution context of another.
/**
* This function is used to launch a new coroutine.
*
* @param ctx Identifies the current coroutine as a parent of the new
* coroutine. This specifies that the new coroutine should inherit the
* execution context of the parent. For example, if the parent coroutine is
* executing in a particular strand, then the new coroutine will execute in the
* same strand.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(basic_yield_context<Executor> yield); @endcode
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Executor, typename Function>
void spawn(basic_yield_context<Executor> ctx, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes());
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine that executes on a given executor.
/**
* This function is used to launch a new coroutine.
*
* @param ex Identifies the executor that will run the coroutine. The new
* coroutine is automatically given its own explicit strand within this
* executor.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(yield_context yield); @endcode
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Function, typename Executor>
void spawn(const Executor& ex, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes(),
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0);
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine that executes on a given strand.
/**
* This function is used to launch a new coroutine.
*
* @param ex Identifies the strand that will run the coroutine.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(yield_context yield); @endcode
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Function, typename Executor>
void spawn(const strand<Executor>& ex, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes());
#if !defined(ASIO_NO_TS_EXECUTORS)
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine that executes in the context of a strand.
/**
* This function is used to launch a new coroutine.
*
* @param s Identifies a strand. By starting multiple coroutines on the same
* strand, the implementation ensures that none of those coroutines can execute
* simultaneously.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(yield_context yield); @endcode
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Function>
void spawn(const asio::io_context::strand& s, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes());
#endif // !defined(ASIO_NO_TS_EXECUTORS)
/// (Deprecated: Use overloads with a completion token.) Start a new stackful
/// coroutine that executes on a given execution context.
/**
* This function is used to launch a new coroutine.
*
* @param ctx Identifies the execution context that will run the coroutine. The
* new coroutine is implicitly given its own strand within this execution
* context.
*
* @param function The coroutine function. The function must have the signature:
* @code void function(yield_context yield); @endcode
*
* @param attributes Boost.Coroutine attributes used to customise the coroutine.
*/
template <typename Function, typename ExecutionContext>
void spawn(ExecutionContext& ctx, Function&& function,
const boost::coroutines::attributes& attributes
= boost::coroutines::attributes(),
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0);
#endif // defined(ASIO_HAS_BOOST_COROUTINE)
// || defined(GENERATING_DOCUMENTATION)
/*@}*/
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/spawn.hpp"
#endif // ASIO_SPAWN_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_socket_iostream.hpp | //
// basic_socket_iostream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_IOSTREAM_HPP
#define ASIO_BASIC_SOCKET_IOSTREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <istream>
#include <ostream>
#include "asio/basic_socket_streambuf.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// A separate base class is used to ensure that the streambuf is initialised
// prior to the basic_socket_iostream's basic_iostream base class.
template <typename Protocol, typename Clock, typename WaitTraits>
class socket_iostream_base
{
protected:
socket_iostream_base()
{
}
socket_iostream_base(socket_iostream_base&& other)
: streambuf_(std::move(other.streambuf_))
{
}
socket_iostream_base(basic_stream_socket<Protocol> s)
: streambuf_(std::move(s))
{
}
socket_iostream_base& operator=(socket_iostream_base&& other)
{
streambuf_ = std::move(other.streambuf_);
return *this;
}
basic_socket_streambuf<Protocol, Clock, WaitTraits> streambuf_;
};
} // namespace detail
#if !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
#define ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock>>
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
class basic_socket_iostream;
#endif // !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
/// Iostream interface for a socket.
#if defined(GENERATING_DOCUMENTATION)
template <typename Protocol,
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#else // defined(GENERATING_DOCUMENTATION)
template <typename Protocol, typename Clock, typename WaitTraits>
#endif // defined(GENERATING_DOCUMENTATION)
class basic_socket_iostream
: private detail::socket_iostream_base<Protocol, Clock, WaitTraits>,
public std::basic_iostream<char>
{
private:
// These typedefs are intended keep this class's implementation independent
// of whether it's using Boost.DateClock, Boost.Chrono or std::chrono.
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef WaitTraits traits_helper;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef detail::chrono_time_traits<Clock, WaitTraits> traits_helper;
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
public:
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// The clock type.
typedef Clock clock_type;
#if defined(GENERATING_DOCUMENTATION)
/// (Deprecated: Use time_point.) The time type.
typedef typename WaitTraits::time_type time_type;
/// The time type.
typedef typename WaitTraits::time_point time_point;
/// (Deprecated: Use duration.) The duration type.
typedef typename WaitTraits::duration_type duration_type;
/// The duration type.
typedef typename WaitTraits::duration duration;
#else
# if !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_type;
typedef typename traits_helper::duration_type duration_type;
# endif // !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_point;
typedef typename traits_helper::duration_type duration;
#endif
/// Construct a basic_socket_iostream without establishing a connection.
basic_socket_iostream()
: std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
}
/// Construct a basic_socket_iostream from the supplied socket.
explicit basic_socket_iostream(basic_stream_socket<protocol_type> s)
: detail::socket_iostream_base<
Protocol, Clock, WaitTraits>(std::move(s)),
std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
}
/// Move-construct a basic_socket_iostream from another.
basic_socket_iostream(basic_socket_iostream&& other)
: detail::socket_iostream_base<
Protocol, Clock, WaitTraits>(std::move(other)),
std::basic_iostream<char>(std::move(other))
{
this->set_rdbuf(&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_);
}
/// Move-assign a basic_socket_iostream from another.
basic_socket_iostream& operator=(basic_socket_iostream&& other)
{
std::basic_iostream<char>::operator=(std::move(other));
detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::operator=(std::move(other));
return *this;
}
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This constructor automatically establishes a connection based on the
* supplied resolver query parameters. The arguments are used to construct
* a resolver query object.
*/
template <typename... T>
explicit basic_socket_iostream(T... x)
: std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
if (rdbuf()->connect(x...) == 0)
this->setstate(std::ios_base::failbit);
}
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*/
template <typename... T>
void connect(T... x)
{
if (rdbuf()->connect(x...) == 0)
this->setstate(std::ios_base::failbit);
}
/// Close the connection.
void close()
{
if (rdbuf()->close() == 0)
this->setstate(std::ios_base::failbit);
}
/// Return a pointer to the underlying streambuf.
basic_socket_streambuf<Protocol, Clock, WaitTraits>* rdbuf() const
{
return const_cast<basic_socket_streambuf<Protocol, Clock, WaitTraits>*>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_);
}
/// Get a reference to the underlying socket.
basic_socket<Protocol>& socket()
{
return rdbuf()->socket();
}
/// Get the last error associated with the stream.
/**
* @return An \c error_code corresponding to the last error from the stream.
*
* @par Example
* To print the error associated with a failure to establish a connection:
* @code tcp::iostream s("www.boost.org", "http");
* if (!s)
* {
* std::cout << "Error: " << s.error().message() << std::endl;
* } @endcode
*/
const asio::error_code& error() const
{
return rdbuf()->error();
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream's expiry time as an absolute
/// time.
/**
* @return An absolute time value representing the stream's expiry time.
*/
time_point expires_at() const
{
return rdbuf()->expires_at();
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Get the stream's expiry time as an absolute time.
/**
* @return An absolute time value representing the stream's expiry time.
*/
time_point expiry() const
{
return rdbuf()->expiry();
}
/// Set the stream's expiry time as an absolute time.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the stream.
*/
void expires_at(const time_point& expiry_time)
{
rdbuf()->expires_at(expiry_time);
}
/// Set the stream's expiry time relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_after(const duration& expiry_time)
{
rdbuf()->expires_after(expiry_time);
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream's expiry time relative to now.
/**
* @return A relative time value representing the stream's expiry time.
*/
duration expires_from_now() const
{
return rdbuf()->expires_from_now();
}
/// (Deprecated: Use expires_after().) Set the stream's expiry time relative
/// to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_from_now(const duration& expiry_time)
{
rdbuf()->expires_from_now(expiry_time);
}
#endif // !defined(ASIO_NO_DEPRECATED)
private:
// Disallow copying and assignment.
basic_socket_iostream(const basic_socket_iostream&) = delete;
basic_socket_iostream& operator=(
const basic_socket_iostream&) = delete;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_SOCKET_IOSTREAM_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/cancel_at.hpp | //
// cancel_at.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_CANCEL_AT_HPP
#define ASIO_CANCEL_AT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/basic_waitable_timer.hpp"
#include "asio/cancellation_type.hpp"
#include "asio/detail/chrono.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/wait_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// A @ref completion_token adapter that cancels an operation at a given time.
/**
* The cancel_at_t class is used to indicate that an asynchronous operation
* should be cancelled if not complete at the specified absolute time.
*/
template <typename CompletionToken, typename Clock,
typename WaitTraits = asio::wait_traits<Clock>>
class cancel_at_t
{
public:
/// Constructor.
template <typename T>
cancel_at_t(T&& completion_token, const typename Clock::time_point& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
: token_(static_cast<T&&>(completion_token)),
expiry_(expiry),
cancel_type_(cancel_type)
{
}
//private:
CompletionToken token_;
typename Clock::time_point expiry_;
cancellation_type_t cancel_type_;
};
/// A @ref completion_token adapter that cancels an operation at a given time.
/**
* The cancel_at_timer class is used to indicate that an asynchronous operation
* should be cancelled if not complete at the specified absolute time.
*/
template <typename CompletionToken, typename Clock,
typename WaitTraits = asio::wait_traits<Clock>,
typename Executor = any_io_executor>
class cancel_at_timer
{
public:
/// Constructor.
template <typename T>
cancel_at_timer(T&& completion_token,
basic_waitable_timer<Clock, WaitTraits, Executor>& timer,
const typename Clock::time_point& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
: token_(static_cast<T&&>(completion_token)),
timer_(timer),
expiry_(expiry),
cancel_type_(cancel_type)
{
}
//private:
CompletionToken token_;
basic_waitable_timer<Clock, WaitTraits, Executor>& timer_;
typename Clock::time_point expiry_;
cancellation_type_t cancel_type_;
};
/// A function object type that adapts a @ref completion_token to cancel an
/// operation at a given time.
/**
* May also be used directly as a completion token, in which case it adapts the
* asynchronous operation's default completion token (or asio::deferred
* if no default is available).
*/
template <typename Clock, typename WaitTraits = asio::wait_traits<Clock>>
class partial_cancel_at
{
public:
/// Constructor that specifies the expiry and cancellation type.
explicit partial_cancel_at(const typename Clock::time_point& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
: expiry_(expiry),
cancel_type_(cancel_type)
{
}
/// Adapt a @ref completion_token to specify that the completion handler
/// arguments should be combined into a single tuple argument.
template <typename CompletionToken>
ASIO_NODISCARD inline
constexpr cancel_at_t<decay_t<CompletionToken>, Clock, WaitTraits>
operator()(CompletionToken&& completion_token) const
{
return cancel_at_t<decay_t<CompletionToken>, Clock, WaitTraits>(
static_cast<CompletionToken&&>(completion_token),
expiry_, cancel_type_);
}
//private:
typename Clock::time_point expiry_;
cancellation_type_t cancel_type_;
};
/// A function object type that adapts a @ref completion_token to cancel an
/// operation at a given time.
/**
* May also be used directly as a completion token, in which case it adapts the
* asynchronous operation's default completion token (or asio::deferred
* if no default is available).
*/
template <typename Clock, typename WaitTraits = asio::wait_traits<Clock>,
typename Executor = any_io_executor>
class partial_cancel_at_timer
{
public:
/// Constructor that specifies the expiry and cancellation type.
explicit partial_cancel_at_timer(
basic_waitable_timer<Clock, WaitTraits, Executor>& timer,
const typename Clock::time_point& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
: timer_(timer),
expiry_(expiry),
cancel_type_(cancel_type)
{
}
/// Adapt a @ref completion_token to specify that the completion handler
/// arguments should be combined into a single tuple argument.
template <typename CompletionToken>
ASIO_NODISCARD inline
cancel_at_timer<decay_t<CompletionToken>, Clock, WaitTraits, Executor>
operator()(CompletionToken&& completion_token) const
{
return cancel_at_timer<decay_t<CompletionToken>,
Clock, WaitTraits, Executor>(
static_cast<CompletionToken&&>(completion_token),
timer_, expiry_, cancel_type_);
}
//private:
basic_waitable_timer<Clock, WaitTraits, Executor>& timer_;
typename Clock::time_point expiry_;
cancellation_type_t cancel_type_;
};
/// Create a partial completion token adapter that cancels an operation if not
/// complete by the specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename Clock, typename Duration>
ASIO_NODISCARD inline partial_cancel_at<Clock>
cancel_at(const chrono::time_point<Clock, Duration>& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
{
return partial_cancel_at<Clock>(expiry, cancel_type);
}
/// Create a partial completion token adapter that cancels an operation if not
/// complete by the specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename Clock, typename WaitTraits,
typename Executor, typename Duration>
ASIO_NODISCARD inline partial_cancel_at_timer<Clock, WaitTraits, Executor>
cancel_at(basic_waitable_timer<Clock, WaitTraits, Executor>& timer,
const chrono::time_point<Clock, Duration>& expiry,
cancellation_type_t cancel_type = cancellation_type::terminal)
{
return partial_cancel_at_timer<Clock, WaitTraits, Executor>(
timer, expiry, cancel_type);
}
/// Adapt a @ref completion_token to cancel an operation if not complete by the
/// specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename CompletionToken, typename Clock, typename Duration>
ASIO_NODISCARD inline cancel_at_t<decay_t<CompletionToken>, Clock>
cancel_at(const chrono::time_point<Clock, Duration>& expiry,
CompletionToken&& completion_token)
{
return cancel_at_t<decay_t<CompletionToken>, Clock>(
static_cast<CompletionToken&&>(completion_token),
expiry, cancellation_type::terminal);
}
/// Adapt a @ref completion_token to cancel an operation if not complete by the
/// specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename CompletionToken, typename Clock, typename Duration>
ASIO_NODISCARD inline cancel_at_t<decay_t<CompletionToken>, Clock>
cancel_at(const chrono::time_point<Clock, Duration>& expiry,
cancellation_type_t cancel_type, CompletionToken&& completion_token)
{
return cancel_at_t<decay_t<CompletionToken>, Clock>(
static_cast<CompletionToken&&>(completion_token), expiry, cancel_type);
}
/// Adapt a @ref completion_token to cancel an operation if not complete by the
/// specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename CompletionToken, typename Clock,
typename WaitTraits, typename Executor, typename Duration>
ASIO_NODISCARD inline
cancel_at_timer<decay_t<CompletionToken>, Clock, WaitTraits, Executor>
cancel_at(basic_waitable_timer<Clock, WaitTraits, Executor>& timer,
const chrono::time_point<Clock, Duration>& expiry,
CompletionToken&& completion_token)
{
return cancel_at_timer<decay_t<CompletionToken>, Clock, WaitTraits, Executor>(
static_cast<CompletionToken&&>(completion_token),
timer, expiry, cancellation_type::terminal);
}
/// Adapt a @ref completion_token to cancel an operation if not complete by the
/// specified absolute time.
/**
* @par Thread Safety
* When an asynchronous operation is used with cancel_at, a timer async_wait
* operation is performed in parallel to the main operation. If this parallel
* async_wait completes first, a cancellation request is emitted to cancel the
* main operation. Consequently, the application must ensure that the
* asynchronous operation is performed within an implicit or explicit strand.
*/
template <typename CompletionToken, typename Clock,
typename WaitTraits, typename Executor, typename Duration>
ASIO_NODISCARD inline
cancel_at_timer<decay_t<CompletionToken>, Clock, WaitTraits, Executor>
cancel_at(basic_waitable_timer<Clock, WaitTraits, Executor>& timer,
const chrono::time_point<Clock, Duration>& expiry,
cancellation_type_t cancel_type, CompletionToken&& completion_token)
{
return cancel_at_timer<decay_t<CompletionToken>, Clock, WaitTraits, Executor>(
static_cast<CompletionToken&&>(completion_token),
timer, expiry, cancel_type);
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/cancel_at.hpp"
#endif // ASIO_CANCEL_AT_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/serial_port.hpp | //
// serial_port.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. ([email protected])
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SERIAL_PORT_HPP
#define ASIO_SERIAL_PORT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_SERIAL_PORT) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/basic_serial_port.hpp"
namespace asio {
/// Typedef for the typical usage of a serial port.
typedef basic_serial_port<> serial_port;
} // namespace asio
#endif // defined(ASIO_HAS_SERIAL_PORT)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_SERIAL_PORT_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/bind_immediate_executor.hpp | //
// bind_immediate_executor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BIND_IMMEDIATE_EXECUTOR_HPP
#define ASIO_BIND_IMMEDIATE_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/associated_executor.hpp"
#include "asio/associated_immediate_executor.hpp"
#include "asio/associator.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/initiation_base.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper to automatically define nested typedef result_type.
template <typename T, typename = void>
struct immediate_executor_binder_result_type
{
protected:
typedef void result_type_or_void;
};
template <typename T>
struct immediate_executor_binder_result_type<T, void_t<typename T::result_type>>
{
typedef typename T::result_type result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct immediate_executor_binder_result_type<R(*)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct immediate_executor_binder_result_type<R(&)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct immediate_executor_binder_result_type<R(*)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct immediate_executor_binder_result_type<R(&)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct immediate_executor_binder_result_type<R(*)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct immediate_executor_binder_result_type<R(&)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
// Helper to automatically define nested typedef argument_type.
template <typename T, typename = void>
struct immediate_executor_binder_argument_type {};
template <typename T>
struct immediate_executor_binder_argument_type<T,
void_t<typename T::argument_type>>
{
typedef typename T::argument_type argument_type;
};
template <typename R, typename A1>
struct immediate_executor_binder_argument_type<R(*)(A1)>
{
typedef A1 argument_type;
};
template <typename R, typename A1>
struct immediate_executor_binder_argument_type<R(&)(A1)>
{
typedef A1 argument_type;
};
// Helper to automatically define nested typedefs first_argument_type and
// second_argument_type.
template <typename T, typename = void>
struct immediate_executor_binder_argument_types {};
template <typename T>
struct immediate_executor_binder_argument_types<T,
void_t<typename T::first_argument_type>>
{
typedef typename T::first_argument_type first_argument_type;
typedef typename T::second_argument_type second_argument_type;
};
template <typename R, typename A1, typename A2>
struct immediate_executor_binder_argument_type<R(*)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
template <typename R, typename A1, typename A2>
struct immediate_executor_binder_argument_type<R(&)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
} // namespace detail
/// A call wrapper type to bind a immediate executor of type @c Executor
/// to an object of type @c T.
template <typename T, typename Executor>
class immediate_executor_binder
#if !defined(GENERATING_DOCUMENTATION)
: public detail::immediate_executor_binder_result_type<T>,
public detail::immediate_executor_binder_argument_type<T>,
public detail::immediate_executor_binder_argument_types<T>
#endif // !defined(GENERATING_DOCUMENTATION)
{
public:
/// The type of the target object.
typedef T target_type;
/// The type of the associated immediate executor.
typedef Executor immediate_executor_type;
#if defined(GENERATING_DOCUMENTATION)
/// The return type if a function.
/**
* The type of @c result_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to function type, @c result_type is a synonym for
* the return type of @c T;
*
* @li if @c T is a class type with a member type @c result_type, then @c
* result_type is a synonym for @c T::result_type;
*
* @li otherwise @c result_type is not defined.
*/
typedef see_below result_type;
/// The type of the function's argument.
/**
* The type of @c argument_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to a function type accepting a single argument,
* @c argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c argument_type, then @c
* argument_type is a synonym for @c T::argument_type;
*
* @li otherwise @c argument_type is not defined.
*/
typedef see_below argument_type;
/// The type of the function's first argument.
/**
* The type of @c first_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* first_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c first_argument_type is a synonym for @c T::first_argument_type;
*
* @li otherwise @c first_argument_type is not defined.
*/
typedef see_below first_argument_type;
/// The type of the function's second argument.
/**
* The type of @c second_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* second_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c second_argument_type is a synonym for @c T::second_argument_type;
*
* @li otherwise @c second_argument_type is not defined.
*/
typedef see_below second_argument_type;
#endif // defined(GENERATING_DOCUMENTATION)
/// Construct a immediate executor wrapper for the specified object.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U>
immediate_executor_binder(const immediate_executor_type& e,
U&& u)
: executor_(e),
target_(static_cast<U&&>(u))
{
}
/// Copy constructor.
immediate_executor_binder(const immediate_executor_binder& other)
: executor_(other.get_immediate_executor()),
target_(other.get())
{
}
/// Construct a copy, but specify a different immediate executor.
immediate_executor_binder(const immediate_executor_type& e,
const immediate_executor_binder& other)
: executor_(e),
target_(other.get())
{
}
/// Construct a copy of a different immediate executor wrapper type.
/**
* This constructor is only valid if the @c Executor type is
* constructible from type @c OtherExecutor, and the type @c T is
* constructible from type @c U.
*/
template <typename U, typename OtherExecutor>
immediate_executor_binder(
const immediate_executor_binder<U, OtherExecutor>& other,
constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0,
constraint_t<is_constructible<T, U>::value> = 0)
: executor_(other.get_immediate_executor()),
target_(other.get())
{
}
/// Construct a copy of a different immediate executor wrapper type, but
/// specify a different immediate executor.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U, typename OtherExecutor>
immediate_executor_binder(const immediate_executor_type& e,
const immediate_executor_binder<U, OtherExecutor>& other,
constraint_t<is_constructible<T, U>::value> = 0)
: executor_(e),
target_(other.get())
{
}
/// Move constructor.
immediate_executor_binder(immediate_executor_binder&& other)
: executor_(static_cast<immediate_executor_type&&>(
other.get_immediate_executor())),
target_(static_cast<T&&>(other.get()))
{
}
/// Move construct the target object, but specify a different immediate
/// executor.
immediate_executor_binder(const immediate_executor_type& e,
immediate_executor_binder&& other)
: executor_(e),
target_(static_cast<T&&>(other.get()))
{
}
/// Move construct from a different immediate executor wrapper type.
template <typename U, typename OtherExecutor>
immediate_executor_binder(
immediate_executor_binder<U, OtherExecutor>&& other,
constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0,
constraint_t<is_constructible<T, U>::value> = 0)
: executor_(static_cast<OtherExecutor&&>(
other.get_immediate_executor())),
target_(static_cast<U&&>(other.get()))
{
}
/// Move construct from a different immediate executor wrapper type, but
/// specify a different immediate executor.
template <typename U, typename OtherExecutor>
immediate_executor_binder(const immediate_executor_type& e,
immediate_executor_binder<U, OtherExecutor>&& other,
constraint_t<is_constructible<T, U>::value> = 0)
: executor_(e),
target_(static_cast<U&&>(other.get()))
{
}
/// Destructor.
~immediate_executor_binder()
{
}
/// Obtain a reference to the target object.
target_type& get() noexcept
{
return target_;
}
/// Obtain a reference to the target object.
const target_type& get() const noexcept
{
return target_;
}
/// Obtain the associated immediate executor.
immediate_executor_type get_immediate_executor() const noexcept
{
return executor_;
}
/// Forwarding function call operator.
template <typename... Args>
result_of_t<T(Args...)> operator()(Args&&... args)
{
return target_(static_cast<Args&&>(args)...);
}
/// Forwarding function call operator.
template <typename... Args>
result_of_t<T(Args...)> operator()(Args&&... args) const
{
return target_(static_cast<Args&&>(args)...);
}
private:
Executor executor_;
T target_;
};
/// A function object type that adapts a @ref completion_token to specify that
/// the completion handler should have the supplied executor as its associated
/// immediate executor.
/**
* May also be used directly as a completion token, in which case it adapts the
* asynchronous operation's default completion token (or asio::deferred
* if no default is available).
*/
template <typename Executor>
struct partial_immediate_executor_binder
{
/// Constructor that specifies associated executor.
explicit partial_immediate_executor_binder(const Executor& ex)
: executor_(ex)
{
}
/// Adapt a @ref completion_token to specify that the completion handler
/// should have the executor as its associated immediate executor.
template <typename CompletionToken>
ASIO_NODISCARD inline
constexpr immediate_executor_binder<decay_t<CompletionToken>, Executor>
operator()(CompletionToken&& completion_token) const
{
return immediate_executor_binder<decay_t<CompletionToken>, Executor>(
static_cast<CompletionToken&&>(completion_token), executor_);
}
//private:
Executor executor_;
};
/// Create a partial completion token that associates an executor.
template <typename Executor>
ASIO_NODISCARD inline partial_immediate_executor_binder<Executor>
bind_immediate_executor(const Executor& ex)
{
return partial_immediate_executor_binder<Executor>(ex);
}
/// Associate an object of type @c T with a immediate executor of type
/// @c Executor.
template <typename Executor, typename T>
ASIO_NODISCARD inline immediate_executor_binder<decay_t<T>, Executor>
bind_immediate_executor(const Executor& e, T&& t)
{
return immediate_executor_binder<
decay_t<T>, Executor>(
e, static_cast<T&&>(t));
}
#if !defined(GENERATING_DOCUMENTATION)
namespace detail {
template <typename TargetAsyncResult, typename Executor, typename = void>
class immediate_executor_binder_completion_handler_async_result
{
public:
template <typename T>
explicit immediate_executor_binder_completion_handler_async_result(T&)
{
}
};
template <typename TargetAsyncResult, typename Executor>
class immediate_executor_binder_completion_handler_async_result<
TargetAsyncResult, Executor,
void_t<
typename TargetAsyncResult::completion_handler_type
>>
{
private:
TargetAsyncResult target_;
public:
typedef immediate_executor_binder<
typename TargetAsyncResult::completion_handler_type, Executor>
completion_handler_type;
explicit immediate_executor_binder_completion_handler_async_result(
typename TargetAsyncResult::completion_handler_type& handler)
: target_(handler)
{
}
auto get() -> decltype(target_.get())
{
return target_.get();
}
};
template <typename TargetAsyncResult, typename = void>
struct immediate_executor_binder_async_result_return_type
{
};
template <typename TargetAsyncResult>
struct immediate_executor_binder_async_result_return_type<
TargetAsyncResult,
void_t<
typename TargetAsyncResult::return_type
>>
{
typedef typename TargetAsyncResult::return_type return_type;
};
} // namespace detail
template <typename T, typename Executor, typename Signature>
class async_result<immediate_executor_binder<T, Executor>, Signature> :
public detail::immediate_executor_binder_completion_handler_async_result<
async_result<T, Signature>, Executor>,
public detail::immediate_executor_binder_async_result_return_type<
async_result<T, Signature>>
{
public:
explicit async_result(immediate_executor_binder<T, Executor>& b)
: detail::immediate_executor_binder_completion_handler_async_result<
async_result<T, Signature>, Executor>(b.get())
{
}
template <typename Initiation>
struct init_wrapper : detail::initiation_base<Initiation>
{
using detail::initiation_base<Initiation>::initiation_base;
template <typename Handler, typename... Args>
void operator()(Handler&& handler, const Executor& e, Args&&... args) &&
{
static_cast<Initiation&&>(*this)(
immediate_executor_binder<
decay_t<Handler>, Executor>(
e, static_cast<Handler&&>(handler)),
static_cast<Args&&>(args)...);
}
template <typename Handler, typename... Args>
void operator()(Handler&& handler,
const Executor& e, Args&&... args) const &
{
static_cast<const Initiation&>(*this)(
immediate_executor_binder<
decay_t<Handler>, Executor>(
e, static_cast<Handler&&>(handler)),
static_cast<Args&&>(args)...);
}
};
template <typename Initiation, typename RawCompletionToken, typename... Args>
static auto initiate(Initiation&& initiation,
RawCompletionToken&& token, Args&&... args)
-> decltype(
async_initiate<
conditional_t<
is_const<remove_reference_t<RawCompletionToken>>::value, const T, T>,
Signature>(
declval<init_wrapper<decay_t<Initiation>>>(),
token.get(), token.get_immediate_executor(),
static_cast<Args&&>(args)...))
{
return async_initiate<
conditional_t<
is_const<remove_reference_t<RawCompletionToken>>::value, const T, T>,
Signature>(
init_wrapper<decay_t<Initiation>>(
static_cast<Initiation&&>(initiation)),
token.get(), token.get_immediate_executor(),
static_cast<Args&&>(args)...);
}
private:
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
async_result<T, Signature> target_;
};
template <typename Executor, typename... Signatures>
struct async_result<partial_immediate_executor_binder<Executor>, Signatures...>
{
template <typename Initiation, typename RawCompletionToken, typename... Args>
static auto initiate(Initiation&& initiation,
RawCompletionToken&& token, Args&&... args)
-> decltype(
async_initiate<Signatures...>(
static_cast<Initiation&&>(initiation),
immediate_executor_binder<
default_completion_token_t<associated_executor_t<Initiation>>,
Executor>(token.executor_,
default_completion_token_t<associated_executor_t<Initiation>>{}),
static_cast<Args&&>(args)...))
{
return async_initiate<Signatures...>(
static_cast<Initiation&&>(initiation),
immediate_executor_binder<
default_completion_token_t<associated_executor_t<Initiation>>,
Executor>(token.executor_,
default_completion_token_t<associated_executor_t<Initiation>>{}),
static_cast<Args&&>(args)...);
}
};
template <template <typename, typename> class Associator,
typename T, typename Executor, typename DefaultCandidate>
struct associator<Associator,
immediate_executor_binder<T, Executor>,
DefaultCandidate>
: Associator<T, DefaultCandidate>
{
static typename Associator<T, DefaultCandidate>::type get(
const immediate_executor_binder<T, Executor>& b) noexcept
{
return Associator<T, DefaultCandidate>::get(b.get());
}
static auto get(const immediate_executor_binder<T, Executor>& b,
const DefaultCandidate& c) noexcept
-> decltype(Associator<T, DefaultCandidate>::get(b.get(), c))
{
return Associator<T, DefaultCandidate>::get(b.get(), c);
}
};
template <typename T, typename Executor, typename Executor1>
struct associated_immediate_executor<
immediate_executor_binder<T, Executor>,
Executor1>
{
typedef Executor type;
static auto get(const immediate_executor_binder<T, Executor>& b,
const Executor1& = Executor1()) noexcept
-> decltype(b.get_immediate_executor())
{
return b.get_immediate_executor();
}
};
#endif // !defined(GENERATING_DOCUMENTATION)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BIND_IMMEDIATE_EXECUTOR_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_socket_streambuf.hpp | //
// basic_socket_streambuf.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_STREAMBUF_HPP
#define ASIO_BASIC_SOCKET_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <streambuf>
#include <vector>
#include "asio/basic_socket.hpp"
#include "asio/basic_stream_socket.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/io_context.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
# include "asio/detail/deadline_timer_service.hpp"
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
# include "asio/steady_timer.hpp"
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// A separate base class is used to ensure that the io_context member is
// initialised prior to the basic_socket_streambuf's basic_socket base class.
class socket_streambuf_io_context
{
protected:
socket_streambuf_io_context(io_context* ctx)
: default_io_context_(ctx)
{
}
shared_ptr<io_context> default_io_context_;
};
// A separate base class is used to ensure that the dynamically allocated
// buffers are constructed prior to the basic_socket_streambuf's basic_socket
// base class. This makes moving the socket is the last potentially throwing
// step in the streambuf's move constructor, giving the constructor a strong
// exception safety guarantee.
class socket_streambuf_buffers
{
protected:
socket_streambuf_buffers()
: get_buffer_(buffer_size),
put_buffer_(buffer_size)
{
}
enum { buffer_size = 512 };
std::vector<char> get_buffer_;
std::vector<char> put_buffer_;
};
} // namespace detail
#if !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
#define ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock>>
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
class basic_socket_streambuf;
#endif // !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
/// Iostream streambuf for a socket.
#if defined(GENERATING_DOCUMENTATION)
template <typename Protocol,
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#else // defined(GENERATING_DOCUMENTATION)
template <typename Protocol, typename Clock, typename WaitTraits>
#endif // defined(GENERATING_DOCUMENTATION)
class basic_socket_streambuf
: public std::streambuf,
private detail::socket_streambuf_io_context,
private detail::socket_streambuf_buffers,
#if defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
private basic_socket<Protocol>
#else // defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
public basic_socket<Protocol>
#endif // defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
{
private:
// These typedefs are intended keep this class's implementation independent
// of whether it's using Boost.DateClock, Boost.Chrono or std::chrono.
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef WaitTraits traits_helper;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef detail::chrono_time_traits<Clock, WaitTraits> traits_helper;
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
public:
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// The clock type.
typedef Clock clock_type;
#if defined(GENERATING_DOCUMENTATION)
/// (Deprecated: Use time_point.) The time type.
typedef typename WaitTraits::time_type time_type;
/// The time type.
typedef typename WaitTraits::time_point time_point;
/// (Deprecated: Use duration.) The duration type.
typedef typename WaitTraits::duration_type duration_type;
/// The duration type.
typedef typename WaitTraits::duration duration;
#else
# if !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_type;
typedef typename traits_helper::duration_type duration_type;
# endif // !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_point;
typedef typename traits_helper::duration_type duration;
#endif
/// Construct a basic_socket_streambuf without establishing a connection.
basic_socket_streambuf()
: detail::socket_streambuf_io_context(new io_context),
basic_socket<Protocol>(*default_io_context_),
expiry_time_(max_expiry_time())
{
init_buffers();
}
/// Construct a basic_socket_streambuf from the supplied socket.
explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s)
: detail::socket_streambuf_io_context(0),
basic_socket<Protocol>(std::move(s)),
expiry_time_(max_expiry_time())
{
init_buffers();
}
/// Move-construct a basic_socket_streambuf from another.
basic_socket_streambuf(basic_socket_streambuf&& other)
: detail::socket_streambuf_io_context(other),
basic_socket<Protocol>(std::move(other.socket())),
ec_(other.ec_),
expiry_time_(other.expiry_time_)
{
get_buffer_.swap(other.get_buffer_);
put_buffer_.swap(other.put_buffer_);
setg(other.eback(), other.gptr(), other.egptr());
setp(other.pptr(), other.epptr());
other.ec_ = asio::error_code();
other.expiry_time_ = max_expiry_time();
other.init_buffers();
}
/// Move-assign a basic_socket_streambuf from another.
basic_socket_streambuf& operator=(basic_socket_streambuf&& other)
{
this->close();
socket() = std::move(other.socket());
detail::socket_streambuf_io_context::operator=(other);
ec_ = other.ec_;
expiry_time_ = other.expiry_time_;
get_buffer_.swap(other.get_buffer_);
put_buffer_.swap(other.put_buffer_);
setg(other.eback(), other.gptr(), other.egptr());
setp(other.pptr(), other.epptr());
other.ec_ = asio::error_code();
other.expiry_time_ = max_expiry_time();
other.put_buffer_.resize(buffer_size);
other.init_buffers();
return *this;
}
/// Destructor flushes buffered data.
virtual ~basic_socket_streambuf()
{
if (pptr() != pbase())
overflow(traits_type::eof());
}
/// Establish a connection.
/**
* This function establishes a connection to the specified endpoint.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf* connect(const endpoint_type& endpoint)
{
init_buffers();
ec_ = asio::error_code();
this->connect_to_endpoints(&endpoint, &endpoint + 1);
return !ec_ ? this : 0;
}
/// Establish a connection.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
template <typename... T>
basic_socket_streambuf* connect(T... x)
{
init_buffers();
typedef typename Protocol::resolver resolver_type;
resolver_type resolver(socket().get_executor());
connect_to_endpoints(resolver.resolve(x..., ec_));
return !ec_ ? this : 0;
}
/// Close the connection.
/**
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf* close()
{
sync();
socket().close(ec_);
if (!ec_)
init_buffers();
return !ec_ ? this : 0;
}
/// Get a reference to the underlying socket.
basic_socket<Protocol>& socket()
{
return *this;
}
/// Get the last error associated with the stream buffer.
/**
* @return An \c error_code corresponding to the last error from the stream
* buffer.
*/
const asio::error_code& error() const
{
return ec_;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use error().) Get the last error associated with the stream
/// buffer.
/**
* @return An \c error_code corresponding to the last error from the stream
* buffer.
*/
const asio::error_code& puberror() const
{
return error();
}
/// (Deprecated: Use expiry().) Get the stream buffer's expiry time as an
/// absolute time.
/**
* @return An absolute time value representing the stream buffer's expiry
* time.
*/
time_point expires_at() const
{
return expiry_time_;
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Get the stream buffer's expiry time as an absolute time.
/**
* @return An absolute time value representing the stream buffer's expiry
* time.
*/
time_point expiry() const
{
return expiry_time_;
}
/// Set the stream buffer's expiry time as an absolute time.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the stream.
*/
void expires_at(const time_point& expiry_time)
{
expiry_time_ = expiry_time;
}
/// Set the stream buffer's expiry time relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_after(const duration& expiry_time)
{
expiry_time_ = traits_helper::add(traits_helper::now(), expiry_time);
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream buffer's expiry time relative
/// to now.
/**
* @return A relative time value representing the stream buffer's expiry time.
*/
duration expires_from_now() const
{
return traits_helper::subtract(expires_at(), traits_helper::now());
}
/// (Deprecated: Use expires_after().) Set the stream buffer's expiry time
/// relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_from_now(const duration& expiry_time)
{
expiry_time_ = traits_helper::add(traits_helper::now(), expiry_time);
}
#endif // !defined(ASIO_NO_DEPRECATED)
protected:
int_type underflow()
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
return traits_type::eof();
#else // defined(ASIO_WINDOWS_RUNTIME)
if (gptr() != egptr())
return traits_type::eof();
for (;;)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return traits_type::eof();
}
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::buffer_sequence_adapter<mutable_buffer, mutable_buffer>
bufs(asio::buffer(get_buffer_) + putback_max);
detail::signed_size_type bytes = detail::socket_ops::recv(
socket().native_handle(), bufs.buffers(), bufs.count(), 0, ec_);
// Check if operation succeeded.
if (bytes > 0)
{
setg(&get_buffer_[0], &get_buffer_[0] + putback_max,
&get_buffer_[0] + putback_max + bytes);
return traits_type::to_int_type(*gptr());
}
// Check for EOF.
if (bytes == 0)
{
ec_ = asio::error::eof;
return traits_type::eof();
}
// Operation failed.
if (ec_ != asio::error::would_block
&& ec_ != asio::error::try_again)
return traits_type::eof();
// Wait for socket to become ready.
if (detail::socket_ops::poll_read(
socket().native_handle(), 0, timeout(), ec_) < 0)
return traits_type::eof();
}
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
int_type overflow(int_type c)
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
return traits_type::eof();
#else // defined(ASIO_WINDOWS_RUNTIME)
char_type ch = traits_type::to_char_type(c);
// Determine what needs to be sent.
const_buffer output_buffer;
if (put_buffer_.empty())
{
if (traits_type::eq_int_type(c, traits_type::eof()))
return traits_type::not_eof(c); // Nothing to do.
output_buffer = asio::buffer(&ch, sizeof(char_type));
}
else
{
output_buffer = asio::buffer(pbase(),
(pptr() - pbase()) * sizeof(char_type));
}
while (output_buffer.size() > 0)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return traits_type::eof();
}
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::buffer_sequence_adapter<
const_buffer, const_buffer> bufs(output_buffer);
detail::signed_size_type bytes = detail::socket_ops::send(
socket().native_handle(), bufs.buffers(), bufs.count(), 0, ec_);
// Check if operation succeeded.
if (bytes > 0)
{
output_buffer += static_cast<std::size_t>(bytes);
continue;
}
// Operation failed.
if (ec_ != asio::error::would_block
&& ec_ != asio::error::try_again)
return traits_type::eof();
// Wait for socket to become ready.
if (detail::socket_ops::poll_write(
socket().native_handle(), 0, timeout(), ec_) < 0)
return traits_type::eof();
}
if (!put_buffer_.empty())
{
setp(&put_buffer_[0], &put_buffer_[0] + put_buffer_.size());
// If the new character is eof then our work here is done.
if (traits_type::eq_int_type(c, traits_type::eof()))
return traits_type::not_eof(c);
// Add the new character to the output buffer.
*pptr() = ch;
pbump(1);
}
return c;
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
int sync()
{
return overflow(traits_type::eof());
}
std::streambuf* setbuf(char_type* s, std::streamsize n)
{
if (pptr() == pbase() && s == 0 && n == 0)
{
put_buffer_.clear();
setp(0, 0);
sync();
return this;
}
return 0;
}
private:
// Disallow copying and assignment.
basic_socket_streambuf(const basic_socket_streambuf&) = delete;
basic_socket_streambuf& operator=(
const basic_socket_streambuf&) = delete;
void init_buffers()
{
setg(&get_buffer_[0],
&get_buffer_[0] + putback_max,
&get_buffer_[0] + putback_max);
if (put_buffer_.empty())
setp(0, 0);
else
setp(&put_buffer_[0], &put_buffer_[0] + put_buffer_.size());
}
int timeout() const
{
int64_t msec = traits_helper::to_posix_duration(
traits_helper::subtract(expiry_time_,
traits_helper::now())).total_milliseconds();
if (msec > (std::numeric_limits<int>::max)())
msec = (std::numeric_limits<int>::max)();
else if (msec < 0)
msec = 0;
return static_cast<int>(msec);
}
template <typename EndpointSequence>
void connect_to_endpoints(const EndpointSequence& endpoints)
{
this->connect_to_endpoints(endpoints.begin(), endpoints.end());
}
template <typename EndpointIterator>
void connect_to_endpoints(EndpointIterator begin, EndpointIterator end)
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
#else // defined(ASIO_WINDOWS_RUNTIME)
if (ec_)
return;
ec_ = asio::error::not_found;
for (EndpointIterator i = begin; i != end; ++i)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return;
}
// Close and reopen the socket.
typename Protocol::endpoint ep(*i);
socket().close(ec_);
socket().open(ep.protocol(), ec_);
if (ec_)
continue;
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::socket_ops::connect(socket().native_handle(),
ep.data(), ep.size(), ec_);
// Check if operation succeeded.
if (!ec_)
return;
// Operation failed.
if (ec_ != asio::error::in_progress
&& ec_ != asio::error::would_block)
continue;
// Wait for socket to become ready.
if (detail::socket_ops::poll_connect(
socket().native_handle(), timeout(), ec_) < 0)
continue;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (detail::socket_ops::getsockopt(socket().native_handle(), 0,
SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, ec_)
== detail::socket_error_retval)
return;
// Check the result of the connect operation.
ec_ = asio::error_code(connect_error,
asio::error::get_system_category());
if (!ec_)
return;
}
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
// Helper function to get the maximum expiry time.
static time_point max_expiry_time()
{
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
return boost::posix_time::pos_infin;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
return (time_point::max)();
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
}
enum { putback_max = 8 };
asio::error_code ec_;
time_point expiry_time_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_SOCKET_STREAMBUF_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/cancellation_state.hpp | //
// cancellation_state.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_CANCELLATION_STATE_HPP
#define ASIO_CANCELLATION_STATE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cassert>
#include <new>
#include <utility>
#include "asio/cancellation_signal.hpp"
#include "asio/detail/cstddef.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// A simple cancellation signal propagation filter.
template <cancellation_type_t Mask>
struct cancellation_filter
{
/// Returns <tt>type & Mask</tt>.
cancellation_type_t operator()(
cancellation_type_t type) const noexcept
{
return type & Mask;
}
};
/// A cancellation filter that disables cancellation.
typedef cancellation_filter<cancellation_type::none>
disable_cancellation;
/// A cancellation filter that enables terminal cancellation only.
typedef cancellation_filter<cancellation_type::terminal>
enable_terminal_cancellation;
#if defined(GENERATING_DOCUMENTATION)
/// A cancellation filter that enables terminal and partial cancellation.
typedef cancellation_filter<
cancellation_type::terminal | cancellation_type::partial>
enable_partial_cancellation;
/// A cancellation filter that enables terminal, partial and total cancellation.
typedef cancellation_filter<cancellation_type::terminal
| cancellation_type::partial | cancellation_type::total>
enable_total_cancellation;
#else // defined(GENERATING_DOCUMENTATION)
typedef cancellation_filter<
static_cast<cancellation_type_t>(
static_cast<unsigned int>(cancellation_type::terminal)
| static_cast<unsigned int>(cancellation_type::partial))>
enable_partial_cancellation;
typedef cancellation_filter<
static_cast<cancellation_type_t>(
static_cast<unsigned int>(cancellation_type::terminal)
| static_cast<unsigned int>(cancellation_type::partial)
| static_cast<unsigned int>(cancellation_type::total))>
enable_total_cancellation;
#endif // defined(GENERATING_DOCUMENTATION)
/// A cancellation state is used for chaining signals and slots in compositions.
class cancellation_state
{
public:
/// Construct a disconnected cancellation state.
constexpr cancellation_state() noexcept
: impl_(0)
{
}
/// Construct and attach to a parent slot to create a new child slot.
/**
* Initialises the cancellation state so that it allows terminal cancellation
* only. Equivalent to <tt>cancellation_state(slot,
* enable_terminal_cancellation())</tt>.
*
* @param slot The parent cancellation slot to which the state will be
* attached.
*/
template <typename CancellationSlot>
constexpr explicit cancellation_state(CancellationSlot slot)
: impl_(slot.is_connected() ? &slot.template emplace<impl<>>() : 0)
{
}
/// Construct and attach to a parent slot to create a new child slot.
/**
* @param slot The parent cancellation slot to which the state will be
* attached.
*
* @param filter A function object that is used to transform incoming
* cancellation signals as they are received from the parent slot. This
* function object must have the signature:
* @code asio::cancellation_type_t filter(
* asio::cancellation_type_t); @endcode
*
* The library provides the following pre-defined cancellation filters:
*
* @li asio::disable_cancellation
* @li asio::enable_terminal_cancellation
* @li asio::enable_partial_cancellation
* @li asio::enable_total_cancellation
*/
template <typename CancellationSlot, typename Filter>
constexpr cancellation_state(CancellationSlot slot, Filter filter)
: impl_(slot.is_connected()
? &slot.template emplace<impl<Filter, Filter>>(filter, filter)
: 0)
{
}
/// Construct and attach to a parent slot to create a new child slot.
/**
* @param slot The parent cancellation slot to which the state will be
* attached.
*
* @param in_filter A function object that is used to transform incoming
* cancellation signals as they are received from the parent slot. This
* function object must have the signature:
* @code asio::cancellation_type_t in_filter(
* asio::cancellation_type_t); @endcode
*
* @param out_filter A function object that is used to transform outcoming
* cancellation signals as they are relayed to the child slot. This function
* object must have the signature:
* @code asio::cancellation_type_t out_filter(
* asio::cancellation_type_t); @endcode
*
* The library provides the following pre-defined cancellation filters:
*
* @li asio::disable_cancellation
* @li asio::enable_terminal_cancellation
* @li asio::enable_partial_cancellation
* @li asio::enable_total_cancellation
*/
template <typename CancellationSlot, typename InFilter, typename OutFilter>
constexpr cancellation_state(CancellationSlot slot,
InFilter in_filter, OutFilter out_filter)
: impl_(slot.is_connected()
? &slot.template emplace<impl<InFilter, OutFilter>>(
static_cast<InFilter&&>(in_filter),
static_cast<OutFilter&&>(out_filter))
: 0)
{
}
/// Returns the single child slot associated with the state.
/**
* This sub-slot is used with the operations that are being composed.
*/
constexpr cancellation_slot slot() const noexcept
{
return impl_ ? impl_->signal_.slot() : cancellation_slot();
}
/// Returns the cancellation types that have been triggered.
cancellation_type_t cancelled() const noexcept
{
return impl_ ? impl_->cancelled_ : cancellation_type_t();
}
/// Clears the specified cancellation types, if they have been triggered.
void clear(cancellation_type_t mask = cancellation_type::all)
noexcept
{
if (impl_)
impl_->cancelled_ &= ~mask;
}
private:
struct impl_base
{
impl_base()
: cancelled_()
{
}
cancellation_signal signal_;
cancellation_type_t cancelled_;
};
template <
typename InFilter = enable_terminal_cancellation,
typename OutFilter = InFilter>
struct impl : impl_base
{
impl()
: in_filter_(),
out_filter_()
{
}
impl(InFilter in_filter, OutFilter out_filter)
: in_filter_(static_cast<InFilter&&>(in_filter)),
out_filter_(static_cast<OutFilter&&>(out_filter))
{
}
void operator()(cancellation_type_t in)
{
this->cancelled_ = in_filter_(in);
cancellation_type_t out = out_filter_(this->cancelled_);
if (out != cancellation_type::none)
this->signal_.emit(out);
}
InFilter in_filter_;
OutFilter out_filter_;
};
impl_base* impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_CANCELLATION_STATE_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/thread.hpp | //
// thread.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_THREAD_HPP
#define ASIO_THREAD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/thread.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// A simple abstraction for starting threads.
/**
* The asio::thread class implements the smallest possible subset of the
* functionality of boost::thread. It is intended to be used only for starting
* a thread and waiting for it to exit. If more extensive threading
* capabilities are required, you are strongly advised to use something else.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Example
* A typical use of asio::thread would be to launch a thread to run an
* io_context's event processing loop:
*
* @par
* @code asio::io_context io_context;
* // ...
* asio::thread t(boost::bind(&asio::io_context::run, &io_context));
* // ...
* t.join(); @endcode
*/
class thread
: private noncopyable
{
public:
/// Start a new thread that executes the supplied function.
/**
* This constructor creates a new thread that will execute the given function
* or function object.
*
* @param f The function or function object to be run in the thread. The
* function signature must be: @code void f(); @endcode
*/
template <typename Function>
explicit thread(Function f)
: impl_(f)
{
}
/// Destructor.
~thread()
{
}
/// Wait for the thread to exit.
/**
* This function will block until the thread has exited.
*
* If this function is not called before the thread object is destroyed, the
* thread itself will continue to run until completion. You will, however,
* no longer have the ability to wait for it to exit.
*/
void join()
{
impl_.join();
}
private:
detail::thread impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_THREAD_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/streambuf.hpp | //
// streambuf.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_STREAMBUF_HPP
#define ASIO_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include "asio/basic_streambuf.hpp"
namespace asio {
/// Typedef for the typical usage of basic_streambuf.
typedef basic_streambuf<> streambuf;
} // namespace asio
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_STREAMBUF_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/bind_executor.hpp | //
// bind_executor.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BIND_EXECUTOR_HPP
#define ASIO_BIND_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/associated_executor.hpp"
#include "asio/associator.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/initiation_base.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution/executor.hpp"
#include "asio/execution_context.hpp"
#include "asio/is_executor.hpp"
#include "asio/uses_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper to automatically define nested typedef result_type.
template <typename T, typename = void>
struct executor_binder_result_type
{
protected:
typedef void result_type_or_void;
};
template <typename T>
struct executor_binder_result_type<T, void_t<typename T::result_type>>
{
typedef typename T::result_type result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct executor_binder_result_type<R(*)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct executor_binder_result_type<R(&)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct executor_binder_result_type<R(*)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct executor_binder_result_type<R(&)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct executor_binder_result_type<R(*)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct executor_binder_result_type<R(&)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
// Helper to automatically define nested typedef argument_type.
template <typename T, typename = void>
struct executor_binder_argument_type {};
template <typename T>
struct executor_binder_argument_type<T, void_t<typename T::argument_type>>
{
typedef typename T::argument_type argument_type;
};
template <typename R, typename A1>
struct executor_binder_argument_type<R(*)(A1)>
{
typedef A1 argument_type;
};
template <typename R, typename A1>
struct executor_binder_argument_type<R(&)(A1)>
{
typedef A1 argument_type;
};
// Helper to automatically define nested typedefs first_argument_type and
// second_argument_type.
template <typename T, typename = void>
struct executor_binder_argument_types {};
template <typename T>
struct executor_binder_argument_types<T,
void_t<typename T::first_argument_type>>
{
typedef typename T::first_argument_type first_argument_type;
typedef typename T::second_argument_type second_argument_type;
};
template <typename R, typename A1, typename A2>
struct executor_binder_argument_type<R(*)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
template <typename R, typename A1, typename A2>
struct executor_binder_argument_type<R(&)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
// Helper to perform uses_executor construction of the target type, if
// required.
template <typename T, typename Executor, bool UsesExecutor>
class executor_binder_base;
template <typename T, typename Executor>
class executor_binder_base<T, Executor, true>
{
protected:
template <typename E, typename U>
executor_binder_base(E&& e, U&& u)
: executor_(static_cast<E&&>(e)),
target_(executor_arg_t(), executor_, static_cast<U&&>(u))
{
}
Executor executor_;
T target_;
};
template <typename T, typename Executor>
class executor_binder_base<T, Executor, false>
{
protected:
template <typename E, typename U>
executor_binder_base(E&& e, U&& u)
: executor_(static_cast<E&&>(e)),
target_(static_cast<U&&>(u))
{
}
Executor executor_;
T target_;
};
} // namespace detail
/// A call wrapper type to bind an executor of type @c Executor to an object of
/// type @c T.
template <typename T, typename Executor>
class executor_binder
#if !defined(GENERATING_DOCUMENTATION)
: public detail::executor_binder_result_type<T>,
public detail::executor_binder_argument_type<T>,
public detail::executor_binder_argument_types<T>,
private detail::executor_binder_base<
T, Executor, uses_executor<T, Executor>::value>
#endif // !defined(GENERATING_DOCUMENTATION)
{
public:
/// The type of the target object.
typedef T target_type;
/// The type of the associated executor.
typedef Executor executor_type;
#if defined(GENERATING_DOCUMENTATION)
/// The return type if a function.
/**
* The type of @c result_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to function type, @c result_type is a synonym for
* the return type of @c T;
*
* @li if @c T is a class type with a member type @c result_type, then @c
* result_type is a synonym for @c T::result_type;
*
* @li otherwise @c result_type is not defined.
*/
typedef see_below result_type;
/// The type of the function's argument.
/**
* The type of @c argument_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to a function type accepting a single argument,
* @c argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c argument_type, then @c
* argument_type is a synonym for @c T::argument_type;
*
* @li otherwise @c argument_type is not defined.
*/
typedef see_below argument_type;
/// The type of the function's first argument.
/**
* The type of @c first_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* first_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c first_argument_type is a synonym for @c T::first_argument_type;
*
* @li otherwise @c first_argument_type is not defined.
*/
typedef see_below first_argument_type;
/// The type of the function's second argument.
/**
* The type of @c second_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* second_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c second_argument_type is a synonym for @c T::second_argument_type;
*
* @li otherwise @c second_argument_type is not defined.
*/
typedef see_below second_argument_type;
#endif // defined(GENERATING_DOCUMENTATION)
/// Construct an executor wrapper for the specified object.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U>
executor_binder(executor_arg_t, const executor_type& e,
U&& u)
: base_type(e, static_cast<U&&>(u))
{
}
/// Copy constructor.
executor_binder(const executor_binder& other)
: base_type(other.get_executor(), other.get())
{
}
/// Construct a copy, but specify a different executor.
executor_binder(executor_arg_t, const executor_type& e,
const executor_binder& other)
: base_type(e, other.get())
{
}
/// Construct a copy of a different executor wrapper type.
/**
* This constructor is only valid if the @c Executor type is constructible
* from type @c OtherExecutor, and the type @c T is constructible from type
* @c U.
*/
template <typename U, typename OtherExecutor>
executor_binder(const executor_binder<U, OtherExecutor>& other,
constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0,
constraint_t<is_constructible<T, U>::value> = 0)
: base_type(other.get_executor(), other.get())
{
}
/// Construct a copy of a different executor wrapper type, but specify a
/// different executor.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U, typename OtherExecutor>
executor_binder(executor_arg_t, const executor_type& e,
const executor_binder<U, OtherExecutor>& other,
constraint_t<is_constructible<T, U>::value> = 0)
: base_type(e, other.get())
{
}
/// Move constructor.
executor_binder(executor_binder&& other)
: base_type(static_cast<executor_type&&>(other.get_executor()),
static_cast<T&&>(other.get()))
{
}
/// Move construct the target object, but specify a different executor.
executor_binder(executor_arg_t, const executor_type& e,
executor_binder&& other)
: base_type(e, static_cast<T&&>(other.get()))
{
}
/// Move construct from a different executor wrapper type.
template <typename U, typename OtherExecutor>
executor_binder(executor_binder<U, OtherExecutor>&& other,
constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0,
constraint_t<is_constructible<T, U>::value> = 0)
: base_type(static_cast<OtherExecutor&&>(other.get_executor()),
static_cast<U&&>(other.get()))
{
}
/// Move construct from a different executor wrapper type, but specify a
/// different executor.
template <typename U, typename OtherExecutor>
executor_binder(executor_arg_t, const executor_type& e,
executor_binder<U, OtherExecutor>&& other,
constraint_t<is_constructible<T, U>::value> = 0)
: base_type(e, static_cast<U&&>(other.get()))
{
}
/// Destructor.
~executor_binder()
{
}
/// Obtain a reference to the target object.
target_type& get() noexcept
{
return this->target_;
}
/// Obtain a reference to the target object.
const target_type& get() const noexcept
{
return this->target_;
}
/// Obtain the associated executor.
executor_type get_executor() const noexcept
{
return this->executor_;
}
/// Forwarding function call operator.
template <typename... Args>
result_of_t<T(Args...)> operator()(Args&&... args)
{
return this->target_(static_cast<Args&&>(args)...);
}
/// Forwarding function call operator.
template <typename... Args>
result_of_t<T(Args...)> operator()(Args&&... args) const
{
return this->target_(static_cast<Args&&>(args)...);
}
private:
typedef detail::executor_binder_base<T, Executor,
uses_executor<T, Executor>::value> base_type;
};
/// A function object type that adapts a @ref completion_token to specify that
/// the completion handler should have the supplied executor as its associated
/// executor.
/**
* May also be used directly as a completion token, in which case it adapts the
* asynchronous operation's default completion token (or asio::deferred
* if no default is available).
*/
template <typename Executor>
struct partial_executor_binder
{
/// Constructor that specifies associated executor.
explicit partial_executor_binder(const Executor& ex)
: executor_(ex)
{
}
/// Adapt a @ref completion_token to specify that the completion handler
/// should have the executor as its associated executor.
template <typename CompletionToken>
ASIO_NODISCARD inline
constexpr executor_binder<decay_t<CompletionToken>, Executor>
operator()(CompletionToken&& completion_token) const
{
return executor_binder<decay_t<CompletionToken>, Executor>(executor_arg_t(),
static_cast<CompletionToken&&>(completion_token), executor_);
}
//private:
Executor executor_;
};
/// Create a partial completion token that associates an executor.
template <typename Executor>
ASIO_NODISCARD inline partial_executor_binder<Executor>
bind_executor(const Executor& ex,
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
{
return partial_executor_binder<Executor>(ex);
}
/// Associate an object of type @c T with an executor of type @c Executor.
template <typename Executor, typename T>
ASIO_NODISCARD inline executor_binder<decay_t<T>, Executor>
bind_executor(const Executor& ex, T&& t,
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
{
return executor_binder<decay_t<T>, Executor>(
executor_arg_t(), ex, static_cast<T&&>(t));
}
/// Create a partial completion token that associates an execution context's
/// executor.
template <typename ExecutionContext>
ASIO_NODISCARD inline partial_executor_binder<
typename ExecutionContext::executor_type>
bind_executor(ExecutionContext& ctx,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
return partial_executor_binder<typename ExecutionContext::executor_type>(
ctx.get_executor());
}
/// Associate an object of type @c T with an execution context's executor.
template <typename ExecutionContext, typename T>
ASIO_NODISCARD inline executor_binder<decay_t<T>,
typename ExecutionContext::executor_type>
bind_executor(ExecutionContext& ctx, T&& t,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
return executor_binder<decay_t<T>, typename ExecutionContext::executor_type>(
executor_arg_t(), ctx.get_executor(), static_cast<T&&>(t));
}
#if !defined(GENERATING_DOCUMENTATION)
template <typename T, typename Executor>
struct uses_executor<executor_binder<T, Executor>, Executor>
: true_type {};
namespace detail {
template <typename TargetAsyncResult, typename Executor, typename = void>
class executor_binder_completion_handler_async_result
{
public:
template <typename T>
explicit executor_binder_completion_handler_async_result(T&)
{
}
};
template <typename TargetAsyncResult, typename Executor>
class executor_binder_completion_handler_async_result<
TargetAsyncResult, Executor,
void_t<typename TargetAsyncResult::completion_handler_type >>
{
private:
TargetAsyncResult target_;
public:
typedef executor_binder<
typename TargetAsyncResult::completion_handler_type, Executor>
completion_handler_type;
explicit executor_binder_completion_handler_async_result(
typename TargetAsyncResult::completion_handler_type& handler)
: target_(handler)
{
}
auto get() -> decltype(target_.get())
{
return target_.get();
}
};
template <typename TargetAsyncResult, typename = void>
struct executor_binder_async_result_return_type
{
};
template <typename TargetAsyncResult>
struct executor_binder_async_result_return_type<TargetAsyncResult,
void_t<typename TargetAsyncResult::return_type>>
{
typedef typename TargetAsyncResult::return_type return_type;
};
} // namespace detail
template <typename T, typename Executor, typename Signature>
class async_result<executor_binder<T, Executor>, Signature> :
public detail::executor_binder_completion_handler_async_result<
async_result<T, Signature>, Executor>,
public detail::executor_binder_async_result_return_type<
async_result<T, Signature>>
{
public:
explicit async_result(executor_binder<T, Executor>& b)
: detail::executor_binder_completion_handler_async_result<
async_result<T, Signature>, Executor>(b.get())
{
}
template <typename Initiation>
struct init_wrapper : detail::initiation_base<Initiation>
{
using detail::initiation_base<Initiation>::initiation_base;
template <typename Handler, typename... Args>
void operator()(Handler&& handler, const Executor& e, Args&&... args) &&
{
static_cast<Initiation&&>(*this)(
executor_binder<decay_t<Handler>, Executor>(
executor_arg_t(), e, static_cast<Handler&&>(handler)),
static_cast<Args&&>(args)...);
}
template <typename Handler, typename... Args>
void operator()(Handler&& handler,
const Executor& e, Args&&... args) const &
{
static_cast<const Initiation&>(*this)(
executor_binder<decay_t<Handler>, Executor>(
executor_arg_t(), e, static_cast<Handler&&>(handler)),
static_cast<Args&&>(args)...);
}
};
template <typename Initiation, typename RawCompletionToken, typename... Args>
static auto initiate(Initiation&& initiation,
RawCompletionToken&& token, Args&&... args)
-> decltype(
async_initiate<
conditional_t<
is_const<remove_reference_t<RawCompletionToken>>::value, const T, T>,
Signature>(
declval<init_wrapper<decay_t<Initiation>>>(),
token.get(), token.get_executor(), static_cast<Args&&>(args)...))
{
return async_initiate<
conditional_t<
is_const<remove_reference_t<RawCompletionToken>>::value, const T, T>,
Signature>(
init_wrapper<decay_t<Initiation>>(
static_cast<Initiation&&>(initiation)),
token.get(), token.get_executor(), static_cast<Args&&>(args)...);
}
private:
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
};
template <typename Executor, typename... Signatures>
struct async_result<partial_executor_binder<Executor>, Signatures...>
{
template <typename Initiation, typename RawCompletionToken, typename... Args>
static auto initiate(Initiation&& initiation,
RawCompletionToken&& token, Args&&... args)
-> decltype(
async_initiate<Signatures...>(
static_cast<Initiation&&>(initiation),
executor_binder<
default_completion_token_t<associated_executor_t<Initiation>>,
Executor>(executor_arg_t(), token.executor_,
default_completion_token_t<associated_executor_t<Initiation>>{}),
static_cast<Args&&>(args)...))
{
return async_initiate<Signatures...>(
static_cast<Initiation&&>(initiation),
executor_binder<
default_completion_token_t<associated_executor_t<Initiation>>,
Executor>(executor_arg_t(), token.executor_,
default_completion_token_t<associated_executor_t<Initiation>>{}),
static_cast<Args&&>(args)...);
}
};
template <template <typename, typename> class Associator,
typename T, typename Executor, typename DefaultCandidate>
struct associator<Associator, executor_binder<T, Executor>, DefaultCandidate>
: Associator<T, DefaultCandidate>
{
static typename Associator<T, DefaultCandidate>::type get(
const executor_binder<T, Executor>& b) noexcept
{
return Associator<T, DefaultCandidate>::get(b.get());
}
static auto get(const executor_binder<T, Executor>& b,
const DefaultCandidate& c) noexcept
-> decltype(Associator<T, DefaultCandidate>::get(b.get(), c))
{
return Associator<T, DefaultCandidate>::get(b.get(), c);
}
};
template <typename T, typename Executor, typename Executor1>
struct associated_executor<executor_binder<T, Executor>, Executor1>
{
typedef Executor type;
static auto get(const executor_binder<T, Executor>& b,
const Executor1& = Executor1()) noexcept
-> decltype(b.get_executor())
{
return b.get_executor();
}
};
#endif // !defined(GENERATING_DOCUMENTATION)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BIND_EXECUTOR_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/registered_buffer.hpp | //
// registered_buffer.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_REGISTERED_BUFFER_HPP
#define ASIO_REGISTERED_BUFFER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class buffer_registration_base;
} // namespace detail
class const_registered_buffer;
/// Type used to identify a registered buffer.
class registered_buffer_id
{
public:
/// The native buffer identifier type.
typedef int native_handle_type;
/// Default constructor creates an invalid registered buffer identifier.
registered_buffer_id() noexcept
: scope_(0),
index_(-1)
{
}
/// Get the native buffer identifier type.
native_handle_type native_handle() const noexcept
{
return index_;
}
/// Compare two IDs for equality.
friend bool operator==(const registered_buffer_id& lhs,
const registered_buffer_id& rhs) noexcept
{
return lhs.scope_ == rhs.scope_ && lhs.index_ == rhs.index_;
}
/// Compare two IDs for equality.
friend bool operator!=(const registered_buffer_id& lhs,
const registered_buffer_id& rhs) noexcept
{
return lhs.scope_ != rhs.scope_ || lhs.index_ != rhs.index_;
}
private:
friend class detail::buffer_registration_base;
// Hidden constructor used by buffer registration.
registered_buffer_id(const void* scope, int index) noexcept
: scope_(scope),
index_(index)
{
}
const void* scope_;
int index_;
};
/// Holds a registered buffer over modifiable data.
/**
* Satisfies the @c MutableBufferSequence type requirements.
*/
class mutable_registered_buffer
{
public:
/// Default constructor creates an invalid registered buffer.
mutable_registered_buffer() noexcept
: buffer_(),
id_()
{
}
/// Get the underlying mutable buffer.
const mutable_buffer& buffer() const noexcept
{
return buffer_;
}
/// Get a pointer to the beginning of the memory range.
/**
* @returns <tt>buffer().data()</tt>.
*/
void* data() const noexcept
{
return buffer_.data();
}
/// Get the size of the memory range.
/**
* @returns <tt>buffer().size()</tt>.
*/
std::size_t size() const noexcept
{
return buffer_.size();
}
/// Get the registered buffer identifier.
const registered_buffer_id& id() const noexcept
{
return id_;
}
/// Move the start of the buffer by the specified number of bytes.
mutable_registered_buffer& operator+=(std::size_t n) noexcept
{
buffer_ += n;
return *this;
}
private:
friend class detail::buffer_registration_base;
// Hidden constructor used by buffer registration and operators.
mutable_registered_buffer(const mutable_buffer& b,
const registered_buffer_id& i) noexcept
: buffer_(b),
id_(i)
{
}
#if !defined(GENERATING_DOCUMENTATION)
friend mutable_registered_buffer buffer(
const mutable_registered_buffer& b, std::size_t n) noexcept;
#endif // !defined(GENERATING_DOCUMENTATION)
mutable_buffer buffer_;
registered_buffer_id id_;
};
/// Holds a registered buffer over non-modifiable data.
/**
* Satisfies the @c ConstBufferSequence type requirements.
*/
class const_registered_buffer
{
public:
/// Default constructor creates an invalid registered buffer.
const_registered_buffer() noexcept
: buffer_(),
id_()
{
}
/// Construct a non-modifiable buffer from a modifiable one.
const_registered_buffer(
const mutable_registered_buffer& b) noexcept
: buffer_(b.buffer()),
id_(b.id())
{
}
/// Get the underlying constant buffer.
const const_buffer& buffer() const noexcept
{
return buffer_;
}
/// Get a pointer to the beginning of the memory range.
/**
* @returns <tt>buffer().data()</tt>.
*/
const void* data() const noexcept
{
return buffer_.data();
}
/// Get the size of the memory range.
/**
* @returns <tt>buffer().size()</tt>.
*/
std::size_t size() const noexcept
{
return buffer_.size();
}
/// Get the registered buffer identifier.
const registered_buffer_id& id() const noexcept
{
return id_;
}
/// Move the start of the buffer by the specified number of bytes.
const_registered_buffer& operator+=(std::size_t n) noexcept
{
buffer_ += n;
return *this;
}
private:
// Hidden constructor used by operators.
const_registered_buffer(const const_buffer& b,
const registered_buffer_id& i) noexcept
: buffer_(b),
id_(i)
{
}
#if !defined(GENERATING_DOCUMENTATION)
friend const_registered_buffer buffer(
const const_registered_buffer& b, std::size_t n) noexcept;
#endif // !defined(GENERATING_DOCUMENTATION)
const_buffer buffer_;
registered_buffer_id id_;
};
/** @addtogroup buffer_sequence_begin */
/// Get an iterator to the first element in a buffer sequence.
inline const mutable_buffer* buffer_sequence_begin(
const mutable_registered_buffer& b) noexcept
{
return &b.buffer();
}
/// Get an iterator to the first element in a buffer sequence.
inline const const_buffer* buffer_sequence_begin(
const const_registered_buffer& b) noexcept
{
return &b.buffer();
}
/** @} */
/** @addtogroup buffer_sequence_end */
/// Get an iterator to one past the end element in a buffer sequence.
inline const mutable_buffer* buffer_sequence_end(
const mutable_registered_buffer& b) noexcept
{
return &b.buffer() + 1;
}
/// Get an iterator to one past the end element in a buffer sequence.
inline const const_buffer* buffer_sequence_end(
const const_registered_buffer& b) noexcept
{
return &b.buffer() + 1;
}
/** @} */
/** @addtogroup buffer */
/// Obtain a buffer representing the entire registered buffer.
inline mutable_registered_buffer buffer(
const mutable_registered_buffer& b) noexcept
{
return b;
}
/// Obtain a buffer representing the entire registered buffer.
inline const_registered_buffer buffer(
const const_registered_buffer& b) noexcept
{
return b;
}
/// Obtain a buffer representing part of a registered buffer.
inline mutable_registered_buffer buffer(
const mutable_registered_buffer& b, std::size_t n) noexcept
{
return mutable_registered_buffer(buffer(b.buffer_, n), b.id_);
}
/// Obtain a buffer representing part of a registered buffer.
inline const_registered_buffer buffer(
const const_registered_buffer& b, std::size_t n) noexcept
{
return const_registered_buffer(buffer(b.buffer_, n), b.id_);
}
/** @} */
/// Create a new modifiable registered buffer that is offset from the start of
/// another.
/**
* @relates mutable_registered_buffer
*/
inline mutable_registered_buffer operator+(
const mutable_registered_buffer& b, std::size_t n) noexcept
{
mutable_registered_buffer tmp(b);
tmp += n;
return tmp;
}
/// Create a new modifiable buffer that is offset from the start of another.
/**
* @relates mutable_registered_buffer
*/
inline mutable_registered_buffer operator+(std::size_t n,
const mutable_registered_buffer& b) noexcept
{
return b + n;
}
/// Create a new non-modifiable registered buffer that is offset from the start
/// of another.
/**
* @relates const_registered_buffer
*/
inline const_registered_buffer operator+(const const_registered_buffer& b,
std::size_t n) noexcept
{
const_registered_buffer tmp(b);
tmp += n;
return tmp;
}
/// Create a new non-modifiable buffer that is offset from the start of another.
/**
* @relates const_registered_buffer
*/
inline const_registered_buffer operator+(std::size_t n,
const const_registered_buffer& b) noexcept
{
return b + n;
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_REGISTERED_BUFFER_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/read.hpp | //
// read.hpp
// ~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_READ_HPP
#define ASIO_READ_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/async_result.hpp"
#include "asio/buffer.hpp"
#include "asio/completion_condition.hpp"
#include "asio/error.hpp"
#if !defined(ASIO_NO_EXTENSIONS)
# include "asio/basic_streambuf_fwd.hpp"
#endif // !defined(ASIO_NO_EXTENSIONS)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename> class initiate_async_read;
#if !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
template <typename> class initiate_async_read_dynbuf_v1;
#endif // !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
template <typename> class initiate_async_read_dynbuf_v2;
} // namespace detail
/**
* @defgroup read asio::read
*
* @brief The @c read function is a composed operation that reads a certain
* amount of data from a stream before returning.
*/
/*@{*/
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code asio::read(s, asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all()); @endcode
*/
template <typename SyncReadStream, typename MutableBufferSequence>
std::size_t read(SyncReadStream& s, const MutableBufferSequence& buffers,
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes transferred.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code asio::read(s, asio::buffer(data, size), ec); @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all(), ec); @endcode
*/
template <typename SyncReadStream, typename MutableBufferSequence>
std::size_t read(SyncReadStream& s, const MutableBufferSequence& buffers,
asio::error_code& ec,
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code asio::read(s, asio::buffer(data, size),
* asio::transfer_at_least(32)); @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename SyncReadStream, typename MutableBufferSequence,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, const MutableBufferSequence& buffers,
CompletionCondition completion_condition,
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. If an error occurs, returns the total
* number of bytes successfully transferred prior to the error.
*/
template <typename SyncReadStream, typename MutableBufferSequence,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, const MutableBufferSequence& buffers,
CompletionCondition completion_condition, asio::error_code& ec,
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
#if !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all()); @endcode
*/
template <typename SyncReadStream, typename DynamicBuffer_v1>
std::size_t read(SyncReadStream& s,
DynamicBuffer_v1&& buffers,
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes transferred.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all(), ec); @endcode
*/
template <typename SyncReadStream, typename DynamicBuffer_v1>
std::size_t read(SyncReadStream& s,
DynamicBuffer_v1&& buffers,
asio::error_code& ec,
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename SyncReadStream, typename DynamicBuffer_v1,
typename CompletionCondition>
std::size_t read(SyncReadStream& s,
DynamicBuffer_v1&& buffers,
CompletionCondition completion_condition,
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. If an error occurs, returns the total
* number of bytes successfully transferred prior to the error.
*/
template <typename SyncReadStream, typename DynamicBuffer_v1,
typename CompletionCondition>
std::size_t read(SyncReadStream& s,
DynamicBuffer_v1&& buffers,
CompletionCondition completion_condition, asio::error_code& ec,
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
#if !defined(ASIO_NO_EXTENSIONS)
#if !defined(ASIO_NO_IOSTREAM)
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param b The basic_streambuf object into which the data will be read.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, b,
* asio::transfer_all()); @endcode
*/
template <typename SyncReadStream, typename Allocator>
std::size_t read(SyncReadStream& s, basic_streambuf<Allocator>& b);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param b The basic_streambuf object into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes transferred.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, b,
* asio::transfer_all(), ec); @endcode
*/
template <typename SyncReadStream, typename Allocator>
std::size_t read(SyncReadStream& s, basic_streambuf<Allocator>& b,
asio::error_code& ec);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param b The basic_streambuf object into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename SyncReadStream, typename Allocator,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, basic_streambuf<Allocator>& b,
CompletionCondition completion_condition,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param b The basic_streambuf object into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. If an error occurs, returns the total
* number of bytes successfully transferred prior to the error.
*/
template <typename SyncReadStream, typename Allocator,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, basic_streambuf<Allocator>& b,
CompletionCondition completion_condition, asio::error_code& ec,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // !defined(ASIO_NO_EXTENSIONS)
#endif // !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all()); @endcode
*/
template <typename SyncReadStream, typename DynamicBuffer_v2>
std::size_t read(SyncReadStream& s, DynamicBuffer_v2 buffers,
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes transferred.
*
* @note This overload is equivalent to calling:
* @code asio::read(
* s, buffers,
* asio::transfer_all(), ec); @endcode
*/
template <typename SyncReadStream, typename DynamicBuffer_v2>
std::size_t read(SyncReadStream& s, DynamicBuffer_v2 buffers,
asio::error_code& ec,
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @returns The number of bytes transferred.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename SyncReadStream, typename DynamicBuffer_v2,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, DynamicBuffer_v2 buffers,
CompletionCondition completion_condition,
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
/// Attempt to read a certain amount of data from a stream before returning.
/**
* This function is used to read a certain number of bytes of data from a
* stream. The call will block until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* read_some function.
*
* @param s The stream from which the data is to be read. The type must support
* the SyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's read_some function.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. If an error occurs, returns the total
* number of bytes successfully transferred prior to the error.
*/
template <typename SyncReadStream, typename DynamicBuffer_v2,
typename CompletionCondition>
std::size_t read(SyncReadStream& s, DynamicBuffer_v2 buffers,
CompletionCondition completion_condition, asio::error_code& ec,
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0);
/*@}*/
/**
* @defgroup async_read asio::async_read
*
* @brief The @c async_read function is a composed asynchronous operation that
* reads a certain amount of data from a stream before completion.
*/
/*@{*/
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream. Although the buffers object may be copied as necessary, ownership of
* the underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* asio::async_read(s, asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @note This overload is equivalent to calling:
* @code asio::async_read(
* s, buffers,
* asio::transfer_all(),
* handler); @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream, typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0,
constraint_t<
!is_completion_condition<ReadToken>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read<AsyncReadStream>>(),
token, buffers, transfer_all()))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read<AsyncReadStream>(s),
token, buffers, transfer_all());
}
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The supplied buffers are full. That is, the bytes transferred is equal to
* the sum of the buffer sizes.
*
* @li The completion_condition function object returns 0.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers One or more buffers into which the data will be read. The sum
* of the buffer sizes indicates the maximum number of bytes to read from the
* stream. Although the buffers object may be copied as necessary, ownership of
* the underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest async_read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's async_read_some function.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code asio::async_read(s,
* asio::buffer(data, size),
* asio::transfer_at_least(32),
* handler); @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream,
typename MutableBufferSequence, typename CompletionCondition,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, const MutableBufferSequence& buffers,
CompletionCondition completion_condition,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_mutable_buffer_sequence<MutableBufferSequence>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read<AsyncReadStream>>(),
token, buffers,
static_cast<CompletionCondition&&>(completion_condition)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read<AsyncReadStream>(s), token, buffers,
static_cast<CompletionCondition&&>(completion_condition));
}
#if !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note This overload is equivalent to calling:
* @code asio::async_read(
* s, buffers,
* asio::transfer_all(),
* handler); @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream, typename DynamicBuffer_v1,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, DynamicBuffer_v1&& buffers,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_completion_condition<ReadToken>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v1<AsyncReadStream>>(),
token, static_cast<DynamicBuffer_v1&&>(buffers), transfer_all()))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v1<AsyncReadStream>(s),
token, static_cast<DynamicBuffer_v1&&>(buffers), transfer_all());
}
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest async_read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's async_read_some function.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream,
typename DynamicBuffer_v1, typename CompletionCondition,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, DynamicBuffer_v1&& buffers,
CompletionCondition completion_condition,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_dynamic_buffer_v1<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
!is_dynamic_buffer_v2<decay_t<DynamicBuffer_v1>>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v1<AsyncReadStream>>(),
token, static_cast<DynamicBuffer_v1&&>(buffers),
static_cast<CompletionCondition&&>(completion_condition)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v1<AsyncReadStream>(s),
token, static_cast<DynamicBuffer_v1&&>(buffers),
static_cast<CompletionCondition&&>(completion_condition));
}
#if !defined(ASIO_NO_EXTENSIONS)
#if !defined(ASIO_NO_IOSTREAM)
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param b A basic_streambuf object into which the data will be read. Ownership
* of the streambuf is retained by the caller, which must guarantee that it
* remains valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note This overload is equivalent to calling:
* @code asio::async_read(
* s, b,
* asio::transfer_all(),
* handler); @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream, typename Allocator,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, basic_streambuf<Allocator>& b,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
!is_completion_condition<ReadToken>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v1<AsyncReadStream>>(),
token, basic_streambuf_ref<Allocator>(b), transfer_all()))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v1<AsyncReadStream>(s),
token, basic_streambuf_ref<Allocator>(b), transfer_all());
}
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The supplied buffer is full (that is, it has reached maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param b A basic_streambuf object into which the data will be read. Ownership
* of the streambuf is retained by the caller, which must guarantee that it
* remains valid until the completion handler is called.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest async_read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's async_read_some function.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream,
typename Allocator, typename CompletionCondition,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, basic_streambuf<Allocator>& b,
CompletionCondition completion_condition,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v1<AsyncReadStream>>(),
token, basic_streambuf_ref<Allocator>(b),
static_cast<CompletionCondition&&>(completion_condition)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v1<AsyncReadStream>(s),
token, basic_streambuf_ref<Allocator>(b),
static_cast<CompletionCondition&&>(completion_condition));
}
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // !defined(ASIO_NO_EXTENSIONS)
#endif // !defined(ASIO_NO_DYNAMIC_BUFFER_V1)
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li An error occurred.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note This overload is equivalent to calling:
* @code asio::async_read(
* s, buffers,
* asio::transfer_all(),
* handler); @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream, typename DynamicBuffer_v2,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, DynamicBuffer_v2 buffers,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0,
constraint_t<
!is_completion_condition<ReadToken>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v2<AsyncReadStream>>(),
token, static_cast<DynamicBuffer_v2&&>(buffers), transfer_all()))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v2<AsyncReadStream>(s),
token, static_cast<DynamicBuffer_v2&&>(buffers), transfer_all());
}
/// Start an asynchronous operation to read a certain amount of data from a
/// stream.
/**
* This function is used to asynchronously read a certain number of bytes of
* data from a stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately. The asynchronous
* operation will continue until one of the following conditions is true:
*
* @li The specified dynamic buffer sequence is full (that is, it has reached
* maximum size).
*
* @li The completion_condition function object returns 0.
*
* This operation is implemented in terms of zero or more calls to the stream's
* async_read_some function, and is known as a <em>composed operation</em>. The
* program must ensure that the stream performs no other read operations (such
* as async_read, the stream's async_read_some function, or any other composed
* operations that perform reads) until this operation completes.
*
* @param s The stream from which the data is to be read. The type must support
* the AsyncReadStream concept.
*
* @param buffers The dynamic buffer sequence into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param completion_condition The function object to be called to determine
* whether the read operation is complete. The signature of the function object
* must be:
* @code std::size_t completion_condition(
* // Result of latest async_read_some operation.
* const asio::error_code& error,
*
* // Number of bytes transferred so far.
* std::size_t bytes_transferred
* ); @endcode
* A return value of 0 indicates that the read operation is complete. A non-zero
* return value indicates the maximum number of bytes to be read on the next
* call to the stream's async_read_some function.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // Number of bytes copied into the buffers. If an error
* // occurred, this will be the number of bytes successfully
* // transferred prior to the error.
* std::size_t bytes_transferred
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c AsyncReadStream type's
* @c async_read_some operation.
*/
template <typename AsyncReadStream,
typename DynamicBuffer_v2, typename CompletionCondition,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<
typename AsyncReadStream::executor_type>>
inline auto async_read(AsyncReadStream& s, DynamicBuffer_v2 buffers,
CompletionCondition completion_condition,
ReadToken&& token = default_completion_token_t<
typename AsyncReadStream::executor_type>(),
constraint_t<
is_dynamic_buffer_v2<DynamicBuffer_v2>::value
> = 0,
constraint_t<
is_completion_condition<CompletionCondition>::value
> = 0)
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<detail::initiate_async_read_dynbuf_v2<AsyncReadStream>>(),
token, static_cast<DynamicBuffer_v2&&>(buffers),
static_cast<CompletionCondition&&>(completion_condition)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
detail::initiate_async_read_dynbuf_v2<AsyncReadStream>(s),
token, static_cast<DynamicBuffer_v2&&>(buffers),
static_cast<CompletionCondition&&>(completion_condition));
}
/*@}*/
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/read.hpp"
#endif // ASIO_READ_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/buffers_iterator.hpp | //
// buffers_iterator.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERS_ITERATOR_HPP
#define ASIO_BUFFERS_ITERATOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include <iterator>
#include "asio/buffer.hpp"
#include "asio/detail/assert.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail
{
template <bool IsMutable>
struct buffers_iterator_types_helper;
template <>
struct buffers_iterator_types_helper<false>
{
typedef const_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef add_const_t<ByteType> type;
};
};
template <>
struct buffers_iterator_types_helper<true>
{
typedef mutable_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef ByteType type;
};
};
template <typename BufferSequence, typename ByteType>
struct buffers_iterator_types
{
enum
{
is_mutable = is_convertible<
typename BufferSequence::value_type,
mutable_buffer>::value
};
typedef buffers_iterator_types_helper<is_mutable> helper;
typedef typename helper::buffer_type buffer_type;
typedef typename helper::template byte_type<ByteType>::type byte_type;
typedef typename BufferSequence::const_iterator const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<mutable_buffer, ByteType>
{
typedef mutable_buffer buffer_type;
typedef ByteType byte_type;
typedef const mutable_buffer* const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<const_buffer, ByteType>
{
typedef const_buffer buffer_type;
typedef add_const_t<ByteType> byte_type;
typedef const const_buffer* const_iterator;
};
#if !defined(ASIO_NO_DEPRECATED)
template <typename ByteType>
struct buffers_iterator_types<mutable_buffers_1, ByteType>
{
typedef mutable_buffer buffer_type;
typedef ByteType byte_type;
typedef const mutable_buffer* const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<const_buffers_1, ByteType>
{
typedef const_buffer buffer_type;
typedef add_const_t<ByteType> byte_type;
typedef const const_buffer* const_iterator;
};
#endif // !defined(ASIO_NO_DEPRECATED)
}
/// A random access iterator over the bytes in a buffer sequence.
template <typename BufferSequence, typename ByteType = char>
class buffers_iterator
{
private:
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::buffer_type buffer_type;
typedef typename detail::buffers_iterator_types<BufferSequence,
ByteType>::const_iterator buffer_sequence_iterator_type;
public:
/// The type used for the distance between two iterators.
typedef std::ptrdiff_t difference_type;
/// The type of the value pointed to by the iterator.
typedef ByteType value_type;
#if defined(GENERATING_DOCUMENTATION)
/// The type of the result of applying operator->() to the iterator.
/**
* If the buffer sequence stores buffer objects that are convertible to
* mutable_buffer, this is a pointer to a non-const ByteType. Otherwise, a
* pointer to a const ByteType.
*/
typedef const_or_non_const_ByteType* pointer;
#else // defined(GENERATING_DOCUMENTATION)
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type* pointer;
#endif // defined(GENERATING_DOCUMENTATION)
#if defined(GENERATING_DOCUMENTATION)
/// The type of the result of applying operator*() to the iterator.
/**
* If the buffer sequence stores buffer objects that are convertible to
* mutable_buffer, this is a reference to a non-const ByteType. Otherwise, a
* reference to a const ByteType.
*/
typedef const_or_non_const_ByteType& reference;
#else // defined(GENERATING_DOCUMENTATION)
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type& reference;
#endif // defined(GENERATING_DOCUMENTATION)
/// The iterator category.
typedef std::random_access_iterator_tag iterator_category;
/// Default constructor. Creates an iterator in an undefined state.
buffers_iterator()
: current_buffer_(),
current_buffer_position_(0),
begin_(),
current_(),
end_(),
position_(0)
{
}
/// Construct an iterator representing the beginning of the buffers' data.
static buffers_iterator begin(const BufferSequence& buffers)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
__attribute__ ((__noinline__))
#endif // defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
{
buffers_iterator new_iter;
new_iter.begin_ = asio::buffer_sequence_begin(buffers);
new_iter.current_ = asio::buffer_sequence_begin(buffers);
new_iter.end_ = asio::buffer_sequence_end(buffers);
while (new_iter.current_ != new_iter.end_)
{
new_iter.current_buffer_ = *new_iter.current_;
if (new_iter.current_buffer_.size() > 0)
break;
++new_iter.current_;
}
return new_iter;
}
/// Construct an iterator representing the end of the buffers' data.
static buffers_iterator end(const BufferSequence& buffers)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
__attribute__ ((__noinline__))
#endif // defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
{
buffers_iterator new_iter;
new_iter.begin_ = asio::buffer_sequence_begin(buffers);
new_iter.current_ = asio::buffer_sequence_begin(buffers);
new_iter.end_ = asio::buffer_sequence_end(buffers);
while (new_iter.current_ != new_iter.end_)
{
buffer_type buffer = *new_iter.current_;
new_iter.position_ += buffer.size();
++new_iter.current_;
}
return new_iter;
}
/// Dereference an iterator.
reference operator*() const
{
return dereference();
}
/// Dereference an iterator.
pointer operator->() const
{
return &dereference();
}
/// Access an individual element.
reference operator[](std::ptrdiff_t difference) const
{
buffers_iterator tmp(*this);
tmp.advance(difference);
return *tmp;
}
/// Increment operator (prefix).
buffers_iterator& operator++()
{
increment();
return *this;
}
/// Increment operator (postfix).
buffers_iterator operator++(int)
{
buffers_iterator tmp(*this);
++*this;
return tmp;
}
/// Decrement operator (prefix).
buffers_iterator& operator--()
{
decrement();
return *this;
}
/// Decrement operator (postfix).
buffers_iterator operator--(int)
{
buffers_iterator tmp(*this);
--*this;
return tmp;
}
/// Addition operator.
buffers_iterator& operator+=(std::ptrdiff_t difference)
{
advance(difference);
return *this;
}
/// Subtraction operator.
buffers_iterator& operator-=(std::ptrdiff_t difference)
{
advance(-difference);
return *this;
}
/// Addition operator.
friend buffers_iterator operator+(const buffers_iterator& iter,
std::ptrdiff_t difference)
{
buffers_iterator tmp(iter);
tmp.advance(difference);
return tmp;
}
/// Addition operator.
friend buffers_iterator operator+(std::ptrdiff_t difference,
const buffers_iterator& iter)
{
buffers_iterator tmp(iter);
tmp.advance(difference);
return tmp;
}
/// Subtraction operator.
friend buffers_iterator operator-(const buffers_iterator& iter,
std::ptrdiff_t difference)
{
buffers_iterator tmp(iter);
tmp.advance(-difference);
return tmp;
}
/// Subtraction operator.
friend std::ptrdiff_t operator-(const buffers_iterator& a,
const buffers_iterator& b)
{
return b.distance_to(a);
}
/// Test two iterators for equality.
friend bool operator==(const buffers_iterator& a, const buffers_iterator& b)
{
return a.equal(b);
}
/// Test two iterators for inequality.
friend bool operator!=(const buffers_iterator& a, const buffers_iterator& b)
{
return !a.equal(b);
}
/// Compare two iterators.
friend bool operator<(const buffers_iterator& a, const buffers_iterator& b)
{
return a.distance_to(b) > 0;
}
/// Compare two iterators.
friend bool operator<=(const buffers_iterator& a, const buffers_iterator& b)
{
return !(b < a);
}
/// Compare two iterators.
friend bool operator>(const buffers_iterator& a, const buffers_iterator& b)
{
return b < a;
}
/// Compare two iterators.
friend bool operator>=(const buffers_iterator& a, const buffers_iterator& b)
{
return !(a < b);
}
private:
// Dereference the iterator.
reference dereference() const
{
return static_cast<pointer>(
current_buffer_.data())[current_buffer_position_];
}
// Compare two iterators for equality.
bool equal(const buffers_iterator& other) const
{
return position_ == other.position_;
}
// Increment the iterator.
void increment()
{
ASIO_ASSERT(current_ != end_ && "iterator out of bounds");
++position_;
// Check if the increment can be satisfied by the current buffer.
++current_buffer_position_;
if (current_buffer_position_ != current_buffer_.size())
return;
// Find the next non-empty buffer.
++current_;
current_buffer_position_ = 0;
while (current_ != end_)
{
current_buffer_ = *current_;
if (current_buffer_.size() > 0)
return;
++current_;
}
}
// Decrement the iterator.
void decrement()
{
ASIO_ASSERT(position_ > 0 && "iterator out of bounds");
--position_;
// Check if the decrement can be satisfied by the current buffer.
if (current_buffer_position_ != 0)
{
--current_buffer_position_;
return;
}
// Find the previous non-empty buffer.
buffer_sequence_iterator_type iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = buffer.size();
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size - 1;
return;
}
}
}
// Advance the iterator by the specified distance.
void advance(std::ptrdiff_t n)
{
if (n > 0)
{
ASIO_ASSERT(current_ != end_ && "iterator out of bounds");
for (;;)
{
std::ptrdiff_t current_buffer_balance
= current_buffer_.size() - current_buffer_position_;
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_balance > n)
{
position_ += n;
current_buffer_position_ += n;
return;
}
// Update position.
n -= current_buffer_balance;
position_ += current_buffer_balance;
// Move to next buffer. If it is empty then it will be skipped on the
// next iteration of this loop.
if (++current_ == end_)
{
ASIO_ASSERT(n == 0 && "iterator out of bounds");
current_buffer_ = buffer_type();
current_buffer_position_ = 0;
return;
}
current_buffer_ = *current_;
current_buffer_position_ = 0;
}
}
else if (n < 0)
{
std::size_t abs_n = -n;
ASIO_ASSERT(position_ >= abs_n && "iterator out of bounds");
for (;;)
{
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_position_ >= abs_n)
{
position_ -= abs_n;
current_buffer_position_ -= abs_n;
return;
}
// Update position.
abs_n -= current_buffer_position_;
position_ -= current_buffer_position_;
// Check if we've reached the beginning of the buffers.
if (current_ == begin_)
{
ASIO_ASSERT(abs_n == 0 && "iterator out of bounds");
current_buffer_position_ = 0;
return;
}
// Find the previous non-empty buffer.
buffer_sequence_iterator_type iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = buffer.size();
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size;
break;
}
}
}
}
}
// Determine the distance between two iterators.
std::ptrdiff_t distance_to(const buffers_iterator& other) const
{
return other.position_ - position_;
}
buffer_type current_buffer_;
std::size_t current_buffer_position_;
buffer_sequence_iterator_type begin_;
buffer_sequence_iterator_type current_;
buffer_sequence_iterator_type end_;
std::size_t position_;
};
/// Construct an iterator representing the beginning of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_begin(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::begin(buffers);
}
/// Construct an iterator representing the end of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_end(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::end(buffers);
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BUFFERS_ITERATOR_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/system_context.hpp | //
// system_context.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SYSTEM_CONTEXT_HPP
#define ASIO_SYSTEM_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/scheduler.hpp"
#include "asio/detail/thread_group.hpp"
#include "asio/execution.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
template <typename Blocking, typename Relationship, typename Allocator>
class basic_system_executor;
/// The executor context for the system executor.
class system_context : public execution_context
{
public:
/// The executor type associated with the context.
typedef basic_system_executor<
execution::blocking_t::possibly_t,
execution::relationship_t::fork_t,
std::allocator<void>
> executor_type;
/// Destructor shuts down all threads in the system thread pool.
ASIO_DECL ~system_context();
/// Obtain an executor for the context.
executor_type get_executor() noexcept;
/// Signal all threads in the system thread pool to stop.
ASIO_DECL void stop();
/// Determine whether the system thread pool has been stopped.
ASIO_DECL bool stopped() const noexcept;
/// Join all threads in the system thread pool.
ASIO_DECL void join();
#if defined(GENERATING_DOCUMENTATION)
private:
#endif // defined(GENERATING_DOCUMENTATION)
// Constructor creates all threads in the system thread pool.
ASIO_DECL system_context();
private:
template <typename, typename, typename> friend class basic_system_executor;
struct thread_function;
// Helper function to create the underlying scheduler.
ASIO_DECL detail::scheduler& add_scheduler(detail::scheduler* s);
// The underlying scheduler.
detail::scheduler& scheduler_;
// The threads in the system thread pool.
detail::thread_group threads_;
// The number of threads in the pool.
std::size_t num_threads_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/system_context.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/impl/system_context.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SYSTEM_CONTEXT_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_socket_acceptor.hpp | //
// basic_socket_acceptor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_ACCEPTOR_HPP
#define ASIO_BASIC_SOCKET_ACCEPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <utility>
#include "asio/detail/config.hpp"
#include "asio/any_io_executor.hpp"
#include "asio/basic_socket.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/socket_base.hpp"
#if defined(ASIO_WINDOWS_RUNTIME)
# include "asio/detail/null_socket_service.hpp"
#elif defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_socket_service.hpp"
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
# include "asio/detail/io_uring_socket_service.hpp"
#else
# include "asio/detail/reactive_socket_service.hpp"
#endif
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL)
#define ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_socket_acceptor;
#endif // !defined(ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL)
/// Provides the ability to accept new connections.
/**
* The basic_socket_acceptor class template is used for accepting new socket
* connections.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* Synchronous @c accept operations are thread safe, if the underlying
* operating system calls are also thread safe. This means that it is permitted
* to perform concurrent calls to synchronous @c accept operations on a single
* socket object. Other synchronous operations, such as @c open or @c close, are
* not thread safe.
*
* @par Example
* Opening a socket acceptor with the SO_REUSEADDR option enabled:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* asio::ip::tcp::endpoint endpoint(asio::ip::tcp::v4(), port);
* acceptor.open(endpoint.protocol());
* acceptor.set_option(asio::ip::tcp::acceptor::reuse_address(true));
* acceptor.bind(endpoint);
* acceptor.listen();
* @endcode
*/
template <typename Protocol, typename Executor>
class basic_socket_acceptor
: public socket_base
{
private:
class initiate_async_wait;
class initiate_async_accept;
class initiate_async_move_accept;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the acceptor type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The socket type when rebound to the specified executor.
typedef basic_socket_acceptor<Protocol, Executor1> other;
};
/// The native representation of an acceptor.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_WINDOWS_RUNTIME)
typedef typename detail::null_socket_service<
Protocol>::native_handle_type native_handle_type;
#elif defined(ASIO_HAS_IOCP)
typedef typename detail::win_iocp_socket_service<
Protocol>::native_handle_type native_handle_type;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
typedef typename detail::io_uring_socket_service<
Protocol>::native_handle_type native_handle_type;
#else
typedef typename detail::reactive_socket_service<
Protocol>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct an acceptor without opening it.
/**
* This constructor creates an acceptor without opening it to listen for new
* connections. The open() function must be called before the acceptor can
* accept new socket connections.
*
* @param ex The I/O executor that the acceptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*/
explicit basic_socket_acceptor(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct an acceptor without opening it.
/**
* This constructor creates an acceptor without opening it to listen for new
* connections. The open() function must be called before the acceptor can
* accept new socket connections.
*
* @param context An execution context which provides the I/O executor that
* the acceptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the acceptor.
*/
template <typename ExecutionContext>
explicit basic_socket_acceptor(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
}
/// Construct an open acceptor.
/**
* This constructor creates an acceptor and automatically opens it.
*
* @param ex The I/O executor that the acceptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
basic_socket_acceptor(const executor_type& ex, const protocol_type& protocol)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct an open acceptor.
/**
* This constructor creates an acceptor and automatically opens it.
*
* @param context An execution context which provides the I/O executor that
* the acceptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_socket_acceptor(ExecutionContext& context,
const protocol_type& protocol,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct an acceptor opened on the given endpoint.
/**
* This constructor creates an acceptor and automatically opens it to listen
* for new connections on the specified endpoint.
*
* @param ex The I/O executor that the acceptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param endpoint An endpoint on the local machine on which the acceptor
* will listen for new connections.
*
* @param reuse_addr Whether the constructor should set the socket option
* socket_base::reuse_address.
*
* @throws asio::system_error Thrown on failure.
*
* @note This constructor is equivalent to the following code:
* @code
* basic_socket_acceptor<Protocol> acceptor(my_context);
* acceptor.open(endpoint.protocol());
* if (reuse_addr)
* acceptor.set_option(socket_base::reuse_address(true));
* acceptor.bind(endpoint);
* acceptor.listen();
* @endcode
*/
basic_socket_acceptor(const executor_type& ex,
const endpoint_type& endpoint, bool reuse_addr = true)
: impl_(0, ex)
{
asio::error_code ec;
const protocol_type protocol = endpoint.protocol();
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
if (reuse_addr)
{
impl_.get_service().set_option(impl_.get_implementation(),
socket_base::reuse_address(true), ec);
asio::detail::throw_error(ec, "set_option");
}
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
impl_.get_service().listen(impl_.get_implementation(),
socket_base::max_listen_connections, ec);
asio::detail::throw_error(ec, "listen");
}
/// Construct an acceptor opened on the given endpoint.
/**
* This constructor creates an acceptor and automatically opens it to listen
* for new connections on the specified endpoint.
*
* @param context An execution context which provides the I/O executor that
* the acceptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the acceptor.
*
* @param endpoint An endpoint on the local machine on which the acceptor
* will listen for new connections.
*
* @param reuse_addr Whether the constructor should set the socket option
* socket_base::reuse_address.
*
* @throws asio::system_error Thrown on failure.
*
* @note This constructor is equivalent to the following code:
* @code
* basic_socket_acceptor<Protocol> acceptor(my_context);
* acceptor.open(endpoint.protocol());
* if (reuse_addr)
* acceptor.set_option(socket_base::reuse_address(true));
* acceptor.bind(endpoint);
* acceptor.listen();
* @endcode
*/
template <typename ExecutionContext>
basic_socket_acceptor(ExecutionContext& context,
const endpoint_type& endpoint, bool reuse_addr = true,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
const protocol_type protocol = endpoint.protocol();
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
if (reuse_addr)
{
impl_.get_service().set_option(impl_.get_implementation(),
socket_base::reuse_address(true), ec);
asio::detail::throw_error(ec, "set_option");
}
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
impl_.get_service().listen(impl_.get_implementation(),
socket_base::max_listen_connections, ec);
asio::detail::throw_error(ec, "listen");
}
/// Construct a basic_socket_acceptor on an existing native acceptor.
/**
* This constructor creates an acceptor object to hold an existing native
* acceptor.
*
* @param ex The I/O executor that the acceptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_acceptor A native acceptor.
*
* @throws asio::system_error Thrown on failure.
*/
basic_socket_acceptor(const executor_type& ex,
const protocol_type& protocol, const native_handle_type& native_acceptor)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_acceptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a basic_socket_acceptor on an existing native acceptor.
/**
* This constructor creates an acceptor object to hold an existing native
* acceptor.
*
* @param context An execution context which provides the I/O executor that
* the acceptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_acceptor A native acceptor.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_socket_acceptor(ExecutionContext& context,
const protocol_type& protocol, const native_handle_type& native_acceptor,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_acceptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct a basic_socket_acceptor from another.
/**
* This constructor moves an acceptor from one object to another.
*
* @param other The other basic_socket_acceptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket_acceptor(const executor_type&)
* constructor.
*/
basic_socket_acceptor(basic_socket_acceptor&& other) noexcept
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_socket_acceptor from another.
/**
* This assignment operator moves an acceptor from one object to another.
*
* @param other The other basic_socket_acceptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket_acceptor(const executor_type&)
* constructor.
*/
basic_socket_acceptor& operator=(basic_socket_acceptor&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All socket acceptors have access to each other's implementations.
template <typename Protocol1, typename Executor1>
friend class basic_socket_acceptor;
/// Move-construct a basic_socket_acceptor from an acceptor of another
/// protocol type.
/**
* This constructor moves an acceptor from one object to another.
*
* @param other The other basic_socket_acceptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket_acceptor(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
basic_socket_acceptor(basic_socket_acceptor<Protocol1, Executor1>&& other,
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value
> = 0)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_socket_acceptor from an acceptor of another protocol
/// type.
/**
* This assignment operator moves an acceptor from one object to another.
*
* @param other The other basic_socket_acceptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket_acceptor(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value,
basic_socket_acceptor&
> operator=(basic_socket_acceptor<Protocol1, Executor1>&& other)
{
basic_socket_acceptor tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
/// Destroys the acceptor.
/**
* This function destroys the acceptor, cancelling any outstanding
* asynchronous operations associated with the acceptor as if by calling
* @c cancel.
*/
~basic_socket_acceptor()
{
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Open the acceptor using the specified protocol.
/**
* This function opens the socket acceptor so that it will use the specified
* protocol.
*
* @param protocol An object specifying which protocol is to be used.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* acceptor.open(asio::ip::tcp::v4());
* @endcode
*/
void open(const protocol_type& protocol = protocol_type())
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Open the acceptor using the specified protocol.
/**
* This function opens the socket acceptor so that it will use the specified
* protocol.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* asio::error_code ec;
* acceptor.open(asio::ip::tcp::v4(), ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID open(const protocol_type& protocol,
asio::error_code& ec)
{
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Assigns an existing native acceptor to the acceptor.
/*
* This function opens the acceptor to hold an existing native acceptor.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_acceptor A native acceptor.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const protocol_type& protocol,
const native_handle_type& native_acceptor)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_acceptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assigns an existing native acceptor to the acceptor.
/*
* This function opens the acceptor to hold an existing native acceptor.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_acceptor A native acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const protocol_type& protocol,
const native_handle_type& native_acceptor, asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_acceptor, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the acceptor is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Bind the acceptor to the given local endpoint.
/**
* This function binds the socket acceptor to the specified endpoint on the
* local machine.
*
* @param endpoint An endpoint on the local machine to which the socket
* acceptor will be bound.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* asio::ip::tcp::endpoint endpoint(asio::ip::tcp::v4(), 12345);
* acceptor.open(endpoint.protocol());
* acceptor.bind(endpoint);
* @endcode
*/
void bind(const endpoint_type& endpoint)
{
asio::error_code ec;
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
}
/// Bind the acceptor to the given local endpoint.
/**
* This function binds the socket acceptor to the specified endpoint on the
* local machine.
*
* @param endpoint An endpoint on the local machine to which the socket
* acceptor will be bound.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* asio::ip::tcp::endpoint endpoint(asio::ip::tcp::v4(), 12345);
* acceptor.open(endpoint.protocol());
* asio::error_code ec;
* acceptor.bind(endpoint, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID bind(const endpoint_type& endpoint,
asio::error_code& ec)
{
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Place the acceptor into the state where it will listen for new
/// connections.
/**
* This function puts the socket acceptor into the state where it may accept
* new connections.
*
* @param backlog The maximum length of the queue of pending connections.
*
* @throws asio::system_error Thrown on failure.
*/
void listen(int backlog = socket_base::max_listen_connections)
{
asio::error_code ec;
impl_.get_service().listen(impl_.get_implementation(), backlog, ec);
asio::detail::throw_error(ec, "listen");
}
/// Place the acceptor into the state where it will listen for new
/// connections.
/**
* This function puts the socket acceptor into the state where it may accept
* new connections.
*
* @param backlog The maximum length of the queue of pending connections.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::error_code ec;
* acceptor.listen(asio::socket_base::max_listen_connections, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID listen(int backlog, asio::error_code& ec)
{
impl_.get_service().listen(impl_.get_implementation(), backlog, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Close the acceptor.
/**
* This function is used to close the acceptor. Any asynchronous accept
* operations will be cancelled immediately.
*
* A subsequent call to open() is required before the acceptor can again be
* used to again perform socket accept operations.
*
* @throws asio::system_error Thrown on failure.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the acceptor.
/**
* This function is used to close the acceptor. Any asynchronous accept
* operations will be cancelled immediately.
*
* A subsequent call to open() is required before the acceptor can again be
* used to again perform socket accept operations.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::error_code ec;
* acceptor.close(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Release ownership of the underlying native acceptor.
/**
* This function causes all outstanding asynchronous accept operations to
* finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error. Ownership of the
* native acceptor is then transferred to the caller.
*
* @throws asio::system_error Thrown on failure.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release()
{
asio::error_code ec;
native_handle_type s = impl_.get_service().release(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "release");
return s;
}
/// Release ownership of the underlying native acceptor.
/**
* This function causes all outstanding asynchronous accept operations to
* finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error. Ownership of the
* native acceptor is then transferred to the caller.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release(asio::error_code& ec)
{
return impl_.get_service().release(impl_.get_implementation(), ec);
}
/// Get the native acceptor representation.
/**
* This function may be used to obtain the underlying representation of the
* acceptor. This is intended to allow access to native acceptor functionality
* that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the acceptor.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the acceptor.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Set an option on the acceptor.
/**
* This function is used to set an option on the acceptor.
*
* @param option The new option value to be set on the acceptor.
*
* @throws asio::system_error Thrown on failure.
*
* @sa SettableSocketOption @n
* asio::socket_base::reuse_address
* asio::socket_base::enable_connection_aborted
*
* @par Example
* Setting the SOL_SOCKET/SO_REUSEADDR option:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::reuse_address option(true);
* acceptor.set_option(option);
* @endcode
*/
template <typename SettableSocketOption>
void set_option(const SettableSocketOption& option)
{
asio::error_code ec;
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "set_option");
}
/// Set an option on the acceptor.
/**
* This function is used to set an option on the acceptor.
*
* @param option The new option value to be set on the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa SettableSocketOption @n
* asio::socket_base::reuse_address
* asio::socket_base::enable_connection_aborted
*
* @par Example
* Setting the SOL_SOCKET/SO_REUSEADDR option:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::reuse_address option(true);
* asio::error_code ec;
* acceptor.set_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename SettableSocketOption>
ASIO_SYNC_OP_VOID set_option(const SettableSocketOption& option,
asio::error_code& ec)
{
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get an option from the acceptor.
/**
* This function is used to get the current value of an option on the
* acceptor.
*
* @param option The option value to be obtained from the acceptor.
*
* @throws asio::system_error Thrown on failure.
*
* @sa GettableSocketOption @n
* asio::socket_base::reuse_address
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_REUSEADDR option:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::reuse_address option;
* acceptor.get_option(option);
* bool is_set = option.get();
* @endcode
*/
template <typename GettableSocketOption>
void get_option(GettableSocketOption& option) const
{
asio::error_code ec;
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "get_option");
}
/// Get an option from the acceptor.
/**
* This function is used to get the current value of an option on the
* acceptor.
*
* @param option The option value to be obtained from the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa GettableSocketOption @n
* asio::socket_base::reuse_address
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_REUSEADDR option:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::reuse_address option;
* asio::error_code ec;
* acceptor.get_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* bool is_set = option.get();
* @endcode
*/
template <typename GettableSocketOption>
ASIO_SYNC_OP_VOID get_option(GettableSocketOption& option,
asio::error_code& ec) const
{
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform an IO control command on the acceptor.
/**
* This function is used to execute an IO control command on the acceptor.
*
* @param command The IO control command to be performed on the acceptor.
*
* @throws asio::system_error Thrown on failure.
*
* @sa IoControlCommand @n
* asio::socket_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::non_blocking_io command(true);
* socket.io_control(command);
* @endcode
*/
template <typename IoControlCommand>
void io_control(IoControlCommand& command)
{
asio::error_code ec;
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
asio::detail::throw_error(ec, "io_control");
}
/// Perform an IO control command on the acceptor.
/**
* This function is used to execute an IO control command on the acceptor.
*
* @param command The IO control command to be performed on the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa IoControlCommand @n
* asio::socket_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::acceptor::non_blocking_io command(true);
* asio::error_code ec;
* socket.io_control(command, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename IoControlCommand>
ASIO_SYNC_OP_VOID io_control(IoControlCommand& command,
asio::error_code& ec)
{
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the acceptor.
/**
* @returns @c true if the acceptor's synchronous operations will fail with
* asio::error::would_block if they are unable to perform the requested
* operation immediately. If @c false, synchronous operations will block
* until complete.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
bool non_blocking() const
{
return impl_.get_service().non_blocking(impl_.get_implementation());
}
/// Sets the non-blocking mode of the acceptor.
/**
* @param mode If @c true, the acceptor's synchronous operations will fail
* with asio::error::would_block if they are unable to perform the
* requested operation immediately. If @c false, synchronous operations will
* block until complete.
*
* @throws asio::system_error Thrown on failure.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
void non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "non_blocking");
}
/// Sets the non-blocking mode of the acceptor.
/**
* @param mode If @c true, the acceptor's synchronous operations will fail
* with asio::error::would_block if they are unable to perform the
* requested operation immediately. If @c false, synchronous operations will
* block until complete.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
ASIO_SYNC_OP_VOID non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the native acceptor implementation.
/**
* This function is used to retrieve the non-blocking mode of the underlying
* native acceptor. This mode has no effect on the behaviour of the acceptor
* object's synchronous operations.
*
* @returns @c true if the underlying acceptor is in non-blocking mode and
* direct system calls may fail with asio::error::would_block (or the
* equivalent system error).
*
* @note The current non-blocking mode is cached by the acceptor object.
* Consequently, the return value may be incorrect if the non-blocking mode
* was set directly on the native acceptor.
*/
bool native_non_blocking() const
{
return impl_.get_service().native_non_blocking(impl_.get_implementation());
}
/// Sets the non-blocking mode of the native acceptor implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native acceptor. It has no effect on the behaviour of the acceptor object's
* synchronous operations.
*
* @param mode If @c true, the underlying acceptor is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @throws asio::system_error Thrown on failure. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*/
void native_non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "native_non_blocking");
}
/// Sets the non-blocking mode of the native acceptor implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native acceptor. It has no effect on the behaviour of the acceptor object's
* synchronous operations.
*
* @param mode If @c true, the underlying acceptor is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @param ec Set to indicate what error occurred, if any. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*/
ASIO_SYNC_OP_VOID native_non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the local endpoint of the acceptor.
/**
* This function is used to obtain the locally bound endpoint of the acceptor.
*
* @returns An object that represents the local endpoint of the acceptor.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint();
* @endcode
*/
endpoint_type local_endpoint() const
{
asio::error_code ec;
endpoint_type ep = impl_.get_service().local_endpoint(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "local_endpoint");
return ep;
}
/// Get the local endpoint of the acceptor.
/**
* This function is used to obtain the locally bound endpoint of the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns An object that represents the local endpoint of the acceptor.
* Returns a default-constructed endpoint object if an error occurred and the
* error handler did not throw an exception.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::error_code ec;
* asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
endpoint_type local_endpoint(asio::error_code& ec) const
{
return impl_.get_service().local_endpoint(impl_.get_implementation(), ec);
}
/// Wait for the acceptor to become ready to read, ready to write, or to have
/// pending error conditions.
/**
* This function is used to perform a blocking wait for an acceptor to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired acceptor state.
*
* @par Example
* Waiting for an acceptor to become readable.
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* acceptor.wait(asio::ip::tcp::acceptor::wait_read);
* @endcode
*/
void wait(wait_type w)
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), w, ec);
asio::detail::throw_error(ec, "wait");
}
/// Wait for the acceptor to become ready to read, ready to write, or to have
/// pending error conditions.
/**
* This function is used to perform a blocking wait for an acceptor to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired acceptor state.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* Waiting for an acceptor to become readable.
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::error_code ec;
* acceptor.wait(asio::ip::tcp::acceptor::wait_read, ec);
* @endcode
*/
ASIO_SYNC_OP_VOID wait(wait_type w, asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), w, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Asynchronously wait for the acceptor to become ready to read, ready to
/// write, or to have pending error conditions.
/**
* This function is used to perform an asynchronous wait for an acceptor to
* enter a ready to read, write or error condition state. It is an initiating
* function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param w Specifies the desired acceptor state.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the wait completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Example
* @code
* void wait_handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Wait succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* acceptor.async_wait(
* asio::ip::tcp::acceptor::wait_read,
* wait_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitToken = default_completion_token_t<executor_type>>
auto async_wait(wait_type w,
WaitToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WaitToken, void (asio::error_code)>(
declval<initiate_async_wait>(), token, w))
{
return async_initiate<WaitToken, void (asio::error_code)>(
initiate_async_wait(this), token, w);
}
#if !defined(ASIO_NO_EXTENSIONS)
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer into the
* given socket. The function call will block until a new connection has been
* accepted successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(my_context);
* acceptor.accept(socket);
* @endcode
*/
template <typename Protocol1, typename Executor1>
void accept(basic_socket<Protocol1, Executor1>& peer,
constraint_t<
is_convertible<Protocol, Protocol1>::value
> = 0)
{
asio::error_code ec;
impl_.get_service().accept(impl_.get_implementation(),
peer, static_cast<endpoint_type*>(0), ec);
asio::detail::throw_error(ec, "accept");
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer into the
* given socket. The function call will block until a new connection has been
* accepted successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(my_context);
* asio::error_code ec;
* acceptor.accept(socket, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename Protocol1, typename Executor1>
ASIO_SYNC_OP_VOID accept(
basic_socket<Protocol1, Executor1>& peer, asio::error_code& ec,
constraint_t<
is_convertible<Protocol, Protocol1>::value
> = 0)
{
impl_.get_service().accept(impl_.get_implementation(),
peer, static_cast<endpoint_type*>(0), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection into a
* socket, and additionally obtain the endpoint of the remote peer. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param peer The socket into which the new connection will be accepted.
* Ownership of the peer object is retained by the caller, which must
* guarantee that it is valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(my_context);
* acceptor.async_accept(socket, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename Protocol1, typename Executor1,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
AcceptToken = default_completion_token_t<executor_type>>
auto async_accept(basic_socket<Protocol1, Executor1>& peer,
AcceptToken&& token = default_completion_token_t<executor_type>(),
constraint_t<
is_convertible<Protocol, Protocol1>::value
> = 0)
-> decltype(
async_initiate<AcceptToken, void (asio::error_code)>(
declval<initiate_async_accept>(), token,
&peer, static_cast<endpoint_type*>(0)))
{
return async_initiate<AcceptToken, void (asio::error_code)>(
initiate_async_accept(this), token,
&peer, static_cast<endpoint_type*>(0));
}
/// Accept a new connection and obtain the endpoint of the peer
/**
* This function is used to accept a new connection from a peer into the
* given socket, and additionally provide the endpoint of the remote peer.
* The function call will block until a new connection has been accepted
* successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param peer_endpoint An endpoint object which will receive the endpoint of
* the remote peer.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(my_context);
* asio::ip::tcp::endpoint endpoint;
* acceptor.accept(socket, endpoint);
* @endcode
*/
template <typename Executor1>
void accept(basic_socket<protocol_type, Executor1>& peer,
endpoint_type& peer_endpoint)
{
asio::error_code ec;
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
asio::detail::throw_error(ec, "accept");
}
/// Accept a new connection and obtain the endpoint of the peer
/**
* This function is used to accept a new connection from a peer into the
* given socket, and additionally provide the endpoint of the remote peer.
* The function call will block until a new connection has been accepted
* successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param peer_endpoint An endpoint object which will receive the endpoint of
* the remote peer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(my_context);
* asio::ip::tcp::endpoint endpoint;
* asio::error_code ec;
* acceptor.accept(socket, endpoint, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename Executor1>
ASIO_SYNC_OP_VOID accept(basic_socket<protocol_type, Executor1>& peer,
endpoint_type& peer_endpoint, asio::error_code& ec)
{
impl_.get_service().accept(
impl_.get_implementation(), peer, &peer_endpoint, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection into a
* socket, and additionally obtain the endpoint of the remote peer. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param peer The socket into which the new connection will be accepted.
* Ownership of the peer object is retained by the caller, which must
* guarantee that it is valid until the completion handler is called.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written. Ownership of the peer_endpoint object is
* retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename Executor1,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
AcceptToken = default_completion_token_t<executor_type>>
auto async_accept(basic_socket<protocol_type, Executor1>& peer,
endpoint_type& peer_endpoint,
AcceptToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<AcceptToken, void (asio::error_code)>(
declval<initiate_async_accept>(), token, &peer, &peer_endpoint))
{
return async_initiate<AcceptToken, void (asio::error_code)>(
initiate_async_accept(this), token, &peer, &peer_endpoint);
}
#endif // !defined(ASIO_NO_EXTENSIONS)
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept());
* @endcode
*/
typename Protocol::socket::template rebind_executor<executor_type>::other
accept()
{
asio::error_code ec;
typename Protocol::socket::template rebind_executor<
executor_type>::other peer(impl_.get_executor());
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept(ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
typename Protocol::socket::template rebind_executor<executor_type>::other
accept(asio::error_code& ec)
{
typename Protocol::socket::template rebind_executor<
executor_type>::other peer(impl_.get_executor());
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
return peer;
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template
* rebind_executor<executor_type>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template
* rebind_executor<executor_type>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* acceptor.async_accept(accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
executor_type>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(
MoveAcceptToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code, typename Protocol::socket::template
rebind_executor<executor_type>::other)>(
declval<initiate_async_move_accept>(), token,
declval<const executor_type&>(), static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template
rebind_executor<executor_type>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code, typename Protocol::socket::template
rebind_executor<executor_type>::other)>(
initiate_async_move_accept(this), token,
impl_.get_executor(), static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template
rebind_executor<executor_type>::other*>(0));
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly
* accepted socket.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept());
* @endcode
*/
template <typename Executor1>
typename Protocol::socket::template rebind_executor<Executor1>::other
accept(const Executor1& ex,
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
{
asio::error_code ec;
typename Protocol::socket::template
rebind_executor<Executor1>::other peer(ex);
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept());
* @endcode
*/
template <typename ExecutionContext>
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other
accept(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
asio::error_code ec;
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other peer(context);
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly accepted
* socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept(my_context2, ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename Executor1>
typename Protocol::socket::template rebind_executor<Executor1>::other
accept(const Executor1& ex, asio::error_code& ec,
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
{
typename Protocol::socket::template
rebind_executor<Executor1>::other peer(ex);
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::socket socket(acceptor.accept(my_context2, ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename ExecutionContext>
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other
accept(ExecutionContext& context, asio::error_code& ec,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other peer(context);
impl_.get_service().accept(impl_.get_implementation(), peer, 0, ec);
return peer;
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly accepted
* socket.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template rebind_executor<
* Executor1>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template rebind_executor<
* Executor1>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* acceptor.async_accept(my_context2, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename Executor1,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
constraint_t<is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value,
Executor1>>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(const Executor1& ex,
MoveAcceptToken&& token = default_completion_token_t<executor_type>(),
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
Executor1>::other)>(
declval<initiate_async_move_accept>(), token,
ex, static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template
rebind_executor<Executor1>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
Executor1>::other)>(
initiate_async_move_accept(this), token,
ex, static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template
rebind_executor<Executor1>::other*>(0));
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template rebind_executor<
* typename ExecutionContext::executor_type>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template rebind_executor<
* typename ExecutionContext::executor_type>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* acceptor.async_accept(my_context2, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ExecutionContext,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(ExecutionContext& context,
MoveAcceptToken&& token = default_completion_token_t<executor_type>(),
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)>(
declval<initiate_async_move_accept>(), token,
context.get_executor(), static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)>(
initiate_async_move_accept(this), token,
context.get_executor(), static_cast<endpoint_type*>(0),
static_cast<typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other*>(0));
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(acceptor.accept(endpoint));
* @endcode
*/
typename Protocol::socket::template rebind_executor<executor_type>::other
accept(endpoint_type& peer_endpoint)
{
asio::error_code ec;
typename Protocol::socket::template rebind_executor<
executor_type>::other peer(impl_.get_executor());
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(acceptor.accept(endpoint, ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
typename Protocol::socket::template rebind_executor<executor_type>::other
accept(endpoint_type& peer_endpoint, asio::error_code& ec)
{
typename Protocol::socket::template rebind_executor<
executor_type>::other peer(impl_.get_executor());
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
return peer;
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written. Ownership of the peer_endpoint object is
* retained by the caller, which must guarantee that it is valid until the
* completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template
* rebind_executor<executor_type>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template
* rebind_executor<executor_type>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* acceptor.async_accept(endpoint, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
executor_type>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(endpoint_type& peer_endpoint,
MoveAcceptToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code, typename Protocol::socket::template
rebind_executor<executor_type>::other)>(
declval<initiate_async_move_accept>(), token,
declval<const executor_type&>(), &peer_endpoint,
static_cast<typename Protocol::socket::template
rebind_executor<executor_type>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code, typename Protocol::socket::template
rebind_executor<executor_type>::other)>(
initiate_async_move_accept(this), token,
impl_.get_executor(), &peer_endpoint,
static_cast<typename Protocol::socket::template
rebind_executor<executor_type>::other*>(0));
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly accepted
* socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(
* acceptor.accept(my_context2, endpoint));
* @endcode
*/
template <typename Executor1>
typename Protocol::socket::template rebind_executor<Executor1>::other
accept(const Executor1& ex, endpoint_type& peer_endpoint,
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
{
asio::error_code ec;
typename Protocol::socket::template
rebind_executor<Executor1>::other peer(ex);
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @returns A socket object representing the newly accepted connection.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(
* acceptor.accept(my_context2, endpoint));
* @endcode
*/
template <typename ExecutionContext>
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other
accept(ExecutionContext& context, endpoint_type& peer_endpoint,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
asio::error_code ec;
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other peer(context);
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
asio::detail::throw_error(ec, "accept");
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly accepted
* socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(
* acceptor.accept(my_context2, endpoint, ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename Executor1>
typename Protocol::socket::template rebind_executor<Executor1>::other
accept(const executor_type& ex,
endpoint_type& peer_endpoint, asio::error_code& ec,
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
{
typename Protocol::socket::template
rebind_executor<Executor1>::other peer(ex);
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
return peer;
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer. The function
* call will block until a new connection has been accepted successfully or
* an error occurs.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns On success, a socket object representing the newly accepted
* connection. On error, a socket object where is_open() is false.
*
* @par Example
* @code
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* asio::ip::tcp::socket socket(
* acceptor.accept(my_context2, endpoint, ec));
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename ExecutionContext>
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other
accept(ExecutionContext& context,
endpoint_type& peer_endpoint, asio::error_code& ec,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other peer(context);
impl_.get_service().accept(impl_.get_implementation(),
peer, &peer_endpoint, ec);
return peer;
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param ex The I/O executor object to be used for the newly accepted
* socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written. Ownership of the peer_endpoint object is
* retained by the caller, which must guarantee that it is valid until the
* completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template rebind_executor<
* Executor1>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template rebind_executor<
* Executor1>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* acceptor.async_accept(my_context2, endpoint, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename Executor1,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
constraint_t<is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value,
Executor1>>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(const Executor1& ex, endpoint_type& peer_endpoint,
MoveAcceptToken&& token = default_completion_token_t<executor_type>(),
constraint_t<
is_executor<Executor1>::value
|| execution::is_executor<Executor1>::value
> = 0)
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
Executor1>::other)>(
declval<initiate_async_move_accept>(), token, ex, &peer_endpoint,
static_cast<typename Protocol::socket::template
rebind_executor<Executor1>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
Executor1>::other)>(
initiate_async_move_accept(this), token, ex, &peer_endpoint,
static_cast<typename Protocol::socket::template
rebind_executor<Executor1>::other*>(0));
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* This overload requires that the Protocol template parameter satisfy the
* AcceptableProtocol type requirements.
*
* @param context The I/O execution context object to be used for the newly
* accepted socket.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written. Ownership of the peer_endpoint object is
* retained by the caller, which must guarantee that it is valid until the
* completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the accept completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* // Result of operation.
* const asio::error_code& error,
*
* // On success, the newly accepted socket.
* typename Protocol::socket::template rebind_executor<
* typename ExecutionContext::executor_type>::other peer
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code,
* typename Protocol::socket::template rebind_executor<
* typename ExecutionContext::executor_type>::other)) @endcode
*
* @par Example
* @code
* void accept_handler(const asio::error_code& error,
* asio::ip::tcp::socket peer)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::acceptor acceptor(my_context);
* ...
* asio::ip::tcp::endpoint endpoint;
* acceptor.async_accept(my_context2, endpoint, accept_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ExecutionContext,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)) MoveAcceptToken
= default_completion_token_t<executor_type>>
auto async_accept(ExecutionContext& context, endpoint_type& peer_endpoint,
MoveAcceptToken&& token = default_completion_token_t<executor_type>(),
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
-> decltype(
async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)>(
declval<initiate_async_move_accept>(), token,
context.get_executor(), &peer_endpoint,
static_cast<typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other*>(0)))
{
return async_initiate<MoveAcceptToken,
void (asio::error_code,
typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other)>(
initiate_async_move_accept(this), token,
context.get_executor(), &peer_endpoint,
static_cast<typename Protocol::socket::template rebind_executor<
typename ExecutionContext::executor_type>::other*>(0));
}
private:
// Disallow copying and assignment.
basic_socket_acceptor(const basic_socket_acceptor&) = delete;
basic_socket_acceptor& operator=(
const basic_socket_acceptor&) = delete;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_socket_acceptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(WaitHandler&& handler, wait_type w) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(), w,
handler2.value, self_->impl_.get_executor());
}
private:
basic_socket_acceptor* self_;
};
class initiate_async_accept
{
public:
typedef Executor executor_type;
explicit initiate_async_accept(basic_socket_acceptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename AcceptHandler, typename Protocol1, typename Executor1>
void operator()(AcceptHandler&& handler,
basic_socket<Protocol1, Executor1>* peer,
endpoint_type* peer_endpoint) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a AcceptHandler.
ASIO_ACCEPT_HANDLER_CHECK(AcceptHandler, handler) type_check;
detail::non_const_lvalue<AcceptHandler> handler2(handler);
self_->impl_.get_service().async_accept(
self_->impl_.get_implementation(), *peer, peer_endpoint,
handler2.value, self_->impl_.get_executor());
}
private:
basic_socket_acceptor* self_;
};
class initiate_async_move_accept
{
public:
typedef Executor executor_type;
explicit initiate_async_move_accept(basic_socket_acceptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename MoveAcceptHandler, typename Executor1, typename Socket>
void operator()(MoveAcceptHandler&& handler,
const Executor1& peer_ex, endpoint_type* peer_endpoint, Socket*) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a MoveAcceptHandler.
ASIO_MOVE_ACCEPT_HANDLER_CHECK(
MoveAcceptHandler, handler, Socket) type_check;
detail::non_const_lvalue<MoveAcceptHandler> handler2(handler);
self_->impl_.get_service().async_move_accept(
self_->impl_.get_implementation(), peer_ex, peer_endpoint,
handler2.value, self_->impl_.get_executor());
}
private:
basic_socket_acceptor* self_;
};
#if defined(ASIO_WINDOWS_RUNTIME)
detail::io_object_impl<
detail::null_socket_service<Protocol>, Executor> impl_;
#elif defined(ASIO_HAS_IOCP)
detail::io_object_impl<
detail::win_iocp_socket_service<Protocol>, Executor> impl_;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
detail::io_object_impl<
detail::io_uring_socket_service<Protocol>, Executor> impl_;
#else
detail::io_object_impl<
detail::reactive_socket_service<Protocol>, Executor> impl_;
#endif
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_SOCKET_ACCEPTOR_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/io_context_strand.hpp | //
// io_context_strand.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IO_CONTEXT_STRAND_HPP
#define ASIO_IO_CONTEXT_STRAND_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_EXTENSIONS) \
&& !defined(ASIO_NO_TS_EXECUTORS)
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/strand_service.hpp"
#include "asio/detail/wrapped_handler.hpp"
#include "asio/io_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides serialised handler execution.
/**
* The io_context::strand class provides the ability to post and dispatch
* handlers with the guarantee that none of those handlers will execute
* concurrently.
*
* @par Order of handler invocation
* Given:
*
* @li a strand object @c s
*
* @li an object @c a meeting completion handler requirements
*
* @li an object @c a1 which is an arbitrary copy of @c a made by the
* implementation
*
* @li an object @c b meeting completion handler requirements
*
* @li an object @c b1 which is an arbitrary copy of @c b made by the
* implementation
*
* if any of the following conditions are true:
*
* @li @c s.post(a) happens-before @c s.post(b)
*
* @li @c s.post(a) happens-before @c s.dispatch(b), where the latter is
* performed outside the strand
*
* @li @c s.dispatch(a) happens-before @c s.post(b), where the former is
* performed outside the strand
*
* @li @c s.dispatch(a) happens-before @c s.dispatch(b), where both are
* performed outside the strand
*
* then @c a() happens-before @c b()
*
* Note that in the following case:
* @code async_op_1(..., s.wrap(a));
* async_op_2(..., s.wrap(b)); @endcode
* the completion of the first async operation will perform @c s.dispatch(a),
* and the second will perform @c s.dispatch(b), but the order in which those
* are performed is unspecified. That is, you cannot state whether one
* happens-before the other. Therefore none of the above conditions are met and
* no ordering guarantee is made.
*
* @note The implementation makes no guarantee that handlers posted or
* dispatched through different @c strand objects will be invoked concurrently.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Safe.
*
* @par Concepts:
* Dispatcher.
*/
class io_context::strand
{
private:
#if !defined(ASIO_NO_DEPRECATED)
struct initiate_dispatch;
struct initiate_post;
#endif // !defined(ASIO_NO_DEPRECATED)
public:
/// Constructor.
/**
* Constructs the strand.
*
* @param io_context The io_context object that the strand will use to
* dispatch handlers that are ready to be run.
*/
explicit strand(asio::io_context& io_context)
: service_(asio::use_service<
asio::detail::strand_service>(io_context))
{
service_.construct(impl_);
}
/// Copy constructor.
/**
* Creates a copy such that both strand objects share the same underlying
* state.
*/
strand(const strand& other) noexcept
: service_(other.service_),
impl_(other.impl_)
{
}
/// Destructor.
/**
* Destroys a strand.
*
* Handlers posted through the strand that have not yet been invoked will
* still be dispatched in a way that meets the guarantee of non-concurrency.
*/
~strand()
{
}
/// Obtain the underlying execution context.
asio::io_context& context() const noexcept
{
return service_.get_io_context();
}
/// Inform the strand that it has some outstanding work to do.
/**
* The strand delegates this call to its underlying io_context.
*/
void on_work_started() const noexcept
{
context().get_executor().on_work_started();
}
/// Inform the strand that some work is no longer outstanding.
/**
* The strand delegates this call to its underlying io_context.
*/
void on_work_finished() const noexcept
{
context().get_executor().on_work_finished();
}
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the strand to execute the given function
* object on its underlying io_context. The function object will be executed
* inside this function if the strand is not otherwise busy and if the
* underlying io_context's executor's @c dispatch() function is also able to
* execute the function before returning.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void dispatch(Function&& f, const Allocator& a) const
{
decay_t<Function> tmp(static_cast<Function&&>(f));
service_.dispatch(impl_, tmp);
(void)a;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use asio::dispatch().) Request the strand to invoke
/// the given handler.
/**
* This function is used to ask the strand to execute the given handler.
*
* The strand object guarantees that handlers posted or dispatched through
* the strand will not be executed concurrently. The handler may be executed
* inside this function if the guarantee can be met. If this function is
* called from within a handler that was posted or dispatched through the same
* strand, then the new handler will be executed immediately.
*
* The strand's guarantee is in addition to the guarantee provided by the
* underlying io_context. The io_context guarantees that the handler will only
* be called in a thread in which the io_context's run member function is
* currently being invoked.
*
* @param handler The handler to be called. The strand will make a copy of the
* handler object as required. The function signature of the handler must be:
* @code void handler(); @endcode
*/
template <typename LegacyCompletionHandler>
auto dispatch(LegacyCompletionHandler&& handler)
-> decltype(
async_initiate<LegacyCompletionHandler, void ()>(
declval<initiate_dispatch>(), handler, this))
{
return async_initiate<LegacyCompletionHandler, void ()>(
initiate_dispatch(), handler, this);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object will never be executed inside this function.
* Instead, it will be scheduled to run by the underlying io_context.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void post(Function&& f, const Allocator& a) const
{
decay_t<Function> tmp(static_cast<Function&&>(f));
service_.post(impl_, tmp);
(void)a;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use asio::post().) Request the strand to invoke the
/// given handler and return immediately.
/**
* This function is used to ask the strand to execute the given handler, but
* without allowing the strand to call the handler from inside this function.
*
* The strand object guarantees that handlers posted or dispatched through
* the strand will not be executed concurrently. The strand's guarantee is in
* addition to the guarantee provided by the underlying io_context. The
* io_context guarantees that the handler will only be called in a thread in
* which the io_context's run member function is currently being invoked.
*
* @param handler The handler to be called. The strand will make a copy of the
* handler object as required. The function signature of the handler must be:
* @code void handler(); @endcode
*/
template <typename LegacyCompletionHandler>
auto post(LegacyCompletionHandler&& handler)
-> decltype(
async_initiate<LegacyCompletionHandler, void ()>(
declval<initiate_post>(), handler, this))
{
return async_initiate<LegacyCompletionHandler, void ()>(
initiate_post(), handler, this);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object will never be executed inside this function.
* Instead, it will be scheduled to run by the underlying io_context.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void defer(Function&& f, const Allocator& a) const
{
decay_t<Function> tmp(static_cast<Function&&>(f));
service_.post(impl_, tmp);
(void)a;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use asio::bind_executor().) Create a new handler that
/// automatically dispatches the wrapped handler on the strand.
/**
* This function is used to create a new handler function object that, when
* invoked, will automatically pass the wrapped handler to the strand's
* dispatch function.
*
* @param handler The handler to be wrapped. The strand will make a copy of
* the handler object as required. The function signature of the handler must
* be: @code void handler(A1 a1, ... An an); @endcode
*
* @return A function object that, when invoked, passes the wrapped handler to
* the strand's dispatch function. Given a function object with the signature:
* @code R f(A1 a1, ... An an); @endcode
* If this function object is passed to the wrap function like so:
* @code strand.wrap(f); @endcode
* then the return value is a function object with the signature
* @code void g(A1 a1, ... An an); @endcode
* that, when invoked, executes code equivalent to:
* @code strand.dispatch(boost::bind(f, a1, ... an)); @endcode
*/
template <typename Handler>
#if defined(GENERATING_DOCUMENTATION)
unspecified
#else
detail::wrapped_handler<strand, Handler, detail::is_continuation_if_running>
#endif
wrap(Handler handler)
{
return detail::wrapped_handler<io_context::strand, Handler,
detail::is_continuation_if_running>(*this, handler);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Determine whether the strand is running in the current thread.
/**
* @return @c true if the current thread is executing a handler that was
* submitted to the strand using post(), dispatch() or wrap(). Otherwise
* returns @c false.
*/
bool running_in_this_thread() const noexcept
{
return service_.running_in_this_thread(impl_);
}
/// Compare two strands for equality.
/**
* Two strands are equal if they refer to the same ordered, non-concurrent
* state.
*/
friend bool operator==(const strand& a, const strand& b) noexcept
{
return a.impl_ == b.impl_;
}
/// Compare two strands for inequality.
/**
* Two strands are equal if they refer to the same ordered, non-concurrent
* state.
*/
friend bool operator!=(const strand& a, const strand& b) noexcept
{
return a.impl_ != b.impl_;
}
private:
#if !defined(ASIO_NO_DEPRECATED)
struct initiate_dispatch
{
template <typename LegacyCompletionHandler>
void operator()(LegacyCompletionHandler&& handler,
strand* self) const
{
// If you get an error on the following line it means that your
// handler does not meet the documented type requirements for a
// LegacyCompletionHandler.
ASIO_LEGACY_COMPLETION_HANDLER_CHECK(
LegacyCompletionHandler, handler) type_check;
detail::non_const_lvalue<LegacyCompletionHandler> handler2(handler);
self->service_.dispatch(self->impl_, handler2.value);
}
};
struct initiate_post
{
template <typename LegacyCompletionHandler>
void operator()(LegacyCompletionHandler&& handler,
strand* self) const
{
// If you get an error on the following line it means that your
// handler does not meet the documented type requirements for a
// LegacyCompletionHandler.
ASIO_LEGACY_COMPLETION_HANDLER_CHECK(
LegacyCompletionHandler, handler) type_check;
detail::non_const_lvalue<LegacyCompletionHandler> handler2(handler);
self->service_.post(self->impl_, handler2.value);
}
};
#endif // !defined(ASIO_NO_DEPRECATED)
asio::detail::strand_service& service_;
mutable asio::detail::strand_service::implementation_type impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_NO_EXTENSIONS)
// && !defined(ASIO_NO_TS_EXECUTORS)
#endif // ASIO_IO_CONTEXT_STRAND_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/async_result.hpp | //
// async_result.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_ASYNC_RESULT_HPP
#define ASIO_ASYNC_RESULT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename T>
struct is_completion_signature : false_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...)> : true_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...) &> : true_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...) &&> : true_type
{
};
# if defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename R, typename... Args>
struct is_completion_signature<R(Args...) noexcept> : true_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...) & noexcept> : true_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...) && noexcept> : true_type
{
};
# endif // defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename... T>
struct are_completion_signatures : false_type
{
};
template <>
struct are_completion_signatures<>
: true_type
{
};
template <typename T0>
struct are_completion_signatures<T0>
: is_completion_signature<T0>
{
};
template <typename T0, typename... TN>
struct are_completion_signatures<T0, TN...>
: integral_constant<bool, (
is_completion_signature<T0>::value
&& are_completion_signatures<TN...>::value)>
{
};
} // namespace detail
#if defined(ASIO_HAS_CONCEPTS)
namespace detail {
template <typename T, typename... Args>
ASIO_CONCEPT callable_with = requires(T&& t, Args&&... args)
{
static_cast<T&&>(t)(static_cast<Args&&>(args)...);
};
template <typename T, typename... Signatures>
struct is_completion_handler_for : false_type
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...)>
: integral_constant<bool, (callable_with<decay_t<T>, Args...>)>
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...) &>
: integral_constant<bool, (callable_with<decay_t<T>&, Args...>)>
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...) &&>
: integral_constant<bool, (callable_with<decay_t<T>&&, Args...>)>
{
};
# if defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...) noexcept>
: integral_constant<bool, (callable_with<decay_t<T>, Args...>)>
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...) & noexcept>
: integral_constant<bool, (callable_with<decay_t<T>&, Args...>)>
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...) && noexcept>
: integral_constant<bool, (callable_with<decay_t<T>&&, Args...>)>
{
};
# endif // defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename T, typename Signature0, typename... SignatureN>
struct is_completion_handler_for<T, Signature0, SignatureN...>
: integral_constant<bool, (
is_completion_handler_for<T, Signature0>::value
&& is_completion_handler_for<T, SignatureN...>::value)>
{
};
} // namespace detail
template <typename T>
ASIO_CONCEPT completion_signature =
detail::is_completion_signature<T>::value;
#define ASIO_COMPLETION_SIGNATURE \
::asio::completion_signature
template <typename T, typename... Signatures>
ASIO_CONCEPT completion_handler_for =
detail::are_completion_signatures<Signatures...>::value
&& detail::is_completion_handler_for<T, Signatures...>::value;
#define ASIO_COMPLETION_HANDLER_FOR(sig) \
::asio::completion_handler_for<sig>
#define ASIO_COMPLETION_HANDLER_FOR2(sig0, sig1) \
::asio::completion_handler_for<sig0, sig1>
#define ASIO_COMPLETION_HANDLER_FOR3(sig0, sig1, sig2) \
::asio::completion_handler_for<sig0, sig1, sig2>
#else // defined(ASIO_HAS_CONCEPTS)
#define ASIO_COMPLETION_SIGNATURE typename
#define ASIO_COMPLETION_HANDLER_FOR(sig) typename
#define ASIO_COMPLETION_HANDLER_FOR2(sig0, sig1) typename
#define ASIO_COMPLETION_HANDLER_FOR3(sig0, sig1, sig2) typename
#endif // defined(ASIO_HAS_CONCEPTS)
namespace detail {
template <typename T>
struct is_lvalue_completion_signature : false_type
{
};
template <typename R, typename... Args>
struct is_lvalue_completion_signature<R(Args...) &> : true_type
{
};
# if defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename R, typename... Args>
struct is_lvalue_completion_signature<R(Args...) & noexcept> : true_type
{
};
# endif // defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename... Signatures>
struct are_any_lvalue_completion_signatures : false_type
{
};
template <typename Sig0>
struct are_any_lvalue_completion_signatures<Sig0>
: is_lvalue_completion_signature<Sig0>
{
};
template <typename Sig0, typename... SigN>
struct are_any_lvalue_completion_signatures<Sig0, SigN...>
: integral_constant<bool, (
is_lvalue_completion_signature<Sig0>::value
|| are_any_lvalue_completion_signatures<SigN...>::value)>
{
};
template <typename T>
struct is_rvalue_completion_signature : false_type
{
};
template <typename R, typename... Args>
struct is_rvalue_completion_signature<R(Args...) &&> : true_type
{
};
# if defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename R, typename... Args>
struct is_rvalue_completion_signature<R(Args...) && noexcept> : true_type
{
};
# endif // defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename... Signatures>
struct are_any_rvalue_completion_signatures : false_type
{
};
template <typename Sig0>
struct are_any_rvalue_completion_signatures<Sig0>
: is_rvalue_completion_signature<Sig0>
{
};
template <typename Sig0, typename... SigN>
struct are_any_rvalue_completion_signatures<Sig0, SigN...>
: integral_constant<bool, (
is_rvalue_completion_signature<Sig0>::value
|| are_any_rvalue_completion_signatures<SigN...>::value)>
{
};
template <typename T>
struct simple_completion_signature;
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...)>
{
typedef R type(Args...);
};
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...) &>
{
typedef R type(Args...);
};
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...) &&>
{
typedef R type(Args...);
};
# if defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...) noexcept>
{
typedef R type(Args...);
};
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...) & noexcept>
{
typedef R type(Args...);
};
template <typename R, typename... Args>
struct simple_completion_signature<R(Args...) && noexcept>
{
typedef R type(Args...);
};
# endif // defined(ASIO_HAS_NOEXCEPT_FUNCTION_TYPE)
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures>
class completion_handler_async_result
{
public:
typedef CompletionToken completion_handler_type;
typedef void return_type;
explicit completion_handler_async_result(completion_handler_type&)
{
}
return_type get()
{
}
template <typename Initiation,
ASIO_COMPLETION_HANDLER_FOR(Signatures...) RawCompletionToken,
typename... Args>
static return_type initiate(Initiation&& initiation,
RawCompletionToken&& token, Args&&... args)
{
static_cast<Initiation&&>(initiation)(
static_cast<RawCompletionToken&&>(token),
static_cast<Args&&>(args)...);
}
private:
completion_handler_async_result(
const completion_handler_async_result&) = delete;
completion_handler_async_result& operator=(
const completion_handler_async_result&) = delete;
};
} // namespace detail
#if defined(GENERATING_DOCUMENTATION)
/// An interface for customising the behaviour of an initiating function.
/**
* The async_result traits class is used for determining:
*
* @li the concrete completion handler type to be called at the end of the
* asynchronous operation;
*
* @li the initiating function return type; and
*
* @li how the return value of the initiating function is obtained.
*
* The trait allows the handler and return types to be determined at the point
* where the specific completion handler signature is known.
*
* This template may be specialised for user-defined completion token types.
* The primary template assumes that the CompletionToken is the completion
* handler.
*/
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures>
class async_result
{
public:
/// The concrete completion handler type for the specific signature.
typedef CompletionToken completion_handler_type;
/// The return type of the initiating function.
typedef void return_type;
/// Construct an async result from a given handler.
/**
* When using a specalised async_result, the constructor has an opportunity
* to initialise some state associated with the completion handler, which is
* then returned from the initiating function.
*/
explicit async_result(completion_handler_type& h);
/// Obtain the value to be returned from the initiating function.
return_type get();
/// Initiate the asynchronous operation that will produce the result, and
/// obtain the value to be returned from the initiating function.
template <typename Initiation, typename RawCompletionToken, typename... Args>
static return_type initiate(
Initiation&& initiation,
RawCompletionToken&& token,
Args&&... args);
private:
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
};
#else // defined(GENERATING_DOCUMENTATION)
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures>
class async_result :
public conditional_t<
detail::are_any_lvalue_completion_signatures<Signatures...>::value
|| !detail::are_any_rvalue_completion_signatures<Signatures...>::value,
detail::completion_handler_async_result<CompletionToken, Signatures...>,
async_result<CompletionToken,
typename detail::simple_completion_signature<Signatures>::type...>
>
{
public:
typedef conditional_t<
detail::are_any_lvalue_completion_signatures<Signatures...>::value
|| !detail::are_any_rvalue_completion_signatures<Signatures...>::value,
detail::completion_handler_async_result<CompletionToken, Signatures...>,
async_result<CompletionToken,
typename detail::simple_completion_signature<Signatures>::type...>
> base_type;
using base_type::base_type;
private:
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
};
template <ASIO_COMPLETION_SIGNATURE... Signatures>
class async_result<void, Signatures...>
{
// Empty.
};
#endif // defined(GENERATING_DOCUMENTATION)
/// Helper template to deduce the handler type from a CompletionToken, capture
/// a local copy of the handler, and then create an async_result for the
/// handler.
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures>
struct async_completion
{
/// The real handler type to be used for the asynchronous operation.
typedef typename asio::async_result<
decay_t<CompletionToken>, Signatures...>::completion_handler_type
completion_handler_type;
/// Constructor.
/**
* The constructor creates the concrete completion handler and makes the link
* between the handler and the asynchronous result.
*/
explicit async_completion(CompletionToken& token)
: completion_handler(static_cast<conditional_t<
is_same<CompletionToken, completion_handler_type>::value,
completion_handler_type&, CompletionToken&&>>(token)),
result(completion_handler)
{
}
/// A copy of, or reference to, a real handler object.
conditional_t<
is_same<CompletionToken, completion_handler_type>::value,
completion_handler_type&, completion_handler_type> completion_handler;
/// The result of the asynchronous operation's initiating function.
async_result<decay_t<CompletionToken>, Signatures...> result;
};
namespace detail {
struct async_result_memfns_base
{
void initiate();
};
template <typename T>
struct async_result_memfns_derived
: T, async_result_memfns_base
{
};
template <typename T, T>
struct async_result_memfns_check
{
};
template <typename>
char (&async_result_initiate_memfn_helper(...))[2];
template <typename T>
char async_result_initiate_memfn_helper(
async_result_memfns_check<
void (async_result_memfns_base::*)(),
&async_result_memfns_derived<T>::initiate>*);
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures>
struct async_result_has_initiate_memfn
: integral_constant<bool, sizeof(async_result_initiate_memfn_helper<
async_result<decay_t<CompletionToken>, Signatures...>
>(0)) != 1>
{
};
} // namespace detail
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_RESULT_TYPE(ct, sig) \
void_or_deduced
# define ASIO_INITFN_RESULT_TYPE2(ct, sig0, sig1) \
void_or_deduced
# define ASIO_INITFN_RESULT_TYPE3(ct, sig0, sig1, sig2) \
void_or_deduced
#else
# define ASIO_INITFN_RESULT_TYPE(ct, sig) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig>::return_type
# define ASIO_INITFN_RESULT_TYPE2(ct, sig0, sig1) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig0, sig1>::return_type
# define ASIO_INITFN_RESULT_TYPE3(ct, sig0, sig1, sig2) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig0, sig1, sig2>::return_type
#define ASIO_HANDLER_TYPE(ct, sig) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig>::completion_handler_type
#define ASIO_HANDLER_TYPE2(ct, sig0, sig1) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, \
sig0, sig1>::completion_handler_type
#define ASIO_HANDLER_TYPE3(ct, sig0, sig1, sig2) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, \
sig0, sig1, sig2>::completion_handler_type
#endif
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE2(ct, sig0, sig1) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE3(ct, sig0, sig1, sig2) \
auto
#elif defined(ASIO_HAS_RETURN_TYPE_DEDUCTION)
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE2(ct, sig0, sig1) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE3(ct, sig0, sig1, sig2) \
auto
#else
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
ASIO_INITFN_RESULT_TYPE(ct, sig)
# define ASIO_INITFN_AUTO_RESULT_TYPE2(ct, sig0, sig1) \
ASIO_INITFN_RESULT_TYPE2(ct, sig0, sig1)
# define ASIO_INITFN_AUTO_RESULT_TYPE3(ct, sig0, sig1, sig2) \
ASIO_INITFN_RESULT_TYPE3(ct, sig0, sig1, sig2)
#endif
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(ct, sig) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX2(ct, sig0, sig1) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX3(ct, sig0, sig1, sig2) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX(expr)
#elif defined(ASIO_HAS_RETURN_TYPE_DEDUCTION)
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(ct, sig) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX2(ct, sig0, sig1) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX3(ct, sig0, sig1, sig2) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX(expr)
#else
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(ct, sig) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX2(ct, sig0, sig1) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX3(ct, sig0, sig1, sig2) \
auto
# define ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX(expr) -> decltype expr
#endif
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_DEDUCED_RESULT_TYPE(ct, sig, expr) \
void_or_deduced
# define ASIO_INITFN_DEDUCED_RESULT_TYPE2(ct, sig0, sig1, expr) \
void_or_deduced
# define ASIO_INITFN_DEDUCED_RESULT_TYPE3(ct, sig0, sig1, sig2, expr) \
void_or_deduced
#else
# define ASIO_INITFN_DEDUCED_RESULT_TYPE(ct, sig, expr) \
decltype expr
# define ASIO_INITFN_DEDUCED_RESULT_TYPE2(ct, sig0, sig1, expr) \
decltype expr
# define ASIO_INITFN_DEDUCED_RESULT_TYPE3(ct, sig0, sig1, sig2, expr) \
decltype expr
#endif
#if defined(GENERATING_DOCUMENTATION)
template <typename CompletionToken,
completion_signature... Signatures,
typename Initiation, typename... Args>
void_or_deduced async_initiate(
Initiation&& initiation,
type_identity_t<CompletionToken>& token,
Args&&... args);
#else // defined(GENERATING_DOCUMENTATION)
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures,
typename Initiation, typename... Args>
inline auto async_initiate(Initiation&& initiation,
type_identity_t<CompletionToken>& token, Args&&... args)
-> decltype(enable_if_t<
enable_if_t<
detail::are_completion_signatures<Signatures...>::value,
detail::async_result_has_initiate_memfn<
CompletionToken, Signatures...>>::value,
async_result<decay_t<CompletionToken>, Signatures...>>::initiate(
static_cast<Initiation&&>(initiation),
static_cast<CompletionToken&&>(token),
static_cast<Args&&>(args)...))
{
return async_result<decay_t<CompletionToken>, Signatures...>::initiate(
static_cast<Initiation&&>(initiation),
static_cast<CompletionToken&&>(token),
static_cast<Args&&>(args)...);
}
template <
ASIO_COMPLETION_SIGNATURE... Signatures,
typename CompletionToken, typename Initiation, typename... Args>
inline auto async_initiate(Initiation&& initiation,
CompletionToken&& token, Args&&... args)
-> decltype(enable_if_t<
enable_if_t<
detail::are_completion_signatures<Signatures...>::value,
detail::async_result_has_initiate_memfn<
CompletionToken, Signatures...>>::value,
async_result<decay_t<CompletionToken>, Signatures...>>::initiate(
static_cast<Initiation&&>(initiation),
static_cast<CompletionToken&&>(token),
static_cast<Args&&>(args)...))
{
return async_result<decay_t<CompletionToken>, Signatures...>::initiate(
static_cast<Initiation&&>(initiation),
static_cast<CompletionToken&&>(token),
static_cast<Args&&>(args)...);
}
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE... Signatures,
typename Initiation, typename... Args>
inline typename enable_if_t<
!enable_if_t<
detail::are_completion_signatures<Signatures...>::value,
detail::async_result_has_initiate_memfn<
CompletionToken, Signatures...>>::value,
async_result<decay_t<CompletionToken>, Signatures...>
>::return_type
async_initiate(Initiation&& initiation,
type_identity_t<CompletionToken>& token, Args&&... args)
{
async_completion<CompletionToken, Signatures...> completion(token);
static_cast<Initiation&&>(initiation)(
static_cast<
typename async_result<decay_t<CompletionToken>,
Signatures...>::completion_handler_type&&>(
completion.completion_handler),
static_cast<Args&&>(args)...);
return completion.result.get();
}
template <ASIO_COMPLETION_SIGNATURE... Signatures,
typename CompletionToken, typename Initiation, typename... Args>
inline typename enable_if_t<
!enable_if_t<
detail::are_completion_signatures<Signatures...>::value,
detail::async_result_has_initiate_memfn<
CompletionToken, Signatures...>>::value,
async_result<decay_t<CompletionToken>, Signatures...>
>::return_type
async_initiate(Initiation&& initiation, CompletionToken&& token, Args&&... args)
{
async_completion<CompletionToken, Signatures...> completion(token);
static_cast<Initiation&&>(initiation)(
static_cast<
typename async_result<decay_t<CompletionToken>,
Signatures...>::completion_handler_type&&>(
completion.completion_handler),
static_cast<Args&&>(args)...);
return completion.result.get();
}
#endif // defined(GENERATING_DOCUMENTATION)
#if defined(ASIO_HAS_CONCEPTS)
namespace detail {
template <typename... Signatures>
struct initiation_archetype
{
template <completion_handler_for<Signatures...> CompletionHandler>
void operator()(CompletionHandler&&) const
{
}
};
} // namespace detail
template <typename T, typename... Signatures>
ASIO_CONCEPT completion_token_for =
detail::are_completion_signatures<Signatures...>::value
&&
requires(T&& t)
{
async_initiate<T, Signatures...>(
detail::initiation_archetype<Signatures...>{}, t);
};
#define ASIO_COMPLETION_TOKEN_FOR(sig) \
::asio::completion_token_for<sig>
#define ASIO_COMPLETION_TOKEN_FOR2(sig0, sig1) \
::asio::completion_token_for<sig0, sig1>
#define ASIO_COMPLETION_TOKEN_FOR3(sig0, sig1, sig2) \
::asio::completion_token_for<sig0, sig1, sig2>
#else // defined(ASIO_HAS_CONCEPTS)
#define ASIO_COMPLETION_TOKEN_FOR(sig) typename
#define ASIO_COMPLETION_TOKEN_FOR2(sig0, sig1) typename
#define ASIO_COMPLETION_TOKEN_FOR3(sig0, sig1, sig2) typename
#endif // defined(ASIO_HAS_CONCEPTS)
namespace detail {
struct async_operation_probe {};
struct async_operation_probe_result {};
template <typename Call, typename = void>
struct is_async_operation_call : false_type
{
};
template <typename Call>
struct is_async_operation_call<Call,
void_t<
enable_if_t<
is_same<
result_of_t<Call>,
async_operation_probe_result
>::value
>
>
> : true_type
{
};
} // namespace detail
#if !defined(GENERATING_DOCUMENTATION)
template <typename... Signatures>
class async_result<detail::async_operation_probe, Signatures...>
{
public:
typedef detail::async_operation_probe_result return_type;
template <typename Initiation, typename... InitArgs>
static return_type initiate(Initiation&&,
detail::async_operation_probe, InitArgs&&...)
{
return return_type();
}
};
#endif // !defined(GENERATING_DOCUMENTATION)
#if defined(GENERATING_DOCUMENTATION)
/// The is_async_operation trait detects whether a type @c T and arguments
/// @c Args... may be used to initiate an asynchronous operation.
/**
* Class template @c is_async_operation is a trait is derived from @c true_type
* if the expression <tt>T(Args..., token)</tt> initiates an asynchronous
* operation, where @c token is an unspecified completion token type. Otherwise,
* @c is_async_operation is derived from @c false_type.
*/
template <typename T, typename... Args>
struct is_async_operation : integral_constant<bool, automatically_determined>
{
};
#else // defined(GENERATING_DOCUMENTATION)
template <typename T, typename... Args>
struct is_async_operation :
detail::is_async_operation_call<
T(Args..., detail::async_operation_probe)>
{
};
#endif // defined(GENERATING_DOCUMENTATION)
#if defined(ASIO_HAS_CONCEPTS)
template <typename T, typename... Args>
ASIO_CONCEPT async_operation = is_async_operation<T, Args...>::value;
#define ASIO_ASYNC_OPERATION(t) \
::asio::async_operation<t>
#define ASIO_ASYNC_OPERATION1(t, a0) \
::asio::async_operation<t, a0>
#define ASIO_ASYNC_OPERATION2(t, a0, a1) \
::asio::async_operation<t, a0, a1>
#define ASIO_ASYNC_OPERATION3(t, a0, a1, a2) \
::asio::async_operation<t, a0, a1, a2>
#else // defined(ASIO_HAS_CONCEPTS)
#define ASIO_ASYNC_OPERATION(t) typename
#define ASIO_ASYNC_OPERATION1(t, a0) typename
#define ASIO_ASYNC_OPERATION2(t, a0, a1) typename
#define ASIO_ASYNC_OPERATION3(t, a0, a1, a2) typename
#endif // defined(ASIO_HAS_CONCEPTS)
namespace detail {
struct completion_signature_probe {};
template <typename... T>
struct completion_signature_probe_result
{
template <template <typename...> class Op>
struct apply
{
typedef Op<T...> type;
};
};
template <typename T>
struct completion_signature_probe_result<T>
{
typedef T type;
template <template <typename...> class Op>
struct apply
{
typedef Op<T> type;
};
};
template <>
struct completion_signature_probe_result<void>
{
template <template <typename...> class Op>
struct apply
{
typedef Op<> type;
};
};
} // namespace detail
#if !defined(GENERATING_DOCUMENTATION)
template <typename... Signatures>
class async_result<detail::completion_signature_probe, Signatures...>
{
public:
typedef detail::completion_signature_probe_result<Signatures...> return_type;
template <typename Initiation, typename... InitArgs>
static return_type initiate(Initiation&&,
detail::completion_signature_probe, InitArgs&&...)
{
return return_type();
}
};
template <typename Signature>
class async_result<detail::completion_signature_probe, Signature>
{
public:
typedef detail::completion_signature_probe_result<Signature> return_type;
template <typename Initiation, typename... InitArgs>
static return_type initiate(Initiation&&,
detail::completion_signature_probe, InitArgs&&...)
{
return return_type();
}
};
#endif // !defined(GENERATING_DOCUMENTATION)
#if defined(GENERATING_DOCUMENTATION)
/// The completion_signature_of trait determines the completion signature
/// of an asynchronous operation.
/**
* Class template @c completion_signature_of is a trait with a member type
* alias @c type that denotes the completion signature of the asynchronous
* operation initiated by the expression <tt>T(Args..., token)</tt> operation,
* where @c token is an unspecified completion token type. If the asynchronous
* operation does not have exactly one completion signature, the instantion of
* the trait is well-formed but the member type alias @c type is omitted. If
* the expression <tt>T(Args..., token)</tt> is not an asynchronous operation
* then use of the trait is ill-formed.
*/
template <typename T, typename... Args>
struct completion_signature_of
{
typedef automatically_determined type;
};
#else // defined(GENERATING_DOCUMENTATION)
template <typename T, typename... Args>
struct completion_signature_of :
result_of_t<T(Args..., detail::completion_signature_probe)>
{
};
#endif // defined(GENERATING_DOCUMENTATION)
template <typename T, typename... Args>
using completion_signature_of_t =
typename completion_signature_of<T, Args...>::type;
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/default_completion_token.hpp"
#endif // ASIO_ASYNC_RESULT_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/multiple_exceptions.hpp | //
// multiple_exceptions.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_MULTIPLE_EXCEPTIONS_HPP
#define ASIO_MULTIPLE_EXCEPTIONS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <exception>
#include "asio/detail/push_options.hpp"
namespace asio {
/// Exception thrown when there are multiple pending exceptions to rethrow.
class multiple_exceptions
: public std::exception
{
public:
/// Constructor.
ASIO_DECL multiple_exceptions(
std::exception_ptr first) noexcept;
/// Obtain message associated with exception.
ASIO_DECL virtual const char* what() const
noexcept;
/// Obtain a pointer to the first exception.
ASIO_DECL std::exception_ptr first_exception() const;
private:
std::exception_ptr first_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/impl/multiple_exceptions.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_MULTIPLE_EXCEPTIONS_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_raw_socket.hpp | //
// basic_raw_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_RAW_SOCKET_HPP
#define ASIO_BASIC_RAW_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/basic_socket.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_RAW_SOCKET_FWD_DECL)
#define ASIO_BASIC_RAW_SOCKET_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_raw_socket;
#endif // !defined(ASIO_BASIC_RAW_SOCKET_FWD_DECL)
/// Provides raw-oriented socket functionality.
/**
* The basic_raw_socket class template provides asynchronous and blocking
* raw-oriented socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* Synchronous @c send, @c send_to, @c receive, @c receive_from, @c connect,
* and @c shutdown operations are thread safe with respect to each other, if
* the underlying operating system calls are also thread safe. This means that
* it is permitted to perform concurrent calls to these synchronous operations
* on a single socket object. Other synchronous operations, such as @c open or
* @c close, are not thread safe.
*/
template <typename Protocol, typename Executor>
class basic_raw_socket
: public basic_socket<Protocol, Executor>
{
private:
class initiate_async_send;
class initiate_async_send_to;
class initiate_async_receive;
class initiate_async_receive_from;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the socket type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The socket type when rebound to the specified executor.
typedef basic_raw_socket<Protocol, Executor1> other;
};
/// The native representation of a socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef typename basic_socket<Protocol,
Executor>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_raw_socket without opening it.
/**
* This constructor creates a raw socket without opening it. The open()
* function must be called before data can be sent or received on the socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*/
explicit basic_raw_socket(const executor_type& ex)
: basic_socket<Protocol, Executor>(ex)
{
}
/// Construct a basic_raw_socket without opening it.
/**
* This constructor creates a raw socket without opening it. The open()
* function must be called before data can be sent or received on the socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*/
template <typename ExecutionContext>
explicit basic_raw_socket(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_socket<Protocol, Executor>(context)
{
}
/// Construct and open a basic_raw_socket.
/**
* This constructor creates and opens a raw socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
basic_raw_socket(const executor_type& ex, const protocol_type& protocol)
: basic_socket<Protocol, Executor>(ex, protocol)
{
}
/// Construct and open a basic_raw_socket.
/**
* This constructor creates and opens a raw socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_raw_socket(ExecutionContext& context, const protocol_type& protocol,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_socket<Protocol, Executor>(context, protocol)
{
}
/// Construct a basic_raw_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a raw socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the raw
* socket will be bound.
*
* @throws asio::system_error Thrown on failure.
*/
basic_raw_socket(const executor_type& ex, const endpoint_type& endpoint)
: basic_socket<Protocol, Executor>(ex, endpoint)
{
}
/// Construct a basic_raw_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a raw socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the raw
* socket will be bound.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_raw_socket(ExecutionContext& context, const endpoint_type& endpoint,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_socket<Protocol, Executor>(context, endpoint)
{
}
/// Construct a basic_raw_socket on an existing native socket.
/**
* This constructor creates a raw socket object to hold an existing
* native socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_raw_socket(const executor_type& ex,
const protocol_type& protocol, const native_handle_type& native_socket)
: basic_socket<Protocol, Executor>(ex, protocol, native_socket)
{
}
/// Construct a basic_raw_socket on an existing native socket.
/**
* This constructor creates a raw socket object to hold an existing
* native socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_raw_socket(ExecutionContext& context,
const protocol_type& protocol, const native_handle_type& native_socket,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_socket<Protocol, Executor>(context, protocol, native_socket)
{
}
/// Move-construct a basic_raw_socket from another.
/**
* This constructor moves a raw socket from one object to another.
*
* @param other The other basic_raw_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_raw_socket(const executor_type&)
* constructor.
*/
basic_raw_socket(basic_raw_socket&& other) noexcept
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_raw_socket from another.
/**
* This assignment operator moves a raw socket from one object to another.
*
* @param other The other basic_raw_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_raw_socket(const executor_type&)
* constructor.
*/
basic_raw_socket& operator=(basic_raw_socket&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a basic_raw_socket from a socket of another protocol
/// type.
/**
* This constructor moves a raw socket from one object to another.
*
* @param other The other basic_raw_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_raw_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
basic_raw_socket(basic_raw_socket<Protocol1, Executor1>&& other,
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value
> = 0)
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_raw_socket from a socket of another protocol type.
/**
* This assignment operator moves a raw socket from one object to another.
*
* @param other The other basic_raw_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_raw_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value,
basic_raw_socket&
> operator=(basic_raw_socket<Protocol1, Executor1>&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
/// Destroys the socket.
/**
* This function destroys the socket, cancelling any outstanding asynchronous
* operations associated with the socket as if by calling @c cancel.
*/
~basic_raw_socket()
{
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @returns The number of bytes sent.
*
* @throws asio::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code socket.send(asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, 0, ec);
asio::detail::throw_error(ec, "send");
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws asio::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
asio::detail::throw_error(ec, "send");
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
return this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to asynchronously send data on the raw socket. It is
* an initiating function for an @ref asynchronous_operation, and always
* returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the send completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_send(const ConstBufferSequence& buffers,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_send>(), token,
buffers, socket_base::message_flags(0)))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_send(this), token,
buffers, socket_base::message_flags(0));
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to asynchronously send data on the raw socket. It is
* an initiating function for an @ref asynchronous_operation, and always
* returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the completion handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the send completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_send>(), token, buffers, flags))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_send(this), token, buffers, flags);
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @returns The number of bytes sent.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* asio::ip::udp::endpoint destination(
* asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.send_to(asio::buffer(data, size), destination);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().send_to(
this->impl_.get_implementation(), buffers, destination, 0, ec);
asio::detail::throw_error(ec, "send_to");
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().send_to(
this->impl_.get_implementation(), buffers, destination, flags, ec);
asio::detail::throw_error(ec, "send_to");
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
asio::error_code& ec)
{
return this->impl_.get_service().send_to(this->impl_.get_implementation(),
buffers, destination, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the send completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* asio::ip::udp::endpoint destination(
* asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.async_send_to(
* asio::buffer(data, size), destination, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_send_to>(), token, buffers,
destination, socket_base::message_flags(0)))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_send_to(this), token, buffers,
destination, socket_base::message_flags(0));
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the send completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_send_to>(), token,
buffers, destination, flags))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_send_to(this), token,
buffers, destination, flags);
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.receive(asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive(
this->impl_.get_implementation(), buffers, 0, ec);
asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive(
this->impl_.get_implementation(), buffers, flags, ec);
asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
return this->impl_.get_service().receive(
this->impl_.get_implementation(), buffers, flags, ec);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_receive(const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_receive>(), token,
buffers, socket_base::message_flags(0)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_receive(this), token,
buffers, socket_base::message_flags(0));
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken
= default_completion_token_t<executor_type>>
auto async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_receive>(), token, buffers, flags))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_receive(this), token, buffers, flags);
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* asio::ip::udp::endpoint sender_endpoint;
* socket.receive_from(
* asio::buffer(data, size), sender_endpoint);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive_from(
this->impl_.get_implementation(), buffers, sender_endpoint, 0, ec);
asio::detail::throw_error(ec, "receive_from");
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive_from(
this->impl_.get_implementation(), buffers, sender_endpoint, flags, ec);
asio::detail::throw_error(ec, "receive_from");
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
asio::error_code& ec)
{
return this->impl_.get_service().receive_from(
this->impl_.get_implementation(), buffers, sender_endpoint, flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.async_receive_from(
* asio::buffer(data, size), 0, sender_endpoint, handler); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint,
ReadToken&& token
= default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_receive_from>(), token, buffers,
&sender_endpoint, socket_base::message_flags(0)))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_receive_from(this), token, buffers,
&sender_endpoint, socket_base::message_flags(0));
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* completion handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken
= default_completion_token_t<executor_type>>
auto async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_receive_from>(), token,
buffers, &sender_endpoint, flags))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_receive_from(this), token,
buffers, &sender_endpoint, flags);
}
private:
// Disallow copying and assignment.
basic_raw_socket(const basic_raw_socket&) = delete;
basic_raw_socket& operator=(const basic_raw_socket&) = delete;
class initiate_async_send
{
public:
typedef Executor executor_type;
explicit initiate_async_send(basic_raw_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
const ConstBufferSequence& buffers,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_send(
self_->impl_.get_implementation(), buffers, flags,
handler2.value, self_->impl_.get_executor());
}
private:
basic_raw_socket* self_;
};
class initiate_async_send_to
{
public:
typedef Executor executor_type;
explicit initiate_async_send_to(basic_raw_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
const ConstBufferSequence& buffers, const endpoint_type& destination,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_send_to(
self_->impl_.get_implementation(), buffers, destination,
flags, handler2.value, self_->impl_.get_executor());
}
private:
basic_raw_socket* self_;
};
class initiate_async_receive
{
public:
typedef Executor executor_type;
explicit initiate_async_receive(basic_raw_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_receive(
self_->impl_.get_implementation(), buffers, flags,
handler2.value, self_->impl_.get_executor());
}
private:
basic_raw_socket* self_;
};
class initiate_async_receive_from
{
public:
typedef Executor executor_type;
explicit initiate_async_receive_from(basic_raw_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers, endpoint_type* sender_endpoint,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_receive_from(
self_->impl_.get_implementation(), buffers, *sender_endpoint,
flags, handler2.value, self_->impl_.get_executor());
}
private:
basic_raw_socket* self_;
};
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_RAW_SOCKET_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/append.hpp | //
// append.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_APPEND_HPP
#define ASIO_APPEND_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <tuple>
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Completion token type used to specify that the completion handler
/// arguments should be passed additional values after the results of the
/// operation.
template <typename CompletionToken, typename... Values>
class append_t
{
public:
/// Constructor.
template <typename T, typename... V>
constexpr explicit append_t(T&& completion_token, V&&... values)
: token_(static_cast<T&&>(completion_token)),
values_(static_cast<V&&>(values)...)
{
}
//private:
CompletionToken token_;
std::tuple<Values...> values_;
};
/// Completion token type used to specify that the completion handler
/// arguments should be passed additional values after the results of the
/// operation.
template <typename CompletionToken, typename... Values>
ASIO_NODISCARD inline constexpr
append_t<decay_t<CompletionToken>, decay_t<Values>...>
append(CompletionToken&& completion_token, Values&&... values)
{
return append_t<decay_t<CompletionToken>, decay_t<Values>...>(
static_cast<CompletionToken&&>(completion_token),
static_cast<Values&&>(values)...);
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/append.hpp"
#endif // ASIO_APPEND_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/readable_pipe.hpp | //
// readable_pipe.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_READABLE_PIPE_HPP
#define ASIO_READABLE_PIPE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_PIPE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/basic_readable_pipe.hpp"
namespace asio {
/// Typedef for the typical usage of a readable pipe.
typedef basic_readable_pipe<> readable_pipe;
} // namespace asio
#endif // defined(ASIO_HAS_PIPE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_READABLE_PIPE_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/io_service.hpp | //
// io_service.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IO_SERVICE_HPP
#define ASIO_IO_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/io_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_NO_DEPRECATED)
/// Typedef for backwards compatibility.
typedef io_context io_service;
#endif // !defined(ASIO_NO_DEPRECATED)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_IO_SERVICE_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/yield.hpp | //
// yield.hpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "coroutine.hpp"
#ifndef reenter
# define reenter(c) ASIO_CORO_REENTER(c)
#endif
#ifndef yield
# define yield ASIO_CORO_YIELD
#endif
#ifndef fork
# define fork ASIO_CORO_FORK
#endif
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/executor.hpp | //
// executor.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_EXECUTOR_HPP
#define ASIO_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_TS_EXECUTORS)
#include <new>
#include <typeinfo>
#include "asio/detail/cstddef.hpp"
#include "asio/detail/executor_function.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/throw_exception.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Exception thrown when trying to access an empty polymorphic executor.
class bad_executor
: public std::exception
{
public:
/// Constructor.
ASIO_DECL bad_executor() noexcept;
/// Obtain message associated with exception.
ASIO_DECL virtual const char* what() const
noexcept;
};
/// Polymorphic wrapper for executors.
class executor
{
public:
/// Default constructor.
executor() noexcept
: impl_(0)
{
}
/// Construct from nullptr.
executor(nullptr_t) noexcept
: impl_(0)
{
}
/// Copy constructor.
executor(const executor& other) noexcept
: impl_(other.clone())
{
}
/// Move constructor.
executor(executor&& other) noexcept
: impl_(other.impl_)
{
other.impl_ = 0;
}
/// Construct a polymorphic wrapper for the specified executor.
template <typename Executor>
executor(Executor e);
/// Construct a polymorphic executor that points to the same target as
/// another polymorphic executor.
executor(std::nothrow_t, const executor& other) noexcept
: impl_(other.clone())
{
}
/// Construct a polymorphic executor that moves the target from another
/// polymorphic executor.
executor(std::nothrow_t, executor&& other) noexcept
: impl_(other.impl_)
{
other.impl_ = 0;
}
/// Construct a polymorphic wrapper for the specified executor.
template <typename Executor>
executor(std::nothrow_t, Executor e) noexcept;
/// Allocator-aware constructor to create a polymorphic wrapper for the
/// specified executor.
template <typename Executor, typename Allocator>
executor(allocator_arg_t, const Allocator& a, Executor e);
/// Destructor.
~executor()
{
destroy();
}
/// Assignment operator.
executor& operator=(const executor& other) noexcept
{
destroy();
impl_ = other.clone();
return *this;
}
// Move assignment operator.
executor& operator=(executor&& other) noexcept
{
destroy();
impl_ = other.impl_;
other.impl_ = 0;
return *this;
}
/// Assignment operator for nullptr_t.
executor& operator=(nullptr_t) noexcept
{
destroy();
impl_ = 0;
return *this;
}
/// Assignment operator to create a polymorphic wrapper for the specified
/// executor.
template <typename Executor>
executor& operator=(Executor&& e) noexcept
{
executor tmp(static_cast<Executor&&>(e));
destroy();
impl_ = tmp.impl_;
tmp.impl_ = 0;
return *this;
}
/// Obtain the underlying execution context.
execution_context& context() const noexcept
{
return get_impl()->context();
}
/// Inform the executor that it has some outstanding work to do.
void on_work_started() const noexcept
{
get_impl()->on_work_started();
}
/// Inform the executor that some work is no longer outstanding.
void on_work_finished() const noexcept
{
get_impl()->on_work_finished();
}
/// Request the executor to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object is executed according to the rules of the
* target executor object.
*
* @param f The function object to be called. The executor will make a copy
* of the handler object as required. The function signature of the function
* object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void dispatch(Function&& f, const Allocator& a) const;
/// Request the executor to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object is executed according to the rules of the
* target executor object.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void post(Function&& f, const Allocator& a) const;
/// Request the executor to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object is executed according to the rules of the
* target executor object.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void defer(Function&& f, const Allocator& a) const;
struct unspecified_bool_type_t {};
typedef void (*unspecified_bool_type)(unspecified_bool_type_t);
static void unspecified_bool_true(unspecified_bool_type_t) {}
/// Operator to test if the executor contains a valid target.
operator unspecified_bool_type() const noexcept
{
return impl_ ? &executor::unspecified_bool_true : 0;
}
/// Obtain type information for the target executor object.
/**
* @returns If @c *this has a target type of type @c T, <tt>typeid(T)</tt>;
* otherwise, <tt>typeid(void)</tt>.
*/
#if !defined(ASIO_NO_TYPEID) || defined(GENERATING_DOCUMENTATION)
const std::type_info& target_type() const noexcept
{
return impl_ ? impl_->target_type() : typeid(void);
}
#else // !defined(ASIO_NO_TYPEID) || defined(GENERATING_DOCUMENTATION)
const void* target_type() const noexcept
{
return impl_ ? impl_->target_type() : 0;
}
#endif // !defined(ASIO_NO_TYPEID) || defined(GENERATING_DOCUMENTATION)
/// Obtain a pointer to the target executor object.
/**
* @returns If <tt>target_type() == typeid(T)</tt>, a pointer to the stored
* executor target; otherwise, a null pointer.
*/
template <typename Executor>
Executor* target() noexcept;
/// Obtain a pointer to the target executor object.
/**
* @returns If <tt>target_type() == typeid(T)</tt>, a pointer to the stored
* executor target; otherwise, a null pointer.
*/
template <typename Executor>
const Executor* target() const noexcept;
/// Compare two executors for equality.
friend bool operator==(const executor& a,
const executor& b) noexcept
{
if (a.impl_ == b.impl_)
return true;
if (!a.impl_ || !b.impl_)
return false;
return a.impl_->equals(b.impl_);
}
/// Compare two executors for inequality.
friend bool operator!=(const executor& a,
const executor& b) noexcept
{
return !(a == b);
}
private:
#if !defined(GENERATING_DOCUMENTATION)
typedef detail::executor_function function;
template <typename, typename> class impl;
#if !defined(ASIO_NO_TYPEID)
typedef const std::type_info& type_id_result_type;
#else // !defined(ASIO_NO_TYPEID)
typedef const void* type_id_result_type;
#endif // !defined(ASIO_NO_TYPEID)
template <typename T>
static type_id_result_type type_id()
{
#if !defined(ASIO_NO_TYPEID)
return typeid(T);
#else // !defined(ASIO_NO_TYPEID)
static int unique_id;
return &unique_id;
#endif // !defined(ASIO_NO_TYPEID)
}
// Base class for all polymorphic executor implementations.
class impl_base
{
public:
virtual impl_base* clone() const noexcept = 0;
virtual void destroy() noexcept = 0;
virtual execution_context& context() noexcept = 0;
virtual void on_work_started() noexcept = 0;
virtual void on_work_finished() noexcept = 0;
virtual void dispatch(function&&) = 0;
virtual void post(function&&) = 0;
virtual void defer(function&&) = 0;
virtual type_id_result_type target_type() const noexcept = 0;
virtual void* target() noexcept = 0;
virtual const void* target() const noexcept = 0;
virtual bool equals(const impl_base* e) const noexcept = 0;
protected:
impl_base(bool fast_dispatch) : fast_dispatch_(fast_dispatch) {}
virtual ~impl_base() {}
private:
friend class executor;
const bool fast_dispatch_;
};
// Helper function to check and return the implementation pointer.
impl_base* get_impl() const
{
if (!impl_)
{
bad_executor ex;
asio::detail::throw_exception(ex);
}
return impl_;
}
// Helper function to clone another implementation.
impl_base* clone() const noexcept
{
return impl_ ? impl_->clone() : 0;
}
// Helper function to destroy an implementation.
void destroy() noexcept
{
if (impl_)
impl_->destroy();
}
impl_base* impl_;
#endif // !defined(GENERATING_DOCUMENTATION)
};
} // namespace asio
ASIO_USES_ALLOCATOR(asio::executor)
#include "asio/detail/pop_options.hpp"
#include "asio/impl/executor.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/impl/executor.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // !defined(ASIO_NO_TS_EXECUTORS)
#endif // ASIO_EXECUTOR_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/detached.hpp | //
// detached.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETACHED_HPP
#define ASIO_DETACHED_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <memory>
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// A @ref completion_token type used to specify that an asynchronous operation
/// is detached.
/**
* The detached_t class is used to indicate that an asynchronous operation is
* detached. That is, there is no completion handler waiting for the
* operation's result. A detached_t object may be passed as a handler to an
* asynchronous operation, typically using the special value
* @c asio::detached. For example:
*
* @code my_socket.async_send(my_buffer, asio::detached);
* @endcode
*/
class detached_t
{
public:
/// Constructor.
constexpr detached_t()
{
}
/// Adapts an executor to add the @c detached_t completion token as the
/// default.
template <typename InnerExecutor>
struct executor_with_default : InnerExecutor
{
/// Specify @c detached_t as the default completion token type.
typedef detached_t default_completion_token_type;
/// Construct the adapted executor from the inner executor type.
executor_with_default(const InnerExecutor& ex) noexcept
: InnerExecutor(ex)
{
}
/// Convert the specified executor to the inner executor type, then use
/// that to construct the adapted executor.
template <typename OtherExecutor>
executor_with_default(const OtherExecutor& ex,
constraint_t<
is_convertible<OtherExecutor, InnerExecutor>::value
> = 0) noexcept
: InnerExecutor(ex)
{
}
};
/// Type alias to adapt an I/O object to use @c detached_t as its
/// default completion token type.
template <typename T>
using as_default_on_t = typename T::template rebind_executor<
executor_with_default<typename T::executor_type>>::other;
/// Function helper to adapt an I/O object to use @c detached_t as its
/// default completion token type.
template <typename T>
static typename decay_t<T>::template rebind_executor<
executor_with_default<typename decay_t<T>::executor_type>
>::other
as_default_on(T&& object)
{
return typename decay_t<T>::template rebind_executor<
executor_with_default<typename decay_t<T>::executor_type>
>::other(static_cast<T&&>(object));
}
};
/// A @ref completion_token object used to specify that an asynchronous
/// operation is detached.
/**
* See the documentation for asio::detached_t for a usage example.
*/
ASIO_INLINE_VARIABLE constexpr detached_t detached;
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/detached.hpp"
#endif // ASIO_DETACHED_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_socket.hpp | //
// basic_socket.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_HPP
#define ASIO_BASIC_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/detail/config.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/post.hpp"
#include "asio/socket_base.hpp"
#if defined(ASIO_WINDOWS_RUNTIME)
# include "asio/detail/null_socket_service.hpp"
#elif defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_socket_service.hpp"
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
# include "asio/detail/io_uring_socket_service.hpp"
#else
# include "asio/detail/reactive_socket_service.hpp"
#endif
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_SOCKET_FWD_DECL)
#define ASIO_BASIC_SOCKET_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_socket;
#endif // !defined(ASIO_BASIC_SOCKET_FWD_DECL)
/// Provides socket functionality.
/**
* The basic_socket class template provides functionality that is common to both
* stream-oriented and datagram-oriented sockets.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Protocol, typename Executor>
class basic_socket
: public socket_base
{
private:
class initiate_async_connect;
class initiate_async_wait;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the socket type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The socket type when rebound to the specified executor.
typedef basic_socket<Protocol, Executor1> other;
};
/// The native representation of a socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_WINDOWS_RUNTIME)
typedef typename detail::null_socket_service<
Protocol>::native_handle_type native_handle_type;
#elif defined(ASIO_HAS_IOCP)
typedef typename detail::win_iocp_socket_service<
Protocol>::native_handle_type native_handle_type;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
typedef typename detail::io_uring_socket_service<
Protocol>::native_handle_type native_handle_type;
#else
typedef typename detail::reactive_socket_service<
Protocol>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
#if !defined(ASIO_NO_EXTENSIONS)
/// A basic_socket is always the lowest layer.
typedef basic_socket<Protocol, Executor> lowest_layer_type;
#endif // !defined(ASIO_NO_EXTENSIONS)
/// Construct a basic_socket without opening it.
/**
* This constructor creates a socket without opening it.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*/
explicit basic_socket(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a basic_socket without opening it.
/**
* This constructor creates a socket without opening it.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*/
template <typename ExecutionContext>
explicit basic_socket(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
}
/// Construct and open a basic_socket.
/**
* This constructor creates and opens a socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
basic_socket(const executor_type& ex, const protocol_type& protocol)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct and open a basic_socket.
/**
* This constructor creates and opens a socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_socket(ExecutionContext& context, const protocol_type& protocol,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct a basic_socket, opening it and binding it to the given local
/// endpoint.
/**
* This constructor creates a socket and automatically opens it bound to the
* specified endpoint on the local machine. The protocol used is the protocol
* associated with the given endpoint.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the socket will
* be bound.
*
* @throws asio::system_error Thrown on failure.
*/
basic_socket(const executor_type& ex, const endpoint_type& endpoint)
: impl_(0, ex)
{
asio::error_code ec;
const protocol_type protocol = endpoint.protocol();
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
}
/// Construct a basic_socket, opening it and binding it to the given local
/// endpoint.
/**
* This constructor creates a socket and automatically opens it bound to the
* specified endpoint on the local machine. The protocol used is the protocol
* associated with the given endpoint.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the socket will
* be bound.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_socket(ExecutionContext& context, const endpoint_type& endpoint,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
const protocol_type protocol = endpoint.protocol();
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
}
/// Construct a basic_socket on an existing native socket.
/**
* This constructor creates a socket object to hold an existing native socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket A native socket.
*
* @throws asio::system_error Thrown on failure.
*/
basic_socket(const executor_type& ex, const protocol_type& protocol,
const native_handle_type& native_socket)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_socket, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a basic_socket on an existing native socket.
/**
* This constructor creates a socket object to hold an existing native socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket A native socket.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_socket(ExecutionContext& context, const protocol_type& protocol,
const native_handle_type& native_socket,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_socket, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct a basic_socket from another.
/**
* This constructor moves a socket from one object to another.
*
* @param other The other basic_socket object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket(const executor_type&) constructor.
*/
basic_socket(basic_socket&& other) noexcept
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_socket from another.
/**
* This assignment operator moves a socket from one object to another.
*
* @param other The other basic_socket object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket(const executor_type&) constructor.
*/
basic_socket& operator=(basic_socket&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All sockets have access to each other's implementations.
template <typename Protocol1, typename Executor1>
friend class basic_socket;
/// Move-construct a basic_socket from a socket of another protocol type.
/**
* This constructor moves a socket from one object to another.
*
* @param other The other basic_socket object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket(const executor_type&) constructor.
*/
template <typename Protocol1, typename Executor1>
basic_socket(basic_socket<Protocol1, Executor1>&& other,
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value
> = 0)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_socket from a socket of another protocol type.
/**
* This assignment operator moves a socket from one object to another.
*
* @param other The other basic_socket object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_socket(const executor_type&) constructor.
*/
template <typename Protocol1, typename Executor1>
constraint_t<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value,
basic_socket&
> operator=(basic_socket<Protocol1, Executor1>&& other)
{
basic_socket tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
#if !defined(ASIO_NO_EXTENSIONS)
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since a basic_socket cannot contain any further layers, it simply
* returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since a basic_socket cannot contain any further layers, it simply
* returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
#endif // !defined(ASIO_NO_EXTENSIONS)
/// Open the socket using the specified protocol.
/**
* This function opens the socket so that it will use the specified protocol.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* socket.open(asio::ip::tcp::v4());
* @endcode
*/
void open(const protocol_type& protocol = protocol_type())
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
asio::detail::throw_error(ec, "open");
}
/// Open the socket using the specified protocol.
/**
* This function opens the socket so that it will use the specified protocol.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* asio::error_code ec;
* socket.open(asio::ip::tcp::v4(), ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID open(const protocol_type& protocol,
asio::error_code& ec)
{
impl_.get_service().open(impl_.get_implementation(), protocol, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Assign an existing native socket to the socket.
/*
* This function opens the socket to hold an existing native socket.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_socket A native socket.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const protocol_type& protocol,
const native_handle_type& native_socket)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_socket, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native socket to the socket.
/*
* This function opens the socket to hold an existing native socket.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_socket A native socket.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const protocol_type& protocol,
const native_handle_type& native_socket, asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(),
protocol, native_socket, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the socket is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the socket.
/**
* This function is used to close the socket. Any asynchronous send, receive
* or connect operations will be cancelled immediately, and will complete
* with the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*
* @note For portable behaviour with respect to graceful closure of a
* connected socket, call shutdown() before closing the socket.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the socket.
/**
* This function is used to close the socket. Any asynchronous send, receive
* or connect operations will be cancelled immediately, and will complete
* with the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::error_code ec;
* socket.close(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*
* @note For portable behaviour with respect to graceful closure of a
* connected socket, call shutdown() before closing the socket.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Release ownership of the underlying native socket.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error. Ownership
* of the native socket is then transferred to the caller.
*
* @throws asio::system_error Thrown on failure.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release()
{
asio::error_code ec;
native_handle_type s = impl_.get_service().release(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "release");
return s;
}
/// Release ownership of the underlying native socket.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error. Ownership
* of the native socket is then transferred to the caller.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release(asio::error_code& ec)
{
return impl_.get_service().release(impl_.get_implementation(), ec);
}
/// Get the native socket representation.
/**
* This function may be used to obtain the underlying representation of the
* socket. This is intended to allow access to native socket functionality
* that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the socket.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls to cancel() will always fail with
* asio::error::operation_not_supported when run on Windows XP, Windows
* Server 2003, and earlier versions of Windows, unless
* ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
* two issues that should be considered before enabling its use:
*
* @li It will only cancel asynchronous operations that were initiated in the
* current thread.
*
* @li It can appear to complete without error, but the request to cancel the
* unfinished operations may be silently ignored by the operating system.
* Whether it works or not seems to depend on the drivers that are installed.
*
* For portable cancellation, consider using one of the following
* alternatives:
*
* @li Disable asio's I/O completion port backend by defining
* ASIO_DISABLE_IOCP.
*
* @li Use the close() function to simultaneously cancel the outstanding
* operations and close the socket.
*
* When running on Windows Vista, Windows Server 2008, and later, the
* CancelIoEx function is always used. This function does not have the
* problems described above.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0600) \
&& !defined(ASIO_ENABLE_CANCELIO)
__declspec(deprecated("By default, this function always fails with "
"operation_not_supported when used on Windows XP, Windows Server 2003, "
"or earlier. Consult documentation for details."))
#endif
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the socket.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls to cancel() will always fail with
* asio::error::operation_not_supported when run on Windows XP, Windows
* Server 2003, and earlier versions of Windows, unless
* ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
* two issues that should be considered before enabling its use:
*
* @li It will only cancel asynchronous operations that were initiated in the
* current thread.
*
* @li It can appear to complete without error, but the request to cancel the
* unfinished operations may be silently ignored by the operating system.
* Whether it works or not seems to depend on the drivers that are installed.
*
* For portable cancellation, consider using one of the following
* alternatives:
*
* @li Disable asio's I/O completion port backend by defining
* ASIO_DISABLE_IOCP.
*
* @li Use the close() function to simultaneously cancel the outstanding
* operations and close the socket.
*
* When running on Windows Vista, Windows Server 2008, and later, the
* CancelIoEx function is always used. This function does not have the
* problems described above.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0600) \
&& !defined(ASIO_ENABLE_CANCELIO)
__declspec(deprecated("By default, this function always fails with "
"operation_not_supported when used on Windows XP, Windows Server 2003, "
"or earlier. Consult documentation for details."))
#endif
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the socket is at the out-of-band data mark.
/**
* This function is used to check whether the socket input is currently
* positioned at the out-of-band data mark.
*
* @return A bool indicating whether the socket is at the out-of-band data
* mark.
*
* @throws asio::system_error Thrown on failure.
*/
bool at_mark() const
{
asio::error_code ec;
bool b = impl_.get_service().at_mark(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "at_mark");
return b;
}
/// Determine whether the socket is at the out-of-band data mark.
/**
* This function is used to check whether the socket input is currently
* positioned at the out-of-band data mark.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return A bool indicating whether the socket is at the out-of-band data
* mark.
*/
bool at_mark(asio::error_code& ec) const
{
return impl_.get_service().at_mark(impl_.get_implementation(), ec);
}
/// Determine the number of bytes available for reading.
/**
* This function is used to determine the number of bytes that may be read
* without blocking.
*
* @return The number of bytes that may be read without blocking, or 0 if an
* error occurs.
*
* @throws asio::system_error Thrown on failure.
*/
std::size_t available() const
{
asio::error_code ec;
std::size_t s = impl_.get_service().available(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "available");
return s;
}
/// Determine the number of bytes available for reading.
/**
* This function is used to determine the number of bytes that may be read
* without blocking.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of bytes that may be read without blocking, or 0 if an
* error occurs.
*/
std::size_t available(asio::error_code& ec) const
{
return impl_.get_service().available(impl_.get_implementation(), ec);
}
/// Bind the socket to the given local endpoint.
/**
* This function binds the socket to the specified endpoint on the local
* machine.
*
* @param endpoint An endpoint on the local machine to which the socket will
* be bound.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* socket.open(asio::ip::tcp::v4());
* socket.bind(asio::ip::tcp::endpoint(
* asio::ip::tcp::v4(), 12345));
* @endcode
*/
void bind(const endpoint_type& endpoint)
{
asio::error_code ec;
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
asio::detail::throw_error(ec, "bind");
}
/// Bind the socket to the given local endpoint.
/**
* This function binds the socket to the specified endpoint on the local
* machine.
*
* @param endpoint An endpoint on the local machine to which the socket will
* be bound.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* socket.open(asio::ip::tcp::v4());
* asio::error_code ec;
* socket.bind(asio::ip::tcp::endpoint(
* asio::ip::tcp::v4(), 12345), ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID bind(const endpoint_type& endpoint,
asio::error_code& ec)
{
impl_.get_service().bind(impl_.get_implementation(), endpoint, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Connect the socket to the specified endpoint.
/**
* This function is used to connect a socket to the specified remote endpoint.
* The function call will block until the connection is successfully made or
* an error occurs.
*
* The socket is automatically opened if it is not already open. If the
* connect fails, and the socket was automatically opened, the socket is
* not returned to the closed state.
*
* @param peer_endpoint The remote endpoint to which the socket will be
* connected.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* asio::ip::tcp::endpoint endpoint(
* asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.connect(endpoint);
* @endcode
*/
void connect(const endpoint_type& peer_endpoint)
{
asio::error_code ec;
if (!is_open())
{
impl_.get_service().open(impl_.get_implementation(),
peer_endpoint.protocol(), ec);
asio::detail::throw_error(ec, "connect");
}
impl_.get_service().connect(impl_.get_implementation(), peer_endpoint, ec);
asio::detail::throw_error(ec, "connect");
}
/// Connect the socket to the specified endpoint.
/**
* This function is used to connect a socket to the specified remote endpoint.
* The function call will block until the connection is successfully made or
* an error occurs.
*
* The socket is automatically opened if it is not already open. If the
* connect fails, and the socket was automatically opened, the socket is
* not returned to the closed state.
*
* @param peer_endpoint The remote endpoint to which the socket will be
* connected.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* asio::ip::tcp::endpoint endpoint(
* asio::ip::address::from_string("1.2.3.4"), 12345);
* asio::error_code ec;
* socket.connect(endpoint, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID connect(const endpoint_type& peer_endpoint,
asio::error_code& ec)
{
if (!is_open())
{
impl_.get_service().open(impl_.get_implementation(),
peer_endpoint.protocol(), ec);
if (ec)
{
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
impl_.get_service().connect(impl_.get_implementation(), peer_endpoint, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Start an asynchronous connect.
/**
* This function is used to asynchronously connect a socket to the specified
* remote endpoint. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* The socket is automatically opened if it is not already open. If the
* connect fails, and the socket was automatically opened, the socket is
* not returned to the closed state.
*
* @param peer_endpoint The remote endpoint to which the socket will be
* connected. Copies will be made of the endpoint object as required.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the connect completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Example
* @code
* void connect_handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Connect succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::socket socket(my_context);
* asio::ip::tcp::endpoint endpoint(
* asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.async_connect(endpoint, connect_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
ConnectToken = default_completion_token_t<executor_type>>
auto async_connect(const endpoint_type& peer_endpoint,
ConnectToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ConnectToken, void (asio::error_code)>(
declval<initiate_async_connect>(), token,
peer_endpoint, declval<asio::error_code&>()))
{
asio::error_code open_ec;
if (!is_open())
{
const protocol_type protocol = peer_endpoint.protocol();
impl_.get_service().open(impl_.get_implementation(), protocol, open_ec);
}
return async_initiate<ConnectToken, void (asio::error_code)>(
initiate_async_connect(this), token, peer_endpoint, open_ec);
}
/// Set an option on the socket.
/**
* This function is used to set an option on the socket.
*
* @param option The new option value to be set on the socket.
*
* @throws asio::system_error Thrown on failure.
*
* @sa SettableSocketOption @n
* asio::socket_base::broadcast @n
* asio::socket_base::do_not_route @n
* asio::socket_base::keep_alive @n
* asio::socket_base::linger @n
* asio::socket_base::receive_buffer_size @n
* asio::socket_base::receive_low_watermark @n
* asio::socket_base::reuse_address @n
* asio::socket_base::send_buffer_size @n
* asio::socket_base::send_low_watermark @n
* asio::ip::multicast::join_group @n
* asio::ip::multicast::leave_group @n
* asio::ip::multicast::enable_loopback @n
* asio::ip::multicast::outbound_interface @n
* asio::ip::multicast::hops @n
* asio::ip::tcp::no_delay
*
* @par Example
* Setting the IPPROTO_TCP/TCP_NODELAY option:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::no_delay option(true);
* socket.set_option(option);
* @endcode
*/
template <typename SettableSocketOption>
void set_option(const SettableSocketOption& option)
{
asio::error_code ec;
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "set_option");
}
/// Set an option on the socket.
/**
* This function is used to set an option on the socket.
*
* @param option The new option value to be set on the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa SettableSocketOption @n
* asio::socket_base::broadcast @n
* asio::socket_base::do_not_route @n
* asio::socket_base::keep_alive @n
* asio::socket_base::linger @n
* asio::socket_base::receive_buffer_size @n
* asio::socket_base::receive_low_watermark @n
* asio::socket_base::reuse_address @n
* asio::socket_base::send_buffer_size @n
* asio::socket_base::send_low_watermark @n
* asio::ip::multicast::join_group @n
* asio::ip::multicast::leave_group @n
* asio::ip::multicast::enable_loopback @n
* asio::ip::multicast::outbound_interface @n
* asio::ip::multicast::hops @n
* asio::ip::tcp::no_delay
*
* @par Example
* Setting the IPPROTO_TCP/TCP_NODELAY option:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::no_delay option(true);
* asio::error_code ec;
* socket.set_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename SettableSocketOption>
ASIO_SYNC_OP_VOID set_option(const SettableSocketOption& option,
asio::error_code& ec)
{
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get an option from the socket.
/**
* This function is used to get the current value of an option on the socket.
*
* @param option The option value to be obtained from the socket.
*
* @throws asio::system_error Thrown on failure.
*
* @sa GettableSocketOption @n
* asio::socket_base::broadcast @n
* asio::socket_base::do_not_route @n
* asio::socket_base::keep_alive @n
* asio::socket_base::linger @n
* asio::socket_base::receive_buffer_size @n
* asio::socket_base::receive_low_watermark @n
* asio::socket_base::reuse_address @n
* asio::socket_base::send_buffer_size @n
* asio::socket_base::send_low_watermark @n
* asio::ip::multicast::join_group @n
* asio::ip::multicast::leave_group @n
* asio::ip::multicast::enable_loopback @n
* asio::ip::multicast::outbound_interface @n
* asio::ip::multicast::hops @n
* asio::ip::tcp::no_delay
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::socket::keep_alive option;
* socket.get_option(option);
* bool is_set = option.value();
* @endcode
*/
template <typename GettableSocketOption>
void get_option(GettableSocketOption& option) const
{
asio::error_code ec;
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "get_option");
}
/// Get an option from the socket.
/**
* This function is used to get the current value of an option on the socket.
*
* @param option The option value to be obtained from the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa GettableSocketOption @n
* asio::socket_base::broadcast @n
* asio::socket_base::do_not_route @n
* asio::socket_base::keep_alive @n
* asio::socket_base::linger @n
* asio::socket_base::receive_buffer_size @n
* asio::socket_base::receive_low_watermark @n
* asio::socket_base::reuse_address @n
* asio::socket_base::send_buffer_size @n
* asio::socket_base::send_low_watermark @n
* asio::ip::multicast::join_group @n
* asio::ip::multicast::leave_group @n
* asio::ip::multicast::enable_loopback @n
* asio::ip::multicast::outbound_interface @n
* asio::ip::multicast::hops @n
* asio::ip::tcp::no_delay
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::socket::keep_alive option;
* asio::error_code ec;
* socket.get_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* bool is_set = option.value();
* @endcode
*/
template <typename GettableSocketOption>
ASIO_SYNC_OP_VOID get_option(GettableSocketOption& option,
asio::error_code& ec) const
{
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform an IO control command on the socket.
/**
* This function is used to execute an IO control command on the socket.
*
* @param command The IO control command to be performed on the socket.
*
* @throws asio::system_error Thrown on failure.
*
* @sa IoControlCommand @n
* asio::socket_base::bytes_readable @n
* asio::socket_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::socket::bytes_readable command;
* socket.io_control(command);
* std::size_t bytes_readable = command.get();
* @endcode
*/
template <typename IoControlCommand>
void io_control(IoControlCommand& command)
{
asio::error_code ec;
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
asio::detail::throw_error(ec, "io_control");
}
/// Perform an IO control command on the socket.
/**
* This function is used to execute an IO control command on the socket.
*
* @param command The IO control command to be performed on the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa IoControlCommand @n
* asio::socket_base::bytes_readable @n
* asio::socket_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::socket::bytes_readable command;
* asio::error_code ec;
* socket.io_control(command, ec);
* if (ec)
* {
* // An error occurred.
* }
* std::size_t bytes_readable = command.get();
* @endcode
*/
template <typename IoControlCommand>
ASIO_SYNC_OP_VOID io_control(IoControlCommand& command,
asio::error_code& ec)
{
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the socket.
/**
* @returns @c true if the socket's synchronous operations will fail with
* asio::error::would_block if they are unable to perform the requested
* operation immediately. If @c false, synchronous operations will block
* until complete.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
bool non_blocking() const
{
return impl_.get_service().non_blocking(impl_.get_implementation());
}
/// Sets the non-blocking mode of the socket.
/**
* @param mode If @c true, the socket's synchronous operations will fail with
* asio::error::would_block if they are unable to perform the requested
* operation immediately. If @c false, synchronous operations will block
* until complete.
*
* @throws asio::system_error Thrown on failure.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
void non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "non_blocking");
}
/// Sets the non-blocking mode of the socket.
/**
* @param mode If @c true, the socket's synchronous operations will fail with
* asio::error::would_block if they are unable to perform the requested
* operation immediately. If @c false, synchronous operations will block
* until complete.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
ASIO_SYNC_OP_VOID non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the native socket implementation.
/**
* This function is used to retrieve the non-blocking mode of the underlying
* native socket. This mode has no effect on the behaviour of the socket
* object's synchronous operations.
*
* @returns @c true if the underlying socket is in non-blocking mode and
* direct system calls may fail with asio::error::would_block (or the
* equivalent system error).
*
* @note The current non-blocking mode is cached by the socket object.
* Consequently, the return value may be incorrect if the non-blocking mode
* was set directly on the native socket.
*
* @par Example
* This function is intended to allow the encapsulation of arbitrary
* non-blocking system calls as asynchronous operations, in a way that is
* transparent to the user of the socket object. The following example
* illustrates how Linux's @c sendfile system call might be encapsulated:
* @code template <typename Handler>
* struct sendfile_op
* {
* tcp::socket& sock_;
* int fd_;
* Handler handler_;
* off_t offset_;
* std::size_t total_bytes_transferred_;
*
* // Function call operator meeting WriteHandler requirements.
* // Used as the handler for the async_write_some operation.
* void operator()(asio::error_code ec, std::size_t)
* {
* // Put the underlying socket into non-blocking mode.
* if (!ec)
* if (!sock_.native_non_blocking())
* sock_.native_non_blocking(true, ec);
*
* if (!ec)
* {
* for (;;)
* {
* // Try the system call.
* errno = 0;
* int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
* ec = asio::error_code(n < 0 ? errno : 0,
* asio::error::get_system_category());
* total_bytes_transferred_ += ec ? 0 : n;
*
* // Retry operation immediately if interrupted by signal.
* if (ec == asio::error::interrupted)
* continue;
*
* // Check if we need to run the operation again.
* if (ec == asio::error::would_block
* || ec == asio::error::try_again)
* {
* // We have to wait for the socket to become ready again.
* sock_.async_wait(tcp::socket::wait_write, *this);
* return;
* }
*
* if (ec || n == 0)
* {
* // An error occurred, or we have reached the end of the file.
* // Either way we must exit the loop so we can call the handler.
* break;
* }
*
* // Loop around to try calling sendfile again.
* }
* }
*
* // Pass result back to user's handler.
* handler_(ec, total_bytes_transferred_);
* }
* };
*
* template <typename Handler>
* void async_sendfile(tcp::socket& sock, int fd, Handler h)
* {
* sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
* sock.async_wait(tcp::socket::wait_write, op);
* } @endcode
*/
bool native_non_blocking() const
{
return impl_.get_service().native_non_blocking(impl_.get_implementation());
}
/// Sets the non-blocking mode of the native socket implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native socket. It has no effect on the behaviour of the socket object's
* synchronous operations.
*
* @param mode If @c true, the underlying socket is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @throws asio::system_error Thrown on failure. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*
* @par Example
* This function is intended to allow the encapsulation of arbitrary
* non-blocking system calls as asynchronous operations, in a way that is
* transparent to the user of the socket object. The following example
* illustrates how Linux's @c sendfile system call might be encapsulated:
* @code template <typename Handler>
* struct sendfile_op
* {
* tcp::socket& sock_;
* int fd_;
* Handler handler_;
* off_t offset_;
* std::size_t total_bytes_transferred_;
*
* // Function call operator meeting WriteHandler requirements.
* // Used as the handler for the async_write_some operation.
* void operator()(asio::error_code ec, std::size_t)
* {
* // Put the underlying socket into non-blocking mode.
* if (!ec)
* if (!sock_.native_non_blocking())
* sock_.native_non_blocking(true, ec);
*
* if (!ec)
* {
* for (;;)
* {
* // Try the system call.
* errno = 0;
* int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
* ec = asio::error_code(n < 0 ? errno : 0,
* asio::error::get_system_category());
* total_bytes_transferred_ += ec ? 0 : n;
*
* // Retry operation immediately if interrupted by signal.
* if (ec == asio::error::interrupted)
* continue;
*
* // Check if we need to run the operation again.
* if (ec == asio::error::would_block
* || ec == asio::error::try_again)
* {
* // We have to wait for the socket to become ready again.
* sock_.async_wait(tcp::socket::wait_write, *this);
* return;
* }
*
* if (ec || n == 0)
* {
* // An error occurred, or we have reached the end of the file.
* // Either way we must exit the loop so we can call the handler.
* break;
* }
*
* // Loop around to try calling sendfile again.
* }
* }
*
* // Pass result back to user's handler.
* handler_(ec, total_bytes_transferred_);
* }
* };
*
* template <typename Handler>
* void async_sendfile(tcp::socket& sock, int fd, Handler h)
* {
* sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
* sock.async_wait(tcp::socket::wait_write, op);
* } @endcode
*/
void native_non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "native_non_blocking");
}
/// Sets the non-blocking mode of the native socket implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native socket. It has no effect on the behaviour of the socket object's
* synchronous operations.
*
* @param mode If @c true, the underlying socket is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @param ec Set to indicate what error occurred, if any. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*
* @par Example
* This function is intended to allow the encapsulation of arbitrary
* non-blocking system calls as asynchronous operations, in a way that is
* transparent to the user of the socket object. The following example
* illustrates how Linux's @c sendfile system call might be encapsulated:
* @code template <typename Handler>
* struct sendfile_op
* {
* tcp::socket& sock_;
* int fd_;
* Handler handler_;
* off_t offset_;
* std::size_t total_bytes_transferred_;
*
* // Function call operator meeting WriteHandler requirements.
* // Used as the handler for the async_write_some operation.
* void operator()(asio::error_code ec, std::size_t)
* {
* // Put the underlying socket into non-blocking mode.
* if (!ec)
* if (!sock_.native_non_blocking())
* sock_.native_non_blocking(true, ec);
*
* if (!ec)
* {
* for (;;)
* {
* // Try the system call.
* errno = 0;
* int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
* ec = asio::error_code(n < 0 ? errno : 0,
* asio::error::get_system_category());
* total_bytes_transferred_ += ec ? 0 : n;
*
* // Retry operation immediately if interrupted by signal.
* if (ec == asio::error::interrupted)
* continue;
*
* // Check if we need to run the operation again.
* if (ec == asio::error::would_block
* || ec == asio::error::try_again)
* {
* // We have to wait for the socket to become ready again.
* sock_.async_wait(tcp::socket::wait_write, *this);
* return;
* }
*
* if (ec || n == 0)
* {
* // An error occurred, or we have reached the end of the file.
* // Either way we must exit the loop so we can call the handler.
* break;
* }
*
* // Loop around to try calling sendfile again.
* }
* }
*
* // Pass result back to user's handler.
* handler_(ec, total_bytes_transferred_);
* }
* };
*
* template <typename Handler>
* void async_sendfile(tcp::socket& sock, int fd, Handler h)
* {
* sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
* sock.async_wait(tcp::socket::wait_write, op);
* } @endcode
*/
ASIO_SYNC_OP_VOID native_non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the local endpoint of the socket.
/**
* This function is used to obtain the locally bound endpoint of the socket.
*
* @returns An object that represents the local endpoint of the socket.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::endpoint endpoint = socket.local_endpoint();
* @endcode
*/
endpoint_type local_endpoint() const
{
asio::error_code ec;
endpoint_type ep = impl_.get_service().local_endpoint(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "local_endpoint");
return ep;
}
/// Get the local endpoint of the socket.
/**
* This function is used to obtain the locally bound endpoint of the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns An object that represents the local endpoint of the socket.
* Returns a default-constructed endpoint object if an error occurred.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::error_code ec;
* asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
endpoint_type local_endpoint(asio::error_code& ec) const
{
return impl_.get_service().local_endpoint(impl_.get_implementation(), ec);
}
/// Get the remote endpoint of the socket.
/**
* This function is used to obtain the remote endpoint of the socket.
*
* @returns An object that represents the remote endpoint of the socket.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();
* @endcode
*/
endpoint_type remote_endpoint() const
{
asio::error_code ec;
endpoint_type ep = impl_.get_service().remote_endpoint(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "remote_endpoint");
return ep;
}
/// Get the remote endpoint of the socket.
/**
* This function is used to obtain the remote endpoint of the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns An object that represents the remote endpoint of the socket.
* Returns a default-constructed endpoint object if an error occurred.
*
* @par Example
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::error_code ec;
* asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
endpoint_type remote_endpoint(asio::error_code& ec) const
{
return impl_.get_service().remote_endpoint(impl_.get_implementation(), ec);
}
/// Disable sends or receives on the socket.
/**
* This function is used to disable send operations, receive operations, or
* both.
*
* @param what Determines what types of operation will no longer be allowed.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* Shutting down the send side of the socket:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* socket.shutdown(asio::ip::tcp::socket::shutdown_send);
* @endcode
*/
void shutdown(shutdown_type what)
{
asio::error_code ec;
impl_.get_service().shutdown(impl_.get_implementation(), what, ec);
asio::detail::throw_error(ec, "shutdown");
}
/// Disable sends or receives on the socket.
/**
* This function is used to disable send operations, receive operations, or
* both.
*
* @param what Determines what types of operation will no longer be allowed.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* Shutting down the send side of the socket:
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::error_code ec;
* socket.shutdown(asio::ip::tcp::socket::shutdown_send, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID shutdown(shutdown_type what,
asio::error_code& ec)
{
impl_.get_service().shutdown(impl_.get_implementation(), what, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Wait for the socket to become ready to read, ready to write, or to have
/// pending error conditions.
/**
* This function is used to perform a blocking wait for a socket to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired socket state.
*
* @par Example
* Waiting for a socket to become readable.
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* socket.wait(asio::ip::tcp::socket::wait_read);
* @endcode
*/
void wait(wait_type w)
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), w, ec);
asio::detail::throw_error(ec, "wait");
}
/// Wait for the socket to become ready to read, ready to write, or to have
/// pending error conditions.
/**
* This function is used to perform a blocking wait for a socket to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired socket state.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* Waiting for a socket to become readable.
* @code
* asio::ip::tcp::socket socket(my_context);
* ...
* asio::error_code ec;
* socket.wait(asio::ip::tcp::socket::wait_read, ec);
* @endcode
*/
ASIO_SYNC_OP_VOID wait(wait_type w, asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), w, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Asynchronously wait for the socket to become ready to read, ready to
/// write, or to have pending error conditions.
/**
* This function is used to perform an asynchronous wait for a socket to enter
* a ready to read, write or error condition state. It is an initiating
* function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param w Specifies the desired socket state.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the wait completes. Potential
* completion tokens include @ref use_future, @ref use_awaitable, @ref
* yield_context, or a function object with the correct completion signature.
* The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Example
* @code
* void wait_handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Wait succeeded.
* }
* }
*
* ...
*
* asio::ip::tcp::socket socket(my_context);
* ...
* socket.async_wait(asio::ip::tcp::socket::wait_read, wait_handler);
* @endcode
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitToken = default_completion_token_t<executor_type>>
auto async_wait(wait_type w,
WaitToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WaitToken, void (asio::error_code)>(
declval<initiate_async_wait>(), token, w))
{
return async_initiate<WaitToken, void (asio::error_code)>(
initiate_async_wait(this), token, w);
}
protected:
/// Protected destructor to prevent deletion through this type.
/**
* This function destroys the socket, cancelling any outstanding asynchronous
* operations associated with the socket as if by calling @c cancel.
*/
~basic_socket()
{
}
#if defined(ASIO_WINDOWS_RUNTIME)
detail::io_object_impl<
detail::null_socket_service<Protocol>, Executor> impl_;
#elif defined(ASIO_HAS_IOCP)
detail::io_object_impl<
detail::win_iocp_socket_service<Protocol>, Executor> impl_;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
detail::io_object_impl<
detail::io_uring_socket_service<Protocol>, Executor> impl_;
#else
detail::io_object_impl<
detail::reactive_socket_service<Protocol>, Executor> impl_;
#endif
private:
// Disallow copying and assignment.
basic_socket(const basic_socket&) = delete;
basic_socket& operator=(const basic_socket&) = delete;
class initiate_async_connect
{
public:
typedef Executor executor_type;
explicit initiate_async_connect(basic_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ConnectHandler>
void operator()(ConnectHandler&& handler,
const endpoint_type& peer_endpoint,
const asio::error_code& open_ec) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ConnectHandler.
ASIO_CONNECT_HANDLER_CHECK(ConnectHandler, handler) type_check;
if (open_ec)
{
asio::post(self_->impl_.get_executor(),
asio::detail::bind_handler(
static_cast<ConnectHandler&&>(handler), open_ec));
}
else
{
detail::non_const_lvalue<ConnectHandler> handler2(handler);
self_->impl_.get_service().async_connect(
self_->impl_.get_implementation(), peer_endpoint,
handler2.value, self_->impl_.get_executor());
}
}
private:
basic_socket* self_;
};
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(WaitHandler&& handler, wait_type w) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(), w,
handler2.value, self_->impl_.get_executor());
}
private:
basic_socket* self_;
};
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_SOCKET_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/execution_context.hpp | //
// execution_context.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_EXECUTION_CONTEXT_HPP
#define ASIO_EXECUTION_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include <stdexcept>
#include <typeinfo>
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
class execution_context;
class io_context;
#if !defined(GENERATING_DOCUMENTATION)
template <typename Service> Service& use_service(execution_context&);
template <typename Service> Service& use_service(io_context&);
template <typename Service> void add_service(execution_context&, Service*);
template <typename Service> bool has_service(execution_context&);
#endif // !defined(GENERATING_DOCUMENTATION)
namespace detail { class service_registry; }
/// A context for function object execution.
/**
* An execution context represents a place where function objects will be
* executed. An @c io_context is an example of an execution context.
*
* @par The execution_context class and services
*
* Class execution_context implements an extensible, type-safe, polymorphic set
* of services, indexed by service type.
*
* Services exist to manage the resources that are shared across an execution
* context. For example, timers may be implemented in terms of a single timer
* queue, and this queue would be stored in a service.
*
* Access to the services of an execution_context is via three function
* templates, use_service(), add_service() and has_service().
*
* In a call to @c use_service<Service>(), the type argument chooses a service,
* making available all members of the named type. If @c Service is not present
* in an execution_context, an object of type @c Service is created and added
* to the execution_context. A C++ program can check if an execution_context
* implements a particular service with the function template @c
* has_service<Service>().
*
* Service objects may be explicitly added to an execution_context using the
* function template @c add_service<Service>(). If the @c Service is already
* present, the service_already_exists exception is thrown. If the owner of the
* service is not the same object as the execution_context parameter, the
* invalid_service_owner exception is thrown.
*
* Once a service reference is obtained from an execution_context object by
* calling use_service(), that reference remains usable as long as the owning
* execution_context object exists.
*
* All service implementations have execution_context::service as a public base
* class. Custom services may be implemented by deriving from this class and
* then added to an execution_context using the facilities described above.
*
* @par The execution_context as a base class
*
* Class execution_context may be used only as a base class for concrete
* execution context types. The @c io_context is an example of such a derived
* type.
*
* On destruction, a class that is derived from execution_context must perform
* <tt>execution_context::shutdown()</tt> followed by
* <tt>execution_context::destroy()</tt>.
*
* This destruction sequence permits programs to simplify their resource
* management by using @c shared_ptr<>. Where an object's lifetime is tied to
* the lifetime of a connection (or some other sequence of asynchronous
* operations), a @c shared_ptr to the object would be bound into the handlers
* for all asynchronous operations associated with it. This works as follows:
*
* @li When a single connection ends, all associated asynchronous operations
* complete. The corresponding handler objects are destroyed, and all @c
* shared_ptr references to the objects are destroyed.
*
* @li To shut down the whole program, the io_context function stop() is called
* to terminate any run() calls as soon as possible. The io_context destructor
* calls @c shutdown() and @c destroy() to destroy all pending handlers,
* causing all @c shared_ptr references to all connection objects to be
* destroyed.
*/
class execution_context
: private noncopyable
{
public:
class id;
class service;
public:
/// Constructor.
ASIO_DECL execution_context();
/// Destructor.
ASIO_DECL ~execution_context();
protected:
/// Shuts down all services in the context.
/**
* This function is implemented as follows:
*
* @li For each service object @c svc in the execution_context set, in
* reverse order of the beginning of service object lifetime, performs @c
* svc->shutdown().
*/
ASIO_DECL void shutdown();
/// Destroys all services in the context.
/**
* This function is implemented as follows:
*
* @li For each service object @c svc in the execution_context set, in
* reverse order * of the beginning of service object lifetime, performs
* <tt>delete static_cast<execution_context::service*>(svc)</tt>.
*/
ASIO_DECL void destroy();
public:
/// Fork-related event notifications.
enum fork_event
{
/// Notify the context that the process is about to fork.
fork_prepare,
/// Notify the context that the process has forked and is the parent.
fork_parent,
/// Notify the context that the process has forked and is the child.
fork_child
};
/// Notify the execution_context of a fork-related event.
/**
* This function is used to inform the execution_context that the process is
* about to fork, or has just forked. This allows the execution_context, and
* the services it contains, to perform any necessary housekeeping to ensure
* correct operation following a fork.
*
* This function must not be called while any other execution_context
* function, or any function associated with the execution_context's derived
* class, is being called in another thread. It is, however, safe to call
* this function from within a completion handler, provided no other thread
* is accessing the execution_context or its derived class.
*
* @param event A fork-related event.
*
* @throws asio::system_error Thrown on failure. If the notification
* fails the execution_context object should no longer be used and should be
* destroyed.
*
* @par Example
* The following code illustrates how to incorporate the notify_fork()
* function:
* @code my_execution_context.notify_fork(execution_context::fork_prepare);
* if (fork() == 0)
* {
* // This is the child process.
* my_execution_context.notify_fork(execution_context::fork_child);
* }
* else
* {
* // This is the parent process.
* my_execution_context.notify_fork(execution_context::fork_parent);
* } @endcode
*
* @note For each service object @c svc in the execution_context set,
* performs <tt>svc->notify_fork();</tt>. When processing the fork_prepare
* event, services are visited in reverse order of the beginning of service
* object lifetime. Otherwise, services are visited in order of the beginning
* of service object lifetime.
*/
ASIO_DECL void notify_fork(fork_event event);
/// Obtain the service object corresponding to the given type.
/**
* This function is used to locate a service object that corresponds to the
* given service type. If there is no existing implementation of the service,
* then the execution_context will create a new instance of the service.
*
* @param e The execution_context object that owns the service.
*
* @return The service interface implementing the specified service type.
* Ownership of the service interface is not transferred to the caller.
*/
template <typename Service>
friend Service& use_service(execution_context& e);
/// Obtain the service object corresponding to the given type.
/**
* This function is used to locate a service object that corresponds to the
* given service type. If there is no existing implementation of the service,
* then the io_context will create a new instance of the service.
*
* @param ioc The io_context object that owns the service.
*
* @return The service interface implementing the specified service type.
* Ownership of the service interface is not transferred to the caller.
*
* @note This overload is preserved for backwards compatibility with services
* that inherit from io_context::service.
*/
template <typename Service>
friend Service& use_service(io_context& ioc);
/// Creates a service object and adds it to the execution_context.
/**
* This function is used to add a service to the execution_context.
*
* @param e The execution_context object that owns the service.
*
* @param args Zero or more arguments to be passed to the service
* constructor.
*
* @throws asio::service_already_exists Thrown if a service of the
* given type is already present in the execution_context.
*/
template <typename Service, typename... Args>
friend Service& make_service(execution_context& e, Args&&... args);
/// (Deprecated: Use make_service().) Add a service object to the
/// execution_context.
/**
* This function is used to add a service to the execution_context.
*
* @param e The execution_context object that owns the service.
*
* @param svc The service object. On success, ownership of the service object
* is transferred to the execution_context. When the execution_context object
* is destroyed, it will destroy the service object by performing: @code
* delete static_cast<execution_context::service*>(svc) @endcode
*
* @throws asio::service_already_exists Thrown if a service of the
* given type is already present in the execution_context.
*
* @throws asio::invalid_service_owner Thrown if the service's owning
* execution_context is not the execution_context object specified by the
* @c e parameter.
*/
template <typename Service>
friend void add_service(execution_context& e, Service* svc);
/// Determine if an execution_context contains a specified service type.
/**
* This function is used to determine whether the execution_context contains a
* service object corresponding to the given service type.
*
* @param e The execution_context object that owns the service.
*
* @return A boolean indicating whether the execution_context contains the
* service.
*/
template <typename Service>
friend bool has_service(execution_context& e);
private:
// The service registry.
asio::detail::service_registry* service_registry_;
};
/// Class used to uniquely identify a service.
class execution_context::id
: private noncopyable
{
public:
/// Constructor.
id() {}
};
/// Base class for all io_context services.
class execution_context::service
: private noncopyable
{
public:
/// Get the context object that owns the service.
execution_context& context();
protected:
/// Constructor.
/**
* @param owner The execution_context object that owns the service.
*/
ASIO_DECL service(execution_context& owner);
/// Destructor.
ASIO_DECL virtual ~service();
private:
/// Destroy all user-defined handler objects owned by the service.
virtual void shutdown() = 0;
/// Handle notification of a fork-related event to perform any necessary
/// housekeeping.
/**
* This function is not a pure virtual so that services only have to
* implement it if necessary. The default implementation does nothing.
*/
ASIO_DECL virtual void notify_fork(
execution_context::fork_event event);
friend class asio::detail::service_registry;
struct key
{
key() : type_info_(0), id_(0) {}
const std::type_info* type_info_;
const execution_context::id* id_;
} key_;
execution_context& owner_;
service* next_;
};
/// Exception thrown when trying to add a duplicate service to an
/// execution_context.
class service_already_exists
: public std::logic_error
{
public:
ASIO_DECL service_already_exists();
};
/// Exception thrown when trying to add a service object to an
/// execution_context where the service has a different owner.
class invalid_service_owner
: public std::logic_error
{
public:
ASIO_DECL invalid_service_owner();
};
namespace detail {
// Special derived service id type to keep classes header-file only.
template <typename Type>
class service_id
: public execution_context::id
{
};
// Special service base class to keep classes header-file only.
template <typename Type>
class execution_context_service_base
: public execution_context::service
{
public:
static service_id<Type> id;
// Constructor.
execution_context_service_base(execution_context& e)
: execution_context::service(e)
{
}
};
template <typename Type>
service_id<Type> execution_context_service_base<Type>::id;
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/execution_context.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/impl/execution_context.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_EXECUTION_CONTEXT_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_readable_pipe.hpp | //
// basic_readable_pipe.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_READABLE_PIPE_HPP
#define ASIO_BASIC_READABLE_PIPE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_PIPE) \
|| defined(GENERATING_DOCUMENTATION)
#include <string>
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#if defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_handle_service.hpp"
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
# include "asio/detail/io_uring_descriptor_service.hpp"
#else
# include "asio/detail/reactive_descriptor_service.hpp"
#endif
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides pipe functionality.
/**
* The basic_readable_pipe class provides a wrapper over pipe
* functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_readable_pipe
{
private:
class initiate_async_read_some;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the pipe type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The pipe type when rebound to the specified executor.
typedef basic_readable_pipe<Executor1> other;
};
/// The native representation of a pipe.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_HAS_IOCP)
typedef detail::win_iocp_handle_service::native_handle_type
native_handle_type;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
typedef detail::io_uring_descriptor_service::native_handle_type
native_handle_type;
#else
typedef detail::reactive_descriptor_service::native_handle_type
native_handle_type;
#endif
/// A basic_readable_pipe is always the lowest layer.
typedef basic_readable_pipe lowest_layer_type;
/// Construct a basic_readable_pipe without opening it.
/**
* This constructor creates a pipe without opening it.
*
* @param ex The I/O executor that the pipe will use, by default, to dispatch
* handlers for any asynchronous operations performed on the pipe.
*/
explicit basic_readable_pipe(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a basic_readable_pipe without opening it.
/**
* This constructor creates a pipe without opening it.
*
* @param context An execution context which provides the I/O executor that
* the pipe will use, by default, to dispatch handlers for any asynchronous
* operations performed on the pipe.
*/
template <typename ExecutionContext>
explicit basic_readable_pipe(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct a basic_readable_pipe on an existing native pipe.
/**
* This constructor creates a pipe object to hold an existing native
* pipe.
*
* @param ex The I/O executor that the pipe will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* pipe.
*
* @param native_pipe A native pipe.
*
* @throws asio::system_error Thrown on failure.
*/
basic_readable_pipe(const executor_type& ex,
const native_handle_type& native_pipe)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_pipe, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a basic_readable_pipe on an existing native pipe.
/**
* This constructor creates a pipe object to hold an existing native
* pipe.
*
* @param context An execution context which provides the I/O executor that
* the pipe will use, by default, to dispatch handlers for any
* asynchronous operations performed on the pipe.
*
* @param native_pipe A native pipe.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_readable_pipe(ExecutionContext& context,
const native_handle_type& native_pipe,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_pipe, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct a basic_readable_pipe from another.
/**
* This constructor moves a pipe from one object to another.
*
* @param other The other basic_readable_pipe object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_readable_pipe(const executor_type&)
* constructor.
*/
basic_readable_pipe(basic_readable_pipe&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_readable_pipe from another.
/**
* This assignment operator moves a pipe from one object to another.
*
* @param other The other basic_readable_pipe object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_readable_pipe(const executor_type&)
* constructor.
*/
basic_readable_pipe& operator=(basic_readable_pipe&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All pipes have access to each other's implementations.
template <typename Executor1>
friend class basic_readable_pipe;
/// Move-construct a basic_readable_pipe from a pipe of another executor type.
/**
* This constructor moves a pipe from one object to another.
*
* @param other The other basic_readable_pipe object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_readable_pipe(const executor_type&)
* constructor.
*/
template <typename Executor1>
basic_readable_pipe(basic_readable_pipe<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_readable_pipe from a pipe of another executor type.
/**
* This assignment operator moves a pipe from one object to another.
*
* @param other The other basic_readable_pipe object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_readable_pipe(const executor_type&)
* constructor.
*/
template <typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_readable_pipe&
> operator=(basic_readable_pipe<Executor1>&& other)
{
basic_readable_pipe tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
/// Destroys the pipe.
/**
* This function destroys the pipe, cancelling any outstanding
* asynchronous wait operations associated with the pipe as if by
* calling @c cancel.
*/
~basic_readable_pipe()
{
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since a basic_readable_pipe cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since a basic_readable_pipe cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Assign an existing native pipe to the pipe.
/*
* This function opens the pipe to hold an existing native pipe.
*
* @param native_pipe A native pipe.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& native_pipe)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), native_pipe, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native pipe to the pipe.
/*
* This function opens the pipe to hold an existing native pipe.
*
* @param native_pipe A native pipe.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& native_pipe,
asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(), native_pipe, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the pipe is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the pipe.
/**
* This function is used to close the pipe. Any asynchronous read operations
* will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the pipe.
/**
* This function is used to close the pipe. Any asynchronous read operations
* will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Release ownership of the underlying native pipe.
/**
* This function causes all outstanding asynchronous read operations to
* finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error. Ownership of the
* native pipe is then transferred to the caller.
*
* @throws asio::system_error Thrown on failure.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release()
{
asio::error_code ec;
native_handle_type s = impl_.get_service().release(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "release");
return s;
}
/// Release ownership of the underlying native pipe.
/**
* This function causes all outstanding asynchronous read operations to
* finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error. Ownership of the
* native pipe is then transferred to the caller.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release(asio::error_code& ec)
{
return impl_.get_service().release(impl_.get_implementation(), ec);
}
/// Get the native pipe representation.
/**
* This function may be used to obtain the underlying representation of the
* pipe. This is intended to allow access to native pipe
* functionality that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the pipe.
/**
* This function causes all outstanding asynchronous read operations to finish
* immediately, and the handlers for cancelled operations will be passed the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the pipe.
/**
* This function causes all outstanding asynchronous read operations to finish
* immediately, and the handlers for cancelled operations will be passed the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Read some data from the pipe.
/**
* This function is used to read data from the pipe. The function call will
* block until one or more bytes of data has been read successfully, or until
* an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* basic_readable_pipe.read_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = impl_.get_service().read_some(
impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "read_some");
return s;
}
/// Read some data from the pipe.
/**
* This function is used to read data from the pipe. The function call will
* block until one or more bytes of data has been read successfully, or until
* an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return impl_.get_service().read_some(
impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the pipe. It is an
* initiating function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* basic_readable_pipe.async_read_some(
* asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_read_some(const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_read_some>(), token, buffers))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_read_some(this), token, buffers);
}
private:
// Disallow copying and assignment.
basic_readable_pipe(const basic_readable_pipe&) = delete;
basic_readable_pipe& operator=(const basic_readable_pipe&) = delete;
class initiate_async_read_some
{
public:
typedef Executor executor_type;
explicit initiate_async_read_some(basic_readable_pipe* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_read_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_readable_pipe* self_;
};
#if defined(ASIO_HAS_IOCP)
detail::io_object_impl<detail::win_iocp_handle_service, Executor> impl_;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
detail::io_object_impl<detail::io_uring_descriptor_service, Executor> impl_;
#else
detail::io_object_impl<detail::reactive_descriptor_service, Executor> impl_;
#endif
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_PIPE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_BASIC_READABLE_PIPE_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/strand.hpp | //
// strand.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_STRAND_HPP
#define ASIO_STRAND_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/strand_executor_service.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution/blocking.hpp"
#include "asio/execution/executor.hpp"
#include "asio/is_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides serialised function invocation for any executor type.
template <typename Executor>
class strand
{
public:
/// The type of the underlying executor.
typedef Executor inner_executor_type;
/// Default constructor.
/**
* This constructor is only valid if the underlying executor type is default
* constructible.
*/
strand()
: executor_(),
impl_(strand::create_implementation(executor_))
{
}
/// Construct a strand for the specified executor.
template <typename Executor1>
explicit strand(const Executor1& e,
constraint_t<
conditional_t<
!is_same<Executor1, strand>::value,
is_convertible<Executor1, Executor>,
false_type
>::value
> = 0)
: executor_(e),
impl_(strand::create_implementation(executor_))
{
}
/// Copy constructor.
strand(const strand& other) noexcept
: executor_(other.executor_),
impl_(other.impl_)
{
}
/// Converting constructor.
/**
* This constructor is only valid if the @c OtherExecutor type is convertible
* to @c Executor.
*/
template <class OtherExecutor>
strand(
const strand<OtherExecutor>& other) noexcept
: executor_(other.executor_),
impl_(other.impl_)
{
}
/// Assignment operator.
strand& operator=(const strand& other) noexcept
{
executor_ = other.executor_;
impl_ = other.impl_;
return *this;
}
/// Converting assignment operator.
/**
* This assignment operator is only valid if the @c OtherExecutor type is
* convertible to @c Executor.
*/
template <class OtherExecutor>
strand& operator=(
const strand<OtherExecutor>& other) noexcept
{
executor_ = other.executor_;
impl_ = other.impl_;
return *this;
}
/// Move constructor.
strand(strand&& other) noexcept
: executor_(static_cast<Executor&&>(other.executor_)),
impl_(static_cast<implementation_type&&>(other.impl_))
{
}
/// Converting move constructor.
/**
* This constructor is only valid if the @c OtherExecutor type is convertible
* to @c Executor.
*/
template <class OtherExecutor>
strand(strand<OtherExecutor>&& other) noexcept
: executor_(static_cast<OtherExecutor&&>(other.executor_)),
impl_(static_cast<implementation_type&&>(other.impl_))
{
}
/// Move assignment operator.
strand& operator=(strand&& other) noexcept
{
executor_ = static_cast<Executor&&>(other.executor_);
impl_ = static_cast<implementation_type&&>(other.impl_);
return *this;
}
/// Converting move assignment operator.
/**
* This assignment operator is only valid if the @c OtherExecutor type is
* convertible to @c Executor.
*/
template <class OtherExecutor>
strand& operator=(strand<OtherExecutor>&& other) noexcept
{
executor_ = static_cast<OtherExecutor&&>(other.executor_);
impl_ = static_cast<implementation_type&&>(other.impl_);
return *this;
}
/// Destructor.
~strand() noexcept
{
}
/// Obtain the underlying executor.
inner_executor_type get_inner_executor() const noexcept
{
return executor_;
}
/// Forward a query to the underlying executor.
/**
* Do not call this function directly. It is intended for use with the
* asio::query customisation point.
*
* For example:
* @code asio::strand<my_executor_type> ex = ...;
* if (asio::query(ex, asio::execution::blocking)
* == asio::execution::blocking.never)
* ... @endcode
*/
template <typename Property>
constraint_t<
can_query<const Executor&, Property>::value,
conditional_t<
is_convertible<Property, execution::blocking_t>::value,
execution::blocking_t,
query_result_t<const Executor&, Property>
>
> query(const Property& p) const
noexcept(is_nothrow_query<const Executor&, Property>::value)
{
return this->query_helper(
is_convertible<Property, execution::blocking_t>(), p);
}
/// Forward a requirement to the underlying executor.
/**
* Do not call this function directly. It is intended for use with the
* asio::require customisation point.
*
* For example:
* @code asio::strand<my_executor_type> ex1 = ...;
* auto ex2 = asio::require(ex1,
* asio::execution::blocking.never); @endcode
*/
template <typename Property>
constraint_t<
can_require<const Executor&, Property>::value
&& !is_convertible<Property, execution::blocking_t::always_t>::value,
strand<decay_t<require_result_t<const Executor&, Property>>>
> require(const Property& p) const
noexcept(is_nothrow_require<const Executor&, Property>::value)
{
return strand<decay_t<require_result_t<const Executor&, Property>>>(
asio::require(executor_, p), impl_);
}
/// Forward a preference to the underlying executor.
/**
* Do not call this function directly. It is intended for use with the
* asio::prefer customisation point.
*
* For example:
* @code asio::strand<my_executor_type> ex1 = ...;
* auto ex2 = asio::prefer(ex1,
* asio::execution::blocking.never); @endcode
*/
template <typename Property>
constraint_t<
can_prefer<const Executor&, Property>::value
&& !is_convertible<Property, execution::blocking_t::always_t>::value,
strand<decay_t<prefer_result_t<const Executor&, Property>>>
> prefer(const Property& p) const
noexcept(is_nothrow_prefer<const Executor&, Property>::value)
{
return strand<decay_t<prefer_result_t<const Executor&, Property>>>(
asio::prefer(executor_, p), impl_);
}
#if !defined(ASIO_NO_TS_EXECUTORS)
/// Obtain the underlying execution context.
execution_context& context() const noexcept
{
return executor_.context();
}
/// Inform the strand that it has some outstanding work to do.
/**
* The strand delegates this call to its underlying executor.
*/
void on_work_started() const noexcept
{
executor_.on_work_started();
}
/// Inform the strand that some work is no longer outstanding.
/**
* The strand delegates this call to its underlying executor.
*/
void on_work_finished() const noexcept
{
executor_.on_work_finished();
}
#endif // !defined(ASIO_NO_TS_EXECUTORS)
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the strand to execute the given function
* object on its underlying executor. The function object will be executed
* according to the properties of the underlying executor.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*/
template <typename Function>
constraint_t<
traits::execute_member<const Executor&, Function>::is_valid,
void
> execute(Function&& f) const
{
detail::strand_executor_service::execute(impl_,
executor_, static_cast<Function&&>(f));
}
#if !defined(ASIO_NO_TS_EXECUTORS)
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the strand to execute the given function
* object on its underlying executor. The function object will be executed
* inside this function if the strand is not otherwise busy and if the
* underlying executor's @c dispatch() function is also able to execute the
* function before returning.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void dispatch(Function&& f, const Allocator& a) const
{
detail::strand_executor_service::dispatch(impl_,
executor_, static_cast<Function&&>(f), a);
}
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object will never be executed inside this function.
* Instead, it will be scheduled by the underlying executor's defer function.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void post(Function&& f, const Allocator& a) const
{
detail::strand_executor_service::post(impl_,
executor_, static_cast<Function&&>(f), a);
}
/// Request the strand to invoke the given function object.
/**
* This function is used to ask the executor to execute the given function
* object. The function object will never be executed inside this function.
* Instead, it will be scheduled by the underlying executor's defer function.
*
* @param f The function object to be called. The executor will make
* a copy of the handler object as required. The function signature of the
* function object must be: @code void function(); @endcode
*
* @param a An allocator that may be used by the executor to allocate the
* internal storage needed for function invocation.
*/
template <typename Function, typename Allocator>
void defer(Function&& f, const Allocator& a) const
{
detail::strand_executor_service::defer(impl_,
executor_, static_cast<Function&&>(f), a);
}
#endif // !defined(ASIO_NO_TS_EXECUTORS)
/// Determine whether the strand is running in the current thread.
/**
* @return @c true if the current thread is executing a function that was
* submitted to the strand using post(), dispatch() or defer(). Otherwise
* returns @c false.
*/
bool running_in_this_thread() const noexcept
{
return detail::strand_executor_service::running_in_this_thread(impl_);
}
/// Compare two strands for equality.
/**
* Two strands are equal if they refer to the same ordered, non-concurrent
* state.
*/
friend bool operator==(const strand& a, const strand& b) noexcept
{
return a.impl_ == b.impl_;
}
/// Compare two strands for inequality.
/**
* Two strands are equal if they refer to the same ordered, non-concurrent
* state.
*/
friend bool operator!=(const strand& a, const strand& b) noexcept
{
return a.impl_ != b.impl_;
}
#if defined(GENERATING_DOCUMENTATION)
private:
#endif // defined(GENERATING_DOCUMENTATION)
typedef detail::strand_executor_service::implementation_type
implementation_type;
template <typename InnerExecutor>
static implementation_type create_implementation(const InnerExecutor& ex,
constraint_t<
can_query<InnerExecutor, execution::context_t>::value
> = 0)
{
return use_service<detail::strand_executor_service>(
asio::query(ex, execution::context)).create_implementation();
}
template <typename InnerExecutor>
static implementation_type create_implementation(const InnerExecutor& ex,
constraint_t<
!can_query<InnerExecutor, execution::context_t>::value
> = 0)
{
return use_service<detail::strand_executor_service>(
ex.context()).create_implementation();
}
strand(const Executor& ex, const implementation_type& impl)
: executor_(ex),
impl_(impl)
{
}
template <typename Property>
query_result_t<const Executor&, Property> query_helper(
false_type, const Property& property) const
{
return asio::query(executor_, property);
}
template <typename Property>
execution::blocking_t query_helper(true_type, const Property& property) const
{
execution::blocking_t result = asio::query(executor_, property);
return result == execution::blocking.always
? execution::blocking.possibly : result;
}
Executor executor_;
implementation_type impl_;
};
/** @defgroup make_strand asio::make_strand
*
* @brief The asio::make_strand function creates a @ref strand object for
* an executor or execution context.
*/
/*@{*/
/// Create a @ref strand object for an executor.
/**
* @param ex An executor.
*
* @returns A strand constructed with the specified executor.
*/
template <typename Executor>
inline strand<Executor> make_strand(const Executor& ex,
constraint_t<
is_executor<Executor>::value || execution::is_executor<Executor>::value
> = 0)
{
return strand<Executor>(ex);
}
/// Create a @ref strand object for an execution context.
/**
* @param ctx An execution context, from which an executor will be obtained.
*
* @returns A strand constructed with the execution context's executor, obtained
* by performing <tt>ctx.get_executor()</tt>.
*/
template <typename ExecutionContext>
inline strand<typename ExecutionContext::executor_type>
make_strand(ExecutionContext& ctx,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
return strand<typename ExecutionContext::executor_type>(ctx.get_executor());
}
/*@}*/
#if !defined(GENERATING_DOCUMENTATION)
namespace traits {
#if !defined(ASIO_HAS_DEDUCED_EQUALITY_COMPARABLE_TRAIT)
template <typename Executor>
struct equality_comparable<strand<Executor>>
{
static constexpr bool is_valid = true;
static constexpr bool is_noexcept = true;
};
#endif // !defined(ASIO_HAS_DEDUCED_EQUALITY_COMPARABLE_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_EXECUTE_MEMBER_TRAIT)
template <typename Executor, typename Function>
struct execute_member<strand<Executor>, Function,
enable_if_t<
traits::execute_member<const Executor&, Function>::is_valid
>>
{
static constexpr bool is_valid = true;
static constexpr bool is_noexcept = false;
typedef void result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_EXECUTE_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_QUERY_MEMBER_TRAIT)
template <typename Executor, typename Property>
struct query_member<strand<Executor>, Property,
enable_if_t<
can_query<const Executor&, Property>::value
>>
{
static constexpr bool is_valid = true;
static constexpr bool is_noexcept =
is_nothrow_query<Executor, Property>::value;
typedef conditional_t<
is_convertible<Property, execution::blocking_t>::value,
execution::blocking_t, query_result_t<Executor, Property>> result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_QUERY_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_REQUIRE_MEMBER_TRAIT)
template <typename Executor, typename Property>
struct require_member<strand<Executor>, Property,
enable_if_t<
can_require<const Executor&, Property>::value
&& !is_convertible<Property, execution::blocking_t::always_t>::value
>>
{
static constexpr bool is_valid = true;
static constexpr bool is_noexcept =
is_nothrow_require<Executor, Property>::value;
typedef strand<decay_t<require_result_t<Executor, Property>>> result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_REQUIRE_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_PREFER_MEMBER_TRAIT)
template <typename Executor, typename Property>
struct prefer_member<strand<Executor>, Property,
enable_if_t<
can_prefer<const Executor&, Property>::value
&& !is_convertible<Property, execution::blocking_t::always_t>::value
>>
{
static constexpr bool is_valid = true;
static constexpr bool is_noexcept =
is_nothrow_prefer<Executor, Property>::value;
typedef strand<decay_t<prefer_result_t<Executor, Property>>> result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_PREFER_MEMBER_TRAIT)
} // namespace traits
#endif // !defined(GENERATING_DOCUMENTATION)
} // namespace asio
#include "asio/detail/pop_options.hpp"
// If both io_context.hpp and strand.hpp have been included, automatically
// include the header file needed for the io_context::strand class.
#if !defined(ASIO_NO_EXTENSIONS)
# if defined(ASIO_IO_CONTEXT_HPP)
# include "asio/io_context_strand.hpp"
# endif // defined(ASIO_IO_CONTEXT_HPP)
#endif // !defined(ASIO_NO_EXTENSIONS)
#endif // ASIO_STRAND_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/static_thread_pool.hpp | //
// static_thread_pool.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_STATIC_THREAD_POOL_HPP
#define ASIO_STATIC_THREAD_POOL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/thread_pool.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
typedef thread_pool static_thread_pool;
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_STATIC_THREAD_POOL_HPP
|
0 | repos/asio/asio/include | repos/asio/asio/include/asio/basic_file.hpp | //
// basic_file.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_FILE_HPP
#define ASIO_BASIC_FILE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_FILE) \
|| defined(GENERATING_DOCUMENTATION)
#include <string>
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/cstdint.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/post.hpp"
#include "asio/file_base.hpp"
#if defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_file_service.hpp"
#elif defined(ASIO_HAS_IO_URING)
# include "asio/detail/io_uring_file_service.hpp"
#endif
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_FILE_FWD_DECL)
#define ASIO_BASIC_FILE_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Executor = any_io_executor>
class basic_file;
#endif // !defined(ASIO_BASIC_FILE_FWD_DECL)
/// Provides file functionality.
/**
* The basic_file class template provides functionality that is common to both
* stream-oriented and random-access files.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor>
class basic_file
: public file_base
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the file type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The file type when rebound to the specified executor.
typedef basic_file<Executor1> other;
};
/// The native representation of a file.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_HAS_IOCP)
typedef detail::win_iocp_file_service::native_handle_type native_handle_type;
#elif defined(ASIO_HAS_IO_URING)
typedef detail::io_uring_file_service::native_handle_type native_handle_type;
#endif
/// Construct a basic_file without opening it.
/**
* This constructor initialises a file without opening it.
*
* @param ex The I/O executor that the file will use, by default, to
* dispatch handlers for any asynchronous operations performed on the file.
*/
explicit basic_file(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a basic_file without opening it.
/**
* This constructor initialises a file without opening it.
*
* @param context An execution context which provides the I/O executor that
* the file will use, by default, to dispatch handlers for any asynchronous
* operations performed on the file.
*/
template <typename ExecutionContext>
explicit basic_file(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct and open a basic_file.
/**
* This constructor initialises a file and opens it.
*
* @param ex The I/O executor that the file will use, by default, to
* dispatch handlers for any asynchronous operations performed on the file.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*/
explicit basic_file(const executor_type& ex,
const char* path, file_base::flags open_flags)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), path, open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct a basic_file without opening it.
/**
* This constructor initialises a file and opens it.
*
* @param context An execution context which provides the I/O executor that
* the file will use, by default, to dispatch handlers for any asynchronous
* operations performed on the file.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*/
template <typename ExecutionContext>
explicit basic_file(ExecutionContext& context,
const char* path, file_base::flags open_flags,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), path, open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct and open a basic_file.
/**
* This constructor initialises a file and opens it.
*
* @param ex The I/O executor that the file will use, by default, to
* dispatch handlers for any asynchronous operations performed on the file.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*/
explicit basic_file(const executor_type& ex,
const std::string& path, file_base::flags open_flags)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(),
path.c_str(), open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct a basic_file without opening it.
/**
* This constructor initialises a file and opens it.
*
* @param context An execution context which provides the I/O executor that
* the file will use, by default, to dispatch handlers for any asynchronous
* operations performed on the file.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*/
template <typename ExecutionContext>
explicit basic_file(ExecutionContext& context,
const std::string& path, file_base::flags open_flags,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(),
path.c_str(), open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct a basic_file on an existing native file handle.
/**
* This constructor initialises a file object to hold an existing native file.
*
* @param ex The I/O executor that the file will use, by default, to
* dispatch handlers for any asynchronous operations performed on the file.
*
* @param native_file A native file handle.
*
* @throws asio::system_error Thrown on failure.
*/
basic_file(const executor_type& ex, const native_handle_type& native_file)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(
impl_.get_implementation(), native_file, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a basic_file on an existing native file.
/**
* This constructor initialises a file object to hold an existing native file.
*
* @param context An execution context which provides the I/O executor that
* the file will use, by default, to dispatch handlers for any asynchronous
* operations performed on the file.
*
* @param native_file A native file.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_file(ExecutionContext& context, const native_handle_type& native_file,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(
impl_.get_implementation(), native_file, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct a basic_file from another.
/**
* This constructor moves a file from one object to another.
*
* @param other The other basic_file object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_file(const executor_type&) constructor.
*/
basic_file(basic_file&& other) noexcept
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_file from another.
/**
* This assignment operator moves a file from one object to another.
*
* @param other The other basic_file object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_file(const executor_type&) constructor.
*/
basic_file& operator=(basic_file&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All files have access to each other's implementations.
template <typename Executor1>
friend class basic_file;
/// Move-construct a basic_file from a file of another executor type.
/**
* This constructor moves a file from one object to another.
*
* @param other The other basic_file object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_file(const executor_type&) constructor.
*/
template <typename Executor1>
basic_file(basic_file<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_file from a file of another executor type.
/**
* This assignment operator moves a file from one object to another.
*
* @param other The other basic_file object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_file(const executor_type&) constructor.
*/
template <typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_file&
> operator=(basic_file<Executor1>&& other)
{
basic_file tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Open the file using the specified path.
/**
* This function opens the file so that it will use the specified path.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::stream_file file(my_context);
* file.open("/path/to/my/file", asio::stream_file::read_only);
* @endcode
*/
void open(const char* path, file_base::flags open_flags)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), path, open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Open the file using the specified path.
/**
* This function opens the file so that it will use the specified path.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::stream_file file(my_context);
* asio::error_code ec;
* file.open("/path/to/my/file", asio::stream_file::read_only, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID open(const char* path,
file_base::flags open_flags, asio::error_code& ec)
{
impl_.get_service().open(impl_.get_implementation(), path, open_flags, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Open the file using the specified path.
/**
* This function opens the file so that it will use the specified path.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* @code
* asio::stream_file file(my_context);
* file.open("/path/to/my/file", asio::stream_file::read_only);
* @endcode
*/
void open(const std::string& path, file_base::flags open_flags)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(),
path.c_str(), open_flags, ec);
asio::detail::throw_error(ec, "open");
}
/// Open the file using the specified path.
/**
* This function opens the file so that it will use the specified path.
*
* @param path The path name identifying the file to be opened.
*
* @param open_flags A set of flags that determine how the file should be
* opened.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* asio::stream_file file(my_context);
* asio::error_code ec;
* file.open("/path/to/my/file", asio::stream_file::read_only, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID open(const std::string& path,
file_base::flags open_flags, asio::error_code& ec)
{
impl_.get_service().open(impl_.get_implementation(),
path.c_str(), open_flags, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Assign an existing native file to the file.
/*
* This function opens the file to hold an existing native file.
*
* @param native_file A native file.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& native_file)
{
asio::error_code ec;
impl_.get_service().assign(
impl_.get_implementation(), native_file, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native file to the file.
/*
* This function opens the file to hold an existing native file.
*
* @param native_file A native file.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& native_file,
asio::error_code& ec)
{
impl_.get_service().assign(
impl_.get_implementation(), native_file, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the file is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the file.
/**
* This function is used to close the file. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the file.
/**
* This function is used to close the file. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*
* @par Example
* @code
* asio::stream_file file(my_context);
* ...
* asio::error_code ec;
* file.close(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Release ownership of the underlying native file.
/**
* This function causes all outstanding asynchronous read and write
* operations to finish immediately, and the handlers for cancelled
* operations will be passed the asio::error::operation_aborted error.
* Ownership of the native file is then transferred to the caller.
*
* @throws asio::system_error Thrown on failure.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release()
{
asio::error_code ec;
native_handle_type s = impl_.get_service().release(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "release");
return s;
}
/// Release ownership of the underlying native file.
/**
* This function causes all outstanding asynchronous read and write
* operations to finish immediately, and the handlers for cancelled
* operations will be passed the asio::error::operation_aborted error.
* Ownership of the native file is then transferred to the caller.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release(asio::error_code& ec)
{
return impl_.get_service().release(impl_.get_implementation(), ec);
}
/// Get the native file representation.
/**
* This function may be used to obtain the underlying representation of the
* file. This is intended to allow access to native file functionality
* that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the file.
/**
* This function causes all outstanding asynchronous read and write
* operations to finish immediately, and the handlers for cancelled
* operations will be passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls to cancel() will always fail with
* asio::error::operation_not_supported when run on Windows XP, Windows
* Server 2003, and earlier versions of Windows, unless
* ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
* two issues that should be considered before enabling its use:
*
* @li It will only cancel asynchronous operations that were initiated in the
* current thread.
*
* @li It can appear to complete without error, but the request to cancel the
* unfinished operations may be silently ignored by the operating system.
* Whether it works or not seems to depend on the drivers that are installed.
*
* For portable cancellation, consider using the close() function to
* simultaneously cancel the outstanding operations and close the file.
*
* When running on Windows Vista, Windows Server 2008, and later, the
* CancelIoEx function is always used. This function does not have the
* problems described above.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0600) \
&& !defined(ASIO_ENABLE_CANCELIO)
__declspec(deprecated("By default, this function always fails with "
"operation_not_supported when used on Windows XP, Windows Server 2003, "
"or earlier. Consult documentation for details."))
#endif
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the file.
/**
* This function causes all outstanding asynchronous read and write
* operations to finish immediately, and the handlers for cancelled
* operations will be passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls to cancel() will always fail with
* asio::error::operation_not_supported when run on Windows XP, Windows
* Server 2003, and earlier versions of Windows, unless
* ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
* two issues that should be considered before enabling its use:
*
* @li It will only cancel asynchronous operations that were initiated in the
* current thread.
*
* @li It can appear to complete without error, but the request to cancel the
* unfinished operations may be silently ignored by the operating system.
* Whether it works or not seems to depend on the drivers that are installed.
*
* For portable cancellation, consider using the close() function to
* simultaneously cancel the outstanding operations and close the file.
*
* When running on Windows Vista, Windows Server 2008, and later, the
* CancelIoEx function is always used. This function does not have the
* problems described above.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0600) \
&& !defined(ASIO_ENABLE_CANCELIO)
__declspec(deprecated("By default, this function always fails with "
"operation_not_supported when used on Windows XP, Windows Server 2003, "
"or earlier. Consult documentation for details."))
#endif
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the size of the file.
/**
* This function determines the size of the file, in bytes.
*
* @throws asio::system_error Thrown on failure.
*/
uint64_t size() const
{
asio::error_code ec;
uint64_t s = impl_.get_service().size(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "size");
return s;
}
/// Get the size of the file.
/**
* This function determines the size of the file, in bytes.
*
* @param ec Set to indicate what error occurred, if any.
*/
uint64_t size(asio::error_code& ec) const
{
return impl_.get_service().size(impl_.get_implementation(), ec);
}
/// Alter the size of the file.
/**
* This function resizes the file to the specified size, in bytes. If the
* current file size exceeds @c n then any extra data is discarded. If the
* current size is less than @c n then the file is extended and filled with
* zeroes.
*
* @param n The new size for the file.
*
* @throws asio::system_error Thrown on failure.
*/
void resize(uint64_t n)
{
asio::error_code ec;
impl_.get_service().resize(impl_.get_implementation(), n, ec);
asio::detail::throw_error(ec, "resize");
}
/// Alter the size of the file.
/**
* This function resizes the file to the specified size, in bytes. If the
* current file size exceeds @c n then any extra data is discarded. If the
* current size is less than @c n then the file is extended and filled with
* zeroes.
*
* @param n The new size for the file.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID resize(uint64_t n, asio::error_code& ec)
{
impl_.get_service().resize(impl_.get_implementation(), n, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Synchronise the file to disk.
/**
* This function synchronises the file data and metadata to disk. Note that
* the semantics of this synchronisation vary between operation systems.
*
* @throws asio::system_error Thrown on failure.
*/
void sync_all()
{
asio::error_code ec;
impl_.get_service().sync_all(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "sync_all");
}
/// Synchronise the file to disk.
/**
* This function synchronises the file data and metadata to disk. Note that
* the semantics of this synchronisation vary between operation systems.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID sync_all(asio::error_code& ec)
{
impl_.get_service().sync_all(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Synchronise the file data to disk.
/**
* This function synchronises the file data to disk. Note that the semantics
* of this synchronisation vary between operation systems.
*
* @throws asio::system_error Thrown on failure.
*/
void sync_data()
{
asio::error_code ec;
impl_.get_service().sync_data(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "sync_data");
}
/// Synchronise the file data to disk.
/**
* This function synchronises the file data to disk. Note that the semantics
* of this synchronisation vary between operation systems.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID sync_data(asio::error_code& ec)
{
impl_.get_service().sync_data(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
protected:
/// Protected destructor to prevent deletion through this type.
/**
* This function destroys the file, cancelling any outstanding asynchronous
* operations associated with the file as if by calling @c cancel.
*/
~basic_file()
{
}
#if defined(ASIO_HAS_IOCP)
detail::io_object_impl<detail::win_iocp_file_service, Executor> impl_;
#elif defined(ASIO_HAS_IO_URING)
detail::io_object_impl<detail::io_uring_file_service, Executor> impl_;
#endif
private:
// Disallow copying and assignment.
basic_file(const basic_file&) = delete;
basic_file& operator=(const basic_file&) = delete;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_FILE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_BASIC_FILE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/error.hpp | //
// ssl/error.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_ERROR_HPP
#define ASIO_SSL_ERROR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/error_code.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace error {
enum ssl_errors
{
// Error numbers are those produced by openssl.
};
extern ASIO_DECL
const asio::error_category& get_ssl_category();
static const asio::error_category&
ssl_category ASIO_UNUSED_VARIABLE
= asio::error::get_ssl_category();
} // namespace error
namespace ssl {
namespace error {
enum stream_errors
{
#if defined(GENERATING_DOCUMENTATION)
/// The underlying stream closed before the ssl stream gracefully shut down.
stream_truncated,
/// The underlying SSL library returned a system error without providing
/// further information.
unspecified_system_error,
/// The underlying SSL library generated an unexpected result from a function
/// call.
unexpected_result
#else // defined(GENERATING_DOCUMENTATION)
# if (OPENSSL_VERSION_NUMBER < 0x10100000L) \
&& !defined(OPENSSL_IS_BORINGSSL) \
&& !defined(ASIO_USE_WOLFSSL)
stream_truncated = ERR_PACK(ERR_LIB_SSL, 0, SSL_R_SHORT_READ),
# else
stream_truncated = 1,
# endif
unspecified_system_error = 2,
unexpected_result = 3
#endif // defined(GENERATING_DOCUMENTATION)
};
extern ASIO_DECL
const asio::error_category& get_stream_category();
static const asio::error_category&
stream_category ASIO_UNUSED_VARIABLE
= asio::ssl::error::get_stream_category();
} // namespace error
} // namespace ssl
} // namespace asio
namespace std {
template<> struct is_error_code_enum<asio::error::ssl_errors>
{
static const bool value = true;
};
template<> struct is_error_code_enum<asio::ssl::error::stream_errors>
{
static const bool value = true;
};
} // namespace std
namespace asio {
namespace error {
inline asio::error_code make_error_code(ssl_errors e)
{
return asio::error_code(
static_cast<int>(e), get_ssl_category());
}
} // namespace error
namespace ssl {
namespace error {
inline asio::error_code make_error_code(stream_errors e)
{
return asio::error_code(
static_cast<int>(e), get_stream_category());
}
} // namespace error
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/impl/error.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SSL_ERROR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/context_base.hpp | //
// ssl/context_base.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_CONTEXT_BASE_HPP
#define ASIO_SSL_CONTEXT_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// The context_base class is used as a base for the basic_context class
/// template so that we have a common place to define various enums.
class context_base
{
public:
/// Different methods supported by a context.
enum method
{
/// Generic SSL version 2.
sslv2,
/// SSL version 2 client.
sslv2_client,
/// SSL version 2 server.
sslv2_server,
/// Generic SSL version 3.
sslv3,
/// SSL version 3 client.
sslv3_client,
/// SSL version 3 server.
sslv3_server,
/// Generic TLS version 1.
tlsv1,
/// TLS version 1 client.
tlsv1_client,
/// TLS version 1 server.
tlsv1_server,
/// Generic SSL/TLS.
sslv23,
/// SSL/TLS client.
sslv23_client,
/// SSL/TLS server.
sslv23_server,
/// Generic TLS version 1.1.
tlsv11,
/// TLS version 1.1 client.
tlsv11_client,
/// TLS version 1.1 server.
tlsv11_server,
/// Generic TLS version 1.2.
tlsv12,
/// TLS version 1.2 client.
tlsv12_client,
/// TLS version 1.2 server.
tlsv12_server,
/// Generic TLS version 1.3.
tlsv13,
/// TLS version 1.3 client.
tlsv13_client,
/// TLS version 1.3 server.
tlsv13_server,
/// Generic TLS.
tls,
/// TLS client.
tls_client,
/// TLS server.
tls_server
};
/// Bitmask type for SSL options.
typedef uint64_t options;
#if defined(GENERATING_DOCUMENTATION)
/// Implement various bug workarounds.
static const uint64_t default_workarounds = implementation_defined;
/// Always create a new key when using tmp_dh parameters.
static const uint64_t single_dh_use = implementation_defined;
/// Disable SSL v2.
static const uint64_t no_sslv2 = implementation_defined;
/// Disable SSL v3.
static const uint64_t no_sslv3 = implementation_defined;
/// Disable TLS v1.
static const uint64_t no_tlsv1 = implementation_defined;
/// Disable TLS v1.1.
static const uint64_t no_tlsv1_1 = implementation_defined;
/// Disable TLS v1.2.
static const uint64_t no_tlsv1_2 = implementation_defined;
/// Disable TLS v1.3.
static const uint64_t no_tlsv1_3 = implementation_defined;
/// Disable compression. Compression is disabled by default.
static const uint64_t no_compression = implementation_defined;
#else
ASIO_STATIC_CONSTANT(uint64_t, default_workarounds = SSL_OP_ALL);
ASIO_STATIC_CONSTANT(uint64_t, single_dh_use = SSL_OP_SINGLE_DH_USE);
ASIO_STATIC_CONSTANT(uint64_t, no_sslv2 = SSL_OP_NO_SSLv2);
ASIO_STATIC_CONSTANT(uint64_t, no_sslv3 = SSL_OP_NO_SSLv3);
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1 = SSL_OP_NO_TLSv1);
# if defined(SSL_OP_NO_TLSv1_1)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_1 = SSL_OP_NO_TLSv1_1);
# else // defined(SSL_OP_NO_TLSv1_1)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_1 = 0x10000000L);
# endif // defined(SSL_OP_NO_TLSv1_1)
# if defined(SSL_OP_NO_TLSv1_2)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_2 = SSL_OP_NO_TLSv1_2);
# else // defined(SSL_OP_NO_TLSv1_2)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_2 = 0x08000000L);
# endif // defined(SSL_OP_NO_TLSv1_2)
# if defined(SSL_OP_NO_TLSv1_3)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_3 = SSL_OP_NO_TLSv1_3);
# else // defined(SSL_OP_NO_TLSv1_3)
ASIO_STATIC_CONSTANT(uint64_t, no_tlsv1_3 = 0x20000000L);
# endif // defined(SSL_OP_NO_TLSv1_3)
# if defined(SSL_OP_NO_COMPRESSION)
ASIO_STATIC_CONSTANT(uint64_t, no_compression = SSL_OP_NO_COMPRESSION);
# else // defined(SSL_OP_NO_COMPRESSION)
ASIO_STATIC_CONSTANT(uint64_t, no_compression = 0x20000L);
# endif // defined(SSL_OP_NO_COMPRESSION)
#endif
/// File format types.
enum file_format
{
/// ASN.1 file.
asn1,
/// PEM file.
pem
};
#if !defined(GENERATING_DOCUMENTATION)
// The following types and constants are preserved for backward compatibility.
// New programs should use the equivalents of the same names that are defined
// in the asio::ssl namespace.
typedef int verify_mode;
ASIO_STATIC_CONSTANT(int, verify_none = SSL_VERIFY_NONE);
ASIO_STATIC_CONSTANT(int, verify_peer = SSL_VERIFY_PEER);
ASIO_STATIC_CONSTANT(int,
verify_fail_if_no_peer_cert = SSL_VERIFY_FAIL_IF_NO_PEER_CERT);
ASIO_STATIC_CONSTANT(int, verify_client_once = SSL_VERIFY_CLIENT_ONCE);
#endif
/// Purpose of PEM password.
enum password_purpose
{
/// The password is needed for reading/decryption.
for_reading,
/// The password is needed for writing/encryption.
for_writing
};
protected:
/// Protected destructor to prevent deletion through this type.
~context_base()
{
}
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_CONTEXT_BASE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/rfc2818_verification.hpp | //
// ssl/rfc2818_verification.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_RFC2818_VERIFICATION_HPP
#define ASIO_SSL_RFC2818_VERIFICATION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_DEPRECATED)
#include <string>
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/ssl/verify_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// (Deprecated. Use ssl::host_name_verification.) Verifies a certificate
/// against a hostname according to the rules described in RFC 2818.
/**
* @par Example
* The following example shows how to synchronously open a secure connection to
* a given host name:
* @code
* using asio::ip::tcp;
* namespace ssl = asio::ssl;
* typedef ssl::stream<tcp::socket> ssl_socket;
*
* // Create a context that uses the default paths for finding CA certificates.
* ssl::context ctx(ssl::context::sslv23);
* ctx.set_default_verify_paths();
*
* // Open a socket and connect it to the remote host.
* asio::io_context io_context;
* ssl_socket sock(io_context, ctx);
* tcp::resolver resolver(io_context);
* tcp::resolver::query query("host.name", "https");
* asio::connect(sock.lowest_layer(), resolver.resolve(query));
* sock.lowest_layer().set_option(tcp::no_delay(true));
*
* // Perform SSL handshake and verify the remote host's certificate.
* sock.set_verify_mode(ssl::verify_peer);
* sock.set_verify_callback(ssl::rfc2818_verification("host.name"));
* sock.handshake(ssl_socket::client);
*
* // ... read and write as normal ...
* @endcode
*/
class rfc2818_verification
{
public:
/// The type of the function object's result.
typedef bool result_type;
/// Constructor.
explicit rfc2818_verification(const std::string& host)
: host_(host)
{
}
/// Perform certificate verification.
ASIO_DECL bool operator()(bool preverified, verify_context& ctx) const;
private:
// Helper function to check a host name against a pattern.
ASIO_DECL static bool match_pattern(const char* pattern,
std::size_t pattern_length, const char* host);
// Helper function to check a host name against an IPv4 address
// The host name to be checked.
std::string host_;
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/impl/rfc2818_verification.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // !defined(ASIO_NO_DEPRECATED)
#endif // ASIO_SSL_RFC2818_VERIFICATION_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/verify_mode.hpp | //
// ssl/verify_mode.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_VERIFY_MODE_HPP
#define ASIO_SSL_VERIFY_MODE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// Bitmask type for peer verification.
/**
* Possible values are:
*
* @li @ref verify_none
* @li @ref verify_peer
* @li @ref verify_fail_if_no_peer_cert
* @li @ref verify_client_once
*/
typedef int verify_mode;
#if defined(GENERATING_DOCUMENTATION)
/// No verification.
const int verify_none = implementation_defined;
/// Verify the peer.
const int verify_peer = implementation_defined;
/// Fail verification if the peer has no certificate. Ignored unless
/// @ref verify_peer is set.
const int verify_fail_if_no_peer_cert = implementation_defined;
/// Do not request client certificate on renegotiation. Ignored unless
/// @ref verify_peer is set.
const int verify_client_once = implementation_defined;
#else
const int verify_none = SSL_VERIFY_NONE;
const int verify_peer = SSL_VERIFY_PEER;
const int verify_fail_if_no_peer_cert = SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
const int verify_client_once = SSL_VERIFY_CLIENT_ONCE;
#endif
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_VERIFY_MODE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/host_name_verification.hpp | //
// ssl/host_name_verification.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_HOST_NAME_VERIFICATION_HPP
#define ASIO_SSL_HOST_NAME_VERIFICATION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <string>
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/ssl/verify_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// Verifies a certificate against a host_name according to the rules described
/// in RFC 6125.
/**
* @par Example
* The following example shows how to synchronously open a secure connection to
* a given host name:
* @code
* using asio::ip::tcp;
* namespace ssl = asio::ssl;
* typedef ssl::stream<tcp::socket> ssl_socket;
*
* // Create a context that uses the default paths for finding CA certificates.
* ssl::context ctx(ssl::context::sslv23);
* ctx.set_default_verify_paths();
*
* // Open a socket and connect it to the remote host.
* asio::io_context io_context;
* ssl_socket sock(io_context, ctx);
* tcp::resolver resolver(io_context);
* tcp::resolver::query query("host.name", "https");
* asio::connect(sock.lowest_layer(), resolver.resolve(query));
* sock.lowest_layer().set_option(tcp::no_delay(true));
*
* // Perform SSL handshake and verify the remote host's certificate.
* sock.set_verify_mode(ssl::verify_peer);
* sock.set_verify_callback(ssl::host_name_verification("host.name"));
* sock.handshake(ssl_socket::client);
*
* // ... read and write as normal ...
* @endcode
*/
class host_name_verification
{
public:
/// The type of the function object's result.
typedef bool result_type;
/// Constructor.
explicit host_name_verification(const std::string& host)
: host_(host)
{
}
/// Perform certificate verification.
ASIO_DECL bool operator()(bool preverified, verify_context& ctx) const;
private:
// Helper function to check a host name against an IPv4 address
// The host name to be checked.
std::string host_;
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/impl/host_name_verification.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SSL_HOST_NAME_VERIFICATION_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/stream.hpp | //
// ssl/stream.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_STREAM_HPP
#define ASIO_SSL_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/async_result.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/ssl/context.hpp"
#include "asio/ssl/detail/buffered_handshake_op.hpp"
#include "asio/ssl/detail/handshake_op.hpp"
#include "asio/ssl/detail/io.hpp"
#include "asio/ssl/detail/read_op.hpp"
#include "asio/ssl/detail/shutdown_op.hpp"
#include "asio/ssl/detail/stream_core.hpp"
#include "asio/ssl/detail/write_op.hpp"
#include "asio/ssl/stream_base.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// Provides stream-oriented functionality using SSL.
/**
* The stream class template provides asynchronous and blocking stream-oriented
* functionality using SSL.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe. The application must also ensure that all
* asynchronous operations are performed within the same implicit or explicit
* strand.
*
* @par Example
* To use the SSL stream template with an ip::tcp::socket, you would write:
* @code
* asio::io_context my_context;
* asio::ssl::context ctx(asio::ssl::context::sslv23);
* asio::ssl::stream<asio::ip::tcp::socket> sock(my_context, ctx);
* @endcode
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class stream :
public stream_base,
private noncopyable
{
private:
class initiate_async_handshake;
class initiate_async_buffered_handshake;
class initiate_async_shutdown;
class initiate_async_write_some;
class initiate_async_read_some;
public:
/// The native handle type of the SSL stream.
typedef SSL* native_handle_type;
/// Structure for use with deprecated impl_type.
struct impl_struct
{
SSL* ssl;
};
/// The type of the next layer.
typedef remove_reference_t<Stream> next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
/// The type of the executor associated with the object.
typedef typename lowest_layer_type::executor_type executor_type;
/// Construct a stream.
/**
* This constructor creates a stream and initialises the underlying stream
* object.
*
* @param arg The argument to be passed to initialise the underlying stream.
*
* @param ctx The SSL context to be used for the stream.
*/
template <typename Arg>
stream(Arg&& arg, context& ctx)
: next_layer_(static_cast<Arg&&>(arg)),
core_(ctx.native_handle(), next_layer_.lowest_layer().get_executor())
{
}
/// Construct a stream from an existing native implementation.
/**
* This constructor creates a stream and initialises the underlying stream
* object. On success, ownership of the native implementation is transferred
* to the stream, and it will be cleaned up when the stream is destroyed.
*
* @param arg The argument to be passed to initialise the underlying stream.
*
* @param handle An existing native SSL implementation.
*/
template <typename Arg>
stream(Arg&& arg, native_handle_type handle)
: next_layer_(static_cast<Arg&&>(arg)),
core_(handle, next_layer_.lowest_layer().get_executor())
{
}
/// Move-construct a stream from another.
/**
* @param other The other stream object from which the move will occur. Must
* have no outstanding asynchronous operations associated with it. Following
* the move, @c other has a valid but unspecified state where the only safe
* operation is destruction, or use as the target of a move assignment.
*/
stream(stream&& other)
: next_layer_(static_cast<Stream&&>(other.next_layer_)),
core_(static_cast<detail::stream_core&&>(other.core_))
{
}
/// Move-assign a stream from another.
/**
* @param other The other stream object from which the move will occur. Must
* have no outstanding asynchronous operations associated with it. Following
* the move, @c other has a valid but unspecified state where the only safe
* operation is destruction, or use as the target of a move assignment.
*/
stream& operator=(stream&& other)
{
if (this != &other)
{
next_layer_ = static_cast<Stream&&>(other.next_layer_);
core_ = static_cast<detail::stream_core&&>(other.core_);
}
return *this;
}
/// Destructor.
/**
* @note A @c stream object must not be destroyed while there are pending
* asynchronous operations associated with it.
*/
~stream()
{
}
/// Get the executor associated with the object.
/**
* This function may be used to obtain the executor object that the stream
* uses to dispatch handlers for asynchronous operations.
*
* @return A copy of the executor that stream will use to dispatch handlers.
*/
executor_type get_executor() noexcept
{
return next_layer_.lowest_layer().get_executor();
}
/// Get the underlying implementation in the native type.
/**
* This function may be used to obtain the underlying implementation of the
* context. This is intended to allow access to context functionality that is
* not otherwise provided.
*
* @par Example
* The native_handle() function returns a pointer of type @c SSL* that is
* suitable for passing to functions such as @c SSL_get_verify_result and
* @c SSL_get_peer_certificate:
* @code
* asio::ssl::stream<asio::ip::tcp::socket> sock(io_ctx, ctx);
*
* // ... establish connection and perform handshake ...
*
* if (X509* cert = SSL_get_peer_certificate(sock.native_handle()))
* {
* if (SSL_get_verify_result(sock.native_handle()) == X509_V_OK)
* {
* // ...
* }
* }
* @endcode
*/
native_handle_type native_handle()
{
return core_.engine_.native_handle();
}
/// Get a reference to the next layer.
/**
* This function returns a reference to the next layer in a stack of stream
* layers.
*
* @return A reference to the next layer in the stack of stream layers.
* Ownership is not transferred to the caller.
*/
const next_layer_type& next_layer() const
{
return next_layer_;
}
/// Get a reference to the next layer.
/**
* This function returns a reference to the next layer in a stack of stream
* layers.
*
* @return A reference to the next layer in the stack of stream layers.
* Ownership is not transferred to the caller.
*/
next_layer_type& next_layer()
{
return next_layer_;
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* stream layers.
*
* @return A reference to the lowest layer in the stack of stream layers.
* Ownership is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return next_layer_.lowest_layer();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* stream layers.
*
* @return A reference to the lowest layer in the stack of stream layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return next_layer_.lowest_layer();
}
/// Set the peer verification mode.
/**
* This function may be used to configure the peer verification mode used by
* the stream. The new mode will override the mode inherited from the context.
*
* @param v A bitmask of peer verification modes. See @ref verify_mode for
* available values.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_set_verify.
*/
void set_verify_mode(verify_mode v)
{
asio::error_code ec;
set_verify_mode(v, ec);
asio::detail::throw_error(ec, "set_verify_mode");
}
/// Set the peer verification mode.
/**
* This function may be used to configure the peer verification mode used by
* the stream. The new mode will override the mode inherited from the context.
*
* @param v A bitmask of peer verification modes. See @ref verify_mode for
* available values.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_set_verify.
*/
ASIO_SYNC_OP_VOID set_verify_mode(
verify_mode v, asio::error_code& ec)
{
core_.engine_.set_verify_mode(v, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Set the peer verification depth.
/**
* This function may be used to configure the maximum verification depth
* allowed by the stream.
*
* @param depth Maximum depth for the certificate chain verification that
* shall be allowed.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_set_verify_depth.
*/
void set_verify_depth(int depth)
{
asio::error_code ec;
set_verify_depth(depth, ec);
asio::detail::throw_error(ec, "set_verify_depth");
}
/// Set the peer verification depth.
/**
* This function may be used to configure the maximum verification depth
* allowed by the stream.
*
* @param depth Maximum depth for the certificate chain verification that
* shall be allowed.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_set_verify_depth.
*/
ASIO_SYNC_OP_VOID set_verify_depth(
int depth, asio::error_code& ec)
{
core_.engine_.set_verify_depth(depth, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Set the callback used to verify peer certificates.
/**
* This function is used to specify a callback function that will be called
* by the implementation when it needs to verify a peer certificate.
*
* @param callback The function object to be used for verifying a certificate.
* The function signature of the handler must be:
* @code bool verify_callback(
* bool preverified, // True if the certificate passed pre-verification.
* verify_context& ctx // The peer certificate and other context.
* ); @endcode
* The return value of the callback is true if the certificate has passed
* verification, false otherwise.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_set_verify.
*/
template <typename VerifyCallback>
void set_verify_callback(VerifyCallback callback)
{
asio::error_code ec;
this->set_verify_callback(callback, ec);
asio::detail::throw_error(ec, "set_verify_callback");
}
/// Set the callback used to verify peer certificates.
/**
* This function is used to specify a callback function that will be called
* by the implementation when it needs to verify a peer certificate.
*
* @param callback The function object to be used for verifying a certificate.
* The function signature of the handler must be:
* @code bool verify_callback(
* bool preverified, // True if the certificate passed pre-verification.
* verify_context& ctx // The peer certificate and other context.
* ); @endcode
* The return value of the callback is true if the certificate has passed
* verification, false otherwise.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_set_verify.
*/
template <typename VerifyCallback>
ASIO_SYNC_OP_VOID set_verify_callback(VerifyCallback callback,
asio::error_code& ec)
{
core_.engine_.set_verify_callback(
new detail::verify_callback<VerifyCallback>(callback), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform SSL handshaking.
/**
* This function is used to perform SSL handshaking on the stream. The
* function call will block until handshaking is complete or an error occurs.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @throws asio::system_error Thrown on failure.
*/
void handshake(handshake_type type)
{
asio::error_code ec;
handshake(type, ec);
asio::detail::throw_error(ec, "handshake");
}
/// Perform SSL handshaking.
/**
* This function is used to perform SSL handshaking on the stream. The
* function call will block until handshaking is complete or an error occurs.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID handshake(handshake_type type,
asio::error_code& ec)
{
detail::io(next_layer_, core_, detail::handshake_op(type), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform SSL handshaking.
/**
* This function is used to perform SSL handshaking on the stream. The
* function call will block until handshaking is complete or an error occurs.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @param buffers The buffered data to be reused for the handshake.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ConstBufferSequence>
void handshake(handshake_type type, const ConstBufferSequence& buffers)
{
asio::error_code ec;
handshake(type, buffers, ec);
asio::detail::throw_error(ec, "handshake");
}
/// Perform SSL handshaking.
/**
* This function is used to perform SSL handshaking on the stream. The
* function call will block until handshaking is complete or an error occurs.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @param buffers The buffered data to be reused for the handshake.
*
* @param ec Set to indicate what error occurred, if any.
*/
template <typename ConstBufferSequence>
ASIO_SYNC_OP_VOID handshake(handshake_type type,
const ConstBufferSequence& buffers, asio::error_code& ec)
{
detail::io(next_layer_, core_,
detail::buffered_handshake_op<ConstBufferSequence>(type, buffers), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Start an asynchronous SSL handshake.
/**
* This function is used to asynchronously perform an SSL handshake on the
* stream. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the handshake completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c Stream type's @c async_read_some and
* @c async_write_some operations.
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
HandshakeToken = default_completion_token_t<executor_type>>
auto async_handshake(handshake_type type,
HandshakeToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<HandshakeToken,
void (asio::error_code)>(
declval<initiate_async_handshake>(), token, type))
{
return async_initiate<HandshakeToken,
void (asio::error_code)>(
initiate_async_handshake(this), token, type);
}
/// Start an asynchronous SSL handshake.
/**
* This function is used to asynchronously perform an SSL handshake on the
* stream. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param type The type of handshaking to be performed, i.e. as a client or as
* a server.
*
* @param buffers The buffered data to be reused for the handshake. Although
* the buffers object may be copied as necessary, ownership of the underlying
* buffers is retained by the caller, which must guarantee that they remain
* valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the handshake completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Amount of buffers used in handshake.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c Stream type's @c async_read_some and
* @c async_write_some operations.
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) BufferedHandshakeToken
= default_completion_token_t<executor_type>>
auto async_handshake(handshake_type type, const ConstBufferSequence& buffers,
BufferedHandshakeToken&& token
= default_completion_token_t<executor_type>(),
constraint_t<
is_const_buffer_sequence<ConstBufferSequence>::value
> = 0)
-> decltype(
async_initiate<BufferedHandshakeToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_buffered_handshake>(), token, type, buffers))
{
return async_initiate<BufferedHandshakeToken,
void (asio::error_code, std::size_t)>(
initiate_async_buffered_handshake(this), token, type, buffers);
}
/// Shut down SSL on the stream.
/**
* This function is used to shut down SSL on the stream. The function call
* will block until SSL has been shut down or an error occurs.
*
* @throws asio::system_error Thrown on failure.
*/
void shutdown()
{
asio::error_code ec;
shutdown(ec);
asio::detail::throw_error(ec, "shutdown");
}
/// Shut down SSL on the stream.
/**
* This function is used to shut down SSL on the stream. The function call
* will block until SSL has been shut down or an error occurs.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID shutdown(asio::error_code& ec)
{
detail::io(next_layer_, core_, detail::shutdown_op(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Asynchronously shut down SSL on the stream.
/**
* This function is used to asynchronously shut down SSL on the stream. It is
* an initiating function for an @ref asynchronous_operation, and always
* returns immediately.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the shutdown completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c Stream type's @c async_read_some and
* @c async_write_some operations.
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
ShutdownToken
= default_completion_token_t<executor_type>>
auto async_shutdown(
ShutdownToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ShutdownToken,
void (asio::error_code)>(
declval<initiate_async_shutdown>(), token))
{
return async_initiate<ShutdownToken,
void (asio::error_code)>(
initiate_async_shutdown(this), token);
}
/// Write some data to the stream.
/**
* This function is used to write data on the stream. The function call will
* block until one or more bytes of data has been written successfully, or
* until an error occurs.
*
* @param buffers The data to be written.
*
* @returns The number of bytes written.
*
* @throws asio::system_error Thrown on failure.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that all
* data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t n = write_some(buffers, ec);
asio::detail::throw_error(ec, "write_some");
return n;
}
/// Write some data to the stream.
/**
* This function is used to write data on the stream. The function call will
* block until one or more bytes of data has been written successfully, or
* until an error occurs.
*
* @param buffers The data to be written to the stream.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that all
* data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return detail::io(next_layer_, core_,
detail::write_op<ConstBufferSequence>(buffers), ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write one or more bytes of data to
* the stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers The data to be written to the stream. Although the buffers
* object may be copied as necessary, ownership of the underlying buffers is
* retained by the caller, which must guarantee that they remain valid until
* the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the write completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_write_some operation may not transmit all of the data to
* the peer. Consider using the @ref async_write function if you need to
* ensure that all data is written before the asynchronous operation
* completes.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c Stream type's @c async_read_some and
* @c async_write_some operations.
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_write_some(const ConstBufferSequence& buffers,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_write_some>(), token, buffers))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_write_some(this), token, buffers);
}
/// Read some data from the stream.
/**
* This function is used to read data from the stream. The function call will
* block until one or more bytes of data has been read successfully, or until
* an error occurs.
*
* @param buffers The buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t n = read_some(buffers, ec);
asio::detail::throw_error(ec, "read_some");
return n;
}
/// Read some data from the stream.
/**
* This function is used to read data from the stream. The function call will
* block until one or more bytes of data has been read successfully, or until
* an error occurs.
*
* @param buffers The buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return detail::io(next_layer_, core_,
detail::read_op<MutableBufferSequence>(buffers), ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read one or more bytes of data from
* the stream. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers The buffers into which the data will be read. Although the
* buffers object may be copied as necessary, ownership of the underlying
* buffers is retained by the caller, which must guarantee that they remain
* valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The async_read_some operation may not read all of the requested
* number of bytes. Consider using the @ref async_read function if you need to
* ensure that the requested amount of data is read before the asynchronous
* operation completes.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* if they are also supported by the @c Stream type's @c async_read_some and
* @c async_write_some operations.
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_read_some(const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_read_some>(), token, buffers))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_read_some(this), token, buffers);
}
private:
class initiate_async_handshake
{
public:
typedef typename stream::executor_type executor_type;
explicit initiate_async_handshake(stream* self)
: self_(self)
{
}
executor_type get_executor() const noexcept
{
return self_->get_executor();
}
template <typename HandshakeHandler>
void operator()(HandshakeHandler&& handler,
handshake_type type) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a HandshakeHandler.
ASIO_HANDSHAKE_HANDLER_CHECK(HandshakeHandler, handler) type_check;
asio::detail::non_const_lvalue<HandshakeHandler> handler2(handler);
detail::async_io(self_->next_layer_, self_->core_,
detail::handshake_op(type), handler2.value);
}
private:
stream* self_;
};
class initiate_async_buffered_handshake
{
public:
typedef typename stream::executor_type executor_type;
explicit initiate_async_buffered_handshake(stream* self)
: self_(self)
{
}
executor_type get_executor() const noexcept
{
return self_->get_executor();
}
template <typename BufferedHandshakeHandler, typename ConstBufferSequence>
void operator()(BufferedHandshakeHandler&& handler,
handshake_type type, const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your
// handler does not meet the documented type requirements for a
// BufferedHandshakeHandler.
ASIO_BUFFERED_HANDSHAKE_HANDLER_CHECK(
BufferedHandshakeHandler, handler) type_check;
asio::detail::non_const_lvalue<
BufferedHandshakeHandler> handler2(handler);
detail::async_io(self_->next_layer_, self_->core_,
detail::buffered_handshake_op<ConstBufferSequence>(type, buffers),
handler2.value);
}
private:
stream* self_;
};
class initiate_async_shutdown
{
public:
typedef typename stream::executor_type executor_type;
explicit initiate_async_shutdown(stream* self)
: self_(self)
{
}
executor_type get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ShutdownHandler>
void operator()(ShutdownHandler&& handler) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ShutdownHandler.
ASIO_HANDSHAKE_HANDLER_CHECK(ShutdownHandler, handler) type_check;
asio::detail::non_const_lvalue<ShutdownHandler> handler2(handler);
detail::async_io(self_->next_layer_, self_->core_,
detail::shutdown_op(), handler2.value);
}
private:
stream* self_;
};
class initiate_async_write_some
{
public:
typedef typename stream::executor_type executor_type;
explicit initiate_async_write_some(stream* self)
: self_(self)
{
}
executor_type get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
asio::detail::non_const_lvalue<WriteHandler> handler2(handler);
detail::async_io(self_->next_layer_, self_->core_,
detail::write_op<ConstBufferSequence>(buffers), handler2.value);
}
private:
stream* self_;
};
class initiate_async_read_some
{
public:
typedef typename stream::executor_type executor_type;
explicit initiate_async_read_some(stream* self)
: self_(self)
{
}
executor_type get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
asio::detail::non_const_lvalue<ReadHandler> handler2(handler);
detail::async_io(self_->next_layer_, self_->core_,
detail::read_op<MutableBufferSequence>(buffers), handler2.value);
}
private:
stream* self_;
};
Stream next_layer_;
detail::stream_core core_;
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_STREAM_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/verify_context.hpp | //
// ssl/verify_context.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_VERIFY_CONTEXT_HPP
#define ASIO_SSL_VERIFY_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// A simple wrapper around the X509_STORE_CTX type, used during verification of
/// a peer certificate.
/**
* @note The verify_context does not own the underlying X509_STORE_CTX object.
*/
class verify_context
: private noncopyable
{
public:
/// The native handle type of the verification context.
typedef X509_STORE_CTX* native_handle_type;
/// Constructor.
explicit verify_context(native_handle_type handle)
: handle_(handle)
{
}
/// Get the underlying implementation in the native type.
/**
* This function may be used to obtain the underlying implementation of the
* context. This is intended to allow access to context functionality that is
* not otherwise provided.
*/
native_handle_type native_handle()
{
return handle_;
}
private:
// The underlying native implementation.
native_handle_type handle_;
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_VERIFY_CONTEXT_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/stream_base.hpp | //
// ssl/stream_base.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_STREAM_BASE_HPP
#define ASIO_SSL_STREAM_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
/// The stream_base class is used as a base for the asio::ssl::stream
/// class template so that we have a common place to define various enums.
class stream_base
{
public:
/// Different handshake types.
enum handshake_type
{
/// Perform handshaking as a client.
client,
/// Perform handshaking as a server.
server
};
protected:
/// Protected destructor to prevent deletion through this type.
~stream_base()
{
}
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_STREAM_BASE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ssl/context.hpp | //
// ssl/context.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_CONTEXT_HPP
#define ASIO_SSL_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <string>
#include "asio/buffer.hpp"
#include "asio/io_context.hpp"
#include "asio/ssl/context_base.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/ssl/detail/openssl_init.hpp"
#include "asio/ssl/detail/password_callback.hpp"
#include "asio/ssl/detail/verify_callback.hpp"
#include "asio/ssl/verify_mode.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
class context
: public context_base,
private noncopyable
{
public:
/// The native handle type of the SSL context.
typedef SSL_CTX* native_handle_type;
/// Constructor.
ASIO_DECL explicit context(method m);
/// Construct to take ownership of a native handle.
ASIO_DECL explicit context(native_handle_type native_handle);
/// Move-construct a context from another.
/**
* This constructor moves an SSL context from one object to another.
*
* @param other The other context object from which the move will occur.
*
* @note Following the move, the following operations only are valid for the
* moved-from object:
* @li Destruction.
* @li As a target for move-assignment.
*/
ASIO_DECL context(context&& other);
/// Move-assign a context from another.
/**
* This assignment operator moves an SSL context from one object to another.
*
* @param other The other context object from which the move will occur.
*
* @note Following the move, the following operations only are valid for the
* moved-from object:
* @li Destruction.
* @li As a target for move-assignment.
*/
ASIO_DECL context& operator=(context&& other);
/// Destructor.
ASIO_DECL ~context();
/// Get the underlying implementation in the native type.
/**
* This function may be used to obtain the underlying implementation of the
* context. This is intended to allow access to context functionality that is
* not otherwise provided.
*/
ASIO_DECL native_handle_type native_handle();
/// Clear options on the context.
/**
* This function may be used to configure the SSL options used by the context.
*
* @param o A bitmask of options. The available option values are defined in
* the context_base class. The specified options, if currently enabled on the
* context, are cleared.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_clear_options.
*/
ASIO_DECL void clear_options(options o);
/// Clear options on the context.
/**
* This function may be used to configure the SSL options used by the context.
*
* @param o A bitmask of options. The available option values are defined in
* the context_base class. The specified options, if currently enabled on the
* context, are cleared.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_clear_options.
*/
ASIO_DECL ASIO_SYNC_OP_VOID clear_options(options o,
asio::error_code& ec);
/// Set options on the context.
/**
* This function may be used to configure the SSL options used by the context.
*
* @param o A bitmask of options. The available option values are defined in
* the context_base class. The options are bitwise-ored with any existing
* value for the options.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_options.
*/
ASIO_DECL void set_options(options o);
/// Set options on the context.
/**
* This function may be used to configure the SSL options used by the context.
*
* @param o A bitmask of options. The available option values are defined in
* the context_base class. The options are bitwise-ored with any existing
* value for the options.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_options.
*/
ASIO_DECL ASIO_SYNC_OP_VOID set_options(options o,
asio::error_code& ec);
/// Set the peer verification mode.
/**
* This function may be used to configure the peer verification mode used by
* the context.
*
* @param v A bitmask of peer verification modes. See @ref verify_mode for
* available values.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_verify.
*/
ASIO_DECL void set_verify_mode(verify_mode v);
/// Set the peer verification mode.
/**
* This function may be used to configure the peer verification mode used by
* the context.
*
* @param v A bitmask of peer verification modes. See @ref verify_mode for
* available values.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_verify.
*/
ASIO_DECL ASIO_SYNC_OP_VOID set_verify_mode(
verify_mode v, asio::error_code& ec);
/// Set the peer verification depth.
/**
* This function may be used to configure the maximum verification depth
* allowed by the context.
*
* @param depth Maximum depth for the certificate chain verification that
* shall be allowed.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_verify_depth.
*/
ASIO_DECL void set_verify_depth(int depth);
/// Set the peer verification depth.
/**
* This function may be used to configure the maximum verification depth
* allowed by the context.
*
* @param depth Maximum depth for the certificate chain verification that
* shall be allowed.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_verify_depth.
*/
ASIO_DECL ASIO_SYNC_OP_VOID set_verify_depth(
int depth, asio::error_code& ec);
/// Set the callback used to verify peer certificates.
/**
* This function is used to specify a callback function that will be called
* by the implementation when it needs to verify a peer certificate.
*
* @param callback The function object to be used for verifying a certificate.
* The function signature of the handler must be:
* @code bool verify_callback(
* bool preverified, // True if the certificate passed pre-verification.
* verify_context& ctx // The peer certificate and other context.
* ); @endcode
* The return value of the callback is true if the certificate has passed
* verification, false otherwise.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_verify.
*/
template <typename VerifyCallback>
void set_verify_callback(VerifyCallback callback);
/// Set the callback used to verify peer certificates.
/**
* This function is used to specify a callback function that will be called
* by the implementation when it needs to verify a peer certificate.
*
* @param callback The function object to be used for verifying a certificate.
* The function signature of the handler must be:
* @code bool verify_callback(
* bool preverified, // True if the certificate passed pre-verification.
* verify_context& ctx // The peer certificate and other context.
* ); @endcode
* The return value of the callback is true if the certificate has passed
* verification, false otherwise.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_verify.
*/
template <typename VerifyCallback>
ASIO_SYNC_OP_VOID set_verify_callback(VerifyCallback callback,
asio::error_code& ec);
/// Load a certification authority file for performing verification.
/**
* This function is used to load one or more trusted certification authorities
* from a file.
*
* @param filename The name of a file containing certification authority
* certificates in PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_load_verify_locations.
*/
ASIO_DECL void load_verify_file(const std::string& filename);
/// Load a certification authority file for performing verification.
/**
* This function is used to load the certificates for one or more trusted
* certification authorities from a file.
*
* @param filename The name of a file containing certification authority
* certificates in PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_load_verify_locations.
*/
ASIO_DECL ASIO_SYNC_OP_VOID load_verify_file(
const std::string& filename, asio::error_code& ec);
/// Add certification authority for performing verification.
/**
* This function is used to add one trusted certification authority
* from a memory buffer.
*
* @param ca The buffer containing the certification authority certificate.
* The certificate must use the PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_get_cert_store and @c X509_STORE_add_cert.
*/
ASIO_DECL void add_certificate_authority(const const_buffer& ca);
/// Add certification authority for performing verification.
/**
* This function is used to add one trusted certification authority
* from a memory buffer.
*
* @param ca The buffer containing the certification authority certificate.
* The certificate must use the PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_get_cert_store and @c X509_STORE_add_cert.
*/
ASIO_DECL ASIO_SYNC_OP_VOID add_certificate_authority(
const const_buffer& ca, asio::error_code& ec);
/// Configures the context to use the default directories for finding
/// certification authority certificates.
/**
* This function specifies that the context should use the default,
* system-dependent directories for locating certification authority
* certificates.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_default_verify_paths.
*/
ASIO_DECL void set_default_verify_paths();
/// Configures the context to use the default directories for finding
/// certification authority certificates.
/**
* This function specifies that the context should use the default,
* system-dependent directories for locating certification authority
* certificates.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_default_verify_paths.
*/
ASIO_DECL ASIO_SYNC_OP_VOID set_default_verify_paths(
asio::error_code& ec);
/// Add a directory containing certificate authority files to be used for
/// performing verification.
/**
* This function is used to specify the name of a directory containing
* certification authority certificates. Each file in the directory must
* contain a single certificate. The files must be named using the subject
* name's hash and an extension of ".0".
*
* @param path The name of a directory containing the certificates.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_load_verify_locations.
*/
ASIO_DECL void add_verify_path(const std::string& path);
/// Add a directory containing certificate authority files to be used for
/// performing verification.
/**
* This function is used to specify the name of a directory containing
* certification authority certificates. Each file in the directory must
* contain a single certificate. The files must be named using the subject
* name's hash and an extension of ".0".
*
* @param path The name of a directory containing the certificates.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_load_verify_locations.
*/
ASIO_DECL ASIO_SYNC_OP_VOID add_verify_path(
const std::string& path, asio::error_code& ec);
/// Use a certificate from a memory buffer.
/**
* This function is used to load a certificate into the context from a buffer.
*
* @param certificate The buffer containing the certificate.
*
* @param format The certificate format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_certificate or SSL_CTX_use_certificate_ASN1.
*/
ASIO_DECL void use_certificate(
const const_buffer& certificate, file_format format);
/// Use a certificate from a memory buffer.
/**
* This function is used to load a certificate into the context from a buffer.
*
* @param certificate The buffer containing the certificate.
*
* @param format The certificate format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_certificate or SSL_CTX_use_certificate_ASN1.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_certificate(
const const_buffer& certificate, file_format format,
asio::error_code& ec);
/// Use a certificate from a file.
/**
* This function is used to load a certificate into the context from a file.
*
* @param filename The name of the file containing the certificate.
*
* @param format The file format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_certificate_file.
*/
ASIO_DECL void use_certificate_file(
const std::string& filename, file_format format);
/// Use a certificate from a file.
/**
* This function is used to load a certificate into the context from a file.
*
* @param filename The name of the file containing the certificate.
*
* @param format The file format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_certificate_file.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_certificate_file(
const std::string& filename, file_format format,
asio::error_code& ec);
/// Use a certificate chain from a memory buffer.
/**
* This function is used to load a certificate chain into the context from a
* buffer.
*
* @param chain The buffer containing the certificate chain. The certificate
* chain must use the PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_certificate and SSL_CTX_add_extra_chain_cert.
*/
ASIO_DECL void use_certificate_chain(const const_buffer& chain);
/// Use a certificate chain from a memory buffer.
/**
* This function is used to load a certificate chain into the context from a
* buffer.
*
* @param chain The buffer containing the certificate chain. The certificate
* chain must use the PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_certificate and SSL_CTX_add_extra_chain_cert.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_certificate_chain(
const const_buffer& chain, asio::error_code& ec);
/// Use a certificate chain from a file.
/**
* This function is used to load a certificate chain into the context from a
* file.
*
* @param filename The name of the file containing the certificate. The file
* must use the PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_certificate_chain_file.
*/
ASIO_DECL void use_certificate_chain_file(const std::string& filename);
/// Use a certificate chain from a file.
/**
* This function is used to load a certificate chain into the context from a
* file.
*
* @param filename The name of the file containing the certificate. The file
* must use the PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_certificate_chain_file.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_certificate_chain_file(
const std::string& filename, asio::error_code& ec);
/// Use a private key from a memory buffer.
/**
* This function is used to load a private key into the context from a buffer.
*
* @param private_key The buffer containing the private key.
*
* @param format The private key format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_PrivateKey or SSL_CTX_use_PrivateKey_ASN1.
*/
ASIO_DECL void use_private_key(
const const_buffer& private_key, file_format format);
/// Use a private key from a memory buffer.
/**
* This function is used to load a private key into the context from a buffer.
*
* @param private_key The buffer containing the private key.
*
* @param format The private key format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_PrivateKey or SSL_CTX_use_PrivateKey_ASN1.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_private_key(
const const_buffer& private_key, file_format format,
asio::error_code& ec);
/// Use a private key from a file.
/**
* This function is used to load a private key into the context from a file.
*
* @param filename The name of the file containing the private key.
*
* @param format The file format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_PrivateKey_file.
*/
ASIO_DECL void use_private_key_file(
const std::string& filename, file_format format);
/// Use a private key from a file.
/**
* This function is used to load a private key into the context from a file.
*
* @param filename The name of the file containing the private key.
*
* @param format The file format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_PrivateKey_file.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_private_key_file(
const std::string& filename, file_format format,
asio::error_code& ec);
/// Use an RSA private key from a memory buffer.
/**
* This function is used to load an RSA private key into the context from a
* buffer.
*
* @param private_key The buffer containing the RSA private key.
*
* @param format The private key format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_RSAPrivateKey or SSL_CTX_use_RSAPrivateKey_ASN1.
*/
ASIO_DECL void use_rsa_private_key(
const const_buffer& private_key, file_format format);
/// Use an RSA private key from a memory buffer.
/**
* This function is used to load an RSA private key into the context from a
* buffer.
*
* @param private_key The buffer containing the RSA private key.
*
* @param format The private key format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_RSAPrivateKey or SSL_CTX_use_RSAPrivateKey_ASN1.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_rsa_private_key(
const const_buffer& private_key, file_format format,
asio::error_code& ec);
/// Use an RSA private key from a file.
/**
* This function is used to load an RSA private key into the context from a
* file.
*
* @param filename The name of the file containing the RSA private key.
*
* @param format The file format (ASN.1 or PEM).
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_use_RSAPrivateKey_file.
*/
ASIO_DECL void use_rsa_private_key_file(
const std::string& filename, file_format format);
/// Use an RSA private key from a file.
/**
* This function is used to load an RSA private key into the context from a
* file.
*
* @param filename The name of the file containing the RSA private key.
*
* @param format The file format (ASN.1 or PEM).
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_use_RSAPrivateKey_file.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_rsa_private_key_file(
const std::string& filename, file_format format,
asio::error_code& ec);
/// Use the specified memory buffer to obtain the temporary Diffie-Hellman
/// parameters.
/**
* This function is used to load Diffie-Hellman parameters into the context
* from a buffer.
*
* @param dh The memory buffer containing the Diffie-Hellman parameters. The
* buffer must use the PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_tmp_dh.
*/
ASIO_DECL void use_tmp_dh(const const_buffer& dh);
/// Use the specified memory buffer to obtain the temporary Diffie-Hellman
/// parameters.
/**
* This function is used to load Diffie-Hellman parameters into the context
* from a buffer.
*
* @param dh The memory buffer containing the Diffie-Hellman parameters. The
* buffer must use the PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_tmp_dh.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_tmp_dh(
const const_buffer& dh, asio::error_code& ec);
/// Use the specified file to obtain the temporary Diffie-Hellman parameters.
/**
* This function is used to load Diffie-Hellman parameters into the context
* from a file.
*
* @param filename The name of the file containing the Diffie-Hellman
* parameters. The file must use the PEM format.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_tmp_dh.
*/
ASIO_DECL void use_tmp_dh_file(const std::string& filename);
/// Use the specified file to obtain the temporary Diffie-Hellman parameters.
/**
* This function is used to load Diffie-Hellman parameters into the context
* from a file.
*
* @param filename The name of the file containing the Diffie-Hellman
* parameters. The file must use the PEM format.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_tmp_dh.
*/
ASIO_DECL ASIO_SYNC_OP_VOID use_tmp_dh_file(
const std::string& filename, asio::error_code& ec);
/// Set the password callback.
/**
* This function is used to specify a callback function to obtain password
* information about an encrypted key in PEM format.
*
* @param callback The function object to be used for obtaining the password.
* The function signature of the handler must be:
* @code std::string password_callback(
* std::size_t max_length, // The maximum size for a password.
* password_purpose purpose // Whether password is for reading or writing.
* ); @endcode
* The return value of the callback is a string containing the password.
*
* @throws asio::system_error Thrown on failure.
*
* @note Calls @c SSL_CTX_set_default_passwd_cb.
*/
template <typename PasswordCallback>
void set_password_callback(PasswordCallback callback);
/// Set the password callback.
/**
* This function is used to specify a callback function to obtain password
* information about an encrypted key in PEM format.
*
* @param callback The function object to be used for obtaining the password.
* The function signature of the handler must be:
* @code std::string password_callback(
* std::size_t max_length, // The maximum size for a password.
* password_purpose purpose // Whether password is for reading or writing.
* ); @endcode
* The return value of the callback is a string containing the password.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Calls @c SSL_CTX_set_default_passwd_cb.
*/
template <typename PasswordCallback>
ASIO_SYNC_OP_VOID set_password_callback(PasswordCallback callback,
asio::error_code& ec);
private:
struct bio_cleanup;
struct x509_cleanup;
struct evp_pkey_cleanup;
struct rsa_cleanup;
struct dh_cleanup;
// Helper function used to set a peer certificate verification callback.
ASIO_DECL ASIO_SYNC_OP_VOID do_set_verify_callback(
detail::verify_callback_base* callback, asio::error_code& ec);
// Callback used when the SSL implementation wants to verify a certificate.
ASIO_DECL static int verify_callback_function(
int preverified, X509_STORE_CTX* ctx);
// Helper function used to set a password callback.
ASIO_DECL ASIO_SYNC_OP_VOID do_set_password_callback(
detail::password_callback_base* callback, asio::error_code& ec);
// Callback used when the SSL implementation wants a password.
ASIO_DECL static int password_callback_function(
char* buf, int size, int purpose, void* data);
// Helper function to set the temporary Diffie-Hellman parameters from a BIO.
ASIO_DECL ASIO_SYNC_OP_VOID do_use_tmp_dh(
BIO* bio, asio::error_code& ec);
// Helper function to make a BIO from a memory buffer.
ASIO_DECL BIO* make_buffer_bio(const const_buffer& b);
// Translate an SSL error into an error code.
ASIO_DECL static asio::error_code translate_error(long error);
// The underlying native implementation.
native_handle_type handle_;
// Ensure openssl is initialised.
asio::ssl::detail::openssl_init<> init_;
};
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/ssl/impl/context.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/impl/context.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SSL_CONTEXT_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/verify_callback.hpp | //
// ssl/detail/verify_callback.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_VERIFY_CALLBACK_HPP
#define ASIO_SSL_DETAIL_VERIFY_CALLBACK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/verify_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class verify_callback_base
{
public:
virtual ~verify_callback_base()
{
}
virtual bool call(bool preverified, verify_context& ctx) = 0;
};
template <typename VerifyCallback>
class verify_callback : public verify_callback_base
{
public:
explicit verify_callback(VerifyCallback callback)
: callback_(callback)
{
}
virtual bool call(bool preverified, verify_context& ctx)
{
return callback_(preverified, ctx);
}
private:
VerifyCallback callback_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_VERIFY_CALLBACK_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/shutdown_op.hpp | //
// ssl/detail/shutdown_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_SHUTDOWN_OP_HPP
#define ASIO_SSL_DETAIL_SHUTDOWN_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class shutdown_op
{
public:
static constexpr const char* tracking_name()
{
return "ssl::stream<>::async_shutdown";
}
engine::want operator()(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred) const
{
bytes_transferred = 0;
return eng.shutdown(ec);
}
template <typename Handler>
void call_handler(Handler& handler,
const asio::error_code& ec,
const std::size_t&) const
{
if (ec == asio::error::eof)
{
// The engine only generates an eof when the shutdown notification has
// been received from the peer. This indicates that the shutdown has
// completed successfully, and thus need not be passed on to the handler.
static_cast<Handler&&>(handler)(asio::error_code());
}
else
{
static_cast<Handler&&>(handler)(ec);
}
}
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_SHUTDOWN_OP_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/password_callback.hpp | //
// ssl/detail/password_callback.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_PASSWORD_CALLBACK_HPP
#define ASIO_SSL_DETAIL_PASSWORD_CALLBACK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include <string>
#include "asio/ssl/context_base.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class password_callback_base
{
public:
virtual ~password_callback_base()
{
}
virtual std::string call(std::size_t size,
context_base::password_purpose purpose) = 0;
};
template <typename PasswordCallback>
class password_callback : public password_callback_base
{
public:
explicit password_callback(PasswordCallback callback)
: callback_(callback)
{
}
virtual std::string call(std::size_t size,
context_base::password_purpose purpose)
{
return callback_(size, purpose);
}
private:
PasswordCallback callback_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_PASSWORD_CALLBACK_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/openssl_init.hpp | //
// ssl/detail/openssl_init.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_OPENSSL_INIT_HPP
#define ASIO_SSL_DETAIL_OPENSSL_INIT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstring>
#include "asio/detail/memory.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class openssl_init_base
: private noncopyable
{
protected:
// Class that performs the actual initialisation.
class do_init;
// Helper function to manage a do_init singleton. The static instance of the
// openssl_init object ensures that this function is always called before
// main, and therefore before any other threads can get started. The do_init
// instance must be static in this function to ensure that it gets
// initialised before any other global objects try to use it.
ASIO_DECL static asio::detail::shared_ptr<do_init> instance();
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
// Get an empty stack of compression methods, to be used when disabling
// compression.
ASIO_DECL static STACK_OF(SSL_COMP)* get_null_compression_methods();
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
};
template <bool Do_Init = true>
class openssl_init : private openssl_init_base
{
public:
// Constructor.
openssl_init()
: ref_(instance())
{
using namespace std; // For memmove.
// Ensure openssl_init::instance_ is linked in.
openssl_init* tmp = &instance_;
memmove(&tmp, &tmp, sizeof(openssl_init*));
}
// Destructor.
~openssl_init()
{
}
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
using openssl_init_base::get_null_compression_methods;
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
private:
// Instance to force initialisation of openssl at global scope.
static openssl_init instance_;
// Reference to singleton do_init object to ensure that openssl does not get
// cleaned up until the last user has finished with it.
asio::detail::shared_ptr<do_init> ref_;
};
template <bool Do_Init>
openssl_init<Do_Init> openssl_init<Do_Init>::instance_;
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/detail/impl/openssl_init.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SSL_DETAIL_OPENSSL_INIT_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/handshake_op.hpp | //
// ssl/detail/handshake_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_HANDSHAKE_OP_HPP
#define ASIO_SSL_DETAIL_HANDSHAKE_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class handshake_op
{
public:
static constexpr const char* tracking_name()
{
return "ssl::stream<>::async_handshake";
}
handshake_op(stream_base::handshake_type type)
: type_(type)
{
}
engine::want operator()(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred) const
{
bytes_transferred = 0;
return eng.handshake(type_, ec);
}
template <typename Handler>
void call_handler(Handler& handler,
const asio::error_code& ec,
const std::size_t&) const
{
static_cast<Handler&&>(handler)(ec);
}
private:
stream_base::handshake_type type_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_HANDSHAKE_OP_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/openssl_types.hpp | //
// ssl/detail/openssl_types.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_OPENSSL_TYPES_HPP
#define ASIO_SSL_DETAIL_OPENSSL_TYPES_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/socket_types.hpp"
#if defined(ASIO_USE_WOLFSSL)
# include <wolfssl/options.h>
#endif // defined(ASIO_USE_WOLFSSL)
#include <openssl/conf.h>
#include <openssl/ssl.h>
#if !defined(OPENSSL_NO_ENGINE)
# include <openssl/engine.h>
#endif // !defined(OPENSSL_NO_ENGINE)
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#endif // ASIO_SSL_DETAIL_OPENSSL_TYPES_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/stream_core.hpp | //
// ssl/detail/stream_core.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_STREAM_CORE_HPP
#define ASIO_SSL_DETAIL_STREAM_CORE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME)
# include "asio/deadline_timer.hpp"
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
# include "asio/steady_timer.hpp"
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
#include "asio/ssl/detail/engine.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
struct stream_core
{
// According to the OpenSSL documentation, this is the buffer size that is
// sufficient to hold the largest possible TLS record.
enum { max_tls_record_size = 17 * 1024 };
template <typename Executor>
stream_core(SSL_CTX* context, const Executor& ex)
: engine_(context),
pending_read_(ex),
pending_write_(ex),
output_buffer_space_(max_tls_record_size),
output_buffer_(asio::buffer(output_buffer_space_)),
input_buffer_space_(max_tls_record_size),
input_buffer_(asio::buffer(input_buffer_space_))
{
pending_read_.expires_at(neg_infin());
pending_write_.expires_at(neg_infin());
}
template <typename Executor>
stream_core(SSL* ssl_impl, const Executor& ex)
: engine_(ssl_impl),
pending_read_(ex),
pending_write_(ex),
output_buffer_space_(max_tls_record_size),
output_buffer_(asio::buffer(output_buffer_space_)),
input_buffer_space_(max_tls_record_size),
input_buffer_(asio::buffer(input_buffer_space_))
{
pending_read_.expires_at(neg_infin());
pending_write_.expires_at(neg_infin());
}
stream_core(stream_core&& other)
: engine_(static_cast<engine&&>(other.engine_)),
#if defined(ASIO_HAS_BOOST_DATE_TIME)
pending_read_(
static_cast<asio::deadline_timer&&>(
other.pending_read_)),
pending_write_(
static_cast<asio::deadline_timer&&>(
other.pending_write_)),
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
pending_read_(
static_cast<asio::steady_timer&&>(
other.pending_read_)),
pending_write_(
static_cast<asio::steady_timer&&>(
other.pending_write_)),
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
output_buffer_space_(
static_cast<std::vector<unsigned char>&&>(
other.output_buffer_space_)),
output_buffer_(other.output_buffer_),
input_buffer_space_(
static_cast<std::vector<unsigned char>&&>(
other.input_buffer_space_)),
input_buffer_(other.input_buffer_),
input_(other.input_)
{
other.output_buffer_ = asio::mutable_buffer(0, 0);
other.input_buffer_ = asio::mutable_buffer(0, 0);
other.input_ = asio::const_buffer(0, 0);
}
~stream_core()
{
}
stream_core& operator=(stream_core&& other)
{
if (this != &other)
{
engine_ = static_cast<engine&&>(other.engine_);
#if defined(ASIO_HAS_BOOST_DATE_TIME)
pending_read_ =
static_cast<asio::deadline_timer&&>(
other.pending_read_);
pending_write_ =
static_cast<asio::deadline_timer&&>(
other.pending_write_);
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
pending_read_ =
static_cast<asio::steady_timer&&>(
other.pending_read_);
pending_write_ =
static_cast<asio::steady_timer&&>(
other.pending_write_);
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
output_buffer_space_ =
static_cast<std::vector<unsigned char>&&>(
other.output_buffer_space_);
output_buffer_ = other.output_buffer_;
input_buffer_space_ =
static_cast<std::vector<unsigned char>&&>(
other.input_buffer_space_);
input_buffer_ = other.input_buffer_;
input_ = other.input_;
other.output_buffer_ = asio::mutable_buffer(0, 0);
other.input_buffer_ = asio::mutable_buffer(0, 0);
other.input_ = asio::const_buffer(0, 0);
}
return *this;
}
// The SSL engine.
engine engine_;
#if defined(ASIO_HAS_BOOST_DATE_TIME)
// Timer used for storing queued read operations.
asio::deadline_timer pending_read_;
// Timer used for storing queued write operations.
asio::deadline_timer pending_write_;
// Helper function for obtaining a time value that always fires.
static asio::deadline_timer::time_type neg_infin()
{
return boost::posix_time::neg_infin;
}
// Helper function for obtaining a time value that never fires.
static asio::deadline_timer::time_type pos_infin()
{
return boost::posix_time::pos_infin;
}
// Helper function to get a timer's expiry time.
static asio::deadline_timer::time_type expiry(
const asio::deadline_timer& timer)
{
return timer.expires_at();
}
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// Timer used for storing queued read operations.
asio::steady_timer pending_read_;
// Timer used for storing queued write operations.
asio::steady_timer pending_write_;
// Helper function for obtaining a time value that always fires.
static asio::steady_timer::time_point neg_infin()
{
return (asio::steady_timer::time_point::min)();
}
// Helper function for obtaining a time value that never fires.
static asio::steady_timer::time_point pos_infin()
{
return (asio::steady_timer::time_point::max)();
}
// Helper function to get a timer's expiry time.
static asio::steady_timer::time_point expiry(
const asio::steady_timer& timer)
{
return timer.expiry();
}
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// Buffer space used to prepare output intended for the transport.
std::vector<unsigned char> output_buffer_space_;
// A buffer that may be used to prepare output intended for the transport.
asio::mutable_buffer output_buffer_;
// Buffer space used to read input intended for the engine.
std::vector<unsigned char> input_buffer_space_;
// A buffer that may be used to read input intended for the engine.
asio::mutable_buffer input_buffer_;
// The buffer pointing to the engine's unconsumed input.
asio::const_buffer input_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_STREAM_CORE_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/read_op.hpp | //
// ssl/detail/read_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_READ_OP_HPP
#define ASIO_SSL_DETAIL_READ_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
template <typename MutableBufferSequence>
class read_op
{
public:
static constexpr const char* tracking_name()
{
return "ssl::stream<>::async_read_some";
}
read_op(const MutableBufferSequence& buffers)
: buffers_(buffers)
{
}
engine::want operator()(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred) const
{
asio::mutable_buffer buffer =
asio::detail::buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence>::first(buffers_);
return eng.read(buffer, ec, bytes_transferred);
}
template <typename Handler>
void call_handler(Handler& handler,
const asio::error_code& ec,
const std::size_t& bytes_transferred) const
{
static_cast<Handler&&>(handler)(ec, bytes_transferred);
}
private:
MutableBufferSequence buffers_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_READ_OP_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/io.hpp | //
// ssl/detail/io.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_IO_HPP
#define ASIO_SSL_DETAIL_IO_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/base_from_cancellation_state.hpp"
#include "asio/detail/handler_tracking.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/ssl/detail/stream_core.hpp"
#include "asio/write.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
template <typename Stream, typename Operation>
std::size_t io(Stream& next_layer, stream_core& core,
const Operation& op, asio::error_code& ec)
{
asio::error_code io_ec;
std::size_t bytes_transferred = 0;
do switch (op(core.engine_, ec, bytes_transferred))
{
case engine::want_input_and_retry:
// If the input buffer is empty then we need to read some more data from
// the underlying transport.
if (core.input_.size() == 0)
{
core.input_ = asio::buffer(core.input_buffer_,
next_layer.read_some(core.input_buffer_, io_ec));
if (!ec)
ec = io_ec;
}
// Pass the new input data to the engine.
core.input_ = core.engine_.put_input(core.input_);
// Try the operation again.
continue;
case engine::want_output_and_retry:
// Get output data from the engine and write it to the underlying
// transport.
asio::write(next_layer,
core.engine_.get_output(core.output_buffer_), io_ec);
if (!ec)
ec = io_ec;
// Try the operation again.
continue;
case engine::want_output:
// Get output data from the engine and write it to the underlying
// transport.
asio::write(next_layer,
core.engine_.get_output(core.output_buffer_), io_ec);
if (!ec)
ec = io_ec;
// Operation is complete. Return result to caller.
core.engine_.map_error_code(ec);
return bytes_transferred;
default:
// Operation is complete. Return result to caller.
core.engine_.map_error_code(ec);
return bytes_transferred;
} while (!ec);
// Operation failed. Return result to caller.
core.engine_.map_error_code(ec);
return 0;
}
template <typename Stream, typename Operation, typename Handler>
class io_op
: public asio::detail::base_from_cancellation_state<Handler>
{
public:
io_op(Stream& next_layer, stream_core& core,
const Operation& op, Handler& handler)
: asio::detail::base_from_cancellation_state<Handler>(handler),
next_layer_(next_layer),
core_(core),
op_(op),
start_(0),
want_(engine::want_nothing),
bytes_transferred_(0),
handler_(static_cast<Handler&&>(handler))
{
}
io_op(const io_op& other)
: asio::detail::base_from_cancellation_state<Handler>(other),
next_layer_(other.next_layer_),
core_(other.core_),
op_(other.op_),
start_(other.start_),
want_(other.want_),
ec_(other.ec_),
bytes_transferred_(other.bytes_transferred_),
handler_(other.handler_)
{
}
io_op(io_op&& other)
: asio::detail::base_from_cancellation_state<Handler>(
static_cast<
asio::detail::base_from_cancellation_state<Handler>&&>(other)),
next_layer_(other.next_layer_),
core_(other.core_),
op_(static_cast<Operation&&>(other.op_)),
start_(other.start_),
want_(other.want_),
ec_(other.ec_),
bytes_transferred_(other.bytes_transferred_),
handler_(static_cast<Handler&&>(other.handler_))
{
}
void operator()(asio::error_code ec,
std::size_t bytes_transferred = ~std::size_t(0), int start = 0)
{
switch (start_ = start)
{
case 1: // Called after at least one async operation.
do
{
switch (want_ = op_(core_.engine_, ec_, bytes_transferred_))
{
case engine::want_input_and_retry:
// If the input buffer already has data in it we can pass it to the
// engine and then retry the operation immediately.
if (core_.input_.size() != 0)
{
core_.input_ = core_.engine_.put_input(core_.input_);
continue;
}
// The engine wants more data to be read from input. However, we
// cannot allow more than one read operation at a time on the
// underlying transport. The pending_read_ timer's expiry is set to
// pos_infin if a read is in progress, and neg_infin otherwise.
if (core_.expiry(core_.pending_read_) == core_.neg_infin())
{
// Prevent other read operations from being started.
core_.pending_read_.expires_at(core_.pos_infin());
ASIO_HANDLER_LOCATION((
__FILE__, __LINE__, Operation::tracking_name()));
// Start reading some data from the underlying transport.
next_layer_.async_read_some(
asio::buffer(core_.input_buffer_),
static_cast<io_op&&>(*this));
}
else
{
ASIO_HANDLER_LOCATION((
__FILE__, __LINE__, Operation::tracking_name()));
// Wait until the current read operation completes.
core_.pending_read_.async_wait(static_cast<io_op&&>(*this));
}
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
case engine::want_output_and_retry:
case engine::want_output:
// The engine wants some data to be written to the output. However, we
// cannot allow more than one write operation at a time on the
// underlying transport. The pending_write_ timer's expiry is set to
// pos_infin if a write is in progress, and neg_infin otherwise.
if (core_.expiry(core_.pending_write_) == core_.neg_infin())
{
// Prevent other write operations from being started.
core_.pending_write_.expires_at(core_.pos_infin());
ASIO_HANDLER_LOCATION((
__FILE__, __LINE__, Operation::tracking_name()));
// Start writing all the data to the underlying transport.
asio::async_write(next_layer_,
core_.engine_.get_output(core_.output_buffer_),
static_cast<io_op&&>(*this));
}
else
{
ASIO_HANDLER_LOCATION((
__FILE__, __LINE__, Operation::tracking_name()));
// Wait until the current write operation completes.
core_.pending_write_.async_wait(static_cast<io_op&&>(*this));
}
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
default:
// The SSL operation is done and we can invoke the handler, but we
// have to keep in mind that this function might be being called from
// the async operation's initiating function. In this case we're not
// allowed to call the handler directly. Instead, issue a zero-sized
// read so the handler runs "as-if" posted using io_context::post().
if (start)
{
ASIO_HANDLER_LOCATION((
__FILE__, __LINE__, Operation::tracking_name()));
next_layer_.async_read_some(
asio::buffer(core_.input_buffer_, 0),
static_cast<io_op&&>(*this));
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
}
else
{
// Continue on to run handler directly.
break;
}
}
default:
if (bytes_transferred == ~std::size_t(0))
bytes_transferred = 0; // Timer cancellation, no data transferred.
else if (!ec_)
ec_ = ec;
switch (want_)
{
case engine::want_input_and_retry:
// Add received data to the engine's input.
core_.input_ = asio::buffer(
core_.input_buffer_, bytes_transferred);
core_.input_ = core_.engine_.put_input(core_.input_);
// Release any waiting read operations.
core_.pending_read_.expires_at(core_.neg_infin());
// Check for cancellation before continuing.
if (this->cancelled() != cancellation_type::none)
{
ec_ = asio::error::operation_aborted;
break;
}
// Try the operation again.
continue;
case engine::want_output_and_retry:
// Release any waiting write operations.
core_.pending_write_.expires_at(core_.neg_infin());
// Check for cancellation before continuing.
if (this->cancelled() != cancellation_type::none)
{
ec_ = asio::error::operation_aborted;
break;
}
// Try the operation again.
continue;
case engine::want_output:
// Release any waiting write operations.
core_.pending_write_.expires_at(core_.neg_infin());
// Fall through to call handler.
default:
// Pass the result to the handler.
op_.call_handler(handler_,
core_.engine_.map_error_code(ec_),
ec_ ? 0 : bytes_transferred_);
// Our work here is done.
return;
}
} while (!ec_);
// Operation failed. Pass the result to the handler.
op_.call_handler(handler_, core_.engine_.map_error_code(ec_), 0);
}
}
//private:
Stream& next_layer_;
stream_core& core_;
Operation op_;
int start_;
engine::want want_;
asio::error_code ec_;
std::size_t bytes_transferred_;
Handler handler_;
};
template <typename Stream, typename Operation, typename Handler>
inline bool asio_handler_is_continuation(
io_op<Stream, Operation, Handler>* this_handler)
{
return this_handler->start_ == 0 ? true
: asio_handler_cont_helpers::is_continuation(this_handler->handler_);
}
template <typename Stream, typename Operation, typename Handler>
inline void async_io(Stream& next_layer, stream_core& core,
const Operation& op, Handler& handler)
{
io_op<Stream, Operation, Handler>(
next_layer, core, op, handler)(
asio::error_code(), 0, 1);
}
} // namespace detail
} // namespace ssl
template <template <typename, typename> class Associator,
typename Stream, typename Operation,
typename Handler, typename DefaultCandidate>
struct associator<Associator,
ssl::detail::io_op<Stream, Operation, Handler>,
DefaultCandidate>
: Associator<Handler, DefaultCandidate>
{
static typename Associator<Handler, DefaultCandidate>::type get(
const ssl::detail::io_op<Stream, Operation, Handler>& h) noexcept
{
return Associator<Handler, DefaultCandidate>::get(h.handler_);
}
static auto get(const ssl::detail::io_op<Stream, Operation, Handler>& h,
const DefaultCandidate& c) noexcept
-> decltype(Associator<Handler, DefaultCandidate>::get(h.handler_, c))
{
return Associator<Handler, DefaultCandidate>::get(h.handler_, c);
}
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_IO_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/engine.hpp | //
// ssl/detail/engine.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_ENGINE_HPP
#define ASIO_SSL_DETAIL_ENGINE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/static_mutex.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/ssl/detail/verify_callback.hpp"
#include "asio/ssl/stream_base.hpp"
#include "asio/ssl/verify_mode.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class engine
{
public:
enum want
{
// Returned by functions to indicate that the engine wants input. The input
// buffer should be updated to point to the data. The engine then needs to
// be called again to retry the operation.
want_input_and_retry = -2,
// Returned by functions to indicate that the engine wants to write output.
// The output buffer points to the data to be written. The engine then
// needs to be called again to retry the operation.
want_output_and_retry = -1,
// Returned by functions to indicate that the engine doesn't need input or
// output.
want_nothing = 0,
// Returned by functions to indicate that the engine wants to write output.
// The output buffer points to the data to be written. After that the
// operation is complete, and the engine does not need to be called again.
want_output = 1
};
// Construct a new engine for the specified context.
ASIO_DECL explicit engine(SSL_CTX* context);
// Construct a new engine for an existing native SSL implementation.
ASIO_DECL explicit engine(SSL* ssl_impl);
// Move construct from another engine.
ASIO_DECL engine(engine&& other) noexcept;
// Destructor.
ASIO_DECL ~engine();
// Move assign from another engine.
ASIO_DECL engine& operator=(engine&& other) noexcept;
// Get the underlying implementation in the native type.
ASIO_DECL SSL* native_handle();
// Set the peer verification mode.
ASIO_DECL asio::error_code set_verify_mode(
verify_mode v, asio::error_code& ec);
// Set the peer verification depth.
ASIO_DECL asio::error_code set_verify_depth(
int depth, asio::error_code& ec);
// Set a peer certificate verification callback.
ASIO_DECL asio::error_code set_verify_callback(
verify_callback_base* callback, asio::error_code& ec);
// Perform an SSL handshake using either SSL_connect (client-side) or
// SSL_accept (server-side).
ASIO_DECL want handshake(
stream_base::handshake_type type, asio::error_code& ec);
// Perform a graceful shutdown of the SSL session.
ASIO_DECL want shutdown(asio::error_code& ec);
// Write bytes to the SSL session.
ASIO_DECL want write(const asio::const_buffer& data,
asio::error_code& ec, std::size_t& bytes_transferred);
// Read bytes from the SSL session.
ASIO_DECL want read(const asio::mutable_buffer& data,
asio::error_code& ec, std::size_t& bytes_transferred);
// Get output data to be written to the transport.
ASIO_DECL asio::mutable_buffer get_output(
const asio::mutable_buffer& data);
// Put input data that was read from the transport.
ASIO_DECL asio::const_buffer put_input(
const asio::const_buffer& data);
// Map an error::eof code returned by the underlying transport according to
// the type and state of the SSL session. Returns a const reference to the
// error code object, suitable for passing to a completion handler.
ASIO_DECL const asio::error_code& map_error_code(
asio::error_code& ec) const;
private:
// Disallow copying and assignment.
engine(const engine&);
engine& operator=(const engine&);
// Callback used when the SSL implementation wants to verify a certificate.
ASIO_DECL static int verify_callback_function(
int preverified, X509_STORE_CTX* ctx);
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
// The SSL_accept function may not be thread safe. This mutex is used to
// protect all calls to the SSL_accept function.
ASIO_DECL static asio::detail::static_mutex& accept_mutex();
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
// Perform one operation. Returns >= 0 on success or error, want_read if the
// operation needs more input, or want_write if it needs to write some output
// before the operation can complete.
ASIO_DECL want perform(int (engine::* op)(void*, std::size_t),
void* data, std::size_t length, asio::error_code& ec,
std::size_t* bytes_transferred);
// Adapt the SSL_accept function to the signature needed for perform().
ASIO_DECL int do_accept(void*, std::size_t);
// Adapt the SSL_connect function to the signature needed for perform().
ASIO_DECL int do_connect(void*, std::size_t);
// Adapt the SSL_shutdown function to the signature needed for perform().
ASIO_DECL int do_shutdown(void*, std::size_t);
// Adapt the SSL_read function to the signature needed for perform().
ASIO_DECL int do_read(void* data, std::size_t length);
// Adapt the SSL_write function to the signature needed for perform().
ASIO_DECL int do_write(void* data, std::size_t length);
SSL* ssl_;
BIO* ext_bio_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/ssl/detail/impl/engine.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_SSL_DETAIL_ENGINE_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/buffered_handshake_op.hpp | //
// ssl/detail/buffered_handshake_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_BUFFERED_HANDSHAKE_OP_HPP
#define ASIO_SSL_DETAIL_BUFFERED_HANDSHAKE_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
template <typename ConstBufferSequence>
class buffered_handshake_op
{
public:
static constexpr const char* tracking_name()
{
return "ssl::stream<>::async_buffered_handshake";
}
buffered_handshake_op(stream_base::handshake_type type,
const ConstBufferSequence& buffers)
: type_(type),
buffers_(buffers),
total_buffer_size_(asio::buffer_size(buffers_))
{
}
engine::want operator()(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred) const
{
return this->process(eng, ec, bytes_transferred,
asio::buffer_sequence_begin(buffers_),
asio::buffer_sequence_end(buffers_));
}
template <typename Handler>
void call_handler(Handler& handler,
const asio::error_code& ec,
const std::size_t& bytes_transferred) const
{
static_cast<Handler&&>(handler)(ec, bytes_transferred);
}
private:
template <typename Iterator>
engine::want process(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred,
Iterator begin, Iterator end) const
{
Iterator iter = begin;
std::size_t accumulated_size = 0;
for (;;)
{
engine::want want = eng.handshake(type_, ec);
if (want != engine::want_input_and_retry
|| bytes_transferred == total_buffer_size_)
return want;
// Find the next buffer piece to be fed to the engine.
while (iter != end)
{
const_buffer buffer(*iter);
// Skip over any buffers which have already been consumed by the engine.
if (bytes_transferred >= accumulated_size + buffer.size())
{
accumulated_size += buffer.size();
++iter;
continue;
}
// The current buffer may have been partially consumed by the engine on
// a previous iteration. If so, adjust the buffer to point to the
// unused portion.
if (bytes_transferred > accumulated_size)
buffer = buffer + (bytes_transferred - accumulated_size);
// Pass the buffer to the engine, and update the bytes transferred to
// reflect the total number of bytes consumed so far.
bytes_transferred += buffer.size();
buffer = eng.put_input(buffer);
bytes_transferred -= buffer.size();
break;
}
}
}
stream_base::handshake_type type_;
ConstBufferSequence buffers_;
std::size_t total_buffer_size_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_BUFFERED_HANDSHAKE_OP_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/detail/write_op.hpp | //
// ssl/detail/write_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_WRITE_OP_HPP
#define ASIO_SSL_DETAIL_WRITE_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
template <typename ConstBufferSequence>
class write_op
{
public:
static constexpr const char* tracking_name()
{
return "ssl::stream<>::async_write_some";
}
write_op(const ConstBufferSequence& buffers)
: buffers_(buffers)
{
}
engine::want operator()(engine& eng,
asio::error_code& ec,
std::size_t& bytes_transferred) const
{
unsigned char storage[
asio::detail::buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence>::linearisation_storage_size];
asio::const_buffer buffer =
asio::detail::buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence>::linearise(buffers_, asio::buffer(storage));
return eng.write(buffer, ec, bytes_transferred);
}
template <typename Handler>
void call_handler(Handler& handler,
const asio::error_code& ec,
const std::size_t& bytes_transferred) const
{
static_cast<Handler&&>(handler)(ec, bytes_transferred);
}
private:
ConstBufferSequence buffers_;
};
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_WRITE_OP_HPP
|
0 | repos/asio/asio/include/asio/ssl/detail | repos/asio/asio/include/asio/ssl/detail/impl/engine.ipp | //
// ssl/detail/impl/engine.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_IMPL_ENGINE_IPP
#define ASIO_SSL_DETAIL_IMPL_ENGINE_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/ssl/detail/engine.hpp"
#include "asio/ssl/error.hpp"
#include "asio/ssl/verify_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
engine::engine(SSL_CTX* context)
: ssl_(::SSL_new(context))
{
if (!ssl_)
{
asio::error_code ec(
static_cast<int>(::ERR_get_error()),
asio::error::get_ssl_category());
asio::detail::throw_error(ec, "engine");
}
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
accept_mutex().init();
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
::SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE);
::SSL_set_mode(ssl_, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
#if defined(SSL_MODE_RELEASE_BUFFERS)
::SSL_set_mode(ssl_, SSL_MODE_RELEASE_BUFFERS);
#endif // defined(SSL_MODE_RELEASE_BUFFERS)
::BIO* int_bio = 0;
::BIO_new_bio_pair(&int_bio, 0, &ext_bio_, 0);
::SSL_set_bio(ssl_, int_bio, int_bio);
}
engine::engine(SSL* ssl_impl)
: ssl_(ssl_impl)
{
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
accept_mutex().init();
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
::SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE);
::SSL_set_mode(ssl_, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
#if defined(SSL_MODE_RELEASE_BUFFERS)
::SSL_set_mode(ssl_, SSL_MODE_RELEASE_BUFFERS);
#endif // defined(SSL_MODE_RELEASE_BUFFERS)
::BIO* int_bio = 0;
::BIO_new_bio_pair(&int_bio, 0, &ext_bio_, 0);
::SSL_set_bio(ssl_, int_bio, int_bio);
}
engine::engine(engine&& other) noexcept
: ssl_(other.ssl_),
ext_bio_(other.ext_bio_)
{
other.ssl_ = 0;
other.ext_bio_ = 0;
}
engine::~engine()
{
if (ssl_ && SSL_get_app_data(ssl_))
{
delete static_cast<verify_callback_base*>(SSL_get_app_data(ssl_));
SSL_set_app_data(ssl_, 0);
}
if (ext_bio_)
::BIO_free(ext_bio_);
if (ssl_)
::SSL_free(ssl_);
}
engine& engine::operator=(engine&& other) noexcept
{
if (this != &other)
{
ssl_ = other.ssl_;
ext_bio_ = other.ext_bio_;
other.ssl_ = 0;
other.ext_bio_ = 0;
}
return *this;
}
SSL* engine::native_handle()
{
return ssl_;
}
asio::error_code engine::set_verify_mode(
verify_mode v, asio::error_code& ec)
{
::SSL_set_verify(ssl_, v, ::SSL_get_verify_callback(ssl_));
ec = asio::error_code();
return ec;
}
asio::error_code engine::set_verify_depth(
int depth, asio::error_code& ec)
{
::SSL_set_verify_depth(ssl_, depth);
ec = asio::error_code();
return ec;
}
asio::error_code engine::set_verify_callback(
verify_callback_base* callback, asio::error_code& ec)
{
if (SSL_get_app_data(ssl_))
delete static_cast<verify_callback_base*>(SSL_get_app_data(ssl_));
SSL_set_app_data(ssl_, callback);
::SSL_set_verify(ssl_, ::SSL_get_verify_mode(ssl_),
&engine::verify_callback_function);
ec = asio::error_code();
return ec;
}
int engine::verify_callback_function(int preverified, X509_STORE_CTX* ctx)
{
if (ctx)
{
if (SSL* ssl = static_cast<SSL*>(
::X509_STORE_CTX_get_ex_data(
ctx, ::SSL_get_ex_data_X509_STORE_CTX_idx())))
{
if (SSL_get_app_data(ssl))
{
verify_callback_base* callback =
static_cast<verify_callback_base*>(
SSL_get_app_data(ssl));
verify_context verify_ctx(ctx);
return callback->call(preverified != 0, verify_ctx) ? 1 : 0;
}
}
}
return 0;
}
engine::want engine::handshake(
stream_base::handshake_type type, asio::error_code& ec)
{
return perform((type == asio::ssl::stream_base::client)
? &engine::do_connect : &engine::do_accept, 0, 0, ec, 0);
}
engine::want engine::shutdown(asio::error_code& ec)
{
return perform(&engine::do_shutdown, 0, 0, ec, 0);
}
engine::want engine::write(const asio::const_buffer& data,
asio::error_code& ec, std::size_t& bytes_transferred)
{
if (data.size() == 0)
{
ec = asio::error_code();
return engine::want_nothing;
}
return perform(&engine::do_write,
const_cast<void*>(data.data()),
data.size(), ec, &bytes_transferred);
}
engine::want engine::read(const asio::mutable_buffer& data,
asio::error_code& ec, std::size_t& bytes_transferred)
{
if (data.size() == 0)
{
ec = asio::error_code();
return engine::want_nothing;
}
return perform(&engine::do_read, data.data(),
data.size(), ec, &bytes_transferred);
}
asio::mutable_buffer engine::get_output(
const asio::mutable_buffer& data)
{
int length = ::BIO_read(ext_bio_,
data.data(), static_cast<int>(data.size()));
return asio::buffer(data,
length > 0 ? static_cast<std::size_t>(length) : 0);
}
asio::const_buffer engine::put_input(
const asio::const_buffer& data)
{
int length = ::BIO_write(ext_bio_,
data.data(), static_cast<int>(data.size()));
return asio::buffer(data +
(length > 0 ? static_cast<std::size_t>(length) : 0));
}
const asio::error_code& engine::map_error_code(
asio::error_code& ec) const
{
// We only want to map the error::eof code.
if (ec != asio::error::eof)
return ec;
// If there's data yet to be read, it's an error.
if (BIO_wpending(ext_bio_))
{
ec = asio::ssl::error::stream_truncated;
return ec;
}
// SSL v2 doesn't provide a protocol-level shutdown, so an eof on the
// underlying transport is passed through.
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
if (SSL_version(ssl_) == SSL2_VERSION)
return ec;
#endif // (OPENSSL_VERSION_NUMBER < 0x10100000L)
// Otherwise, the peer should have negotiated a proper shutdown.
if ((::SSL_get_shutdown(ssl_) & SSL_RECEIVED_SHUTDOWN) == 0)
{
ec = asio::ssl::error::stream_truncated;
}
return ec;
}
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
asio::detail::static_mutex& engine::accept_mutex()
{
static asio::detail::static_mutex mutex = ASIO_STATIC_MUTEX_INIT;
return mutex;
}
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
engine::want engine::perform(int (engine::* op)(void*, std::size_t),
void* data, std::size_t length, asio::error_code& ec,
std::size_t* bytes_transferred)
{
std::size_t pending_output_before = ::BIO_ctrl_pending(ext_bio_);
::ERR_clear_error();
int result = (this->*op)(data, length);
int ssl_error = ::SSL_get_error(ssl_, result);
int sys_error = static_cast<int>(::ERR_get_error());
std::size_t pending_output_after = ::BIO_ctrl_pending(ext_bio_);
if (ssl_error == SSL_ERROR_SSL)
{
ec = asio::error_code(sys_error,
asio::error::get_ssl_category());
return pending_output_after > pending_output_before
? want_output : want_nothing;
}
if (ssl_error == SSL_ERROR_SYSCALL)
{
if (sys_error == 0)
{
ec = asio::ssl::error::unspecified_system_error;
}
else
{
ec = asio::error_code(sys_error,
asio::error::get_ssl_category());
}
return pending_output_after > pending_output_before
? want_output : want_nothing;
}
if (result > 0 && bytes_transferred)
*bytes_transferred = static_cast<std::size_t>(result);
if (ssl_error == SSL_ERROR_WANT_WRITE)
{
ec = asio::error_code();
return want_output_and_retry;
}
else if (pending_output_after > pending_output_before)
{
ec = asio::error_code();
return result > 0 ? want_output : want_output_and_retry;
}
else if (ssl_error == SSL_ERROR_WANT_READ)
{
ec = asio::error_code();
return want_input_and_retry;
}
else if (ssl_error == SSL_ERROR_ZERO_RETURN)
{
ec = asio::error::eof;
return want_nothing;
}
else if (ssl_error == SSL_ERROR_NONE)
{
ec = asio::error_code();
return want_nothing;
}
else
{
ec = asio::ssl::error::unexpected_result;
return want_nothing;
}
}
int engine::do_accept(void*, std::size_t)
{
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
asio::detail::static_mutex::scoped_lock lock(accept_mutex());
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
return ::SSL_accept(ssl_);
}
int engine::do_connect(void*, std::size_t)
{
return ::SSL_connect(ssl_);
}
int engine::do_shutdown(void*, std::size_t)
{
int result = ::SSL_shutdown(ssl_);
if (result == 0)
result = ::SSL_shutdown(ssl_);
return result;
}
int engine::do_read(void* data, std::size_t length)
{
return ::SSL_read(ssl_, data,
length < INT_MAX ? static_cast<int>(length) : INT_MAX);
}
int engine::do_write(void* data, std::size_t length)
{
return ::SSL_write(ssl_, data,
length < INT_MAX ? static_cast<int>(length) : INT_MAX);
}
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_IMPL_ENGINE_IPP
|
0 | repos/asio/asio/include/asio/ssl/detail | repos/asio/asio/include/asio/ssl/detail/impl/openssl_init.ipp | //
// ssl/detail/impl/openssl_init.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2005 Voipster / Indrek dot Juhani at voipster dot com
// Copyright (c) 2005-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_DETAIL_IMPL_OPENSSL_INIT_IPP
#define ASIO_SSL_DETAIL_IMPL_OPENSSL_INIT_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <vector>
#include "asio/detail/assert.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/tss_ptr.hpp"
#include "asio/ssl/detail/openssl_init.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
namespace detail {
class openssl_init_base::do_init
{
public:
do_init()
{
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
::SSL_library_init();
::SSL_load_error_strings();
::OpenSSL_add_all_algorithms();
mutexes_.resize(::CRYPTO_num_locks());
for (size_t i = 0; i < mutexes_.size(); ++i)
mutexes_[i].reset(new asio::detail::mutex);
::CRYPTO_set_locking_callback(&do_init::openssl_locking_func);
#endif // (OPENSSL_VERSION_NUMBER < 0x10100000L)
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
::CRYPTO_set_id_callback(&do_init::openssl_id_func);
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
null_compression_methods_ = sk_SSL_COMP_new_null();
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
}
~do_init()
{
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
sk_SSL_COMP_free(null_compression_methods_);
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
::CRYPTO_set_id_callback(0);
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
::CRYPTO_set_locking_callback(0);
::ERR_free_strings();
::EVP_cleanup();
::CRYPTO_cleanup_all_ex_data();
#endif // (OPENSSL_VERSION_NUMBER < 0x10100000L)
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
::ERR_remove_state(0);
#elif (OPENSSL_VERSION_NUMBER < 0x10100000L)
::ERR_remove_thread_state(NULL);
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
#if (OPENSSL_VERSION_NUMBER >= 0x10002000L) \
&& (OPENSSL_VERSION_NUMBER < 0x10100000L) \
&& !defined(SSL_OP_NO_COMPRESSION)
::SSL_COMP_free_compression_methods();
#endif // (OPENSSL_VERSION_NUMBER >= 0x10002000L)
// && (OPENSSL_VERSION_NUMBER < 0x10100000L)
// && !defined(SSL_OP_NO_COMPRESSION)
#if !defined(OPENSSL_IS_BORINGSSL) \
&& !defined(ASIO_USE_WOLFSSL) \
&& (OPENSSL_VERSION_NUMBER < 0x30000000L)
::CONF_modules_unload(1);
#endif // !defined(OPENSSL_IS_BORINGSSL)
// && !defined(ASIO_USE_WOLFSSL)
// && (OPENSSL_VERSION_NUMBER < 0x30000000L)
#if !defined(OPENSSL_NO_ENGINE) \
&& (OPENSSL_VERSION_NUMBER < 0x10100000L)
::ENGINE_cleanup();
#endif // !defined(OPENSSL_NO_ENGINE)
// && (OPENSSL_VERSION_NUMBER < 0x10100000L)
}
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
STACK_OF(SSL_COMP)* get_null_compression_methods() const
{
return null_compression_methods_;
}
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
private:
#if (OPENSSL_VERSION_NUMBER < 0x10000000L)
static unsigned long openssl_id_func()
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
return ::GetCurrentThreadId();
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
void* id = &errno;
ASIO_ASSERT(sizeof(unsigned long) >= sizeof(void*));
return reinterpret_cast<unsigned long>(id);
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
#endif // (OPENSSL_VERSION_NUMBER < 0x10000000L)
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
static void openssl_locking_func(int mode, int n,
const char* /*file*/, int /*line*/)
{
if (mode & CRYPTO_LOCK)
instance()->mutexes_[n]->lock();
else
instance()->mutexes_[n]->unlock();
}
// Mutexes to be used in locking callbacks.
std::vector<asio::detail::shared_ptr<
asio::detail::mutex>> mutexes_;
#endif // (OPENSSL_VERSION_NUMBER < 0x10100000L)
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
STACK_OF(SSL_COMP)* null_compression_methods_;
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
};
asio::detail::shared_ptr<openssl_init_base::do_init>
openssl_init_base::instance()
{
static asio::detail::shared_ptr<do_init> init(new do_init);
return init;
}
#if !defined(SSL_OP_NO_COMPRESSION) \
&& (OPENSSL_VERSION_NUMBER >= 0x00908000L)
STACK_OF(SSL_COMP)* openssl_init_base::get_null_compression_methods()
{
return instance()->get_null_compression_methods();
}
#endif // !defined(SSL_OP_NO_COMPRESSION)
// && (OPENSSL_VERSION_NUMBER >= 0x00908000L)
} // namespace detail
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_DETAIL_IMPL_OPENSSL_INIT_IPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/rfc2818_verification.ipp | //
// ssl/impl/rfc2818_verification.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP
#define ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_DEPRECATED)
#include <cctype>
#include <cstring>
#include "asio/ip/address.hpp"
#include "asio/ssl/rfc2818_verification.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
bool rfc2818_verification::operator()(
bool preverified, verify_context& ctx) const
{
using namespace std; // For memcmp.
// Don't bother looking at certificates that have failed pre-verification.
if (!preverified)
return false;
// We're only interested in checking the certificate at the end of the chain.
int depth = X509_STORE_CTX_get_error_depth(ctx.native_handle());
if (depth > 0)
return true;
// Try converting the host name to an address. If it is an address then we
// need to look for an IP address in the certificate rather than a host name.
asio::error_code ec;
ip::address address = ip::make_address(host_, ec);
bool is_address = !ec;
X509* cert = X509_STORE_CTX_get_current_cert(ctx.native_handle());
// Go through the alternate names in the certificate looking for matching DNS
// or IP address entries.
GENERAL_NAMES* gens = static_cast<GENERAL_NAMES*>(
X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0));
for (int i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
{
GENERAL_NAME* gen = sk_GENERAL_NAME_value(gens, i);
if (gen->type == GEN_DNS && !is_address)
{
ASN1_IA5STRING* domain = gen->d.dNSName;
if (domain->type == V_ASN1_IA5STRING && domain->data && domain->length)
{
const char* pattern = reinterpret_cast<const char*>(domain->data);
std::size_t pattern_length = domain->length;
if (match_pattern(pattern, pattern_length, host_.c_str()))
{
GENERAL_NAMES_free(gens);
return true;
}
}
}
else if (gen->type == GEN_IPADD && is_address)
{
ASN1_OCTET_STRING* ip_address = gen->d.iPAddress;
if (ip_address->type == V_ASN1_OCTET_STRING && ip_address->data)
{
if (address.is_v4() && ip_address->length == 4)
{
ip::address_v4::bytes_type bytes = address.to_v4().to_bytes();
if (memcmp(bytes.data(), ip_address->data, 4) == 0)
{
GENERAL_NAMES_free(gens);
return true;
}
}
else if (address.is_v6() && ip_address->length == 16)
{
ip::address_v6::bytes_type bytes = address.to_v6().to_bytes();
if (memcmp(bytes.data(), ip_address->data, 16) == 0)
{
GENERAL_NAMES_free(gens);
return true;
}
}
}
}
}
GENERAL_NAMES_free(gens);
// No match in the alternate names, so try the common names. We should only
// use the "most specific" common name, which is the last one in the list.
X509_NAME* name = X509_get_subject_name(cert);
int i = -1;
ASN1_STRING* common_name = 0;
while ((i = X509_NAME_get_index_by_NID(name, NID_commonName, i)) >= 0)
{
X509_NAME_ENTRY* name_entry = X509_NAME_get_entry(name, i);
common_name = X509_NAME_ENTRY_get_data(name_entry);
}
if (common_name && common_name->data && common_name->length)
{
const char* pattern = reinterpret_cast<const char*>(common_name->data);
std::size_t pattern_length = common_name->length;
if (match_pattern(pattern, pattern_length, host_.c_str()))
return true;
}
return false;
}
bool rfc2818_verification::match_pattern(const char* pattern,
std::size_t pattern_length, const char* host)
{
using namespace std; // For tolower.
const char* p = pattern;
const char* p_end = p + pattern_length;
const char* h = host;
while (p != p_end && *h)
{
if (*p == '*')
{
++p;
while (*h && *h != '.')
if (match_pattern(p, p_end - p, h++))
return true;
}
else if (tolower(*p) == tolower(*h))
{
++p;
++h;
}
else
{
return false;
}
}
return p == p_end && !*h;
}
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_NO_DEPRECATED)
#endif // ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/src.hpp | //
// impl/ssl/src.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_SRC_HPP
#define ASIO_SSL_IMPL_SRC_HPP
#define ASIO_SOURCE
#include "asio/detail/config.hpp"
#if defined(ASIO_HEADER_ONLY)
# error Do not compile Asio library source with ASIO_HEADER_ONLY defined
#endif
#include "asio/ssl/impl/context.ipp"
#include "asio/ssl/impl/error.ipp"
#include "asio/ssl/detail/impl/engine.ipp"
#include "asio/ssl/detail/impl/openssl_init.ipp"
#include "asio/ssl/impl/host_name_verification.ipp"
#include "asio/ssl/impl/rfc2818_verification.ipp"
#endif // ASIO_SSL_IMPL_SRC_HPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/error.ipp | //
// ssl/impl/error.ipp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_ERROR_IPP
#define ASIO_SSL_IMPL_ERROR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/ssl/error.hpp"
#include "asio/ssl/detail/openssl_init.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace error {
namespace detail {
class ssl_category : public asio::error_category
{
public:
const char* name() const noexcept
{
return "asio.ssl";
}
std::string message(int value) const
{
const char* reason = ::ERR_reason_error_string(value);
if (reason)
{
const char* lib = ::ERR_lib_error_string(value);
#if (OPENSSL_VERSION_NUMBER < 0x30000000L)
const char* func = ::ERR_func_error_string(value);
#else // (OPENSSL_VERSION_NUMBER < 0x30000000L)
const char* func = 0;
#endif // (OPENSSL_VERSION_NUMBER < 0x30000000L)
std::string result(reason);
if (lib || func)
{
result += " (";
if (lib)
result += lib;
if (lib && func)
result += ", ";
if (func)
result += func;
result += ")";
}
return result;
}
return "asio.ssl error";
}
};
} // namespace detail
const asio::error_category& get_ssl_category()
{
static detail::ssl_category instance;
return instance;
}
} // namespace error
namespace ssl {
namespace error {
#if (OPENSSL_VERSION_NUMBER < 0x10100000L) && !defined(OPENSSL_IS_BORINGSSL)
const asio::error_category& get_stream_category()
{
return asio::error::get_ssl_category();
}
#else
namespace detail {
class stream_category : public asio::error_category
{
public:
const char* name() const noexcept
{
return "asio.ssl.stream";
}
std::string message(int value) const
{
switch (value)
{
case stream_truncated: return "stream truncated";
case unspecified_system_error: return "unspecified system error";
case unexpected_result: return "unexpected result";
default: return "asio.ssl.stream error";
}
}
};
} // namespace detail
const asio::error_category& get_stream_category()
{
static detail::stream_category instance;
return instance;
}
#endif
} // namespace error
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_IMPL_ERROR_IPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/context.ipp | //
// ssl/impl/context.ipp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2005 Voipster / Indrek dot Juhani at voipster dot com
// Copyright (c) 2005-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_CONTEXT_IPP
#define ASIO_SSL_IMPL_CONTEXT_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstring>
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/ssl/context.hpp"
#include "asio/ssl/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
struct context::bio_cleanup
{
BIO* p;
~bio_cleanup() { if (p) ::BIO_free(p); }
};
struct context::x509_cleanup
{
X509* p;
~x509_cleanup() { if (p) ::X509_free(p); }
};
struct context::evp_pkey_cleanup
{
EVP_PKEY* p;
~evp_pkey_cleanup() { if (p) ::EVP_PKEY_free(p); }
};
#if (OPENSSL_VERSION_NUMBER < 0x30000000L)
struct context::rsa_cleanup
{
RSA* p;
~rsa_cleanup() { if (p) ::RSA_free(p); }
};
struct context::dh_cleanup
{
DH* p;
~dh_cleanup() { if (p) ::DH_free(p); }
};
#endif // (OPENSSL_VERSION_NUMBER < 0x30000000L)
context::context(context::method m)
: handle_(0)
{
::ERR_clear_error();
switch (m)
{
// SSL v2.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) || defined(OPENSSL_NO_SSL2)
case context::sslv2:
case context::sslv2_client:
case context::sslv2_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L) || defined(OPENSSL_NO_SSL2)
case context::sslv2:
handle_ = ::SSL_CTX_new(::SSLv2_method());
break;
case context::sslv2_client:
handle_ = ::SSL_CTX_new(::SSLv2_client_method());
break;
case context::sslv2_server:
handle_ = ::SSL_CTX_new(::SSLv2_server_method());
break;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L) || defined(OPENSSL_NO_SSL2)
// SSL v3.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined(LIBRESSL_VERSION_NUMBER)
case context::sslv3:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, SSL3_VERSION);
SSL_CTX_set_max_proto_version(handle_, SSL3_VERSION);
}
break;
case context::sslv3_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, SSL3_VERSION);
SSL_CTX_set_max_proto_version(handle_, SSL3_VERSION);
}
break;
case context::sslv3_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, SSL3_VERSION);
SSL_CTX_set_max_proto_version(handle_, SSL3_VERSION);
}
break;
#elif defined(OPENSSL_NO_SSL3)
case context::sslv3:
case context::sslv3_client:
case context::sslv3_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#else // defined(OPENSSL_NO_SSL3)
case context::sslv3:
handle_ = ::SSL_CTX_new(::SSLv3_method());
break;
case context::sslv3_client:
handle_ = ::SSL_CTX_new(::SSLv3_client_method());
break;
case context::sslv3_server:
handle_ = ::SSL_CTX_new(::SSLv3_server_method());
break;
#endif // defined(OPENSSL_NO_SSL3)
// TLS v1.0.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined(LIBRESSL_VERSION_NUMBER)
case context::tlsv1:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_VERSION);
}
break;
case context::tlsv1_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_VERSION);
}
break;
case context::tlsv1_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_VERSION);
}
break;
#elif defined(SSL_TXT_TLSV1)
case context::tlsv1:
handle_ = ::SSL_CTX_new(::TLSv1_method());
break;
case context::tlsv1_client:
handle_ = ::SSL_CTX_new(::TLSv1_client_method());
break;
case context::tlsv1_server:
handle_ = ::SSL_CTX_new(::TLSv1_server_method());
break;
#else // defined(SSL_TXT_TLSV1)
case context::tlsv1:
case context::tlsv1_client:
case context::tlsv1_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#endif // defined(SSL_TXT_TLSV1)
// TLS v1.1.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined(LIBRESSL_VERSION_NUMBER)
case context::tlsv11:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_1_VERSION);
}
break;
case context::tlsv11_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_1_VERSION);
}
break;
case context::tlsv11_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_1_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_1_VERSION);
}
break;
#elif defined(SSL_TXT_TLSV1_1)
case context::tlsv11:
handle_ = ::SSL_CTX_new(::TLSv1_1_method());
break;
case context::tlsv11_client:
handle_ = ::SSL_CTX_new(::TLSv1_1_client_method());
break;
case context::tlsv11_server:
handle_ = ::SSL_CTX_new(::TLSv1_1_server_method());
break;
#else // defined(SSL_TXT_TLSV1_1)
case context::tlsv11:
case context::tlsv11_client:
case context::tlsv11_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#endif // defined(SSL_TXT_TLSV1_1)
// TLS v1.2.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined(LIBRESSL_VERSION_NUMBER)
case context::tlsv12:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_2_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_2_VERSION);
}
break;
case context::tlsv12_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_2_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_2_VERSION);
}
break;
case context::tlsv12_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_2_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_2_VERSION);
}
break;
#elif defined(SSL_TXT_TLSV1_2)
case context::tlsv12:
handle_ = ::SSL_CTX_new(::TLSv1_2_method());
break;
case context::tlsv12_client:
handle_ = ::SSL_CTX_new(::TLSv1_2_client_method());
break;
case context::tlsv12_server:
handle_ = ::SSL_CTX_new(::TLSv1_2_server_method());
break;
#else // defined(SSL_TXT_TLSV1_2)
case context::tlsv12:
case context::tlsv12_client:
case context::tlsv12_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#endif // defined(SSL_TXT_TLSV1_2)
// TLS v1.3.
#if ((OPENSSL_VERSION_NUMBER >= 0x10101000L) \
&& !defined(LIBRESSL_VERSION_NUMBER)) \
|| defined(ASIO_USE_WOLFSSL)
case context::tlsv13:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_3_VERSION);
}
break;
case context::tlsv13_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_3_VERSION);
}
break;
case context::tlsv13_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
{
SSL_CTX_set_min_proto_version(handle_, TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(handle_, TLS1_3_VERSION);
}
break;
#else // ((OPENSSL_VERSION_NUMBER >= 0x10101000L)
// && !defined(LIBRESSL_VERSION_NUMBER))
// || defined(ASIO_USE_WOLFSSL)
case context::tlsv13:
case context::tlsv13_client:
case context::tlsv13_server:
asio::detail::throw_error(
asio::error::invalid_argument, "context");
break;
#endif // ((OPENSSL_VERSION_NUMBER >= 0x10101000L)
// && !defined(LIBRESSL_VERSION_NUMBER))
// || defined(ASIO_USE_WOLFSSL)
// Any supported SSL/TLS version.
case context::sslv23:
handle_ = ::SSL_CTX_new(::SSLv23_method());
break;
case context::sslv23_client:
handle_ = ::SSL_CTX_new(::SSLv23_client_method());
break;
case context::sslv23_server:
handle_ = ::SSL_CTX_new(::SSLv23_server_method());
break;
// Any supported TLS version.
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined(LIBRESSL_VERSION_NUMBER)
case context::tls:
handle_ = ::SSL_CTX_new(::TLS_method());
if (handle_)
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
break;
case context::tls_client:
handle_ = ::SSL_CTX_new(::TLS_client_method());
if (handle_)
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
break;
case context::tls_server:
handle_ = ::SSL_CTX_new(::TLS_server_method());
if (handle_)
SSL_CTX_set_min_proto_version(handle_, TLS1_VERSION);
break;
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
case context::tls:
handle_ = ::SSL_CTX_new(::SSLv23_method());
if (handle_)
SSL_CTX_set_options(handle_, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3);
break;
case context::tls_client:
handle_ = ::SSL_CTX_new(::SSLv23_client_method());
if (handle_)
SSL_CTX_set_options(handle_, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3);
break;
case context::tls_server:
handle_ = ::SSL_CTX_new(::SSLv23_server_method());
if (handle_)
SSL_CTX_set_options(handle_, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3);
break;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
default:
handle_ = ::SSL_CTX_new(0);
break;
}
if (handle_ == 0)
{
asio::error_code ec = translate_error(::ERR_get_error());
asio::detail::throw_error(ec, "context");
}
set_options(no_compression);
}
context::context(context::native_handle_type native_handle)
: handle_(native_handle)
{
if (!handle_)
{
asio::detail::throw_error(
asio::error::invalid_argument, "context");
}
}
context::context(context&& other)
{
handle_ = other.handle_;
other.handle_ = 0;
}
context& context::operator=(context&& other)
{
context tmp(static_cast<context&&>(*this));
handle_ = other.handle_;
other.handle_ = 0;
return *this;
}
context::~context()
{
if (handle_)
{
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
void* cb_userdata = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
void* cb_userdata = handle_->default_passwd_callback_userdata;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
if (cb_userdata)
{
detail::password_callback_base* callback =
static_cast<detail::password_callback_base*>(
cb_userdata);
delete callback;
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
::SSL_CTX_set_default_passwd_cb_userdata(handle_, 0);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
handle_->default_passwd_callback_userdata = 0;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
}
if (SSL_CTX_get_app_data(handle_))
{
detail::verify_callback_base* callback =
static_cast<detail::verify_callback_base*>(
SSL_CTX_get_app_data(handle_));
delete callback;
SSL_CTX_set_app_data(handle_, 0);
}
::SSL_CTX_free(handle_);
}
}
context::native_handle_type context::native_handle()
{
return handle_;
}
void context::clear_options(context::options o)
{
asio::error_code ec;
clear_options(o, ec);
asio::detail::throw_error(ec, "clear_options");
}
ASIO_SYNC_OP_VOID context::clear_options(
context::options o, asio::error_code& ec)
{
#if (OPENSSL_VERSION_NUMBER >= 0x009080DFL) \
&& (OPENSSL_VERSION_NUMBER != 0x00909000L)
# if !defined(SSL_OP_NO_COMPRESSION)
if ((o & context::no_compression) != 0)
{
# if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
handle_->comp_methods = SSL_COMP_get_compression_methods();
# endif // (OPENSSL_VERSION_NUMBER >= 0x00908000L)
o ^= context::no_compression;
}
# endif // !defined(SSL_OP_NO_COMPRESSION)
::SSL_CTX_clear_options(handle_, o);
ec = asio::error_code();
#else // (OPENSSL_VERSION_NUMBER >= 0x009080DFL)
// && (OPENSSL_VERSION_NUMBER != 0x00909000L)
(void)o;
ec = asio::error::operation_not_supported;
#endif // (OPENSSL_VERSION_NUMBER >= 0x009080DFL)
// && (OPENSSL_VERSION_NUMBER != 0x00909000L)
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::set_options(context::options o)
{
asio::error_code ec;
set_options(o, ec);
asio::detail::throw_error(ec, "set_options");
}
ASIO_SYNC_OP_VOID context::set_options(
context::options o, asio::error_code& ec)
{
#if !defined(SSL_OP_NO_COMPRESSION)
if ((o & context::no_compression) != 0)
{
#if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
handle_->comp_methods =
asio::ssl::detail::openssl_init<>::get_null_compression_methods();
#endif // (OPENSSL_VERSION_NUMBER >= 0x00908000L)
o ^= context::no_compression;
}
#endif // !defined(SSL_OP_NO_COMPRESSION)
::SSL_CTX_set_options(handle_, o);
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::set_verify_mode(verify_mode v)
{
asio::error_code ec;
set_verify_mode(v, ec);
asio::detail::throw_error(ec, "set_verify_mode");
}
ASIO_SYNC_OP_VOID context::set_verify_mode(
verify_mode v, asio::error_code& ec)
{
::SSL_CTX_set_verify(handle_, v, ::SSL_CTX_get_verify_callback(handle_));
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::set_verify_depth(int depth)
{
asio::error_code ec;
set_verify_depth(depth, ec);
asio::detail::throw_error(ec, "set_verify_depth");
}
ASIO_SYNC_OP_VOID context::set_verify_depth(
int depth, asio::error_code& ec)
{
::SSL_CTX_set_verify_depth(handle_, depth);
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::load_verify_file(const std::string& filename)
{
asio::error_code ec;
load_verify_file(filename, ec);
asio::detail::throw_error(ec, "load_verify_file");
}
ASIO_SYNC_OP_VOID context::load_verify_file(
const std::string& filename, asio::error_code& ec)
{
::ERR_clear_error();
if (::SSL_CTX_load_verify_locations(handle_, filename.c_str(), 0) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::add_certificate_authority(const const_buffer& ca)
{
asio::error_code ec;
add_certificate_authority(ca, ec);
asio::detail::throw_error(ec, "add_certificate_authority");
}
ASIO_SYNC_OP_VOID context::add_certificate_authority(
const const_buffer& ca, asio::error_code& ec)
{
::ERR_clear_error();
bio_cleanup bio = { make_buffer_bio(ca) };
if (bio.p)
{
if (X509_STORE* store = ::SSL_CTX_get_cert_store(handle_))
{
for (bool added = false;; added = true)
{
x509_cleanup cert = { ::PEM_read_bio_X509(bio.p, 0, 0, 0) };
if (!cert.p)
{
unsigned long err = ::ERR_get_error();
if (added && ERR_GET_LIB(err) == ERR_LIB_PEM
&& ERR_GET_REASON(err) == PEM_R_NO_START_LINE)
break;
ec = translate_error(err);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
if (::X509_STORE_add_cert(store, cert.p) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
}
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::set_default_verify_paths()
{
asio::error_code ec;
set_default_verify_paths(ec);
asio::detail::throw_error(ec, "set_default_verify_paths");
}
ASIO_SYNC_OP_VOID context::set_default_verify_paths(
asio::error_code& ec)
{
::ERR_clear_error();
if (::SSL_CTX_set_default_verify_paths(handle_) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::add_verify_path(const std::string& path)
{
asio::error_code ec;
add_verify_path(path, ec);
asio::detail::throw_error(ec, "add_verify_path");
}
ASIO_SYNC_OP_VOID context::add_verify_path(
const std::string& path, asio::error_code& ec)
{
::ERR_clear_error();
if (::SSL_CTX_load_verify_locations(handle_, 0, path.c_str()) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_certificate(
const const_buffer& certificate, file_format format)
{
asio::error_code ec;
use_certificate(certificate, format, ec);
asio::detail::throw_error(ec, "use_certificate");
}
ASIO_SYNC_OP_VOID context::use_certificate(
const const_buffer& certificate, file_format format,
asio::error_code& ec)
{
::ERR_clear_error();
if (format == context_base::asn1)
{
if (::SSL_CTX_use_certificate_ASN1(handle_,
static_cast<int>(certificate.size()),
static_cast<const unsigned char*>(certificate.data())) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
else if (format == context_base::pem)
{
bio_cleanup bio = { make_buffer_bio(certificate) };
if (bio.p)
{
x509_cleanup cert = { ::PEM_read_bio_X509(bio.p, 0, 0, 0) };
if (cert.p)
{
if (::SSL_CTX_use_certificate(handle_, cert.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
}
}
else
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_certificate_file(
const std::string& filename, file_format format)
{
asio::error_code ec;
use_certificate_file(filename, format, ec);
asio::detail::throw_error(ec, "use_certificate_file");
}
ASIO_SYNC_OP_VOID context::use_certificate_file(
const std::string& filename, file_format format,
asio::error_code& ec)
{
int file_type;
switch (format)
{
case context_base::asn1:
file_type = SSL_FILETYPE_ASN1;
break;
case context_base::pem:
file_type = SSL_FILETYPE_PEM;
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
::ERR_clear_error();
if (::SSL_CTX_use_certificate_file(handle_, filename.c_str(), file_type) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_certificate_chain(const const_buffer& chain)
{
asio::error_code ec;
use_certificate_chain(chain, ec);
asio::detail::throw_error(ec, "use_certificate_chain");
}
ASIO_SYNC_OP_VOID context::use_certificate_chain(
const const_buffer& chain, asio::error_code& ec)
{
::ERR_clear_error();
bio_cleanup bio = { make_buffer_bio(chain) };
if (bio.p)
{
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
pem_password_cb* callback = ::SSL_CTX_get_default_passwd_cb(handle_);
void* cb_userdata = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
pem_password_cb* callback = handle_->default_passwd_callback;
void* cb_userdata = handle_->default_passwd_callback_userdata;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
x509_cleanup cert = {
::PEM_read_bio_X509_AUX(bio.p, 0,
callback,
cb_userdata) };
if (!cert.p)
{
ec = translate_error(ERR_R_PEM_LIB);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
int result = ::SSL_CTX_use_certificate(handle_, cert.p);
if (result == 0 || ::ERR_peek_error() != 0)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
#if ((OPENSSL_VERSION_NUMBER >= 0x10002000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2090100fL)) \
|| defined(ASIO_USE_WOLFSSL)
::SSL_CTX_clear_chain_certs(handle_);
#else
if (handle_->extra_certs)
{
::sk_X509_pop_free(handle_->extra_certs, X509_free);
handle_->extra_certs = 0;
}
#endif // (OPENSSL_VERSION_NUMBER >= 0x10002000L)
while (X509* cacert = ::PEM_read_bio_X509(bio.p, 0,
callback,
cb_userdata))
{
if (!::SSL_CTX_add_extra_chain_cert(handle_, cacert))
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
result = ::ERR_peek_last_error();
if ((ERR_GET_LIB(result) == ERR_LIB_PEM)
&& (ERR_GET_REASON(result) == PEM_R_NO_START_LINE))
{
::ERR_clear_error();
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_certificate_chain_file(const std::string& filename)
{
asio::error_code ec;
use_certificate_chain_file(filename, ec);
asio::detail::throw_error(ec, "use_certificate_chain_file");
}
ASIO_SYNC_OP_VOID context::use_certificate_chain_file(
const std::string& filename, asio::error_code& ec)
{
::ERR_clear_error();
if (::SSL_CTX_use_certificate_chain_file(handle_, filename.c_str()) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_private_key(
const const_buffer& private_key, context::file_format format)
{
asio::error_code ec;
use_private_key(private_key, format, ec);
asio::detail::throw_error(ec, "use_private_key");
}
ASIO_SYNC_OP_VOID context::use_private_key(
const const_buffer& private_key, context::file_format format,
asio::error_code& ec)
{
::ERR_clear_error();
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
pem_password_cb* callback = ::SSL_CTX_get_default_passwd_cb(handle_);
void* cb_userdata = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
pem_password_cb* callback = handle_->default_passwd_callback;
void* cb_userdata = handle_->default_passwd_callback_userdata;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
bio_cleanup bio = { make_buffer_bio(private_key) };
if (bio.p)
{
evp_pkey_cleanup evp_private_key = { 0 };
switch (format)
{
case context_base::asn1:
evp_private_key.p = ::d2i_PrivateKey_bio(bio.p, 0);
break;
case context_base::pem:
evp_private_key.p = ::PEM_read_bio_PrivateKey(
bio.p, 0, callback,
cb_userdata);
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
if (evp_private_key.p)
{
if (::SSL_CTX_use_PrivateKey(handle_, evp_private_key.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_private_key_file(
const std::string& filename, context::file_format format)
{
asio::error_code ec;
use_private_key_file(filename, format, ec);
asio::detail::throw_error(ec, "use_private_key_file");
}
void context::use_rsa_private_key(
const const_buffer& private_key, context::file_format format)
{
asio::error_code ec;
use_rsa_private_key(private_key, format, ec);
asio::detail::throw_error(ec, "use_rsa_private_key");
}
ASIO_SYNC_OP_VOID context::use_rsa_private_key(
const const_buffer& private_key, context::file_format format,
asio::error_code& ec)
{
::ERR_clear_error();
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
pem_password_cb* callback = ::SSL_CTX_get_default_passwd_cb(handle_);
void* cb_userdata = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
pem_password_cb* callback = handle_->default_passwd_callback;
void* cb_userdata = handle_->default_passwd_callback_userdata;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
bio_cleanup bio = { make_buffer_bio(private_key) };
if (bio.p)
{
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
evp_pkey_cleanup evp_private_key = { 0 };
switch (format)
{
case context_base::asn1:
evp_private_key.p = ::d2i_PrivateKey_bio(bio.p, 0);
break;
case context_base::pem:
evp_private_key.p = ::PEM_read_bio_PrivateKey(
bio.p, 0, callback,
cb_userdata);
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
if (evp_private_key.p)
{
if (::EVP_PKEY_is_a(evp_private_key.p, "RSA") == 0)
{
ec = translate_error(
ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_AN_RSA_KEY));
ASIO_SYNC_OP_VOID_RETURN(ec);
}
if (::SSL_CTX_use_PrivateKey(handle_, evp_private_key.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
#else // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
rsa_cleanup rsa_private_key = { 0 };
switch (format)
{
case context_base::asn1:
rsa_private_key.p = ::d2i_RSAPrivateKey_bio(bio.p, 0);
break;
case context_base::pem:
rsa_private_key.p = ::PEM_read_bio_RSAPrivateKey(
bio.p, 0, callback,
cb_userdata);
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
if (rsa_private_key.p)
{
if (::SSL_CTX_use_RSAPrivateKey(handle_, rsa_private_key.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
#endif // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ASIO_SYNC_OP_VOID context::use_private_key_file(
const std::string& filename, context::file_format format,
asio::error_code& ec)
{
int file_type;
switch (format)
{
case context_base::asn1:
file_type = SSL_FILETYPE_ASN1;
break;
case context_base::pem:
file_type = SSL_FILETYPE_PEM;
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
::ERR_clear_error();
if (::SSL_CTX_use_PrivateKey_file(handle_, filename.c_str(), file_type) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_rsa_private_key_file(
const std::string& filename, context::file_format format)
{
asio::error_code ec;
use_rsa_private_key_file(filename, format, ec);
asio::detail::throw_error(ec, "use_rsa_private_key_file");
}
ASIO_SYNC_OP_VOID context::use_rsa_private_key_file(
const std::string& filename, context::file_format format,
asio::error_code& ec)
{
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
::ERR_clear_error();
pem_password_cb* callback = ::SSL_CTX_get_default_passwd_cb(handle_);
void* cb_userdata = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
bio_cleanup bio = { ::BIO_new_file(filename.c_str(), "r") };
if (bio.p)
{
evp_pkey_cleanup evp_private_key = { 0 };
switch (format)
{
case context_base::asn1:
evp_private_key.p = ::d2i_PrivateKey_bio(bio.p, 0);
break;
case context_base::pem:
evp_private_key.p = ::PEM_read_bio_PrivateKey(
bio.p, 0, callback,
cb_userdata);
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
if (evp_private_key.p)
{
if (::EVP_PKEY_is_a(evp_private_key.p, "RSA") == 0)
{
ec = translate_error(
ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_AN_RSA_KEY));
ASIO_SYNC_OP_VOID_RETURN(ec);
}
if (::SSL_CTX_use_PrivateKey(handle_, evp_private_key.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
#else // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
int file_type;
switch (format)
{
case context_base::asn1:
file_type = SSL_FILETYPE_ASN1;
break;
case context_base::pem:
file_type = SSL_FILETYPE_PEM;
break;
default:
{
ec = asio::error::invalid_argument;
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
::ERR_clear_error();
if (::SSL_CTX_use_RSAPrivateKey_file(
handle_, filename.c_str(), file_type) != 1)
{
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
#endif // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
}
void context::use_tmp_dh(const const_buffer& dh)
{
asio::error_code ec;
use_tmp_dh(dh, ec);
asio::detail::throw_error(ec, "use_tmp_dh");
}
ASIO_SYNC_OP_VOID context::use_tmp_dh(
const const_buffer& dh, asio::error_code& ec)
{
::ERR_clear_error();
bio_cleanup bio = { make_buffer_bio(dh) };
if (bio.p)
{
return do_use_tmp_dh(bio.p, ec);
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
void context::use_tmp_dh_file(const std::string& filename)
{
asio::error_code ec;
use_tmp_dh_file(filename, ec);
asio::detail::throw_error(ec, "use_tmp_dh_file");
}
ASIO_SYNC_OP_VOID context::use_tmp_dh_file(
const std::string& filename, asio::error_code& ec)
{
::ERR_clear_error();
bio_cleanup bio = { ::BIO_new_file(filename.c_str(), "r") };
if (bio.p)
{
return do_use_tmp_dh(bio.p, ec);
}
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ASIO_SYNC_OP_VOID context::do_use_tmp_dh(
BIO* bio, asio::error_code& ec)
{
::ERR_clear_error();
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
EVP_PKEY* p = ::PEM_read_bio_Parameters(bio, 0);
if (p)
{
if (::SSL_CTX_set0_tmp_dh_pkey(handle_, p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
else
::EVP_PKEY_free(p);
}
#else // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
dh_cleanup dh = { ::PEM_read_bio_DHparams(bio, 0, 0, 0) };
if (dh.p)
{
if (::SSL_CTX_set_tmp_dh(handle_, dh.p) == 1)
{
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
}
#endif // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
ec = translate_error(::ERR_get_error());
ASIO_SYNC_OP_VOID_RETURN(ec);
}
ASIO_SYNC_OP_VOID context::do_set_verify_callback(
detail::verify_callback_base* callback, asio::error_code& ec)
{
if (SSL_CTX_get_app_data(handle_))
{
delete static_cast<detail::verify_callback_base*>(
SSL_CTX_get_app_data(handle_));
}
SSL_CTX_set_app_data(handle_, callback);
::SSL_CTX_set_verify(handle_,
::SSL_CTX_get_verify_mode(handle_),
&context::verify_callback_function);
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
int context::verify_callback_function(int preverified, X509_STORE_CTX* ctx)
{
if (ctx)
{
if (SSL* ssl = static_cast<SSL*>(
::X509_STORE_CTX_get_ex_data(
ctx, ::SSL_get_ex_data_X509_STORE_CTX_idx())))
{
if (SSL_CTX* handle = ::SSL_get_SSL_CTX(ssl))
{
if (SSL_CTX_get_app_data(handle))
{
detail::verify_callback_base* callback =
static_cast<detail::verify_callback_base*>(
SSL_CTX_get_app_data(handle));
verify_context verify_ctx(ctx);
return callback->call(preverified != 0, verify_ctx) ? 1 : 0;
}
}
}
}
return 0;
}
ASIO_SYNC_OP_VOID context::do_set_password_callback(
detail::password_callback_base* callback, asio::error_code& ec)
{
#if ((OPENSSL_VERSION_NUMBER >= 0x10100000L) \
&& (!defined(LIBRESSL_VERSION_NUMBER) \
|| LIBRESSL_VERSION_NUMBER >= 0x2070000fL)) \
|| defined(ASIO_USE_WOLFSSL)
void* old_callback = ::SSL_CTX_get_default_passwd_cb_userdata(handle_);
::SSL_CTX_set_default_passwd_cb_userdata(handle_, callback);
#else // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
void* old_callback = handle_->default_passwd_callback_userdata;
handle_->default_passwd_callback_userdata = callback;
#endif // (OPENSSL_VERSION_NUMBER >= 0x10100000L)
if (old_callback)
delete static_cast<detail::password_callback_base*>(
old_callback);
SSL_CTX_set_default_passwd_cb(handle_, &context::password_callback_function);
ec = asio::error_code();
ASIO_SYNC_OP_VOID_RETURN(ec);
}
int context::password_callback_function(
char* buf, int size, int purpose, void* data)
{
using namespace std; // For strncat and strlen.
if (data)
{
detail::password_callback_base* callback =
static_cast<detail::password_callback_base*>(data);
std::string passwd = callback->call(static_cast<std::size_t>(size),
purpose ? context_base::for_writing : context_base::for_reading);
#if defined(ASIO_HAS_SECURE_RTL)
strcpy_s(buf, size, passwd.c_str());
#else // defined(ASIO_HAS_SECURE_RTL)
*buf = '\0';
if (size > 0)
strncat(buf, passwd.c_str(), size - 1);
#endif // defined(ASIO_HAS_SECURE_RTL)
return static_cast<int>(strlen(buf));
}
return 0;
}
BIO* context::make_buffer_bio(const const_buffer& b)
{
return ::BIO_new_mem_buf(
const_cast<void*>(b.data()),
static_cast<int>(b.size()));
}
asio::error_code context::translate_error(long error)
{
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
if (ERR_SYSTEM_ERROR(error))
{
return asio::error_code(
static_cast<int>(ERR_GET_REASON(error)),
asio::error::get_system_category());
}
#endif // (OPENSSL_VERSION_NUMBER >= 0x30000000L)
return asio::error_code(static_cast<int>(error),
asio::error::get_ssl_category());
}
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_IMPL_CONTEXT_IPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/host_name_verification.ipp | //
// ssl/impl/host_name_verification.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_HOST_NAME_VERIFICATION_IPP
#define ASIO_SSL_IMPL_HOST_NAME_VERIFICATION_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cctype>
#include <cstring>
#include "asio/ip/address.hpp"
#include "asio/ssl/host_name_verification.hpp"
#include "asio/ssl/detail/openssl_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
bool host_name_verification::operator()(
bool preverified, verify_context& ctx) const
{
using namespace std; // For memcmp.
// Don't bother looking at certificates that have failed pre-verification.
if (!preverified)
return false;
// We're only interested in checking the certificate at the end of the chain.
int depth = X509_STORE_CTX_get_error_depth(ctx.native_handle());
if (depth > 0)
return true;
// Try converting the host name to an address. If it is an address then we
// need to look for an IP address in the certificate rather than a host name.
asio::error_code ec;
ip::address address = ip::make_address(host_, ec);
const bool is_address = !ec;
(void)address;
X509* cert = X509_STORE_CTX_get_current_cert(ctx.native_handle());
if (is_address)
{
return X509_check_ip_asc(cert, host_.c_str(), 0) == 1;
}
else
{
char* peername = 0;
const int result = X509_check_host(cert,
host_.c_str(), host_.size(), 0, &peername);
OPENSSL_free(peername);
return result == 1;
}
}
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_IMPL_HOST_NAME_VERIFICATION_IPP
|
0 | repos/asio/asio/include/asio/ssl | repos/asio/asio/include/asio/ssl/impl/context.hpp | //
// ssl/impl/context.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2005 Voipster / Indrek dot Juhani at voipster dot com
// Copyright (c) 2005-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_SSL_IMPL_CONTEXT_HPP
#define ASIO_SSL_IMPL_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace ssl {
template <typename VerifyCallback>
void context::set_verify_callback(VerifyCallback callback)
{
asio::error_code ec;
this->set_verify_callback(callback, ec);
asio::detail::throw_error(ec, "set_verify_callback");
}
template <typename VerifyCallback>
ASIO_SYNC_OP_VOID context::set_verify_callback(
VerifyCallback callback, asio::error_code& ec)
{
do_set_verify_callback(
new detail::verify_callback<VerifyCallback>(callback), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
template <typename PasswordCallback>
void context::set_password_callback(PasswordCallback callback)
{
asio::error_code ec;
this->set_password_callback(callback, ec);
asio::detail::throw_error(ec, "set_password_callback");
}
template <typename PasswordCallback>
ASIO_SYNC_OP_VOID context::set_password_callback(
PasswordCallback callback, asio::error_code& ec)
{
do_set_password_callback(
new detail::password_callback<PasswordCallback>(callback), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
} // namespace ssl
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_SSL_IMPL_CONTEXT_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/posix/stream_descriptor.hpp | //
// posix/stream_descriptor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_POSIX_STREAM_DESCRIPTOR_HPP
#define ASIO_POSIX_STREAM_DESCRIPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/posix/basic_stream_descriptor.hpp"
namespace asio {
namespace posix {
/// Typedef for the typical usage of a stream-oriented descriptor.
typedef basic_stream_descriptor<> stream_descriptor;
} // namespace posix
} // namespace asio
#endif // defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_POSIX_STREAM_DESCRIPTOR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/posix/basic_stream_descriptor.hpp | //
// posix/basic_stream_descriptor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_POSIX_BASIC_STREAM_DESCRIPTOR_HPP
#define ASIO_POSIX_BASIC_STREAM_DESCRIPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/posix/basic_descriptor.hpp"
#if defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace posix {
/// Provides stream-oriented descriptor functionality.
/**
* The posix::basic_stream_descriptor class template provides asynchronous and
* blocking stream-oriented descriptor functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* Synchronous @c read_some and @c write_some operations are thread safe with
* respect to each other, if the underlying operating system calls are also
* thread safe. This means that it is permitted to perform concurrent calls to
* these synchronous operations on a single descriptor object. Other synchronous
* operations, such as @c close, are not thread safe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Executor = any_io_executor>
class basic_stream_descriptor
: public basic_descriptor<Executor>
{
private:
class initiate_async_write_some;
class initiate_async_read_some;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the descriptor type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The descriptor type when rebound to the specified executor.
typedef basic_stream_descriptor<Executor1> other;
};
/// The native representation of a descriptor.
typedef typename basic_descriptor<Executor>::native_handle_type
native_handle_type;
/// Construct a stream descriptor without opening it.
/**
* This constructor creates a stream descriptor without opening it. The
* descriptor needs to be opened and then connected or accepted before data
* can be sent or received on it.
*
* @param ex The I/O executor that the descriptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* descriptor.
*/
explicit basic_stream_descriptor(const executor_type& ex)
: basic_descriptor<Executor>(ex)
{
}
/// Construct a stream descriptor without opening it.
/**
* This constructor creates a stream descriptor without opening it. The
* descriptor needs to be opened and then connected or accepted before data
* can be sent or received on it.
*
* @param context An execution context which provides the I/O executor that
* the descriptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the descriptor.
*/
template <typename ExecutionContext>
explicit basic_stream_descriptor(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_descriptor<Executor>(context)
{
}
/// Construct a stream descriptor on an existing native descriptor.
/**
* This constructor creates a stream descriptor object to hold an existing
* native descriptor.
*
* @param ex The I/O executor that the descriptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* descriptor.
*
* @param native_descriptor The new underlying descriptor implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_stream_descriptor(const executor_type& ex,
const native_handle_type& native_descriptor)
: basic_descriptor<Executor>(ex, native_descriptor)
{
}
/// Construct a stream descriptor on an existing native descriptor.
/**
* This constructor creates a stream descriptor object to hold an existing
* native descriptor.
*
* @param context An execution context which provides the I/O executor that
* the descriptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the descriptor.
*
* @param native_descriptor The new underlying descriptor implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_stream_descriptor(ExecutionContext& context,
const native_handle_type& native_descriptor,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_descriptor<Executor>(context, native_descriptor)
{
}
/// Move-construct a stream descriptor from another.
/**
* This constructor moves a stream descriptor from one object to another.
*
* @param other The other stream descriptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_descriptor(const executor_type&)
* constructor.
*/
basic_stream_descriptor(basic_stream_descriptor&& other) noexcept
: basic_descriptor<Executor>(std::move(other))
{
}
/// Move-assign a stream descriptor from another.
/**
* This assignment operator moves a stream descriptor from one object to
* another.
*
* @param other The other stream descriptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_descriptor(const executor_type&)
* constructor.
*/
basic_stream_descriptor& operator=(basic_stream_descriptor&& other)
{
basic_descriptor<Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a basic_stream_descriptor from a descriptor of another
/// executor type.
/**
* This constructor moves a descriptor from one object to another.
*
* @param other The other basic_stream_descriptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_descriptor(const executor_type&)
* constructor.
*/
template <typename Executor1>
basic_stream_descriptor(basic_stream_descriptor<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_descriptor<Executor>(std::move(other))
{
}
/// Move-assign a basic_stream_descriptor from a descriptor of another
/// executor type.
/**
* This assignment operator moves a descriptor from one object to another.
*
* @param other The other basic_stream_descriptor object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_descriptor(const executor_type&)
* constructor.
*/
template <typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_stream_descriptor&
> operator=(basic_stream_descriptor<Executor1> && other)
{
basic_descriptor<Executor>::operator=(std::move(other));
return *this;
}
/// Write some data to the descriptor.
/**
* This function is used to write data to the stream descriptor. The function
* call will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the descriptor.
*
* @returns The number of bytes written.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* descriptor.write_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().write_some(
this->impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "write_some");
return s;
}
/// Write some data to the descriptor.
/**
* This function is used to write data to the stream descriptor. The function
* call will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the descriptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return this->impl_.get_service().write_some(
this->impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write data to the stream
* descriptor. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more data buffers to be written to the descriptor.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the write completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* descriptor.async_write_some(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_write_some(const ConstBufferSequence& buffers,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_write_some(this), token, buffers))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_write_some(this), token, buffers);
}
/// Read some data from the descriptor.
/**
* This function is used to read data from the stream descriptor. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* descriptor.read_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().read_some(
this->impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "read_some");
return s;
}
/// Read some data from the descriptor.
/**
* This function is used to read data from the stream descriptor. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return this->impl_.get_service().read_some(
this->impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the stream
* descriptor. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* descriptor.async_read_some(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_read_some(const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_read_some>(), token, buffers))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_read_some(this), token, buffers);
}
private:
class initiate_async_write_some
{
public:
typedef Executor executor_type;
explicit initiate_async_write_some(basic_stream_descriptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_write_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_stream_descriptor* self_;
};
class initiate_async_read_some
{
public:
typedef Executor executor_type;
explicit initiate_async_read_some(basic_stream_descriptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_read_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_stream_descriptor* self_;
};
};
} // namespace posix
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_POSIX_BASIC_STREAM_DESCRIPTOR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/posix/descriptor_base.hpp | //
// posix/descriptor_base.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_POSIX_DESCRIPTOR_BASE_HPP
#define ASIO_POSIX_DESCRIPTOR_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/io_control.hpp"
#include "asio/detail/socket_option.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace posix {
/// The descriptor_base class is used as a base for the descriptor class as a
/// place to define the associated IO control commands.
class descriptor_base
{
public:
/// Wait types.
/**
* For use with descriptor::wait() and descriptor::async_wait().
*/
enum wait_type
{
/// Wait for a descriptor to become ready to read.
wait_read,
/// Wait for a descriptor to become ready to write.
wait_write,
/// Wait for a descriptor to have error conditions pending.
wait_error
};
/// IO control command to get the amount of data that can be read without
/// blocking.
/**
* Implements the FIONREAD IO control command.
*
* @par Example
* @code
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* asio::descriptor_base::bytes_readable command(true);
* descriptor.io_control(command);
* std::size_t bytes_readable = command.get();
* @endcode
*
* @par Concepts:
* IoControlCommand.
*/
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined bytes_readable;
#else
typedef asio::detail::io_control::bytes_readable bytes_readable;
#endif
protected:
/// Protected destructor to prevent deletion through this type.
~descriptor_base()
{
}
};
} // namespace posix
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_POSIX_DESCRIPTOR_BASE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/posix/basic_descriptor.hpp | //
// posix/basic_descriptor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_POSIX_BASIC_DESCRIPTOR_HPP
#define ASIO_POSIX_BASIC_DESCRIPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR) \
|| defined(GENERATING_DOCUMENTATION)
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/posix/descriptor_base.hpp"
#if defined(ASIO_HAS_IO_URING_AS_DEFAULT)
# include "asio/detail/io_uring_descriptor_service.hpp"
#else // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
# include "asio/detail/reactive_descriptor_service.hpp"
#endif // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace posix {
/// Provides POSIX descriptor functionality.
/**
* The posix::basic_descriptor class template provides the ability to wrap a
* POSIX descriptor.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_descriptor
: public descriptor_base
{
private:
class initiate_async_wait;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the descriptor type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The descriptor type when rebound to the specified executor.
typedef basic_descriptor<Executor1> other;
};
/// The native representation of a descriptor.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_HAS_IO_URING_AS_DEFAULT)
typedef detail::io_uring_descriptor_service::native_handle_type
native_handle_type;
#else // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
typedef detail::reactive_descriptor_service::native_handle_type
native_handle_type;
#endif // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
/// A descriptor is always the lowest layer.
typedef basic_descriptor lowest_layer_type;
/// Construct a descriptor without opening it.
/**
* This constructor creates a descriptor without opening it.
*
* @param ex The I/O executor that the descriptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* descriptor.
*/
explicit basic_descriptor(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a descriptor without opening it.
/**
* This constructor creates a descriptor without opening it.
*
* @param context An execution context which provides the I/O executor that
* the descriptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the descriptor.
*/
template <typename ExecutionContext>
explicit basic_descriptor(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct a descriptor on an existing native descriptor.
/**
* This constructor creates a descriptor object to hold an existing native
* descriptor.
*
* @param ex The I/O executor that the descriptor will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* descriptor.
*
* @param native_descriptor A native descriptor.
*
* @throws asio::system_error Thrown on failure.
*/
basic_descriptor(const executor_type& ex,
const native_handle_type& native_descriptor)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_descriptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a descriptor on an existing native descriptor.
/**
* This constructor creates a descriptor object to hold an existing native
* descriptor.
*
* @param context An execution context which provides the I/O executor that
* the descriptor will use, by default, to dispatch handlers for any
* asynchronous operations performed on the descriptor.
*
* @param native_descriptor A native descriptor.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_descriptor(ExecutionContext& context,
const native_handle_type& native_descriptor,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_descriptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct a descriptor from another.
/**
* This constructor moves a descriptor from one object to another.
*
* @param other The other descriptor object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_descriptor(const executor_type&)
* constructor.
*/
basic_descriptor(basic_descriptor&& other) noexcept
: impl_(std::move(other.impl_))
{
}
/// Move-assign a descriptor from another.
/**
* This assignment operator moves a descriptor from one object to another.
*
* @param other The other descriptor object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_descriptor(const executor_type&)
* constructor.
*/
basic_descriptor& operator=(basic_descriptor&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All descriptors have access to each other's implementations.
template <typename Executor1>
friend class basic_descriptor;
/// Move-construct a basic_descriptor from a descriptor of another executor
/// type.
/**
* This constructor moves a descriptor from one object to another.
*
* @param other The other basic_descriptor object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_descriptor(const executor_type&)
* constructor.
*/
template <typename Executor1>
basic_descriptor(basic_descriptor<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_descriptor from a descriptor of another executor type.
/**
* This assignment operator moves a descriptor from one object to another.
*
* @param other The other basic_descriptor object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_descriptor(const executor_type&)
* constructor.
*/
template <typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_descriptor&
> operator=(basic_descriptor<Executor1> && other)
{
basic_descriptor tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since a descriptor cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since a descriptor cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Assign an existing native descriptor to the descriptor.
/*
* This function opens the descriptor to hold an existing native descriptor.
*
* @param native_descriptor A native descriptor.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& native_descriptor)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_descriptor, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native descriptor to the descriptor.
/*
* This function opens the descriptor to hold an existing native descriptor.
*
* @param native_descriptor A native descriptor.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& native_descriptor,
asio::error_code& ec)
{
impl_.get_service().assign(
impl_.get_implementation(), native_descriptor, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the descriptor is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the descriptor.
/**
* This function is used to close the descriptor. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the descriptor.
/**
* This function is used to close the descriptor. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any. Note that, even if
* the function indicates an error, the underlying descriptor is closed.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the native descriptor representation.
/**
* This function may be used to obtain the underlying representation of the
* descriptor. This is intended to allow access to native descriptor
* functionality that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Release ownership of the native descriptor implementation.
/**
* This function may be used to obtain the underlying representation of the
* descriptor. After calling this function, @c is_open() returns false. The
* caller is responsible for closing the descriptor.
*
* All outstanding asynchronous read or write operations will finish
* immediately, and the handlers for cancelled operations will be passed the
* asio::error::operation_aborted error.
*/
native_handle_type release()
{
return impl_.get_service().release(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the descriptor.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the descriptor.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform an IO control command on the descriptor.
/**
* This function is used to execute an IO control command on the descriptor.
*
* @param command The IO control command to be performed on the descriptor.
*
* @throws asio::system_error Thrown on failure.
*
* @sa IoControlCommand @n
* asio::posix::descriptor_base::bytes_readable @n
* asio::posix::descriptor_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* asio::posix::stream_descriptor::bytes_readable command;
* descriptor.io_control(command);
* std::size_t bytes_readable = command.get();
* @endcode
*/
template <typename IoControlCommand>
void io_control(IoControlCommand& command)
{
asio::error_code ec;
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
asio::detail::throw_error(ec, "io_control");
}
/// Perform an IO control command on the descriptor.
/**
* This function is used to execute an IO control command on the descriptor.
*
* @param command The IO control command to be performed on the descriptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa IoControlCommand @n
* asio::posix::descriptor_base::bytes_readable @n
* asio::posix::descriptor_base::non_blocking_io
*
* @par Example
* Getting the number of bytes ready to read:
* @code
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* asio::posix::stream_descriptor::bytes_readable command;
* asio::error_code ec;
* descriptor.io_control(command, ec);
* if (ec)
* {
* // An error occurred.
* }
* std::size_t bytes_readable = command.get();
* @endcode
*/
template <typename IoControlCommand>
ASIO_SYNC_OP_VOID io_control(IoControlCommand& command,
asio::error_code& ec)
{
impl_.get_service().io_control(impl_.get_implementation(), command, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the descriptor.
/**
* @returns @c true if the descriptor's synchronous operations will fail with
* asio::error::would_block if they are unable to perform the requested
* operation immediately. If @c false, synchronous operations will block
* until complete.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
bool non_blocking() const
{
return impl_.get_service().non_blocking(impl_.get_implementation());
}
/// Sets the non-blocking mode of the descriptor.
/**
* @param mode If @c true, the descriptor's synchronous operations will fail
* with asio::error::would_block if they are unable to perform the
* requested operation immediately. If @c false, synchronous operations will
* block until complete.
*
* @throws asio::system_error Thrown on failure.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
void non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "non_blocking");
}
/// Sets the non-blocking mode of the descriptor.
/**
* @param mode If @c true, the descriptor's synchronous operations will fail
* with asio::error::would_block if they are unable to perform the
* requested operation immediately. If @c false, synchronous operations will
* block until complete.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note The non-blocking mode has no effect on the behaviour of asynchronous
* operations. Asynchronous operations will never fail with the error
* asio::error::would_block.
*/
ASIO_SYNC_OP_VOID non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().non_blocking(impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Gets the non-blocking mode of the native descriptor implementation.
/**
* This function is used to retrieve the non-blocking mode of the underlying
* native descriptor. This mode has no effect on the behaviour of the
* descriptor object's synchronous operations.
*
* @returns @c true if the underlying descriptor is in non-blocking mode and
* direct system calls may fail with asio::error::would_block (or the
* equivalent system error).
*
* @note The current non-blocking mode is cached by the descriptor object.
* Consequently, the return value may be incorrect if the non-blocking mode
* was set directly on the native descriptor.
*/
bool native_non_blocking() const
{
return impl_.get_service().native_non_blocking(
impl_.get_implementation());
}
/// Sets the non-blocking mode of the native descriptor implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native descriptor. It has no effect on the behaviour of the descriptor
* object's synchronous operations.
*
* @param mode If @c true, the underlying descriptor is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @throws asio::system_error Thrown on failure. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*/
void native_non_blocking(bool mode)
{
asio::error_code ec;
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
asio::detail::throw_error(ec, "native_non_blocking");
}
/// Sets the non-blocking mode of the native descriptor implementation.
/**
* This function is used to modify the non-blocking mode of the underlying
* native descriptor. It has no effect on the behaviour of the descriptor
* object's synchronous operations.
*
* @param mode If @c true, the underlying descriptor is put into non-blocking
* mode and direct system calls may fail with asio::error::would_block
* (or the equivalent system error).
*
* @param ec Set to indicate what error occurred, if any. If the @c mode is
* @c false, but the current value of @c non_blocking() is @c true, this
* function fails with asio::error::invalid_argument, as the
* combination does not make sense.
*/
ASIO_SYNC_OP_VOID native_non_blocking(
bool mode, asio::error_code& ec)
{
impl_.get_service().native_non_blocking(
impl_.get_implementation(), mode, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Wait for the descriptor to become ready to read, ready to write, or to
/// have pending error conditions.
/**
* This function is used to perform a blocking wait for a descriptor to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired descriptor state.
*
* @par Example
* Waiting for a descriptor to become readable.
* @code
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* descriptor.wait(asio::posix::stream_descriptor::wait_read);
* @endcode
*/
void wait(wait_type w)
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), w, ec);
asio::detail::throw_error(ec, "wait");
}
/// Wait for the descriptor to become ready to read, ready to write, or to
/// have pending error conditions.
/**
* This function is used to perform a blocking wait for a descriptor to enter
* a ready to read, write or error condition state.
*
* @param w Specifies the desired descriptor state.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* Waiting for a descriptor to become readable.
* @code
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* asio::error_code ec;
* descriptor.wait(asio::posix::stream_descriptor::wait_read, ec);
* @endcode
*/
ASIO_SYNC_OP_VOID wait(wait_type w, asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), w, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Asynchronously wait for the descriptor to become ready to read, ready to
/// write, or to have pending error conditions.
/**
* This function is used to perform an asynchronous wait for a descriptor to
* enter a ready to read, write or error condition state. It is an initiating
* function for an @ref asynchronous_operation, and always returns
* immediately.
*
* @param w Specifies the desired descriptor state.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the wait completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*
* @par Example
* @code
* void wait_handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Wait succeeded.
* }
* }
*
* ...
*
* asio::posix::stream_descriptor descriptor(my_context);
* ...
* descriptor.async_wait(
* asio::posix::stream_descriptor::wait_read,
* wait_handler);
* @endcode
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitToken = default_completion_token_t<executor_type>>
auto async_wait(wait_type w,
WaitToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WaitToken, void (asio::error_code)>(
declval<initiate_async_wait>(), token, w))
{
return async_initiate<WaitToken, void (asio::error_code)>(
initiate_async_wait(this), token, w);
}
protected:
/// Protected destructor to prevent deletion through this type.
/**
* This function destroys the descriptor, cancelling any outstanding
* asynchronous wait operations associated with the descriptor as if by
* calling @c cancel.
*/
~basic_descriptor()
{
}
#if defined(ASIO_HAS_IO_URING_AS_DEFAULT)
detail::io_object_impl<detail::io_uring_descriptor_service, Executor> impl_;
#else // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
detail::io_object_impl<detail::reactive_descriptor_service, Executor> impl_;
#endif // defined(ASIO_HAS_IO_URING_AS_DEFAULT)
private:
// Disallow copying and assignment.
basic_descriptor(const basic_descriptor&) = delete;
basic_descriptor& operator=(const basic_descriptor&) = delete;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_descriptor* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(WaitHandler&& handler, wait_type w) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(), w,
handler2.value, self_->impl_.get_executor());
}
private:
basic_descriptor* self_;
};
};
} // namespace posix
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_POSIX_BASIC_DESCRIPTOR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/posix/descriptor.hpp | //
// posix/descriptor.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_POSIX_DESCRIPTOR_HPP
#define ASIO_POSIX_DESCRIPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/posix/basic_descriptor.hpp"
namespace asio {
namespace posix {
/// Typedef for the typical usage of basic_descriptor.
typedef basic_descriptor<> descriptor;
} // namespace posix
} // namespace asio
#endif // defined(ASIO_HAS_POSIX_STREAM_DESCRIPTOR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_POSIX_DESCRIPTOR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/buffer.hpp | //
// ts/buffer.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_BUFFER_HPP
#define ASIO_TS_BUFFER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/buffer.hpp"
#include "asio/completion_condition.hpp"
#include "asio/read.hpp"
#include "asio/write.hpp"
#include "asio/read_until.hpp"
#endif // ASIO_TS_BUFFER_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/timer.hpp | //
// ts/timer.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_TIMER_HPP
#define ASIO_TS_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/chrono.hpp"
#include "asio/wait_traits.hpp"
#include "asio/basic_waitable_timer.hpp"
#include "asio/system_timer.hpp"
#include "asio/steady_timer.hpp"
#include "asio/high_resolution_timer.hpp"
#endif // ASIO_TS_TIMER_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/io_context.hpp | //
// ts/io_context.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_IO_CONTEXT_HPP
#define ASIO_TS_IO_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/io_context.hpp"
#endif // ASIO_TS_IO_CONTEXT_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/internet.hpp | //
// ts/internet.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_INTERNET_HPP
#define ASIO_TS_INTERNET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/ip/address.hpp"
#include "asio/ip/address_v4.hpp"
#include "asio/ip/address_v4_iterator.hpp"
#include "asio/ip/address_v4_range.hpp"
#include "asio/ip/address_v6.hpp"
#include "asio/ip/address_v6_iterator.hpp"
#include "asio/ip/address_v6_range.hpp"
#include "asio/ip/bad_address_cast.hpp"
#include "asio/ip/basic_endpoint.hpp"
#include "asio/ip/basic_resolver_query.hpp"
#include "asio/ip/basic_resolver_entry.hpp"
#include "asio/ip/basic_resolver_iterator.hpp"
#include "asio/ip/basic_resolver.hpp"
#include "asio/ip/host_name.hpp"
#include "asio/ip/network_v4.hpp"
#include "asio/ip/network_v6.hpp"
#include "asio/ip/tcp.hpp"
#include "asio/ip/udp.hpp"
#include "asio/ip/v6_only.hpp"
#include "asio/ip/unicast.hpp"
#include "asio/ip/multicast.hpp"
#endif // ASIO_TS_INTERNET_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/net.hpp | //
// ts/net.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_NET_HPP
#define ASIO_TS_NET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/ts/netfwd.hpp"
#include "asio/ts/executor.hpp"
#include "asio/ts/io_context.hpp"
#include "asio/ts/timer.hpp"
#include "asio/ts/buffer.hpp"
#include "asio/ts/socket.hpp"
#include "asio/ts/internet.hpp"
#endif // ASIO_TS_NET_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/netfwd.hpp | //
// ts/netfwd.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_NETFWD_HPP
#define ASIO_TS_NETFWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/chrono.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME)
# include "asio/detail/date_time_fwd.hpp"
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
#if !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
#include "asio/execution/blocking.hpp"
#include "asio/execution/outstanding_work.hpp"
#include "asio/execution/relationship.hpp"
#endif // !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
#if !defined(GENERATING_DOCUMENTATION)
#include "asio/detail/push_options.hpp"
namespace asio {
class execution_context;
template <typename T, typename Executor>
class executor_binder;
#if !defined(ASIO_EXECUTOR_WORK_GUARD_DECL)
#define ASIO_EXECUTOR_WORK_GUARD_DECL
template <typename Executor, typename = void, typename = void>
class executor_work_guard;
#endif // !defined(ASIO_EXECUTOR_WORK_GUARD_DECL)
template <typename Blocking, typename Relationship, typename Allocator>
class basic_system_executor;
#if defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
class executor;
typedef executor any_io_executor;
#else // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
namespace execution {
#if !defined(ASIO_EXECUTION_ANY_EXECUTOR_FWD_DECL)
#define ASIO_EXECUTION_ANY_EXECUTOR_FWD_DECL
template <typename... SupportableProperties>
class any_executor;
#endif // !defined(ASIO_EXECUTION_ANY_EXECUTOR_FWD_DECL)
template <typename U>
struct context_as_t;
template <typename Property>
struct prefer_only;
} // namespace execution
class any_io_executor;
#endif // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
template <typename Executor>
class strand;
class io_context;
template <typename Clock>
struct wait_traits;
#if defined(ASIO_HAS_BOOST_DATE_TIME)
template <typename Time>
struct time_traits;
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
#if !defined(ASIO_BASIC_WAITABLE_TIMER_FWD_DECL)
#define ASIO_BASIC_WAITABLE_TIMER_FWD_DECL
template <typename Clock,
typename WaitTraits = wait_traits<Clock>,
typename Executor = any_io_executor>
class basic_waitable_timer;
#endif // !defined(ASIO_BASIC_WAITABLE_TIMER_FWD_DECL)
typedef basic_waitable_timer<chrono::system_clock> system_timer;
typedef basic_waitable_timer<chrono::steady_clock> steady_timer;
typedef basic_waitable_timer<chrono::high_resolution_clock>
high_resolution_timer;
#if !defined(ASIO_BASIC_SOCKET_FWD_DECL)
#define ASIO_BASIC_SOCKET_FWD_DECL
template <typename Protocol, typename Executor = any_io_executor>
class basic_socket;
#endif // !defined(ASIO_BASIC_SOCKET_FWD_DECL)
#if !defined(ASIO_BASIC_DATAGRAM_SOCKET_FWD_DECL)
#define ASIO_BASIC_DATAGRAM_SOCKET_FWD_DECL
template <typename Protocol, typename Executor = any_io_executor>
class basic_datagram_socket;
#endif // !defined(ASIO_BASIC_DATAGRAM_SOCKET_FWD_DECL)
#if !defined(ASIO_BASIC_STREAM_SOCKET_FWD_DECL)
#define ASIO_BASIC_STREAM_SOCKET_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_stream_socket;
#endif // !defined(ASIO_BASIC_STREAM_SOCKET_FWD_DECL)
#if !defined(ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL)
#define ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL
template <typename Protocol, typename Executor = any_io_executor>
class basic_socket_acceptor;
#endif // !defined(ASIO_BASIC_SOCKET_ACCEPTOR_FWD_DECL)
#if !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
#define ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
|| defined(GENERATING_DOCUMENTATION)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock>>
#else
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#endif
class basic_socket_streambuf;
#endif // !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
#if !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
#define ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
|| defined(GENERATING_DOCUMENTATION)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock>>
#else
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock>>
#endif
class basic_socket_iostream;
#endif // !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
namespace ip {
class address;
class address_v4;
class address_v6;
template <typename Address>
class basic_address_iterator;
typedef basic_address_iterator<address_v4> address_v4_iterator;
typedef basic_address_iterator<address_v6> address_v6_iterator;
template <typename Address>
class basic_address_range;
typedef basic_address_range<address_v4> address_v4_range;
typedef basic_address_range<address_v6> address_v6_range;
class network_v4;
class network_v6;
template <typename InternetProtocol>
class basic_endpoint;
template <typename InternetProtocol>
class basic_resolver_entry;
template <typename InternetProtocol>
class basic_resolver_results;
#if !defined(ASIO_IP_BASIC_RESOLVER_FWD_DECL)
#define ASIO_IP_BASIC_RESOLVER_FWD_DECL
template <typename InternetProtocol, typename Executor = any_io_executor>
class basic_resolver;
#endif // !defined(ASIO_IP_BASIC_RESOLVER_FWD_DECL)
class tcp;
class udp;
} // namespace ip
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(GENERATING_DOCUMENTATION)
#endif // ASIO_TS_NETFWD_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/executor.hpp | //
// ts/executor.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_EXECUTOR_HPP
#define ASIO_TS_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/async_result.hpp"
#include "asio/associated_allocator.hpp"
#include "asio/execution_context.hpp"
#include "asio/is_executor.hpp"
#include "asio/associated_executor.hpp"
#include "asio/bind_executor.hpp"
#include "asio/executor_work_guard.hpp"
#include "asio/system_executor.hpp"
#include "asio/executor.hpp"
#include "asio/any_io_executor.hpp"
#include "asio/dispatch.hpp"
#include "asio/post.hpp"
#include "asio/defer.hpp"
#include "asio/strand.hpp"
#include "asio/packaged_task.hpp"
#include "asio/use_future.hpp"
#endif // ASIO_TS_EXECUTOR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/ts/socket.hpp | //
// ts/socket.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_TS_SOCKET_HPP
#define ASIO_TS_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/socket_base.hpp"
#include "asio/basic_socket.hpp"
#include "asio/basic_datagram_socket.hpp"
#include "asio/basic_stream_socket.hpp"
#include "asio/basic_socket_acceptor.hpp"
#include "asio/basic_socket_streambuf.hpp"
#include "asio/basic_socket_iostream.hpp"
#include "asio/connect.hpp"
#endif // ASIO_TS_SOCKET_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/basic_overlapped_handle.hpp | //
// windows/basic_overlapped_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_BASIC_OVERLAPPED_HANDLE_HPP
#define ASIO_WINDOWS_BASIC_OVERLAPPED_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE) \
|| defined(ASIO_HAS_WINDOWS_STREAM_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include <cstddef>
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/win_iocp_handle_service.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace windows {
/// Provides Windows handle functionality for objects that support
/// overlapped I/O.
/**
* The windows::overlapped_handle class provides the ability to wrap a Windows
* handle. The underlying object referred to by the handle must support
* overlapped I/O.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_overlapped_handle
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the handle type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The handle type when rebound to the specified executor.
typedef basic_overlapped_handle<Executor1> other;
};
/// The native representation of a handle.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef asio::detail::win_iocp_handle_service::native_handle_type
native_handle_type;
#endif
/// An overlapped_handle is always the lowest layer.
typedef basic_overlapped_handle lowest_layer_type;
/// Construct an overlapped handle without opening it.
/**
* This constructor creates an overlapped handle without opening it.
*
* @param ex The I/O executor that the overlapped handle will use, by default,
* to dispatch handlers for any asynchronous operations performed on the
* overlapped handle.
*/
explicit basic_overlapped_handle(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct an overlapped handle without opening it.
/**
* This constructor creates an overlapped handle without opening it.
*
* @param context An execution context which provides the I/O executor that
* the overlapped handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the overlapped handle.
*/
template <typename ExecutionContext>
explicit basic_overlapped_handle(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct an overlapped handle on an existing native handle.
/**
* This constructor creates an overlapped handle object to hold an existing
* native handle.
*
* @param ex The I/O executor that the overlapped handle will use, by default,
* to dispatch handlers for any asynchronous operations performed on the
* overlapped handle.
*
* @param native_handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_overlapped_handle(const executor_type& ex,
const native_handle_type& native_handle)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), native_handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct an overlapped handle on an existing native handle.
/**
* This constructor creates an overlapped handle object to hold an existing
* native handle.
*
* @param context An execution context which provides the I/O executor that
* the overlapped handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the overlapped handle.
*
* @param native_handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_overlapped_handle(ExecutionContext& context,
const native_handle_type& native_handle,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), native_handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct an overlapped handle from another.
/**
* This constructor moves a handle from one object to another.
*
* @param other The other overlapped handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c overlapped_handle(const executor_type&)
* constructor.
*/
basic_overlapped_handle(basic_overlapped_handle&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign an overlapped handle from another.
/**
* This assignment operator moves a handle from one object to another.
*
* @param other The other overlapped handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c overlapped_handle(const executor_type&)
* constructor.
*/
basic_overlapped_handle& operator=(basic_overlapped_handle&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All overlapped handles have access to each other's implementations.
template <typename Executor1>
friend class basic_overlapped_handle;
/// Move-construct an overlapped handle from a handle of another executor
/// type.
/**
* This constructor moves a handle from one object to another.
*
* @param other The other overlapped handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c overlapped_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
basic_overlapped_handle(basic_overlapped_handle<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(std::move(other.impl_))
{
}
/// Move-assign an overlapped handle from a handle of another executor type.
/**
* This assignment operator moves a handle from one object to another.
*
* @param other The other overlapped handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c overlapped_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_overlapped_handle&
> operator=(basic_overlapped_handle<Executor1>&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since an overlapped_handle cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since an overlapped_handle cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Assign an existing native handle to the handle.
/*
* This function opens the handle to hold an existing native handle.
*
* @param handle A native handle.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& handle)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native handle to the handle.
/*
* This function opens the handle to hold an existing native handle.
*
* @param handle A native handle.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& handle,
asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(), handle, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the handle is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the handle.
/**
* This function is used to close the handle. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the handle.
/**
* This function is used to close the handle. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Release ownership of the underlying native handle.
/**
* This function causes all outstanding asynchronous operations to finish
* immediately, and the handlers for cancelled operations will be passed the
* asio::error::operation_aborted error. Ownership of the native handle
* is then transferred to the caller.
*
* @throws asio::system_error Thrown on failure.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release()
{
asio::error_code ec;
native_handle_type s = impl_.get_service().release(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "release");
return s;
}
/// Release ownership of the underlying native handle.
/**
* This function causes all outstanding asynchronous operations to finish
* immediately, and the handlers for cancelled operations will be passed the
* asio::error::operation_aborted error. Ownership of the native handle
* is then transferred to the caller.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note This function is unsupported on Windows versions prior to Windows
* 8.1, and will fail with asio::error::operation_not_supported on
* these platforms.
*/
#if defined(ASIO_MSVC) && (ASIO_MSVC >= 1400) \
&& (!defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0603)
__declspec(deprecated("This function always fails with "
"operation_not_supported when used on Windows versions "
"prior to Windows 8.1."))
#endif
native_handle_type release(asio::error_code& ec)
{
return impl_.get_service().release(impl_.get_implementation(), ec);
}
/// Get the native handle representation.
/**
* This function may be used to obtain the underlying representation of the
* handle. This is intended to allow access to native handle functionality
* that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the handle.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the handle.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
protected:
/// Protected destructor to prevent deletion through this type.
/**
* This function destroys the handle, cancelling any outstanding asynchronous
* wait operations associated with the handle as if by calling @c cancel.
*/
~basic_overlapped_handle()
{
}
asio::detail::io_object_impl<
asio::detail::win_iocp_handle_service, Executor> impl_;
private:
// Disallow copying and assignment.
basic_overlapped_handle(const basic_overlapped_handle&) = delete;
basic_overlapped_handle& operator=(
const basic_overlapped_handle&) = delete;
};
} // namespace windows
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE)
// || defined(ASIO_HAS_WINDOWS_STREAM_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_BASIC_OVERLAPPED_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/overlapped_ptr.hpp | //
// windows/overlapped_ptr.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_OVERLAPPED_PTR_HPP
#define ASIO_WINDOWS_OVERLAPPED_PTR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_OVERLAPPED_PTR) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/win_iocp_overlapped_ptr.hpp"
#include "asio/io_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace windows {
/// Wraps a handler to create an OVERLAPPED object for use with overlapped I/O.
/**
* A special-purpose smart pointer used to wrap an application handler so that
* it can be passed as the LPOVERLAPPED argument to overlapped I/O functions.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
class overlapped_ptr
: private noncopyable
{
public:
/// Construct an empty overlapped_ptr.
overlapped_ptr()
: impl_()
{
}
/// Construct an overlapped_ptr to contain the specified handler.
template <typename ExecutionContext, typename Handler>
explicit overlapped_ptr(ExecutionContext& context,
Handler&& handler,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(context.get_executor(), static_cast<Handler&&>(handler))
{
}
/// Construct an overlapped_ptr to contain the specified handler.
template <typename Executor, typename Handler>
explicit overlapped_ptr(const Executor& ex,
Handler&& handler,
constraint_t<
execution::is_executor<Executor>::value
|| is_executor<Executor>::value
> = 0)
: impl_(ex, static_cast<Handler&&>(handler))
{
}
/// Destructor automatically frees the OVERLAPPED object unless released.
~overlapped_ptr()
{
}
/// Reset to empty.
void reset()
{
impl_.reset();
}
/// Reset to contain the specified handler, freeing any current OVERLAPPED
/// object.
template <typename ExecutionContext, typename Handler>
void reset(ExecutionContext& context, Handler&& handler,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
{
impl_.reset(context.get_executor(), static_cast<Handler&&>(handler));
}
/// Reset to contain the specified handler, freeing any current OVERLAPPED
/// object.
template <typename Executor, typename Handler>
void reset(const Executor& ex, Handler&& handler,
constraint_t<
execution::is_executor<Executor>::value
|| is_executor<Executor>::value
> = 0)
{
impl_.reset(ex, static_cast<Handler&&>(handler));
}
/// Get the contained OVERLAPPED object.
OVERLAPPED* get()
{
return impl_.get();
}
/// Get the contained OVERLAPPED object.
const OVERLAPPED* get() const
{
return impl_.get();
}
/// Release ownership of the OVERLAPPED object.
OVERLAPPED* release()
{
return impl_.release();
}
/// Post completion notification for overlapped operation. Releases ownership.
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
impl_.complete(ec, bytes_transferred);
}
private:
detail::win_iocp_overlapped_ptr impl_;
};
} // namespace windows
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_WINDOWS_OVERLAPPED_PTR)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_OVERLAPPED_PTR_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/overlapped_handle.hpp | //
// windows/overlapped_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_OVERLAPPED_HANDLE_HPP
#define ASIO_WINDOWS_OVERLAPPED_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE) \
|| defined(ASIO_HAS_WINDOWS_STREAM_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/windows/basic_overlapped_handle.hpp"
namespace asio {
namespace windows {
/// Typedef for the typical usage of an overlapped handle.
typedef basic_overlapped_handle<> overlapped_handle;
} // namespace windows
} // namespace asio
#endif // defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE)
// || defined(ASIO_HAS_WINDOWS_STREAM_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_OVERLAPPED_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/object_handle.hpp | //
// windows/object_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2011 Boris Schaeling ([email protected])
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_OBJECT_HANDLE_HPP
#define ASIO_WINDOWS_OBJECT_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/windows/basic_object_handle.hpp"
namespace asio {
namespace windows {
/// Typedef for the typical usage of an object handle.
typedef basic_object_handle<> object_handle;
} // namespace windows
} // namespace asio
#endif // defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_OBJECT_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/basic_stream_handle.hpp | //
// windows/basic_stream_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_BASIC_STREAM_HANDLE_HPP
#define ASIO_WINDOWS_BASIC_STREAM_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/windows/basic_overlapped_handle.hpp"
#if defined(ASIO_HAS_WINDOWS_STREAM_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace windows {
/// Provides stream-oriented handle functionality.
/**
* The windows::basic_stream_handle class provides asynchronous and blocking
* stream-oriented handle functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Executor = any_io_executor>
class basic_stream_handle
: public basic_overlapped_handle<Executor>
{
private:
class initiate_async_write_some;
class initiate_async_read_some;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the handle type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The handle type when rebound to the specified executor.
typedef basic_stream_handle<Executor1> other;
};
/// The native representation of a handle.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef asio::detail::win_iocp_handle_service::native_handle_type
native_handle_type;
#endif
/// Construct a stream handle without opening it.
/**
* This constructor creates a stream handle without opening it.
*
* @param ex The I/O executor that the stream handle will use, by default, to
* dispatch handlers for any asynchronous operations performed on the stream
* handle.
*/
explicit basic_stream_handle(const executor_type& ex)
: basic_overlapped_handle<Executor>(ex)
{
}
/// Construct a stream handle without opening it.
/**
* This constructor creates a stream handle without opening it. The handle
* needs to be opened or assigned before data can be written to or read from
* it.
*
* @param context An execution context which provides the I/O executor that
* the stream handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the stream handle.
*/
template <typename ExecutionContext>
explicit basic_stream_handle(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_overlapped_handle<Executor>(context)
{
}
/// Construct a stream handle on an existing native handle.
/**
* This constructor creates a stream handle object to hold an existing native
* handle.
*
* @param ex The I/O executor that the stream handle will use, by default, to
* dispatch handlers for any asynchronous operations performed on the stream
* handle.
*
* @param handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_stream_handle(const executor_type& ex, const native_handle_type& handle)
: basic_overlapped_handle<Executor>(ex, handle)
{
}
/// Construct a stream handle on an existing native handle.
/**
* This constructor creates a stream handle object to hold an existing native
* handle.
*
* @param context An execution context which provides the I/O executor that
* the stream handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the stream handle.
*
* @param handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_stream_handle(ExecutionContext& context,
const native_handle_type& handle,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_overlapped_handle<Executor>(context, handle)
{
}
/// Move-construct a stream handle from another.
/**
* This constructor moves a stream handle from one object to another.
*
* @param other The other stream handle object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_handle(const executor_type&)
* constructor.
*/
basic_stream_handle(basic_stream_handle&& other)
: basic_overlapped_handle<Executor>(std::move(other))
{
}
/// Move-assign a stream handle from another.
/**
* This assignment operator moves a stream handle from one object to
* another.
*
* @param other The other stream handle object from which the move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_handle(const executor_type&)
* constructor.
*/
basic_stream_handle& operator=(basic_stream_handle&& other)
{
basic_overlapped_handle<Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a stream handle from a handle of another executor type.
/**
* This constructor moves a stream handle from one object to another.
*
* @param other The other stream handle object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
basic_stream_handle(basic_stream_handle<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_overlapped_handle<Executor>(std::move(other))
{
}
/// Move-assign a stream handle from a handle of another executor type.
/**
* This assignment operator moves a stream handle from one object to
* another.
*
* @param other The other stream handle object from which the move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_stream_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_stream_handle&
> operator=(basic_stream_handle<Executor1>&& other)
{
basic_overlapped_handle<Executor>::operator=(std::move(other));
return *this;
}
/// Write some data to the handle.
/**
* This function is used to write data to the stream handle. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the handle.
*
* @returns The number of bytes written.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* handle.write_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().write_some(
this->impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "write_some");
return s;
}
/// Write some data to the handle.
/**
* This function is used to write data to the stream handle. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the handle.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return this->impl_.get_service().write_some(
this->impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write data to the stream handle.
* It is an initiating function for an @ref asynchronous_operation, and always
* returns immediately.
*
* @param buffers One or more data buffers to be written to the handle.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the write completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* handle.async_write_some(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_write_some(const ConstBufferSequence& buffers,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_write_some>(), token, buffers))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_write_some(this), token, buffers);
}
/// Read some data from the handle.
/**
* This function is used to read data from the stream handle. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* handle.read_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().read_some(
this->impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "read_some");
return s;
}
/// Read some data from the handle.
/**
* This function is used to read data from the stream handle. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return this->impl_.get_service().read_some(
this->impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the stream handle.
* It is an initiating function for an @ref asynchronous_operation, and always
* returns immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* handle.async_read_some(asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_read_some(const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_read_some>(), token, buffers))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_read_some(this), token, buffers);
}
private:
class initiate_async_write_some
{
public:
typedef Executor executor_type;
explicit initiate_async_write_some(basic_stream_handle* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_write_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_stream_handle* self_;
};
class initiate_async_read_some
{
public:
typedef Executor executor_type;
explicit initiate_async_read_some(basic_stream_handle* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_read_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_stream_handle* self_;
};
};
} // namespace windows
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_WINDOWS_STREAM_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_BASIC_STREAM_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/basic_random_access_handle.hpp | //
// windows/basic_random_access_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_BASIC_RANDOM_ACCESS_HANDLE_HPP
#define ASIO_WINDOWS_BASIC_RANDOM_ACCESS_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/windows/basic_overlapped_handle.hpp"
#if defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace windows {
/// Provides random-access handle functionality.
/**
* The windows::basic_random_access_handle class provides asynchronous and
* blocking random-access handle functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_random_access_handle
: public basic_overlapped_handle<Executor>
{
private:
class initiate_async_write_some_at;
class initiate_async_read_some_at;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the handle type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The handle type when rebound to the specified executor.
typedef basic_random_access_handle<Executor1> other;
};
/// The native representation of a handle.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef asio::detail::win_iocp_handle_service::native_handle_type
native_handle_type;
#endif
/// Construct a random-access handle without opening it.
/**
* This constructor creates a random-access handle without opening it.
*
* @param ex The I/O executor that the random-access handle will use, by
* default, to dispatch handlers for any asynchronous operations performed on
* the random-access handle.
*/
explicit basic_random_access_handle(const executor_type& ex)
: basic_overlapped_handle<Executor>(ex)
{
}
/// Construct a random-access handle without opening it.
/**
* This constructor creates a random-access handle without opening it. The
* handle needs to be opened or assigned before data can be written to or read
* from it.
*
* @param context An execution context which provides the I/O executor that
* the random-access handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the random-access handle.
*/
template <typename ExecutionContext>
explicit basic_random_access_handle(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_overlapped_handle<Executor>(context)
{
}
/// Construct a random-access handle on an existing native handle.
/**
* This constructor creates a random-access handle object to hold an existing
* native handle.
*
* @param ex The I/O executor that the random-access handle will use, by
* default, to dispatch handlers for any asynchronous operations performed on
* the random-access handle.
*
* @param handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_random_access_handle(const executor_type& ex,
const native_handle_type& handle)
: basic_overlapped_handle<Executor>(ex, handle)
{
}
/// Construct a random-access handle on an existing native handle.
/**
* This constructor creates a random-access handle object to hold an existing
* native handle.
*
* @param context An execution context which provides the I/O executor that
* the random-access handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the random-access handle.
*
* @param handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_random_access_handle(ExecutionContext& context,
const native_handle_type& handle,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: basic_overlapped_handle<Executor>(context, handle)
{
}
/// Move-construct a random-access handle from another.
/**
* This constructor moves a random-access handle from one object to another.
*
* @param other The other random-access handle object from which the
* move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_random_access_handle(const executor_type&)
* constructor.
*/
basic_random_access_handle(basic_random_access_handle&& other)
: basic_overlapped_handle<Executor>(std::move(other))
{
}
/// Move-assign a random-access handle from another.
/**
* This assignment operator moves a random-access handle from one object to
* another.
*
* @param other The other random-access handle object from which the
* move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_random_access_handle(const executor_type&)
* constructor.
*/
basic_random_access_handle& operator=(basic_random_access_handle&& other)
{
basic_overlapped_handle<Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a random-access handle from a handle of another executor
/// type.
/**
* This constructor moves a random-access handle from one object to another.
*
* @param other The other random-access handle object from which the
* move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_random_access_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
basic_random_access_handle(basic_random_access_handle<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: basic_overlapped_handle<Executor>(std::move(other))
{
}
/// Move-assign a random-access handle from a handle of another executor
/// type.
/**
* This assignment operator moves a random-access handle from one object to
* another.
*
* @param other The other random-access handle object from which the
* move will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_random_access_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_random_access_handle&
> operator=(basic_random_access_handle<Executor1>&& other)
{
basic_overlapped_handle<Executor>::operator=(std::move(other));
return *this;
}
/// Write some data to the handle at the specified offset.
/**
* This function is used to write data to the random-access handle. The
* function call will block until one or more bytes of the data has been
* written successfully, or until an error occurs.
*
* @param offset The offset at which the data will be written.
*
* @param buffers One or more data buffers to be written to the handle.
*
* @returns The number of bytes written.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some_at operation may not write all of the data. Consider
* using the @ref write_at function if you need to ensure that all data is
* written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* handle.write_some_at(42, asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some_at(uint64_t offset,
const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().write_some_at(
this->impl_.get_implementation(), offset, buffers, ec);
asio::detail::throw_error(ec, "write_some_at");
return s;
}
/// Write some data to the handle at the specified offset.
/**
* This function is used to write data to the random-access handle. The
* function call will block until one or more bytes of the data has been
* written successfully, or until an error occurs.
*
* @param offset The offset at which the data will be written.
*
* @param buffers One or more data buffers to be written to the handle.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write_at function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some_at(uint64_t offset,
const ConstBufferSequence& buffers, asio::error_code& ec)
{
return this->impl_.get_service().write_some_at(
this->impl_.get_implementation(), offset, buffers, ec);
}
/// Start an asynchronous write at the specified offset.
/**
* This function is used to asynchronously write data to the random-access
* handle. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param offset The offset at which the data will be written.
*
* @param buffers One or more data buffers to be written to the handle.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the write completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write_at function if you need to ensure that
* all data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* handle.async_write_some_at(42, asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteToken = default_completion_token_t<executor_type>>
auto async_write_some_at(uint64_t offset, const ConstBufferSequence& buffers,
WriteToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_write_some_at>(), token, offset, buffers))
{
return async_initiate<WriteToken,
void (asio::error_code, std::size_t)>(
initiate_async_write_some_at(this), token, offset, buffers);
}
/// Read some data from the handle at the specified offset.
/**
* This function is used to read data from the random-access handle. The
* function call will block until one or more bytes of data has been read
* successfully, or until an error occurs.
*
* @param offset The offset at which the data will be read.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read_at function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* handle.read_some_at(42, asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some_at(uint64_t offset,
const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().read_some_at(
this->impl_.get_implementation(), offset, buffers, ec);
asio::detail::throw_error(ec, "read_some_at");
return s;
}
/// Read some data from the handle at the specified offset.
/**
* This function is used to read data from the random-access handle. The
* function call will block until one or more bytes of data has been read
* successfully, or until an error occurs.
*
* @param offset The offset at which the data will be read.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read_at function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some_at(uint64_t offset,
const MutableBufferSequence& buffers, asio::error_code& ec)
{
return this->impl_.get_service().read_some_at(
this->impl_.get_implementation(), offset, buffers, ec);
}
/// Start an asynchronous read at the specified offset.
/**
* This function is used to asynchronously read data from the random-access
* handle. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param offset The offset at which the data will be read.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the read completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code, std::size_t) @endcode
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read_at function if you need to ensure that
* the requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* handle.async_read_some_at(42, asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* This asynchronous operation supports cancellation for the following
* asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadToken = default_completion_token_t<executor_type>>
auto async_read_some_at(uint64_t offset, const MutableBufferSequence& buffers,
ReadToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
declval<initiate_async_read_some_at>(), token, offset, buffers))
{
return async_initiate<ReadToken,
void (asio::error_code, std::size_t)>(
initiate_async_read_some_at(this), token, offset, buffers);
}
private:
class initiate_async_write_some_at
{
public:
typedef Executor executor_type;
explicit initiate_async_write_some_at(basic_random_access_handle* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(WriteHandler&& handler,
uint64_t offset, const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_write_some_at(
self_->impl_.get_implementation(), offset, buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_random_access_handle* self_;
};
class initiate_async_read_some_at
{
public:
typedef Executor executor_type;
explicit initiate_async_read_some_at(basic_random_access_handle* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ReadHandler&& handler,
uint64_t offset, const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_read_some_at(
self_->impl_.get_implementation(), offset, buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_random_access_handle* self_;
};
};
} // namespace windows
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_BASIC_RANDOM_ACCESS_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/basic_object_handle.hpp | //
// windows/basic_object_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2011 Boris Schaeling ([email protected])
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_BASIC_OBJECT_HANDLE_HPP
#define ASIO_WINDOWS_BASIC_OBJECT_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include <utility>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/win_object_handle_service.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace windows {
/// Provides object-oriented handle functionality.
/**
* The windows::basic_object_handle class provides asynchronous and blocking
* object-oriented handle functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_object_handle
{
private:
class initiate_async_wait;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the handle type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The handle type when rebound to the specified executor.
typedef basic_object_handle<Executor1> other;
};
/// The native representation of a handle.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef asio::detail::win_object_handle_service::native_handle_type
native_handle_type;
#endif
/// An object handle is always the lowest layer.
typedef basic_object_handle lowest_layer_type;
/// Construct an object handle without opening it.
/**
* This constructor creates an object handle without opening it.
*
* @param ex The I/O executor that the object handle will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* object handle.
*/
explicit basic_object_handle(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct an object handle without opening it.
/**
* This constructor creates an object handle without opening it.
*
* @param context An execution context which provides the I/O executor that
* the object handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the object handle.
*/
template <typename ExecutionContext>
explicit basic_object_handle(ExecutionContext& context,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct an object handle on an existing native handle.
/**
* This constructor creates an object handle object to hold an existing native
* handle.
*
* @param ex The I/O executor that the object handle will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* object handle.
*
* @param native_handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_object_handle(const executor_type& ex,
const native_handle_type& native_handle)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), native_handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct an object handle on an existing native handle.
/**
* This constructor creates an object handle object to hold an existing native
* handle.
*
* @param context An execution context which provides the I/O executor that
* the object handle will use, by default, to dispatch handlers for any
* asynchronous operations performed on the object handle.
*
* @param native_handle The new underlying handle implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_object_handle(ExecutionContext& context,
const native_handle_type& native_handle,
constraint_t<
is_convertible<ExecutionContext&, execution_context&>::value
> = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), native_handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Move-construct an object handle from another.
/**
* This constructor moves an object handle from one object to another.
*
* @param other The other object handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_object_handle(const executor_type&)
* constructor.
*/
basic_object_handle(basic_object_handle&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign an object handle from another.
/**
* This assignment operator moves an object handle from one object to another.
*
* @param other The other object handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_object_handle(const executor_type&)
* constructor.
*/
basic_object_handle& operator=(basic_object_handle&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All handles have access to each other's implementations.
template <typename Executor1>
friend class basic_object_handle;
/// Move-construct an object handle from a handle of another executor type.
/**
* This constructor moves an object handle from one object to another.
*
* @param other The other object handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_object_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
basic_object_handle(basic_object_handle<Executor1>&& other,
constraint_t<
is_convertible<Executor1, Executor>::value,
defaulted_constraint
> = defaulted_constraint())
: impl_(std::move(other.impl_))
{
}
/// Move-assign an object handle from a handle of another executor type.
/**
* This assignment operator moves an object handle from one object to another.
*
* @param other The other object handle object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_object_handle(const executor_type&)
* constructor.
*/
template<typename Executor1>
constraint_t<
is_convertible<Executor1, Executor>::value,
basic_object_handle&
> operator=(basic_object_handle<Executor1>&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
/// Get the executor associated with the object.
const executor_type& get_executor() noexcept
{
return impl_.get_executor();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since an object handle cannot contain any further layers, it simply
* returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since an object handle cannot contain any further layers, it simply
* returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Assign an existing native handle to the handle.
/*
* This function opens the handle to hold an existing native handle.
*
* @param handle A native handle.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& handle)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(), handle, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native handle to the handle.
/*
* This function opens the handle to hold an existing native handle.
*
* @param handle A native handle.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& handle,
asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(), handle, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the handle is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the handle.
/**
* This function is used to close the handle. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the handle.
/**
* This function is used to close the handle. Any asynchronous read or write
* operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the native handle representation.
/**
* This function may be used to obtain the underlying representation of the
* handle. This is intended to allow access to native handle functionality
* that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the handle.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the handle.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Perform a blocking wait on the object handle.
/**
* This function is used to wait for the object handle to be set to the
* signalled state. This function blocks and does not return until the object
* handle has been set to the signalled state.
*
* @throws asio::system_error Thrown on failure.
*/
void wait()
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "wait");
}
/// Perform a blocking wait on the object handle.
/**
* This function is used to wait for the object handle to be set to the
* signalled state. This function blocks and does not return until the object
* handle has been set to the signalled state.
*
* @param ec Set to indicate what error occurred, if any.
*/
void wait(asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), ec);
}
/// Start an asynchronous wait on the object handle.
/**
* This function is be used to initiate an asynchronous wait against the
* object handle. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the wait completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::async_immediate().
*
* @par Completion Signature
* @code void(asio::error_code) @endcode
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitToken = default_completion_token_t<executor_type>>
auto async_wait(
WaitToken&& token = default_completion_token_t<executor_type>())
-> decltype(
async_initiate<WaitToken, void (asio::error_code)>(
declval<initiate_async_wait>(), token))
{
return async_initiate<WaitToken, void (asio::error_code)>(
initiate_async_wait(this), token);
}
private:
// Disallow copying and assignment.
basic_object_handle(const basic_object_handle&) = delete;
basic_object_handle& operator=(const basic_object_handle&) = delete;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_object_handle* self)
: self_(self)
{
}
const executor_type& get_executor() const noexcept
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(WaitHandler&& handler) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(),
handler2.value, self_->impl_.get_executor());
}
private:
basic_object_handle* self_;
};
asio::detail::io_object_impl<
asio::detail::win_object_handle_service, Executor> impl_;
};
} // namespace windows
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_BASIC_OBJECT_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/stream_handle.hpp | //
// windows/stream_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_STREAM_HANDLE_HPP
#define ASIO_WINDOWS_STREAM_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_STREAM_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/windows/basic_stream_handle.hpp"
namespace asio {
namespace windows {
/// Typedef for the typical usage of a stream-oriented handle.
typedef basic_stream_handle<> stream_handle;
} // namespace windows
} // namespace asio
#endif // defined(ASIO_HAS_WINDOWS_STREAM_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_STREAM_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/windows/random_access_handle.hpp | //
// windows/random_access_handle.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_WINDOWS_RANDOM_ACCESS_HANDLE_HPP
#define ASIO_WINDOWS_RANDOM_ACCESS_HANDLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/windows/basic_random_access_handle.hpp"
namespace asio {
namespace windows {
/// Typedef for the typical usage of a random-access handle.
typedef basic_random_access_handle<> random_access_handle;
} // namespace windows
} // namespace asio
#endif // defined(ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_WINDOWS_RANDOM_ACCESS_HANDLE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/win_iocp_thread_info.hpp | //
// detail/win_iocp_thread_info.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_WIN_IOCP_THREAD_INFO_HPP
#define ASIO_DETAIL_WIN_IOCP_THREAD_INFO_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/thread_info_base.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
struct win_iocp_thread_info : public thread_info_base
{
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_WIN_IOCP_THREAD_INFO_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/resolver_service.hpp | //
// detail/resolver_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_RESOLVER_SERVICE_HPP
#define ASIO_DETAIL_RESOLVER_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_WINDOWS_RUNTIME)
#include "asio/ip/basic_resolver_query.hpp"
#include "asio/ip/basic_resolver_results.hpp"
#include "asio/detail/concurrency_hint.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/resolve_endpoint_op.hpp"
#include "asio/detail/resolve_query_op.hpp"
#include "asio/detail/resolver_service_base.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Protocol>
class resolver_service :
public execution_context_service_base<resolver_service<Protocol>>,
public resolver_service_base
{
public:
// The implementation type of the resolver. A cancellation token is used to
// indicate to the background thread that the operation has been cancelled.
typedef socket_ops::shared_cancel_token_type implementation_type;
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// The query type.
typedef asio::ip::basic_resolver_query<Protocol> query_type;
// The results type.
typedef asio::ip::basic_resolver_results<Protocol> results_type;
// Constructor.
resolver_service(execution_context& context)
: execution_context_service_base<resolver_service<Protocol>>(context),
resolver_service_base(context)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown()
{
this->base_shutdown();
}
// Perform any fork-related housekeeping.
void notify_fork(execution_context::fork_event fork_ev)
{
this->base_notify_fork(fork_ev);
}
// Resolve a query to a list of entries.
results_type resolve(implementation_type&, const query_type& qry,
asio::error_code& ec)
{
asio::detail::addrinfo_type* address_info = 0;
socket_ops::getaddrinfo(qry.host_name().c_str(),
qry.service_name().c_str(), qry.hints(), &address_info, ec);
auto_addrinfo auto_address_info(address_info);
ASIO_ERROR_LOCATION(ec);
return ec ? results_type() : results_type::create(
address_info, qry.host_name(), qry.service_name());
}
// Asynchronously resolve a query to a list of entries.
template <typename Handler, typename IoExecutor>
void async_resolve(implementation_type& impl, const query_type& qry,
Handler& handler, const IoExecutor& io_ex)
{
// Allocate and construct an operation to wrap the handler.
typedef resolve_query_op<Protocol, Handler, IoExecutor> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl, qry, scheduler_, handler, io_ex);
ASIO_HANDLER_CREATION((scheduler_.context(),
*p.p, "resolver", &impl, 0, "async_resolve"));
start_resolve_op(p.p);
p.v = p.p = 0;
}
// Resolve an endpoint to a list of entries.
results_type resolve(implementation_type&,
const endpoint_type& endpoint, asio::error_code& ec)
{
char host_name[NI_MAXHOST];
char service_name[NI_MAXSERV];
socket_ops::sync_getnameinfo(endpoint.data(), endpoint.size(),
host_name, NI_MAXHOST, service_name, NI_MAXSERV,
endpoint.protocol().type(), ec);
ASIO_ERROR_LOCATION(ec);
return ec ? results_type() : results_type::create(
endpoint, host_name, service_name);
}
// Asynchronously resolve an endpoint to a list of entries.
template <typename Handler, typename IoExecutor>
void async_resolve(implementation_type& impl, const endpoint_type& endpoint,
Handler& handler, const IoExecutor& io_ex)
{
// Allocate and construct an operation to wrap the handler.
typedef resolve_endpoint_op<Protocol, Handler, IoExecutor> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl, endpoint, scheduler_, handler, io_ex);
ASIO_HANDLER_CREATION((scheduler_.context(),
*p.p, "resolver", &impl, 0, "async_resolve"));
start_resolve_op(p.p);
p.v = p.p = 0;
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_WINDOWS_RUNTIME)
#endif // ASIO_DETAIL_RESOLVER_SERVICE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/resolver_service_base.hpp | //
// detail/resolver_service_base.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_RESOLVER_SERVICE_BASE_HPP
#define ASIO_DETAIL_RESOLVER_SERVICE_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/resolve_op.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/scoped_ptr.hpp"
#include "asio/detail/thread.hpp"
#if defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_io_context.hpp"
#else // defined(ASIO_HAS_IOCP)
# include "asio/detail/scheduler.hpp"
#endif // defined(ASIO_HAS_IOCP)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class resolver_service_base
{
public:
// The implementation type of the resolver. A cancellation token is used to
// indicate to the background thread that the operation has been cancelled.
typedef socket_ops::shared_cancel_token_type implementation_type;
// Constructor.
ASIO_DECL resolver_service_base(execution_context& context);
// Destructor.
ASIO_DECL ~resolver_service_base();
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void base_shutdown();
// Perform any fork-related housekeeping.
ASIO_DECL void base_notify_fork(
execution_context::fork_event fork_ev);
// Construct a new resolver implementation.
ASIO_DECL void construct(implementation_type& impl);
// Destroy a resolver implementation.
ASIO_DECL void destroy(implementation_type&);
// Move-construct a new resolver implementation.
ASIO_DECL void move_construct(implementation_type& impl,
implementation_type& other_impl);
// Move-assign from another resolver implementation.
ASIO_DECL void move_assign(implementation_type& impl,
resolver_service_base& other_service,
implementation_type& other_impl);
// Move-construct a new timer implementation.
void converting_move_construct(implementation_type& impl,
resolver_service_base&, implementation_type& other_impl)
{
move_construct(impl, other_impl);
}
// Move-assign from another timer implementation.
void converting_move_assign(implementation_type& impl,
resolver_service_base& other_service,
implementation_type& other_impl)
{
move_assign(impl, other_service, other_impl);
}
// Cancel pending asynchronous operations.
ASIO_DECL void cancel(implementation_type& impl);
protected:
// Helper function to start an asynchronous resolve operation.
ASIO_DECL void start_resolve_op(resolve_op* op);
#if !defined(ASIO_WINDOWS_RUNTIME)
// Helper class to perform exception-safe cleanup of addrinfo objects.
class auto_addrinfo
: private asio::detail::noncopyable
{
public:
explicit auto_addrinfo(asio::detail::addrinfo_type* ai)
: ai_(ai)
{
}
~auto_addrinfo()
{
if (ai_)
socket_ops::freeaddrinfo(ai_);
}
operator asio::detail::addrinfo_type*()
{
return ai_;
}
private:
asio::detail::addrinfo_type* ai_;
};
#endif // !defined(ASIO_WINDOWS_RUNTIME)
// Helper class to run the work scheduler in a thread.
class work_scheduler_runner;
// Start the work scheduler if it's not already running.
ASIO_DECL void start_work_thread();
// The scheduler implementation used to post completions.
#if defined(ASIO_HAS_IOCP)
typedef class win_iocp_io_context scheduler_impl;
#else
typedef class scheduler scheduler_impl;
#endif
scheduler_impl& scheduler_;
private:
// Mutex to protect access to internal data.
asio::detail::mutex mutex_;
// Private scheduler used for performing asynchronous host resolution.
asio::detail::scoped_ptr<scheduler_impl> work_scheduler_;
// Thread used for running the work io_context's run loop.
asio::detail::scoped_ptr<asio::detail::thread> work_thread_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/resolver_service_base.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_DETAIL_RESOLVER_SERVICE_BASE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/dependent_type.hpp | //
// detail/dependent_type.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DEPENDENT_TYPE_HPP
#define ASIO_DETAIL_DEPENDENT_TYPE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename DependsOn, typename T>
struct dependent_type
{
typedef T type;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_DEPENDENT_TYPE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/source_location.hpp | //
// detail/source_location.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_SOURCE_LOCATION_HPP
#define ASIO_DETAIL_SOURCE_LOCATION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_SOURCE_LOCATION)
#if defined(ASIO_HAS_STD_SOURCE_LOCATION)
# include <source_location>
#elif defined(ASIO_HAS_STD_EXPERIMENTAL_SOURCE_LOCATION)
# include <experimental/source_location>
#else // defined(ASIO_HAS_STD_EXPERIMENTAL_SOURCE_LOCATION)
# error ASIO_HAS_SOURCE_LOCATION is set \
but no source_location is available
#endif // defined(ASIO_HAS_STD_EXPERIMENTAL_SOURCE_LOCATION)
namespace asio {
namespace detail {
#if defined(ASIO_HAS_STD_SOURCE_LOCATION)
using std::source_location;
#elif defined(ASIO_HAS_STD_EXPERIMENTAL_SOURCE_LOCATION)
using std::experimental::source_location;
#endif // defined(ASIO_HAS_STD_EXPERIMENTAL_SOURCE_LOCATION)
} // namespace detail
} // namespace asio
#endif // defined(ASIO_HAS_SOURCE_LOCATION)
#endif // ASIO_DETAIL_SOURCE_LOCATION_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/reactive_socket_accept_op.hpp | //
// detail/reactive_socket_accept_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_SOCKET_ACCEPT_OP_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_ACCEPT_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Socket, typename Protocol>
class reactive_socket_accept_op_base : public reactor_op
{
public:
reactive_socket_accept_op_base(const asio::error_code& success_ec,
socket_type socket, socket_ops::state_type state, Socket& peer,
const Protocol& protocol, typename Protocol::endpoint* peer_endpoint,
func_type complete_func)
: reactor_op(success_ec,
&reactive_socket_accept_op_base::do_perform, complete_func),
socket_(socket),
state_(state),
peer_(peer),
protocol_(protocol),
peer_endpoint_(peer_endpoint),
addrlen_(peer_endpoint ? peer_endpoint->capacity() : 0)
{
}
static status do_perform(reactor_op* base)
{
ASIO_ASSUME(base != 0);
reactive_socket_accept_op_base* o(
static_cast<reactive_socket_accept_op_base*>(base));
socket_type new_socket = invalid_socket;
status result = socket_ops::non_blocking_accept(o->socket_,
o->state_, o->peer_endpoint_ ? o->peer_endpoint_->data() : 0,
o->peer_endpoint_ ? &o->addrlen_ : 0, o->ec_, new_socket)
? done : not_done;
o->new_socket_.reset(new_socket);
ASIO_HANDLER_REACTOR_OPERATION((*o, "non_blocking_accept", o->ec_));
return result;
}
void do_assign()
{
if (new_socket_.get() != invalid_socket)
{
if (peer_endpoint_)
peer_endpoint_->resize(addrlen_);
peer_.assign(protocol_, new_socket_.get(), ec_);
if (!ec_)
new_socket_.release();
}
}
private:
socket_type socket_;
socket_ops::state_type state_;
socket_holder new_socket_;
Socket& peer_;
Protocol protocol_;
typename Protocol::endpoint* peer_endpoint_;
std::size_t addrlen_;
};
template <typename Socket, typename Protocol,
typename Handler, typename IoExecutor>
class reactive_socket_accept_op :
public reactive_socket_accept_op_base<Socket, Protocol>
{
public:
typedef Handler handler_type;
typedef IoExecutor io_executor_type;
ASIO_DEFINE_HANDLER_PTR(reactive_socket_accept_op);
reactive_socket_accept_op(const asio::error_code& success_ec,
socket_type socket, socket_ops::state_type state, Socket& peer,
const Protocol& protocol, typename Protocol::endpoint* peer_endpoint,
Handler& handler, const IoExecutor& io_ex)
: reactive_socket_accept_op_base<Socket, Protocol>(
success_ec, socket, state, peer, protocol, peer_endpoint,
&reactive_socket_accept_op::do_complete),
handler_(static_cast<Handler&&>(handler)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_socket_accept_op* o(static_cast<reactive_socket_accept_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
// On success, assign new connection to peer socket object.
if (owner)
o->do_assign();
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder1<Handler, asio::error_code>
handler(o->handler_, o->ec_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
static void do_immediate(operation* base, bool, const void* io_ex)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_socket_accept_op* o(static_cast<reactive_socket_accept_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
// On success, assign new connection to peer socket object.
o->do_assign();
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
immediate_handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder1<Handler, asio::error_code>
handler(o->handler_, o->ec_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_));
w.complete(handler, handler.handler_, io_ex);
ASIO_HANDLER_INVOCATION_END;
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
template <typename Protocol, typename PeerIoExecutor,
typename Handler, typename IoExecutor>
class reactive_socket_move_accept_op :
private Protocol::socket::template rebind_executor<PeerIoExecutor>::other,
public reactive_socket_accept_op_base<
typename Protocol::socket::template rebind_executor<PeerIoExecutor>::other,
Protocol>
{
public:
typedef Handler handler_type;
typedef IoExecutor io_executor_type;
ASIO_DEFINE_HANDLER_PTR(reactive_socket_move_accept_op);
reactive_socket_move_accept_op(const asio::error_code& success_ec,
const PeerIoExecutor& peer_io_ex, socket_type socket,
socket_ops::state_type state, const Protocol& protocol,
typename Protocol::endpoint* peer_endpoint, Handler& handler,
const IoExecutor& io_ex)
: peer_socket_type(peer_io_ex),
reactive_socket_accept_op_base<peer_socket_type, Protocol>(
success_ec, socket, state, *this, protocol, peer_endpoint,
&reactive_socket_move_accept_op::do_complete),
handler_(static_cast<Handler&&>(handler)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_socket_move_accept_op* o(
static_cast<reactive_socket_move_accept_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
// On success, assign new connection to peer socket object.
if (owner)
o->do_assign();
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::move_binder2<Handler,
asio::error_code, peer_socket_type>
handler(0, static_cast<Handler&&>(o->handler_), o->ec_,
static_cast<peer_socket_type&&>(*o));
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, "..."));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
static void do_immediate(operation* base, bool, const void* io_ex)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_socket_move_accept_op* o(
static_cast<reactive_socket_move_accept_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
// On success, assign new connection to peer socket object.
o->do_assign();
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
immediate_handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::move_binder2<Handler,
asio::error_code, peer_socket_type>
handler(0, static_cast<Handler&&>(o->handler_), o->ec_,
static_cast<peer_socket_type&&>(*o));
p.h = asio::detail::addressof(handler.handler_);
p.reset();
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, "..."));
w.complete(handler, handler.handler_, io_ex);
ASIO_HANDLER_INVOCATION_END;
}
private:
typedef typename Protocol::socket::template
rebind_executor<PeerIoExecutor>::other peer_socket_type;
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_REACTIVE_SOCKET_ACCEPT_OP_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/chrono_time_traits.hpp | //
// detail/chrono_time_traits.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP
#define ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/cstdint.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper template to compute the greatest common divisor.
template <int64_t v1, int64_t v2>
struct gcd { enum { value = gcd<v2, v1 % v2>::value }; };
template <int64_t v1>
struct gcd<v1, 0> { enum { value = v1 }; };
// Adapts std::chrono clocks for use with a deadline timer.
template <typename Clock, typename WaitTraits>
struct chrono_time_traits
{
// The clock type.
typedef Clock clock_type;
// The duration type of the clock.
typedef typename clock_type::duration duration_type;
// The time point type of the clock.
typedef typename clock_type::time_point time_type;
// The period of the clock.
typedef typename duration_type::period period_type;
// Get the current time.
static time_type now()
{
return clock_type::now();
}
// Add a duration to a time.
static time_type add(const time_type& t, const duration_type& d)
{
const time_type epoch;
if (t >= epoch)
{
if ((time_type::max)() - t < d)
return (time_type::max)();
}
else // t < epoch
{
if (-(t - (time_type::min)()) > d)
return (time_type::min)();
}
return t + d;
}
// Subtract one time from another.
static duration_type subtract(const time_type& t1, const time_type& t2)
{
const time_type epoch;
if (t1 >= epoch)
{
if (t2 >= epoch)
{
return t1 - t2;
}
else if (t2 == (time_type::min)())
{
return (duration_type::max)();
}
else if ((time_type::max)() - t1 < epoch - t2)
{
return (duration_type::max)();
}
else
{
return t1 - t2;
}
}
else // t1 < epoch
{
if (t2 < epoch)
{
return t1 - t2;
}
else if (t1 == (time_type::min)())
{
return (duration_type::min)();
}
else if ((time_type::max)() - t2 < epoch - t1)
{
return (duration_type::min)();
}
else
{
return -(t2 - t1);
}
}
}
// Test whether one time is less than another.
static bool less_than(const time_type& t1, const time_type& t2)
{
return t1 < t2;
}
// Implement just enough of the posix_time::time_duration interface to supply
// what the timer_queue requires.
class posix_time_duration
{
public:
explicit posix_time_duration(const duration_type& d)
: d_(d)
{
}
int64_t ticks() const
{
return d_.count();
}
int64_t total_seconds() const
{
return duration_cast<1, 1>();
}
int64_t total_milliseconds() const
{
return duration_cast<1, 1000>();
}
int64_t total_microseconds() const
{
return duration_cast<1, 1000000>();
}
private:
template <int64_t Num, int64_t Den>
int64_t duration_cast() const
{
const int64_t num1 = period_type::num / gcd<period_type::num, Num>::value;
const int64_t num2 = Num / gcd<period_type::num, Num>::value;
const int64_t den1 = period_type::den / gcd<period_type::den, Den>::value;
const int64_t den2 = Den / gcd<period_type::den, Den>::value;
const int64_t num = num1 * den2;
const int64_t den = num2 * den1;
if (num == 1 && den == 1)
return ticks();
else if (num != 1 && den == 1)
return ticks() * num;
else if (num == 1 && period_type::den != 1)
return ticks() / den;
else
return ticks() * num / den;
}
duration_type d_;
};
// Convert to POSIX duration type.
static posix_time_duration to_posix_duration(const duration_type& d)
{
return posix_time_duration(WaitTraits::to_wait_duration(d));
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/handler_alloc_helpers.hpp | //
// detail/handler_alloc_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#define ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/recycling_allocator.hpp"
#include "asio/associated_allocator.hpp"
#include "asio/detail/push_options.hpp"
#define ASIO_DEFINE_TAGGED_HANDLER_PTR(purpose, op) \
struct ptr \
{ \
Handler* h; \
op* v; \
op* p; \
~ptr() \
{ \
reset(); \
} \
static op* allocate(Handler& handler) \
{ \
typedef typename ::asio::associated_allocator< \
Handler>::type associated_allocator_type; \
typedef typename ::asio::detail::get_recycling_allocator< \
associated_allocator_type, purpose>::type default_allocator_type; \
ASIO_REBIND_ALLOC(default_allocator_type, op) a( \
::asio::detail::get_recycling_allocator< \
associated_allocator_type, purpose>::get( \
::asio::get_associated_allocator(handler))); \
return a.allocate(1); \
} \
void reset() \
{ \
if (p) \
{ \
p->~op(); \
p = 0; \
} \
if (v) \
{ \
typedef typename ::asio::associated_allocator< \
Handler>::type associated_allocator_type; \
typedef typename ::asio::detail::get_recycling_allocator< \
associated_allocator_type, purpose>::type default_allocator_type; \
ASIO_REBIND_ALLOC(default_allocator_type, op) a( \
::asio::detail::get_recycling_allocator< \
associated_allocator_type, purpose>::get( \
::asio::get_associated_allocator(*h))); \
a.deallocate(static_cast<op*>(v), 1); \
v = 0; \
} \
} \
} \
/**/
#define ASIO_DEFINE_HANDLER_PTR(op) \
ASIO_DEFINE_TAGGED_HANDLER_PTR( \
::asio::detail::thread_info_base::default_tag, op ) \
/**/
#define ASIO_DEFINE_TAGGED_HANDLER_ALLOCATOR_PTR(purpose, op) \
struct ptr \
{ \
const Alloc* a; \
void* v; \
op* p; \
~ptr() \
{ \
reset(); \
} \
static op* allocate(const Alloc& a) \
{ \
typedef typename ::asio::detail::get_recycling_allocator< \
Alloc, purpose>::type recycling_allocator_type; \
ASIO_REBIND_ALLOC(recycling_allocator_type, op) a1( \
::asio::detail::get_recycling_allocator< \
Alloc, purpose>::get(a)); \
return a1.allocate(1); \
} \
void reset() \
{ \
if (p) \
{ \
p->~op(); \
p = 0; \
} \
if (v) \
{ \
typedef typename ::asio::detail::get_recycling_allocator< \
Alloc, purpose>::type recycling_allocator_type; \
ASIO_REBIND_ALLOC(recycling_allocator_type, op) a1( \
::asio::detail::get_recycling_allocator< \
Alloc, purpose>::get(*a)); \
a1.deallocate(static_cast<op*>(v), 1); \
v = 0; \
} \
} \
} \
/**/
#define ASIO_DEFINE_HANDLER_ALLOCATOR_PTR(op) \
ASIO_DEFINE_TAGGED_HANDLER_ALLOCATOR_PTR( \
::asio::detail::thread_info_base::default_tag, op ) \
/**/
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/reactive_null_buffers_op.hpp | //
// detail/reactive_null_buffers_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_NULL_BUFFERS_OP_HPP
#define ASIO_DETAIL_REACTIVE_NULL_BUFFERS_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename IoExecutor>
class reactive_null_buffers_op : public reactor_op
{
public:
typedef Handler handler_type;
typedef IoExecutor io_executor_type;
ASIO_DEFINE_HANDLER_PTR(reactive_null_buffers_op);
reactive_null_buffers_op(const asio::error_code& success_ec,
Handler& handler, const IoExecutor& io_ex)
: reactor_op(success_ec, &reactive_null_buffers_op::do_perform,
&reactive_null_buffers_op::do_complete),
handler_(static_cast<Handler&&>(handler)),
work_(handler_, io_ex)
{
}
static status do_perform(reactor_op*)
{
return done;
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_null_buffers_op* o(static_cast<reactive_null_buffers_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
static void do_immediate(operation* base, bool, const void* io_ex)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
reactive_null_buffers_op* o(static_cast<reactive_null_buffers_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
immediate_handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_, io_ex);
ASIO_HANDLER_INVOCATION_END;
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_REACTIVE_NULL_BUFFERS_OP_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/limits.hpp | //
// detail/limits.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2011 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_LIMITS_HPP
#define ASIO_DETAIL_LIMITS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <limits>
#endif // ASIO_DETAIL_LIMITS_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/win_object_handle_service.hpp | //
// detail/win_object_handle_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2011 Boris Schaeling ([email protected])
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_WIN_OBJECT_HANDLE_SERVICE_HPP
#define ASIO_DETAIL_WIN_OBJECT_HANDLE_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE)
#include "asio/detail/memory.hpp"
#include "asio/detail/wait_handler.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#if defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_io_context.hpp"
#else // defined(ASIO_HAS_IOCP)
# include "asio/detail/scheduler.hpp"
#endif // defined(ASIO_HAS_IOCP)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class win_object_handle_service :
public execution_context_service_base<win_object_handle_service>
{
public:
// The native type of an object handle.
typedef HANDLE native_handle_type;
// The implementation type of the object handle.
class implementation_type
{
public:
// Default constructor.
implementation_type()
: handle_(INVALID_HANDLE_VALUE),
wait_handle_(INVALID_HANDLE_VALUE),
owner_(0),
next_(0),
prev_(0)
{
}
private:
// Only this service will have access to the internal values.
friend class win_object_handle_service;
// The native object handle representation. May be accessed or modified
// without locking the mutex.
native_handle_type handle_;
// The handle used to unregister the wait operation. The mutex must be
// locked when accessing or modifying this member.
HANDLE wait_handle_;
// The operations waiting on the object handle. If there is a registered
// wait then the mutex must be locked when accessing or modifying this
// member
op_queue<wait_op> op_queue_;
// The service instance that owns the object handle implementation.
win_object_handle_service* owner_;
// Pointers to adjacent handle implementations in linked list. The mutex
// must be locked when accessing or modifying these members.
implementation_type* next_;
implementation_type* prev_;
};
// Constructor.
ASIO_DECL win_object_handle_service(execution_context& context);
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void shutdown();
// Construct a new handle implementation.
ASIO_DECL void construct(implementation_type& impl);
// Move-construct a new handle implementation.
ASIO_DECL void move_construct(implementation_type& impl,
implementation_type& other_impl);
// Move-assign from another handle implementation.
ASIO_DECL void move_assign(implementation_type& impl,
win_object_handle_service& other_service,
implementation_type& other_impl);
// Destroy a handle implementation.
ASIO_DECL void destroy(implementation_type& impl);
// Assign a native handle to a handle implementation.
ASIO_DECL asio::error_code assign(implementation_type& impl,
const native_handle_type& handle, asio::error_code& ec);
// Determine whether the handle is open.
bool is_open(const implementation_type& impl) const
{
return impl.handle_ != INVALID_HANDLE_VALUE && impl.handle_ != 0;
}
// Destroy a handle implementation.
ASIO_DECL asio::error_code close(implementation_type& impl,
asio::error_code& ec);
// Get the native handle representation.
native_handle_type native_handle(const implementation_type& impl) const
{
return impl.handle_;
}
// Cancel all operations associated with the handle.
ASIO_DECL asio::error_code cancel(implementation_type& impl,
asio::error_code& ec);
// Perform a synchronous wait for the object to enter a signalled state.
ASIO_DECL void wait(implementation_type& impl,
asio::error_code& ec);
/// Start an asynchronous wait.
template <typename Handler, typename IoExecutor>
void async_wait(implementation_type& impl,
Handler& handler, const IoExecutor& io_ex)
{
// Allocate and construct an operation to wrap the handler.
typedef wait_handler<Handler, IoExecutor> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler, io_ex);
ASIO_HANDLER_CREATION((scheduler_.context(), *p.p, "object_handle",
&impl, reinterpret_cast<uintmax_t>(impl.wait_handle_), "async_wait"));
start_wait_op(impl, p.p);
p.v = p.p = 0;
}
private:
// Helper function to start an asynchronous wait operation.
ASIO_DECL void start_wait_op(implementation_type& impl, wait_op* op);
// Helper function to register a wait operation.
ASIO_DECL void register_wait_callback(
implementation_type& impl, mutex::scoped_lock& lock);
// Callback function invoked when the registered wait completes.
static ASIO_DECL VOID CALLBACK wait_callback(
PVOID param, BOOLEAN timeout);
// The scheduler used to post completions.
#if defined(ASIO_HAS_IOCP)
typedef class win_iocp_io_context scheduler_impl;
#else
typedef class scheduler scheduler_impl;
#endif
scheduler_impl& scheduler_;
// Mutex to protect access to internal state.
mutex mutex_;
// The head of a linked list of all implementations.
implementation_type* impl_list_;
// Flag to indicate that the dispatcher has been shut down.
bool shutdown_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/win_object_handle_service.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // defined(ASIO_HAS_WINDOWS_OBJECT_HANDLE)
#endif // ASIO_DETAIL_WIN_OBJECT_HANDLE_SERVICE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/io_uring_socket_recvmsg_op.hpp | //
// detail/io_uring_socket_recvmsg_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IO_URING_SOCKET_RECVMSG_OP_HPP
#define ASIO_DETAIL_IO_URING_SOCKET_RECVMSG_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_IO_URING)
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/io_uring_operation.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename MutableBufferSequence>
class io_uring_socket_recvmsg_op_base : public io_uring_operation
{
public:
io_uring_socket_recvmsg_op_base(const asio::error_code& success_ec,
socket_type socket, socket_ops::state_type state,
const MutableBufferSequence& buffers, socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, func_type complete_func)
: io_uring_operation(success_ec,
&io_uring_socket_recvmsg_op_base::do_prepare,
&io_uring_socket_recvmsg_op_base::do_perform, complete_func),
socket_(socket),
state_(state),
buffers_(buffers),
in_flags_(in_flags),
out_flags_(out_flags),
bufs_(buffers),
msghdr_()
{
msghdr_.msg_iov = bufs_.buffers();
msghdr_.msg_iovlen = static_cast<int>(bufs_.count());
}
static void do_prepare(io_uring_operation* base, ::io_uring_sqe* sqe)
{
ASIO_ASSUME(base != 0);
io_uring_socket_recvmsg_op_base* o(
static_cast<io_uring_socket_recvmsg_op_base*>(base));
if ((o->state_ & socket_ops::internal_non_blocking) != 0)
{
bool except_op = (o->in_flags_ & socket_base::message_out_of_band) != 0;
::io_uring_prep_poll_add(sqe, o->socket_, except_op ? POLLPRI : POLLIN);
}
else
{
::io_uring_prep_recvmsg(sqe, o->socket_, &o->msghdr_, o->in_flags_);
}
}
static bool do_perform(io_uring_operation* base, bool after_completion)
{
ASIO_ASSUME(base != 0);
io_uring_socket_recvmsg_op_base* o(
static_cast<io_uring_socket_recvmsg_op_base*>(base));
if ((o->state_ & socket_ops::internal_non_blocking) != 0)
{
bool except_op = (o->in_flags_ & socket_base::message_out_of_band) != 0;
if (after_completion || !except_op)
{
return socket_ops::non_blocking_recvmsg(o->socket_,
o->bufs_.buffers(), o->bufs_.count(), o->in_flags_,
o->out_flags_, o->ec_, o->bytes_transferred_);
}
}
else if (after_completion)
{
if (!o->ec_)
o->out_flags_ = o->msghdr_.msg_flags;
else
o->out_flags_ = 0;
}
if (o->ec_ && o->ec_ == asio::error::would_block)
{
o->state_ |= socket_ops::internal_non_blocking;
return false;
}
return after_completion;
}
private:
socket_type socket_;
socket_ops::state_type state_;
MutableBufferSequence buffers_;
socket_base::message_flags in_flags_;
socket_base::message_flags& out_flags_;
buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence> bufs_;
msghdr msghdr_;
};
template <typename MutableBufferSequence, typename Handler, typename IoExecutor>
class io_uring_socket_recvmsg_op
: public io_uring_socket_recvmsg_op_base<MutableBufferSequence>
{
public:
ASIO_DEFINE_HANDLER_PTR(io_uring_socket_recvmsg_op);
io_uring_socket_recvmsg_op(const asio::error_code& success_ec,
int socket, socket_ops::state_type state,
const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags,
Handler& handler, const IoExecutor& io_ex)
: io_uring_socket_recvmsg_op_base<MutableBufferSequence>(success_ec,
socket, state, buffers, in_flags, out_flags,
&io_uring_socket_recvmsg_op::do_complete),
handler_(static_cast<Handler&&>(handler)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
io_uring_socket_recvmsg_op* o
(static_cast<io_uring_socket_recvmsg_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_IO_URING)
#endif // ASIO_DETAIL_IO_URING_SOCKET_RECVMSG_OP_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/win_iocp_serial_port_service.hpp | //
// detail/win_iocp_serial_port_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. ([email protected])
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_WIN_IOCP_SERIAL_PORT_SERVICE_HPP
#define ASIO_DETAIL_WIN_IOCP_SERIAL_PORT_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_IOCP) && defined(ASIO_HAS_SERIAL_PORT)
#include <string>
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/win_iocp_handle_service.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Extend win_iocp_handle_service to provide serial port support.
class win_iocp_serial_port_service :
public execution_context_service_base<win_iocp_serial_port_service>
{
public:
// The native type of a serial port.
typedef win_iocp_handle_service::native_handle_type native_handle_type;
// The implementation type of the serial port.
typedef win_iocp_handle_service::implementation_type implementation_type;
// Constructor.
ASIO_DECL win_iocp_serial_port_service(execution_context& context);
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void shutdown();
// Construct a new serial port implementation.
void construct(implementation_type& impl)
{
handle_service_.construct(impl);
}
// Move-construct a new serial port implementation.
void move_construct(implementation_type& impl,
implementation_type& other_impl)
{
handle_service_.move_construct(impl, other_impl);
}
// Move-assign from another serial port implementation.
void move_assign(implementation_type& impl,
win_iocp_serial_port_service& other_service,
implementation_type& other_impl)
{
handle_service_.move_assign(impl,
other_service.handle_service_, other_impl);
}
// Destroy a serial port implementation.
void destroy(implementation_type& impl)
{
handle_service_.destroy(impl);
}
// Open the serial port using the specified device name.
ASIO_DECL asio::error_code open(implementation_type& impl,
const std::string& device, asio::error_code& ec);
// Assign a native handle to a serial port implementation.
asio::error_code assign(implementation_type& impl,
const native_handle_type& handle, asio::error_code& ec)
{
return handle_service_.assign(impl, handle, ec);
}
// Determine whether the serial port is open.
bool is_open(const implementation_type& impl) const
{
return handle_service_.is_open(impl);
}
// Destroy a serial port implementation.
asio::error_code close(implementation_type& impl,
asio::error_code& ec)
{
return handle_service_.close(impl, ec);
}
// Get the native serial port representation.
native_handle_type native_handle(implementation_type& impl)
{
return handle_service_.native_handle(impl);
}
// Cancel all operations associated with the handle.
asio::error_code cancel(implementation_type& impl,
asio::error_code& ec)
{
return handle_service_.cancel(impl, ec);
}
// Set an option on the serial port.
template <typename SettableSerialPortOption>
asio::error_code set_option(implementation_type& impl,
const SettableSerialPortOption& option, asio::error_code& ec)
{
return do_set_option(impl,
&win_iocp_serial_port_service::store_option<SettableSerialPortOption>,
&option, ec);
}
// Get an option from the serial port.
template <typename GettableSerialPortOption>
asio::error_code get_option(const implementation_type& impl,
GettableSerialPortOption& option, asio::error_code& ec) const
{
return do_get_option(impl,
&win_iocp_serial_port_service::load_option<GettableSerialPortOption>,
&option, ec);
}
// Send a break sequence to the serial port.
asio::error_code send_break(implementation_type&,
asio::error_code& ec)
{
ec = asio::error::operation_not_supported;
ASIO_ERROR_LOCATION(ec);
return ec;
}
// Write the given data. Returns the number of bytes sent.
template <typename ConstBufferSequence>
size_t write_some(implementation_type& impl,
const ConstBufferSequence& buffers, asio::error_code& ec)
{
return handle_service_.write_some(impl, buffers, ec);
}
// Start an asynchronous write. The data being written must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler, typename IoExecutor>
void async_write_some(implementation_type& impl,
const ConstBufferSequence& buffers,
Handler& handler, const IoExecutor& io_ex)
{
handle_service_.async_write_some(impl, buffers, handler, io_ex);
}
// Read some data. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t read_some(implementation_type& impl,
const MutableBufferSequence& buffers, asio::error_code& ec)
{
return handle_service_.read_some(impl, buffers, ec);
}
// Start an asynchronous read. The buffer for the data being received must be
// valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
typename Handler, typename IoExecutor>
void async_read_some(implementation_type& impl,
const MutableBufferSequence& buffers,
Handler& handler, const IoExecutor& io_ex)
{
handle_service_.async_read_some(impl, buffers, handler, io_ex);
}
private:
// Function pointer type for storing a serial port option.
typedef asio::error_code (*store_function_type)(
const void*, ::DCB&, asio::error_code&);
// Helper function template to store a serial port option.
template <typename SettableSerialPortOption>
static asio::error_code store_option(const void* option,
::DCB& storage, asio::error_code& ec)
{
static_cast<const SettableSerialPortOption*>(option)->store(storage, ec);
return ec;
}
// Helper function to set a serial port option.
ASIO_DECL asio::error_code do_set_option(
implementation_type& impl, store_function_type store,
const void* option, asio::error_code& ec);
// Function pointer type for loading a serial port option.
typedef asio::error_code (*load_function_type)(
void*, const ::DCB&, asio::error_code&);
// Helper function template to load a serial port option.
template <typename GettableSerialPortOption>
static asio::error_code load_option(void* option,
const ::DCB& storage, asio::error_code& ec)
{
static_cast<GettableSerialPortOption*>(option)->load(storage, ec);
return ec;
}
// Helper function to get a serial port option.
ASIO_DECL asio::error_code do_get_option(
const implementation_type& impl, load_function_type load,
void* option, asio::error_code& ec) const;
// The implementation used for initiating asynchronous operations.
win_iocp_handle_service handle_service_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/win_iocp_serial_port_service.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // defined(ASIO_HAS_IOCP) && defined(ASIO_HAS_SERIAL_PORT)
#endif // ASIO_DETAIL_WIN_IOCP_SERIAL_PORT_SERVICE_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/io_uring_null_buffers_op.hpp | //
// detail/io_uring_null_buffers_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IO_URING_NULL_BUFFERS_OP_HPP
#define ASIO_DETAIL_IO_URING_NULL_BUFFERS_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/io_uring_operation.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename IoExecutor>
class io_uring_null_buffers_op : public io_uring_operation
{
public:
ASIO_DEFINE_HANDLER_PTR(io_uring_null_buffers_op);
io_uring_null_buffers_op(const asio::error_code& success_ec,
int descriptor, int poll_flags, Handler& handler, const IoExecutor& io_ex)
: io_uring_operation(success_ec,
&io_uring_null_buffers_op::do_prepare,
&io_uring_null_buffers_op::do_perform,
&io_uring_null_buffers_op::do_complete),
handler_(static_cast<Handler&&>(handler)),
work_(handler_, io_ex),
descriptor_(descriptor),
poll_flags_(poll_flags)
{
}
static void do_prepare(io_uring_operation* base, ::io_uring_sqe* sqe)
{
ASIO_ASSUME(base != 0);
io_uring_null_buffers_op* o(static_cast<io_uring_null_buffers_op*>(base));
::io_uring_prep_poll_add(sqe, o->descriptor_, o->poll_flags_);
}
static bool do_perform(io_uring_operation*, bool after_completion)
{
return after_completion;
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
ASIO_ASSUME(base != 0);
io_uring_null_buffers_op* o(static_cast<io_uring_null_buffers_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
static_cast<handler_work<Handler, IoExecutor>&&>(
o->work_));
ASIO_ERROR_LOCATION(o->ec_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
int descriptor_;
int poll_flags_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_IO_URING_NULL_BUFFERS_OP_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/event.hpp | //
// detail/event.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EVENT_HPP
#define ASIO_DETAIL_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_THREADS)
# include "asio/detail/null_event.hpp"
#elif defined(ASIO_WINDOWS)
# include "asio/detail/win_event.hpp"
#elif defined(ASIO_HAS_PTHREADS)
# include "asio/detail/posix_event.hpp"
#else
# include "asio/detail/std_event.hpp"
#endif
namespace asio {
namespace detail {
#if !defined(ASIO_HAS_THREADS)
typedef null_event event;
#elif defined(ASIO_WINDOWS)
typedef win_event event;
#elif defined(ASIO_HAS_PTHREADS)
typedef posix_event event;
#else
typedef std_event event;
#endif
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_EVENT_HPP
|
0 | repos/asio/asio/include/asio | repos/asio/asio/include/asio/detail/object_pool.hpp | //
// detail/object_pool.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_OBJECT_POOL_HPP
#define ASIO_DETAIL_OBJECT_POOL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Object>
class object_pool;
class object_pool_access
{
public:
template <typename Object>
static Object* create()
{
return new Object;
}
template <typename Object, typename Arg>
static Object* create(Arg arg)
{
return new Object(arg);
}
template <typename Object>
static void destroy(Object* o)
{
delete o;
}
template <typename Object>
static Object*& next(Object* o)
{
return o->next_;
}
template <typename Object>
static Object*& prev(Object* o)
{
return o->prev_;
}
};
template <typename Object>
class object_pool
: private noncopyable
{
public:
// Constructor.
object_pool()
: live_list_(0),
free_list_(0)
{
}
// Destructor destroys all objects.
~object_pool()
{
destroy_list(live_list_);
destroy_list(free_list_);
}
// Get the object at the start of the live list.
Object* first()
{
return live_list_;
}
// Allocate a new object.
Object* alloc()
{
Object* o = free_list_;
if (o)
free_list_ = object_pool_access::next(free_list_);
else
o = object_pool_access::create<Object>();
object_pool_access::next(o) = live_list_;
object_pool_access::prev(o) = 0;
if (live_list_)
object_pool_access::prev(live_list_) = o;
live_list_ = o;
return o;
}
// Allocate a new object with an argument.
template <typename Arg>
Object* alloc(Arg arg)
{
Object* o = free_list_;
if (o)
free_list_ = object_pool_access::next(free_list_);
else
o = object_pool_access::create<Object>(arg);
object_pool_access::next(o) = live_list_;
object_pool_access::prev(o) = 0;
if (live_list_)
object_pool_access::prev(live_list_) = o;
live_list_ = o;
return o;
}
// Free an object. Moves it to the free list. No destructors are run.
void free(Object* o)
{
if (live_list_ == o)
live_list_ = object_pool_access::next(o);
if (object_pool_access::prev(o))
{
object_pool_access::next(object_pool_access::prev(o))
= object_pool_access::next(o);
}
if (object_pool_access::next(o))
{
object_pool_access::prev(object_pool_access::next(o))
= object_pool_access::prev(o);
}
object_pool_access::next(o) = free_list_;
object_pool_access::prev(o) = 0;
free_list_ = o;
}
private:
// Helper function to destroy all elements in a list.
void destroy_list(Object* list)
{
while (list)
{
Object* o = list;
list = object_pool_access::next(o);
object_pool_access::destroy(o);
}
}
// The list of live objects.
Object* live_list_;
// The free list.
Object* free_list_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_OBJECT_POOL_HPP
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.