Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/TextDiagnosticPrinter.h | //===--- TextDiagnosticPrinter.h - Text Diagnostic Client -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a concrete diagnostic client, which prints the diagnostics to
// standard error.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_TEXTDIAGNOSTICPRINTER_H
#define LLVM_CLANG_FRONTEND_TEXTDIAGNOSTICPRINTER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include <memory>
namespace clang {
class DiagnosticOptions;
class LangOptions;
class TextDiagnostic;
class TextDiagnosticPrinter : public DiagnosticConsumer {
raw_ostream &OS;
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
/// \brief Handle to the currently active text diagnostic emitter.
std::unique_ptr<TextDiagnostic> TextDiag;
/// A string to prefix to error messages.
std::string Prefix;
unsigned OwnsOutputStream : 1;
public:
TextDiagnosticPrinter(raw_ostream &os, DiagnosticOptions *diags,
bool OwnsOutputStream = false);
~TextDiagnosticPrinter() override;
/// setPrefix - Set the diagnostic printer prefix string, which will be
/// printed at the start of any diagnostics. If empty, no prefix string is
/// used.
// HLSL Change: add override
void setPrefix(std::string Value) override { Prefix = Value; }
void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override;
void EndSourceFile() override;
void HandleDiagnostic(DiagnosticsEngine::Level Level,
const Diagnostic &Info) override;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/TextDiagnosticBuffer.h | //===--- TextDiagnosticBuffer.h - Buffer Text Diagnostics -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a concrete diagnostic client, which buffers the diagnostic messages.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_TEXTDIAGNOSTICBUFFER_H
#define LLVM_CLANG_FRONTEND_TEXTDIAGNOSTICBUFFER_H
#include "clang/Basic/Diagnostic.h"
#include <vector>
namespace clang {
class Preprocessor;
class SourceManager;
class TextDiagnosticBuffer : public DiagnosticConsumer {
public:
typedef std::vector<std::pair<SourceLocation, std::string> > DiagList;
typedef DiagList::iterator iterator;
typedef DiagList::const_iterator const_iterator;
private:
DiagList Errors, Warnings, Remarks, Notes;
public:
const_iterator err_begin() const { return Errors.begin(); }
const_iterator err_end() const { return Errors.end(); }
const_iterator warn_begin() const { return Warnings.begin(); }
const_iterator warn_end() const { return Warnings.end(); }
const_iterator remark_begin() const { return Remarks.begin(); }
const_iterator remark_end() const { return Remarks.end(); }
const_iterator note_begin() const { return Notes.begin(); }
const_iterator note_end() const { return Notes.end(); }
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
/// FlushDiagnostics - Flush the buffered diagnostics to an given
/// diagnostic engine.
void FlushDiagnostics(DiagnosticsEngine &Diags) const;
};
} // end namspace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/ASTConsumers.h | //===--- ASTConsumers.h - ASTConsumer implementations -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AST Consumers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_ASTCONSUMERS_H
#define LLVM_CLANG_FRONTEND_ASTCONSUMERS_H
#include "clang/Basic/LLVM.h"
#include <memory>
namespace clang {
class ASTConsumer;
class CodeGenOptions;
class DiagnosticsEngine;
class FileManager;
class LangOptions;
class Preprocessor;
class TargetOptions;
// AST pretty-printer: prints out the AST in a format that is close to the
// original C code. The output is intended to be in a format such that
// clang could re-parse the output back into the same AST, but the
// implementation is still incomplete.
std::unique_ptr<ASTConsumer> CreateASTPrinter(raw_ostream *OS,
StringRef FilterString);
// AST dumper: dumps the raw AST in human-readable form to stderr; this is
// intended for debugging.
std::unique_ptr<ASTConsumer> CreateASTDumper(raw_ostream *OS, // HLSL Change - explicit output stream
StringRef FilterString,
bool DumpDecls,
bool DumpLookups);
// AST Decl node lister: prints qualified names of all filterable AST Decl
// nodes.
std::unique_ptr<ASTConsumer> CreateASTDeclNodeLister();
// Graphical AST viewer: for each function definition, creates a graph of
// the AST and displays it with the graph viewer "dotty". Also outputs
// function declarations to stderr.
std::unique_ptr<ASTConsumer> CreateASTViewer();
// DeclContext printer: prints out the DeclContext tree in human-readable form
// to stderr; this is intended for debugging.
std::unique_ptr<ASTConsumer> CreateDeclContextPrinter();
} // end clang namespace
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/PreprocessorOutputOptions.h | //===--- PreprocessorOutputOptions.h ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_PREPROCESSOROUTPUTOPTIONS_H
#define LLVM_CLANG_FRONTEND_PREPROCESSOROUTPUTOPTIONS_H
namespace clang {
/// PreprocessorOutputOptions - Options for controlling the C preprocessor
/// output (e.g., -E).
class PreprocessorOutputOptions {
public:
unsigned ShowCPP : 1; ///< Print normal preprocessed output.
unsigned ShowComments : 1; ///< Show comments.
unsigned ShowLineMarkers : 1; ///< Show \#line markers.
unsigned UseLineDirectives : 1; ///< Use \#line instead of GCC-style \# N.
unsigned ShowMacroComments : 1; ///< Show comments, even in macros.
unsigned ShowMacros : 1; ///< Print macro definitions.
unsigned RewriteIncludes : 1; ///< Preprocess include directives only.
public:
PreprocessorOutputOptions() {
ShowCPP = 0;
ShowComments = 0;
ShowLineMarkers = 1;
UseLineDirectives = 0;
ShowMacroComments = 0;
ShowMacros = 0;
RewriteIncludes = 0;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/DiagnosticRenderer.h | //===--- DiagnosticRenderer.h - Diagnostic Pretty-Printing ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a utility class that provides support for pretty-printing of
// diagnostics. It is used to implement the different code paths which require
// such functionality in a consistent way.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_DIAGNOSTICRENDERER_H
#define LLVM_CLANG_FRONTEND_DIAGNOSTICRENDERER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
namespace clang {
class DiagnosticOptions;
class LangOptions;
class SourceManager;
typedef llvm::PointerUnion<const Diagnostic *,
const StoredDiagnostic *> DiagOrStoredDiag;
/// \brief Class to encapsulate the logic for formatting a diagnostic message.
///
/// Actual "printing" logic is implemented by subclasses.
///
/// This class provides an interface for building and emitting
/// diagnostic, including all of the macro backtraces, caret diagnostics, FixIt
/// Hints, and code snippets. In the presence of macros this involves
/// a recursive process, synthesizing notes for each macro expansion.
///
/// A brief worklist:
/// FIXME: Sink the recursive printing of template instantiations into this
/// class.
class DiagnosticRenderer {
protected:
const LangOptions &LangOpts;
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
/// \brief The location of the previous diagnostic if known.
///
/// This will be invalid in cases where there is no (known) previous
/// diagnostic location, or that location itself is invalid or comes from
/// a different source manager than SM.
SourceLocation LastLoc;
/// \brief The location of the last include whose stack was printed if known.
///
/// Same restriction as LastLoc essentially, but tracking include stack
/// root locations rather than diagnostic locations.
SourceLocation LastIncludeLoc;
/// \brief The level of the last diagnostic emitted.
///
/// The level of the last diagnostic emitted. Used to detect level changes
/// which change the amount of information displayed.
DiagnosticsEngine::Level LastLevel;
DiagnosticRenderer(const LangOptions &LangOpts,
DiagnosticOptions *DiagOpts);
virtual ~DiagnosticRenderer();
virtual void emitDiagnosticMessage(SourceLocation Loc, PresumedLoc PLoc,
DiagnosticsEngine::Level Level,
StringRef Message,
ArrayRef<CharSourceRange> Ranges,
const SourceManager *SM,
DiagOrStoredDiag Info) = 0;
virtual void emitDiagnosticLoc(SourceLocation Loc, PresumedLoc PLoc,
DiagnosticsEngine::Level Level,
ArrayRef<CharSourceRange> Ranges,
const SourceManager &SM) = 0;
virtual void emitCodeContext(SourceLocation Loc,
DiagnosticsEngine::Level Level,
SmallVectorImpl<CharSourceRange>& Ranges,
ArrayRef<FixItHint> Hints,
const SourceManager &SM) = 0;
virtual void emitIncludeLocation(SourceLocation Loc, PresumedLoc PLoc,
const SourceManager &SM) = 0;
virtual void emitImportLocation(SourceLocation Loc, PresumedLoc PLoc,
StringRef ModuleName,
const SourceManager &SM) = 0;
virtual void emitBuildingModuleLocation(SourceLocation Loc, PresumedLoc PLoc,
StringRef ModuleName,
const SourceManager &SM) = 0;
virtual void beginDiagnostic(DiagOrStoredDiag D,
DiagnosticsEngine::Level Level) {}
virtual void endDiagnostic(DiagOrStoredDiag D,
DiagnosticsEngine::Level Level) {}
private:
void emitBasicNote(StringRef Message);
void emitIncludeStack(SourceLocation Loc, PresumedLoc PLoc,
DiagnosticsEngine::Level Level, const SourceManager &SM);
void emitIncludeStackRecursively(SourceLocation Loc, const SourceManager &SM);
void emitImportStack(SourceLocation Loc, const SourceManager &SM);
void emitImportStackRecursively(SourceLocation Loc, StringRef ModuleName,
const SourceManager &SM);
void emitModuleBuildStack(const SourceManager &SM);
void emitCaret(SourceLocation Loc, DiagnosticsEngine::Level Level,
ArrayRef<CharSourceRange> Ranges, ArrayRef<FixItHint> Hints,
const SourceManager &SM);
void emitMacroExpansions(SourceLocation Loc,
DiagnosticsEngine::Level Level,
ArrayRef<CharSourceRange> Ranges,
ArrayRef<FixItHint> Hints,
const SourceManager &SM,
unsigned &MacroDepth,
unsigned OnMacroInst = 0);
public:
/// \brief Emit a diagnostic.
///
/// This is the primary entry point for emitting diagnostic messages.
/// It handles formatting and rendering the message as well as any ancillary
/// information needed based on macros whose expansions impact the
/// diagnostic.
///
/// \param Loc The location for this caret.
/// \param Level The level of the diagnostic to be emitted.
/// \param Message The diagnostic message to emit.
/// \param Ranges The underlined ranges for this code snippet.
/// \param FixItHints The FixIt hints active for this diagnostic.
/// \param SM The SourceManager; will be null if the diagnostic came from the
/// frontend, thus \p Loc will be invalid.
void emitDiagnostic(SourceLocation Loc, DiagnosticsEngine::Level Level,
StringRef Message, ArrayRef<CharSourceRange> Ranges,
ArrayRef<FixItHint> FixItHints,
const SourceManager *SM,
DiagOrStoredDiag D = (Diagnostic *)nullptr);
void emitStoredDiagnostic(StoredDiagnostic &Diag);
};
/// Subclass of DiagnosticRender that turns all subdiagostics into explicit
/// notes. It is up to subclasses to further define the behavior.
class DiagnosticNoteRenderer : public DiagnosticRenderer {
public:
DiagnosticNoteRenderer(const LangOptions &LangOpts,
DiagnosticOptions *DiagOpts)
: DiagnosticRenderer(LangOpts, DiagOpts) {}
~DiagnosticNoteRenderer() override;
void emitIncludeLocation(SourceLocation Loc, PresumedLoc PLoc,
const SourceManager &SM) override;
void emitImportLocation(SourceLocation Loc, PresumedLoc PLoc,
StringRef ModuleName,
const SourceManager &SM) override;
void emitBuildingModuleLocation(SourceLocation Loc, PresumedLoc PLoc,
StringRef ModuleName,
const SourceManager &SM) override;
virtual void emitNote(SourceLocation Loc, StringRef Message,
const SourceManager *SM) = 0;
};
} // end clang namespace
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/FrontendActions.h | //===-- FrontendActions.h - Useful Frontend Actions -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_FRONTENDACTIONS_H
#define LLVM_CLANG_FRONTEND_FRONTENDACTIONS_H
#include "clang/Frontend/FrontendAction.h"
#include <string>
#include <vector>
// HLSL Change Begin.
namespace hlsl {
class RootSignatureHandle;
}
// HLSL Change End.
namespace clang {
class Module;
class FileEntry;
//===----------------------------------------------------------------------===//
// Custom Consumer Actions
//===----------------------------------------------------------------------===//
class InitOnlyAction : public FrontendAction {
void ExecuteAction() override;
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
public:
// Don't claim to only use the preprocessor, we want to follow the AST path,
// but do nothing.
bool usesPreprocessorOnly() const override { return false; }
};
//===----------------------------------------------------------------------===//
// AST Consumer Actions
//===----------------------------------------------------------------------===//
class ASTPrintAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class ASTDumpAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class ASTDeclListAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class ASTViewAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class DeclContextPrintAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class GeneratePCHAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
TranslationUnitKind getTranslationUnitKind() override {
return TU_Prefix;
}
bool hasASTFileSupport() const override { return false; }
public:
/// \brief Compute the AST consumer arguments that will be used to
/// create the PCHGenerator instance returned by CreateASTConsumer.
///
/// \returns true if an error occurred, false otherwise.
static raw_pwrite_stream *
ComputeASTConsumerArguments(CompilerInstance &CI, StringRef InFile,
std::string &Sysroot, std::string &OutputFile);
};
class GenerateModuleAction : public ASTFrontendAction {
clang::Module *Module;
const FileEntry *ModuleMapForUniquing;
bool IsSystem;
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
TranslationUnitKind getTranslationUnitKind() override {
return TU_Module;
}
bool hasASTFileSupport() const override { return false; }
public:
GenerateModuleAction(const FileEntry *ModuleMap = nullptr,
bool IsSystem = false)
: ASTFrontendAction(), ModuleMapForUniquing(ModuleMap), IsSystem(IsSystem)
{ }
bool BeginSourceFileAction(CompilerInstance &CI, StringRef Filename) override;
/// \brief Compute the AST consumer arguments that will be used to
/// create the PCHGenerator instance returned by CreateASTConsumer.
///
/// \returns true if an error occurred, false otherwise.
raw_pwrite_stream *ComputeASTConsumerArguments(CompilerInstance &CI,
StringRef InFile,
std::string &Sysroot,
std::string &OutputFile);
};
class SyntaxOnlyAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
public:
bool hasCodeCompletionSupport() const override { return true; }
};
#if 0 // HLSL change - no support for modules or PCH
/// \brief Dump information about the given module file, to be used for
/// basic debugging and discovery.
class DumpModuleInfoAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
void ExecuteAction() override;
public:
bool hasPCHSupport() const override { return false; }
bool hasASTFileSupport() const override { return true; }
bool hasIRSupport() const override { return false; }
bool hasCodeCompletionSupport() const override { return false; }
};
class VerifyPCHAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
void ExecuteAction() override;
public:
bool hasCodeCompletionSupport() const override { return false; }
};
#endif // HLSL changes
/**
* \brief Frontend action adaptor that merges ASTs together.
*
* This action takes an existing AST file and "merges" it into the AST
* context, producing a merged context. This action is an action
* adaptor, which forwards most of its calls to another action that
* will consume the merged context.
*/
class ASTMergeAction : public FrontendAction {
/// \brief The action that the merge action adapts.
FrontendAction *AdaptedAction;
/// \brief The set of AST files to merge.
std::vector<std::string> ASTFiles;
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
bool BeginSourceFileAction(CompilerInstance &CI,
StringRef Filename) override;
void ExecuteAction() override;
void EndSourceFileAction() override;
public:
ASTMergeAction(FrontendAction *AdaptedAction, ArrayRef<std::string> ASTFiles);
~ASTMergeAction() override;
bool usesPreprocessorOnly() const override;
TranslationUnitKind getTranslationUnitKind() override;
bool hasPCHSupport() const override;
bool hasASTFileSupport() const override;
bool hasCodeCompletionSupport() const override;
};
class PrintPreambleAction : public FrontendAction {
protected:
void ExecuteAction() override;
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &,
StringRef) override {
return nullptr;
}
bool usesPreprocessorOnly() const override { return true; }
};
//===----------------------------------------------------------------------===//
// Preprocessor Actions
// //
///////////////////////////////////////////////////////////////////////////////
class DumpRawTokensAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class DumpTokensAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class GeneratePTHAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class PreprocessOnlyAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class PrintPreprocessedAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
bool hasPCHSupport() const override { return true; }
};
// HLSL Change Begin.
class HLSLRootSignatureAction : public PreprocessorFrontendAction {
private:
std::string HLSLRootSignatureMacro;
unsigned rootSigMajor;
unsigned rootSigMinor;
std::unique_ptr<hlsl::RootSignatureHandle> rootSigHandle;
protected:
void ExecuteAction() override;
public:
HLSLRootSignatureAction(llvm::StringRef rootSigMacro, unsigned major,
unsigned minor);
/// Take the generated LLVM module, for use after the action has been run.
/// The result may be null on failure.
std::unique_ptr<hlsl::RootSignatureHandle> takeRootSigHandle();
};
// HLSL Change End.
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/Utils.h | //===--- Utils.h - Misc utilities for the front-end -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains miscellaneous utilities for various front-end actions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_UTILS_H
#define LLVM_CLANG_FRONTEND_UTILS_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Option/OptSpecifier.h"
namespace llvm {
class raw_fd_ostream;
class Triple;
namespace opt {
class ArgList;
}
}
namespace clang {
class ASTConsumer;
class ASTReader;
class CompilerInstance;
class CompilerInvocation;
class Decl;
class DependencyOutputOptions;
class DiagnosticsEngine;
class DiagnosticOptions;
class ExternalSemaSource;
class FileManager;
class HeaderSearch;
class HeaderSearchOptions;
class IdentifierTable;
class LangOptions;
class PCHContainerReader;
class Preprocessor;
class PreprocessorOptions;
class PreprocessorOutputOptions;
class SourceManager;
class Stmt;
class TargetInfo;
class FrontendOptions;
/// Apply the header search options to get given HeaderSearch object.
void ApplyHeaderSearchOptions(HeaderSearch &HS,
const HeaderSearchOptions &HSOpts,
const LangOptions &Lang,
const llvm::Triple &triple);
/// InitializePreprocessor - Initialize the preprocessor getting it and the
/// environment ready to process a single file.
void InitializePreprocessor(Preprocessor &PP, const PreprocessorOptions &PPOpts,
const PCHContainerReader &PCHContainerRdr,
const FrontendOptions &FEOpts);
/// DoPrintPreprocessedInput - Implement -E mode.
void DoPrintPreprocessedInput(Preprocessor &PP, raw_ostream* OS,
const PreprocessorOutputOptions &Opts);
/// An interface for collecting the dependencies of a compilation. Users should
/// use \c attachToPreprocessor and \c attachToASTReader to get all of the
/// dependencies.
// FIXME: Migrate DependencyFileGen, DependencyGraphGen, ModuleDepCollectory to
// use this interface.
class DependencyCollector {
public:
void attachToPreprocessor(Preprocessor &PP);
void attachToASTReader(ASTReader &R);
llvm::ArrayRef<std::string> getDependencies() const { return Dependencies; }
/// Called when a new file is seen. Return true if \p Filename should be added
/// to the list of dependencies.
///
/// The default implementation ignores <built-in> and system files.
virtual bool sawDependency(StringRef Filename, bool FromModule,
bool IsSystem, bool IsModuleFile, bool IsMissing);
/// Called when the end of the main file is reached.
virtual void finishedMainFile() { }
/// Return true if system files should be passed to sawDependency().
virtual bool needSystemDependencies() { return false; }
virtual ~DependencyCollector();
public: // implementation detail
/// Add a dependency \p Filename if it has not been seen before and
/// sawDependency() returns true.
void maybeAddDependency(StringRef Filename, bool FromModule, bool IsSystem,
bool IsModuleFile, bool IsMissing);
private:
llvm::StringSet<> Seen;
std::vector<std::string> Dependencies;
};
/// Builds a depdenency file when attached to a Preprocessor (for includes) and
/// ASTReader (for module imports), and writes it out at the end of processing
/// a source file. Users should attach to the ast reader whenever a module is
/// loaded.
class DependencyFileGenerator {
void *Impl; // Opaque implementation
DependencyFileGenerator(void *Impl);
public:
static DependencyFileGenerator *CreateAndAttachToPreprocessor(
Preprocessor &PP, const DependencyOutputOptions &Opts);
void AttachToASTReader(ASTReader &R);
};
/// Collects the dependencies for imported modules into a directory. Users
/// should attach to the AST reader whenever a module is loaded.
class ModuleDependencyCollector {
std::string DestDir;
bool HasErrors;
llvm::StringSet<> Seen;
vfs::YAMLVFSWriter VFSWriter;
public:
StringRef getDest() { return DestDir; }
bool insertSeen(StringRef Filename) { return Seen.insert(Filename).second; }
void setHasErrors() { HasErrors = true; }
void addFileMapping(StringRef VPath, StringRef RPath) {
VFSWriter.addFileMapping(VPath, RPath);
}
void attachToASTReader(ASTReader &R);
void writeFileMap();
bool hasErrors() { return HasErrors; }
ModuleDependencyCollector(std::string DestDir)
: DestDir(DestDir), HasErrors(false) {}
~ModuleDependencyCollector() { writeFileMap(); }
};
/// AttachDependencyGraphGen - Create a dependency graph generator, and attach
/// it to the given preprocessor.
void AttachDependencyGraphGen(Preprocessor &PP, StringRef OutputFile,
StringRef SysRoot);
/// AttachHeaderIncludeGen - Create a header include list generator, and attach
/// it to the given preprocessor.
///
/// \param ShowAllHeaders - If true, show all header information instead of just
/// headers following the predefines buffer. This is useful for making sure
/// includes mentioned on the command line are also reported, but differs from
/// the default behavior used by -H.
/// \param OutputPath - If non-empty, a path to write the header include
/// information to, instead of writing to stderr.
/// \param ShowDepth - Whether to indent to show the nesting of the includes.
/// \param MSStyle - Whether to print in cl.exe /showIncludes style.
void AttachHeaderIncludeGen(Preprocessor &PP, bool ShowAllHeaders = false,
StringRef OutputPath = "",
bool ShowDepth = true, bool MSStyle = false);
/// Cache tokens for use with PCH. Note that this requires a seekable stream.
void CacheTokens(Preprocessor &PP, raw_pwrite_stream *OS);
/// The ChainedIncludesSource class converts headers to chained PCHs in
/// memory, mainly for testing.
IntrusiveRefCntPtr<ExternalSemaSource>
createChainedIncludesSource(CompilerInstance &CI,
IntrusiveRefCntPtr<ExternalSemaSource> &Reader);
/// createInvocationFromCommandLine - Construct a compiler invocation object for
/// a command line argument vector.
///
/// \return A CompilerInvocation, or 0 if none was built for the given
/// argument vector.
CompilerInvocation *
createInvocationFromCommandLine(ArrayRef<const char *> Args,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags =
IntrusiveRefCntPtr<DiagnosticsEngine>());
/// Return the value of the last argument as an integer, or a default. If Diags
/// is non-null, emits an error if the argument is given, but non-integral.
int getLastArgIntValue(const llvm::opt::ArgList &Args,
llvm::opt::OptSpecifier Id, int Default,
DiagnosticsEngine *Diags = nullptr);
inline int getLastArgIntValue(const llvm::opt::ArgList &Args,
llvm::opt::OptSpecifier Id, int Default,
DiagnosticsEngine &Diags) {
return getLastArgIntValue(Args, Id, Default, &Diags);
}
uint64_t getLastArgUInt64Value(const llvm::opt::ArgList &Args,
llvm::opt::OptSpecifier Id, uint64_t Default,
DiagnosticsEngine *Diags = nullptr);
inline uint64_t getLastArgUInt64Value(const llvm::opt::ArgList &Args,
llvm::opt::OptSpecifier Id,
uint64_t Default,
DiagnosticsEngine &Diags) {
return getLastArgUInt64Value(Args, Id, Default, &Diags);
}
// When Clang->getFrontendOpts().DisableFree is set we don't delete some of the
// global objects, but we don't want LeakDetectors to complain, so we bury them
// in a globally visible array.
void BuryPointer(const void *Ptr);
template <typename T> void BuryPointer(std::unique_ptr<T> Ptr) {
BuryPointer(Ptr.release());
}
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/FrontendOptions.h | //===--- FrontendOptions.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_FRONTENDOPTIONS_H
#define LLVM_CLANG_FRONTEND_FRONTENDOPTIONS_H
#include "clang/Frontend/CommandLineSourceLoc.h"
#include "clang/Sema/CodeCompleteOptions.h"
#include "llvm/ADT/StringRef.h"
#include <string>
#include <vector>
namespace llvm {
class MemoryBuffer;
}
namespace clang {
namespace frontend {
enum ActionKind {
ASTDeclList, ///< Parse ASTs and list Decl nodes.
ASTDump, ///< Parse ASTs and dump them.
ASTPrint, ///< Parse ASTs and print them.
ASTView, ///< Parse ASTs and view them in Graphviz.
DumpRawTokens, ///< Dump out raw tokens.
DumpTokens, ///< Dump out preprocessed tokens.
EmitAssembly, ///< Emit a .s file.
EmitBC, ///< Emit a .bc file.
EmitHTML, ///< Translate input source into HTML.
EmitLLVM, ///< Emit a .ll file.
EmitLLVMOnly, ///< Generate LLVM IR, but do not emit anything.
EmitCodeGenOnly, ///< Generate machine code, but don't emit anything.
EmitObj, ///< Emit a .o file.
FixIt, ///< Parse and apply any fixits to the source.
GenerateModule, ///< Generate pre-compiled module.
GeneratePCH, ///< Generate pre-compiled header.
GeneratePTH, ///< Generate pre-tokenized header.
InitOnly, ///< Only execute frontend initialization.
ModuleFileInfo, ///< Dump information about a module file.
VerifyPCH, ///< Load and verify that a PCH file is usable.
ParseSyntaxOnly, ///< Parse and perform semantic analysis.
PluginAction, ///< Run a plugin action, \see ActionName.
PrintDeclContext, ///< Print DeclContext and their Decls.
PrintPreamble, ///< Print the "preamble" of the input file
PrintPreprocessedInput, ///< -E mode.
RewriteMacros, ///< Expand macros but not \#includes.
RewriteObjC, ///< ObjC->C Rewriter.
RewriteTest, ///< Rewriter playground
RunAnalysis, ///< Run one or more source code analyses.
MigrateSource, ///< Run migrator.
RunPreprocessorOnly ///< Just lex, no output.
};
}
enum InputKind {
IK_None,
IK_Asm,
IK_C,
IK_CXX,
IK_ObjC,
IK_ObjCXX,
IK_PreprocessedC,
IK_PreprocessedCXX,
IK_PreprocessedObjC,
IK_PreprocessedObjCXX,
IK_OpenCL,
IK_HLSL, // HLSL Change: Enum for files with input kind hlsl
IK_CUDA,
IK_PreprocessedCuda,
IK_AST,
IK_LLVM_IR
};
/// \brief An input file for the front end.
class FrontendInputFile {
/// \brief The file name, or "-" to read from standard input.
std::string File;
llvm::MemoryBuffer *Buffer;
/// \brief The kind of input, e.g., C source, AST file, LLVM IR.
InputKind Kind;
/// \brief Whether we're dealing with a 'system' input (vs. a 'user' input).
bool IsSystem;
public:
FrontendInputFile() : Buffer(nullptr), Kind(IK_None) { }
FrontendInputFile(StringRef File, InputKind Kind, bool IsSystem = false)
: File(File.str()), Buffer(nullptr), Kind(Kind), IsSystem(IsSystem) { }
FrontendInputFile(llvm::MemoryBuffer *buffer, InputKind Kind,
bool IsSystem = false)
: Buffer(buffer), Kind(Kind), IsSystem(IsSystem) { }
InputKind getKind() const { return Kind; }
bool isSystem() const { return IsSystem; }
bool isEmpty() const { return File.empty() && Buffer == nullptr; }
bool isFile() const { return !isBuffer(); }
bool isBuffer() const { return Buffer != nullptr; }
StringRef getFile() const {
assert(isFile());
return File;
}
llvm::MemoryBuffer *getBuffer() const {
assert(isBuffer());
return Buffer;
}
};
/// FrontendOptions - Options for controlling the behavior of the frontend.
class FrontendOptions {
public:
unsigned DisableFree : 1; ///< Disable memory freeing on exit.
unsigned RelocatablePCH : 1; ///< When generating PCH files,
/// instruct the AST writer to create
/// relocatable PCH files.
unsigned ShowHelp : 1; ///< Show the -help text.
unsigned ShowStats : 1; ///< Show frontend performance
/// metrics and statistics.
unsigned ShowTimers : 1; ///< Show timers for individual
/// actions.
unsigned TimeTrace : 1; /// HLSL Change
/// Output time trace profile.
unsigned ShowVersion : 1; ///< Show the -version text.
unsigned FixWhatYouCan : 1; ///< Apply fixes even if there are
/// unfixable errors.
unsigned FixOnlyWarnings : 1; ///< Apply fixes only for warnings.
unsigned FixAndRecompile : 1; ///< Apply fixes and recompile.
unsigned FixToTemporaries : 1; ///< Apply fixes to temporary files.
unsigned ARCMTMigrateEmitARCErrors : 1; /// Emit ARC errors even if the
/// migrator can fix them
unsigned SkipFunctionBodies : 1; ///< Skip over function bodies to
/// speed up parsing in cases you do
/// not need them (e.g. with code
/// completion).
unsigned UseGlobalModuleIndex : 1; ///< Whether we can use the
///< global module index if available.
unsigned GenerateGlobalModuleIndex : 1; ///< Whether we can generate the
///< global module index if needed.
unsigned ASTDumpDecls : 1; ///< Whether we include declaration
///< dumps in AST dumps.
unsigned ASTDumpLookups : 1; ///< Whether we include lookup table
///< dumps in AST dumps.
CodeCompleteOptions CodeCompleteOpts;
enum {
ARCMT_None,
ARCMT_Check,
ARCMT_Modify,
ARCMT_Migrate
} ARCMTAction;
enum {
ObjCMT_None = 0,
/// \brief Enable migration to modern ObjC literals.
ObjCMT_Literals = 0x1,
/// \brief Enable migration to modern ObjC subscripting.
ObjCMT_Subscripting = 0x2,
/// \brief Enable migration to modern ObjC readonly property.
ObjCMT_ReadonlyProperty = 0x4,
/// \brief Enable migration to modern ObjC readwrite property.
ObjCMT_ReadwriteProperty = 0x8,
/// \brief Enable migration to modern ObjC property.
ObjCMT_Property = (ObjCMT_ReadonlyProperty | ObjCMT_ReadwriteProperty),
/// \brief Enable annotation of ObjCMethods of all kinds.
ObjCMT_Annotation = 0x10,
/// \brief Enable migration of ObjC methods to 'instancetype'.
ObjCMT_Instancetype = 0x20,
/// \brief Enable migration to NS_ENUM/NS_OPTIONS macros.
ObjCMT_NsMacros = 0x40,
/// \brief Enable migration to add conforming protocols.
ObjCMT_ProtocolConformance = 0x80,
/// \brief prefer 'atomic' property over 'nonatomic'.
ObjCMT_AtomicProperty = 0x100,
/// \brief annotate property with NS_RETURNS_INNER_POINTER
ObjCMT_ReturnsInnerPointerProperty = 0x200,
/// \brief use NS_NONATOMIC_IOSONLY for property 'atomic' attribute
ObjCMT_NsAtomicIOSOnlyProperty = 0x400,
/// \brief Enable inferring NS_DESIGNATED_INITIALIZER for ObjC methods.
ObjCMT_DesignatedInitializer = 0x800,
/// \brief Enable converting setter/getter expressions to property-dot syntx.
ObjCMT_PropertyDotSyntax = 0x1000,
ObjCMT_MigrateDecls = (ObjCMT_ReadonlyProperty | ObjCMT_ReadwriteProperty |
ObjCMT_Annotation | ObjCMT_Instancetype |
ObjCMT_NsMacros | ObjCMT_ProtocolConformance |
ObjCMT_NsAtomicIOSOnlyProperty |
ObjCMT_DesignatedInitializer),
ObjCMT_MigrateAll = (ObjCMT_Literals | ObjCMT_Subscripting |
ObjCMT_MigrateDecls | ObjCMT_PropertyDotSyntax)
};
unsigned ObjCMTAction;
std::string ObjCMTWhiteListPath;
std::string MTMigrateDir;
std::string ARCMTMigrateReportOut;
/// The input files and their types.
std::vector<FrontendInputFile> Inputs;
/// The output file, if any.
std::string OutputFile;
/// If given, the new suffix for fix-it rewritten files.
std::string FixItSuffix;
/// If given, filter dumped AST Decl nodes by this substring.
std::string ASTDumpFilter;
/// If given, enable code completion at the provided location.
ParsedSourceLocation CodeCompletionAt;
/// The frontend action to perform.
frontend::ActionKind ProgramAction;
/// The name of the action to run when using a plugin action.
std::string ActionName;
/// Args to pass to the plugin
std::vector<std::string> PluginArgs;
/// The list of plugin actions to run in addition to the normal action.
std::vector<std::string> AddPluginActions;
/// Args to pass to the additional plugins
std::vector<std::vector<std::string> > AddPluginArgs;
/// The list of plugins to load.
std::vector<std::string> Plugins;
/// \brief The list of module map files to load before processing the input.
std::vector<std::string> ModuleMapFiles;
/// \brief The list of additional prebuilt module files to load before
/// processing the input.
std::vector<std::string> ModuleFiles;
/// \brief The list of AST files to merge.
std::vector<std::string> ASTMergeFiles;
/// \brief A list of arguments to forward to LLVM's option processing; this
/// should only be used for debugging and experimental features.
std::vector<std::string> LLVMArgs;
/// \brief File name of the file that will provide record layouts
/// (in the format produced by -fdump-record-layouts).
std::string OverrideRecordLayoutsFile;
/// If given, the minimum time granularity (in microseconds) traced by
/// time profiler is set to this value.
unsigned TimeTraceGranularity;
public:
FrontendOptions() :
DisableFree(false), RelocatablePCH(false), ShowHelp(false),
// HLSL Change Begin - Support hierarchial time tracing.
ShowStats(false), ShowTimers(false), TimeTrace(false), ShowVersion(false),
// HLSL Change End - Support hierarchial time tracing.
FixWhatYouCan(false), FixOnlyWarnings(false), FixAndRecompile(false),
FixToTemporaries(false), ARCMTMigrateEmitARCErrors(false),
SkipFunctionBodies(false), UseGlobalModuleIndex(true),
GenerateGlobalModuleIndex(true), ASTDumpDecls(false), ASTDumpLookups(false),
ARCMTAction(ARCMT_None), ObjCMTAction(ObjCMT_None),
ProgramAction(frontend::ParseSyntaxOnly)
{}
/// getInputKindForExtension - Return the appropriate input kind for a file
/// extension. For example, "c" would return IK_C.
///
/// \return The input kind for the extension, or IK_None if the extension is
/// not recognized.
static InputKind getInputKindForExtension(StringRef Extension);
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/FrontendAction.h | //===-- FrontendAction.h - Generic Frontend Action Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::FrontendAction interface and various convenience
/// abstract classes (clang::ASTFrontendAction, clang::PluginASTAction,
/// clang::PreprocessorFrontendAction, and clang::WrapperFrontendAction)
/// derived from it.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_FRONTENDACTION_H
#define LLVM_CLANG_FRONTEND_FRONTENDACTION_H
#include "clang/AST/ASTConsumer.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Frontend/FrontendOptions.h"
#include "llvm/ADT/StringRef.h"
#include <memory>
#include <string>
#include <vector>
namespace clang {
class ASTMergeAction;
class CompilerInstance;
/// Abstract base class for actions which can be performed by the frontend.
class FrontendAction {
FrontendInputFile CurrentInput;
std::unique_ptr<ASTUnit> CurrentASTUnit;
CompilerInstance *Instance;
friend class ASTMergeAction;
friend class WrapperFrontendAction;
private:
std::unique_ptr<ASTConsumer> CreateWrappedASTConsumer(CompilerInstance &CI,
StringRef InFile);
protected:
/// @name Implementation Action Interface
/// @{
/// \brief Create the AST consumer object for this action, if supported.
///
/// This routine is called as part of BeginSourceFile(), which will
/// fail if the AST consumer cannot be created. This will not be called if the
/// action has indicated that it only uses the preprocessor.
///
/// \param CI - The current compiler instance, provided as a convenience, see
/// getCompilerInstance().
///
/// \param InFile - The current input file, provided as a convenience, see
/// getCurrentFile().
///
/// \return The new AST consumer, or null on failure.
virtual std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) = 0;
/// \brief Callback before starting processing a single input, giving the
/// opportunity to modify the CompilerInvocation or do some other action
/// before BeginSourceFileAction is called.
///
/// \return True on success; on failure BeginSourceFileAction(),
/// ExecuteAction() and EndSourceFileAction() will not be called.
virtual bool BeginInvocation(CompilerInstance &CI) { return true; }
/// \brief Callback at the start of processing a single input.
///
/// \return True on success; on failure ExecutionAction() and
/// EndSourceFileAction() will not be called.
virtual bool BeginSourceFileAction(CompilerInstance &CI,
StringRef Filename) {
return true;
}
/// \brief Callback to run the program action, using the initialized
/// compiler instance.
///
/// This is guaranteed to only be called between BeginSourceFileAction()
/// and EndSourceFileAction().
virtual void ExecuteAction() = 0;
/// \brief Callback at the end of processing a single input.
///
/// This is guaranteed to only be called following a successful call to
/// BeginSourceFileAction (and BeginSourceFile).
virtual void EndSourceFileAction() {}
/// \brief Callback at the end of processing a single input, to determine
/// if the output files should be erased or not.
///
/// By default it returns true if a compiler error occurred.
/// This is guaranteed to only be called following a successful call to
/// BeginSourceFileAction (and BeginSourceFile).
virtual bool shouldEraseOutputFiles();
/// @}
public:
FrontendAction();
virtual ~FrontendAction();
/// @name Compiler Instance Access
/// @{
CompilerInstance &getCompilerInstance() const {
assert(Instance && "Compiler instance not registered!");
return *Instance;
}
void setCompilerInstance(CompilerInstance *Value) { Instance = Value; }
/// @}
/// @name Current File Information
/// @{
bool isCurrentFileAST() const {
assert(!CurrentInput.isEmpty() && "No current file!");
return (bool)CurrentASTUnit;
}
const FrontendInputFile &getCurrentInput() const {
return CurrentInput;
}
const StringRef getCurrentFile() const {
assert(!CurrentInput.isEmpty() && "No current file!");
return CurrentInput.getFile();
}
InputKind getCurrentFileKind() const {
assert(!CurrentInput.isEmpty() && "No current file!");
return CurrentInput.getKind();
}
ASTUnit &getCurrentASTUnit() const {
assert(CurrentASTUnit && "No current AST unit!");
return *CurrentASTUnit;
}
std::unique_ptr<ASTUnit> takeCurrentASTUnit() {
return std::move(CurrentASTUnit);
}
void setCurrentInput(const FrontendInputFile &CurrentInput,
std::unique_ptr<ASTUnit> AST = nullptr);
/// @}
/// @name Supported Modes
/// @{
/// \brief Is this action invoked on a model file?
///
/// Model files are incomplete translation units that relies on type
/// information from another translation unit. Check ParseModelFileAction for
/// details.
virtual bool isModelParsingAction() const { return false; }
/// \brief Does this action only use the preprocessor?
///
/// If so no AST context will be created and this action will be invalid
/// with AST file inputs.
virtual bool usesPreprocessorOnly() const = 0;
/// \brief For AST-based actions, the kind of translation unit we're handling.
virtual TranslationUnitKind getTranslationUnitKind() { return TU_Complete; }
/// \brief Does this action support use with PCH?
virtual bool hasPCHSupport() const { return !usesPreprocessorOnly(); }
/// \brief Does this action support use with AST files?
virtual bool hasASTFileSupport() const { return !usesPreprocessorOnly(); }
/// \brief Does this action support use with IR files?
virtual bool hasIRSupport() const { return false; }
/// \brief Does this action support use with code completion?
virtual bool hasCodeCompletionSupport() const { return false; }
/// @}
/// @name Public Action Interface
/// @{
/// \brief Prepare the action for processing the input file \p Input.
///
/// This is run after the options and frontend have been initialized,
/// but prior to executing any per-file processing.
///
/// \param CI - The compiler instance this action is being run from. The
/// action may store and use this object up until the matching EndSourceFile
/// action.
///
/// \param Input - The input filename and kind. Some input kinds are handled
/// specially, for example AST inputs, since the AST file itself contains
/// several objects which would normally be owned by the
/// CompilerInstance. When processing AST input files, these objects should
/// generally not be initialized in the CompilerInstance -- they will
/// automatically be shared with the AST file in between
/// BeginSourceFile() and EndSourceFile().
///
/// \return True on success; on failure the compilation of this file should
/// be aborted and neither Execute() nor EndSourceFile() should be called.
bool BeginSourceFile(CompilerInstance &CI, const FrontendInputFile &Input);
/// \brief Set the source manager's main input file, and run the action.
bool Execute();
/// \brief Perform any per-file post processing, deallocate per-file
/// objects, and run statistics and output file cleanup code.
void EndSourceFile();
/// @}
};
/// \brief Abstract base class to use for AST consumer-based frontend actions.
class ASTFrontendAction : public FrontendAction {
protected:
/// \brief Implement the ExecuteAction interface by running Sema on
/// the already-initialized AST consumer.
///
/// This will also take care of instantiating a code completion consumer if
/// the user requested it and the action supports it.
void ExecuteAction() override;
public:
ASTFrontendAction() {}
bool usesPreprocessorOnly() const override { return false; }
};
class PluginASTAction : public ASTFrontendAction {
virtual void anchor();
public:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override = 0;
/// \brief Parse the given plugin command line arguments.
///
/// \param CI - The compiler instance, for use in reporting diagnostics.
/// \return True if the parsing succeeded; otherwise the plugin will be
/// destroyed and no action run. The plugin is responsible for using the
/// CompilerInstance's Diagnostic object to report errors.
virtual bool ParseArgs(const CompilerInstance &CI,
const std::vector<std::string> &arg) = 0;
};
/// \brief Abstract base class to use for preprocessor-based frontend actions.
class PreprocessorFrontendAction : public FrontendAction {
protected:
/// \brief Provide a default implementation which returns aborts;
/// this method should never be called by FrontendAction clients.
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
public:
bool usesPreprocessorOnly() const override { return true; }
};
/// \brief A frontend action which simply wraps some other runtime-specified
/// frontend action.
///
/// Deriving from this class allows an action to inject custom logic around
/// some existing action's behavior. It implements every virtual method in
/// the FrontendAction interface by forwarding to the wrapped action.
class WrapperFrontendAction : public FrontendAction {
std::unique_ptr<FrontendAction> WrappedAction;
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
bool BeginInvocation(CompilerInstance &CI) override;
bool BeginSourceFileAction(CompilerInstance &CI, StringRef Filename) override;
void ExecuteAction() override;
void EndSourceFileAction() override;
public:
/// Construct a WrapperFrontendAction from an existing action, taking
/// ownership of it.
WrapperFrontendAction(FrontendAction *WrappedAction);
bool usesPreprocessorOnly() const override;
TranslationUnitKind getTranslationUnitKind() override;
bool hasPCHSupport() const override;
bool hasASTFileSupport() const override;
bool hasIRSupport() const override;
bool hasCodeCompletionSupport() const override;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/ASTUnit.h | //===--- ASTUnit.h - ASTUnit utility ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ASTUnit utility class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_ASTUNIT_H
#define LLVM_CLANG_FRONTEND_ASTUNIT_H
#include "clang-c/Index.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include <cassert>
#include <map>
#include <memory>
#include <string>
#include <sys/types.h>
#include <utility>
#include <vector>
// HLSL Change Starts
namespace hlsl {
class DxcLangExtensionsHelperApply;
}
// HLSL Change Ends
namespace llvm {
class MemoryBuffer;
}
namespace clang {
class Sema;
class ASTContext;
class ASTReader;
class CodeCompleteConsumer;
class CompilerInvocation;
class CompilerInstance;
class Decl;
class DiagnosticsEngine;
class FileEntry;
class FileManager;
class HeaderSearch;
class Preprocessor;
class PCHContainerOperations;
class PCHContainerReader;
class SourceManager;
class TargetInfo;
class ASTFrontendAction;
class ASTDeserializationListener;
/// \brief Utility class for loading a ASTContext from an AST file.
///
class ASTUnit : public ModuleLoader {
public:
struct StandaloneFixIt {
std::pair<unsigned, unsigned> RemoveRange;
std::pair<unsigned, unsigned> InsertFromRange;
std::string CodeToInsert;
bool BeforePreviousInsertions;
};
struct StandaloneDiagnostic {
unsigned ID;
DiagnosticsEngine::Level Level;
std::string Message;
std::string Filename;
unsigned LocOffset;
std::vector<std::pair<unsigned, unsigned> > Ranges;
std::vector<StandaloneFixIt> FixIts;
};
private:
std::shared_ptr<LangOptions> LangOpts;
IntrusiveRefCntPtr<DiagnosticsEngine> Diagnostics;
IntrusiveRefCntPtr<FileManager> FileMgr;
IntrusiveRefCntPtr<SourceManager> SourceMgr;
std::unique_ptr<HeaderSearch> HeaderInfo;
IntrusiveRefCntPtr<TargetInfo> Target;
IntrusiveRefCntPtr<Preprocessor> PP;
IntrusiveRefCntPtr<ASTContext> Ctx;
std::shared_ptr<TargetOptions> TargetOpts;
IntrusiveRefCntPtr<HeaderSearchOptions> HSOpts;
IntrusiveRefCntPtr<ASTReader> Reader;
bool HadModuleLoaderFatalFailure;
#if 0 // HLSL Change Starts - no support for serialization
struct ASTWriterData;
std::unique_ptr<ASTWriterData> WriterData;
#endif // HLSL Change Ends - no support for serialization
FileSystemOptions FileSystemOpts;
/// \brief The AST consumer that received information about the translation
/// unit as it was parsed or loaded.
std::unique_ptr<ASTConsumer> Consumer;
/// \brief The semantic analysis object used to type-check the translation
/// unit.
std::unique_ptr<Sema> TheSema;
/// Optional owned invocation, just used to make the invocation used in
/// LoadFromCommandLine available.
IntrusiveRefCntPtr<CompilerInvocation> Invocation;
// OnlyLocalDecls - when true, walking this AST should only visit declarations
// that come from the AST itself, not from included precompiled headers.
// FIXME: This is temporary; eventually, CIndex will always do this.
bool OnlyLocalDecls;
/// \brief Whether to capture any diagnostics produced.
bool CaptureDiagnostics;
/// \brief Track whether the main file was loaded from an AST or not.
bool MainFileIsAST;
/// \brief What kind of translation unit this AST represents.
TranslationUnitKind TUKind;
/// \brief Whether we should time each operation.
bool WantTiming;
/// \brief Whether the ASTUnit should delete the remapped buffers.
bool OwnsRemappedFileBuffers;
/// Track the top-level decls which appeared in an ASTUnit which was loaded
/// from a source file.
//
// FIXME: This is just an optimization hack to avoid deserializing large parts
// of a PCH file when using the Index library on an ASTUnit loaded from
// source. In the long term we should make the Index library use efficient and
// more scalable search mechanisms.
std::vector<Decl*> TopLevelDecls;
/// \brief Sorted (by file offset) vector of pairs of file offset/Decl.
typedef SmallVector<std::pair<unsigned, Decl *>, 64> LocDeclsTy;
typedef llvm::DenseMap<FileID, LocDeclsTy *> FileDeclsTy;
/// \brief Map from FileID to the file-level declarations that it contains.
/// The files and decls are only local (and non-preamble) ones.
FileDeclsTy FileDecls;
/// The name of the original source file used to generate this ASTUnit.
std::string OriginalSourceFile;
/// \brief The set of diagnostics produced when creating the preamble.
SmallVector<StandaloneDiagnostic, 4> PreambleDiagnostics;
/// \brief The set of diagnostics produced when creating this
/// translation unit.
SmallVector<StoredDiagnostic, 4> StoredDiagnostics;
/// \brief The set of diagnostics produced when failing to parse, e.g. due
/// to failure to load the PCH.
SmallVector<StoredDiagnostic, 4> FailedParseDiagnostics;
/// \brief The number of stored diagnostics that come from the driver
/// itself.
///
/// Diagnostics that come from the driver are retained from one parse to
/// the next.
unsigned NumStoredDiagnosticsFromDriver;
/// \brief Counter that determines when we want to try building a
/// precompiled preamble.
///
/// If zero, we will never build a precompiled preamble. Otherwise,
/// it's treated as a counter that decrements each time we reparse
/// without the benefit of a precompiled preamble. When it hits 1,
/// we'll attempt to rebuild the precompiled header. This way, if
/// building the precompiled preamble fails, we won't try again for
/// some number of calls.
unsigned PreambleRebuildCounter;
public:
hlsl::DxcLangExtensionsHelperApply *HlslLangExtensions; // HLSL Change
class PreambleData {
const FileEntry *File;
std::vector<char> Buffer;
mutable unsigned NumLines;
public:
PreambleData() : File(nullptr), NumLines(0) { }
void assign(const FileEntry *F, const char *begin, const char *end) {
File = F;
Buffer.assign(begin, end);
NumLines = 0;
}
void clear() { Buffer.clear(); File = nullptr; NumLines = 0; }
size_t size() const { return Buffer.size(); }
bool empty() const { return Buffer.empty(); }
const char *getBufferStart() const { return &Buffer[0]; }
unsigned getNumLines() const {
if (NumLines)
return NumLines;
countLines();
return NumLines;
}
SourceRange getSourceRange(const SourceManager &SM) const {
SourceLocation FileLoc = SM.getLocForStartOfFile(SM.getPreambleFileID());
return SourceRange(FileLoc, FileLoc.getLocWithOffset(size()-1));
}
private:
void countLines() const;
};
const PreambleData &getPreambleData() const {
return Preamble;
}
/// Data used to determine if a file used in the preamble has been changed.
struct PreambleFileHash {
/// All files have size set.
off_t Size;
/// Modification time is set for files that are on disk. For memory
/// buffers it is zero.
time_t ModTime;
/// Memory buffers have MD5 instead of modification time. We don't
/// compute MD5 for on-disk files because we hope that modification time is
/// enough to tell if the file was changed.
llvm::MD5::MD5Result MD5;
static PreambleFileHash createForFile(off_t Size, time_t ModTime);
static PreambleFileHash
createForMemoryBuffer(const llvm::MemoryBuffer *Buffer);
friend bool operator==(const PreambleFileHash &LHS,
const PreambleFileHash &RHS);
friend bool operator!=(const PreambleFileHash &LHS,
const PreambleFileHash &RHS) {
return !(LHS == RHS);
}
};
private:
/// \brief The contents of the preamble that has been precompiled to
/// \c PreambleFile.
PreambleData Preamble;
/// \brief Whether the preamble ends at the start of a new line.
///
/// Used to inform the lexer as to whether it's starting at the beginning of
/// a line after skipping the preamble.
bool PreambleEndsAtStartOfLine;
/// \brief Keeps track of the files that were used when computing the
/// preamble, with both their buffer size and their modification time.
///
/// If any of the files have changed from one compile to the next,
/// the preamble must be thrown away.
llvm::StringMap<PreambleFileHash> FilesInPreamble;
/// \brief When non-NULL, this is the buffer used to store the contents of
/// the main file when it has been padded for use with the precompiled
/// preamble.
std::unique_ptr<llvm::MemoryBuffer> SavedMainFileBuffer;
/// \brief When non-NULL, this is the buffer used to store the
/// contents of the preamble when it has been padded to build the
/// precompiled preamble.
std::unique_ptr<llvm::MemoryBuffer> PreambleBuffer;
/// \brief The number of warnings that occurred while parsing the preamble.
///
/// This value will be used to restore the state of the \c DiagnosticsEngine
/// object when re-using the precompiled preamble. Note that only the
/// number of warnings matters, since we will not save the preamble
/// when any errors are present.
unsigned NumWarningsInPreamble;
/// \brief A list of the serialization ID numbers for each of the top-level
/// declarations parsed within the precompiled preamble.
std::vector<serialization::DeclID> TopLevelDeclsInPreamble;
/// \brief Whether we should be caching code-completion results.
bool ShouldCacheCodeCompletionResults : 1;
/// \brief Whether to include brief documentation within the set of code
/// completions cached.
bool IncludeBriefCommentsInCodeCompletion : 1;
/// \brief True if non-system source files should be treated as volatile
/// (likely to change while trying to use them).
bool UserFilesAreVolatile : 1;
/// \brief The language options used when we load an AST file.
LangOptions ASTFileLangOpts;
static void ConfigureDiags(IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
ASTUnit &AST, bool CaptureDiagnostics,
bool VerifyDiagnostics = false); // HLSL Change
void TranslateStoredDiagnostics(FileManager &FileMgr,
SourceManager &SrcMan,
const SmallVectorImpl<StandaloneDiagnostic> &Diags,
SmallVectorImpl<StoredDiagnostic> &Out);
void clearFileLevelDecls();
public:
/// \brief A cached code-completion result, which may be introduced in one of
/// many different contexts.
struct CachedCodeCompletionResult {
/// \brief The code-completion string corresponding to this completion
/// result.
CodeCompletionString *Completion;
/// \brief A bitmask that indicates which code-completion contexts should
/// contain this completion result.
///
/// The bits in the bitmask correspond to the values of
/// CodeCompleteContext::Kind. To map from a completion context kind to a
/// bit, shift 1 by that number of bits. Many completions can occur in
/// several different contexts.
uint64_t ShowInContexts;
/// \brief The priority given to this code-completion result.
unsigned Priority;
/// \brief The libclang cursor kind corresponding to this code-completion
/// result.
CXCursorKind Kind;
/// \brief The availability of this code-completion result.
CXAvailabilityKind Availability;
/// \brief The simplified type class for a non-macro completion result.
SimplifiedTypeClass TypeClass;
/// \brief The type of a non-macro completion result, stored as a unique
/// integer used by the string map of cached completion types.
///
/// This value will be zero if the type is not known, or a unique value
/// determined by the formatted type string. Se \c CachedCompletionTypes
/// for more information.
unsigned Type;
};
/// \brief Retrieve the mapping from formatted type names to unique type
/// identifiers.
llvm::StringMap<unsigned> &getCachedCompletionTypes() {
return CachedCompletionTypes;
}
/// \brief Retrieve the allocator used to cache global code completions.
IntrusiveRefCntPtr<GlobalCodeCompletionAllocator>
getCachedCompletionAllocator() {
return CachedCompletionAllocator;
}
CodeCompletionTUInfo &getCodeCompletionTUInfo() {
if (!CCTUInfo)
CCTUInfo.reset(new CodeCompletionTUInfo(
new GlobalCodeCompletionAllocator));
return *CCTUInfo;
}
private:
/// \brief Allocator used to store cached code completions.
IntrusiveRefCntPtr<GlobalCodeCompletionAllocator>
CachedCompletionAllocator;
std::unique_ptr<CodeCompletionTUInfo> CCTUInfo;
/// \brief The set of cached code-completion results.
std::vector<CachedCodeCompletionResult> CachedCompletionResults;
/// \brief A mapping from the formatted type name to a unique number for that
/// type, which is used for type equality comparisons.
llvm::StringMap<unsigned> CachedCompletionTypes;
/// \brief A string hash of the top-level declaration and macro definition
/// names processed the last time that we reparsed the file.
///
/// This hash value is used to determine when we need to refresh the
/// global code-completion cache.
unsigned CompletionCacheTopLevelHashValue;
/// \brief A string hash of the top-level declaration and macro definition
/// names processed the last time that we reparsed the precompiled preamble.
///
/// This hash value is used to determine when we need to refresh the
/// global code-completion cache after a rebuild of the precompiled preamble.
unsigned PreambleTopLevelHashValue;
/// \brief The current hash value for the top-level declaration and macro
/// definition names
unsigned CurrentTopLevelHashValue;
/// \brief Bit used by CIndex to mark when a translation unit may be in an
/// inconsistent state, and is not safe to free.
unsigned UnsafeToFree : 1;
/// \brief Cache any "global" code-completion results, so that we can avoid
/// recomputing them with each completion.
void CacheCodeCompletionResults();
/// \brief Clear out and deallocate
void ClearCachedCompletionResults();
ASTUnit(const ASTUnit &) = delete;
void operator=(const ASTUnit &) = delete;
explicit ASTUnit(bool MainFileIsAST);
void CleanTemporaryFiles();
bool Parse(std::shared_ptr<PCHContainerOperations> PCHContainerOps,
std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer);
struct ComputedPreamble {
llvm::MemoryBuffer *Buffer;
std::unique_ptr<llvm::MemoryBuffer> Owner;
unsigned Size;
bool PreambleEndsAtStartOfLine;
ComputedPreamble(llvm::MemoryBuffer *Buffer,
std::unique_ptr<llvm::MemoryBuffer> Owner, unsigned Size,
bool PreambleEndsAtStartOfLine)
: Buffer(Buffer), Owner(std::move(Owner)), Size(Size),
PreambleEndsAtStartOfLine(PreambleEndsAtStartOfLine) {}
ComputedPreamble(ComputedPreamble &&C)
: Buffer(C.Buffer), Owner(std::move(C.Owner)), Size(C.Size),
PreambleEndsAtStartOfLine(C.PreambleEndsAtStartOfLine) {}
};
ComputedPreamble ComputePreamble(CompilerInvocation &Invocation,
unsigned MaxLines);
std::unique_ptr<llvm::MemoryBuffer> getMainBufferWithPrecompiledPreamble(
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
const CompilerInvocation &PreambleInvocationIn, bool AllowRebuild = true,
unsigned MaxLines = 0);
void RealizeTopLevelDeclsFromPreamble();
/// \brief Transfers ownership of the objects (like SourceManager) from
/// \param CI to this ASTUnit.
void transferASTDataFromCompilerInstance(CompilerInstance &CI);
/// \brief Allows us to assert that ASTUnit is not being used concurrently,
/// which is not supported.
///
/// Clients should create instances of the ConcurrencyCheck class whenever
/// using the ASTUnit in a way that isn't intended to be concurrent, which is
/// just about any usage.
/// Becomes a noop in release mode; only useful for debug mode checking.
class ConcurrencyState {
void *Mutex; // a llvm::sys::MutexImpl in debug;
public:
ConcurrencyState();
~ConcurrencyState();
void start();
void finish();
};
ConcurrencyState ConcurrencyCheckValue;
public:
class ConcurrencyCheck {
ASTUnit &Self;
public:
explicit ConcurrencyCheck(ASTUnit &Self)
: Self(Self)
{
Self.ConcurrencyCheckValue.start();
}
~ConcurrencyCheck() {
Self.ConcurrencyCheckValue.finish();
}
};
friend class ConcurrencyCheck;
~ASTUnit() override;
bool isMainFileAST() const { return MainFileIsAST; }
bool isUnsafeToFree() const { return UnsafeToFree; }
void setUnsafeToFree(bool Value) { UnsafeToFree = Value; }
const DiagnosticsEngine &getDiagnostics() const { return *Diagnostics; }
DiagnosticsEngine &getDiagnostics() { return *Diagnostics; }
const SourceManager &getSourceManager() const { return *SourceMgr; }
SourceManager &getSourceManager() { return *SourceMgr; }
const Preprocessor &getPreprocessor() const { return *PP; }
Preprocessor &getPreprocessor() { return *PP; }
const ASTContext &getASTContext() const { return *Ctx; }
ASTContext &getASTContext() { return *Ctx; }
void setASTContext(ASTContext *ctx) { Ctx = ctx; }
void setPreprocessor(Preprocessor *pp);
bool hasSema() const { return (bool)TheSema; }
Sema &getSema() const {
assert(TheSema && "ASTUnit does not have a Sema object!");
return *TheSema;
}
const LangOptions &getLangOpts() const {
assert(LangOpts && " ASTUnit does not have language options");
return *LangOpts;
}
const FileManager &getFileManager() const { return *FileMgr; }
FileManager &getFileManager() { return *FileMgr; }
const FileSystemOptions &getFileSystemOpts() const { return FileSystemOpts; }
StringRef getOriginalSourceFileName() {
return OriginalSourceFile;
}
ASTMutationListener *getASTMutationListener();
ASTDeserializationListener *getDeserializationListener();
/// \brief Add a temporary file that the ASTUnit depends on.
///
/// This file will be erased when the ASTUnit is destroyed.
void addTemporaryFile(StringRef TempFile);
bool getOnlyLocalDecls() const { return OnlyLocalDecls; }
bool getOwnsRemappedFileBuffers() const { return OwnsRemappedFileBuffers; }
void setOwnsRemappedFileBuffers(bool val) { OwnsRemappedFileBuffers = val; }
StringRef getMainFileName() const;
/// \brief If this ASTUnit came from an AST file, returns the filename for it.
StringRef getASTFileName() const;
typedef std::vector<Decl *>::iterator top_level_iterator;
top_level_iterator top_level_begin() {
assert(!isMainFileAST() && "Invalid call for AST based ASTUnit!");
if (!TopLevelDeclsInPreamble.empty())
RealizeTopLevelDeclsFromPreamble();
return TopLevelDecls.begin();
}
top_level_iterator top_level_end() {
assert(!isMainFileAST() && "Invalid call for AST based ASTUnit!");
if (!TopLevelDeclsInPreamble.empty())
RealizeTopLevelDeclsFromPreamble();
return TopLevelDecls.end();
}
std::size_t top_level_size() const {
assert(!isMainFileAST() && "Invalid call for AST based ASTUnit!");
return TopLevelDeclsInPreamble.size() + TopLevelDecls.size();
}
bool top_level_empty() const {
assert(!isMainFileAST() && "Invalid call for AST based ASTUnit!");
return TopLevelDeclsInPreamble.empty() && TopLevelDecls.empty();
}
/// \brief Add a new top-level declaration.
void addTopLevelDecl(Decl *D) {
TopLevelDecls.push_back(D);
}
/// \brief Add a new local file-level declaration.
void addFileLevelDecl(Decl *D);
/// \brief Get the decls that are contained in a file in the Offset/Length
/// range. \p Length can be 0 to indicate a point at \p Offset instead of
/// a range.
void findFileRegionDecls(FileID File, unsigned Offset, unsigned Length,
SmallVectorImpl<Decl *> &Decls);
/// \brief Add a new top-level declaration, identified by its ID in
/// the precompiled preamble.
void addTopLevelDeclFromPreamble(serialization::DeclID D) {
TopLevelDeclsInPreamble.push_back(D);
}
/// \brief Retrieve a reference to the current top-level name hash value.
///
/// Note: This is used internally by the top-level tracking action
unsigned &getCurrentTopLevelHashValue() { return CurrentTopLevelHashValue; }
/// \brief Get the source location for the given file:line:col triplet.
///
/// The difference with SourceManager::getLocation is that this method checks
/// whether the requested location points inside the precompiled preamble
/// in which case the returned source location will be a "loaded" one.
SourceLocation getLocation(const FileEntry *File,
unsigned Line, unsigned Col) const;
/// \brief Get the source location for the given file:offset pair.
SourceLocation getLocation(const FileEntry *File, unsigned Offset) const;
/// \brief If \p Loc is a loaded location from the preamble, returns
/// the corresponding local location of the main file, otherwise it returns
/// \p Loc.
SourceLocation mapLocationFromPreamble(SourceLocation Loc);
/// \brief If \p Loc is a local location of the main file but inside the
/// preamble chunk, returns the corresponding loaded location from the
/// preamble, otherwise it returns \p Loc.
SourceLocation mapLocationToPreamble(SourceLocation Loc);
bool isInPreambleFileID(SourceLocation Loc);
bool isInMainFileID(SourceLocation Loc);
SourceLocation getStartOfMainFileID();
SourceLocation getEndOfPreambleFileID();
/// \see mapLocationFromPreamble.
SourceRange mapRangeFromPreamble(SourceRange R) {
return SourceRange(mapLocationFromPreamble(R.getBegin()),
mapLocationFromPreamble(R.getEnd()));
}
/// \see mapLocationToPreamble.
SourceRange mapRangeToPreamble(SourceRange R) {
return SourceRange(mapLocationToPreamble(R.getBegin()),
mapLocationToPreamble(R.getEnd()));
}
// Retrieve the diagnostics associated with this AST
typedef StoredDiagnostic *stored_diag_iterator;
typedef const StoredDiagnostic *stored_diag_const_iterator;
stored_diag_const_iterator stored_diag_begin() const {
return StoredDiagnostics.begin();
}
stored_diag_iterator stored_diag_begin() {
return StoredDiagnostics.begin();
}
stored_diag_const_iterator stored_diag_end() const {
return StoredDiagnostics.end();
}
stored_diag_iterator stored_diag_end() {
return StoredDiagnostics.end();
}
unsigned stored_diag_size() const { return StoredDiagnostics.size(); }
stored_diag_iterator stored_diag_afterDriver_begin() {
if (NumStoredDiagnosticsFromDriver > StoredDiagnostics.size())
NumStoredDiagnosticsFromDriver = 0;
return StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver;
}
typedef std::vector<CachedCodeCompletionResult>::iterator
cached_completion_iterator;
cached_completion_iterator cached_completion_begin() {
return CachedCompletionResults.begin();
}
cached_completion_iterator cached_completion_end() {
return CachedCompletionResults.end();
}
unsigned cached_completion_size() const {
return CachedCompletionResults.size();
}
/// \brief Returns an iterator range for the local preprocessing entities
/// of the local Preprocessor, if this is a parsed source file, or the loaded
/// preprocessing entities of the primary module if this is an AST file.
llvm::iterator_range<PreprocessingRecord::iterator>
getLocalPreprocessingEntities() const;
/// \brief Type for a function iterating over a number of declarations.
/// \returns true to continue iteration and false to abort.
typedef bool (*DeclVisitorFn)(void *context, const Decl *D);
/// \brief Iterate over local declarations (locally parsed if this is a parsed
/// source file or the loaded declarations of the primary module if this is an
/// AST file).
/// \returns true if the iteration was complete or false if it was aborted.
bool visitLocalTopLevelDecls(void *context, DeclVisitorFn Fn);
/// \brief Get the PCH file if one was included.
const FileEntry *getPCHFile();
/// \brief Returns true if the ASTUnit was constructed from a serialized
/// module file.
bool isModuleFile();
std::unique_ptr<llvm::MemoryBuffer>
getBufferForFile(StringRef Filename, std::string *ErrorStr = nullptr);
/// \brief Determine what kind of translation unit this AST represents.
TranslationUnitKind getTranslationUnitKind() const { return TUKind; }
/// \brief A mapping from a file name to the memory buffer that stores the
/// remapped contents of that file.
typedef std::pair<std::string, llvm::MemoryBuffer *> RemappedFile;
/// \brief Create a ASTUnit. Gets ownership of the passed CompilerInvocation.
static ASTUnit *create(CompilerInvocation *CI,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
bool CaptureDiagnostics,
bool UserFilesAreVolatile);
// HLSL Change: Create a ASTUnit from an AST llvm::MemoryBuffer.
static ASTUnit *LoadFromASTMemoryBuffer(const std::string &Filename,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
const FileSystemOptions &FileSystemOpts,
llvm::MemoryBuffer *astBuffer);
/// \brief Create a ASTUnit from an AST file.
///
/// \param Filename - The AST file to load.
///
/// \param PCHContainerOps - The PCHContainerOperations to use for loading and
/// creating modules.
/// \param Diags - The diagnostics engine to use for reporting errors; its
/// lifetime is expected to extend past that of the returned ASTUnit.
///
/// \returns - The initialized ASTUnit or null if the AST failed to load.
static std::unique_ptr<ASTUnit> LoadFromASTFile(
const std::string &Filename, const PCHContainerReader &PCHContainerRdr,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
const FileSystemOptions &FileSystemOpts, bool OnlyLocalDecls = false,
ArrayRef<RemappedFile> RemappedFiles = None,
bool CaptureDiagnostics = false, bool AllowPCHWithCompilerErrors = false,
bool UserFilesAreVolatile = false);
private:
/// \brief Helper function for \c LoadFromCompilerInvocation() and
/// \c LoadFromCommandLine(), which loads an AST from a compiler invocation.
///
/// \param PrecompilePreamble Whether to precompile the preamble of this
/// translation unit, to improve the performance of reparsing.
///
/// \returns \c true if a catastrophic failure occurred (which means that the
/// \c ASTUnit itself is invalid), or \c false otherwise.
bool LoadFromCompilerInvocation(
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
bool PrecompilePreamble);
public:
/// \brief Create an ASTUnit from a source file, via a CompilerInvocation
/// object, by invoking the optionally provided ASTFrontendAction.
///
/// \param CI - The compiler invocation to use; it must have exactly one input
/// source file. The ASTUnit takes ownership of the CompilerInvocation object.
///
/// \param PCHContainerOps - The PCHContainerOperations to use for loading and
/// creating modules.
///
/// \param Diags - The diagnostics engine to use for reporting errors; its
/// lifetime is expected to extend past that of the returned ASTUnit.
///
/// \param Action - The ASTFrontendAction to invoke. Its ownership is not
/// transferred.
///
/// \param Unit - optionally an already created ASTUnit. Its ownership is not
/// transferred.
///
/// \param Persistent - if true the returned ASTUnit will be complete.
/// false means the caller is only interested in getting info through the
/// provided \see Action.
///
/// \param ErrAST - If non-null and parsing failed without any AST to return
/// (e.g. because the PCH could not be loaded), this accepts the ASTUnit
/// mainly to allow the caller to see the diagnostics.
/// This will only receive an ASTUnit if a new one was created. If an already
/// created ASTUnit was passed in \p Unit then the caller can check that.
///
static ASTUnit *LoadFromCompilerInvocationAction(
CompilerInvocation *CI,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
ASTFrontendAction *Action = nullptr, ASTUnit *Unit = nullptr,
bool Persistent = true, StringRef ResourceFilesPath = StringRef(),
bool OnlyLocalDecls = false, bool CaptureDiagnostics = false,
bool PrecompilePreamble = false, bool CacheCodeCompletionResults = false,
bool IncludeBriefCommentsInCodeCompletion = false,
bool UserFilesAreVolatile = false,
std::unique_ptr<ASTUnit> *ErrAST = nullptr);
/// LoadFromCompilerInvocation - Create an ASTUnit from a source file, via a
/// CompilerInvocation object.
///
/// \param CI - The compiler invocation to use; it must have exactly one input
/// source file. The ASTUnit takes ownership of the CompilerInvocation object.
///
/// \param PCHContainerOps - The PCHContainerOperations to use for loading and
/// creating modules.
///
/// \param Diags - The diagnostics engine to use for reporting errors; its
/// lifetime is expected to extend past that of the returned ASTUnit.
//
// FIXME: Move OnlyLocalDecls, UseBumpAllocator to setters on the ASTUnit, we
// shouldn't need to specify them at construction time.
static std::unique_ptr<ASTUnit> LoadFromCompilerInvocation(
CompilerInvocation *CI,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags, bool OnlyLocalDecls = false,
bool CaptureDiagnostics = false, bool PrecompilePreamble = false,
TranslationUnitKind TUKind = TU_Complete,
bool CacheCodeCompletionResults = false,
bool IncludeBriefCommentsInCodeCompletion = false,
bool UserFilesAreVolatile = false);
/// LoadFromCommandLine - Create an ASTUnit from a vector of command line
/// arguments, which must specify exactly one source file.
///
/// \param ArgBegin - The beginning of the argument vector.
///
/// \param ArgEnd - The end of the argument vector.
///
/// \param PCHContainerOps - The PCHContainerOperations to use for loading and
/// creating modules.
///
/// \param Diags - The diagnostics engine to use for reporting errors; its
/// lifetime is expected to extend past that of the returned ASTUnit.
///
/// \param ResourceFilesPath - The path to the compiler resource files.
///
/// \param ErrAST - If non-null and parsing failed without any AST to return
/// (e.g. because the PCH could not be loaded), this accepts the ASTUnit
/// mainly to allow the caller to see the diagnostics.
///
// FIXME: Move OnlyLocalDecls, UseBumpAllocator to setters on the ASTUnit, we
// shouldn't need to specify them at construction time.
static ASTUnit *LoadFromCommandLine(
const char **ArgBegin, const char **ArgEnd,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags, StringRef ResourceFilesPath,
bool OnlyLocalDecls = false, bool CaptureDiagnostics = false,
ArrayRef<RemappedFile> RemappedFiles = None,
bool RemappedFilesKeepOriginalName = true,
bool PrecompilePreamble = false, TranslationUnitKind TUKind = TU_Complete,
bool CacheCodeCompletionResults = false,
bool IncludeBriefCommentsInCodeCompletion = false,
bool AllowPCHWithCompilerErrors = false, bool SkipFunctionBodies = false,
bool UserFilesAreVolatile = false, bool ForSerialization = false,
std::unique_ptr<ASTUnit> *ErrAST = nullptr,
hlsl::DxcLangExtensionsHelperApply *HlslLangExtensions = nullptr); // HLSL Change
/// \brief Reparse the source files using the same command-line options that
/// were originally used to produce this translation unit.
///
/// \returns True if a failure occurred that causes the ASTUnit not to
/// contain any translation-unit information, false otherwise.
bool Reparse(std::shared_ptr<PCHContainerOperations> PCHContainerOps,
ArrayRef<RemappedFile> RemappedFiles = None);
/// \brief Perform code completion at the given file, line, and
/// column within this translation unit.
///
/// \param File The file in which code completion will occur.
///
/// \param Line The line at which code completion will occur.
///
/// \param Column The column at which code completion will occur.
///
/// \param IncludeMacros Whether to include macros in the code-completion
/// results.
///
/// \param IncludeCodePatterns Whether to include code patterns (such as a
/// for loop) in the code-completion results.
///
/// \param IncludeBriefComments Whether to include brief documentation within
/// the set of code completions returned.
///
/// FIXME: The Diag, LangOpts, SourceMgr, FileMgr, StoredDiagnostics, and
/// OwnedBuffers parameters are all disgusting hacks. They will go away.
void CodeComplete(StringRef File, unsigned Line, unsigned Column,
ArrayRef<RemappedFile> RemappedFiles, bool IncludeMacros,
bool IncludeCodePatterns, bool IncludeBriefComments,
CodeCompleteConsumer &Consumer,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
DiagnosticsEngine &Diag, LangOptions &LangOpts,
SourceManager &SourceMgr, FileManager &FileMgr,
SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics,
SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers);
/// \brief Save this translation unit to a file with the given name.
///
/// \returns true if there was a file error or false if the save was
/// successful.
bool Save(StringRef File);
/// \brief Serialize this translation unit with the given output stream.
///
/// \returns True if an error occurred, false otherwise.
bool serialize(raw_ostream &OS);
ModuleLoadResult loadModule(SourceLocation ImportLoc, ModuleIdPath Path,
Module::NameVisibilityKind Visibility,
bool IsInclusionDirective) override {
// ASTUnit doesn't know how to load modules (not that this matters).
return ModuleLoadResult();
}
void makeModuleVisible(Module *Mod, Module::NameVisibilityKind Visibility,
SourceLocation ImportLoc) override {}
GlobalModuleIndex *loadGlobalModuleIndex(SourceLocation TriggerLoc) override
{ return nullptr; }
bool lookupMissingImports(StringRef Name, SourceLocation TriggerLoc) override
{ return 0; };
};
} // namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/LayoutOverrideSource.h | //===--- LayoutOverrideSource.h --Override Record Layouts -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_LAYOUTOVERRIDESOURCE_H
#define LLVM_CLANG_FRONTEND_LAYOUTOVERRIDESOURCE_H
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
/// \brief An external AST source that overrides the layout of
/// a specified set of record types.
///
/// This class is used only for testing the ability of external AST sources
/// to override the layout of record types. Its input is the output format
/// of the command-line argument -fdump-record-layouts.
class LayoutOverrideSource : public ExternalASTSource {
/// \brief The layout of a given record.
struct Layout {
/// \brief The size of the record.
uint64_t Size;
/// \brief The alignment of the record.
uint64_t Align;
/// \brief The offsets of the fields, in source order.
SmallVector<uint64_t, 8> FieldOffsets;
};
/// \brief The set of layouts that will be overridden.
llvm::StringMap<Layout> Layouts;
public:
/// \brief Create a new AST source that overrides the layout of some
/// set of record types.
///
/// The file is the result of passing -fdump-record-layouts to a file.
explicit LayoutOverrideSource(StringRef Filename);
/// \brief If this particular record type has an overridden layout,
/// return that layout.
bool
layoutRecordType(const RecordDecl *Record,
uint64_t &Size, uint64_t &Alignment,
llvm::DenseMap<const FieldDecl *, uint64_t> &FieldOffsets,
llvm::DenseMap<const CXXRecordDecl *, CharUnits> &BaseOffsets,
llvm::DenseMap<const CXXRecordDecl *,
CharUnits> &VirtualBaseOffsets) override;
/// \brief Dump the overridden layouts.
void dump();
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/VerifyDiagnosticConsumer.h | //===- VerifyDiagnosticConsumer.h - Verifying Diagnostic Client -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_VERIFYDIAGNOSTICCONSUMER_H
#define LLVM_CLANG_FRONTEND_VERIFYDIAGNOSTICCONSUMER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include <climits>
#include <memory>
namespace clang {
class DiagnosticsEngine;
class TextDiagnosticBuffer;
class FileEntry;
/// VerifyDiagnosticConsumer - Create a diagnostic client which will use
/// markers in the input source to check that all the emitted diagnostics match
/// those expected.
///
/// USING THE DIAGNOSTIC CHECKER:
///
/// Indicating that a line expects an error or a warning is simple. Put a
/// comment on the line that has the diagnostic, use:
///
/// \code
/// expected-{error,warning,remark,note}
/// \endcode
///
/// to tag if it's an expected error, remark or warning, and place the expected
/// text between {{ and }} markers. The full text doesn't have to be included,
/// only enough to ensure that the correct diagnostic was emitted.
///
/// Here's an example:
///
/// \code
/// int A = B; // expected-error {{use of undeclared identifier 'B'}}
/// \endcode
///
/// You can place as many diagnostics on one line as you wish. To make the code
/// more readable, you can use slash-newline to separate out the diagnostics.
///
/// Alternatively, it is possible to specify the line on which the diagnostic
/// should appear by appending "@<line>" to "expected-<type>", for example:
///
/// \code
/// #warning some text
/// // expected-warning@10 {{some text}}
/// \endcode
///
/// The line number may be absolute (as above), or relative to the current
/// line by prefixing the number with either '+' or '-'.
///
/// If the diagnostic is generated in a separate file, for example in a shared
/// header file, it may be beneficial to be able to declare the file in which
/// the diagnostic will appear, rather than placing the expected-* directive in
/// the actual file itself. This can be done using the following syntax:
///
/// \code
/// // expected-error@path/include.h:15 {{error message}}
/// \endcode
///
/// The path can be absolute or relative and the same search paths will be used
/// as for #include directives. The line number in an external file may be
/// substituted with '*' meaning that any line number will match (useful where
/// the included file is, for example, a system header where the actual line
/// number may change and is not critical).
///
/// The simple syntax above allows each specification to match exactly one
/// error. You can use the extended syntax to customize this. The extended
/// syntax is "expected-<type> <n> {{diag text}}", where \<type> is one of
/// "error", "warning" or "note", and \<n> is a positive integer. This allows
/// the diagnostic to appear as many times as specified. Example:
///
/// \code
/// void f(); // expected-note 2 {{previous declaration is here}}
/// \endcode
///
/// Where the diagnostic is expected to occur a minimum number of times, this
/// can be specified by appending a '+' to the number. Example:
///
/// \code
/// void f(); // expected-note 0+ {{previous declaration is here}}
/// void g(); // expected-note 1+ {{previous declaration is here}}
/// \endcode
///
/// In the first example, the diagnostic becomes optional, i.e. it will be
/// swallowed if it occurs, but will not generate an error if it does not
/// occur. In the second example, the diagnostic must occur at least once.
/// As a short-hand, "one or more" can be specified simply by '+'. Example:
///
/// \code
/// void g(); // expected-note + {{previous declaration is here}}
/// \endcode
///
/// A range can also be specified by "<n>-<m>". Example:
///
/// \code
/// void f(); // expected-note 0-1 {{previous declaration is here}}
/// \endcode
///
/// In this example, the diagnostic may appear only once, if at all.
///
/// Regex matching mode may be selected by appending '-re' to type and
/// including regexes wrapped in double curly braces in the directive, such as:
///
/// \code
/// expected-error-re {{format specifies type 'wchar_t **' (aka '{{.+}}')}}
/// \endcode
///
/// Examples matching error: "variable has incomplete type 'struct s'"
///
/// \code
/// // expected-error {{variable has incomplete type 'struct s'}}
/// // expected-error {{variable has incomplete type}}
///
/// // expected-error-re {{variable has type 'struct {{.}}'}}
/// // expected-error-re {{variable has type 'struct {{.*}}'}}
/// // expected-error-re {{variable has type 'struct {{(.*)}}'}}
/// // expected-error-re {{variable has type 'struct{{[[:space:]](.*)}}'}}
/// \endcode
///
/// VerifyDiagnosticConsumer expects at least one expected-* directive to
/// be found inside the source code. If no diagnostics are expected the
/// following directive can be used to indicate this:
///
/// \code
/// // expected-no-diagnostics
/// \endcode
///
class VerifyDiagnosticConsumer: public DiagnosticConsumer,
public CommentHandler {
public:
/// Directive - Abstract class representing a parsed verify directive.
///
class Directive {
public:
static std::unique_ptr<Directive> create(bool RegexKind,
SourceLocation DirectiveLoc,
SourceLocation DiagnosticLoc,
bool MatchAnyLine, StringRef Text,
unsigned Min, unsigned Max);
public:
/// Constant representing n or more matches.
static const unsigned MaxCount = UINT_MAX;
SourceLocation DirectiveLoc;
SourceLocation DiagnosticLoc;
const std::string Text;
unsigned Min, Max;
bool MatchAnyLine;
virtual ~Directive() { }
// Returns true if directive text is valid.
// Otherwise returns false and populates E.
virtual bool isValid(std::string &Error) = 0;
// Returns true on match.
virtual bool match(StringRef S) = 0;
protected:
Directive(SourceLocation DirectiveLoc, SourceLocation DiagnosticLoc,
bool MatchAnyLine, StringRef Text, unsigned Min, unsigned Max)
: DirectiveLoc(DirectiveLoc), DiagnosticLoc(DiagnosticLoc),
Text(Text), Min(Min), Max(Max), MatchAnyLine(MatchAnyLine) {
assert(!DirectiveLoc.isInvalid() && "DirectiveLoc is invalid!");
// assert(!DiagnosticLoc.isInvalid() && "DiagnosticLoc is invalid!"); // HLSL Change - allow this
}
private:
Directive(const Directive &) = delete;
void operator=(const Directive &) = delete;
};
typedef std::vector<std::unique_ptr<Directive>> DirectiveList;
/// ExpectedData - owns directive objects and deletes on destructor.
///
struct ExpectedData {
DirectiveList Errors;
DirectiveList Warnings;
DirectiveList Remarks;
DirectiveList Notes;
void Reset() {
Errors.clear();
Warnings.clear();
Remarks.clear();
Notes.clear();
}
};
enum DirectiveStatus {
HasNoDirectives,
HasNoDirectivesReported,
HasExpectedNoDiagnostics,
HasOtherExpectedDirectives
};
private:
DiagnosticsEngine &Diags;
DiagnosticConsumer *PrimaryClient;
std::unique_ptr<DiagnosticConsumer> PrimaryClientOwner;
std::unique_ptr<TextDiagnosticBuffer> Buffer;
const Preprocessor *CurrentPreprocessor;
const LangOptions *LangOpts;
SourceManager *SrcManager;
unsigned ActiveSourceFiles;
DirectiveStatus Status;
ExpectedData ED;
void CheckDiagnostics();
void setSourceManager(SourceManager &SM) {
assert((!SrcManager || SrcManager == &SM) && "SourceManager changed!");
SrcManager = &SM;
}
// These facilities are used for validation in debug builds.
class UnparsedFileStatus {
llvm::PointerIntPair<const FileEntry *, 1, bool> Data;
public:
UnparsedFileStatus(const FileEntry *File, bool FoundDirectives)
: Data(File, FoundDirectives) {}
const FileEntry *getFile() const { return Data.getPointer(); }
bool foundDirectives() const { return Data.getInt(); }
};
typedef llvm::DenseMap<FileID, const FileEntry *> ParsedFilesMap;
typedef llvm::DenseMap<FileID, UnparsedFileStatus> UnparsedFilesMap;
ParsedFilesMap ParsedFiles;
UnparsedFilesMap UnparsedFiles;
public:
/// Create a new verifying diagnostic client, which will issue errors to
/// the currently-attached diagnostic client when a diagnostic does not match
/// what is expected (as indicated in the source file).
VerifyDiagnosticConsumer(DiagnosticsEngine &Diags);
~VerifyDiagnosticConsumer() override;
void BeginSourceFile(const LangOptions &LangOpts,
const Preprocessor *PP) override;
void EndSourceFile() override;
enum ParsedStatus {
/// File has been processed via HandleComment.
IsParsed,
/// File has diagnostics and may have directives.
IsUnparsed,
/// File has diagnostics but guaranteed no directives.
IsUnparsedNoDirectives
};
/// \brief Update lists of parsed and unparsed files.
void UpdateParsedFileStatus(SourceManager &SM, FileID FID, ParsedStatus PS);
bool HandleComment(Preprocessor &PP, SourceRange Comment) override;
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
};
} // end namspace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/SerializedDiagnosticPrinter.h | //===--- SerializedDiagnosticPrinter.h - Serializer for diagnostics -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_SERIALIZEDDIAGNOSTICPRINTER_H
#define LLVM_CLANG_FRONTEND_SERIALIZEDDIAGNOSTICPRINTER_H
#include "clang/Basic/LLVM.h"
#include "clang/Frontend/SerializedDiagnostics.h"
#include "llvm/Bitcode/BitstreamWriter.h"
namespace llvm {
class raw_ostream;
}
namespace clang {
class DiagnosticConsumer;
class DiagnosticsEngine;
class DiagnosticOptions;
namespace serialized_diags {
/// \brief Returns a DiagnosticConsumer that serializes diagnostics to
/// a bitcode file.
///
/// The created DiagnosticConsumer is designed for quick and lightweight
/// transfer of of diagnostics to the enclosing build system (e.g., an IDE).
/// This allows wrapper tools for Clang to get diagnostics from Clang
/// (via libclang) without needing to parse Clang's command line output.
///
std::unique_ptr<DiagnosticConsumer> create(StringRef OutputFile,
DiagnosticOptions *Diags,
bool MergeChildRecords = false);
} // end serialized_diags namespace
} // end clang namespace
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/PCHContainerOperations.h | //===--- Frontend/PCHContainerOperations.h - PCH Containers -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_PCH_CONTAINER_OPERATIONS_H
#define LLVM_CLANG_PCH_CONTAINER_OPERATIONS_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/MemoryBuffer.h"
#include <memory>
namespace llvm {
class raw_pwrite_stream;
class BitstreamReader;
}
using llvm::StringRef;
namespace clang {
class ASTConsumer;
class CodeGenOptions;
class DiagnosticsEngine;
class HeaderSearchOptions;
class LangOptions;
class PreprocessorOptions;
class TargetOptions;
struct PCHBuffer {
bool IsComplete;
llvm::SmallVector<char, 0> Data;
};
/// This abstract interface provides operations for creating
/// containers for serialized ASTs (precompiled headers and clang
/// modules).
class PCHContainerWriter {
public:
virtual ~PCHContainerWriter() = 0;
virtual StringRef getFormat() const = 0;
/// Return an ASTConsumer that can be chained with a
/// PCHGenerator that produces a wrapper file format containing a
/// serialized AST bitstream.
virtual std::unique_ptr<ASTConsumer> CreatePCHContainerGenerator(
DiagnosticsEngine &Diags, const HeaderSearchOptions &HSO,
const PreprocessorOptions &PPO, const TargetOptions &TO,
const LangOptions &LO, const std::string &MainFileName,
const std::string &OutputFileName, llvm::raw_pwrite_stream *OS,
std::shared_ptr<PCHBuffer> Buffer) const = 0;
};
/// This abstract interface provides operations for unwrapping
/// containers for serialized ASTs (precompiled headers and clang
/// modules).
class PCHContainerReader {
public:
virtual ~PCHContainerReader() = 0;
/// Equivalent to the format passed to -fmodule-format=
virtual StringRef getFormat() const = 0;
/// Initialize an llvm::BitstreamReader with the serialized AST inside
/// the PCH container Buffer.
virtual void ExtractPCH(llvm::MemoryBufferRef Buffer,
llvm::BitstreamReader &StreamFile) const = 0;
};
/// Implements write operations for a raw pass-through PCH container.
class RawPCHContainerWriter : public PCHContainerWriter {
StringRef getFormat() const override { return "raw"; }
/// Return an ASTConsumer that can be chained with a
/// PCHGenerator that writes the module to a flat file.
std::unique_ptr<ASTConsumer> CreatePCHContainerGenerator(
DiagnosticsEngine &Diags, const HeaderSearchOptions &HSO,
const PreprocessorOptions &PPO, const TargetOptions &TO,
const LangOptions &LO, const std::string &MainFileName,
const std::string &OutputFileName, llvm::raw_pwrite_stream *OS,
std::shared_ptr<PCHBuffer> Buffer) const override;
};
/// Implements read operations for a raw pass-through PCH container.
class RawPCHContainerReader : public PCHContainerReader {
StringRef getFormat() const override { return "raw"; }
/// Initialize an llvm::BitstreamReader with Buffer.
void ExtractPCH(llvm::MemoryBufferRef Buffer,
llvm::BitstreamReader &StreamFile) const override;
};
/// A registry of PCHContainerWriter and -Reader objects for different formats.
class PCHContainerOperations {
llvm::StringMap<std::unique_ptr<PCHContainerWriter>> Writers;
llvm::StringMap<std::unique_ptr<PCHContainerReader>> Readers;
public:
/// Automatically registers a RawPCHContainerWriter and
/// RawPCHContainerReader.
PCHContainerOperations();
void registerWriter(std::unique_ptr<PCHContainerWriter> Writer) {
Writers[Writer->getFormat()] = std::move(Writer);
}
void registerReader(std::unique_ptr<PCHContainerReader> Reader) {
Readers[Reader->getFormat()] = std::move(Reader);
}
const PCHContainerWriter *getWriterOrNull(StringRef Format) {
return Writers[Format].get();
}
const PCHContainerReader *getReaderOrNull(StringRef Format) {
return Readers[Format].get();
}
const PCHContainerReader &getRawReader() {
return *getReaderOrNull("raw");
}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/LogDiagnosticPrinter.h | //===--- LogDiagnosticPrinter.h - Log Diagnostic Client ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_LOGDIAGNOSTICPRINTER_H
#define LLVM_CLANG_FRONTEND_LOGDIAGNOSTICPRINTER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
class DiagnosticOptions;
class LangOptions;
class LogDiagnosticPrinter : public DiagnosticConsumer {
struct DiagEntry {
/// The primary message line of the diagnostic.
std::string Message;
/// The source file name, if available.
std::string Filename;
/// The source file line number, if available.
unsigned Line;
/// The source file column number, if available.
unsigned Column;
/// The ID of the diagnostic.
unsigned DiagnosticID;
/// The Option Flag for the diagnostic
std::string WarningOption;
/// The level of the diagnostic.
DiagnosticsEngine::Level DiagnosticLevel;
};
void EmitDiagEntry(llvm::raw_ostream &OS,
const LogDiagnosticPrinter::DiagEntry &DE);
// Conditional ownership (when StreamOwner is non-null, it's keeping OS
// alive). We might want to replace this with a wrapper for conditional
// ownership eventually - it seems to pop up often enough.
raw_ostream &OS;
std::unique_ptr<raw_ostream> StreamOwner;
const LangOptions *LangOpts;
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
SourceLocation LastWarningLoc;
FullSourceLoc LastLoc;
SmallVector<DiagEntry, 8> Entries;
std::string MainFilename;
std::string DwarfDebugFlags;
public:
LogDiagnosticPrinter(raw_ostream &OS, DiagnosticOptions *Diags,
std::unique_ptr<raw_ostream> StreamOwner);
void setDwarfDebugFlags(StringRef Value) {
DwarfDebugFlags = Value;
}
void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
LangOpts = &LO;
}
void EndSourceFile() override;
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/CodeGenOptions.def | //===--- CodeGenOptions.def - Code generation option database ------ C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the code generation options. Users of this file
// must define the CODEGENOPT macro to make use of this information.
// Optionally, the user may also define ENUM_CODEGENOPT (for options
// that have enumeration type and VALUE_CODEGENOPT is a code
// generation option that describes a value rather than a flag.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGENOPT
# error Define the CODEGENOPT macro to handle language options
#endif
// //
///////////////////////////////////////////////////////////////////////////////
#ifndef VALUE_CODEGENOPT
# define VALUE_CODEGENOPT(Name, Bits, Default) \
CODEGENOPT(Name, Bits, Default)
#endif
#ifndef ENUM_CODEGENOPT
# define ENUM_CODEGENOPT(Name, Type, Bits, Default) \
CODEGENOPT(Name, Bits, Default)
#endif
CODEGENOPT(DisableIntegratedAS, 1, 0) ///< -no-integrated-as
CODEGENOPT(CompressDebugSections, 1, 0) ///< -Wa,-compress-debug-sections
CODEGENOPT(Autolink , 1, 1) ///< -fno-autolink
CODEGENOPT(AsmVerbose , 1, 0) ///< -dA, -fverbose-asm.
CODEGENOPT(ObjCAutoRefCountExceptions , 1, 0) ///< Whether ARC should be EH-safe.
CODEGENOPT(CoverageExtraChecksum, 1, 0) ///< Whether we need a second checksum for functions in GCNO files.
CODEGENOPT(CoverageNoFunctionNamesInData, 1, 0) ///< Do not include function names in GCDA files.
CODEGENOPT(CoverageExitBlockBeforeBody, 1, 0) ///< Whether to emit the exit block before the body blocks in GCNO files.
CODEGENOPT(CXAAtExit , 1, 1) ///< Use __cxa_atexit for calling destructors.
CODEGENOPT(CXXCtorDtorAliases, 1, 0) ///< Emit complete ctors/dtors as linker
///< aliases to base ctors when possible.
CODEGENOPT(DataSections , 1, 0) ///< Set when -fdata-sections is enabled.
CODEGENOPT(UniqueSectionNames, 1, 1) ///< Set for -funique-section-names.
CODEGENOPT(DisableFPElim , 1, 0) ///< Set when -fomit-frame-pointer is enabled.
CODEGENOPT(DisableFree , 1, 0) ///< Don't free memory.
CODEGENOPT(DisableGCov , 1, 0) ///< Don't run the GCov pass, for testing.
CODEGENOPT(DisableLLVMOpts , 1, 0) ///< Don't run any optimizations, for use in
///< getting .bc files that correspond to the
///< internal state before optimizations are
///< done.
CODEGENOPT(DisableRedZone , 1, 0) ///< Set when -mno-red-zone is enabled.
CODEGENOPT(DisableTailCalls , 1, 0) ///< Do not emit tail calls.
CODEGENOPT(EmitDeclMetadata , 1, 0) ///< Emit special metadata indicating what
///< Decl* various IR entities came from.
///< Only useful when running CodeGen as a
///< subroutine.
CODEGENOPT(EmitGcovArcs , 1, 0) ///< Emit coverage data files, aka. GCDA.
CODEGENOPT(EmitGcovNotes , 1, 0) ///< Emit coverage "notes" files, aka GCNO.
CODEGENOPT(EmitOpenCLArgMetadata , 1, 0) ///< Emit OpenCL kernel arg metadata.
/// \brief FP_CONTRACT mode (on/off/fast).
ENUM_CODEGENOPT(FPContractMode, FPContractModeKind, 2, FPC_On)
CODEGENOPT(ForbidGuardVariables , 1, 0) ///< Issue errors if C++ guard variables
///< are required.
CODEGENOPT(FunctionSections , 1, 0) ///< Set when -ffunction-sections is enabled.
CODEGENOPT(InstrumentFunctions , 1, 0) ///< Set when -finstrument-functions is
///< enabled.
CODEGENOPT(InstrumentForProfiling , 1, 0) ///< Set when -pg is enabled.
CODEGENOPT(LessPreciseFPMAD , 1, 0) ///< Enable less precise MAD instructions to
///< be generated.
CODEGENOPT(PrepareForLTO , 1, 0) ///< Set when -flto is enabled on the
///< compile step.
CODEGENOPT(MergeAllConstants , 1, 1) ///< Merge identical constants.
CODEGENOPT(MergeFunctions , 1, 0) ///< Set when -fmerge-functions is enabled.
CODEGENOPT(MSVolatile , 1, 0) ///< Set when /volatile:ms is enabled.
CODEGENOPT(NoCommon , 1, 0) ///< Set when -fno-common or C++ is enabled.
CODEGENOPT(NoDwarfDirectoryAsm , 1, 0) ///< Set when -fno-dwarf-directory-asm is
///< enabled.
CODEGENOPT(NoExecStack , 1, 0) ///< Set when -Wa,--noexecstack is enabled.
CODEGENOPT(FatalWarnings , 1, 0) ///< Set when -Wa,--fatal-warnings is
///< enabled.
CODEGENOPT(EnableSegmentedStacks , 1, 0) ///< Set when -fsplit-stack is enabled.
CODEGENOPT(NoImplicitFloat , 1, 0) ///< Set when -mno-implicit-float is enabled.
CODEGENOPT(NoInfsFPMath , 1, 0) ///< Assume FP arguments, results not +-Inf.
CODEGENOPT(NoSignedZeros , 1, 0) ///< Allow ignoring the signedness of FP zero
CODEGENOPT(ReciprocalMath , 1, 0) ///< Allow FP divisions to be reassociated.
CODEGENOPT(NoInline , 1, 0) ///< Set when -fno-inline is enabled.
///< Disables use of the inline keyword.
CODEGENOPT(NoNaNsFPMath , 1, 0) ///< Assume FP arguments, results not NaN.
CODEGENOPT(NoZeroInitializedInBSS , 1, 0) ///< -fno-zero-initialized-in-bss.
/// \brief Method of Objective-C dispatch to use.
ENUM_CODEGENOPT(ObjCDispatchMethod, ObjCDispatchMethodKind, 2, Legacy)
CODEGENOPT(OmitLeafFramePointer , 1, 0) ///< Set when -momit-leaf-frame-pointer is
///< enabled.
VALUE_CODEGENOPT(OptimizationLevel, 2, 0) ///< The -O[0-3] option specified.
VALUE_CODEGENOPT(OptimizeSize, 2, 0) ///< If -Os (==1) or -Oz (==2) is specified.
CODEGENOPT(ProfileInstrGenerate , 1, 0) ///< Instrument code to generate
///< execution counts to use with PGO.
CODEGENOPT(CoverageMapping , 1, 0) ///< Generate coverage mapping regions to
///< enable code coverage analysis.
CODEGENOPT(DumpCoverageMapping , 1, 0) ///< Dump the generated coverage mapping
///< regions.
/// If -fpcc-struct-return or -freg-struct-return is specified.
ENUM_CODEGENOPT(StructReturnConvention, StructReturnConventionKind, 2, SRCK_Default)
CODEGENOPT(RelaxAll , 1, 0) ///< Relax all machine code instructions.
CODEGENOPT(RelaxedAliasing , 1, 0) ///< Set when -fno-strict-aliasing is enabled.
CODEGENOPT(StructPathTBAA , 1, 0) ///< Whether or not to use struct-path TBAA.
CODEGENOPT(SaveTempLabels , 1, 0) ///< Save temporary labels.
CODEGENOPT(SanitizeAddressZeroBaseShadow , 1, 0) ///< Map shadow memory at zero
///< offset in AddressSanitizer.
CODEGENOPT(SanitizeMemoryTrackOrigins, 2, 0) ///< Enable tracking origins in
///< MemorySanitizer
CODEGENOPT(SanitizeMemoryUseAfterDtor, 1, 0) ///< Enable use-after-delete detection
///< in MemorySanitizer
CODEGENOPT(SanitizeCoverageType, 2, 0) ///< Type of sanitizer coverage
///< instrumentation.
CODEGENOPT(SanitizeCoverageIndirectCalls, 1, 0) ///< Enable sanitizer coverage
///< for indirect calls.
CODEGENOPT(SanitizeCoverageTraceBB, 1, 0) ///< Enable basic block tracing in
///< in sanitizer coverage.
CODEGENOPT(SanitizeCoverageTraceCmp, 1, 0) ///< Enable cmp instruction tracing
///< in sanitizer coverage.
CODEGENOPT(SanitizeCoverage8bitCounters, 1, 0) ///< Use 8-bit frequency counters
///< in sanitizer coverage.
CODEGENOPT(SimplifyLibCalls , 1, 1) ///< Set when -fbuiltin is enabled.
CODEGENOPT(SoftFloat , 1, 0) ///< -soft-float.
CODEGENOPT(StrictEnums , 1, 0) ///< Optimize based on strict enum definition.
CODEGENOPT(TimePasses , 1, 0) ///< Set when -ftime-report is enabled.
CODEGENOPT(TimeTrace , 1, 0) ///< HLSL Change:
///< Set when -ftime-trace is enabled.
VALUE_CODEGENOPT(TimeTraceGranularity, 32, 500) ///< HLSL Change:
///< Set when -ftime_trace_granularity is set.
CODEGENOPT(UnitAtATime , 1, 1) ///< Unused. For mirroring GCC optimization
///< selection.
CODEGENOPT(UnrollLoops , 1, 0) ///< Control whether loops are unrolled.
CODEGENOPT(RerollLoops , 1, 0) ///< Control whether loops are rerolled.
CODEGENOPT(UnsafeFPMath , 1, 0) ///< Allow unsafe floating point optzns.
CODEGENOPT(UnwindTables , 1, 0) ///< Emit unwind tables.
CODEGENOPT(VectorizeBB , 1, 0) ///< Run basic block vectorizer.
CODEGENOPT(VectorizeLoop , 1, 0) ///< Run loop vectorizer.
CODEGENOPT(VectorizeSLP , 1, 0) ///< Run SLP vectorizer.
/// Attempt to use register sized accesses to bit-fields in structures, when
/// possible.
CODEGENOPT(UseRegisterSizedBitfieldAccess , 1, 0)
CODEGENOPT(VerifyModule , 1, 1) ///< Control whether the module should be run
///< through the LLVM Verifier.
CODEGENOPT(StackRealignment , 1, 0) ///< Control whether to permit stack
///< realignment.
CODEGENOPT(UseInitArray , 1, 0) ///< Control whether to use .init_array or
///< .ctors.
VALUE_CODEGENOPT(StackAlignment , 32, 0) ///< Overrides default stack
///< alignment, if not 0.
VALUE_CODEGENOPT(StackProbeSize , 32, 4096) ///< Overrides default stack
///< probe size, even if 0.
CODEGENOPT(DebugColumnInfo, 1, 0) ///< Whether or not to use column information
///< in debug info.
CODEGENOPT(EmitLLVMUseLists, 1, 0) ///< Control whether to serialize use-lists.
/// The user specified number of registers to be used for integral arguments,
/// or 0 if unspecified.
VALUE_CODEGENOPT(NumRegisterParameters, 32, 0)
/// The lower bound for a buffer to be considered for stack protection.
VALUE_CODEGENOPT(SSPBufferSize, 32, 0)
/// The kind of generated debug info.
ENUM_CODEGENOPT(DebugInfo, DebugInfoKind, 3, NoDebugInfo)
/// Dwarf version.
VALUE_CODEGENOPT(DwarfVersion, 3, 0)
/// The kind of inlining to perform.
ENUM_CODEGENOPT(Inlining, InliningMethod, 2, NoInlining)
// Vector functions library to use.
ENUM_CODEGENOPT(VecLib, VectorLibrary, 1, NoLibrary)
/// The default TLS model to use.
ENUM_CODEGENOPT(DefaultTLSModel, TLSModel, 2, GeneralDynamicTLSModel)
#undef CODEGENOPT
#undef ENUM_CODEGENOPT
#undef VALUE_CODEGENOPT
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/CompilerInstance.h | //===-- CompilerInstance.h - Clang Compiler Instance ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_COMPILERINSTANCE_H_
#define LLVM_CLANG_FRONTEND_COMPILERINSTANCE_H_
#include "clang/AST/ASTConsumer.h"
#include "clang/Frontend/PCHContainerOperations.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/ModuleLoader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringRef.h"
#include <cassert>
#include <list>
#include <memory>
#include <string>
#include <utility>
namespace llvm {
class raw_fd_ostream;
class Timer;
class TimerGroup;
}
namespace clang {
class ASTContext;
class ASTConsumer;
class ASTReader;
class CodeCompleteConsumer;
class DiagnosticsEngine;
class DiagnosticConsumer;
class ExternalASTSource;
class FileEntry;
class FileManager;
class FrontendAction;
class Module;
class Preprocessor;
class Sema;
class SourceManager;
class TargetInfo;
}
// HLSL Change Starts
namespace hlsl {
class DxcLangExtensionsHelper;
class DxcLangExtensionsHelperApply {
public:
virtual ~DxcLangExtensionsHelperApply() {}
virtual void SetupSema(clang::Sema &S) = 0;
virtual void SetupPreprocessorOptions(clang::PreprocessorOptions &PPOpts) = 0;
virtual DxcLangExtensionsHelper *GetDxcLangExtensionsHelper() = 0;
};
}
// HLSL Change Ends
namespace clang {
/// CompilerInstance - Helper class for managing a single instance of the Clang
/// compiler.
///
/// The CompilerInstance serves two purposes:
/// (1) It manages the various objects which are necessary to run the compiler,
/// for example the preprocessor, the target information, and the AST
/// context.
/// (2) It provides utility routines for constructing and manipulating the
/// common Clang objects.
///
/// The compiler instance generally owns the instance of all the objects that it
/// manages. However, clients can still share objects by manually setting the
/// object and retaking ownership prior to destroying the CompilerInstance.
///
/// The compiler instance is intended to simplify clients, but not to lock them
/// in to the compiler instance for everything. When possible, utility functions
/// come in two forms; a short form that reuses the CompilerInstance objects,
/// and a long form that takes explicit instances of any required objects.
class CompilerInstance : public ModuleLoader {
/// The options used in this compiler instance.
IntrusiveRefCntPtr<CompilerInvocation> Invocation;
/// The diagnostics engine instance.
IntrusiveRefCntPtr<DiagnosticsEngine> Diagnostics;
/// The target being compiled for.
IntrusiveRefCntPtr<TargetInfo> Target;
/// The virtual file system.
IntrusiveRefCntPtr<vfs::FileSystem> VirtualFileSystem;
/// The file manager.
IntrusiveRefCntPtr<FileManager> FileMgr;
/// The source manager.
IntrusiveRefCntPtr<SourceManager> SourceMgr;
/// The preprocessor.
IntrusiveRefCntPtr<Preprocessor> PP;
/// The AST context.
IntrusiveRefCntPtr<ASTContext> Context;
/// The AST consumer.
std::unique_ptr<ASTConsumer> Consumer;
/// The code completion consumer.
std::unique_ptr<CodeCompleteConsumer> CompletionConsumer;
/// \brief The semantic analysis object.
std::unique_ptr<Sema> TheSema;
/// \brief The frontend timer group.
std::unique_ptr<llvm::TimerGroup> FrontendTimerGroup;
/// \brief The frontend timer.
std::unique_ptr<llvm::Timer> FrontendTimer;
#if 0 // HLSL Change Starts - no support for modules or PCH
/// \brief The ASTReader, if one exists.
IntrusiveRefCntPtr<ASTReader> ModuleManager;
/// \brief The module dependency collector for crashdumps
std::shared_ptr<ModuleDependencyCollector> ModuleDepCollector;
#endif // HLSL Change Ends - no support for modules or PCH
/// \brief The module provider.
std::shared_ptr<PCHContainerOperations> ThePCHContainerOperations;
/// \brief The dependency file generator.
std::unique_ptr<DependencyFileGenerator> TheDependencyFileGenerator;
std::vector<std::shared_ptr<DependencyCollector>> DependencyCollectors;
#if 0 // HLSL Change Start - no support for modules
/// \brief The set of top-level modules that has already been loaded,
/// along with the module map
llvm::DenseMap<const IdentifierInfo *, Module *> KnownModules;
/// \brief Module names that have an override for the target file.
llvm::StringMap<std::string> ModuleFileOverrides;
/// \brief Module files that we've explicitly loaded via \ref loadModuleFile,
/// and their dependencies.
llvm::StringSet<> ExplicitlyLoadedModuleFiles;
/// \brief The location of the module-import keyword for the last module
/// import.
SourceLocation LastModuleImportLoc;
/// \brief The result of the last module import.
///
ModuleLoadResult LastModuleImportResult;
/// \brief Whether we should (re)build the global module index once we
/// have finished with this translation unit.
bool BuildGlobalModuleIndex;
/// \brief We have a full global module index, with all modules.
bool HaveFullGlobalModuleIndex;
/// \brief One or more modules failed to build.
bool ModuleBuildFailed;
#endif // HLSL Change Ends - no support for modules
/// \brief Holds information about the output file.
///
/// If TempFilename is not empty we must rename it to Filename at the end.
/// TempFilename may be empty and Filename non-empty if creating the temporary
/// failed.
struct OutputFile {
std::string Filename;
std::string TempFilename;
std::unique_ptr<raw_ostream> OS;
OutputFile(std::string filename, std::string tempFilename,
std::unique_ptr<raw_ostream> OS)
: Filename(std::move(filename)), TempFilename(std::move(tempFilename)),
OS(std::move(OS)) {}
OutputFile(OutputFile &&O)
: Filename(std::move(O.Filename)),
TempFilename(std::move(O.TempFilename)), OS(std::move(O.OS)) {}
};
/// If the output doesn't support seeking (terminal, pipe). we switch
/// the stream to a buffer_ostream. These are the buffer and the original
/// stream.
std::unique_ptr<llvm::raw_fd_ostream> NonSeekStream;
/// The list of active output files.
std::list<OutputFile> OutputFiles;
/// The output stream to override llvm::outs if needed.
llvm::raw_ostream* OutStream; // HLSL Change
CompilerInstance(const CompilerInstance &) = delete;
void operator=(const CompilerInstance &) = delete;
public:
explicit CompilerInstance(
std::shared_ptr<PCHContainerOperations> PCHContainerOps =
std::make_shared<PCHContainerOperations>(),
bool BuildingModule = false);
~CompilerInstance() override;
// HLSL Change Starts
hlsl::DxcLangExtensionsHelperApply *HlslLangExtensions = nullptr;
bool WriteDefaultOutputDirectly = false; // HLSL Change
llvm::raw_ostream* getOutStream() { return OutStream; }
void setOutStream(llvm::raw_ostream *OS) { OutStream = OS; }
// HLSL Change Ends
/// @name High-Level Operations
/// {
/// ExecuteAction - Execute the provided action against the compiler's
/// CompilerInvocation object.
///
/// This function makes the following assumptions:
///
/// - The invocation options should be initialized. This function does not
/// handle the '-help' or '-version' options, clients should handle those
/// directly.
///
/// - The diagnostics engine should have already been created by the client.
///
/// - No other CompilerInstance state should have been initialized (this is
/// an unchecked error).
///
/// - Clients should have initialized any LLVM target features that may be
/// required.
///
/// - Clients should eventually call llvm_shutdown() upon the completion of
/// this routine to ensure that any managed objects are properly destroyed.
///
/// Note that this routine may write output to 'stderr'.
///
/// \param Act - The action to execute.
/// \return - True on success.
//
// FIXME: This function should take the stream to write any debugging /
// verbose output to as an argument.
//
// FIXME: Eliminate the llvm_shutdown requirement, that should either be part
// of the context or else not CompilerInstance specific.
bool ExecuteAction(FrontendAction &Act);
/// }
/// @name Compiler Invocation and Options
/// {
bool hasInvocation() const { return Invocation != nullptr; }
CompilerInvocation &getInvocation() {
assert(Invocation && "Compiler instance has no invocation!");
return *Invocation;
}
/// setInvocation - Replace the current invocation.
void setInvocation(CompilerInvocation *Value);
/// \brief Indicates whether we should (re)build the global module index.
bool shouldBuildGlobalModuleIndex() const;
/// \brief Set the flag indicating whether we should (re)build the global
/// module index.
void setBuildGlobalModuleIndex(bool Build) {
(void)(Build);// BuildGlobalModuleIndex = Build; // HLSL Change - no support for modules
}
/// }
/// @name Forwarding Methods
/// {
AnalyzerOptionsRef getAnalyzerOpts() {
return Invocation->getAnalyzerOpts();
}
CodeGenOptions &getCodeGenOpts() {
return Invocation->getCodeGenOpts();
}
const CodeGenOptions &getCodeGenOpts() const {
return Invocation->getCodeGenOpts();
}
DependencyOutputOptions &getDependencyOutputOpts() {
return Invocation->getDependencyOutputOpts();
}
const DependencyOutputOptions &getDependencyOutputOpts() const {
return Invocation->getDependencyOutputOpts();
}
DiagnosticOptions &getDiagnosticOpts() {
return Invocation->getDiagnosticOpts();
}
const DiagnosticOptions &getDiagnosticOpts() const {
return Invocation->getDiagnosticOpts();
}
FileSystemOptions &getFileSystemOpts() {
return Invocation->getFileSystemOpts();
}
const FileSystemOptions &getFileSystemOpts() const {
return Invocation->getFileSystemOpts();
}
FrontendOptions &getFrontendOpts() {
return Invocation->getFrontendOpts();
}
const FrontendOptions &getFrontendOpts() const {
return Invocation->getFrontendOpts();
}
HeaderSearchOptions &getHeaderSearchOpts() {
return Invocation->getHeaderSearchOpts();
}
const HeaderSearchOptions &getHeaderSearchOpts() const {
return Invocation->getHeaderSearchOpts();
}
LangOptions &getLangOpts() {
return *Invocation->getLangOpts();
}
const LangOptions &getLangOpts() const {
return *Invocation->getLangOpts();
}
PreprocessorOptions &getPreprocessorOpts() {
return Invocation->getPreprocessorOpts();
}
const PreprocessorOptions &getPreprocessorOpts() const {
return Invocation->getPreprocessorOpts();
}
PreprocessorOutputOptions &getPreprocessorOutputOpts() {
return Invocation->getPreprocessorOutputOpts();
}
const PreprocessorOutputOptions &getPreprocessorOutputOpts() const {
return Invocation->getPreprocessorOutputOpts();
}
TargetOptions &getTargetOpts() {
return Invocation->getTargetOpts();
}
const TargetOptions &getTargetOpts() const {
return Invocation->getTargetOpts();
}
/// }
/// @name Diagnostics Engine
/// {
bool hasDiagnostics() const { return Diagnostics != nullptr; }
/// Get the current diagnostics engine.
DiagnosticsEngine &getDiagnostics() const {
assert(Diagnostics && "Compiler instance has no diagnostics!");
return *Diagnostics;
}
/// setDiagnostics - Replace the current diagnostics engine.
void setDiagnostics(DiagnosticsEngine *Value);
DiagnosticConsumer &getDiagnosticClient() const {
assert(Diagnostics && Diagnostics->getClient() &&
"Compiler instance has no diagnostic client!");
return *Diagnostics->getClient();
}
/// }
/// @name Target Info
/// {
bool hasTarget() const { return Target != nullptr; }
TargetInfo &getTarget() const {
assert(Target && "Compiler instance has no target!");
return *Target;
}
/// Replace the current diagnostics engine.
void setTarget(TargetInfo *Value);
/// }
/// @name Virtual File System
/// {
bool hasVirtualFileSystem() const { return VirtualFileSystem != nullptr; }
vfs::FileSystem &getVirtualFileSystem() const {
assert(hasVirtualFileSystem() &&
"Compiler instance has no virtual file system");
return *VirtualFileSystem;
}
/// \brief Replace the current virtual file system.
///
/// \note Most clients should use setFileManager, which will implicitly reset
/// the virtual file system to the one contained in the file manager.
void setVirtualFileSystem(IntrusiveRefCntPtr<vfs::FileSystem> FS) {
VirtualFileSystem = FS;
}
/// }
/// @name File Manager
/// {
bool hasFileManager() const { return FileMgr != nullptr; }
/// Return the current file manager to the caller.
FileManager &getFileManager() const {
assert(FileMgr && "Compiler instance has no file manager!");
return *FileMgr;
}
void resetAndLeakFileManager() {
BuryPointer(FileMgr.get());
FileMgr.resetWithoutRelease();
}
/// \brief Replace the current file manager and virtual file system.
void setFileManager(FileManager *Value);
/// }
/// @name Source Manager
/// {
bool hasSourceManager() const { return SourceMgr != nullptr; }
/// Return the current source manager.
SourceManager &getSourceManager() const {
assert(SourceMgr && "Compiler instance has no source manager!");
return *SourceMgr;
}
void resetAndLeakSourceManager() {
BuryPointer(SourceMgr.get());
SourceMgr.resetWithoutRelease();
}
/// setSourceManager - Replace the current source manager.
void setSourceManager(SourceManager *Value);
/// }
/// @name Preprocessor
/// {
bool hasPreprocessor() const { return PP != nullptr; }
/// Return the current preprocessor.
Preprocessor &getPreprocessor() const {
assert(PP && "Compiler instance has no preprocessor!");
return *PP;
}
void resetAndLeakPreprocessor() {
BuryPointer(PP.get());
PP.resetWithoutRelease();
}
/// Replace the current preprocessor.
void setPreprocessor(Preprocessor *Value);
/// }
/// @name ASTContext
/// {
bool hasASTContext() const { return Context != nullptr; }
ASTContext &getASTContext() const {
assert(Context && "Compiler instance has no AST context!");
return *Context;
}
void resetAndLeakASTContext() {
BuryPointer(Context.get());
Context.resetWithoutRelease();
}
/// setASTContext - Replace the current AST context.
void setASTContext(ASTContext *Value);
/// \brief Replace the current Sema; the compiler instance takes ownership
/// of S.
void setSema(Sema *S);
/// }
/// @name ASTConsumer
/// {
bool hasASTConsumer() const { return (bool)Consumer; }
ASTConsumer &getASTConsumer() const {
assert(Consumer && "Compiler instance has no AST consumer!");
return *Consumer;
}
/// takeASTConsumer - Remove the current AST consumer and give ownership to
/// the caller.
std::unique_ptr<ASTConsumer> takeASTConsumer() { return std::move(Consumer); }
/// setASTConsumer - Replace the current AST consumer; the compiler instance
/// takes ownership of \p Value.
void setASTConsumer(std::unique_ptr<ASTConsumer> Value);
/// }
/// @name Semantic analysis
/// {
bool hasSema() const { return (bool)TheSema; }
Sema &getSema() const {
assert(TheSema && "Compiler instance has no Sema object!");
return *TheSema;
}
std::unique_ptr<Sema> takeSema();
void resetAndLeakSema();
#if 0 // HLSL Change Starts - no support for modules or PCH
/// }
/// @name Module Management
/// {
IntrusiveRefCntPtr<ASTReader> getModuleManager() const;
void setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader);
std::shared_ptr<ModuleDependencyCollector> getModuleDepCollector() const;
void setModuleDepCollector(
std::shared_ptr<ModuleDependencyCollector> Collector);
std::shared_ptr<PCHContainerOperations> getPCHContainerOperations() const {
return ThePCHContainerOperations;
}
/// Return the appropriate PCHContainerWriter depending on the
/// current CodeGenOptions.
const PCHContainerWriter &getPCHContainerWriter() const {
assert(Invocation && "cannot determine module format without invocation");
StringRef Format = getHeaderSearchOpts().ModuleFormat;
auto *Writer = ThePCHContainerOperations->getWriterOrNull(Format);
if (!Writer) {
if (Diagnostics)
Diagnostics->Report(diag::err_module_format_unhandled) << Format;
llvm::report_fatal_error("unknown module format");
}
return *Writer;
}
#endif // HLSL Change Ends - no support for modules or PCH
/// Return the appropriate PCHContainerReader depending on the
/// current CodeGenOptions.
const PCHContainerReader &getPCHContainerReader() const {
assert(Invocation && "cannot determine module format without invocation");
StringRef Format = getHeaderSearchOpts().ModuleFormat;
auto *Reader = ThePCHContainerOperations->getReaderOrNull(Format);
if (!Reader) {
if (Diagnostics)
Diagnostics->Report(diag::err_module_format_unhandled) << Format;
llvm::report_fatal_error("unknown module format");
}
return *Reader;
}
/// }
/// @name Code Completion
/// {
bool hasCodeCompletionConsumer() const { return (bool)CompletionConsumer; }
CodeCompleteConsumer &getCodeCompletionConsumer() const {
assert(CompletionConsumer &&
"Compiler instance has no code completion consumer!");
return *CompletionConsumer;
}
/// setCodeCompletionConsumer - Replace the current code completion consumer;
/// the compiler instance takes ownership of \p Value.
void setCodeCompletionConsumer(CodeCompleteConsumer *Value);
/// }
/// @name Frontend timer
/// {
bool hasFrontendTimer() const { return (bool)FrontendTimer; }
llvm::Timer &getFrontendTimer() const {
assert(FrontendTimer && "Compiler instance has no frontend timer!");
return *FrontendTimer;
}
/// }
/// @name Output Files
/// {
/// addOutputFile - Add an output file onto the list of tracked output files.
///
/// \param OutFile - The output file info.
void addOutputFile(OutputFile &&OutFile);
/// clearOutputFiles - Clear the output file list, destroying the contained
/// output streams.
///
/// \param EraseFiles - If true, attempt to erase the files from disk.
void clearOutputFiles(bool EraseFiles);
/// }
/// @name Construction Utility Methods
/// {
/// Create the diagnostics engine using the invocation's diagnostic options
/// and replace any existing one with it.
///
/// Note that this routine also replaces the diagnostic client,
/// allocating one if one is not provided.
///
/// \param Client If non-NULL, a diagnostic client that will be
/// attached to (and, then, owned by) the DiagnosticsEngine inside this AST
/// unit.
///
/// \param ShouldOwnClient If Client is non-NULL, specifies whether
/// the diagnostic object should take ownership of the client.
void createDiagnostics(DiagnosticConsumer *Client = nullptr,
bool ShouldOwnClient = true);
/// Create a DiagnosticsEngine object with a the TextDiagnosticPrinter.
///
/// If no diagnostic client is provided, this creates a
/// DiagnosticConsumer that is owned by the returned diagnostic
/// object, if using directly the caller is responsible for
/// releasing the returned DiagnosticsEngine's client eventually.
///
/// \param Opts - The diagnostic options; note that the created text
/// diagnostic object contains a reference to these options.
///
/// \param Client If non-NULL, a diagnostic client that will be
/// attached to (and, then, owned by) the returned DiagnosticsEngine
/// object.
///
/// \param CodeGenOpts If non-NULL, the code gen options in use, which may be
/// used by some diagnostics printers (for logging purposes only).
///
/// \return The new object on success, or null on failure.
static IntrusiveRefCntPtr<DiagnosticsEngine>
createDiagnostics(DiagnosticOptions *Opts,
DiagnosticConsumer *Client = nullptr,
bool ShouldOwnClient = true,
const CodeGenOptions *CodeGenOpts = nullptr);
/// Create the file manager and replace any existing one with it.
void createFileManager();
/// Create the source manager and replace any existing one with it.
void createSourceManager(FileManager &FileMgr);
/// Create the preprocessor, using the invocation, file, and source managers,
/// and replace any existing one with it.
void createPreprocessor(TranslationUnitKind TUKind);
std::string getSpecificModuleCachePath();
/// Create the AST context.
void createASTContext();
/// Create an external AST source to read a PCH file and attach it to the AST
/// context.
void createPCHExternalASTSource(StringRef Path, bool DisablePCHValidation,
bool AllowPCHWithCompilerErrors,
void *DeserializationListener,
bool OwnDeserializationListener);
/// Create an external AST source to read a PCH file.
///
/// \return - The new object on success, or null on failure.
static IntrusiveRefCntPtr<ASTReader> createPCHExternalASTSource(
StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
const PCHContainerReader &PCHContainerRdr,
void *DeserializationListener, bool OwnDeserializationListener,
bool Preamble, bool UseGlobalModuleIndex);
/// Create a code completion consumer using the invocation; note that this
/// will cause the source manager to truncate the input source file at the
/// completion point.
void createCodeCompletionConsumer();
/// Create a code completion consumer to print code completion results, at
/// \p Filename, \p Line, and \p Column, to the given output stream \p OS.
static CodeCompleteConsumer *createCodeCompletionConsumer(
Preprocessor &PP, StringRef Filename, unsigned Line, unsigned Column,
const CodeCompleteOptions &Opts, raw_ostream &OS);
/// \brief Create the Sema object to be used for parsing.
void createSema(TranslationUnitKind TUKind,
CodeCompleteConsumer *CompletionConsumer);
/// Create the frontend timer and replace any existing one with it.
void createFrontendTimer();
/// Create the default output file (from the invocation's options) and add it
/// to the list of tracked output files.
///
/// The files created by this function always use temporary files to write to
/// their result (that is, the data is written to a temporary file which will
/// atomically replace the target output on success).
///
/// \return - Null on error.
raw_pwrite_stream *createDefaultOutputFile(bool Binary = true,
StringRef BaseInput = "",
StringRef Extension = "");
/// Create a new output file and add it to the list of tracked output files,
/// optionally deriving the output path name.
///
/// \return - Null on error.
raw_pwrite_stream *createOutputFile(StringRef OutputPath, bool Binary,
bool RemoveFileOnSignal,
StringRef BaseInput, StringRef Extension,
bool UseTemporary,
bool CreateMissingDirectories = false);
/// Create a new output file, optionally deriving the output path name.
///
/// If \p OutputPath is empty, then createOutputFile will derive an output
/// path location as \p BaseInput, with any suffix removed, and \p Extension
/// appended. If \p OutputPath is not stdout and \p UseTemporary
/// is true, createOutputFile will create a new temporary file that must be
/// renamed to \p OutputPath in the end.
///
/// \param OutputPath - If given, the path to the output file.
/// \param Error [out] - On failure, the error.
/// \param BaseInput - If \p OutputPath is empty, the input path name to use
/// for deriving the output path.
/// \param Extension - The extension to use for derived output names.
/// \param Binary - The mode to open the file in.
/// \param RemoveFileOnSignal - Whether the file should be registered with
/// llvm::sys::RemoveFileOnSignal. Note that this is not safe for
/// multithreaded use, as the underlying signal mechanism is not reentrant
/// \param UseTemporary - Create a new temporary file that must be renamed to
/// OutputPath in the end.
/// \param CreateMissingDirectories - When \p UseTemporary is true, create
/// missing directories in the output path.
/// \param ResultPathName [out] - If given, the result path name will be
/// stored here on success.
/// \param TempPathName [out] - If given, the temporary file path name
/// will be stored here on success.
std::unique_ptr<raw_pwrite_stream>
createOutputFile(StringRef OutputPath, std::error_code &Error, bool Binary,
bool RemoveFileOnSignal, StringRef BaseInput,
StringRef Extension, bool UseTemporary,
bool CreateMissingDirectories, std::string *ResultPathName,
std::string *TempPathName);
llvm::raw_null_ostream *createNullOutputFile();
/// }
/// @name Initialization Utility Methods
/// {
/// InitializeSourceManager - Initialize the source manager to set InputFile
/// as the main file.
///
/// \return True on success.
bool InitializeSourceManager(const FrontendInputFile &Input);
/// InitializeSourceManager - Initialize the source manager to set InputFile
/// as the main file.
///
/// \return True on success.
static bool InitializeSourceManager(const FrontendInputFile &Input,
DiagnosticsEngine &Diags,
FileManager &FileMgr,
SourceManager &SourceMgr,
const FrontendOptions &Opts);
/// }
// Create module manager.
void createModuleManager();
bool loadModuleFile(StringRef FileName);
ModuleLoadResult loadModule(SourceLocation ImportLoc, ModuleIdPath Path,
Module::NameVisibilityKind Visibility,
bool IsInclusionDirective) override;
void makeModuleVisible(Module *Mod, Module::NameVisibilityKind Visibility,
SourceLocation ImportLoc) override;
bool hadModuleLoaderFatalFailure() const {
return false; // return ModuleLoader::HadFatalFailure; // HLSL Change - no support for modules
}
GlobalModuleIndex *loadGlobalModuleIndex(SourceLocation TriggerLoc) override;
bool lookupMissingImports(StringRef Name, SourceLocation TriggerLoc) override;
void addDependencyCollector(std::shared_ptr<DependencyCollector> Listener) {
DependencyCollectors.push_back(std::move(Listener));
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/LangStandard.h | //===--- LangStandard.h -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_LANGSTANDARD_H
#define LLVM_CLANG_FRONTEND_LANGSTANDARD_H
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
namespace frontend {
enum LangFeatures {
LineComment = (1 << 0),
C89 = (1 << 1),
C99 = (1 << 2),
C11 = (1 << 3),
CPlusPlus = (1 << 4),
CPlusPlus11 = (1 << 5),
CPlusPlus14 = (1 << 6),
CPlusPlus1z = (1 << 7),
Digraphs = (1 << 8),
GNUMode = (1 << 9),
HexFloat = (1 << 10),
ImplicitInt = (1 << 11)
};
}
/// LangStandard - Information about the properties of a particular language
/// standard.
struct LangStandard {
enum Kind {
#define LANGSTANDARD(id, name, desc, features) \
lang_##id,
#include "clang/Frontend/LangStandards.def"
lang_unspecified
};
const char *ShortName;
const char *Description;
unsigned Flags;
public:
/// getName - Get the name of this standard.
const char *getName() const { return ShortName; }
/// getDescription - Get the description of this standard.
const char *getDescription() const { return Description; }
/// Language supports '//' comments.
bool hasLineComments() const { return Flags & frontend::LineComment; }
/// isC89 - Language is a superset of C89.
bool isC89() const { return Flags & frontend::C89; }
/// isC99 - Language is a superset of C99.
bool isC99() const { return Flags & frontend::C99; }
/// isC11 - Language is a superset of C11.
bool isC11() const { return Flags & frontend::C11; }
/// isCPlusPlus - Language is a C++ variant.
bool isCPlusPlus() const { return Flags & frontend::CPlusPlus; }
/// isCPlusPlus11 - Language is a C++11 variant (or later).
bool isCPlusPlus11() const { return Flags & frontend::CPlusPlus11; }
/// isCPlusPlus14 - Language is a C++14 variant (or later).
bool isCPlusPlus14() const { return Flags & frontend::CPlusPlus14; }
/// isCPlusPlus1z - Language is a C++17 variant (or later).
bool isCPlusPlus1z() const { return Flags & frontend::CPlusPlus1z; }
/// hasDigraphs - Language supports digraphs.
bool hasDigraphs() const { return Flags & frontend::Digraphs; }
/// isGNUMode - Language includes GNU extensions.
bool isGNUMode() const { return Flags & frontend::GNUMode; }
/// hasHexFloats - Language supports hexadecimal float constants.
bool hasHexFloats() const { return Flags & frontend::HexFloat; }
/// hasImplicitInt - Language allows variables to be typed as int implicitly.
bool hasImplicitInt() const { return Flags & frontend::ImplicitInt; }
static const LangStandard &getLangStandardForKind(Kind K);
static const LangStandard *getLangStandardForName(StringRef Name);
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/Frontend/DependencyOutputOptions.h | //===--- DependencyOutputOptions.h ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTEND_DEPENDENCYOUTPUTOPTIONS_H
#define LLVM_CLANG_FRONTEND_DEPENDENCYOUTPUTOPTIONS_H
#include <string>
#include <vector>
namespace clang {
/// DependencyOutputFormat - Format for the compiler dependency file.
enum class DependencyOutputFormat { Make, NMake };
/// DependencyOutputOptions - Options for controlling the compiler dependency
/// file generation.
class DependencyOutputOptions {
public:
unsigned IncludeSystemHeaders : 1; ///< Include system header dependencies.
unsigned ShowHeaderIncludes : 1; ///< Show header inclusions (-H).
unsigned UsePhonyTargets : 1; ///< Include phony targets for each
/// dependency, which can avoid some 'make'
/// problems.
unsigned AddMissingHeaderDeps : 1; ///< Add missing headers to dependency list
unsigned PrintShowIncludes : 1; ///< Print cl.exe style /showIncludes info.
unsigned IncludeModuleFiles : 1; ///< Include module file dependencies.
/// The format for the dependency file.
DependencyOutputFormat OutputFormat;
/// The file to write dependency output to.
std::string OutputFile;
/// The file to write header include output to. This is orthogonal to
/// ShowHeaderIncludes (-H) and will include headers mentioned in the
/// predefines buffer. If the output file is "-", output will be sent to
/// stderr.
std::string HeaderIncludeOutputFile;
/// A list of names to use as the targets in the dependency file; this list
/// must contain at least one entry.
std::vector<std::string> Targets;
/// \brief The file to write GraphViz-formatted header dependencies to.
std::string DOTOutputFile;
/// \brief The directory to copy module dependencies to when collecting them.
std::string ModuleDependencyOutputDir;
public:
DependencyOutputOptions() {
IncludeSystemHeaders = 0;
ShowHeaderIncludes = 0;
UsePhonyTargets = 0;
AddMissingHeaderDeps = 0;
PrintShowIncludes = 0;
IncludeModuleFiles = 0;
OutputFormat = DependencyOutputFormat::Make;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Frontend/Rewriters.h | //===--- Rewriters.h - Rewriter implementations -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains miscellaneous utilities for various front-end actions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_FRONTEND_REWRITERS_H
#define LLVM_CLANG_REWRITE_FRONTEND_REWRITERS_H
#include "clang/Basic/LLVM.h"
// HLSL Change Begin - RewriteIncludesToSnippet
#include <string>
#include <vector>
// HLSL Change End
namespace clang {
class Preprocessor;
class PreprocessorOutputOptions;
/// RewriteMacrosInInput - Implement -rewrite-macros mode.
void RewriteMacrosInInput(Preprocessor &PP, raw_ostream *OS);
/// DoRewriteTest - A simple test for the TokenRewriter class.
void DoRewriteTest(Preprocessor &PP, raw_ostream *OS);
/// RewriteIncludesInInput - Implement -frewrite-includes mode.
void RewriteIncludesInInput(Preprocessor &PP, raw_ostream *OS,
const PreprocessorOutputOptions &Opts);
// HLSL Change Begin - RewriteIncludesToSnippet
/// RewriteIncludesToSnippet - Write include files into snippets.
void RewriteIncludesToSnippet(Preprocessor &PP,
const PreprocessorOutputOptions &Opts,
std::vector<std::string> &Snippets);
// HLSL Change End
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Frontend/FixItRewriter.h | //===--- FixItRewriter.h - Fix-It Rewriter Diagnostic Client ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a diagnostic client adaptor that performs rewrites as
// suggested by code modification hints attached to diagnostics. It
// then forwards any diagnostics to the adapted diagnostic client.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_FRONTEND_FIXITREWRITER_H
#define LLVM_CLANG_REWRITE_FRONTEND_FIXITREWRITER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Rewrite/Core/Rewriter.h"
namespace clang {
class SourceManager;
class FileEntry;
class FixItOptions {
public:
FixItOptions() : InPlace(false), FixWhatYouCan(false),
FixOnlyWarnings(false), Silent(false) { }
virtual ~FixItOptions();
/// \brief This file is about to be rewritten. Return the name of the file
/// that is okay to write to.
///
/// \param fd out parameter for file descriptor. After the call it may be set
/// to an open file descriptor for the returned filename, or it will be -1
/// otherwise.
///
virtual std::string RewriteFilename(const std::string &Filename, int &fd) = 0;
/// True if files should be updated in place. RewriteFilename is only called
/// if this is false.
bool InPlace;
/// \brief Whether to abort fixing a file when not all errors could be fixed.
bool FixWhatYouCan;
/// \brief Whether to only fix warnings and not errors.
bool FixOnlyWarnings;
/// \brief If true, only pass the diagnostic to the actual diagnostic consumer
/// if it is an error or a fixit was applied as part of the diagnostic.
/// It basically silences warnings without accompanying fixits.
bool Silent;
};
class FixItRewriter : public DiagnosticConsumer {
/// \brief The diagnostics machinery.
DiagnosticsEngine &Diags;
edit::EditedSource Editor;
/// \brief The rewriter used to perform the various code
/// modifications.
Rewriter Rewrite;
/// \brief The diagnostic client that performs the actual formatting
/// of error messages.
DiagnosticConsumer *Client;
std::unique_ptr<DiagnosticConsumer> Owner;
/// \brief Turn an input path into an output path. NULL implies overwriting
/// the original.
FixItOptions *FixItOpts;
/// \brief The number of rewriter failures.
unsigned NumFailures;
/// \brief Whether the previous diagnostic was not passed to the consumer.
bool PrevDiagSilenced;
public:
typedef Rewriter::buffer_iterator iterator;
/// \brief Initialize a new fix-it rewriter.
FixItRewriter(DiagnosticsEngine &Diags, SourceManager &SourceMgr,
const LangOptions &LangOpts, FixItOptions *FixItOpts);
/// \brief Destroy the fix-it rewriter.
~FixItRewriter() override;
/// \brief Check whether there are modifications for a given file.
bool IsModified(FileID ID) const {
return Rewrite.getRewriteBufferFor(ID) != nullptr;
}
// Iteration over files with changes.
iterator buffer_begin() { return Rewrite.buffer_begin(); }
iterator buffer_end() { return Rewrite.buffer_end(); }
/// \brief Write a single modified source file.
///
/// \returns true if there was an error, false otherwise.
bool WriteFixedFile(FileID ID, raw_ostream &OS);
/// \brief Write the modified source files.
///
/// \returns true if there was an error, false otherwise.
bool WriteFixedFiles(
std::vector<std::pair<std::string, std::string> > *RewrittenFiles=nullptr);
/// IncludeInDiagnosticCounts - This method (whose default implementation
/// returns true) indicates whether the diagnostics handled by this
/// DiagnosticConsumer should be included in the number of diagnostics
/// reported by DiagnosticsEngine.
bool IncludeInDiagnosticCounts() const override;
/// HandleDiagnostic - Handle this diagnostic, reporting it to the user or
/// capturing it to a log as needed.
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
/// \brief Emit a diagnostic via the adapted diagnostic client.
void Diag(SourceLocation Loc, unsigned DiagID);
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Frontend/ASTConsumers.h | //===--- ASTConsumers.h - ASTConsumer implementations -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AST Consumers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_FRONTEND_ASTCONSUMERS_H
#define LLVM_CLANG_REWRITE_FRONTEND_ASTCONSUMERS_H
#include "clang/Basic/LLVM.h"
#include <memory>
#include <string>
namespace clang {
class ASTConsumer;
class DiagnosticsEngine;
class LangOptions;
class Preprocessor;
// ObjC rewriter: attempts to rewrite ObjC constructs into pure C code.
// This is considered experimental, and only works with Apple's ObjC runtime.
std::unique_ptr<ASTConsumer>
CreateObjCRewriter(const std::string &InFile, raw_ostream *OS,
DiagnosticsEngine &Diags, const LangOptions &LOpts,
bool SilenceRewriteMacroWarning);
std::unique_ptr<ASTConsumer>
CreateModernObjCRewriter(const std::string &InFile, raw_ostream *OS,
DiagnosticsEngine &Diags, const LangOptions &LOpts,
bool SilenceRewriteMacroWarning, bool LineInfo);
/// CreateHTMLPrinter - Create an AST consumer which rewrites source code to
/// HTML with syntax highlighting suitable for viewing in a web-browser.
std::unique_ptr<ASTConsumer> CreateHTMLPrinter(raw_ostream *OS,
Preprocessor &PP,
bool SyntaxHighlight = true,
bool HighlightMacros = true);
} // end clang namespace
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Frontend/FrontendActions.h | //===-- FrontendActions.h - Useful Frontend Actions -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_FRONTEND_FRONTENDACTIONS_H
#define LLVM_CLANG_REWRITE_FRONTEND_FRONTENDACTIONS_H
#include "clang/Frontend/FrontendAction.h"
namespace clang {
class FixItRewriter;
class FixItOptions;
//===----------------------------------------------------------------------===//
// AST Consumer Actions
// //
///////////////////////////////////////////////////////////////////////////////
class HTMLPrintAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class FixItAction : public ASTFrontendAction {
protected:
std::unique_ptr<FixItRewriter> Rewriter;
std::unique_ptr<FixItOptions> FixItOpts;
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
bool BeginSourceFileAction(CompilerInstance &CI,
StringRef Filename) override;
void EndSourceFileAction() override;
bool hasASTFileSupport() const override { return false; }
public:
FixItAction();
~FixItAction() override;
};
/// \brief Emits changes to temporary files and uses them for the original
/// frontend action.
class FixItRecompile : public WrapperFrontendAction {
public:
FixItRecompile(FrontendAction *WrappedAction)
: WrapperFrontendAction(WrappedAction) {}
protected:
bool BeginInvocation(CompilerInstance &CI) override;
};
class RewriteObjCAction : public ASTFrontendAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
class RewriteMacrosAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class RewriteTestAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
class RewriteIncludesAction : public PreprocessorFrontendAction {
protected:
void ExecuteAction() override;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/Rewriter.h | //===--- Rewriter.h - Code rewriting interface ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Rewriter class, which is used for code
// transformations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_REWRITER_H
#define LLVM_CLANG_REWRITE_CORE_REWRITER_H
#include "clang/Basic/SourceLocation.h"
#include "clang/Rewrite/Core/RewriteBuffer.h"
#include <cstring>
#include <map>
#include <string>
namespace clang {
class LangOptions;
class SourceManager;
/// Rewriter - This is the main interface to the rewrite buffers. Its primary
/// job is to dispatch high-level requests to the low-level RewriteBuffers that
/// are involved.
class Rewriter {
SourceManager *SourceMgr;
const LangOptions *LangOpts;
std::map<FileID, RewriteBuffer> RewriteBuffers;
public:
struct RewriteOptions {
/// \brief Given a source range, true to include previous inserts at the
/// beginning of the range as part of the range itself (true by default).
bool IncludeInsertsAtBeginOfRange;
/// \brief Given a source range, true to include previous inserts at the
/// end of the range as part of the range itself (true by default).
bool IncludeInsertsAtEndOfRange;
/// \brief If true and removing some text leaves a blank line
/// also remove the empty line (false by default).
bool RemoveLineIfEmpty;
RewriteOptions()
: IncludeInsertsAtBeginOfRange(true),
IncludeInsertsAtEndOfRange(true),
RemoveLineIfEmpty(false) { }
};
typedef std::map<FileID, RewriteBuffer>::iterator buffer_iterator;
typedef std::map<FileID, RewriteBuffer>::const_iterator const_buffer_iterator;
explicit Rewriter(SourceManager &SM, const LangOptions &LO)
: SourceMgr(&SM), LangOpts(&LO) {}
explicit Rewriter() : SourceMgr(nullptr), LangOpts(nullptr) {}
void setSourceMgr(SourceManager &SM, const LangOptions &LO) {
SourceMgr = &SM;
LangOpts = &LO;
}
SourceManager &getSourceMgr() const { return *SourceMgr; }
const LangOptions &getLangOpts() const { return *LangOpts; }
/// isRewritable - Return true if this location is a raw file location, which
/// is rewritable. Locations from macros, etc are not rewritable.
static bool isRewritable(SourceLocation Loc) {
return Loc.isFileID();
}
/// getRangeSize - Return the size in bytes of the specified range if they
/// are in the same file. If not, this returns -1.
int getRangeSize(SourceRange Range,
RewriteOptions opts = RewriteOptions()) const;
int getRangeSize(const CharSourceRange &Range,
RewriteOptions opts = RewriteOptions()) const;
/// getRewrittenText - Return the rewritten form of the text in the specified
/// range. If the start or end of the range was unrewritable or if they are
/// in different buffers, this returns an empty string.
///
/// Note that this method is not particularly efficient.
///
std::string getRewrittenText(SourceRange Range) const;
/// InsertText - Insert the specified string at the specified location in the
/// original buffer. This method returns true (and does nothing) if the input
/// location was not rewritable, false otherwise.
///
/// \param indentNewLines if true new lines in the string are indented
/// using the indentation of the source line in position \p Loc.
bool InsertText(SourceLocation Loc, StringRef Str,
bool InsertAfter = true, bool indentNewLines = false);
/// InsertTextAfter - Insert the specified string at the specified location in
/// the original buffer. This method returns true (and does nothing) if
/// the input location was not rewritable, false otherwise. Text is
/// inserted after any other text that has been previously inserted
/// at the some point (the default behavior for InsertText).
bool InsertTextAfter(SourceLocation Loc, StringRef Str) {
return InsertText(Loc, Str);
}
/// \brief Insert the specified string after the token in the
/// specified location.
bool InsertTextAfterToken(SourceLocation Loc, StringRef Str);
/// InsertText - Insert the specified string at the specified location in the
/// original buffer. This method returns true (and does nothing) if the input
/// location was not rewritable, false otherwise. Text is
/// inserted before any other text that has been previously inserted
/// at the some point.
bool InsertTextBefore(SourceLocation Loc, StringRef Str) {
return InsertText(Loc, Str, false);
}
/// RemoveText - Remove the specified text region.
bool RemoveText(SourceLocation Start, unsigned Length,
RewriteOptions opts = RewriteOptions());
/// \brief Remove the specified text region.
bool RemoveText(CharSourceRange range,
RewriteOptions opts = RewriteOptions()) {
return RemoveText(range.getBegin(), getRangeSize(range, opts), opts);
}
/// \brief Remove the specified text region.
bool RemoveText(SourceRange range, RewriteOptions opts = RewriteOptions()) {
return RemoveText(range.getBegin(), getRangeSize(range, opts), opts);
}
/// ReplaceText - This method replaces a range of characters in the input
/// buffer with a new string. This is effectively a combined "remove/insert"
/// operation.
bool ReplaceText(SourceLocation Start, unsigned OrigLength,
StringRef NewStr);
/// ReplaceText - This method replaces a range of characters in the input
/// buffer with a new string. This is effectively a combined "remove/insert"
/// operation.
bool ReplaceText(SourceRange range, StringRef NewStr) {
return ReplaceText(range.getBegin(), getRangeSize(range), NewStr);
}
/// ReplaceText - This method replaces a range of characters in the input
/// buffer with a new string. This is effectively a combined "remove/insert"
/// operation.
bool ReplaceText(SourceRange range, SourceRange replacementRange);
/// \brief Increase indentation for the lines between the given source range.
/// To determine what the indentation should be, 'parentIndent' is used
/// that should be at a source location with an indentation one degree
/// lower than the given range.
bool IncreaseIndentation(CharSourceRange range, SourceLocation parentIndent);
bool IncreaseIndentation(SourceRange range, SourceLocation parentIndent) {
return IncreaseIndentation(CharSourceRange::getTokenRange(range),
parentIndent);
}
/// getEditBuffer - This is like getRewriteBufferFor, but always returns a
/// buffer, and allows you to write on it directly. This is useful if you
/// want efficient low-level access to apis for scribbling on one specific
/// FileID's buffer.
RewriteBuffer &getEditBuffer(FileID FID);
/// getRewriteBufferFor - Return the rewrite buffer for the specified FileID.
/// If no modification has been made to it, return null.
const RewriteBuffer *getRewriteBufferFor(FileID FID) const {
std::map<FileID, RewriteBuffer>::const_iterator I =
RewriteBuffers.find(FID);
return I == RewriteBuffers.end() ? nullptr : &I->second;
}
// Iterators over rewrite buffers.
buffer_iterator buffer_begin() { return RewriteBuffers.begin(); }
buffer_iterator buffer_end() { return RewriteBuffers.end(); }
const_buffer_iterator buffer_begin() const { return RewriteBuffers.begin(); }
const_buffer_iterator buffer_end() const { return RewriteBuffers.end(); }
/// overwriteChangedFiles - Save all changed files to disk.
///
/// Returns true if any files were not saved successfully.
/// Outputs diagnostics via the source manager's diagnostic engine
/// in case of an error.
bool overwriteChangedFiles();
private:
unsigned getLocationOffsetAndFileID(SourceLocation Loc, FileID &FID) const;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/RewriteRope.h | //===--- RewriteRope.h - Rope specialized for rewriter ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RewriteRope class, which is a powerful string class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_REWRITEROPE_H
#define LLVM_CLANG_REWRITE_CORE_REWRITEROPE_H
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
namespace clang {
//===--------------------------------------------------------------------===//
// RopeRefCountString Class
//===--------------------------------------------------------------------===//
/// RopeRefCountString - This struct is allocated with 'new char[]' from the
/// heap, and represents a reference counted chunk of string data. When its
/// ref count drops to zero, it is delete[]'d. This is primarily managed
/// through the RopePiece class below.
struct RopeRefCountString {
unsigned RefCount;
char Data[1]; // Variable sized.
void Retain() { ++RefCount; }
void Release() {
assert(RefCount > 0 && "Reference count is already zero.");
if (--RefCount == 0)
delete [] (char*)this;
}
};
//===--------------------------------------------------------------------===//
// RopePiece Class
//===--------------------------------------------------------------------===//
/// RopePiece - This class represents a view into a RopeRefCountString object.
/// This allows references to string data to be efficiently chopped up and
/// moved around without having to push around the string data itself.
///
/// For example, we could have a 1M RopePiece and want to insert something
/// into the middle of it. To do this, we split it into two RopePiece objects
/// that both refer to the same underlying RopeRefCountString (just with
/// different offsets) which is a nice constant time operation.
struct RopePiece {
llvm::IntrusiveRefCntPtr<RopeRefCountString> StrData;
unsigned StartOffs;
unsigned EndOffs;
RopePiece() : StrData(nullptr), StartOffs(0), EndOffs(0) {}
RopePiece(llvm::IntrusiveRefCntPtr<RopeRefCountString> Str, unsigned Start,
unsigned End)
: StrData(std::move(Str)), StartOffs(Start), EndOffs(End) {}
const char &operator[](unsigned Offset) const {
return StrData->Data[Offset+StartOffs];
}
char &operator[](unsigned Offset) {
return StrData->Data[Offset+StartOffs];
}
unsigned size() const { return EndOffs-StartOffs; }
};
//===--------------------------------------------------------------------===//
// RopePieceBTreeIterator Class
//===--------------------------------------------------------------------===//
/// RopePieceBTreeIterator - This class provides read-only forward iteration
/// over bytes that are in a RopePieceBTree. This first iterates over bytes
/// in a RopePiece, then iterates over RopePiece's in a RopePieceBTreeLeaf,
/// then iterates over RopePieceBTreeLeaf's in a RopePieceBTree.
class RopePieceBTreeIterator {
/// CurNode - The current B+Tree node that we are inspecting.
const void /*RopePieceBTreeLeaf*/ *CurNode;
/// CurPiece - The current RopePiece in the B+Tree node that we're
/// inspecting.
const RopePiece *CurPiece;
/// CurChar - The current byte in the RopePiece we are pointing to.
unsigned CurChar;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = const char;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
// begin iterator.
RopePieceBTreeIterator(const void /*RopePieceBTreeNode*/ *N);
// end iterator
RopePieceBTreeIterator()
: CurNode(nullptr), CurPiece(nullptr), CurChar(0) {}
char operator*() const {
return (*CurPiece)[CurChar];
}
bool operator==(const RopePieceBTreeIterator &RHS) const {
return CurPiece == RHS.CurPiece && CurChar == RHS.CurChar;
}
bool operator!=(const RopePieceBTreeIterator &RHS) const {
return !operator==(RHS);
}
RopePieceBTreeIterator& operator++() { // Preincrement
if (CurChar+1 < CurPiece->size())
++CurChar;
else
MoveToNextPiece();
return *this;
}
inline RopePieceBTreeIterator operator++(int) { // Postincrement
RopePieceBTreeIterator tmp = *this; ++*this; return tmp;
}
llvm::StringRef piece() const {
return llvm::StringRef(&(*CurPiece)[0], CurPiece->size());
}
void MoveToNextPiece();
};
//===--------------------------------------------------------------------===//
// RopePieceBTree Class
//===--------------------------------------------------------------------===//
class RopePieceBTree {
void /*RopePieceBTreeNode*/ *Root;
void operator=(const RopePieceBTree &) = delete;
public:
RopePieceBTree();
RopePieceBTree(const RopePieceBTree &RHS);
~RopePieceBTree();
typedef RopePieceBTreeIterator iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
unsigned size() const;
unsigned empty() const { return size() == 0; }
void clear();
void insert(unsigned Offset, const RopePiece &R);
void erase(unsigned Offset, unsigned NumBytes);
};
//===--------------------------------------------------------------------===//
// RewriteRope Class
//===--------------------------------------------------------------------===//
/// RewriteRope - A powerful string class. This class supports extremely
/// efficient insertions and deletions into the middle of it, even for
/// ridiculously long strings.
class RewriteRope {
RopePieceBTree Chunks;
/// We allocate space for string data out of a buffer of size AllocChunkSize.
/// This keeps track of how much space is left.
llvm::IntrusiveRefCntPtr<RopeRefCountString> AllocBuffer;
unsigned AllocOffs;
enum { AllocChunkSize = 4080 };
public:
RewriteRope() : AllocBuffer(nullptr), AllocOffs(AllocChunkSize) {}
RewriteRope(const RewriteRope &RHS)
: Chunks(RHS.Chunks), AllocBuffer(nullptr), AllocOffs(AllocChunkSize) {
}
typedef RopePieceBTree::iterator iterator;
typedef RopePieceBTree::iterator const_iterator;
iterator begin() const { return Chunks.begin(); }
iterator end() const { return Chunks.end(); }
unsigned size() const { return Chunks.size(); }
void clear() {
Chunks.clear();
}
void assign(const char *Start, const char *End) {
clear();
if (Start != End)
Chunks.insert(0, MakeRopeString(Start, End));
}
void insert(unsigned Offset, const char *Start, const char *End) {
assert(Offset <= size() && "Invalid position to insert!");
if (Start == End) return;
Chunks.insert(Offset, MakeRopeString(Start, End));
}
void erase(unsigned Offset, unsigned NumBytes) {
assert(Offset+NumBytes <= size() && "Invalid region to erase!");
if (NumBytes == 0) return;
Chunks.erase(Offset, NumBytes);
}
private:
RopePiece MakeRopeString(const char *Start, const char *End);
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/HTMLRewrite.h | //==- HTMLRewrite.h - Translate source code into prettified HTML ---*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a set of functions used for translating source code
// into beautified HTML.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_HTMLREWRITE_H
#define LLVM_CLANG_REWRITE_CORE_HTMLREWRITE_H
#include "clang/Basic/SourceLocation.h"
#include <string>
namespace clang {
class Rewriter;
class RewriteBuffer;
class Preprocessor;
namespace html {
/// HighlightRange - Highlight a range in the source code with the specified
/// start/end tags. B/E must be in the same file. This ensures that
/// start/end tags are placed at the start/end of each line if the range is
/// multiline.
void HighlightRange(Rewriter &R, SourceLocation B, SourceLocation E,
const char *StartTag, const char *EndTag);
/// HighlightRange - Highlight a range in the source code with the specified
/// start/end tags. The Start/end of the range must be in the same file.
/// This ensures that start/end tags are placed at the start/end of each line
/// if the range is multiline.
inline void HighlightRange(Rewriter &R, SourceRange Range,
const char *StartTag, const char *EndTag) {
HighlightRange(R, Range.getBegin(), Range.getEnd(), StartTag, EndTag);
}
/// HighlightRange - This is the same as the above method, but takes
/// decomposed file locations.
void HighlightRange(RewriteBuffer &RB, unsigned B, unsigned E,
const char *BufferStart,
const char *StartTag, const char *EndTag);
/// EscapeText - HTMLize a specified file so that special characters are
/// are translated so that they are not interpreted as HTML tags.
void EscapeText(Rewriter& R, FileID FID,
bool EscapeSpaces = false, bool ReplaceTabs = false);
/// EscapeText - HTMLized the provided string so that special characters
/// in 's' are not interpreted as HTML tags. Unlike the version of
/// EscapeText that rewrites a file, this version by default replaces tabs
/// with spaces.
std::string EscapeText(StringRef s,
bool EscapeSpaces = false, bool ReplaceTabs = false);
void AddLineNumbers(Rewriter& R, FileID FID);
void AddHeaderFooterInternalBuiltinCSS(Rewriter& R, FileID FID,
const char *title = nullptr);
/// SyntaxHighlight - Relex the specified FileID and annotate the HTML with
/// information about keywords, comments, etc.
void SyntaxHighlight(Rewriter &R, FileID FID, const Preprocessor &PP);
/// HighlightMacros - This uses the macro table state from the end of the
/// file, to reexpand macros and insert (into the HTML) information about the
/// macro expansions. This won't be perfectly perfect, but it will be
/// reasonably close.
void HighlightMacros(Rewriter &R, FileID FID, const Preprocessor &PP);
} // end html namespace
} // end clang namespace
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/DeltaTree.h | //===--- DeltaTree.h - B-Tree for Rewrite Delta tracking --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DeltaTree class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_DELTATREE_H
#define LLVM_CLANG_REWRITE_CORE_DELTATREE_H
#include "llvm/Support/Compiler.h"
namespace clang {
/// DeltaTree - a multiway search tree (BTree) structure with some fancy
/// features. B-Trees are generally more memory and cache efficient than
/// binary trees, because they store multiple keys/values in each node. This
/// implements a key/value mapping from index to delta, and allows fast lookup
/// on index. However, an added (important) bonus is that it can also
/// efficiently tell us the full accumulated delta for a specific file offset
/// as well, without traversing the whole tree.
class DeltaTree {
void *Root; // "DeltaTreeNode *"
void operator=(const DeltaTree &) = delete;
public:
DeltaTree();
// Note: Currently we only support copying when the RHS is empty.
DeltaTree(const DeltaTree &RHS);
~DeltaTree();
/// getDeltaAt - Return the accumulated delta at the specified file offset.
/// This includes all insertions or delections that occurred *before* the
/// specified file index.
int getDeltaAt(unsigned FileIndex) const;
/// AddDelta - When a change is made that shifts around the text buffer,
/// this method is used to record that info. It inserts a delta of 'Delta'
/// into the current DeltaTree at offset FileIndex.
void AddDelta(unsigned FileIndex, int Delta);
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/TokenRewriter.h | //===--- TokenRewriter.h - Token-based Rewriter -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TokenRewriter class, which is used for code
// transformations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_TOKENREWRITER_H
#define LLVM_CLANG_REWRITE_CORE_TOKENREWRITER_H
#include "clang/Basic/SourceLocation.h"
#include "clang/Lex/Token.h"
#include <list>
#include <map>
#include <memory>
namespace clang {
class LangOptions;
class ScratchBuffer;
class TokenRewriter {
/// TokenList - This is the list of raw tokens that make up this file. Each
/// of these tokens has a unique SourceLocation, which is a FileID.
std::list<Token> TokenList;
/// TokenRefTy - This is the type used to refer to a token in the TokenList.
typedef std::list<Token>::iterator TokenRefTy;
/// TokenAtLoc - This map indicates which token exists at a specific
/// SourceLocation. Since each token has a unique SourceLocation, this is a
/// one to one map. The token can return its own location directly, to map
/// backwards.
std::map<SourceLocation, TokenRefTy> TokenAtLoc;
/// ScratchBuf - This is the buffer that we create scratch tokens from.
///
std::unique_ptr<ScratchBuffer> ScratchBuf;
TokenRewriter(const TokenRewriter &) = delete;
void operator=(const TokenRewriter &) = delete;
public:
/// TokenRewriter - This creates a TokenRewriter for the file with the
/// specified FileID.
TokenRewriter(FileID FID, SourceManager &SM, const LangOptions &LO);
~TokenRewriter();
typedef std::list<Token>::const_iterator token_iterator;
token_iterator token_begin() const { return TokenList.begin(); }
token_iterator token_end() const { return TokenList.end(); }
token_iterator AddTokenBefore(token_iterator I, const char *Val);
token_iterator AddTokenAfter(token_iterator I, const char *Val) {
assert(I != token_end() && "Cannot insert after token_end()!");
return AddTokenBefore(++I, Val);
}
private:
/// RemapIterator - Convert from token_iterator (a const iterator) to
/// TokenRefTy (a non-const iterator).
TokenRefTy RemapIterator(token_iterator I);
/// AddToken - Add the specified token into the Rewriter before the other
/// position.
TokenRefTy AddToken(const Token &T, TokenRefTy Where);
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite | repos/DirectXShaderCompiler/tools/clang/include/clang/Rewrite/Core/RewriteBuffer.h | //===--- RewriteBuffer.h - Buffer rewriting interface -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_REWRITE_CORE_REWRITEBUFFER_H
#define LLVM_CLANG_REWRITE_CORE_REWRITEBUFFER_H
#include "clang/Basic/LLVM.h"
#include "clang/Rewrite/Core/DeltaTree.h"
#include "clang/Rewrite/Core/RewriteRope.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
class Rewriter;
/// RewriteBuffer - As code is rewritten, SourceBuffer's from the original
/// input with modifications get a new RewriteBuffer associated with them. The
/// RewriteBuffer captures the modified text itself as well as information used
/// to map between SourceLocation's in the original input and offsets in the
/// RewriteBuffer. For example, if text is inserted into the buffer, any
/// locations after the insertion point have to be mapped.
class RewriteBuffer {
friend class Rewriter;
/// Deltas - Keep track of all the deltas in the source code due to insertions
/// and deletions.
DeltaTree Deltas;
RewriteRope Buffer;
public:
typedef RewriteRope::const_iterator iterator;
iterator begin() const { return Buffer.begin(); }
iterator end() const { return Buffer.end(); }
unsigned size() const { return Buffer.size(); }
/// Initialize - Start this rewrite buffer out with a copy of the unmodified
/// input buffer.
void Initialize(const char *BufStart, const char *BufEnd) {
Buffer.assign(BufStart, BufEnd);
}
void Initialize(StringRef Input) {
Initialize(Input.begin(), Input.end());
}
/// \brief Write to \p Stream the result of applying all changes to the
/// original buffer.
/// Note that it isn't safe to use this function to overwrite memory mapped
/// files in-place (PR17960). Consider using a higher-level utility such as
/// Rewriter::overwriteChangedFiles() instead.
///
/// The original buffer is not actually changed.
raw_ostream &write(raw_ostream &Stream) const;
/// RemoveText - Remove the specified text.
void RemoveText(unsigned OrigOffset, unsigned Size,
bool removeLineIfEmpty = false);
/// InsertText - Insert some text at the specified point, where the offset in
/// the buffer is specified relative to the original SourceBuffer. The
/// text is inserted after the specified location.
///
void InsertText(unsigned OrigOffset, StringRef Str,
bool InsertAfter = true);
/// InsertTextBefore - Insert some text before the specified point, where the
/// offset in the buffer is specified relative to the original
/// SourceBuffer. The text is inserted before the specified location. This is
/// method is the same as InsertText with "InsertAfter == false".
void InsertTextBefore(unsigned OrigOffset, StringRef Str) {
InsertText(OrigOffset, Str, false);
}
/// InsertTextAfter - Insert some text at the specified point, where the
/// offset in the buffer is specified relative to the original SourceBuffer.
/// The text is inserted after the specified location.
void InsertTextAfter(unsigned OrigOffset, StringRef Str) {
InsertText(OrigOffset, Str);
}
/// ReplaceText - This method replaces a range of characters in the input
/// buffer with a new string. This is effectively a combined "remove/insert"
/// operation.
void ReplaceText(unsigned OrigOffset, unsigned OrigLength,
StringRef NewStr);
private: // Methods only usable by Rewriter.
/// getMappedOffset - Given an offset into the original SourceBuffer that this
/// RewriteBuffer is based on, map it into the offset space of the
/// RewriteBuffer. If AfterInserts is true and if the OrigOffset indicates a
/// position where text is inserted, the location returned will be after any
/// inserted text at the position.
unsigned getMappedOffset(unsigned OrigOffset,
bool AfterInserts = false) const{
return Deltas.getDeltaAt(2*OrigOffset+AfterInserts)+OrigOffset;
}
/// AddInsertDelta - When an insertion is made at a position, this
/// method is used to record that information.
void AddInsertDelta(unsigned OrigOffset, int Change) {
return Deltas.AddDelta(2*OrigOffset, Change);
}
/// AddReplaceDelta - When a replacement/deletion is made at a position, this
/// method is used to record that information.
void AddReplaceDelta(unsigned OrigOffset, int Change) {
return Deltas.AddDelta(2*OrigOffset+1, Change);
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/FrontendTool/Utils.h | //===--- Utils.h - Misc utilities for the front-end -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains miscellaneous utilities for various front-end actions
// which were split from Frontend to minimise Frontend's dependencies.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_FRONTENDTOOL_UTILS_H
#define LLVM_CLANG_FRONTENDTOOL_UTILS_H
namespace clang {
class CompilerInstance;
/// ExecuteCompilerInvocation - Execute the given actions described by the
/// compiler invocation object in the given compiler instance.
///
/// \return - True on success.
bool ExecuteCompilerInvocation(CompilerInstance *Clang);
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvBuilder.h | //===-- SpirvBuilder.h - SPIR-V Builder -----------------------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVBUILDER_H
#define LLVM_CLANG_SPIRV_SPIRVBUILDER_H
#include "clang/SPIRV/FeatureManager.h"
#include "clang/SPIRV/SpirvBasicBlock.h"
#include "clang/SPIRV/SpirvContext.h"
#include "clang/SPIRV/SpirvFunction.h"
#include "clang/SPIRV/SpirvInstruction.h"
#include "clang/SPIRV/SpirvModule.h"
#include "spirv/unified1/NonSemanticDebugPrintf.h"
namespace clang {
namespace spirv {
// Provides StringMapInfo for std::string so we can create a DenseMap with key
// of type std::string.
struct StringMapInfo {
static inline std::string getEmptyKey() { return ""; }
static inline std::string getTombstoneKey() { return ""; }
static unsigned getHashValue(const std::string &Val) {
return llvm::hash_combine(Val);
}
static bool isEqual(const std::string &LHS, const std::string &RHS) {
// Either both are null, or both should have the same underlying type.
return LHS == RHS;
}
};
/// The SPIR-V in-memory representation builder class.
///
/// This class exports API for constructing SPIR-V in-memory representation
/// interactively. Under the hood, it allocates SPIR-V entity objects from
/// SpirvContext and wires them up into a connected structured representation.
///
/// At any time, there can only exist at most one function under building;
/// but there can exist multiple basic blocks under construction.
///
/// Call `getModule()` to get the SPIR-V words after finishing building the
/// module.
class SpirvBuilder {
friend class CapabilityVisitor;
public:
SpirvBuilder(ASTContext &ac, SpirvContext &c, const SpirvCodeGenOptions &,
FeatureManager &featureMgr);
~SpirvBuilder() = default;
// Forbid copy construction and assignment
SpirvBuilder(const SpirvBuilder &) = delete;
SpirvBuilder &operator=(const SpirvBuilder &) = delete;
// Forbid move construction and assignment
SpirvBuilder(SpirvBuilder &&) = delete;
SpirvBuilder &operator=(SpirvBuilder &&) = delete;
/// Returns the SPIR-V module being built.
SpirvModule *getModule() { return mod.get(); }
// === Function and Basic Block ===
/// \brief Creates a SpirvFunction object with the given information and adds
/// it to list of all discovered functions in the SpirvModule.
SpirvFunction *createSpirvFunction(QualType returnType, SourceLocation,
llvm::StringRef name, bool isPrecise,
bool isNoInline = false);
/// \brief Begins building a SPIR-V function by allocating a SpirvFunction
/// object. Returns the pointer for the function on success. Returns nullptr
/// on failure.
///
/// At any time, there can only exist at most one function under building.
SpirvFunction *beginFunction(QualType returnType, SourceLocation,
llvm::StringRef name = "",
bool isPrecise = false, bool isNoInline = false,
SpirvFunction *func = nullptr);
/// \brief Creates and registers a function parameter of the given pointer
/// type in the current function and returns its pointer.
SpirvFunctionParameter *addFnParam(QualType ptrType, bool isPrecise,
bool isNointerp, SourceLocation,
llvm::StringRef name = "");
/// \brief Creates a local variable of the given type in the current
/// function and returns it.
///
/// The corresponding pointer type of the given type will be constructed in
/// this method for the variable itself.
SpirvVariable *addFnVar(QualType valueType, SourceLocation,
llvm::StringRef name = "", bool isPrecise = false,
bool isNointerp = false,
SpirvInstruction *init = nullptr);
/// \brief Ends building of the current function. All basic blocks constructed
/// from the beginning or after ending the previous function will be collected
/// into this function.
void endFunction();
/// \brief Creates a SPIR-V basic block. On success, returns the <label-id>
/// for the basic block. On failure, returns zero.
SpirvBasicBlock *createBasicBlock(llvm::StringRef name = "");
/// \brief Creates a SPIR-V rich DebugInfo DebugScope instruction.
/// On success, returns the <id> of DebugScope. On failure, returns nullptr.
SpirvDebugScope *createDebugScope(SpirvDebugInstruction *scope);
/// \brief Adds the basic block with the given label as a successor to the
/// current basic block.
void addSuccessor(SpirvBasicBlock *successorBB);
/// \brief Sets the merge target to the given basic block.
/// The caller must make sure the current basic block contains an
/// OpSelectionMerge or OpLoopMerge instruction.
void setMergeTarget(SpirvBasicBlock *mergeLabel);
/// \brief Sets the continue target to the given basic block.
/// The caller must make sure the current basic block contains an
/// OpLoopMerge instruction.
void setContinueTarget(SpirvBasicBlock *continueLabel);
/// \brief Returns true if the current basic block inserting into is
/// terminated.
inline bool isCurrentBasicBlockTerminated() const {
return insertPoint && insertPoint->hasTerminator();
}
/// \brief Sets insertion point to the given basic block.
inline void setInsertPoint(SpirvBasicBlock *bb) { insertPoint = bb; }
/// \brief Gets insertion point.
inline SpirvBasicBlock *getInsertPoint() { return insertPoint; }
// === Instruction at the current Insertion Point ===
/// \brief Creates a composite construct instruction with the given
/// <result-type> and constituents and returns the pointer of the
/// composite instruction.
SpirvCompositeConstruct *
createCompositeConstruct(QualType resultType,
llvm::ArrayRef<SpirvInstruction *> constituents,
SourceLocation loc, SourceRange range = {});
/// \brief Creates a composite extract instruction. The given composite is
/// indexed using the given literal indexes to obtain the resulting element.
/// Returns the instruction pointer for the extracted element.
SpirvCompositeExtract *
createCompositeExtract(QualType resultType, SpirvInstruction *composite,
llvm::ArrayRef<uint32_t> indexes, SourceLocation loc,
SourceRange range = {});
/// \brief Creates a composite insert instruction. The given object will
/// replace the component in the composite at the given indices. Returns the
/// instruction pointer for the new composite.
SpirvCompositeInsert *createCompositeInsert(QualType resultType,
SpirvInstruction *composite,
llvm::ArrayRef<uint32_t> indices,
SpirvInstruction *object,
SourceLocation loc,
SourceRange range = {});
/// \brief Creates a vector shuffle instruction of selecting from the two
/// vectors using selectors and returns the instruction pointer of the result
/// vector.
SpirvVectorShuffle *createVectorShuffle(QualType resultType,
SpirvInstruction *vector1,
SpirvInstruction *vector2,
llvm::ArrayRef<uint32_t> selectors,
SourceLocation loc,
SourceRange range = {});
/// \brief Creates a load sequence loading the value of the given
/// <result-type> from the given pointer (load + optional extraction,
/// ex:bitfield). Returns the instruction pointer for the loaded value.
SpirvInstruction *createLoad(QualType resultType, SpirvInstruction *pointer,
SourceLocation loc, SourceRange range = {});
SpirvLoad *createLoad(const SpirvType *resultType, SpirvInstruction *pointer,
SourceLocation loc, SourceRange range = {});
/// \brief Creates an OpCopyObject instruction from the given pointer.
SpirvCopyObject *createCopyObject(QualType resultType,
SpirvInstruction *pointer, SourceLocation);
/// \brief Creates a store sequence storing the given value into the given
/// address. Returns the instruction pointer for the store instruction.
/// This function handles storing to bitfields.
SpirvStore *createStore(SpirvInstruction *address, SpirvInstruction *value,
SourceLocation loc, SourceRange range = {});
/// \brief Creates a function call instruction and returns the instruction
/// pointer for the return value.
SpirvFunctionCall *
createFunctionCall(QualType returnType, SpirvFunction *func,
llvm::ArrayRef<SpirvInstruction *> params,
SourceLocation loc, SourceRange range = {});
/// \brief Creates an access chain instruction to retrieve the element from
/// the given base by walking through the given indexes. Returns the
/// instruction pointer for the pointer to the element.
/// Note: The given 'resultType' should be the underlying value type, not the
/// pointer type. The type lowering pass automatically adds pointerness and
/// proper storage class (based on the access base) to the result type.
SpirvAccessChain *
createAccessChain(QualType resultType, SpirvInstruction *base,
llvm::ArrayRef<SpirvInstruction *> indexes,
SourceLocation loc, SourceRange range = {});
SpirvAccessChain *
createAccessChain(const SpirvType *resultType, SpirvInstruction *base,
llvm::ArrayRef<SpirvInstruction *> indexes,
SourceLocation loc);
/// \brief Creates a unary operation with the given SPIR-V opcode. Returns
/// the instruction pointer for the result.
SpirvUnaryOp *createUnaryOp(spv::Op op, QualType resultType,
SpirvInstruction *operand, SourceLocation loc,
SourceRange range = {});
SpirvUnaryOp *createUnaryOp(spv::Op op, const SpirvType *resultType,
SpirvInstruction *operand, SourceLocation loc);
/// \brief Creates a binary operation with the given SPIR-V opcode. Returns
/// the instruction pointer for the result.
SpirvBinaryOp *createBinaryOp(spv::Op op, QualType resultType,
SpirvInstruction *lhs, SpirvInstruction *rhs,
SourceLocation loc, SourceRange range = {});
SpirvSpecConstantBinaryOp *createSpecConstantBinaryOp(spv::Op op,
QualType resultType,
SpirvInstruction *lhs,
SpirvInstruction *rhs,
SourceLocation loc);
/// \brief Creates an operation with the given OpGroupNonUniform* SPIR-V
/// opcode.
SpirvGroupNonUniformOp *createGroupNonUniformOp(
spv::Op op, QualType resultType, spv::Scope execScope,
llvm::ArrayRef<SpirvInstruction *> operands, SourceLocation,
llvm::Optional<spv::GroupOperation> groupOp = llvm::None);
/// \brief Creates an atomic instruction with the given parameters and returns
/// its pointer.
SpirvAtomic *createAtomicOp(spv::Op opcode, QualType resultType,
SpirvInstruction *orignalValuePtr,
spv::Scope scope,
spv::MemorySemanticsMask memorySemantics,
SpirvInstruction *valueToOp, SourceLocation,
SourceRange range = {});
SpirvAtomic *createAtomicCompareExchange(
QualType resultType, SpirvInstruction *orignalValuePtr, spv::Scope scope,
spv::MemorySemanticsMask equalMemorySemantics,
spv::MemorySemanticsMask unequalMemorySemantics,
SpirvInstruction *valueToOp, SpirvInstruction *comparator, SourceLocation,
SourceRange range = {});
/// \brief Creates an OpSampledImage SPIR-V instruction with proper
/// decorations for the given parameters.
SpirvSampledImage *createSampledImage(QualType, SpirvInstruction *image,
SpirvInstruction *sampler,
SourceLocation loc,
SourceRange range = {});
/// \brief Creates an OpImageTexelPointer SPIR-V instruction with the given
/// parameters.
SpirvImageTexelPointer *createImageTexelPointer(QualType resultType,
SpirvInstruction *image,
SpirvInstruction *coordinate,
SpirvInstruction *sample,
SourceLocation);
/// \brief Creates SPIR-V instructions for sampling the given image.
///
/// If compareVal is given a non-zero value, *Dref* variants of OpImageSample*
/// will be generated.
///
/// If lod or grad is given a non-zero value, *ExplicitLod variants of
/// OpImageSample* will be generated; otherwise, *ImplicitLod variant will
/// be generated.
///
/// If bias, lod, grad, or minLod is given a non-zero value, an additional
/// image operands, Bias, Lod, Grad, or MinLod will be attached to the current
/// instruction, respectively. Panics if both lod and minLod are non-zero.
///
/// If residencyCodeId is not zero, the sparse version of the instructions
/// will be used, and the SPIR-V instruction for storing the resulting
/// residency code will also be emitted.
///
/// If isNonUniform is true, the sampled image will be decorated with
/// NonUniformEXT.
SpirvInstruction *
createImageSample(QualType texelType, QualType imageType,
SpirvInstruction *image, SpirvInstruction *sampler,
SpirvInstruction *coordinate, SpirvInstruction *compareVal,
SpirvInstruction *bias, SpirvInstruction *lod,
std::pair<SpirvInstruction *, SpirvInstruction *> grad,
SpirvInstruction *constOffset, SpirvInstruction *varOffset,
SpirvInstruction *constOffsets, SpirvInstruction *sample,
SpirvInstruction *minLod, SpirvInstruction *residencyCodeId,
SourceLocation loc, SourceRange range = {});
/// \brief Creates SPIR-V instructions for reading a texel from an image. If
/// doImageFetch is true, OpImageFetch is used. OpImageRead is used otherwise.
/// OpImageFetch should be used for sampled images. OpImageRead should be used
/// for images without a sampler.
///
/// If residencyCodeId is not zero, the sparse version of the instructions
/// will be used, and the SPIR-V instruction for storing the resulting
/// residency code will also be emitted.
SpirvInstruction *createImageFetchOrRead(
bool doImageFetch, QualType texelType, QualType imageType,
SpirvInstruction *image, SpirvInstruction *coordinate,
SpirvInstruction *lod, SpirvInstruction *constOffset,
SpirvInstruction *constOffsets, SpirvInstruction *sample,
SpirvInstruction *residencyCode, SourceLocation loc,
SourceRange range = {});
/// \brief Creates SPIR-V instructions for writing to the given image.
void createImageWrite(QualType imageType, SpirvInstruction *image,
SpirvInstruction *coord, SpirvInstruction *texel,
SourceLocation loc, SourceRange range = {});
/// \brief Creates SPIR-V instructions for gathering the given image.
///
/// If compareVal is given a non-null value, OpImageDrefGather or
/// OpImageSparseDrefGather will be generated; otherwise, OpImageGather or
/// OpImageSparseGather will be generated.
/// If residencyCode is not null, the sparse version of the instructions
/// will be used, and the SPIR-V instruction for storing the resulting
/// residency code will also be emitted.
/// If isNonUniform is true, the sampled image will be decorated with
/// NonUniformEXT.
SpirvInstruction *
createImageGather(QualType texelType, QualType imageType,
SpirvInstruction *image, SpirvInstruction *sampler,
SpirvInstruction *coordinate, SpirvInstruction *component,
SpirvInstruction *compareVal, SpirvInstruction *constOffset,
SpirvInstruction *varOffset, SpirvInstruction *constOffsets,
SpirvInstruction *sample, SpirvInstruction *residencyCode,
SourceLocation loc, SourceRange range = {});
/// \brief Creates an OpImageSparseTexelsResident SPIR-V instruction for the
/// given Resident Code and returns the instruction pointer.
SpirvImageSparseTexelsResident *
createImageSparseTexelsResident(SpirvInstruction *resident_code,
SourceLocation, SourceRange range = {});
/// \brief Creates an image query instruction.
/// The given 'lod' is used as the Lod argument in the case of
/// OpImageQuerySizeLod, and it is used as the 'coordinate' parameter in the
/// case of OpImageQueryLod.
SpirvImageQuery *createImageQuery(spv::Op opcode, QualType resultType,
SourceLocation loc, SpirvInstruction *image,
SpirvInstruction *lod = nullptr,
SourceRange range = {});
/// \brief Creates a select operation with the given values for true and false
/// cases and returns the instruction pointer.
SpirvSelect *createSelect(QualType resultType, SpirvInstruction *condition,
SpirvInstruction *trueValue,
SpirvInstruction *falseValue, SourceLocation,
SourceRange range = {});
/// \brief Creates a switch statement for the given selector, default, and
/// branches. Results in OpSelectionMerge followed by OpSwitch.
void
createSwitch(SpirvBasicBlock *mergeLabel, SpirvInstruction *selector,
SpirvBasicBlock *defaultLabel,
llvm::ArrayRef<std::pair<llvm::APInt, SpirvBasicBlock *>> target,
SourceLocation, SourceRange);
/// \brief Creates a fragment-shader discard via by emitting OpKill.
void createKill(SourceLocation, SourceRange range = {});
/// \brief Creates an unconditional branch to the given target label.
/// If mergeBB and continueBB are non-null, it creates an OpLoopMerge
/// instruction followed by an unconditional branch to the given target label.
void createBranch(
SpirvBasicBlock *targetLabel, SourceLocation loc,
SpirvBasicBlock *mergeBB = nullptr, SpirvBasicBlock *continueBB = nullptr,
spv::LoopControlMask loopControl = spv::LoopControlMask::MaskNone,
SourceRange range = {});
/// \brief Creates a conditional branch. An OpSelectionMerge instruction
/// will be created if mergeLabel is not null and continueLabel is null.
/// An OpLoopMerge instruction will also be created if both continueLabel
/// and mergeLabel are not null. For other cases, mergeLabel and continueLabel
/// will be ignored. If selection control mask and/or loop control mask are
/// provided, they will be applied to the corresponding SPIR-V instruction.
/// Otherwise, MaskNone will be used.
void createConditionalBranch(
SpirvInstruction *condition, SpirvBasicBlock *trueLabel,
SpirvBasicBlock *falseLabel, SourceLocation loc,
SpirvBasicBlock *mergeLabel = nullptr,
SpirvBasicBlock *continueLabel = nullptr,
spv::SelectionControlMask selectionControl =
spv::SelectionControlMask::MaskNone,
spv::LoopControlMask loopControl = spv::LoopControlMask::MaskNone,
SourceRange range = {});
/// \brief Creates a return instruction.
void createReturn(SourceLocation, SourceRange range = {});
/// \brief Creates a return value instruction.
void createReturnValue(SpirvInstruction *value, SourceLocation,
SourceRange range = {});
/// \brief Creates an OpExtInst instruction for the GLSL extended instruction
/// set, with the given instruction number, and operands. Returns the
/// resulting instruction pointer.
SpirvInstruction *
createGLSLExtInst(QualType resultType, GLSLstd450 instId,
llvm::ArrayRef<SpirvInstruction *> operands, SourceLocation,
SourceRange range = {});
SpirvInstruction *
createGLSLExtInst(const SpirvType *resultType, GLSLstd450 instId,
llvm::ArrayRef<SpirvInstruction *> operands, SourceLocation,
SourceRange range = {});
/// \brief Creates an OpExtInst instruction for the NonSemantic.DebugPrintf
/// extension set. Returns the resulting instruction pointer.
SpirvInstruction *createNonSemanticDebugPrintfExtInst(
QualType resultType, NonSemanticDebugPrintfInstructions instId,
llvm::ArrayRef<SpirvInstruction *> operands, SourceLocation);
/// \brief Creates an OpMemoryBarrier or OpControlBarrier instruction with the
/// given flags. If execution scope (exec) is provided, an OpControlBarrier
/// is created; otherwise an OpMemoryBarrier is created.
void createBarrier(spv::Scope memoryScope,
spv::MemorySemanticsMask memorySemantics,
llvm::Optional<spv::Scope> exec, SourceLocation,
SourceRange range = {});
/// \brief Creates an OpBitFieldInsert SPIR-V instruction for the given
/// arguments.
SpirvInstruction *createBitFieldInsert(QualType resultType,
SpirvInstruction *base,
SpirvInstruction *insert,
unsigned bitOffset, unsigned bitCount,
SourceLocation, SourceRange);
/// \brief Creates an OpBitFieldUExtract or OpBitFieldSExtract SPIR-V
/// instruction for the given arguments.
SpirvInstruction *createBitFieldExtract(QualType resultType,
SpirvInstruction *base,
unsigned bitOffset, unsigned bitCount,
SourceLocation, SourceRange);
/// \brief Creates an OpEmitVertex instruction.
void createEmitVertex(SourceLocation, SourceRange range = {});
/// \brief Creates an OpEndPrimitive instruction.
void createEndPrimitive(SourceLocation, SourceRange range = {});
/// \brief Creates an OpEmitMeshTasksEXT instruction.
void createEmitMeshTasksEXT(SpirvInstruction *xDim, SpirvInstruction *yDim,
SpirvInstruction *zDim, SourceLocation loc,
SpirvInstruction *payload = nullptr,
SourceRange range = {});
/// \brief Creates an OpSetMeshOutputsEXT instruction.
void createSetMeshOutputsEXT(SpirvInstruction *vertCount,
SpirvInstruction *primCount, SourceLocation loc,
SourceRange range = {});
/// \brief Creates an OpArrayLength instruction.
SpirvArrayLength *createArrayLength(QualType resultType, SourceLocation loc,
SpirvInstruction *structure,
uint32_t arrayMember,
SourceRange range = {});
/// \brief Creates SPIR-V instructions for NV raytracing ops.
SpirvInstruction *
createRayTracingOpsNV(spv::Op opcode, QualType resultType,
llvm::ArrayRef<SpirvInstruction *> operands,
SourceLocation loc);
/// \brief Creates an OpDemoteToHelperInvocation instruction.
SpirvInstruction *createDemoteToHelperInvocation(SourceLocation);
/// \brief Creates an OpIsHelperInvocationEXT instruction.
SpirvInstruction *createIsHelperInvocationEXT(QualType type,
SourceLocation loc);
// === SPIR-V Rich Debug Info Creation ===
SpirvDebugSource *createDebugSource(llvm::StringRef file,
llvm::StringRef text = "");
SpirvDebugCompilationUnit *createDebugCompilationUnit(SpirvDebugSource *);
void createDebugEntryPoint(SpirvDebugFunction *ep,
SpirvDebugCompilationUnit *cu,
llvm::StringRef signature, llvm::StringRef args);
SpirvDebugLexicalBlock *
createDebugLexicalBlock(SpirvDebugSource *, uint32_t line, uint32_t column,
SpirvDebugInstruction *parent);
SpirvDebugLocalVariable *createDebugLocalVariable(
QualType debugType, llvm::StringRef varName, SpirvDebugSource *src,
uint32_t line, uint32_t column, SpirvDebugInstruction *parentScope,
uint32_t flags, llvm::Optional<uint32_t> argNumber = llvm::None);
SpirvDebugGlobalVariable *createDebugGlobalVariable(
QualType debugType, llvm::StringRef varName, SpirvDebugSource *src,
uint32_t line, uint32_t column, SpirvDebugInstruction *parentScope,
llvm::StringRef linkageName, SpirvVariable *var, uint32_t flags,
llvm::Optional<SpirvInstruction *> staticMemberDebugType = llvm::None);
// Get a DebugInfoNone if exists. Otherwise, create one and return it.
SpirvDebugInfoNone *getOrCreateDebugInfoNone();
// Get a null DebugExpression if exists. Otherwise, create one and return it.
SpirvDebugExpression *getOrCreateNullDebugExpression();
SpirvDebugDeclare *createDebugDeclare(
SpirvDebugLocalVariable *dbgVar, SpirvInstruction *var,
SourceLocation loc = {}, SourceRange range = {},
llvm::Optional<SpirvDebugExpression *> dbgExpr = llvm::None);
SpirvDebugFunction *
createDebugFunction(const FunctionDecl *decl, llvm::StringRef name,
SpirvDebugSource *src, uint32_t fnLine, uint32_t fnColumn,
SpirvDebugInstruction *parentScope,
llvm::StringRef linkageName, uint32_t flags,
uint32_t scopeLine, SpirvFunction *fn);
SpirvDebugFunctionDefinition *
createDebugFunctionDef(SpirvDebugFunction *function, SpirvFunction *fn);
/// \brief Create SPIR-V instructions for KHR RayQuery ops
SpirvInstruction *
createRayQueryOpsKHR(spv::Op opcode, QualType resultType,
llvm::ArrayRef<SpirvInstruction *> operands,
bool cullFlags, SourceLocation loc,
SourceRange range = {});
/// \brief Creates an OpReadClockKHR instruction.
SpirvInstruction *createReadClock(SpirvInstruction *scope, SourceLocation);
/// \brief Create Raytracing terminate Ops
/// OpIgnoreIntersectionKHR/OpTerminateIntersectionKHR
void createRaytracingTerminateKHR(spv::Op opcode, SourceLocation loc);
/// \brief Create spirv intrinsic instructions
SpirvInstruction *createSpirvIntrInstExt(
uint32_t opcode, QualType retType,
llvm::ArrayRef<SpirvInstruction *> operands,
llvm::ArrayRef<llvm::StringRef> extensions, llvm::StringRef instSet,
llvm::ArrayRef<uint32_t> capablities, SourceLocation loc);
/// \brief Creates an OpBeginInvocationInterlockEXT instruction.
void createBeginInvocationInterlockEXT(SourceLocation loc, SourceRange range);
/// \brief Creates an OpEndInvocationInterlockEXT instruction.
void createEndInvocationInterlockEXT(SourceLocation loc, SourceRange range);
/// \brief Returns a clone SPIR-V variable for CTBuffer with FXC memory layout
/// and creates copy instructions from the CTBuffer to the clone variable in
/// module.init if it contains HLSL matrix 1xN. Otherwise, returns nullptr.
///
/// Motivation for this clone variable:
/// We translate a matrix type1xN as a vector typeN in all code generation,
/// but type1xN in CTBuffer with FXC memory layout rule must have a stride 16
/// bytes between elements. Since we cannot set a stride for a SPIR-V vector,
/// we must use a SPIR-V array type[N] with stride 16 bytes for it. Since we
/// translate it into a vector typeN for all places, it has side effects. We
/// use a clone variable to fix this issue i.e.,
/// 1. Use the CTBuffer to receive the data from CPU
/// 2. Copy it to the clone variable
/// 3. Use the clone variable in all the places
SpirvInstruction *initializeCloneVarForFxcCTBuffer(SpirvInstruction *instr);
/// \brief Adds a module variable with the Private storage class for a
/// stage variable with [[vk::builtin(HelperInvocation)]] attribute and
/// initializes it as the result of OpIsHelperInvocationEXT instruction.
///
/// Note that we must not use it for Vulkan 1.3 or above. Vulkan 1.3 or
/// above allows us to use HelperInvocation Builtin decoration for stage
/// variables.
SpirvVariable *addVarForHelperInvocation(QualType type, bool isPrecise,
SourceLocation loc);
// === SPIR-V Module Structure ===
inline void setMemoryModel(spv::AddressingModel, spv::MemoryModel);
/// \brief Adds an entry point for the module under construction. We only
/// support a single entry point per module for now.
inline void addEntryPoint(spv::ExecutionModel em, SpirvFunction *target,
llvm::StringRef targetName,
llvm::ArrayRef<SpirvVariable *> interfaces);
/// \brief Sets the shader model version, source file name, and source file
/// content. Returns the SpirvString instruction of the file name.
inline SpirvString *setDebugSource(uint32_t major, uint32_t minor,
const std::vector<llvm::StringRef> &name,
llvm::StringRef content = "");
/// \brief Adds an execution mode to the module under construction if it does
/// not already exist. Return the newly added instruction or the existing
/// instruction, if one already exists.
inline SpirvInstruction *addExecutionMode(SpirvFunction *entryPoint,
spv::ExecutionMode em,
llvm::ArrayRef<uint32_t> params,
SourceLocation,
bool useIdParams = false);
/// \brief Adds an OpModuleProcessed instruction to the module under
/// construction.
void addModuleProcessed(llvm::StringRef process);
/// \brief If not added already, adds an OpExtInstImport (import of extended
/// instruction set) of the rich DebugInfo instruction set, either OpenCL or
/// Vulkan.
/// Returns the imported instruction set.
SpirvExtInstImport *getDebugInfoExtInstSet(bool vulkanDebugInfo);
/// \brief Adds a stage input/ouput variable whose value is of the given type.
///
/// Note: the corresponding pointer type of the given type will not be
/// constructed in this method.
SpirvVariable *addStageIOVar(QualType type, spv::StorageClass storageClass,
llvm::StringRef name, bool isPrecise,
bool isNointerp, SourceLocation loc);
/// \brief Adds a stage builtin variable whose value is of the given type.
///
/// Note: The corresponding pointer type of the given type will not be
/// constructed in this method.
SpirvVariable *addStageBuiltinVar(QualType type,
spv::StorageClass storageClass,
spv::BuiltIn, bool isPrecise,
SourceLocation loc);
/// \brief Adds a module variable. This variable should not have the Function
/// storage class.
///
/// Note: The corresponding pointer type of the given type will not be
/// constructed in this method.
SpirvVariable *
addModuleVar(QualType valueType, spv::StorageClass storageClass,
bool isPrecise, bool isNointerp, llvm::StringRef name = "",
llvm::Optional<SpirvInstruction *> init = llvm::None,
SourceLocation loc = {});
SpirvVariable *
addModuleVar(const SpirvType *valueType, spv::StorageClass storageClass,
bool isPrecise, bool isNointerp, llvm::StringRef name = "",
llvm::Optional<SpirvInstruction *> init = llvm::None,
SourceLocation loc = {});
/// \brief Decorates the given target with the given location.
void decorateLocation(SpirvInstruction *target, uint32_t location);
/// \brief Decorates the given target with the given component.
void decorateComponent(SpirvInstruction *target, uint32_t component);
/// \brief Decorates the given target with the given index.
void decorateIndex(SpirvInstruction *target, uint32_t index, SourceLocation);
/// \brief Decorates the given target with the given descriptor set and
/// binding number.
void decorateDSetBinding(SpirvVariable *target, uint32_t setNumber,
uint32_t bindingNumber);
/// \brief Decorates the given target with the given SpecId.
void decorateSpecId(SpirvInstruction *target, uint32_t specId,
SourceLocation);
/// \brief Decorates the given target with the given input attchment index
/// number.
void decorateInputAttachmentIndex(SpirvInstruction *target,
uint32_t indexNumber, SourceLocation);
/// \brief Decorates the given main buffer with the given counter buffer.
void decorateCounterBuffer(SpirvInstruction *mainBuffer,
SpirvInstruction *counterBuffer, SourceLocation);
/// \brief Decorates the given target with the given HLSL semantic string.
void decorateHlslSemantic(SpirvInstruction *target, llvm::StringRef semantic,
llvm::Optional<uint32_t> memberIdx = llvm::None);
/// \brief Decorates the given target with centroid
void decorateCentroid(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with flat
void decorateFlat(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with noperspective
void decorateNoPerspective(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with sample
void decorateSample(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with patch
void decoratePatch(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with NoContraction
void decorateNoContraction(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with PerPrimitiveNV
void decoratePerPrimitiveNV(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with PerTaskNV
void decoratePerTaskNV(SpirvInstruction *target, uint32_t offset,
SourceLocation);
/// \brief Decorates the given target with PerVertexKHR
void decoratePerVertexKHR(SpirvInstruction *argInst, SourceLocation);
/// \brief Decorates the given target with Coherent
void decorateCoherent(SpirvInstruction *target, SourceLocation);
/// \brief Decorates the given target with LinkageAttributes
/// We have to set targetInst as nullptr when it is an imported or exported
/// function.
/// We have to set targetFunc as nullptr when it is an imported or
/// exported global variable.
void decorateLinkage(SpirvInstruction *targetInst, SpirvFunction *targetFunc,
llvm::StringRef name, spv::LinkageType linkageType,
SourceLocation);
/// \brief Decorates the given target with information from VKDecorateExt
void decorateWithLiterals(SpirvInstruction *targetInst, unsigned decorate,
llvm::ArrayRef<unsigned> literals, SourceLocation);
/// \brief Decorates the given target with result ids of SPIR-V
/// instructions.
void decorateWithIds(SpirvInstruction *targetInst, unsigned decorate,
llvm::ArrayRef<SpirvInstruction *> ids, SourceLocation);
/// \brief Decorates the given target with the given strings.
void decorateWithStrings(SpirvInstruction *target, unsigned decorate,
llvm::ArrayRef<llvm::StringRef> strLiteral,
SourceLocation loc);
/// --- Constants ---
/// Each of these methods can acquire a unique constant from the SpirvContext,
/// and add the context to the list of constants in the module.
SpirvConstant *getConstantInt(QualType type, llvm::APInt value,
bool specConst = false);
SpirvConstant *getConstantFloat(QualType type, llvm::APFloat value,
bool specConst = false);
SpirvConstant *getConstantBool(bool value, bool specConst = false);
SpirvConstant *
getConstantComposite(QualType compositeType,
llvm::ArrayRef<SpirvConstant *> constituents,
bool specConst = false);
SpirvConstant *getConstantNull(QualType);
SpirvUndef *getUndef(QualType);
SpirvString *createString(llvm::StringRef str);
SpirvString *getString(llvm::StringRef str);
const HybridPointerType *getPhysicalStorageBufferType(QualType pointee);
const SpirvPointerType *
getPhysicalStorageBufferType(const SpirvType *pointee);
void setPerVertexInterpMode(bool b);
bool isPerVertexInterpMode();
void addPerVertexStgInputFuncVarEntry(SpirvInstruction *k,
SpirvInstruction *v);
SpirvInstruction *getPerVertexStgInput(SpirvInstruction *k);
std::vector<uint32_t> takeModule();
/// \brief Adds the given capability to the module under construction due to
/// the feature used at the given source location.
inline void requireCapability(spv::Capability, SourceLocation loc = {});
/// \brief Returns true if the module requires the given capability.
inline bool hasCapability(spv::Capability cap);
/// \brief Adds an extension to the module under construction for translating
/// the given target at the given source location.
inline void requireExtension(llvm::StringRef extension, SourceLocation);
private:
/// \brief If not added already, adds an OpExtInstImport (import of extended
/// instruction set) for the given instruction set. Returns the imported
/// instruction set.
SpirvExtInstImport *getExtInstSet(llvm::StringRef extensionName);
/// \brief Returns the composed ImageOperandsMask from non-zero parameters
/// and pushes non-zero parameters to *orderedParams in the expected order.
spv::ImageOperandsMask composeImageOperandsMask(
SpirvInstruction *bias, SpirvInstruction *lod,
const std::pair<SpirvInstruction *, SpirvInstruction *> &grad,
SpirvInstruction *constOffset, SpirvInstruction *varOffset,
SpirvInstruction *constOffsets, SpirvInstruction *sample,
SpirvInstruction *minLod);
/// \brief Creates instructions to copy sub-components of CTBuffer src to its
/// clone dst. This method assumes
/// 1. src has a pointer type to a type with FXC memory layout rule
/// 2. dst has a pointer type to a type with void memory layout rule
void
createCopyInstructionsFromFxcCTBufferToClone(SpirvInstruction *fxcCTBuffer,
SpirvInstruction *clone);
void createCopyArrayInFxcCTBufferToClone(const ArrayType *fxcCTBufferArrTy,
SpirvInstruction *fxcCTBuffer,
const SpirvType *cloneType,
SpirvInstruction *clone,
SourceLocation loc);
void createCopyStructInFxcCTBufferToClone(
const StructType *fxcCTBufferStructTy, SpirvInstruction *fxcCTBuffer,
const SpirvType *cloneType, SpirvInstruction *clone, SourceLocation loc);
/// \brief Sets moduleInitInsertPoint as insertPoint.
void switchInsertPointToModuleInit();
/// \brief Adds OpFunctionCall instructions for ModuleInit to all entry
/// points.
void addModuleInitCallToEntryPoints();
/// \brief Ends building of the module initialization function.
void endModuleInitFunction();
/// \brief Creates a clone SPIR-V variable for CTBuffer.
SpirvVariable *createCloneVarForFxcCTBuffer(QualType astType,
const SpirvType *spvType,
SpirvInstruction *var);
/// \brief Emulates OpBitFieldInsert SPIR-V instruction for the given
/// arguments.
SpirvInstruction *
createEmulatedBitFieldInsert(QualType resultType, uint32_t baseTypeBitwidth,
SpirvInstruction *base, SpirvInstruction *insert,
unsigned bitOffset, unsigned bitCount,
SourceLocation, SourceRange);
SpirvInstruction *
createEmulatedBitFieldExtract(QualType resultType, uint32_t baseTypeBitwidth,
SpirvInstruction *base, unsigned bitOffset,
unsigned bitCount, SourceLocation loc,
SourceRange range);
private:
ASTContext &astContext;
SpirvContext &context; ///< From which we allocate various SPIR-V object
FeatureManager &featureManager;
std::unique_ptr<SpirvModule> mod; ///< The current module being built
SpirvFunction *function; ///< The current function being built
SpirvBasicBlock *insertPoint; ///< The current basic block being built
SpirvFunction *moduleInit; ///< The module initialization
///< function
SpirvBasicBlock *moduleInitInsertPoint; ///< The basic block of the module
///< initialization function
const SpirvCodeGenOptions &spirvOptions; ///< Command line options.
/// A struct containing information regarding a builtin variable.
struct BuiltInVarInfo {
BuiltInVarInfo(spv::StorageClass s, spv::BuiltIn b, SpirvVariable *v)
: sc(s), builtIn(b), variable(v) {}
spv::StorageClass sc;
spv::BuiltIn builtIn;
SpirvVariable *variable;
};
/// Used as caches for all created builtin variables to avoid duplication.
llvm::SmallVector<BuiltInVarInfo, 16> builtinVars;
SpirvDebugInfoNone *debugNone;
/// DebugExpression that does not reference any DebugOperation
SpirvDebugExpression *nullDebugExpr;
// To avoid generating multiple OpStrings for the same string literal
// the SpirvBuilder will generate and reuse them. The empty string is
// kept track of separately. This is because the empty string is used
// as the EmptyKey and TombstoneKey for the map, prohibiting insertion
// of the empty string as a contained value.
llvm::DenseMap<std::string, SpirvString *, StringMapInfo> stringLiterals;
SpirvString *emptyString;
/// Mapping of CTBuffers including matrix 1xN with FXC memory layout to their
/// clone variables. We need it to avoid multiple clone variables for the same
/// CTBuffer.
llvm::DenseMap<SpirvVariable *, SpirvVariable *> fxcCTBufferToClone;
/// Mapping of a temporary stage parameter variable to real stage input
/// variables, only when the declaration has attribute `nointerpolation`
llvm::DenseMap<SpirvInstruction *, SpirvInstruction *> perVertexInputVarMap;
};
void SpirvBuilder::requireCapability(spv::Capability cap, SourceLocation loc) {
auto *capability = new (context) SpirvCapability(loc, cap);
if (mod->addCapability(capability)) {
if (cap == spv::Capability::PhysicalStorageBufferAddresses) {
mod->promoteAddressingModel(
spv::AddressingModel::PhysicalStorageBuffer64);
}
} else {
capability->releaseMemory();
}
}
bool SpirvBuilder::hasCapability(spv::Capability cap) {
SpirvCapability capability({}, cap);
return mod->hasCapability(capability);
}
void SpirvBuilder::requireExtension(llvm::StringRef ext, SourceLocation loc) {
auto *extension = new (context) SpirvExtension(loc, ext);
if (!mod->addExtension(extension))
extension->releaseMemory();
}
void SpirvBuilder::setMemoryModel(spv::AddressingModel addrModel,
spv::MemoryModel memModel) {
mod->setMemoryModel(new (context) SpirvMemoryModel(addrModel, memModel));
}
void SpirvBuilder::addEntryPoint(spv::ExecutionModel em, SpirvFunction *target,
llvm::StringRef targetName,
llvm::ArrayRef<SpirvVariable *> interfaces) {
mod->addEntryPoint(new (context) SpirvEntryPoint(
target->getSourceLocation(), em, target, targetName, interfaces));
}
SpirvString *
SpirvBuilder::setDebugSource(uint32_t major, uint32_t minor,
const std::vector<llvm::StringRef> &fileNames,
llvm::StringRef content) {
uint32_t version = 100 * major + 10 * minor;
SpirvSource *mainSource = nullptr;
for (const auto &name : fileNames) {
SpirvString *fileString = name.empty() ? nullptr : getString(name);
SpirvSource *debugSource = new (context)
SpirvSource(/*SourceLocation*/ {}, spv::SourceLanguage::HLSL, version,
fileString, content);
mod->addSource(debugSource);
if (!mainSource)
mainSource = debugSource;
}
// If mainSource is nullptr, fileNames is empty and no input file is
// specified. We must create a SpirvSource for OpSource HLSL <version>.
if (!mainSource) {
mainSource = new (context)
SpirvSource(/*SourceLocation*/ {}, spv::SourceLanguage::HLSL, version,
nullptr, content);
mod->addSource(mainSource);
}
return mainSource->getFile();
}
SpirvInstruction *
SpirvBuilder::addExecutionMode(SpirvFunction *entryPoint, spv::ExecutionMode em,
llvm::ArrayRef<uint32_t> params,
SourceLocation loc, bool useIdParams) {
SpirvExecutionMode *mode = nullptr;
SpirvExecutionMode *existingInstruction =
mod->findExecutionMode(entryPoint, em);
if (!existingInstruction) {
mode = new (context)
SpirvExecutionMode(loc, entryPoint, em, params, useIdParams);
mod->addExecutionMode(mode);
} else {
mode = existingInstruction;
}
return mode;
}
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVBUILDER_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvModule.h | //===-- SpirvModule.h - SPIR-V Module -------------------------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVMODULE_H
#define LLVM_CLANG_SPIRV_SPIRVMODULE_H
#include <vector>
#include "clang/SPIRV/SpirvInstruction.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
namespace clang {
namespace spirv {
class SpirvFunction;
class SpirvVisitor;
struct ExtensionComparisonInfo {
static inline SpirvExtension *getEmptyKey() { return nullptr; }
static inline SpirvExtension *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const SpirvExtension *ext) {
return llvm::hash_combine(ext->getExtensionName());
}
static bool isEqual(SpirvExtension *LHS, SpirvExtension *RHS) {
// Either both are null, or both should have the same underlying extension.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
struct DecorationComparisonInfo {
static inline SpirvDecoration *getEmptyKey() { return nullptr; }
static inline SpirvDecoration *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const SpirvDecoration *decor) {
return llvm::hash_combine(decor->getTarget(),
static_cast<uint32_t>(decor->getDecoration()));
}
static bool isEqual(SpirvDecoration *LHS, SpirvDecoration *RHS) {
// Either both are null, or both should have the same underlying decoration.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
struct CapabilityComparisonInfo {
static inline SpirvCapability *getEmptyKey() { return nullptr; }
static inline SpirvCapability *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const SpirvCapability *cap) {
return llvm::hash_combine(static_cast<uint32_t>(cap->getCapability()));
}
static bool isEqual(SpirvCapability *LHS, SpirvCapability *RHS) {
// Either both are null, or both should have the same underlying capability.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
/// The class representing a SPIR-V module in memory.
///
/// A SPIR-V module contains two main parts: instructions for "metadata" (e.g.,
/// required capabilities and used types) and instructions for shader logic.
/// The former consists of the instructions before the function section in
/// SPIR-V logical layout; while the later is what are in the function section.
///
/// The SpirvBuilder class should be used to gradually build up the second part.
/// After the SpirvBuilder completes its tasks, the first part should be filled
/// out by traversing the second part built by the SpirvBuilder.
///
/// This representation is a just a minimal collection of SPIR-V entities;
/// it does not provide much sanity check over the integrity among the enclosed
/// entities, which modifying classes should be responsible for.
class SpirvModule {
public:
SpirvModule();
~SpirvModule();
// Forbid copy construction and assignment
SpirvModule(const SpirvModule &) = delete;
SpirvModule &operator=(const SpirvModule &) = delete;
// Forbid move construction and assignment
SpirvModule(SpirvModule &&) = delete;
SpirvModule &operator=(SpirvModule &&) = delete;
// Handle SPIR-V module visitors.
bool invokeVisitor(Visitor *, bool reverseOrder = false);
// Add a function to the list of module functions.
void addFunctionToListOfSortedModuleFunctions(SpirvFunction *);
// Adds the given function to the vector of all discovered functions. Calling
// this function will not result in emitting the function.
void addFunction(SpirvFunction *);
// Add a capability to the list of module capabilities.
// Returns true if the capability was added.
// Returns false otherwise (e.g. if the capability already existed).
bool addCapability(SpirvCapability *cap);
// Returns true if the capability is in the module.
bool hasCapability(SpirvCapability &cap);
// Set the memory model of the module.
void setMemoryModel(SpirvMemoryModel *model);
// Increases addressing model requirement for the module:
// Logical -> Physical32 -> Physical64 -> PhysicalStorageBuffer64.
// Requires setMemoryModel() to be called first to set the base memory model.
// Returns true if addressing model was changed.
bool promoteAddressingModel(spv::AddressingModel addrModel);
// Add an entry point to the module.
void addEntryPoint(SpirvEntryPoint *);
// Returns an existing execution mode instruction that is the same as em if it
// exists. Return nullptr otherwise.
SpirvExecutionMode *findExecutionMode(SpirvFunction *entryPoint,
spv::ExecutionMode em);
// Adds an execution mode to the module.
void addExecutionMode(SpirvExecutionMode *);
// Adds an extension to the module. Returns true if the extension was added.
// Returns false otherwise (e.g. if the extension already existed).
bool addExtension(SpirvExtension *);
// Adds an extended instruction set to the module.
void addExtInstSet(SpirvExtInstImport *);
// Returns the extended instruction set with the given name if already added
// Returns nullptr otherwise.
SpirvExtInstImport *getExtInstSet(llvm::StringRef name);
// Adds a variable to the module.
void addVariable(SpirvVariable *);
// Adds a decoration to the module.
void addDecoration(SpirvDecoration *);
// Adds a constant to the module.
void addConstant(SpirvConstant *);
// Adds an Undef to the module.
void addUndef(SpirvUndef *);
// Adds given string to the module which will be emitted via OpString.
void addString(SpirvString *);
// Adds the debug source to the module.
void addSource(SpirvSource *);
// Adds the given debug info instruction to debugInstructions.
void addDebugInfo(SpirvDebugInstruction *);
llvm::SmallVector<SpirvDebugInstruction *, 32> &getDebugInfo() {
return debugInstructions;
}
// Adds the given OpModuleProcessed to the module.
void addModuleProcessed(SpirvModuleProcessed *);
llvm::ArrayRef<SpirvVariable *> getVariables() const { return variables; }
llvm::ArrayRef<SpirvEntryPoint *> getEntryPoints() const {
return entryPoints;
}
void setPerVertexInterpMode(bool b) { perVertexInterp = b; }
bool isPerVertexInterpMode() const { return perVertexInterp; }
private:
// Use a set for storing capabilities. This will ensure there are no duplicate
// capabilities. Although the set stores pointers, the provided
// CapabilityComparisonInfo compares the SpirvCapability objects, not the
// pointers.
llvm::SetVector<SpirvCapability *, std::vector<SpirvCapability *>,
llvm::DenseSet<SpirvCapability *, CapabilityComparisonInfo>>
capabilities;
// Use a set for storing extensions. This will ensure there are no duplicate
// extensions. Although the set stores pointers, the provided
// ExtensionComparisonInfo compares the SpirvExtension objects, not the
// pointers.
llvm::SetVector<SpirvExtension *, std::vector<SpirvExtension *>,
llvm::DenseSet<SpirvExtension *, ExtensionComparisonInfo>>
extensions;
llvm::SmallVector<SpirvExtInstImport *, 1> extInstSets;
SpirvMemoryModel *memoryModel;
llvm::SmallVector<SpirvEntryPoint *, 1> entryPoints;
llvm::SmallVector<SpirvExecutionMode *, 4> executionModes;
llvm::SmallVector<SpirvString *, 4> constStrings;
std::vector<SpirvSource *> sources;
std::vector<SpirvModuleProcessed *> moduleProcesses;
// Use a set for storing decoration. This will ensure that we don't apply the
// same decoration to the same target more than once. Although the set stores
// pointers, the provided DecorationComparisonInfo compares the
// SpirvDecoration objects, not the pointers.
llvm::SetVector<SpirvDecoration *, std::vector<SpirvDecoration *>,
llvm::DenseSet<SpirvDecoration *, DecorationComparisonInfo>>
decorations;
std::vector<SpirvConstant *> constants;
std::vector<SpirvUndef *> undefs;
std::vector<SpirvVariable *> variables;
// A vector of functions in the module in the order that they should be
// emitted. The order starts with the entry-point function followed by a
// depth-first discovery of functions reachable from the entry-point function.
std::vector<SpirvFunction *> functions;
// A vector of all functions that have been visited in the AST tree. This
// vector is not in any particular order, and may contain unused functions.
llvm::SetVector<SpirvFunction *> allFunctions;
// Keep all rich DebugInfo instructions.
llvm::SmallVector<SpirvDebugInstruction *, 32> debugInstructions;
// Whether current module is in pervertex interpolation mode.
bool perVertexInterp;
};
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVMODULE_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvVisitor.h | //===-- SpirvVisitor.h - SPIR-V Visitor -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVVISITOR_H
#define LLVM_CLANG_SPIRV_SPIRVVISITOR_H
#include "dxc/Support/SPIRVOptions.h"
#include "clang/SPIRV/SpirvInstruction.h"
namespace clang {
namespace spirv {
class SpirvContext;
class SpirvModule;
class SpirvFunction;
class SpirvBasicBlock;
/// \brief The base class for different SPIR-V visitor classes.
/// Each Visitor class serves a specific purpose and should override the
/// suitable visit methods accordingly in order to achieve its purpose.
class Visitor {
public:
enum Phase {
Init, //< Before starting the visit of the given construct
Done, //< After finishing the visit of the given construct
};
// Virtual destructor
virtual ~Visitor() = default;
// Forbid copy construction and assignment
Visitor(const Visitor &) = delete;
Visitor &operator=(const Visitor &) = delete;
// Forbid move construction and assignment
Visitor(Visitor &&) = delete;
Visitor &operator=(Visitor &&) = delete;
// Visiting different SPIR-V constructs.
virtual bool visit(SpirvModule *, Phase) { return true; }
virtual bool visit(SpirvFunction *, Phase) { return true; }
virtual bool visit(SpirvBasicBlock *, Phase) { return true; }
/// The "sink" visit function for all instructions.
///
/// By default, all other visit instructions redirect to this visit function.
/// So that you want override this visit function to handle all instructions,
/// regardless of their polymorphism.
virtual bool visitInstruction(SpirvInstruction *) { return true; }
#define DEFINE_VISIT_METHOD(cls) \
virtual bool visit(cls *i) { return visitInstruction(i); }
DEFINE_VISIT_METHOD(SpirvCapability)
DEFINE_VISIT_METHOD(SpirvExtension)
DEFINE_VISIT_METHOD(SpirvExtInstImport)
DEFINE_VISIT_METHOD(SpirvMemoryModel)
DEFINE_VISIT_METHOD(SpirvEntryPoint)
DEFINE_VISIT_METHOD(SpirvExecutionMode)
DEFINE_VISIT_METHOD(SpirvString)
DEFINE_VISIT_METHOD(SpirvSource)
DEFINE_VISIT_METHOD(SpirvModuleProcessed)
DEFINE_VISIT_METHOD(SpirvDecoration)
DEFINE_VISIT_METHOD(SpirvVariable)
DEFINE_VISIT_METHOD(SpirvFunctionParameter)
DEFINE_VISIT_METHOD(SpirvLoopMerge)
DEFINE_VISIT_METHOD(SpirvSelectionMerge)
DEFINE_VISIT_METHOD(SpirvBranching)
DEFINE_VISIT_METHOD(SpirvBranch)
DEFINE_VISIT_METHOD(SpirvBranchConditional)
DEFINE_VISIT_METHOD(SpirvKill)
DEFINE_VISIT_METHOD(SpirvReturn)
DEFINE_VISIT_METHOD(SpirvSwitch)
DEFINE_VISIT_METHOD(SpirvUnreachable)
DEFINE_VISIT_METHOD(SpirvAccessChain)
DEFINE_VISIT_METHOD(SpirvAtomic)
DEFINE_VISIT_METHOD(SpirvBarrier)
DEFINE_VISIT_METHOD(SpirvBinaryOp)
DEFINE_VISIT_METHOD(SpirvBitFieldExtract)
DEFINE_VISIT_METHOD(SpirvBitFieldInsert)
DEFINE_VISIT_METHOD(SpirvConstantBoolean)
DEFINE_VISIT_METHOD(SpirvConstantInteger)
DEFINE_VISIT_METHOD(SpirvConstantFloat)
DEFINE_VISIT_METHOD(SpirvConstantComposite)
DEFINE_VISIT_METHOD(SpirvConstantNull)
DEFINE_VISIT_METHOD(SpirvUndef)
DEFINE_VISIT_METHOD(SpirvCompositeConstruct)
DEFINE_VISIT_METHOD(SpirvCompositeExtract)
DEFINE_VISIT_METHOD(SpirvCompositeInsert)
DEFINE_VISIT_METHOD(SpirvEmitVertex)
DEFINE_VISIT_METHOD(SpirvEndPrimitive)
DEFINE_VISIT_METHOD(SpirvExtInst)
DEFINE_VISIT_METHOD(SpirvFunctionCall)
DEFINE_VISIT_METHOD(SpirvGroupNonUniformOp)
DEFINE_VISIT_METHOD(SpirvImageOp)
DEFINE_VISIT_METHOD(SpirvImageQuery)
DEFINE_VISIT_METHOD(SpirvImageSparseTexelsResident)
DEFINE_VISIT_METHOD(SpirvImageTexelPointer)
DEFINE_VISIT_METHOD(SpirvLoad)
DEFINE_VISIT_METHOD(SpirvCopyObject)
DEFINE_VISIT_METHOD(SpirvSampledImage)
DEFINE_VISIT_METHOD(SpirvSelect)
DEFINE_VISIT_METHOD(SpirvSpecConstantBinaryOp)
DEFINE_VISIT_METHOD(SpirvSpecConstantUnaryOp)
DEFINE_VISIT_METHOD(SpirvStore)
DEFINE_VISIT_METHOD(SpirvNullaryOp)
DEFINE_VISIT_METHOD(SpirvUnaryOp)
DEFINE_VISIT_METHOD(SpirvVectorShuffle)
DEFINE_VISIT_METHOD(SpirvArrayLength)
DEFINE_VISIT_METHOD(SpirvRayTracingOpNV)
DEFINE_VISIT_METHOD(SpirvDemoteToHelperInvocation)
DEFINE_VISIT_METHOD(SpirvIsHelperInvocationEXT)
DEFINE_VISIT_METHOD(SpirvDebugInfoNone)
DEFINE_VISIT_METHOD(SpirvDebugSource)
DEFINE_VISIT_METHOD(SpirvDebugCompilationUnit)
DEFINE_VISIT_METHOD(SpirvDebugFunctionDeclaration)
DEFINE_VISIT_METHOD(SpirvDebugFunction)
DEFINE_VISIT_METHOD(SpirvDebugFunctionDefinition)
DEFINE_VISIT_METHOD(SpirvDebugEntryPoint)
DEFINE_VISIT_METHOD(SpirvDebugLocalVariable)
DEFINE_VISIT_METHOD(SpirvDebugGlobalVariable)
DEFINE_VISIT_METHOD(SpirvDebugOperation)
DEFINE_VISIT_METHOD(SpirvDebugExpression)
DEFINE_VISIT_METHOD(SpirvDebugDeclare)
DEFINE_VISIT_METHOD(SpirvDebugLexicalBlock)
DEFINE_VISIT_METHOD(SpirvDebugScope)
DEFINE_VISIT_METHOD(SpirvDebugTypeBasic)
DEFINE_VISIT_METHOD(SpirvDebugTypeArray)
DEFINE_VISIT_METHOD(SpirvDebugTypeVector)
DEFINE_VISIT_METHOD(SpirvDebugTypeMatrix)
DEFINE_VISIT_METHOD(SpirvDebugTypeFunction)
DEFINE_VISIT_METHOD(SpirvDebugTypeComposite)
DEFINE_VISIT_METHOD(SpirvDebugTypeMember)
DEFINE_VISIT_METHOD(SpirvDebugTypeTemplate)
DEFINE_VISIT_METHOD(SpirvDebugTypeTemplateParameter)
DEFINE_VISIT_METHOD(SpirvRayQueryOpKHR)
DEFINE_VISIT_METHOD(SpirvReadClock)
DEFINE_VISIT_METHOD(SpirvRayTracingTerminateOpKHR)
DEFINE_VISIT_METHOD(SpirvIntrinsicInstruction)
DEFINE_VISIT_METHOD(SpirvEmitMeshTasksEXT)
DEFINE_VISIT_METHOD(SpirvSetMeshOutputsEXT)
#undef DEFINE_VISIT_METHOD
const SpirvCodeGenOptions &getCodeGenOptions() const { return spvOptions; }
protected:
explicit Visitor(const SpirvCodeGenOptions &opts, SpirvContext &ctx)
: spvOptions(opts), context(ctx) {}
protected:
const SpirvCodeGenOptions &spvOptions;
SpirvContext &context;
};
} // namespace spirv
} // namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVVISITOR_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/BitwiseCast.h | //===-- BitwiseCast.h - Bitwise cast ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_BITWISECAST_H
#define LLVM_CLANG_SPIRV_BITWISECAST_H
#include <cstring>
namespace clang {
namespace spirv {
namespace cast {
/// \brief Performs bitwise copy of source to the destination type Dest.
template <typename Dest, typename Src> Dest BitwiseCast(Src source) {
Dest dest;
static_assert(sizeof(source) == sizeof(dest),
"BitwiseCast: source and destination must have the same size.");
std::memcpy(&dest, &source, sizeof(dest));
return dest;
}
} // end namespace cast
} // end namespace spirv
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvBasicBlock.h | //===-- SpirvBasicBlock.h - SPIR-V Basic Block ----------------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVBASICBLOCK_H
#define LLVM_CLANG_SPIRV_SPIRVBASICBLOCK_H
#include <string>
#include <vector>
#include "clang/SPIRV/SpirvInstruction.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
namespace clang {
namespace spirv {
class SpirvVisitor;
class SpirvInstructionNode : public llvm::ilist_node<SpirvInstructionNode> {
public:
SpirvInstructionNode() : instruction(nullptr) {}
SpirvInstructionNode(SpirvInstruction *instr) : instruction(instr) {}
SpirvInstruction *instruction;
};
/// The class representing a SPIR-V basic block in memory.
class SpirvBasicBlock {
public:
SpirvBasicBlock(llvm::StringRef name);
~SpirvBasicBlock();
// Forbid copy construction and assignment
SpirvBasicBlock(const SpirvBasicBlock &) = delete;
SpirvBasicBlock &operator=(const SpirvBasicBlock &) = delete;
// Forbid move construction and assignment
SpirvBasicBlock(SpirvBasicBlock &&) = delete;
SpirvBasicBlock &operator=(SpirvBasicBlock &&) = delete;
/// Returns the label's <result-id> of this basic block.
uint32_t getResultId() const { return labelId; }
void setResultId(uint32_t id) { labelId = id; }
/// Returns the debug name of this basic block.
llvm::StringRef getName() const { return labelName; }
/// Sets the merge target for this basic block.
///
/// The caller must make sure this basic block contains an OpSelectionMerge
/// or OpLoopMerge instruction.
void setMergeTarget(SpirvBasicBlock *target) { mergeTarget = target; }
/// Returns the merge target if this basic block contains an OpSelectionMerge
/// or OpLoopMerge instruction. Returns nullptr otherwise.
SpirvBasicBlock *getMergeTarget() const { return mergeTarget; }
/// Sets the continue target to the given basic block.
///
/// The caller must make sure this basic block contains an OpLoopMerge
/// instruction.
void setContinueTarget(SpirvBasicBlock *target) { continueTarget = target; }
/// Returns the continue target if this basic block contains an
/// OpLoopMerge instruction. Returns nullptr otherwise.
SpirvBasicBlock *getContinueTarget() const { return continueTarget; }
/// Get/set DebugScope for this basic block.
SpirvDebugScope *getDebugScope() const { return debugScope; }
void setDebugScope(SpirvDebugScope *scope) {
assert(debugScope == nullptr);
debugScope = scope;
}
/// Deletes existing debugScope and sets scope as the new debugScope.
void updateDebugScope(SpirvDebugScope *scope) {
if (debugScope != nullptr) {
debugScope->releaseMemory();
debugScope = nullptr;
}
setDebugScope(scope);
}
/// Adds an instruction to the vector of instructions belonging to this basic
/// block.
void addInstruction(SpirvInstruction *inst) { instructions.push_back(inst); }
/// Adds the given instruction as the first instruction of this SPIR-V basic
/// block.
void addFirstInstruction(SpirvInstruction *inst) {
instructions.push_front(inst);
}
/// Return true if instructions is empty. Otherwise, return false.
bool empty() { return instructions.empty(); }
/// Returns true if the last instruction in this basic block is a termination
/// instruction.
bool hasTerminator() const;
/// Handle SPIR-V basic block visitors.
/// If a basic block is the first basic block in a function, it must include
/// all the variable definitions of the entire function.
///
/// For NonSemantic.Shader.DebugInfo.100 we also pass in the function scope
/// and function-level debug declares, since these can't appear outside of
/// basic blocks.
bool invokeVisitor(Visitor *, llvm::ArrayRef<SpirvVariable *> vars,
SpirvDebugScope *functionScope,
llvm::ArrayRef<SpirvDebugDeclare *> debugDeclares,
bool reverseOrder = false);
/// \brief Adds the given basic block as a successsor to this basic block.
void addSuccessor(SpirvBasicBlock *bb);
/// Returns the list of successors of this basic block.
llvm::ArrayRef<SpirvBasicBlock *> getSuccessors() const { return successors; }
private:
uint32_t labelId; ///< The label's <result-id>
std::string labelName; ///< The label's debug name
/// Instructions belonging to this basic block.
llvm::ilist<SpirvInstructionNode> instructions;
/// Successors to this basic block.
llvm::SmallVector<SpirvBasicBlock *, 2> successors;
/// The corresponding merge targets if this basic block is a header
/// block of structured control flow.
SpirvBasicBlock *mergeTarget;
/// The continue merge targets if this basic block is a header block
/// of structured control flow.
SpirvBasicBlock *continueTarget;
/// DebugScope that groups all instructions in this basic block.
/// TODO: There can be multiple DebugScope instructions in a basic block.
/// Currently, we do not find an actual case that DXC has to emit
/// multiple DebugScope instructions in a basic block, but update it
/// when we find the actual case.
SpirvDebugScope *debugScope;
};
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVBASICBLOCK_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/String.h | //===-- String.h - SPIR-V Strings -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_STRING_H
#define LLVM_CLANG_SPIRV_STRING_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <streambuf>
#include <string>
#include <vector>
namespace clang {
namespace spirv {
namespace string {
/// \brief Reinterprets a given string as sequence of words. It follows the
/// SPIR-V string encoding requirements.
std::vector<uint32_t> encodeSPIRVString(llvm::StringRef strChars);
/// \brief Reinterprets the given vector of 32-bit words as a string.
/// Expectes that the words represent a NULL-terminated string.
/// It follows the SPIR-V string encoding requirements.
std::string decodeSPIRVString(llvm::ArrayRef<uint32_t> strWords);
/// \brief Stream buffer implementation that writes to `llvm::raw_ostream`.
/// Intended to be used with APIs that write to `std::ostream`.
///
/// Sample:
/// ```
/// RawOstreamBuf buf(llvm::errs());
/// std::ostream os(&buf);
/// some_print(os);
/// ```
class RawOstreamBuf : public std::streambuf {
public:
RawOstreamBuf(llvm::raw_ostream &os) : os(os) {}
using char_type = std::streambuf::char_type;
using int_type = std::streambuf::int_type;
protected:
std::streamsize xsputn(const char_type *s, std::streamsize count) override {
os << llvm::StringRef(s, count);
return count;
}
int_type overflow(int_type c) override {
os << char_type(c);
return 0;
}
private:
llvm::raw_ostream &os;
};
} // end namespace string
} // end namespace spirv
} // end namespace clang
#endif |
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvContext.h | //===-- SpirvContext.h - Context holding SPIR-V codegen data ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVCONTEXT_H
#define LLVM_CLANG_SPIRV_SPIRVCONTEXT_H
#include <array>
#include <limits>
#include "dxc/DXIL/DxilShaderModel.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/SPIRV/SpirvInstruction.h"
#include "clang/SPIRV/SpirvType.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Allocator.h"
namespace clang {
namespace spirv {
class SpirvModule;
struct RichDebugInfo {
RichDebugInfo(SpirvDebugSource *src, SpirvDebugCompilationUnit *cu)
: source(src), compilationUnit(cu) {
scopeStack.push_back(cu);
}
RichDebugInfo() : source(nullptr), compilationUnit(nullptr), scopeStack() {}
// The HLL source code
SpirvDebugSource *source;
// The compilation unit (topmost debug info node)
SpirvDebugCompilationUnit *compilationUnit;
// Stack of lexical scopes
std::vector<SpirvDebugInstruction *> scopeStack;
};
// Provides DenseMapInfo for spv::StorageClass so that we can use
// spv::StorageClass as key to DenseMap.
//
// Mostly from DenseMapInfo<unsigned> in DenseMapInfo.h.
struct StorageClassDenseMapInfo {
static inline spv::StorageClass getEmptyKey() {
return spv::StorageClass::Max;
}
static inline spv::StorageClass getTombstoneKey() {
return spv::StorageClass::Max;
}
static unsigned getHashValue(const spv::StorageClass &Val) {
return static_cast<unsigned>(Val) * 37U;
}
static bool isEqual(const spv::StorageClass &LHS,
const spv::StorageClass &RHS) {
return LHS == RHS;
}
};
// Provides DenseMapInfo for ArrayType so we can create a DenseSet of array
// types.
struct ArrayTypeMapInfo {
static inline ArrayType *getEmptyKey() { return nullptr; }
static inline ArrayType *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const ArrayType *Val) {
return llvm::hash_combine(Val->getElementType(), Val->getElementCount(),
Val->getStride().hasValue());
}
static bool isEqual(const ArrayType *LHS, const ArrayType *RHS) {
// Either both are null, or both should have the same underlying type.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
// Provides DenseMapInfo for RuntimeArrayType so we can create a DenseSet of
// runtime array types.
struct RuntimeArrayTypeMapInfo {
static inline RuntimeArrayType *getEmptyKey() { return nullptr; }
static inline RuntimeArrayType *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const RuntimeArrayType *Val) {
return llvm::hash_combine(Val->getElementType(),
Val->getStride().hasValue());
}
static bool isEqual(const RuntimeArrayType *LHS,
const RuntimeArrayType *RHS) {
// Either both are null, or both should have the same underlying type.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
// Provides DenseMapInfo for ImageType so we can create a DenseSet of
// image types.
struct ImageTypeMapInfo {
static inline ImageType *getEmptyKey() { return nullptr; }
static inline ImageType *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const ImageType *Val) {
return llvm::hash_combine(Val->getSampledType(), Val->isArrayedImage(),
Val->isMSImage(),
static_cast<uint32_t>(Val->getDimension()),
static_cast<uint32_t>(Val->withSampler()),
static_cast<uint32_t>(Val->getImageFormat()));
}
static bool isEqual(const ImageType *LHS, const ImageType *RHS) {
// Either both are null, or both should have the same underlying type.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
// Provides DenseMapInfo for FunctionType so we can create a DenseSet of
// function types.
struct FunctionTypeMapInfo {
static inline FunctionType *getEmptyKey() { return nullptr; }
static inline FunctionType *getTombstoneKey() { return nullptr; }
static unsigned getHashValue(const FunctionType *Val) {
// Hashing based on return type and number of function parameters.
auto hashCode =
llvm::hash_combine(Val->getReturnType(), Val->getParamTypes().size());
for (const SpirvType *paramType : Val->getParamTypes())
hashCode = llvm::hash_combine(hashCode, paramType);
return hashCode;
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
// Either both are null, or both should have the same underlying type.
return (LHS == RHS) || (LHS && RHS && *LHS == *RHS);
}
};
// Vulkan specific image features for a variable with an image type.
struct VkImageFeatures {
// True if it is a Vulkan "Combined Image Sampler".
bool isCombinedImageSampler;
spv::ImageFormat format; // SPIR-V image format.
};
// A struct that contains the information of a resource that will be used to
// combine an image and a sampler to a sampled image.
struct ResourceInfoToCombineSampledImage {
QualType type;
uint32_t descriptorSet;
uint32_t binding;
};
/// The class owning various SPIR-V entities allocated in memory during CodeGen.
///
/// All entities should be allocated from an object of this class using
/// placement new. This way other components of the CodeGen do not need to worry
/// about lifetime of those SPIR-V entities. They will be deleted when such a
/// context is deleted. Therefore, this context should outlive the usages of the
/// the SPIR-V entities allocated in memory.
class SpirvContext {
public:
using ShaderModelKind = hlsl::ShaderModel::Kind;
SpirvContext();
~SpirvContext();
// Forbid copy construction and assignment
SpirvContext(const SpirvContext &) = delete;
SpirvContext &operator=(const SpirvContext &) = delete;
// Forbid move construction and assignment
SpirvContext(SpirvContext &&) = delete;
SpirvContext &operator=(SpirvContext &&) = delete;
/// Allocates memory of the given size and alignment.
void *allocate(size_t size, unsigned align) const {
return allocator.Allocate(size, align);
}
/// Deallocates the memory pointed by the given pointer.
void deallocate(void *ptr) const {}
// === DebugTypes ===
// TODO: Replace uint32_t with an enum for encoding.
SpirvDebugType *getDebugTypeBasic(const SpirvType *spirvType,
llvm::StringRef name, SpirvConstant *size,
uint32_t encoding);
SpirvDebugType *getDebugTypeMember(llvm::StringRef name, SpirvDebugType *type,
SpirvDebugSource *source, uint32_t line,
uint32_t column,
SpirvDebugInstruction *parent,
uint32_t flags, uint32_t offsetInBits,
uint32_t sizeInBits, const APValue *value);
SpirvDebugTypeComposite *getDebugTypeComposite(const SpirvType *spirvType,
llvm::StringRef name,
SpirvDebugSource *source,
uint32_t line, uint32_t column,
SpirvDebugInstruction *parent,
llvm::StringRef linkageName,
uint32_t flags, uint32_t tag);
SpirvDebugType *getDebugType(const SpirvType *spirvType);
SpirvDebugType *getDebugTypeArray(const SpirvType *spirvType,
SpirvDebugInstruction *elemType,
llvm::ArrayRef<uint32_t> elemCount);
SpirvDebugType *getDebugTypeVector(const SpirvType *spirvType,
SpirvDebugInstruction *elemType,
uint32_t elemCount);
SpirvDebugType *getDebugTypeMatrix(const SpirvType *spirvType,
SpirvDebugInstruction *vectorType,
uint32_t vectorCount);
SpirvDebugType *getDebugTypeFunction(const SpirvType *spirvType,
uint32_t flags, SpirvDebugType *ret,
llvm::ArrayRef<SpirvDebugType *> params);
SpirvDebugTypeTemplate *createDebugTypeTemplate(
const ClassTemplateSpecializationDecl *templateType,
SpirvDebugInstruction *target,
const llvm::SmallVector<SpirvDebugTypeTemplateParameter *, 2> ¶ms);
SpirvDebugTypeTemplate *
getDebugTypeTemplate(const ClassTemplateSpecializationDecl *templateType);
SpirvDebugTypeTemplateParameter *createDebugTypeTemplateParameter(
const TemplateArgument *templateArg, llvm::StringRef name,
SpirvDebugType *type, SpirvInstruction *value, SpirvDebugSource *source,
uint32_t line, uint32_t column);
SpirvDebugTypeTemplateParameter *
getDebugTypeTemplateParameter(const TemplateArgument *templateArg);
// Moves all debug type instructions to module and makes the data structures
// that contain the debug type instructions empty. After calling this method,
// module will have the ownership of debug type instructions.
void moveDebugTypesToModule(SpirvModule *module);
// === Types ===
const VoidType *getVoidType() const { return voidType; }
const BoolType *getBoolType() const { return boolType; }
const IntegerType *getSIntType(uint32_t bitwidth);
const IntegerType *getUIntType(uint32_t bitwidth);
const FloatType *getFloatType(uint32_t bitwidth);
const VectorType *getVectorType(const SpirvType *elemType, uint32_t count);
// Note: In the case of non-floating-point matrices, this method returns an
// array of vectors.
const SpirvType *getMatrixType(const SpirvType *vecType, uint32_t vecCount);
const ImageType *getImageType(const SpirvType *, spv::Dim,
ImageType::WithDepth, bool arrayed, bool ms,
ImageType::WithSampler sampled,
spv::ImageFormat);
// Get ImageType whose attributes are the same with imageTypeWithUnknownFormat
// but it has spv::ImageFormat format.
const ImageType *getImageType(const ImageType *imageTypeWithUnknownFormat,
spv::ImageFormat format);
const SamplerType *getSamplerType() const { return samplerType; }
const SampledImageType *getSampledImageType(const ImageType *image);
const HybridSampledImageType *getSampledImageType(QualType image);
const ArrayType *getArrayType(const SpirvType *elemType, uint32_t elemCount,
llvm::Optional<uint32_t> arrayStride);
const RuntimeArrayType *
getRuntimeArrayType(const SpirvType *elemType,
llvm::Optional<uint32_t> arrayStride);
const StructType *getStructType(
llvm::ArrayRef<StructType::FieldInfo> fields, llvm::StringRef name,
bool isReadOnly = false,
StructInterfaceType interfaceType = StructInterfaceType::InternalStorage);
const SpirvPointerType *getPointerType(const SpirvType *pointee,
spv::StorageClass);
FunctionType *getFunctionType(const SpirvType *ret,
llvm::ArrayRef<const SpirvType *> param);
const StructType *getByteAddressBufferType(bool isWritable);
const StructType *getACSBufferCounterType();
const AccelerationStructureTypeNV *getAccelerationStructureTypeNV() const {
return accelerationStructureTypeNV;
}
const RayQueryTypeKHR *getRayQueryTypeKHR() const { return rayQueryTypeKHR; }
const SpirvIntrinsicType *getOrCreateSpirvIntrinsicType(
unsigned typeId, unsigned typeOpCode,
llvm::ArrayRef<SpvIntrinsicTypeOperand> operands);
const SpirvIntrinsicType *getOrCreateSpirvIntrinsicType(
unsigned typeOpCode, llvm::ArrayRef<SpvIntrinsicTypeOperand> operands);
SpirvIntrinsicType *getCreatedSpirvIntrinsicType(unsigned typeId);
/// --- Hybrid type getter functions ---
///
/// Concrete SpirvType objects represent a SPIR-V type completely. Hybrid
/// SpirvTypes, however, represent a QualType that can later be lowered to a
/// concrete SpirvType.
///
/// For example, the caller may want to get a SpirvType for a pointer in which
/// the pointee is a QualType. This would be a HybridPointerType, which can
/// later be lowered to a SpirvPointerType by lowereing the pointee from
/// QualType to SpirvType).
const HybridStructType *getHybridStructType(
llvm::ArrayRef<HybridStructType::FieldInfo> fields, llvm::StringRef name,
bool isReadOnly = false,
StructInterfaceType interfaceType = StructInterfaceType::InternalStorage);
const HybridPointerType *getPointerType(QualType pointee, spv::StorageClass);
/// Generates (or reuses an existing) OpString for the given string literal.
SpirvString *getSpirvString(llvm::StringRef str);
/// Functions to get/set current entry point ShaderModelKind.
ShaderModelKind getCurrentShaderModelKind() { return curShaderModelKind; }
void setCurrentShaderModelKind(ShaderModelKind smk) {
curShaderModelKind = smk;
}
/// Functions to get/set hlsl profile version.
uint32_t getMajorVersion() const { return majorVersion; }
void setMajorVersion(uint32_t major) { majorVersion = major; }
uint32_t getMinorVersion() const { return minorVersion; }
void setMinorVersion(uint32_t minor) { minorVersion = minor; }
/// Functions to query current entry point ShaderModelKind.
bool isPS() const { return curShaderModelKind == ShaderModelKind::Pixel; }
bool isVS() const { return curShaderModelKind == ShaderModelKind::Vertex; }
bool isGS() const { return curShaderModelKind == ShaderModelKind::Geometry; }
bool isHS() const { return curShaderModelKind == ShaderModelKind::Hull; }
bool isDS() const { return curShaderModelKind == ShaderModelKind::Domain; }
bool isCS() const { return curShaderModelKind == ShaderModelKind::Compute; }
bool isLib() const { return curShaderModelKind == ShaderModelKind::Library; }
bool isRay() const {
return curShaderModelKind >= ShaderModelKind::RayGeneration &&
curShaderModelKind <= ShaderModelKind::Callable;
}
bool isMS() const { return curShaderModelKind == ShaderModelKind::Mesh; }
bool isAS() const {
return curShaderModelKind == ShaderModelKind::Amplification;
}
/// Function to get all RichDebugInfo (i.e., the current status of
/// compilation units).
llvm::StringMap<RichDebugInfo> &getDebugInfo() { return debugInfo; }
/// Function to let the lexical scope stack grow when it enters a
/// new lexical scope.
void pushDebugLexicalScope(RichDebugInfo *info, SpirvDebugInstruction *scope);
/// Function to pop the last element from the lexical scope stack.
void popDebugLexicalScope(RichDebugInfo *info) {
info->scopeStack.pop_back();
currentLexicalScope = info->scopeStack.back();
}
/// Function to get the last lexical scope that the SpirvEmitter
/// class instance entered.
SpirvDebugInstruction *getCurrentLexicalScope() {
return currentLexicalScope;
}
/// Function to register/get the mapping from a SPIR-V OpVariable to its
/// Vulkan specific image feature.
void registerVkImageFeaturesForSpvVariable(const SpirvVariable *spvVar,
VkImageFeatures features) {
assert(spvVar != nullptr);
spvVarToVkImageFeatures[spvVar] = features;
}
VkImageFeatures
getVkImageFeaturesForSpirvVariable(const SpirvVariable *spvVar) {
auto itr = spvVarToVkImageFeatures.find(spvVar);
if (itr == spvVarToVkImageFeatures.end())
return {false, spv::ImageFormat::Unknown};
return itr->second;
}
/// Function to register the resource information (QualType, descriptor set,
/// and binding) to combine images and samplers.
void registerResourceInfoForSampledImage(QualType type,
uint32_t descriptorSet,
uint32_t binding) {
resourceInfoForSampledImages.push_back({type, descriptorSet, binding});
}
/// Function to get all the resource information (QualType, descriptor set,
/// and binding) to combine images and samplers.
llvm::SmallVector<ResourceInfoToCombineSampledImage, 4>
getResourceInfoForSampledImages() {
return resourceInfoForSampledImages;
}
/// Function to add/get the mapping from a SPIR-V type to its Decl for
/// a struct type.
void registerStructDeclForSpirvType(const SpirvType *spvTy,
const DeclContext *decl) {
assert(spvTy != nullptr && decl != nullptr);
spvStructTypeToDecl[spvTy] = decl;
}
const DeclContext *getStructDeclForSpirvType(const SpirvType *spvTy) {
return spvStructTypeToDecl[spvTy];
}
/// Function to add/get the mapping from a FunctionDecl to its DebugFunction.
void registerDebugFunctionForDecl(const FunctionDecl *decl,
SpirvDebugFunction *fn) {
assert(decl != nullptr && fn != nullptr);
declToDebugFunction[decl] = fn;
}
SpirvDebugFunction *getDebugFunctionForDecl(const FunctionDecl *decl) {
return declToDebugFunction[decl];
}
/// Adds inst to instructionsWithLoweredType.
void addToInstructionsWithLoweredType(const SpirvInstruction *inst) {
instructionsWithLoweredType.insert(inst);
}
/// Returns whether inst is in instructionsWithLoweredType or not.
bool hasLoweredType(const SpirvInstruction *inst) {
return instructionsWithLoweredType.find(inst) !=
instructionsWithLoweredType.end();
}
private:
/// \brief The allocator used to create SPIR-V entity objects.
///
/// SPIR-V entity objects are never destructed; rather, all memory associated
/// with the SPIR-V entity objects will be released when the SpirvContext
/// itself is destroyed.
///
/// This field must appear the first since it will be used to allocate object
/// for the other fields.
mutable llvm::BumpPtrAllocator allocator;
// Unique types
const VoidType *voidType;
const BoolType *boolType;
// The type at index i is for bitwidth 2^i. So max bitwidth supported
// is 2^6 = 64. Index 0/1/2/3 is not used right now.
std::array<const IntegerType *, 7> sintTypes;
std::array<const IntegerType *, 7> uintTypes;
std::array<const FloatType *, 7> floatTypes;
// The VectorType at index i has the length of i. For example, vector of
// size 4 would be at index 4. Valid SPIR-V vector sizes are 2,3,4.
// Therefore, index 0 and 1 of this array are unused (nullptr).
using VectorTypeArray = std::array<const VectorType *, 5>;
using MatrixTypeVector = std::vector<const MatrixType *>;
using SCToPtrTyMap =
llvm::DenseMap<spv::StorageClass, const SpirvPointerType *,
StorageClassDenseMapInfo>;
// Vector/matrix types for each possible element count.
// Type at index is for vector of index components. Index 0/1 is unused.
llvm::DenseMap<const ScalarType *, VectorTypeArray> vecTypes;
llvm::DenseMap<const VectorType *, MatrixTypeVector> matTypes;
llvm::DenseSet<const ImageType *, ImageTypeMapInfo> imageTypes;
const SamplerType *samplerType;
llvm::DenseMap<const ImageType *, const SampledImageType *> sampledImageTypes;
llvm::SmallVector<const HybridSampledImageType *, 4> hybridSampledImageTypes;
llvm::DenseSet<const ArrayType *, ArrayTypeMapInfo> arrayTypes;
llvm::DenseSet<const RuntimeArrayType *, RuntimeArrayTypeMapInfo>
runtimeArrayTypes;
llvm::SmallVector<const StructType *, 8> structTypes;
llvm::SmallVector<const HybridStructType *, 8> hybridStructTypes;
llvm::DenseMap<const SpirvType *, SCToPtrTyMap> pointerTypes;
llvm::SmallVector<const HybridPointerType *, 8> hybridPointerTypes;
llvm::DenseSet<FunctionType *, FunctionTypeMapInfo> functionTypes;
llvm::DenseMap<unsigned, SpirvIntrinsicType *> spirvIntrinsicTypesById;
llvm::SmallVector<const SpirvIntrinsicType *, 8> spirvIntrinsicTypes;
const AccelerationStructureTypeNV *accelerationStructureTypeNV;
const RayQueryTypeKHR *rayQueryTypeKHR;
// Current ShaderModelKind for entry point.
ShaderModelKind curShaderModelKind;
// Major/Minor hlsl profile version.
uint32_t majorVersion;
uint32_t minorVersion;
/// File name to rich debug info map. When the main source file
/// includes header files, we create an element of debugInfo for
/// each file. RichDebugInfo includes DebugSource,
/// DebugCompilationUnit and scopeStack which keeps lexical scopes
/// recursively.
llvm::StringMap<RichDebugInfo> debugInfo;
SpirvDebugInstruction *currentLexicalScope;
// Mapping from SPIR-V type to debug type instruction.
// The purpose is not to generate several DebugType* instructions for the same
// type if the type is used for several variables.
llvm::MapVector<const SpirvType *, SpirvDebugType *> debugTypes;
// Mapping from template decl to DebugTypeTemplate.
llvm::MapVector<const ClassTemplateSpecializationDecl *,
SpirvDebugTypeTemplate *>
typeTemplates;
// Mapping from template parameter decl to DebugTypeTemplateParameter.
llvm::MapVector<const TemplateArgument *, SpirvDebugTypeTemplateParameter *>
typeTemplateParams;
// Mapping from SPIR-V type to Decl for a struct type.
llvm::DenseMap<const SpirvType *, const DeclContext *> spvStructTypeToDecl;
// Mapping from FunctionDecl to SPIR-V debug function.
llvm::DenseMap<const FunctionDecl *, SpirvDebugFunction *>
declToDebugFunction;
// Mapping from SPIR-V OpVariable to Vulkan image features.
llvm::DenseMap<const SpirvVariable *, VkImageFeatures>
spvVarToVkImageFeatures;
// Vector of resource information to be used to combine images and samplers.
llvm::SmallVector<ResourceInfoToCombineSampledImage, 4>
resourceInfoForSampledImages;
// Set of instructions that already have lowered SPIR-V types.
llvm::DenseSet<const SpirvInstruction *> instructionsWithLoweredType;
};
} // end namespace spirv
} // end namespace clang
// operator new and delete aren't allowed inside namespaces.
/// Placement new for using the SpirvContext's allocator.
inline void *operator new(size_t bytes, const clang::spirv::SpirvContext &c,
size_t align = 8) {
return c.allocate(bytes, align);
}
inline void *operator new(size_t bytes, const clang::spirv::SpirvContext *c,
size_t align = 8) {
return c->allocate(bytes, align);
}
/// Placement delete companion to the new above.
inline void operator delete(void *ptr, const clang::spirv::SpirvContext &c,
size_t) {
c.deallocate(ptr);
}
inline void operator delete(void *ptr, const clang::spirv::SpirvContext *c,
size_t) {
c->deallocate(ptr);
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvType.h | //===-- SpirvType.h - SPIR-V Type -----------------------------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVTYPE_H
#define LLVM_CLANG_SPIRV_SPIRVTYPE_H
#include <string>
#include <utility>
#include <vector>
#include "spirv/unified1/spirv.hpp11"
#include "clang/AST/Attr.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
namespace spirv {
class HybridType;
enum class StructInterfaceType : uint32_t {
InternalStorage = 0,
StorageBuffer = 1,
UniformBuffer = 2,
};
struct BitfieldInfo {
// Offset of the bitfield, in bits, from the basetype start.
uint32_t offsetInBits;
// Size of the bitfield, in bits.
uint32_t sizeInBits;
};
class SpirvType {
public:
enum Kind {
TK_Void,
TK_Bool,
TK_Integer,
TK_Float,
TK_Vector,
TK_Matrix,
TK_Image,
TK_Sampler,
TK_SampledImage,
TK_Array,
TK_RuntimeArray,
TK_Struct,
TK_Pointer,
TK_Function,
TK_AccelerationStructureNV,
TK_RayQueryKHR,
TK_SpirvIntrinsicType,
// Order matters: all the following are hybrid types
TK_HybridStruct,
TK_HybridPointer,
TK_HybridSampledImage,
TK_HybridFunction,
};
virtual ~SpirvType() = default;
Kind getKind() const { return kind; }
llvm::StringRef getName() const { return debugName; }
static bool isTexture(const SpirvType *);
static bool isRWTexture(const SpirvType *);
static bool isSampler(const SpirvType *);
static bool isBuffer(const SpirvType *);
static bool isRWBuffer(const SpirvType *);
static bool isSubpassInput(const SpirvType *);
static bool isSubpassInputMS(const SpirvType *);
static bool isResourceType(const SpirvType *);
template <class T, unsigned int Bitwidth = 0>
static bool isOrContainsType(const SpirvType *);
protected:
SpirvType(Kind k, llvm::StringRef name = "") : kind(k), debugName(name) {}
private:
const Kind kind;
std::string debugName;
};
class VoidType : public SpirvType {
public:
VoidType() : SpirvType(TK_Void) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Void; }
};
class ScalarType : public SpirvType {
public:
static bool classof(const SpirvType *t);
protected:
ScalarType(Kind k) : SpirvType(k) {}
};
class NumericalType : public ScalarType {
public:
static bool classof(const SpirvType *t) {
return t->getKind() == TK_Integer || t->getKind() == TK_Float;
}
uint32_t getBitwidth() const { return bitwidth; }
protected:
NumericalType(Kind k, uint32_t width) : ScalarType(k), bitwidth(width) {}
uint32_t bitwidth;
};
class BoolType : public ScalarType {
public:
BoolType() : ScalarType(TK_Bool) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Bool; }
};
class IntegerType : public NumericalType {
public:
IntegerType(uint32_t numBits, bool sign)
: NumericalType(TK_Integer, numBits), isSigned(sign) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Integer; }
bool isSignedInt() const { return isSigned; }
private:
bool isSigned;
};
class FloatType : public NumericalType {
public:
FloatType(uint32_t numBits) : NumericalType(TK_Float, numBits) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Float; }
};
class VectorType : public SpirvType {
public:
VectorType(const ScalarType *elemType, uint32_t elemCount)
: SpirvType(TK_Vector), elementType(elemType), elementCount(elemCount) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Vector; }
const SpirvType *getElementType() const { return elementType; }
uint32_t getElementCount() const { return elementCount; }
private:
const ScalarType *elementType;
uint32_t elementCount;
};
class MatrixType : public SpirvType {
public:
MatrixType(const VectorType *vecType, uint32_t vecCount);
static bool classof(const SpirvType *t) { return t->getKind() == TK_Matrix; }
bool operator==(const MatrixType &that) const;
const SpirvType *getVecType() const { return vectorType; }
const SpirvType *getElementType() const {
return vectorType->getElementType();
}
uint32_t getVecCount() const { return vectorCount; }
uint32_t numCols() const { return vectorCount; }
uint32_t numRows() const { return vectorType->getElementCount(); }
private:
const VectorType *vectorType;
uint32_t vectorCount;
};
class ImageType : public SpirvType {
public:
enum class WithSampler : uint32_t {
Unknown = 0,
Yes = 1,
No = 2,
};
enum class WithDepth : uint32_t {
No = 0,
Yes = 1,
Unknown = 2,
};
ImageType(const NumericalType *sampledType, spv::Dim, WithDepth depth,
bool isArrayed, bool isMultiSampled, WithSampler sampled,
spv::ImageFormat);
static bool classof(const SpirvType *t) { return t->getKind() == TK_Image; }
bool operator==(const ImageType &that) const;
const SpirvType *getSampledType() const { return sampledType; }
spv::Dim getDimension() const { return dimension; }
WithDepth getDepth() const { return imageDepth; }
bool isArrayedImage() const { return isArrayed; }
bool isMSImage() const { return isMultiSampled; }
WithSampler withSampler() const { return isSampled; }
spv::ImageFormat getImageFormat() const { return imageFormat; }
private:
std::string getImageName(spv::Dim, bool arrayed);
private:
const NumericalType *sampledType;
spv::Dim dimension;
WithDepth imageDepth;
bool isArrayed;
bool isMultiSampled;
WithSampler isSampled;
spv::ImageFormat imageFormat;
};
class SamplerType : public SpirvType {
public:
SamplerType() : SpirvType(TK_Sampler, "type.sampler") {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Sampler; }
};
class SampledImageType : public SpirvType {
public:
SampledImageType(const ImageType *image)
: SpirvType(TK_SampledImage, "type.sampled.image"), imageType(image) {}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_SampledImage;
}
const SpirvType *getImageType() const { return imageType; }
private:
const ImageType *imageType;
};
class ArrayType : public SpirvType {
public:
ArrayType(const SpirvType *elemType, uint32_t elemCount,
llvm::Optional<uint32_t> arrayStride)
: SpirvType(TK_Array), elementType(elemType), elementCount(elemCount),
stride(arrayStride) {}
const SpirvType *getElementType() const { return elementType; }
uint32_t getElementCount() const { return elementCount; }
llvm::Optional<uint32_t> getStride() const { return stride; }
static bool classof(const SpirvType *t) { return t->getKind() == TK_Array; }
bool operator==(const ArrayType &that) const;
private:
const SpirvType *elementType;
uint32_t elementCount;
// Two arrays types with different ArrayStride decorations, are in fact two
// different array types. If no layout information is needed, use llvm::None.
llvm::Optional<uint32_t> stride;
};
class RuntimeArrayType : public SpirvType {
public:
RuntimeArrayType(const SpirvType *elemType,
llvm::Optional<uint32_t> arrayStride)
: SpirvType(TK_RuntimeArray), elementType(elemType), stride(arrayStride) {
}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_RuntimeArray;
}
bool operator==(const RuntimeArrayType &that) const;
const SpirvType *getElementType() const { return elementType; }
llvm::Optional<uint32_t> getStride() const { return stride; }
private:
const SpirvType *elementType;
// Two runtime arrays with different ArrayStride decorations, are in fact two
// different types. If no layout information is needed, use llvm::None.
llvm::Optional<uint32_t> stride;
};
// The StructType is the lowered type that best represents what a structure type
// is in SPIR-V. Contains all necessary information for properly emitting a
// SPIR-V structure type.
class StructType : public SpirvType {
public:
struct FieldInfo {
public:
FieldInfo(const SpirvType *type_, uint32_t fieldIndex_,
llvm::StringRef name_ = "",
llvm::Optional<uint32_t> offset_ = llvm::None,
llvm::Optional<uint32_t> matrixStride_ = llvm::None,
llvm::Optional<bool> isRowMajor_ = llvm::None,
bool relaxedPrecision = false, bool precise = false)
: type(type_), fieldIndex(fieldIndex_), name(name_), offset(offset_),
sizeInBytes(llvm::None), matrixStride(matrixStride_),
isRowMajor(isRowMajor_), isRelaxedPrecision(relaxedPrecision),
isPrecise(precise) {
// A StructType may not contain any hybrid types.
assert(!isa<HybridType>(type_));
}
bool operator==(const FieldInfo &that) const;
// The field's type.
const SpirvType *type;
// The index of this field in the composite construct.
// When the struct contains bitfields, StructType index and construct index
// can diverge as we merge bitfields together.
uint32_t fieldIndex;
// The field's name.
std::string name;
// The integer offset in bytes for this field.
llvm::Optional<uint32_t> offset;
// The integer size in bytes for this field.
llvm::Optional<uint32_t> sizeInBytes;
// The matrix stride for this field (if applicable).
llvm::Optional<uint32_t> matrixStride;
// The majorness of this field (if applicable).
llvm::Optional<bool> isRowMajor;
// Whether this field is a RelaxedPrecision field.
bool isRelaxedPrecision;
// Whether this field is marked as 'precise'.
bool isPrecise;
// Information about the bitfield (if applicable).
llvm::Optional<BitfieldInfo> bitfield;
};
StructType(
llvm::ArrayRef<FieldInfo> fields, llvm::StringRef name, bool isReadOnly,
StructInterfaceType interfaceType = StructInterfaceType::InternalStorage);
static bool classof(const SpirvType *t) { return t->getKind() == TK_Struct; }
llvm::ArrayRef<FieldInfo> getFields() const { return fields; }
bool isReadOnly() const { return readOnly; }
llvm::StringRef getStructName() const { return getName(); }
StructInterfaceType getInterfaceType() const { return interfaceType; }
bool operator==(const StructType &that) const;
private:
// Reflection is heavily used in graphics pipelines. Reflection relies on
// struct names and field names. That basically means we cannot ignore these
// names when considering unification. Otherwise, reflection will be confused.
llvm::SmallVector<FieldInfo, 8> fields;
bool readOnly;
// Indicates the interface type of this structure. If this structure is a
// storage buffer shader-interface, it will be decorated with 'BufferBlock'.
// If this structure is a uniform buffer shader-interface, it will be
// decorated with 'Block'.
StructInterfaceType interfaceType;
};
/// Represents a SPIR-V pointer type.
class SpirvPointerType : public SpirvType {
public:
SpirvPointerType(const SpirvType *pointee, spv::StorageClass sc)
: SpirvType(TK_Pointer), pointeeType(pointee), storageClass(sc) {}
static bool classof(const SpirvType *t) { return t->getKind() == TK_Pointer; }
const SpirvType *getPointeeType() const { return pointeeType; }
spv::StorageClass getStorageClass() const { return storageClass; }
bool operator==(const SpirvPointerType &that) const {
return pointeeType == that.pointeeType && storageClass == that.storageClass;
}
private:
const SpirvType *pointeeType;
spv::StorageClass storageClass;
};
/// Represents a SPIR-V function type. None of the parameters nor the return
/// type is allowed to be a hybrid type.
class FunctionType : public SpirvType {
public:
FunctionType(const SpirvType *ret, llvm::ArrayRef<const SpirvType *> param);
static bool classof(const SpirvType *t) {
return t->getKind() == TK_Function;
}
bool operator==(const FunctionType &that) const {
return returnType == that.returnType && paramTypes == that.paramTypes;
}
// void setReturnType(const SpirvType *t) { returnType = t; }
const SpirvType *getReturnType() const { return returnType; }
llvm::ArrayRef<const SpirvType *> getParamTypes() const { return paramTypes; }
private:
const SpirvType *returnType;
llvm::SmallVector<const SpirvType *, 8> paramTypes;
};
/// Represents accleration structure type as defined in SPV_NV_ray_tracing.
class AccelerationStructureTypeNV : public SpirvType {
public:
AccelerationStructureTypeNV()
: SpirvType(TK_AccelerationStructureNV, "accelerationStructureNV") {}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_AccelerationStructureNV;
}
};
class RayQueryTypeKHR : public SpirvType {
public:
RayQueryTypeKHR() : SpirvType(TK_RayQueryKHR, "rayQueryKHR") {}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_RayQueryKHR;
}
};
class SpirvInstruction;
struct SpvIntrinsicTypeOperand {
SpvIntrinsicTypeOperand(const SpirvType *type_operand)
: operand_as_type(type_operand), isTypeOperand(true) {}
SpvIntrinsicTypeOperand(SpirvInstruction *inst_operand)
: operand_as_inst(inst_operand), isTypeOperand(false) {}
bool operator==(const SpvIntrinsicTypeOperand &that) const;
union {
const SpirvType *operand_as_type;
SpirvInstruction *operand_as_inst;
};
const bool isTypeOperand;
};
class SpirvIntrinsicType : public SpirvType {
public:
SpirvIntrinsicType(unsigned typeOp,
llvm::ArrayRef<SpvIntrinsicTypeOperand> inOps);
static bool classof(const SpirvType *t) {
return t->getKind() == TK_SpirvIntrinsicType;
}
unsigned getOpCode() const { return typeOpCode; }
llvm::ArrayRef<SpvIntrinsicTypeOperand> getOperands() const {
return operands;
}
bool operator==(const SpirvIntrinsicType &that) const {
return typeOpCode == that.typeOpCode &&
operands.size() == that.operands.size() &&
std::equal(operands.begin(), operands.end(), that.operands.begin());
}
private:
unsigned typeOpCode;
llvm::SmallVector<SpvIntrinsicTypeOperand, 3> operands;
};
class HybridType : public SpirvType {
public:
static bool classof(const SpirvType *t) {
return t->getKind() >= TK_HybridStruct && t->getKind() <= TK_HybridFunction;
}
protected:
HybridType(Kind k, llvm::StringRef name = "") : SpirvType(k, name) {}
};
/// **NOTE**: This type is created in order to facilitate transition of old
/// infrastructure to the new infrastructure. Using this type should be avoided
/// as much as possible.
///
/// This type uses a mix of SpirvType and QualType for the structure fields.
class HybridStructType : public HybridType {
public:
struct FieldInfo {
public:
FieldInfo(QualType astType_, llvm::StringRef name_ = "",
clang::VKOffsetAttr *offset = nullptr,
hlsl::ConstantPacking *packOffset = nullptr,
const hlsl::RegisterAssignment *regC = nullptr,
bool precise = false,
llvm::Optional<BitfieldInfo> bitfield = llvm::None)
: astType(astType_), name(name_), vkOffsetAttr(offset),
packOffsetAttr(packOffset), registerC(regC), isPrecise(precise),
bitfield(std::move(bitfield)) {}
// The field's type.
QualType astType;
// The field's name.
std::string name;
// vk::offset attributes associated with this field.
clang::VKOffsetAttr *vkOffsetAttr;
// :packoffset() annotations associated with this field.
hlsl::ConstantPacking *packOffsetAttr;
// :register(c#) annotations associated with this field.
const hlsl::RegisterAssignment *registerC;
// Whether this field is marked as 'precise'.
bool isPrecise;
// Whether this field is a bitfield or not. If set to false, bitfield width
// value is undefined.
llvm::Optional<BitfieldInfo> bitfield;
};
HybridStructType(
llvm::ArrayRef<FieldInfo> fields, llvm::StringRef name, bool isReadOnly,
StructInterfaceType interfaceType = StructInterfaceType::InternalStorage);
static bool classof(const SpirvType *t) {
return t->getKind() == TK_HybridStruct;
}
llvm::ArrayRef<FieldInfo> getFields() const { return fields; }
bool isReadOnly() const { return readOnly; }
llvm::StringRef getStructName() const { return getName(); }
StructInterfaceType getInterfaceType() const { return interfaceType; }
private:
// Reflection is heavily used in graphics pipelines. Reflection relies on
// struct names and field names. That basically means we cannot ignore these
// names when considering unification. Otherwise, reflection will be confused.
llvm::SmallVector<FieldInfo, 8> fields;
bool readOnly;
// Indicates the interface type of this structure. If this structure is a
// storage buffer shader-interface, it will be decorated with 'BufferBlock'.
// If this structure is a uniform buffer shader-interface, it will be
// decorated with 'Block'.
StructInterfaceType interfaceType;
};
class HybridPointerType : public HybridType {
public:
HybridPointerType(QualType pointee, spv::StorageClass sc)
: HybridType(TK_HybridPointer), pointeeType(pointee), storageClass(sc) {}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_HybridPointer;
}
QualType getPointeeType() const { return pointeeType; }
spv::StorageClass getStorageClass() const { return storageClass; }
bool operator==(const HybridPointerType &that) const {
return pointeeType == that.pointeeType && storageClass == that.storageClass;
}
private:
QualType pointeeType;
spv::StorageClass storageClass;
};
class HybridSampledImageType : public HybridType {
public:
HybridSampledImageType(QualType image)
: HybridType(TK_HybridSampledImage), imageType(image) {}
static bool classof(const SpirvType *t) {
return t->getKind() == TK_HybridSampledImage;
}
QualType getImageType() const { return imageType; }
private:
QualType imageType;
};
//
// Function Definition for templated functions
//
template <class T, unsigned int Bitwidth>
bool SpirvType::isOrContainsType(const SpirvType *type) {
if (isa<T>(type)) {
if (Bitwidth == 0)
// No specific bitwidth was asked for.
return true;
else
// We want to make sure it is a numberical type of a specific bitwidth.
return isa<NumericalType>(type) &&
llvm::cast<NumericalType>(type)->getBitwidth() == Bitwidth;
}
if (const auto *vecType = dyn_cast<VectorType>(type))
return isOrContainsType<T, Bitwidth>(vecType->getElementType());
if (const auto *matType = dyn_cast<MatrixType>(type))
return isOrContainsType<T, Bitwidth>(matType->getElementType());
if (const auto *arrType = dyn_cast<ArrayType>(type))
return isOrContainsType<T, Bitwidth>(arrType->getElementType());
if (const auto *pointerType = dyn_cast<SpirvPointerType>(type))
return isOrContainsType<T, Bitwidth>(pointerType->getPointeeType());
if (const auto *raType = dyn_cast<RuntimeArrayType>(type))
return isOrContainsType<T, Bitwidth>(raType->getElementType());
if (const auto *imgType = dyn_cast<ImageType>(type))
return isOrContainsType<T, Bitwidth>(imgType->getSampledType());
if (const auto *sampledImageType = dyn_cast<SampledImageType>(type))
return isOrContainsType<T, Bitwidth>(sampledImageType->getImageType());
if (const auto *structType = dyn_cast<StructType>(type))
for (auto &field : structType->getFields())
if (isOrContainsType<T, Bitwidth>(field.type))
return true;
return false;
}
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVTYPE_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvInstruction.h | //===-- SpirvInstruction.h - SPIR-V Instruction -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVINSTRUCTION_H
#define LLVM_CLANG_SPIRV_SPIRVINSTRUCTION_H
#include "dxc/Support/SPIRVOptions.h"
#include "spirv/unified1/GLSL.std.450.h"
#include "spirv/unified1/spirv.hpp11"
#include "clang/AST/APValue.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/SPIRV/SpirvType.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
namespace clang {
namespace spirv {
class BoolType;
class FloatType;
class IntegerType;
class SpirvBasicBlock;
class SpirvFunction;
class SpirvType;
class SpirvVariable;
class SpirvString;
class Visitor;
class DebugTypeComposite;
class SpirvDebugDeclare;
class FunctionType;
#define DEFINE_RELEASE_MEMORY_FOR_CLASS(cls) \
void releaseMemory() override { this->~cls(); }
/// \brief The base class for representing SPIR-V instructions.
class SpirvInstruction {
public:
enum Kind {
// "Metadata" kinds
// In the order of logical layout
IK_Capability, // OpCapability
IK_Extension, // OpExtension
IK_ExtInstImport, // OpExtInstImport
IK_MemoryModel, // OpMemoryModel
IK_EntryPoint, // OpEntryPoint
IK_ExecutionMode, // OpExecutionMode
IK_String, // OpString (debug)
IK_Source, // OpSource (debug)
IK_ModuleProcessed, // OpModuleProcessed (debug)
IK_Decoration, // Op*Decorate
IK_Type, // OpType*
IK_Variable, // OpVariable
// Different kind of constants. Order matters.
IK_ConstantBoolean,
IK_ConstantInteger,
IK_ConstantFloat,
IK_ConstantComposite,
IK_ConstantNull,
// OpUndef
IK_Undef,
// Function structure kinds
IK_FunctionParameter, // OpFunctionParameter
// The following section is for merge instructions.
// Used by LLVM-style RTTI; order matters.
IK_LoopMerge, // OpLoopMerge
IK_SelectionMerge, // OpSelectionMerge
// The following section is for termination instructions.
// Used by LLVM-style RTTI; order matters.
IK_Branch, // OpBranch
IK_BranchConditional, // OpBranchConditional
IK_Kill, // OpKill
IK_Return, // OpReturn*
IK_Switch, // OpSwitch
IK_Unreachable, // OpUnreachable
IK_RayTracingTerminate, // OpIgnoreIntersectionKHR/OpTerminateRayKHR
IK_EmitMeshTasksEXT, // OpEmitMeshTasksEXT
// Normal instruction kinds
// In alphabetical order
IK_AccessChain, // OpAccessChain
IK_ArrayLength, // OpArrayLength
IK_Atomic, // OpAtomic*
IK_Barrier, // Op*Barrier
IK_BinaryOp, // Binary operations
IK_BitFieldExtract, // OpBitFieldExtract
IK_BitFieldInsert, // OpBitFieldInsert
IK_CompositeConstruct, // OpCompositeConstruct
IK_CompositeExtract, // OpCompositeExtract
IK_CompositeInsert, // OpCompositeInsert
IK_CopyObject, // OpCopyObject
IK_DemoteToHelperInvocation, // OpDemoteToHelperInvocation
IK_IsHelperInvocationEXT, // OpIsHelperInvocationEXT
IK_ExtInst, // OpExtInst
IK_FunctionCall, // OpFunctionCall
IK_EndPrimitive, // OpEndPrimitive
IK_EmitVertex, // OpEmitVertex
IK_SetMeshOutputsEXT, // OpSetMeshOutputsEXT
IK_GroupNonUniformOp, // Group non-uniform operations
IK_ImageOp, // OpImage*
IK_ImageQuery, // OpImageQuery*
IK_ImageSparseTexelsResident, // OpImageSparseTexelsResident
IK_ImageTexelPointer, // OpImageTexelPointer
IK_Load, // OpLoad
IK_RayQueryOpKHR, // KHR rayquery ops
IK_RayTracingOpNV, // NV raytracing ops
IK_ReadClock, // OpReadClock
IK_SampledImage, // OpSampledImage
IK_Select, // OpSelect
IK_SpecConstantBinaryOp, // SpecConstant binary operations
IK_SpecConstantUnaryOp, // SpecConstant unary operations
IK_Store, // OpStore
IK_UnaryOp, // Unary operations
IK_NullaryOp, // Nullary operations
IK_VectorShuffle, // OpVectorShuffle
IK_SpirvIntrinsicInstruction, // Spirv Intrinsic Instructions
// For DebugInfo instructions defined in
// OpenCL.DebugInfo.100 and NonSemantic.Shader.DebugInfo.100
IK_DebugInfoNone,
IK_DebugCompilationUnit,
IK_DebugSource,
IK_DebugFunctionDecl,
IK_DebugFunction,
IK_DebugFunctionDef,
IK_DebugEntryPoint,
IK_DebugLocalVariable,
IK_DebugGlobalVariable,
IK_DebugOperation,
IK_DebugExpression,
IK_DebugDeclare,
IK_DebugLexicalBlock,
IK_DebugScope,
IK_DebugTypeBasic,
IK_DebugTypeArray,
IK_DebugTypeVector,
IK_DebugTypeMatrix,
IK_DebugTypeFunction,
IK_DebugTypeComposite,
IK_DebugTypeMember,
IK_DebugTypeTemplate,
IK_DebugTypeTemplateParameter,
};
// All instruction classes should include a releaseMemory method.
// This is needed in order to avoid leaking memory for classes that include
// members that are not trivially destructible.
virtual void releaseMemory() = 0;
virtual ~SpirvInstruction() = default;
// Invokes SPIR-V visitor on this instruction.
virtual bool invokeVisitor(Visitor *) = 0;
// Replace operands with a function callable reference, and if needed,
// refresh instrunctions result type. If current visitor is in entry
// function wrapper, avoid refresh its AST result type.
virtual void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper){};
Kind getKind() const { return kind; }
spv::Op getopcode() const { return opcode; }
QualType getAstResultType() const { return astResultType; }
void setAstResultType(QualType type) { astResultType = type; }
bool hasAstResultType() const { return astResultType != QualType(); }
uint32_t getResultTypeId() const { return resultTypeId; }
void setResultTypeId(uint32_t id) { resultTypeId = id; }
bool hasResultType() const { return resultType != nullptr; }
const SpirvType *getResultType() const { return resultType; }
void setResultType(const SpirvType *type) { resultType = type; }
// TODO: The responsibility of assigning the result-id of an instruction
// shouldn't be on the instruction itself.
uint32_t getResultId() const { return resultId; }
void setResultId(uint32_t id) { resultId = id; }
clang::SourceLocation getSourceLocation() const { return srcLoc; }
clang::SourceRange getSourceRange() const { return srcRange; }
void setDebugName(llvm::StringRef name) { debugName = name; }
llvm::StringRef getDebugName() const { return debugName; }
bool isArithmeticInstruction() const;
SpirvLayoutRule getLayoutRule() const { return layoutRule; }
void setLayoutRule(SpirvLayoutRule rule) { layoutRule = rule; }
void setStorageClass(spv::StorageClass sc) { storageClass = sc; }
spv::StorageClass getStorageClass() const { return storageClass; }
void setRValue(bool rvalue = true) { isRValue_ = rvalue; }
bool isRValue() const { return isRValue_; }
bool isLValue() const { return !isRValue_; }
void setRelaxedPrecision() { isRelaxedPrecision_ = true; }
bool isRelaxedPrecision() const { return isRelaxedPrecision_; }
void setNonUniform(bool nu = true) { isNonUniform_ = nu; }
bool isNonUniform() const { return isNonUniform_; }
void setPrecise(bool p = true) { isPrecise_ = p; }
bool isPrecise() const { return isPrecise_; }
void setNoninterpolated(bool ni = true) { isNoninterpolated_ = ni; }
bool isNoninterpolated() const { return isNoninterpolated_; }
void setBitfieldInfo(const BitfieldInfo &info) { bitfieldInfo = info; }
llvm::Optional<BitfieldInfo> getBitfieldInfo() const { return bitfieldInfo; }
void setRasterizerOrdered(bool ro = true) { isRasterizerOrdered_ = ro; }
bool isRasterizerOrdered() const { return isRasterizerOrdered_; }
/// Legalization-specific code
///
/// Note: the following two functions are currently needed in order to support
/// aliasing.
///
/// TODO: Clean up aliasing and try to move it to a separate pass.
void setContainsAliasComponent(bool contains) { containsAlias = contains; }
bool containsAliasComponent() const { return containsAlias; }
protected:
// Forbid creating SpirvInstruction directly
SpirvInstruction(Kind kind, spv::Op opcode, QualType astResultType,
SourceLocation loc, SourceRange range = {});
protected:
const Kind kind;
spv::Op opcode;
QualType astResultType;
uint32_t resultId;
SourceLocation srcLoc;
SourceRange srcRange;
std::string debugName;
const SpirvType *resultType;
uint32_t resultTypeId;
SpirvLayoutRule layoutRule;
/// Indicates whether this evaluation result contains alias variables
///
/// This field should only be true for stand-alone alias variables, which is
/// of pointer-to-pointer type, or struct variables containing alias fields.
/// After dereferencing the alias variable, this should be set to false to let
/// CodeGen fall back to normal handling path.
///
/// Note: legalization specific code
bool containsAlias;
spv::StorageClass storageClass;
bool isRValue_;
bool isRelaxedPrecision_;
bool isNonUniform_;
bool isPrecise_;
bool isNoninterpolated_;
llvm::Optional<BitfieldInfo> bitfieldInfo;
bool isRasterizerOrdered_;
};
/// \brief OpCapability instruction
class SpirvCapability : public SpirvInstruction {
public:
SpirvCapability(SourceLocation loc, spv::Capability cap);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvCapability)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Capability;
}
bool invokeVisitor(Visitor *v) override;
bool operator==(const SpirvCapability &that) const;
spv::Capability getCapability() const { return capability; }
private:
spv::Capability capability;
};
/// \brief Extension instruction
class SpirvExtension : public SpirvInstruction {
public:
SpirvExtension(SourceLocation loc, llvm::StringRef extensionName);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvExtension)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Extension;
}
bool invokeVisitor(Visitor *v) override;
bool operator==(const SpirvExtension &that) const;
llvm::StringRef getExtensionName() const { return extName; }
private:
std::string extName;
};
/// \brief ExtInstImport instruction
class SpirvExtInstImport : public SpirvInstruction {
public:
SpirvExtInstImport(SourceLocation loc, llvm::StringRef extensionName);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvExtInstImport)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ExtInstImport;
}
bool invokeVisitor(Visitor *v) override;
llvm::StringRef getExtendedInstSetName() const { return extName; }
private:
std::string extName;
};
/// \brief OpMemoryModel instruction
class SpirvMemoryModel : public SpirvInstruction {
public:
SpirvMemoryModel(spv::AddressingModel addrModel, spv::MemoryModel memModel);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvMemoryModel)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_MemoryModel;
}
bool invokeVisitor(Visitor *v) override;
spv::AddressingModel getAddressingModel() const { return addressModel; }
spv::MemoryModel getMemoryModel() const { return memoryModel; }
void setAddressingModel(spv::AddressingModel addrModel) {
addressModel = addrModel;
}
private:
spv::AddressingModel addressModel;
spv::MemoryModel memoryModel;
};
/// \brief OpEntryPoint instruction
class SpirvEntryPoint : public SpirvInstruction {
public:
SpirvEntryPoint(SourceLocation loc, spv::ExecutionModel executionModel,
SpirvFunction *entryPoint, llvm::StringRef nameStr,
llvm::ArrayRef<SpirvVariable *> iface);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvEntryPoint)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_EntryPoint;
}
bool invokeVisitor(Visitor *v) override;
spv::ExecutionModel getExecModel() const { return execModel; }
SpirvFunction *getEntryPoint() const { return entryPoint; }
llvm::StringRef getEntryPointName() const { return name; }
llvm::ArrayRef<SpirvVariable *> getInterface() const { return interfaceVec; }
private:
spv::ExecutionModel execModel;
SpirvFunction *entryPoint;
std::string name;
llvm::SmallVector<SpirvVariable *, 8> interfaceVec;
};
/// \brief OpExecutionMode and OpExecutionModeId instructions
class SpirvExecutionMode : public SpirvInstruction {
public:
SpirvExecutionMode(SourceLocation loc, SpirvFunction *entryPointFunction,
spv::ExecutionMode, llvm::ArrayRef<uint32_t> params,
bool usesIdParams);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvExecutionMode)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ExecutionMode;
}
bool invokeVisitor(Visitor *v) override;
SpirvFunction *getEntryPoint() const { return entryPoint; }
spv::ExecutionMode getExecutionMode() const { return execMode; }
llvm::ArrayRef<uint32_t> getParams() const { return params; }
private:
SpirvFunction *entryPoint;
spv::ExecutionMode execMode;
llvm::SmallVector<uint32_t, 4> params;
};
/// \brief OpString instruction
class SpirvString : public SpirvInstruction {
public:
SpirvString(SourceLocation loc, llvm::StringRef stringLiteral);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvString)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_String;
}
bool invokeVisitor(Visitor *v) override;
llvm::StringRef getString() const { return str; }
private:
std::string str;
};
/// \brief OpSource and OpSourceContinued instruction
class SpirvSource : public SpirvInstruction {
public:
SpirvSource(SourceLocation loc, spv::SourceLanguage language, uint32_t ver,
SpirvString *file, llvm::StringRef src);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSource)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Source;
}
bool invokeVisitor(Visitor *v) override;
spv::SourceLanguage getSourceLanguage() const { return lang; }
uint32_t getVersion() const { return version; }
bool hasFile() const { return file != nullptr; }
SpirvString *getFile() const { return file; }
llvm::StringRef getSource() const { return source; }
private:
spv::SourceLanguage lang;
uint32_t version;
SpirvString *file;
std::string source;
};
/// \brief OpModuleProcessed instruction
class SpirvModuleProcessed : public SpirvInstruction {
public:
SpirvModuleProcessed(SourceLocation loc, llvm::StringRef processStr);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvModuleProcessed)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ModuleProcessed;
}
bool invokeVisitor(Visitor *v) override;
llvm::StringRef getProcess() const { return process; }
private:
std::string process;
};
/// \brief OpDecorate(Id) and OpMemberDecorate instructions
class SpirvDecoration : public SpirvInstruction {
public:
// OpDecorate/OpMemberDecorate
SpirvDecoration(SourceLocation loc, SpirvInstruction *target,
spv::Decoration decor, llvm::ArrayRef<uint32_t> params = {},
llvm::Optional<uint32_t> index = llvm::None);
// OpDecorateString/OpMemberDecorateString
SpirvDecoration(SourceLocation loc, SpirvInstruction *target,
spv::Decoration decor,
llvm::ArrayRef<llvm::StringRef> stringParam,
llvm::Optional<uint32_t> index = llvm::None);
// Used for creating OpDecorateId instructions
SpirvDecoration(SourceLocation loc, SpirvInstruction *target,
spv::Decoration decor,
llvm::ArrayRef<SpirvInstruction *> params);
SpirvDecoration(SourceLocation loc, SpirvFunction *targetFunc,
spv::Decoration decor, llvm::ArrayRef<uint32_t> params);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDecoration)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Decoration;
}
bool invokeVisitor(Visitor *v) override;
bool operator==(const SpirvDecoration &that) const;
// Returns the instruction that is the target of the decoration.
SpirvInstruction *getTarget() const { return target; }
SpirvFunction *getTargetFunc() const { return targetFunction; }
spv::Decoration getDecoration() const { return decoration; }
llvm::ArrayRef<uint32_t> getParams() const { return params; }
llvm::ArrayRef<SpirvInstruction *> getIdParams() const { return idParams; }
bool isMemberDecoration() const { return index.hasValue(); }
uint32_t getMemberIndex() const { return index.getValue(); }
private:
spv::Op getDecorateOpcode(spv::Decoration,
const llvm::Optional<uint32_t> &memberIndex);
spv::Op getDecorateStringOpcode(bool isMemberDecoration);
private:
SpirvInstruction *target;
SpirvFunction *targetFunction;
spv::Decoration decoration;
llvm::Optional<uint32_t> index;
llvm::SmallVector<uint32_t, 4> params;
llvm::SmallVector<SpirvInstruction *, 4> idParams;
};
/// \brief OpVariable instruction
class SpirvVariable : public SpirvInstruction {
public:
SpirvVariable(QualType resultType, SourceLocation loc, spv::StorageClass sc,
bool isPrecise, bool isNointerp,
SpirvInstruction *initializerId = 0);
SpirvVariable(const SpirvType *spvType, SourceLocation loc,
spv::StorageClass sc, bool isPrecise, bool isNointerp,
SpirvInstruction *initializerId = 0);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvVariable)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Variable;
}
bool invokeVisitor(Visitor *v) override;
bool hasInitializer() const { return initializer != nullptr; }
SpirvInstruction *getInitializer() const { return initializer; }
bool hasBinding() const { return descriptorSet >= 0 || binding >= 0; }
llvm::StringRef getHlslUserType() const { return hlslUserType; }
void setDescriptorSetNo(int32_t dset) { descriptorSet = dset; }
void setBindingNo(int32_t b) { binding = b; }
void setHlslUserType(llvm::StringRef userType) { hlslUserType = userType; }
private:
SpirvInstruction *initializer;
int32_t descriptorSet;
int32_t binding;
std::string hlslUserType;
};
class SpirvFunctionParameter : public SpirvInstruction {
public:
SpirvFunctionParameter(QualType resultType, bool isPrecise, bool isNointerp,
SourceLocation loc);
SpirvFunctionParameter(const SpirvType *spvType, bool isPrecise,
bool isNointerp, SourceLocation loc);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvFunctionParameter)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_FunctionParameter;
}
bool invokeVisitor(Visitor *v) override;
void setDebugDeclare(SpirvDebugDeclare *decl) { debugDecl = decl; }
SpirvDebugDeclare *getDebugDeclare() const { return debugDecl; }
private:
// When we turn on the rich debug info generation option, we want
// to keep the function parameter information (like a local
// variable). Since DebugDeclare instruction maps a
// DebugLocalVariable instruction to OpFunctionParameter instruction,
// we keep a pointer to SpirvDebugDeclare in SpirvFunctionParameter.
SpirvDebugDeclare *debugDecl;
};
/// \brief Merge instructions include OpLoopMerge and OpSelectionMerge
class SpirvMerge : public SpirvInstruction {
public:
SpirvBasicBlock *getMergeBlock() const { return mergeBlock; }
protected:
SpirvMerge(Kind kind, spv::Op opcode, SourceLocation loc,
SpirvBasicBlock *mergeBlock, SourceRange range = {});
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_LoopMerge ||
inst->getKind() == IK_SelectionMerge;
}
private:
SpirvBasicBlock *mergeBlock;
};
class SpirvLoopMerge : public SpirvMerge {
public:
SpirvLoopMerge(SourceLocation loc, SpirvBasicBlock *mergeBlock,
SpirvBasicBlock *contTarget, spv::LoopControlMask mask,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvLoopMerge)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_LoopMerge;
}
bool invokeVisitor(Visitor *v) override;
SpirvBasicBlock *getContinueTarget() const { return continueTarget; }
spv::LoopControlMask getLoopControlMask() const { return loopControlMask; }
private:
SpirvBasicBlock *continueTarget;
spv::LoopControlMask loopControlMask;
};
class SpirvSelectionMerge : public SpirvMerge {
public:
SpirvSelectionMerge(SourceLocation loc, SpirvBasicBlock *mergeBlock,
spv::SelectionControlMask mask, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSelectionMerge)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SelectionMerge;
}
bool invokeVisitor(Visitor *v) override;
spv::SelectionControlMask getSelectionControlMask() const {
return selControlMask;
}
private:
spv::SelectionControlMask selControlMask;
};
/// \brief Termination instructions are instructions that end a basic block.
///
/// These instructions include:
///
/// * OpBranch, OpBranchConditional, OpSwitch
/// * OpReturn, OpReturnValue, OpKill, OpUnreachable
/// * OpIgnoreIntersectionKHR, OpTerminateIntersectionKHR
///
/// The first group (branching instructions) also include information on
/// possible branches that will be taken next.
class SpirvTerminator : public SpirvInstruction {
public:
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() >= IK_Branch &&
inst->getKind() <= IK_EmitMeshTasksEXT;
}
protected:
SpirvTerminator(Kind kind, spv::Op opcode, SourceLocation loc,
SourceRange range = {});
};
/// \brief Base class for branching instructions
class SpirvBranching : public SpirvTerminator {
public:
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() >= IK_Branch &&
inst->getKind() <= IK_BranchConditional;
}
virtual llvm::ArrayRef<SpirvBasicBlock *> getTargetBranches() const = 0;
protected:
SpirvBranching(Kind kind, spv::Op opcode, SourceLocation loc,
SourceRange range = {});
};
/// \brief OpBranch instruction
class SpirvBranch : public SpirvBranching {
public:
SpirvBranch(SourceLocation loc, SpirvBasicBlock *target,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBranch)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Branch;
}
bool invokeVisitor(Visitor *v) override;
SpirvBasicBlock *getTargetLabel() const { return targetLabel; }
// Returns all possible basic blocks that could be taken by the branching
// instruction.
llvm::ArrayRef<SpirvBasicBlock *> getTargetBranches() const override {
return {targetLabel};
}
private:
SpirvBasicBlock *targetLabel;
};
/// \brief OpBranchConditional instruction
class SpirvBranchConditional : public SpirvBranching {
public:
SpirvBranchConditional(SourceLocation loc, SpirvInstruction *cond,
SpirvBasicBlock *trueLabel,
SpirvBasicBlock *falseLabel);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBranchConditional)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_BranchConditional;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvBasicBlock *> getTargetBranches() const override {
return {trueLabel, falseLabel};
}
SpirvInstruction *getCondition() const { return condition; }
SpirvBasicBlock *getTrueLabel() const { return trueLabel; }
SpirvBasicBlock *getFalseLabel() const { return falseLabel; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
condition = remapOp(condition);
}
private:
SpirvInstruction *condition;
SpirvBasicBlock *trueLabel;
SpirvBasicBlock *falseLabel;
};
/// \brief OpKill instruction
class SpirvKill : public SpirvTerminator {
public:
SpirvKill(SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvKill)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Kill;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief OpReturn and OpReturnValue instructions
class SpirvReturn : public SpirvTerminator {
public:
SpirvReturn(SourceLocation loc, SpirvInstruction *retVal = 0,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvReturn)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Return;
}
bool invokeVisitor(Visitor *v) override;
bool hasReturnValue() const { return returnValue != 0; }
SpirvInstruction *getReturnValue() const { return returnValue; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
returnValue = remapOp(returnValue);
}
private:
SpirvInstruction *returnValue;
};
/// \brief Switch instruction
class SpirvSwitch : public SpirvBranching {
public:
SpirvSwitch(
SourceLocation loc, SpirvInstruction *selector,
SpirvBasicBlock *defaultLabel,
llvm::ArrayRef<std::pair<llvm::APInt, SpirvBasicBlock *>> &targetsVec);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSwitch)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Switch;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getSelector() const { return selector; }
SpirvBasicBlock *getDefaultLabel() const { return defaultLabel; }
llvm::MutableArrayRef<std::pair<llvm::APInt, SpirvBasicBlock *>>
getTargets() {
return targets;
}
// Returns the branch label that will be taken for the given literal.
SpirvBasicBlock *getTargetLabelForLiteral(uint32_t) const;
// Returns all possible branches that could be taken by the switch statement.
llvm::ArrayRef<SpirvBasicBlock *> getTargetBranches() const override;
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
selector = remapOp(selector);
}
private:
SpirvInstruction *selector;
SpirvBasicBlock *defaultLabel;
llvm::SmallVector<std::pair<llvm::APInt, SpirvBasicBlock *>, 4> targets;
};
/// \brief OpUnreachable instruction
class SpirvUnreachable : public SpirvTerminator {
public:
SpirvUnreachable(SourceLocation loc);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvUnreachable)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Unreachable;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief Access Chain instruction representation (OpAccessChain)
///
/// Note: If needed, this class can be extended to cover Ptr access chains,
/// and InBounds access chains. These are currently not used by CodeGen.
class SpirvAccessChain : public SpirvInstruction {
public:
SpirvAccessChain(QualType resultType, SourceLocation loc,
SpirvInstruction *base,
llvm::ArrayRef<SpirvInstruction *> indexVec,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvAccessChain)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_AccessChain;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getBase() const { return base; }
llvm::ArrayRef<SpirvInstruction *> getIndexes() const { return indices; }
void insertIndex(SpirvInstruction *i, uint32_t index) {
if (index < indices.size())
indices.insert(&indices[index], i);
else if (index == indices.size())
indices.push_back(i);
}
private:
SpirvInstruction *base;
llvm::SmallVector<SpirvInstruction *, 4> indices;
};
/// \brief Atomic instructions.
///
/// This class includes:
/// OpAtomicLoad (pointer, scope, memorysemantics)
/// OpAtomicIncrement (pointer, scope, memorysemantics)
/// OpAtomicDecrement (pointer, scope, memorysemantics)
/// OpAtomicFlagClear (pointer, scope, memorysemantics)
/// OpAtomicFlagTestAndSet (pointer, scope, memorysemantics)
/// OpAtomicStore (pointer, scope, memorysemantics, value)
/// OpAtomicAnd (pointer, scope, memorysemantics, value)
/// OpAtomicOr (pointer, scope, memorysemantics, value)
/// OpAtomicXor (pointer, scope, memorysemantics, value)
/// OpAtomicIAdd (pointer, scope, memorysemantics, value)
/// OpAtomicISub (pointer, scope, memorysemantics, value)
/// OpAtomicSMin (pointer, scope, memorysemantics, value)
/// OpAtomicUMin (pointer, scope, memorysemantics, value)
/// OpAtomicSMax (pointer, scope, memorysemantics, value)
/// OpAtomicUMax (pointer, scope, memorysemantics, value)
/// OpAtomicExchange (pointer, scope, memorysemantics, value)
/// OpAtomicCompareExchange(pointer, scope, semaequal, semaunequal,
/// value, comparator)
class SpirvAtomic : public SpirvInstruction {
public:
SpirvAtomic(spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *pointer, spv::Scope, spv::MemorySemanticsMask,
SpirvInstruction *value = nullptr, SourceRange range = {});
SpirvAtomic(spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *pointer, spv::Scope,
spv::MemorySemanticsMask semanticsEqual,
spv::MemorySemanticsMask semanticsUnequal,
SpirvInstruction *value, SpirvInstruction *comparator,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvAtomic)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Atomic;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getPointer() const { return pointer; }
spv::Scope getScope() const { return scope; }
spv::MemorySemanticsMask getMemorySemantics() const { return memorySemantic; }
bool hasValue() const { return value != nullptr; }
SpirvInstruction *getValue() const { return value; }
bool hasComparator() const { return comparator != nullptr; }
SpirvInstruction *getComparator() const { return comparator; }
spv::MemorySemanticsMask getMemorySemanticsEqual() const {
return memorySemantic;
}
spv::MemorySemanticsMask getMemorySemanticsUnequal() const {
return memorySemanticUnequal;
}
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
pointer = remapOp(pointer);
value = remapOp(value);
comparator = remapOp(comparator);
}
private:
SpirvInstruction *pointer;
spv::Scope scope;
spv::MemorySemanticsMask memorySemantic;
spv::MemorySemanticsMask memorySemanticUnequal;
SpirvInstruction *value;
SpirvInstruction *comparator;
};
/// \brief OpMemoryBarrier and OpControlBarrier instructions
class SpirvBarrier : public SpirvInstruction {
public:
SpirvBarrier(SourceLocation loc, spv::Scope memoryScope,
spv::MemorySemanticsMask memorySemantics,
llvm::Optional<spv::Scope> executionScope = llvm::None,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBarrier)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Barrier;
}
bool invokeVisitor(Visitor *v) override;
spv::Scope getMemoryScope() const { return memoryScope; }
spv::MemorySemanticsMask getMemorySemantics() const {
return memorySemantics;
}
bool isControlBarrier() const { return hasExecutionScope(); }
bool hasExecutionScope() const { return executionScope.hasValue(); }
spv::Scope getExecutionScope() const { return executionScope.getValue(); }
private:
spv::Scope memoryScope;
spv::MemorySemanticsMask memorySemantics;
llvm::Optional<spv::Scope> executionScope;
};
/// \brief Represents SPIR-V binary operation instructions.
///
/// This class includes:
/// -------------------------- Arithmetic operations ---------------------------
/// OpIAdd
/// OpFAdd
/// OpISub
/// OpFSub
/// OpIMul
/// OpFMul
/// OpUDiv
/// OpSDiv
/// OpFDiv
/// OpUMod
/// OpSRem
/// OpSMod
/// OpFRem
/// OpFMod
/// OpVectorTimesScalar
/// OpMatrixTimesScalar
/// OpVectorTimesMatrix
/// OpMatrixTimesVector
/// OpMatrixTimesMatrix
/// OpOuterProduct
/// OpDot
/// -------------------------- Shift operations --------------------------------
/// OpShiftRightLogical
/// OpShiftRightArithmetic
/// OpShiftLeftLogical
/// -------------------------- Bitwise logical operations ----------------------
/// OpBitwiseOr
/// OpBitwiseXor
/// OpBitwiseAnd
/// -------------------------- Logical operations ------------------------------
/// OpLogicalEqual
/// OpLogicalNotEqual
/// OpLogicalOr
/// OpLogicalAnd
/// OpIEqual
/// OpINotEqual
/// OpUGreaterThan
/// OpSGreaterThan
/// OpUGreaterThanEqual
/// OpSGreaterThanEqual
/// OpULessThan
/// OpSLessThan
/// OpULessThanEqual
/// OpSLessThanEqual
/// OpFOrdEqual
/// OpFUnordEqual
/// OpFOrdNotEqual
/// OpFUnordNotEqual
/// OpFOrdLessThan
/// OpFUnordLessThan
/// OpFOrdGreaterThan
/// OpFUnordGreaterThan
/// OpFOrdLessThanEqual
/// OpFUnordLessThanEqual
/// OpFOrdGreaterThanEqual
/// OpFUnordGreaterThanEqual
/// ----------------------------------------------------------------------------
class SpirvBinaryOp : public SpirvInstruction {
public:
SpirvBinaryOp(spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *op1, SpirvInstruction *op2,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBinaryOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_BinaryOp;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getOperand1() const { return operand1; }
SpirvInstruction *getOperand2() const { return operand2; }
bool isSpecConstantOp() const {
return getopcode() == spv::Op::OpSpecConstantOp;
}
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
operand1 = remapOp(operand1);
operand2 = remapOp(operand2);
}
private:
SpirvInstruction *operand1;
SpirvInstruction *operand2;
};
/// \brief BitField instructions
///
/// This class includes OpBitFieldInsert, OpBitFieldSExtract,
// and OpBitFieldUExtract.
class SpirvBitField : public SpirvInstruction {
public:
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_BitFieldExtract ||
inst->getKind() == IK_BitFieldInsert;
}
virtual SpirvInstruction *getBase() const { return base; }
virtual SpirvInstruction *getOffset() const { return offset; }
virtual SpirvInstruction *getCount() const { return count; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
count = remapOp(count);
offset = remapOp(offset);
base = remapOp(base);
}
protected:
SpirvBitField(Kind kind, spv::Op opcode, QualType resultType,
SourceLocation loc, SpirvInstruction *base,
SpirvInstruction *offset, SpirvInstruction *count);
private:
SpirvInstruction *base;
SpirvInstruction *offset;
SpirvInstruction *count;
};
class SpirvBitFieldExtract : public SpirvBitField {
public:
SpirvBitFieldExtract(QualType resultType, SourceLocation loc,
SpirvInstruction *base, SpirvInstruction *offset,
SpirvInstruction *count);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBitFieldExtract)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_BitFieldExtract;
}
bool invokeVisitor(Visitor *v) override;
};
class SpirvBitFieldInsert : public SpirvBitField {
public:
SpirvBitFieldInsert(QualType resultType, SourceLocation loc,
SpirvInstruction *base, SpirvInstruction *insert,
SpirvInstruction *offset, SpirvInstruction *count);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvBitFieldInsert)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_BitFieldInsert;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getInsert() const { return insert; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
SpirvBitField::replaceOperand(remapOp, inEntryFunctionWrapper);
insert = remapOp(insert);
}
private:
SpirvInstruction *insert;
};
class SpirvConstant : public SpirvInstruction {
public:
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() >= IK_ConstantBoolean &&
inst->getKind() <= IK_ConstantNull;
}
bool operator==(const SpirvConstant &that) const;
bool isSpecConstant() const;
void setLiteral(bool literal = true) { literalConstant = literal; }
bool isLiteral() { return literalConstant; }
protected:
SpirvConstant(Kind, spv::Op, const SpirvType *, bool literal = false);
SpirvConstant(Kind, spv::Op, QualType, bool literal = false);
bool literalConstant;
};
class SpirvConstantBoolean : public SpirvConstant {
public:
SpirvConstantBoolean(QualType type, bool value, bool isSpecConst = false);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvConstantBoolean)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ConstantBoolean;
}
bool operator==(const SpirvConstantBoolean &that) const;
bool invokeVisitor(Visitor *v) override;
bool getValue() const { return value; }
private:
bool value;
};
/// \brief Represent OpConstant for integer values.
class SpirvConstantInteger : public SpirvConstant {
public:
SpirvConstantInteger(QualType type, llvm::APInt value,
bool isSpecConst = false);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvConstantInteger)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ConstantInteger;
}
bool operator==(const SpirvConstantInteger &that) const;
bool invokeVisitor(Visitor *v) override;
llvm::APInt getValue() const { return value; }
private:
llvm::APInt value;
};
class SpirvConstantFloat : public SpirvConstant {
public:
SpirvConstantFloat(QualType type, llvm::APFloat value,
bool isSpecConst = false);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvConstantFloat)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ConstantFloat;
}
bool operator==(const SpirvConstantFloat &that) const;
bool invokeVisitor(Visitor *v) override;
llvm::APFloat getValue() const { return value; }
private:
llvm::APFloat value;
};
class SpirvConstantComposite : public SpirvConstant {
public:
SpirvConstantComposite(QualType type,
llvm::ArrayRef<SpirvConstant *> constituents,
bool isSpecConst = false);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvConstantComposite)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ConstantComposite;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvConstant *> getConstituents() const {
return constituents;
}
private:
llvm::SmallVector<SpirvConstant *, 4> constituents;
};
class SpirvConstantNull : public SpirvConstant {
public:
SpirvConstantNull(QualType type);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvConstantNull)
bool invokeVisitor(Visitor *v) override;
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ConstantNull;
}
bool operator==(const SpirvConstantNull &that) const;
};
class SpirvUndef : public SpirvInstruction {
public:
SpirvUndef(QualType type);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvUndef)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Undef;
}
bool operator==(const SpirvUndef &that) const;
bool invokeVisitor(Visitor *v) override;
};
/// \brief OpCompositeConstruct instruction
class SpirvCompositeConstruct : public SpirvInstruction {
public:
SpirvCompositeConstruct(QualType resultType, SourceLocation loc,
llvm::ArrayRef<SpirvInstruction *> constituentsVec,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvCompositeConstruct)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_CompositeConstruct;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvInstruction *> getConstituents() const {
return consituents;
}
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
for (size_t idx = 0; idx < consituents.size(); idx++)
consituents[idx] = remapOp(consituents[idx]);
}
private:
llvm::SmallVector<SpirvInstruction *, 4> consituents;
};
/// \brief Extraction instruction (OpCompositeExtract)
class SpirvCompositeExtract : public SpirvInstruction {
public:
SpirvCompositeExtract(QualType resultType, SourceLocation loc,
SpirvInstruction *composite,
llvm::ArrayRef<uint32_t> indices,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvCompositeExtract)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_CompositeExtract;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getComposite() const { return composite; }
llvm::ArrayRef<uint32_t> getIndexes() const { return indices; }
void insertIndex(uint32_t i, uint32_t index) {
if (index < indices.size())
indices.insert(&indices[index], i);
else if (index == indices.size())
indices.push_back(i);
}
private:
SpirvInstruction *composite;
llvm::SmallVector<uint32_t, 4> indices;
};
/// \brief Composite insertion instruction (OpCompositeInsert)
class SpirvCompositeInsert : public SpirvInstruction {
public:
SpirvCompositeInsert(QualType resultType, SourceLocation loc,
SpirvInstruction *composite, SpirvInstruction *object,
llvm::ArrayRef<uint32_t> indices,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvCompositeInsert)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_CompositeInsert;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getComposite() const { return composite; }
SpirvInstruction *getObject() const { return object; }
llvm::ArrayRef<uint32_t> getIndexes() const { return indices; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
composite = remapOp(composite);
object = remapOp(object);
}
private:
SpirvInstruction *composite;
SpirvInstruction *object;
llvm::SmallVector<uint32_t, 4> indices;
};
/// \brief EmitVertex instruction
class SpirvEmitVertex : public SpirvInstruction {
public:
SpirvEmitVertex(SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvEmitVertex)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_EmitVertex;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief EndPrimitive instruction
class SpirvEndPrimitive : public SpirvInstruction {
public:
SpirvEndPrimitive(SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvEndPrimitive)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_EndPrimitive;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief ExtInst instruction
class SpirvExtInst : public SpirvInstruction {
public:
SpirvExtInst(QualType resultType, SourceLocation loc, SpirvExtInstImport *set,
uint32_t inst, llvm::ArrayRef<SpirvInstruction *> operandsVec,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvExtInst)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ExtInst;
}
bool invokeVisitor(Visitor *v) override;
SpirvExtInstImport *getInstructionSet() const { return instructionSet; }
uint32_t getInstruction() const { return instruction; }
llvm::ArrayRef<SpirvInstruction *> getOperands() const { return operands; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
for (size_t idx = 0; idx < operands.size(); idx++)
operands[idx] = remapOp(operands[idx]);
}
private:
SpirvExtInstImport *instructionSet;
uint32_t instruction;
llvm::SmallVector<SpirvInstruction *, 4> operands;
};
/// \brief OpFunctionCall instruction
class SpirvFunctionCall : public SpirvInstruction {
public:
SpirvFunctionCall(QualType resultType, SourceLocation loc,
SpirvFunction *function,
llvm::ArrayRef<SpirvInstruction *> argsVec,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvFunctionCall)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_FunctionCall;
}
bool invokeVisitor(Visitor *v) override;
SpirvFunction *getFunction() const { return function; }
llvm::ArrayRef<SpirvInstruction *> getArgs() const { return args; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
for (size_t idx = 0; idx < args.size(); idx++)
args[idx] = remapOp(args[idx]);
}
private:
SpirvFunction *function;
llvm::SmallVector<SpirvInstruction *, 4> args;
};
/// \brief OpGroupNonUniform* instructions
class SpirvGroupNonUniformOp : public SpirvInstruction {
public:
SpirvGroupNonUniformOp(spv::Op opcode, QualType resultType, spv::Scope scope,
llvm::ArrayRef<SpirvInstruction *> operands,
SourceLocation loc,
llvm::Optional<spv::GroupOperation> group);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvGroupNonUniformOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_GroupNonUniformOp;
}
bool invokeVisitor(Visitor *v) override;
spv::Scope getExecutionScope() const { return execScope; }
llvm::ArrayRef<SpirvInstruction *> getOperands() const { return operands; }
bool hasGroupOp() const { return groupOp.hasValue(); }
spv::GroupOperation getGroupOp() const { return groupOp.getValue(); }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
for (auto *operand : getOperands()) {
operand = remapOp(operand);
}
if (inEntryFunctionWrapper)
setAstResultType(getOperands()[0]->getAstResultType());
}
private:
spv::Scope execScope;
llvm::SmallVector<SpirvInstruction *, 4> operands;
llvm::Optional<spv::GroupOperation> groupOp;
};
/// \brief Image instructions.
///
/// This class includes:
///
/// OpImageSampleImplicitLod (image, coordinate, mask, args)
/// OpImageSampleExplicitLod (image, coordinate, mask, args, lod)
/// OpImageSampleDrefImplicitLod (image, coordinate, mask, args, dref)
/// OpImageSampleDrefExplicitLod (image, coordinate, mask, args, dref, lod)
/// OpImageSparseSampleImplicitLod (image, coordinate, mask, args)
/// OpImageSparseSampleExplicitLod (image, coordinate, mask, args, lod)
/// OpImageSparseSampleDrefImplicitLod(image, coordinate, mask, args, dref)
/// OpImageSparseSampleDrefExplicitLod(image, coordinate, mask, args, dref, lod)
///
/// OpImageFetch (image, coordinate, mask, args)
/// OpImageSparseFetch (image, coordinate, mask, args)
/// OpImageGather (image, coordinate, mask, args, component)
/// OpImageSparseGather (image, coordinate, mask, args, component)
/// OpImageDrefGather (image, coordinate, mask, args, dref)
/// OpImageSparseDrefGather (image, coordinate, mask, args, dref)
/// OpImageRead (image, coordinate, mask, args)
/// OpImageSparseRead (image, coordinate, mask, args)
/// OpImageWrite (image, coordinate, mask, args, texel)
///
/// Image operands can include:
/// Bias, Lod, Grad (pair), ConstOffset, Offset, ConstOffsets, Sample, MinLod.
///
class SpirvImageOp : public SpirvInstruction {
public:
SpirvImageOp(
spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *image, SpirvInstruction *coordinate,
spv::ImageOperandsMask mask, SpirvInstruction *dref = nullptr,
SpirvInstruction *bias = nullptr, SpirvInstruction *lod = nullptr,
SpirvInstruction *gradDx = nullptr, SpirvInstruction *gradDy = nullptr,
SpirvInstruction *constOffset = nullptr,
SpirvInstruction *offset = nullptr,
SpirvInstruction *constOffsets = nullptr,
SpirvInstruction *sample = nullptr, SpirvInstruction *minLod = nullptr,
SpirvInstruction *component = nullptr,
SpirvInstruction *texelToWrite = nullptr, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvImageOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ImageOp;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getImage() const { return image; }
SpirvInstruction *getCoordinate() const { return coordinate; }
spv::ImageOperandsMask getImageOperandsMask() const { return operandsMask; }
bool isSparse() const;
bool hasDref() const { return dref != nullptr; }
bool hasBias() const { return bias != nullptr; }
bool hasLod() const { return lod != nullptr; }
bool hasGrad() const { return gradDx != nullptr && gradDy != nullptr; }
bool hasConstOffset() const { return constOffset != nullptr; }
bool hasOffset() const { return offset != nullptr; }
bool hasConstOffsets() const { return constOffsets != nullptr; }
bool hasSample() const { return sample != nullptr; }
bool hasMinLod() const { return minLod != nullptr; }
bool hasComponent() const { return component != nullptr; }
bool isImageWrite() const { return texelToWrite != nullptr; }
SpirvInstruction *getDref() const { return dref; }
SpirvInstruction *getBias() const { return bias; }
SpirvInstruction *getLod() const { return lod; }
SpirvInstruction *getGradDx() const { return gradDx; }
SpirvInstruction *getGradDy() const { return gradDy; }
std::pair<SpirvInstruction *, SpirvInstruction *> getGrad() const {
return std::make_pair(gradDx, gradDy);
}
SpirvInstruction *getConstOffset() const { return constOffset; }
SpirvInstruction *getOffset() const { return offset; }
SpirvInstruction *getConstOffsets() const { return constOffsets; }
SpirvInstruction *getSample() const { return sample; }
SpirvInstruction *getMinLod() const { return minLod; }
SpirvInstruction *getComponent() const { return component; }
SpirvInstruction *getTexelToWrite() const { return texelToWrite; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
coordinate = remapOp(coordinate);
dref = remapOp(dref);
bias = remapOp(bias);
lod = remapOp(lod);
gradDx = remapOp(gradDx);
gradDy = remapOp(gradDy);
offset = remapOp(offset);
minLod = remapOp(minLod);
component = remapOp(component);
}
private:
SpirvInstruction *image;
SpirvInstruction *coordinate;
SpirvInstruction *dref;
SpirvInstruction *bias;
SpirvInstruction *lod;
SpirvInstruction *gradDx;
SpirvInstruction *gradDy;
SpirvInstruction *constOffset;
SpirvInstruction *offset;
SpirvInstruction *constOffsets;
SpirvInstruction *sample;
SpirvInstruction *minLod;
SpirvInstruction *component;
SpirvInstruction *texelToWrite;
spv::ImageOperandsMask operandsMask;
};
/// \brief Image query instructions:
///
/// Covers the following instructions:
/// OpImageQueryFormat (image)
/// OpImageQueryOrder (image)
/// OpImageQuerySize (image)
/// OpImageQueryLevels (image)
/// OpImageQuerySamples (image)
/// OpImageQueryLod (image, coordinate)
/// OpImageQuerySizeLod (image, lod)
class SpirvImageQuery : public SpirvInstruction {
public:
SpirvImageQuery(spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *img, SpirvInstruction *lod = nullptr,
SpirvInstruction *coord = nullptr, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvImageQuery)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ImageQuery;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getImage() const { return image; }
bool hasLod() const { return lod != nullptr; }
SpirvInstruction *getLod() const { return lod; }
bool hasCoordinate() const { return coordinate != nullptr; }
SpirvInstruction *getCoordinate() const { return coordinate; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
lod = remapOp(lod);
coordinate = remapOp(coordinate);
}
private:
SpirvInstruction *image;
SpirvInstruction *lod;
SpirvInstruction *coordinate;
};
/// \brief OpImageSparseTexelsResident instruction
class SpirvImageSparseTexelsResident : public SpirvInstruction {
public:
SpirvImageSparseTexelsResident(QualType resultType, SourceLocation loc,
SpirvInstruction *resCode,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvImageSparseTexelsResident)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ImageSparseTexelsResident;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getResidentCode() const { return residentCode; }
private:
SpirvInstruction *residentCode;
};
/// \brief OpImageTexelPointer instruction
/// Note: The resultType stored in objects of this class are the underlying
/// type. The real result type of OpImageTexelPointer must always be an
/// OpTypePointer whose Storage Class operand is Image.
class SpirvImageTexelPointer : public SpirvInstruction {
public:
SpirvImageTexelPointer(QualType resultType, SourceLocation loc,
SpirvInstruction *image, SpirvInstruction *coordinate,
SpirvInstruction *sample);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvImageTexelPointer)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ImageTexelPointer;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getImage() const { return image; }
SpirvInstruction *getCoordinate() const { return coordinate; }
SpirvInstruction *getSample() const { return sample; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
coordinate = remapOp(coordinate);
}
private:
SpirvInstruction *image;
SpirvInstruction *coordinate;
SpirvInstruction *sample;
};
/// \brief Load instruction representation
class SpirvLoad : public SpirvInstruction {
public:
SpirvLoad(QualType resultType, SourceLocation loc, SpirvInstruction *pointer,
SourceRange range = {},
llvm::Optional<spv::MemoryAccessMask> mask = llvm::None);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvLoad)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Load;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getPointer() const { return pointer; }
bool hasMemoryAccessSemantics() const { return memoryAccess.hasValue(); }
spv::MemoryAccessMask getMemoryAccess() const {
return memoryAccess.getValue();
}
void setAlignment(uint32_t alignment);
bool hasAlignment() const { return memoryAlignment.hasValue(); }
uint32_t getAlignment() const { return memoryAlignment.getValue(); }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
pointer = remapOp(pointer);
if (inEntryFunctionWrapper)
setAstResultType(pointer->getAstResultType());
}
private:
SpirvInstruction *pointer;
llvm::Optional<spv::MemoryAccessMask> memoryAccess;
llvm::Optional<uint32_t> memoryAlignment;
};
/// \brief OpCopyObject instruction
class SpirvCopyObject : public SpirvInstruction {
public:
SpirvCopyObject(QualType resultType, SourceLocation loc,
SpirvInstruction *pointer);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvCopyObject)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_CopyObject;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getPointer() const { return pointer; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
pointer = remapOp(pointer);
if (inEntryFunctionWrapper)
setAstResultType(pointer->getAstResultType());
}
private:
SpirvInstruction *pointer;
};
/// \brief OpSampledImage instruction
/// Result Type must be the OpTypeSampledImage type whose Image Type operand is
/// the type of Image. We store the QualType for the underlying image as result
/// type.
class SpirvSampledImage : public SpirvInstruction {
public:
SpirvSampledImage(QualType resultType, SourceLocation loc,
SpirvInstruction *image, SpirvInstruction *sampler,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSampledImage)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SampledImage;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getImage() const { return image; }
SpirvInstruction *getSampler() const { return sampler; }
private:
SpirvInstruction *image;
SpirvInstruction *sampler;
};
/// \brief Select operation representation.
class SpirvSelect : public SpirvInstruction {
public:
SpirvSelect(QualType resultType, SourceLocation loc, SpirvInstruction *cond,
SpirvInstruction *trueId, SpirvInstruction *falseId,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSelect)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Select;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getCondition() const { return condition; }
SpirvInstruction *getTrueObject() const { return trueObject; }
SpirvInstruction *getFalseObject() const { return falseObject; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
condition = remapOp(condition);
trueObject = remapOp(trueObject);
falseObject = remapOp(falseObject);
}
private:
SpirvInstruction *condition;
SpirvInstruction *trueObject;
SpirvInstruction *falseObject;
};
/// \brief OpSpecConstantOp instruction where the operation is binary.
class SpirvSpecConstantBinaryOp : public SpirvInstruction {
public:
SpirvSpecConstantBinaryOp(spv::Op specConstantOp, QualType resultType,
SourceLocation loc, SpirvInstruction *operand1,
SpirvInstruction *operand2);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSpecConstantBinaryOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SpecConstantBinaryOp;
}
bool invokeVisitor(Visitor *v) override;
spv::Op getSpecConstantopcode() const { return specOp; }
SpirvInstruction *getOperand1() const { return operand1; }
SpirvInstruction *getOperand2() const { return operand2; }
private:
spv::Op specOp;
SpirvInstruction *operand1;
SpirvInstruction *operand2;
};
/// \brief OpSpecConstantOp instruction where the operation is unary.
class SpirvSpecConstantUnaryOp : public SpirvInstruction {
public:
SpirvSpecConstantUnaryOp(spv::Op specConstantOp, QualType resultType,
SourceLocation loc, SpirvInstruction *operand);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSpecConstantUnaryOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SpecConstantUnaryOp;
}
bool invokeVisitor(Visitor *v) override;
spv::Op getSpecConstantopcode() const { return specOp; }
SpirvInstruction *getOperand() const { return operand; }
private:
spv::Op specOp;
SpirvInstruction *operand;
};
/// \brief Store instruction representation
class SpirvStore : public SpirvInstruction {
public:
SpirvStore(SourceLocation loc, SpirvInstruction *pointer,
SpirvInstruction *object,
llvm::Optional<spv::MemoryAccessMask> mask = llvm::None,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvStore)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_Store;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getPointer() const { return pointer; }
SpirvInstruction *getObject() const { return object; }
bool hasMemoryAccessSemantics() const { return memoryAccess.hasValue(); }
spv::MemoryAccessMask getMemoryAccess() const {
return memoryAccess.getValue();
}
void setAlignment(uint32_t alignment);
bool hasAlignment() const { return memoryAlignment.hasValue(); }
uint32_t getAlignment() const { return memoryAlignment.getValue(); }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
pointer = remapOp(pointer);
object = remapOp(object);
if (inEntryFunctionWrapper &&
object->getAstResultType() != pointer->getAstResultType() &&
isa<SpirvVariable>(pointer) &&
pointer->getStorageClass() == spv::StorageClass::Output)
pointer->setAstResultType(object->getAstResultType());
}
private:
SpirvInstruction *pointer;
SpirvInstruction *object;
llvm::Optional<spv::MemoryAccessMask> memoryAccess;
llvm::Optional<uint32_t> memoryAlignment;
};
/// \brief Represents SPIR-V nullary operation instructions.
///
/// This class includes:
/// ----------------------------------------------------------------------------
/// OpBeginInvocationInterlockEXT // FragmentShader*InterlockEXT capability
/// OpEndInvocationInterlockEXT // FragmentShader*InterlockEXT capability
/// ----------------------------------------------------------------------------
class SpirvNullaryOp : public SpirvInstruction {
public:
SpirvNullaryOp(spv::Op opcode, SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvNullaryOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_NullaryOp;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief Represents SPIR-V unary operation instructions.
///
/// This class includes:
/// ----------------------------------------------------------------------------
/// opTranspose // Matrix capability
/// opDPdx
/// opDPdy
/// opFwidth
/// opDPdxFine // DerivativeControl capability
/// opDPdyFine // DerivativeControl capability
/// opFwidthFine // DerivativeControl capability
/// opDPdxCoarse // DerivativeControl capability
/// opDPdyCoarse // DerivativeControl capability
/// opFwidthCoarse // DerivativeControl capability
/// ------------------------- Conversion operations ----------------------------
/// OpConvertFToU
/// OpConvertFToS
/// OpConvertSToF
/// OpConvertUToF
/// OpUConvert
/// OpSConvert
/// OpFConvert
/// OpBitcast
/// ----------------------------------------------------------------------------
/// OpSNegate
/// OpFNegate
/// ----------------------------------------------------------------------------
/// opBitReverse
/// opBitCount
/// OpNot
/// ----------------------------- Logical operations ---------------------------
/// OpLogicalNot
/// OpAny
/// OpAll
/// OpIsNan
/// OpIsInf
/// OpIsFinite // Kernel capability
/// ----------------------------------------------------------------------------
class SpirvUnaryOp : public SpirvInstruction {
public:
SpirvUnaryOp(spv::Op opcode, QualType resultType, SourceLocation loc,
SpirvInstruction *op, SourceRange range = {});
SpirvUnaryOp(spv::Op opcode, const SpirvType *resultType, SourceLocation loc,
SpirvInstruction *op);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvUnaryOp)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_UnaryOp;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getOperand() const { return operand; }
bool isConversionOp() const;
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
operand = remapOp(operand);
}
private:
SpirvInstruction *operand;
};
/// \brief OpVectorShuffle instruction
class SpirvVectorShuffle : public SpirvInstruction {
public:
SpirvVectorShuffle(QualType resultType, SourceLocation loc,
SpirvInstruction *vec1, SpirvInstruction *vec2,
llvm::ArrayRef<uint32_t> componentsVec,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvVectorShuffle)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_VectorShuffle;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getVec1() const { return vec1; }
SpirvInstruction *getVec2() const { return vec2; }
llvm::ArrayRef<uint32_t> getComponents() const { return components; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
vec1 = remapOp(vec1);
vec2 = remapOp(vec2);
}
private:
SpirvInstruction *vec1;
SpirvInstruction *vec2;
llvm::SmallVector<uint32_t, 4> components;
};
class SpirvArrayLength : public SpirvInstruction {
public:
SpirvArrayLength(QualType resultType, SourceLocation loc,
SpirvInstruction *structure, uint32_t arrayMember,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvArrayLength)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ArrayLength;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getStructure() const { return structure; }
uint32_t getArrayMember() const { return arrayMember; }
private:
SpirvInstruction *structure;
uint32_t arrayMember;
};
/// \brief Base class for all NV raytracing instructions.
/// These include following SPIR-V opcodes:
/// OpTraceNV, OpReportIntersectionNV, OpIgnoreIntersectionNV, OpTerminateRayNV,
/// OpExecuteCallableNV
class SpirvRayTracingOpNV : public SpirvInstruction {
public:
SpirvRayTracingOpNV(QualType resultType, spv::Op opcode,
llvm::ArrayRef<SpirvInstruction *> vecOperands,
SourceLocation loc);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvRayTracingOpNV)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_RayTracingOpNV;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvInstruction *> getOperands() const { return operands; }
private:
llvm::SmallVector<SpirvInstruction *, 4> operands;
};
class SpirvRayQueryOpKHR : public SpirvInstruction {
public:
SpirvRayQueryOpKHR(QualType resultType, spv::Op opcode,
llvm::ArrayRef<SpirvInstruction *> vecOperands, bool flags,
SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvRayQueryOpKHR)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_RayQueryOpKHR;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvInstruction *> getOperands() const { return operands; }
bool hasCullFlags() const { return cullFlags; }
private:
llvm::SmallVector<SpirvInstruction *, 4> operands;
bool cullFlags;
};
class SpirvRayTracingTerminateOpKHR : public SpirvTerminator {
public:
SpirvRayTracingTerminateOpKHR(spv::Op opcode, SourceLocation loc);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvRayTracingTerminateOpKHR)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_RayTracingTerminate;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief OpDemoteToHelperInvocation instruction.
/// Demote fragment shader invocation to a helper invocation. Any stores to
/// memory after this instruction are suppressed and the fragment does not write
/// outputs to the framebuffer. Unlike the OpKill instruction, this does not
/// necessarily terminate the invocation. It is not considered a flow control
/// instruction (flow control does not become non-uniform) and does not
/// terminate the block.
class SpirvDemoteToHelperInvocation : public SpirvInstruction {
public:
SpirvDemoteToHelperInvocation(SourceLocation);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDemoteToHelperInvocation)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DemoteToHelperInvocation;
}
bool invokeVisitor(Visitor *v) override;
};
/// \brief OpIsHelperInvocationEXT instruction.
/// Result is true if the invocation is currently a helper invocation, otherwise
/// result is false. An invocation is currently a helper invocation if it was
/// originally invoked as a helper invocation or if it has been demoted to a
/// helper invocation by OpDemoteToHelperInvocationEXT.
class SpirvIsHelperInvocationEXT : public SpirvInstruction {
public:
SpirvIsHelperInvocationEXT(QualType, SourceLocation);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvIsHelperInvocationEXT)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_IsHelperInvocationEXT;
}
bool invokeVisitor(Visitor *v) override;
};
// A class keeping information of [[vk::ext_instruction(uint opcode,
// string extended_instruction_set)]] attribute. The attribute allows users to
// emit an arbitrary SPIR-V instruction by adding it to a function declaration.
// Note that this class does not represent an actual specific SPIR-V
// instruction. It is used to keep the information of the arbitrary SPIR-V
// instruction.
class SpirvIntrinsicInstruction : public SpirvInstruction {
public:
SpirvIntrinsicInstruction(QualType resultType, uint32_t opcode,
llvm::ArrayRef<SpirvInstruction *> operands,
llvm::ArrayRef<llvm::StringRef> extensions,
SpirvExtInstImport *set,
llvm::ArrayRef<uint32_t> capabilities,
SourceLocation loc);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvIntrinsicInstruction)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SpirvIntrinsicInstruction;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvInstruction *> getOperands() const { return operands; }
llvm::ArrayRef<uint32_t> getCapabilities() const { return capabilities; }
llvm::ArrayRef<std::string> getExtensions() const { return extensions; }
SpirvExtInstImport *getInstructionSet() const { return instructionSet; }
uint32_t getInstruction() const { return instruction; }
void replaceOperand(
llvm::function_ref<SpirvInstruction *(SpirvInstruction *)> remapOp,
bool inEntryFunctionWrapper) override {
for (size_t idx = 0; idx < operands.size(); idx++)
operands[idx] = remapOp(operands[idx]);
}
private:
uint32_t instruction;
llvm::SmallVector<SpirvInstruction *, 4> operands;
llvm::SmallVector<uint32_t, 4> capabilities;
llvm::SmallVector<std::string, 4> extensions;
SpirvExtInstImport *instructionSet;
};
/// \brief Base class for all rich DebugInfo extension instructions.
/// Note that all of these instructions should be added to the SPIR-V module as
/// an OpExtInst instructions. So, all of these instructions must:
/// 1) contain the result-id of the extended instruction set
/// 2) have OpTypeVoid as their Result Type.
/// 3) contain additional QualType and SpirvType for the debug type.
class SpirvDebugInstruction : public SpirvInstruction {
public:
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() >= IK_DebugInfoNone &&
inst->getKind() <= IK_DebugTypeTemplateParameter;
}
void setDebugType(SpirvDebugInstruction *type) { debugType = type; }
void setInstructionSet(SpirvExtInstImport *set) { instructionSet = set; }
SpirvExtInstImport *getInstructionSet() const { return instructionSet; }
uint32_t getDebugOpcode() const { return debugOpcode; }
QualType getDebugQualType() const { return debugQualType; }
const SpirvType *getDebugSpirvType() const { return debugSpirvType; }
SpirvDebugInstruction *getDebugType() const { return debugType; }
void setDebugQualType(QualType type) { debugQualType = type; }
void setDebugSpirvType(const SpirvType *type) { debugSpirvType = type; }
virtual SpirvDebugInstruction *getParentScope() const { return nullptr; }
protected:
// TODO: Replace opcode type with an enum, when it is available in
// SPIRV-Headers.
SpirvDebugInstruction(Kind kind, uint32_t opcode);
private:
// TODO: Replace this with an enum, when it is available in SPIRV-Headers.
uint32_t debugOpcode;
QualType debugQualType;
const SpirvType *debugSpirvType;
// The constructor for SpirvDebugInstruction sets the debug type to nullptr.
// A type lowering IMR pass will set debug types for all debug instructions
// that do contain a debug type.
SpirvDebugInstruction *debugType;
// The pointer to the debug info extended instruction set.
// This is not required by the constructor, and can be set via any IMR pass.
SpirvExtInstImport *instructionSet;
};
/// \brief OpEmitMeshTasksEXT instruction.
class SpirvEmitMeshTasksEXT : public SpirvInstruction {
public:
SpirvEmitMeshTasksEXT(SpirvInstruction *xDim, SpirvInstruction *yDim,
SpirvInstruction *zDim, SpirvInstruction *payload,
SourceLocation loc, SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvEmitMeshTasksEXT)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_EmitMeshTasksEXT;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getXDimension() const { return xDim; }
SpirvInstruction *getYDimension() const { return yDim; }
SpirvInstruction *getZDimension() const { return zDim; }
SpirvInstruction *getPayload() const { return payload; }
private:
SpirvInstruction *xDim;
SpirvInstruction *yDim;
SpirvInstruction *zDim;
SpirvInstruction *payload;
};
/// \brief OpSetMeshOutputsEXT instruction.
class SpirvSetMeshOutputsEXT : public SpirvInstruction {
public:
SpirvSetMeshOutputsEXT(SpirvInstruction *vertCount,
SpirvInstruction *primCount, SourceLocation loc,
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvSetMeshOutputsEXT)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_SetMeshOutputsEXT;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getVertexCount() const { return vertCount; }
SpirvInstruction *getPrimitiveCount() const { return primCount; }
private:
SpirvInstruction *vertCount;
SpirvInstruction *primCount;
};
class SpirvDebugInfoNone : public SpirvDebugInstruction {
public:
SpirvDebugInfoNone();
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugInfoNone)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugInfoNone;
}
bool invokeVisitor(Visitor *v) override;
};
class SpirvDebugSource : public SpirvDebugInstruction {
public:
SpirvDebugSource(llvm::StringRef file, llvm::StringRef text);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugSource)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugSource;
}
bool invokeVisitor(Visitor *v) override;
llvm::StringRef getFile() const { return file; }
llvm::StringRef getContent() const { return text; }
private:
std::string file;
std::string text;
};
class SpirvDebugCompilationUnit : public SpirvDebugInstruction {
public:
SpirvDebugCompilationUnit(uint32_t spirvVersion, uint32_t dwarfVersion,
SpirvDebugSource *src);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugCompilationUnit)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugCompilationUnit;
}
bool invokeVisitor(Visitor *v) override;
uint32_t getSpirvVersion() const { return spirvVersion; }
uint32_t getDwarfVersion() const { return dwarfVersion; }
SpirvDebugSource *getDebugSource() const { return source; }
spv::SourceLanguage getLanguage() const { return lang; }
private:
uint32_t spirvVersion;
uint32_t dwarfVersion;
SpirvDebugSource *source;
spv::SourceLanguage lang;
};
// This class is not actually used. It can be cleaned up.
class SpirvDebugFunctionDeclaration : public SpirvDebugInstruction {
public:
SpirvDebugFunctionDeclaration(llvm::StringRef name, SpirvDebugSource *src,
uint32_t fnLine, uint32_t fnColumn,
SpirvDebugInstruction *parentScope,
llvm::StringRef linkageName, uint32_t flags);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugFunctionDeclaration)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugFunctionDecl;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return fnLine; }
uint32_t getColumn() const { return fnColumn; }
void setParent(SpirvDebugInstruction *scope) { parentScope = scope; }
SpirvDebugInstruction *getParentScope() const override { return parentScope; }
llvm::StringRef getLinkageName() const { return linkageName; }
uint32_t getFlags() const { return flags; }
private:
SpirvDebugSource *source;
// Source line number at which the function appears
uint32_t fnLine;
// Source column number at which the function appears
uint32_t fnColumn;
// Debug instruction which represents the parent lexical scope
SpirvDebugInstruction *parentScope;
std::string linkageName;
// TODO: Replace this with an enum, when it is available in SPIRV-Headers
uint32_t flags;
};
class SpirvDebugFunction : public SpirvDebugInstruction {
public:
SpirvDebugFunction(llvm::StringRef name, SpirvDebugSource *src,
uint32_t fnLine, uint32_t fnColumn,
SpirvDebugInstruction *parentScope,
llvm::StringRef linkageName, uint32_t flags,
uint32_t scopeLine, SpirvFunction *fn);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugFunction)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugFunction;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return fnLine; }
uint32_t getColumn() const { return fnColumn; }
void setParent(SpirvDebugInstruction *scope) { parentScope = scope; }
SpirvDebugInstruction *getParentScope() const override { return parentScope; }
llvm::StringRef getLinkageName() const { return linkageName; }
uint32_t getFlags() const { return flags; }
uint32_t getScopeLine() const { return scopeLine; }
SpirvFunction *getSpirvFunction() const { return fn; }
void setFunctionType(clang::spirv::FunctionType *t) { fnType = t; }
clang::spirv::FunctionType *getFunctionType() const { return fnType; }
void setDebugInfoNone(SpirvDebugInfoNone *none) { debugNone = none; }
SpirvDebugInfoNone *getDebugInfoNone() const { return debugNone; }
private:
SpirvDebugSource *source;
// Source line number at which the function appears
uint32_t fnLine;
// Source column number at which the function appears
uint32_t fnColumn;
// Debug instruction which represents the parent lexical scope
SpirvDebugInstruction *parentScope;
std::string linkageName;
// TODO: Replace this with an enum, when it is available in SPIRV-Headers
uint32_t flags;
// Line number in the source program at which the function scope begins
uint32_t scopeLine;
// The function to which this debug instruction belongs
SpirvFunction *fn;
// When fn is nullptr, we want to put DebugInfoNone for Function operand
// of DebugFunction. Note that the spec must allow it (which will be
// discussed). We can consider this debugNone is a fallback of fn.
SpirvDebugInfoNone *debugNone;
// When the function debug info is generated by LowerTypeVisitor (not
// SpirvEmitter), we do not generate SpirvFunction. We only generate
// SpirvDebugFunction. Similar to fnType of SpirvFunction, we want to
// keep the function type info in this fnType.
clang::spirv::FunctionType *fnType;
};
class SpirvDebugEntryPoint : public SpirvDebugInstruction {
public:
SpirvDebugEntryPoint(SpirvDebugFunction *ep, SpirvDebugCompilationUnit *cu,
llvm::StringRef signature, llvm::StringRef args);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugEntryPoint)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugEntryPoint;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugFunction *getEntryPoint() const { return ep; }
SpirvDebugCompilationUnit *getCompilationUnit() const { return cu; }
llvm::StringRef getSignature() const { return signature; }
llvm::StringRef getArgs() const { return args; }
private:
SpirvDebugFunction *ep;
SpirvDebugCompilationUnit *cu;
std::string signature;
std::string args;
};
class SpirvDebugFunctionDefinition : public SpirvDebugInstruction {
public:
SpirvDebugFunctionDefinition(SpirvDebugFunction *function, SpirvFunction *fn);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugFunctionDefinition)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugFunctionDef;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugFunction *getDebugFunction() const { return function; }
SpirvFunction *getFunction() const { return fn; }
private:
SpirvDebugFunction *function;
SpirvFunction *fn;
};
class SpirvDebugLocalVariable : public SpirvDebugInstruction {
public:
SpirvDebugLocalVariable(QualType debugQualType, llvm::StringRef varName,
SpirvDebugSource *src, uint32_t line, uint32_t column,
SpirvDebugInstruction *parentScope, uint32_t flags,
llvm::Optional<uint32_t> argNumber = llvm::None);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugLocalVariable)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugLocalVariable;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
SpirvDebugInstruction *getParentScope() const override { return parentScope; }
uint32_t getFlags() const { return flags; }
llvm::Optional<uint32_t> getArgNumber() const { return argNumber; }
private:
SpirvDebugSource *source;
uint32_t line;
uint32_t column;
SpirvDebugInstruction *parentScope;
// TODO: Replace this with an enum, when it is available in SPIRV-Headers
uint32_t flags;
llvm::Optional<uint32_t> argNumber;
};
class SpirvDebugGlobalVariable : public SpirvDebugInstruction {
public:
SpirvDebugGlobalVariable(
QualType debugQualType, llvm::StringRef varName, SpirvDebugSource *src,
uint32_t line, uint32_t column, SpirvDebugInstruction *parentScope,
llvm::StringRef linkageName, SpirvVariable *var, uint32_t flags,
llvm::Optional<SpirvInstruction *> staticMemberDebugType = llvm::None);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugGlobalVariable)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugGlobalVariable;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
SpirvDebugInstruction *getParentScope() const override { return parentScope; }
llvm::StringRef getLinkageName() const { return linkageName; }
uint32_t getFlags() const { return flags; }
SpirvInstruction *getVariable() const { return var; }
llvm::Optional<SpirvInstruction *> getStaticMemberDebugDecl() const {
return staticMemberDebugDecl;
}
private:
SpirvDebugSource *source;
uint32_t line;
uint32_t column;
SpirvDebugInstruction *parentScope;
std::string linkageName;
SpirvVariable *var;
// TODO: Replace this with an enum, when it is available in SPIRV-Headers
uint32_t flags;
llvm::Optional<SpirvInstruction *> staticMemberDebugDecl;
};
class SpirvDebugOperation : public SpirvDebugInstruction {
public:
SpirvDebugOperation(uint32_t operationOpCode,
llvm::ArrayRef<int32_t> operands = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugOperation)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugOperation;
}
bool invokeVisitor(Visitor *v) override;
uint32_t getOperationOpcode() { return operationOpcode; }
private:
uint32_t operationOpcode;
llvm::SmallVector<int32_t, 2> operands;
};
class SpirvDebugExpression : public SpirvDebugInstruction {
public:
SpirvDebugExpression(llvm::ArrayRef<SpirvDebugOperation *> operations = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugExpression)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugExpression;
}
bool invokeVisitor(Visitor *v) override;
llvm::ArrayRef<SpirvDebugOperation *> getOperations() const {
return operations;
}
private:
llvm::SmallVector<SpirvDebugOperation *, 4> operations;
};
class SpirvDebugDeclare : public SpirvDebugInstruction {
public:
SpirvDebugDeclare(SpirvDebugLocalVariable *, SpirvInstruction *,
SpirvDebugExpression *, SourceLocation loc = {},
SourceRange range = {});
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugDeclare)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugDeclare;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugLocalVariable *getDebugLocalVariable() const { return debugVar; }
SpirvInstruction *getVariable() const { return var; }
SpirvDebugExpression *getDebugExpression() const { return expression; }
private:
SpirvDebugLocalVariable *debugVar;
SpirvInstruction *var;
SpirvDebugExpression *expression;
};
class SpirvDebugLexicalBlock : public SpirvDebugInstruction {
public:
SpirvDebugLexicalBlock(SpirvDebugSource *source, uint32_t line,
uint32_t column, SpirvDebugInstruction *parent);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugLexicalBlock)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugLexicalBlock;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
SpirvDebugInstruction *getParentScope() const override { return parent; }
private:
SpirvDebugSource *source;
uint32_t line;
uint32_t column;
SpirvDebugInstruction *parent;
};
/// Represent DebugScope. DebugScope has two operands: a lexical scope
/// and DebugInlinedAt. The DebugInlinedAt is an optional argument
/// and it is only used when we inline a function. Since DXC does not
/// conduct the inlining, we do not add DebugInlinedAt operand.
class SpirvDebugScope : public SpirvDebugInstruction {
public:
SpirvDebugScope(SpirvDebugInstruction *);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugScope)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugScope;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugInstruction *getScope() const { return scope; }
private:
SpirvDebugInstruction *scope;
};
/// The following classes represent debug types defined in the rich DebugInfo
/// spec.
///
/// Note: While debug type and SPIR-V type are very similar, they are not quite
/// identical. For example: the debug type contains the HLL string name of the
/// type. Another example: two structs with similar definitions in different
/// lexical scopes translate into 1 SPIR-V type, but translate into 2 different
/// debug type instructions.
///
/// Note: DebugTypeComposite contains a vector of its members, which can be
/// DebugTypeMember or DebugFunction. The former is a type, and the latter is a
/// SPIR-V instruction. This somewhat tips the sclae in favor of using the
/// SpirvInstruction base class for representing debug types.
///
/// TODO: Add support for the following debug types:
/// DebugTypePointer,
/// DebugTypeQualifier,
/// DebugTypedef,
/// DebugTypeEnum,
/// DebugTypeInheritance,
/// DebugTypePtrToMember,
/// DebugTypeTemplate,
/// DebugTypeTemplateParameter,
/// DebugTypeTemplateTemplateParameter,
/// DebugTypeTemplateParameterPack,
class SpirvDebugType : public SpirvDebugInstruction {
public:
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() >= IK_DebugTypeBasic &&
inst->getKind() <= IK_DebugTypeTemplateParameter;
}
virtual uint32_t getSizeInBits() const { return 0u; }
protected:
SpirvDebugType(Kind kind, uint32_t opcode)
: SpirvDebugInstruction(kind, opcode) {}
};
/// Represents basic debug types, including boolean, float, integer.
class SpirvDebugTypeBasic : public SpirvDebugType {
public:
SpirvDebugTypeBasic(llvm::StringRef name, SpirvConstant *size,
uint32_t encoding);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeBasic)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeBasic;
}
bool invokeVisitor(Visitor *v) override;
SpirvConstant *getSize() const { return size; }
uint32_t getEncoding() const { return encoding; }
uint32_t getSizeInBits() const override;
private:
SpirvConstant *size;
// TODO: Replace uint32_t with enum from SPIRV-Headers once available.
// 0, Unspecified
// 1, Address
// 2, Boolean
// 3, Float
// 4, Signed
// 5, SignedChar
// 6, Unsigned
// 7, UnsignedChar
uint32_t encoding;
};
/// Represents array debug types
class SpirvDebugTypeArray : public SpirvDebugType {
public:
SpirvDebugTypeArray(SpirvDebugType *elemType,
llvm::ArrayRef<uint32_t> elemCount);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeArray)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeArray;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugType *getElementType() const { return elementType; }
llvm::SmallVector<uint32_t, 2> &getElementCount() { return elementCount; }
uint32_t getSizeInBits() const override {
// TODO: avoid integer overflow
uint32_t nElem = elementType->getSizeInBits();
for (auto k : elementCount)
nElem *= k;
return nElem;
}
private:
SpirvDebugType *elementType;
llvm::SmallVector<uint32_t, 2> elementCount;
};
/// Represents vector debug types
class SpirvDebugTypeVector : public SpirvDebugType {
public:
SpirvDebugTypeVector(SpirvDebugType *elemType, uint32_t elemCount);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeVector)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeVector;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugType *getElementType() const { return elementType; }
uint32_t getElementCount() const { return elementCount; }
uint32_t getSizeInBits() const override {
return elementCount * elementType->getSizeInBits();
}
private:
SpirvDebugType *elementType;
uint32_t elementCount;
};
/// Represents matrix debug types
class SpirvDebugTypeMatrix : public SpirvDebugType {
public:
SpirvDebugTypeMatrix(SpirvDebugTypeVector *vectorType, uint32_t vectorCount);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeMatrix)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeMatrix;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugTypeVector *getVectorType() const { return vectorType; }
uint32_t getVectorCount() const { return vectorCount; }
uint32_t getSizeInBits() const override {
return vectorCount * vectorType->getSizeInBits();
}
private:
SpirvDebugTypeVector *vectorType;
uint32_t vectorCount;
};
/// Represents a function debug type. Includes the function return type and
/// parameter types.
class SpirvDebugTypeFunction : public SpirvDebugType {
public:
SpirvDebugTypeFunction(uint32_t flags, SpirvDebugType *ret,
llvm::ArrayRef<SpirvDebugType *> params);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeFunction)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeFunction;
}
bool invokeVisitor(Visitor *v) override;
uint32_t getDebugFlags() const { return debugFlags; }
SpirvDebugType *getReturnType() const { return returnType; }
llvm::ArrayRef<SpirvDebugType *> getParamTypes() const { return paramTypes; }
private:
// TODO: Replace uint32_t with enum in the SPIRV-Headers once it is available.
uint32_t debugFlags;
// Return Type is a debug instruction which represents type of return value of
// the function. If the function has no return value, this operand is
// OpTypeVoid, in which case we will use nullptr for this member.
SpirvDebugType *returnType;
llvm::SmallVector<SpirvDebugType *, 4> paramTypes;
};
/// Represents debug information for a template type parameter.
class SpirvDebugTypeTemplateParameter : public SpirvDebugType {
public:
SpirvDebugTypeTemplateParameter(llvm::StringRef name, SpirvDebugType *type,
SpirvInstruction *value,
SpirvDebugSource *source, uint32_t line,
uint32_t column);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeTemplateParameter)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeTemplateParameter;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugType *getActualType() const { return actualType; }
void setValue(SpirvInstruction *c) { value = c; }
SpirvInstruction *getValue() const { return value; }
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
private:
SpirvDebugType *actualType; //< Type for type param
SpirvInstruction *value; //< Value. It must be null for type.
SpirvDebugSource *source; //< DebugSource containing this type
uint32_t line; //< Line number
uint32_t column; //< Column number
};
/// Represents debug information for a template type.
class SpirvDebugTypeTemplate : public SpirvDebugType {
public:
SpirvDebugTypeTemplate(
SpirvDebugInstruction *target,
const llvm::SmallVector<SpirvDebugTypeTemplateParameter *, 2> ¶ms);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeTemplate)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeTemplate;
}
bool invokeVisitor(Visitor *v) override;
llvm::SmallVector<SpirvDebugTypeTemplateParameter *, 2> getParams() {
return params;
}
SpirvDebugInstruction *getTarget() const { return target; }
private:
// A debug instruction representing class, struct or function which has
// template parameter(s).
SpirvDebugInstruction *target;
// Debug instructions representing the template parameters for this
// particular instantiation. It must be DebugTypeTemplateParameter
// or DebugTypeTemplateTemplateParameter.
// TODO: change the type to SpirvDebugType * when we support
// DebugTypeTemplateTemplateParameter.
llvm::SmallVector<SpirvDebugTypeTemplateParameter *, 2> params;
};
/// Represents the debug type of a struct/union/class member.
/// Note: We have intentionally left out the pointer to the parent composite
/// type.
class SpirvDebugTypeMember : public SpirvDebugType {
public:
SpirvDebugTypeMember(llvm::StringRef name, SpirvDebugType *type,
SpirvDebugSource *source, uint32_t line_,
uint32_t column_, SpirvDebugInstruction *parent,
uint32_t flags, uint32_t offsetInBits,
uint32_t sizeInBits, const APValue *value = nullptr);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeMember)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeMember;
}
bool invokeVisitor(Visitor *v) override;
SpirvDebugInstruction *getParentScope() const override { return parent; }
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
uint32_t getOffsetInBits() const { return offsetInBits; }
uint32_t getDebugFlags() const { return debugFlags; }
uint32_t getSizeInBits() const override { return sizeInBits; }
const APValue *getValue() const { return value; }
private:
SpirvDebugSource *source; //< DebugSource
uint32_t line; //< Line number
uint32_t column; //< Column number
SpirvDebugInstruction *parent; //< The parent DebugTypeComposite
uint32_t offsetInBits; //< Offset (in bits) of this member in the struct
uint32_t sizeInBits; //< Size (in bits) of this member in the struct
// TODO: Replace uint32_t with enum in the SPIRV-Headers once it is
// available.
uint32_t debugFlags;
const APValue *value; //< Value (if static member)
};
class SpirvDebugTypeComposite : public SpirvDebugType {
public:
SpirvDebugTypeComposite(llvm::StringRef name, SpirvDebugSource *source,
uint32_t line, uint32_t column,
SpirvDebugInstruction *parent,
llvm::StringRef linkageName, uint32_t flags,
uint32_t tag);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvDebugTypeComposite)
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_DebugTypeComposite;
}
bool invokeVisitor(Visitor *v) override;
llvm::SmallVector<SpirvDebugInstruction *, 4> getMembers() { return members; }
void appendMember(SpirvDebugInstruction *member) {
members.push_back(member);
}
void
setMembers(const llvm::SmallVector<SpirvDebugInstruction *, 4> &memberTypes) {
members = memberTypes;
}
SpirvDebugInstruction *getParentScope() const override { return parent; }
uint32_t getTag() const { return tag; }
SpirvDebugSource *getSource() const { return source; }
uint32_t getLine() const { return line; }
uint32_t getColumn() const { return column; }
llvm::StringRef getLinkageName() const { return linkageName; }
uint32_t getDebugFlags() const { return debugFlags; }
void setSizeInBits(uint32_t size_) { sizeInBits = size_; }
uint32_t getSizeInBits() const override { return sizeInBits; }
void markAsOpaqueType(SpirvDebugInfoNone *none) {
// If it was already marked as a opaque type, just return. For example,
// `debugName` can be "@@Texture2D" if we call this method twice.
if (debugNone == none && !debugName.empty() && debugName[0] == '@')
return;
debugName = std::string("@") + debugName;
debugNone = none;
}
SpirvDebugInfoNone *getDebugInfoNone() const { return debugNone; }
private:
SpirvDebugSource *source; //< DebugSource containing this type
uint32_t line; //< Line number
uint32_t column; //< Column number
// The parent lexical scope. Must be one of the following:
// DebugCompilationUnit, DebugFunction, DebugLexicalBlock or other
// DebugTypeComposite
SpirvDebugInstruction *parent; //< The parent lexical scope
std::string linkageName; //< Linkage name
uint32_t sizeInBits; //< Size (in bits) of an instance of composite
// TODO: Replace uint32_t with enum in the SPIRV-Headers once it is
// available.
uint32_t debugFlags;
// TODO: Replace uint32_t with enum in the SPIRV-Headers once it is
// available.
uint32_t tag;
// Pointer to members inside this composite type.
// Note: Members must be ids of DebugTypeMember, DebugFunction or
// DebugTypeInheritance. Since DebugFunction may be a member, we cannot use a
// vector of SpirvDebugType.
llvm::SmallVector<SpirvDebugInstruction *, 4> members;
// When it is DebugTypeComposite for HLSL resource type i.e., opaque
// type, we must put DebugInfoNone for Size operand.
SpirvDebugInfoNone *debugNone;
};
class SpirvReadClock : public SpirvInstruction {
public:
SpirvReadClock(QualType resultType, SpirvInstruction *scope, SourceLocation);
DEFINE_RELEASE_MEMORY_FOR_CLASS(SpirvReadClock)
// For LLVM-style RTTI
static bool classof(const SpirvInstruction *inst) {
return inst->getKind() == IK_ReadClock;
}
bool invokeVisitor(Visitor *v) override;
SpirvInstruction *getScope() const { return scope; }
private:
SpirvInstruction *scope;
};
#undef DECLARE_INVOKE_VISITOR_FOR_CLASS
} // namespace spirv
} // namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVINSTRUCTION_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/SpirvFunction.h | //===-- SpirvFunction.h - SPIR-V Function ---------------------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_SPIRVFUNCTION_H
#define LLVM_CLANG_SPIRV_SPIRVFUNCTION_H
#include <vector>
#include "clang/SPIRV/SpirvBasicBlock.h"
#include "clang/SPIRV/SpirvInstruction.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
namespace clang {
namespace spirv {
class SpirvVisitor;
/// The class representing a SPIR-V function in memory.
class SpirvFunction {
public:
SpirvFunction(QualType astReturnType, SourceLocation,
llvm::StringRef name = "", bool precise = false,
bool noInline = false);
~SpirvFunction();
// Forbid copy construction and assignment
SpirvFunction(const SpirvFunction &) = delete;
SpirvFunction &operator=(const SpirvFunction &) = delete;
// Forbid move construction and assignment
SpirvFunction(SpirvFunction &&) = delete;
SpirvFunction &operator=(SpirvFunction &&) = delete;
// Handle SPIR-V function visitors.
bool invokeVisitor(Visitor *, bool reverseOrder = false);
uint32_t getResultId() const { return functionId; }
void setResultId(uint32_t id) { functionId = id; }
// Sets the lowered (SPIR-V) return type.
void setReturnType(const SpirvType *type) { returnType = type; }
// Returns the lowered (SPIR-V) return type.
const SpirvType *getReturnType() const { return returnType; }
// Sets the function AST return type
void setAstReturnType(QualType type) { astReturnType = type; }
// Gets the function AST return type
QualType getAstReturnType() const { return astReturnType; }
// Gets the vector of parameters.
llvm::SmallVector<SpirvFunctionParameter *, 8> getParameters() const {
return parameters;
}
// Gets the vector of variables.
std::vector<SpirvVariable *> getVariables() { return variables; }
// Sets the SPIR-V type of the function
void setFunctionType(SpirvType *type) { fnType = type; }
// Returns the SPIR-V type of the function
SpirvType *getFunctionType() const { return fnType; }
// Store that the return type is at relaxed precision.
void setRelaxedPrecision() { relaxedPrecision = true; }
// Returns whether the return type has relaxed precision.
bool isRelaxedPrecision() const { return relaxedPrecision; }
// Store that the return value is precise.
void setPrecise(bool p = true) { precise = p; }
// Store that the function should not be inlined.
void setNoInline(bool n = true) { noInline = n; }
// Returns whether the return value is precise.
bool isPrecise() const { return precise; }
// Returns whether the function is marked as no inline
bool isNoInline() const { return noInline; }
void setSourceLocation(SourceLocation loc) { functionLoc = loc; }
SourceLocation getSourceLocation() const { return functionLoc; }
void setFunctionName(llvm::StringRef name) { functionName = name; }
llvm::StringRef getFunctionName() const { return functionName; }
void addParameter(SpirvFunctionParameter *);
void addParameterDebugDeclare(SpirvDebugDeclare *inst) {
debugDeclares.push_back(inst);
}
void addVariable(SpirvVariable *);
void addBasicBlock(SpirvBasicBlock *);
/// Adds the given instruction as the first instruction of this SPIR-V
/// function body.
void addFirstInstruction(SpirvInstruction *inst) {
assert(basicBlocks.size() != 0);
basicBlocks[0]->addFirstInstruction(inst);
}
/// Adds instructions to a cache array.
void addToInstructionCache(SpirvInstruction *inst) {
instructionsCache.push_back(inst);
}
/// Adds cached instructions to the front of current function.
void addInstrCacheToFront() {
int cacheSize = instructionsCache.size();
for (int i = 0; i < cacheSize; i++) {
auto *inst = instructionsCache.back();
addFirstInstruction(inst);
instructionsCache.pop_back();
}
instructionsCache.clear();
}
/// Legalization-specific code
///
/// Note: the following methods are used for properly handling aliasing.
///
/// TODO: Clean up aliasing and try to move it to a separate pass.
void setConstainsAliasComponent(bool isAlias) { containsAlias = isAlias; }
bool constainsAliasComponent() { return containsAlias; }
void setRValue() { rvalue = true; }
bool isRValue() { return rvalue; }
/// Get/set DebugScope for this function.
SpirvDebugScope *getDebugScope() const { return debugScope; }
void setDebugScope(SpirvDebugScope *scope) { debugScope = scope; }
bool isEntryFunctionWrapper() const { return isWrapperOfEntry; }
void setEntryFunctionWrapper() { isWrapperOfEntry = true; }
/// Returns true if this is a member function of a struct or class.
bool isMemberFunction() const {
if (parameters.empty())
return false;
return parameters[0]->getDebugName() == "param.this";
}
/// Get or set a record for relationship between
/// a function parameter and variable within current function.
void addFuncParamVarEntry(SpirvInstruction *v, SpirvInstruction *p) {
funcVarParamMap[v] = p;
}
SpirvInstruction *getMappedFuncParam(SpirvInstruction *v) {
return funcVarParamMap.lookup(v);
}
private:
uint32_t functionId; ///< This function's <result-id>
QualType astReturnType; ///< The return type
const SpirvType *returnType; ///< The lowered return type
SpirvType *fnType; ///< The SPIR-V function type
bool relaxedPrecision; ///< Whether the return type is at relaxed precision
bool precise; ///< Whether the return value is 'precise'
bool noInline; ///< The function is marked as no inline
///< An instructions cache vector. Would be used to help insert instructions
///< at the beginning of a function.
std::vector<SpirvInstruction *> instructionsCache;
/// Legalization-specific code
///
/// Note: the following two member variables are currently needed in order to
/// support aliasing for functions.
///
/// TODO: Clean up aliasing and try to move it to a separate pass.
bool containsAlias; ///< Whether function return type is aliased
bool rvalue; ///< Whether the return value is an rvalue
SourceLocation functionLoc; ///< Location in source code
std::string functionName; ///< This function's name
/// Parameters to this function.
llvm::SmallVector<SpirvFunctionParameter *, 8> parameters;
/// Variables defined in this function.
///
/// Local variables inside a function should be defined at the beginning
/// of the entry basic block. This serves as a temporary place for holding
/// these variables.
std::vector<SpirvVariable *> variables;
/// Basic blocks inside this function.
std::vector<SpirvBasicBlock *> basicBlocks;
/// True if it is a wrapper function for an entry point function.
bool isWrapperOfEntry;
/// DebugScope that groups all instructions in this function.
SpirvDebugScope *debugScope;
/// DebugDeclare instructions for parameters to this function.
llvm::SmallVector<SpirvDebugDeclare *, 8> debugDeclares;
/// Record relationship between a function parameter and its mapped variable.
llvm::DenseMap<SpirvInstruction *, SpirvInstruction *> funcVarParamMap;
};
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_SPIRV_SPIRVFUNCTION_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/EmitSpirvAction.h | //===-- EmitSpirvAction.h - FrontendAction for Emitting SPIR-V --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_EMITSPIRVACTION_H
#define LLVM_CLANG_SPIRV_EMITSPIRVACTION_H
#include "clang/Frontend/FrontendAction.h"
namespace clang {
class EmitSpirvAction : public ASTFrontendAction {
public:
EmitSpirvAction() {}
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
};
} // end namespace clang
#endif |
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/AstTypeProbe.h | //===-- TypeProbe.h - Static functions for probing QualType -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SPIRV_TYPEPROBE_H
#define LLVM_CLANG_SPIRV_TYPEPROBE_H
#include <string>
#include "dxc/Support/SPIRVOptions.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Type.h"
#include "clang/SPIRV/SpirvType.h"
#include "clang/Sema/Sema.h"
namespace clang {
namespace spirv {
/// Returns a string name for the function if |fn| is not an overloaded
/// operator. Otherwise, returns the name of the operator. If
/// |addClassNameWithOperator| is true, adds the name of RecordType that
/// defines the overloaded operator in front of the operator name.
std::string getFunctionOrOperatorName(const FunctionDecl *fn,
bool addClassNameWithOperator);
/// Returns a string name for the given type.
std::string getAstTypeName(QualType type);
/// Returns true if the given type will be translated into a SPIR-V scalar type.
///
/// This includes normal scalar types, vectors of size 1, and 1x1 matrices.
///
/// If scalarType is not nullptr, writes the scalar type to *scalarType.
bool isScalarType(QualType type, QualType *scalarType = nullptr);
/// Returns true if the given type will be translated into a SPIR-V vector type.
///
/// This includes normal vector types (either ExtVectorType or HLSL vector type)
/// with more than one elements and matrices with exactly one row or one column.
///
/// Writes the element type and count into *elementType and *count respectively
/// if they are not nullptr.
bool isVectorType(QualType type, QualType *elemType = nullptr,
uint32_t *elemCount = nullptr);
/// Returns true if the given type will be translated into a SPIR-V scalar type
/// or vector type.
///
/// This includes:
/// scalar types
/// vector types (vec1, vec2, vec3, and vec4)
/// Mx1 matrices (where M can be 1,2,3,4)
/// 1xN matrices (where N can be 1,2,3,4)
///
/// Writes the element type and count into *elementType and *count respectively
/// if they are not nullptr.
bool isScalarOrVectorType(QualType type, QualType *elemType = nullptr,
uint32_t *elemCount = nullptr);
/// Returns true if the given type is an array with constant known size.
bool isConstantArrayType(const ASTContext &, QualType);
/// Returns true if the given type is enum type based on AST parse.
bool isEnumType(QualType type);
/// Returns true if the given type is a 1x1 matrix type.
///
/// If elemType is not nullptr, writes the element type to *elemType.
bool is1x1Matrix(QualType type, QualType *elemType = nullptr);
/// Returns true if the given type is a 1xN (N > 1) matrix type.
///
/// If elemType is not nullptr, writes the element type to *elemType.
/// If count is not nullptr, writes the value of N into *count.
bool is1xNMatrix(QualType type, QualType *elemType = nullptr,
uint32_t *count = nullptr);
/// Returns true if the given type is a Mx1 (M > 1) matrix type.
///
/// If elemType is not nullptr, writes the element type to *elemType.
/// If count is not nullptr, writes the value of M into *count.
bool isMx1Matrix(QualType type, QualType *elemType = nullptr,
uint32_t *count = nullptr);
/// Returns true if the given type is a matrix with more than 1 row and
/// more than 1 column.
///
/// If elemType is not nullptr, writes the element type to *elemType.
/// If rowCount is not nullptr, writes the number of rows (M) into *rowCount.
/// If colCount is not nullptr, writes the number of cols (N) into *colCount.
bool isMxNMatrix(QualType type, QualType *elemType = nullptr,
uint32_t *rowCount = nullptr, uint32_t *colCount = nullptr);
/// Returns true if the given type will be translated into a SPIR-V array type.
///
/// Writes the element type and count into *elementType and *count respectively
/// if they are not nullptr.
bool isArrayType(QualType type, QualType *elemType = nullptr,
uint32_t *elemCount = nullptr);
/// \brief Returns true if the given type is a ConstantBuffer or an array of
/// ConstantBuffers.
bool isConstantBuffer(QualType);
/// \brief Returns true if the given type is a TextureBuffer or an array of
/// TextureBuffers.
bool isTextureBuffer(QualType);
/// \brief Returns true if the given type is a ConstantBuffer or TextureBuffer
/// or an array of ConstantBuffers/TextureBuffers.
bool isConstantTextureBuffer(QualType);
/// \brief Returns true if the given type will have a SPIR-V resource type.
///
/// Note that this function covers the following HLSL types:
/// * ConstantBuffer/TextureBuffer
/// * Various structured buffers
/// * (RW)ByteAddressBuffer
/// * SubpassInput(MS)
bool isResourceType(QualType);
/// \brief Returns true if the given type is a user-defined struct or class
/// type (not HLSL built-in type).
bool isUserDefinedRecordType(const ASTContext &, QualType);
/// Returns true if the given type is or contains a 16-bit type.
/// The caller must also specify whether 16-bit types have been enabled via
/// command line options.
bool isOrContains16BitType(QualType type, bool enable16BitTypesOption);
/// NOTE: This method doesn't handle Literal types correctly at the moment.
///
/// Note: This method will be deprecated once resolving of literal types are
/// moved to a dedicated pass.
///
/// \brief Returns the realized bitwidth of the given type when represented in
/// SPIR-V. Panics if the given type is not a scalar, a vector/matrix of float
/// or integer, or an array of them. In case of vectors, it returns the
/// realized SPIR-V bitwidth of the vector elements.
uint32_t getElementSpirvBitwidth(const ASTContext &astContext, QualType type,
bool is16BitTypeEnabled);
/// Returns true if the two types can be treated as the same scalar
/// type, which means they have the same canonical type, regardless of
/// constnesss and literalness.
bool canTreatAsSameScalarType(QualType type1, QualType type2);
/// \brief Returns true if the two types are the same scalar or vector type,
/// regardless of constness and literalness.
bool isSameScalarOrVecType(QualType type1, QualType type2);
/// \brief Returns true if the two types are the same type, regardless of
/// constness and literalness.
bool isSameType(const ASTContext &, QualType type1, QualType type2);
/// Returns true if all members in structType are of the same element
/// type and can be fit into a 4-component vector. Writes element type and
/// count to *elemType and *elemCount if not nullptr. Otherwise, emit errors
/// explaining why not.
bool canFitIntoOneRegister(const ASTContext &, QualType structType,
QualType *elemType, uint32_t *elemCount = nullptr);
/// Returns the element type of the given type. The given type may be a scalar
/// type, vector type, matrix type, or array type. It may also be a struct with
/// members that can fit into a register. In such case, the result would be the
/// struct member type.
QualType getElementType(const ASTContext &, QualType type);
/// \brief Evluates the given type at the given bitwidth and returns the
/// result-id for it. Panics if the given type is not a scalar or vector of
/// float or integer type. For example: if QualType of an int4 and bitwidth of
/// 64 is passed in, the result-id of a SPIR-V vector of size 4 of signed
/// 64-bit integers is returned.
/// Acceptable bitwidths are 16, 32, and 64.
QualType getTypeWithCustomBitwidth(const ASTContext &, QualType type,
uint32_t bitwidth);
/// Returns true if the given type is a matrix or an array of matrices.
bool isMatrixOrArrayOfMatrix(const ASTContext &, QualType type);
/// Returns true if the given type is a LitInt or LitFloat type or a vector of
/// them. Returns false otherwise.
bool isLitTypeOrVecOfLitType(QualType type);
/// Strips the attributes and typedefs from the given type and returns the
/// desugared one. If isRowMajor is not nullptr, and a 'row_major' or
/// 'column-major' attribute is found during desugaring, this information is
/// written to *isRowMajor.
QualType desugarType(QualType type, llvm::Optional<bool> *isRowMajor);
/// Returns true if type is a SPIR-V row-major matrix or array of matrices.
/// Returns false if type is a SPIR-V col-major matrix or array of matrices.
/// It does so by checking the majorness of the HLSL matrix either with
/// explicit attribute or implicit command-line option.
///
/// Note that HLSL matrices are conceptually row major, while SPIR-V matrices
/// are conceptually column major. We are mapping what HLSL semantically mean
/// a row into a column here.
bool isRowMajorMatrix(const SpirvCodeGenOptions &, QualType type);
/// \brief Returns true if the given type is a (RW)StructuredBuffer type.
bool isStructuredBuffer(QualType type);
/// \brief Returns true if the given type is a non-writable StructuredBuffer
/// type.
bool isNonWritableStructuredBuffer(QualType type);
/// \brief Returns true if the given type is an AppendStructuredBuffer type.
bool isAppendStructuredBuffer(QualType type);
/// \brief Returns true if the given type is a ConsumeStructuredBuffer type.
bool isConsumeStructuredBuffer(QualType type);
/// \brief Returns true if the given type is a RWStructuredBuffer type.
bool isRWStructuredBuffer(QualType type);
/// \brief Returns true if the given type is a RW/Append/Consume
/// StructuredBuffer type.
bool isRWAppendConsumeSBuffer(QualType type);
/// \brief Returns true if the given type is a ResourceDescriptorHeap.
bool isResourceDescriptorHeap(QualType type);
/// \brief Returns true if the given type is a SamplerDescriptorHeap.
bool isSamplerDescriptorHeap(QualType type);
/// \brief Returns true if the given type is the HLSL ByteAddressBufferType.
bool isByteAddressBuffer(QualType type);
/// \brief Returns true if the given type is the HLSL RWByteAddressBufferType.
bool isRWByteAddressBuffer(QualType type);
/// \brief Returns true if the given type is the HLSL (RW)StructuredBuffer,
/// (RW)ByteAddressBuffer, or {Append|Consume}StructuredBuffer.
bool isAKindOfStructuredOrByteBuffer(QualType type);
/// \brief Returns true if the given type is the HLSL (RW)StructuredBuffer,
/// (RW)ByteAddressBuffer, {Append|Consume}StructuredBuffer, or a struct
/// containing one of the above.
bool isOrContainsAKindOfStructuredOrByteBuffer(QualType type);
/// \brief Returns true if the given type is the HLSL Buffer type.
bool isBuffer(QualType type);
/// \brief Returns true if the given type is the HLSL RWBuffer type.
bool isRWBuffer(QualType type);
/// \brief Returns true if the given type is an HLSL Texture type.
bool isTexture(QualType);
/// \brief Returns true if the given type is an HLSL Texture2DMS or
/// Texture2DMSArray type.
bool isTextureMS(QualType);
/// \brief Returns true if the given type is an HLSL RWTexture type.
bool isRWTexture(QualType);
/// \brief Returns true if the given type is an HLSL sampler type.
bool isSampler(QualType);
/// \brief Returns true if the given type is InputPatch.
bool isInputPatch(QualType type);
/// \brief Returns true if the given type is OutputPatch.
bool isOutputPatch(QualType type);
/// \brief Returns true if the given type is SubpassInput.
bool isSubpassInput(QualType);
/// \brief Returns true if the given type is SubpassInputMS.
bool isSubpassInputMS(QualType);
/// \brief If the given QualType is an HLSL resource type (or array of
/// resources), returns its HLSL type name. e.g. "RWTexture2D". Returns an empty
/// string otherwise.
std::string getHlslResourceTypeName(QualType);
/// Returns true if the given type will be translated into a SPIR-V image,
/// sampler or struct containing images or samplers.
///
/// Note: legalization specific code
bool isOpaqueType(QualType type);
/// Returns true if the given type will be translated into a array of SPIR-V
/// images or samplers.
bool isOpaqueArrayType(QualType type);
/// Returns true if the given type is a struct type who has an opaque field
/// (in a recursive away).
///
/// Note: legalization specific code
bool isOpaqueStructType(QualType type);
/// \brief Returns true if the given type can use relaxed precision
/// decoration. Integer and float types with lower than 32 bits can be
/// operated on with a relaxed precision.
bool isRelaxedPrecisionType(QualType, const SpirvCodeGenOptions &);
/// Returns true if the given type is a rasterizer ordered view.
bool isRasterizerOrderedView(QualType type);
/// Returns true if the given type is a bool or vector of bool type.
bool isBoolOrVecOfBoolType(QualType type);
/// Returns true if the given type is a signed integer or vector of signed
/// integer type.
bool isSintOrVecOfSintType(QualType type);
/// Returns true if the given type is an unsigned integer or vector of unsigned
/// integer type.
bool isUintOrVecOfUintType(QualType type);
/// Returns true if the given type is a float or vector of float type.
bool isFloatOrVecOfFloatType(QualType type);
/// Returns true if the given type is a bool or vector/matrix of bool type.
bool isBoolOrVecMatOfBoolType(QualType type);
/// Returns true if the given type is a signed integer or vector/matrix of
/// signed integer type.
bool isSintOrVecMatOfSintType(QualType type);
/// Returns true if the given type is an unsigned integer or vector/matrix of
/// unsigned integer type.
bool isUintOrVecMatOfUintType(QualType type);
/// Returns true if the given type is a float or vector/matrix of float type.
bool isFloatOrVecMatOfFloatType(QualType type);
/// \brief Returns true if the decl type is a non-floating-point matrix and
/// the matrix is column major, or if it is an array/struct containing such
/// matrices.
bool isOrContainsNonFpColMajorMatrix(const ASTContext &,
const SpirvCodeGenOptions &, QualType type,
const Decl *decl);
/// \brief Returns true if the given type is `vk::ext_result_id<T>`.
bool isExtResultIdType(QualType type);
/// \brief Returns true if the given type is defined in `vk` namespace.
bool isTypeInVkNamespace(const RecordType *type);
/// \brief Returns true if the given type is a String or StringLiteral type.
bool isStringType(QualType);
/// \brief Returns true if the given type is a bindless array of an opaque type.
bool isBindlessOpaqueArray(QualType type);
/// \brief Generates the corresponding SPIR-V vector type for the given Clang
/// frontend matrix type's vector component and returns the <result-id>.
///
/// This method will panic if the given matrix type is not a SPIR-V acceptable
/// matrix type.
QualType getComponentVectorType(const ASTContext &, QualType matrixType);
/// \brief Returns a QualType corresponding to HLSL matrix of given element type
/// and rows/columns.
QualType getHLSLMatrixType(ASTContext &, Sema &, ClassTemplateDecl *,
QualType elemType, int rows, int columns);
/// Returns true if the given type is a structure or array of structures for
/// which flattening all of its members recursively results in resources ONLY.
bool isResourceOnlyStructure(QualType type);
/// Returns true if the given type is a structure or array of structures for
/// which flattening all of its members recursively results in at least one
/// resoure variable.
bool isStructureContainingResources(QualType type);
/// Returns true if the given type is a structure or array of structures for
/// which flattening all of its members recursively results in at least one
/// non-resoure variable.
bool isStructureContainingNonResources(QualType type);
/// Returns true if the given type is a structure or array of structures for
/// which flattening all of its members recursively results in a mix of resource
/// variables and non-resource variables.
bool isStructureContainingMixOfResourcesAndNonResources(QualType type);
/// Returns true if the given type is a structure or array of structures for
/// which flattening all of its members recursively results in at least one kind
/// of buffer: cbuffer, tbuffer, (RW)ByteAddressBuffer, or
/// (RW|Append|Consume)StructuredBuffer.
bool isStructureContainingAnyKindOfBuffer(QualType type);
/// Returns true if the given type is a scalar, vector, or matrix of numeric
/// types, or it's an array of scalar, vector, or matrix of numeric types.
bool isScalarOrNonStructAggregateOfNumericalTypes(QualType type);
/// Calls `operation` on for each field in the base and derives class defined by
/// `recordType`. The `operation` will receive the AST type linked to the field,
/// the SPIRV type linked to the field, and the index of the field in the final
/// SPIR-V representation. This index of the field can vary from the AST
/// field-index because bitfields are merged into a single field in the SPIR-V
/// representation.
///
/// If `includeMerged` is true, `operation` will be called on the same spir-v
/// field for each field it represents. For example, if a spir-v field holds the
/// values for 3 bit-fields, `operation` will be called 3 times with the same
/// `spirvFieldIndex`. The `bitfield` information in `field` will be different.
///
/// If false, `operation` will be called once on the first field in the merged
/// field.
///
/// If the operation returns false, we stop processing fields.
void forEachSpirvField(
const RecordType *recordType, const StructType *spirvType,
std::function<bool(size_t spirvFieldIndex, const QualType &fieldType,
const StructType::FieldInfo &field)>
operation,
bool includeMerged = false);
} // namespace spirv
} // namespace clang
#endif // LLVM_CLANG_SPIRV_TYPEPROBE_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/SPIRV/FeatureManager.h | //===------ FeatureManager.h - SPIR-V Version/Extension Manager -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This file defines a SPIR-V version and extension manager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_SPIRV_FEATUREMANAGER_H
#define LLVM_CLANG_LIB_SPIRV_FEATUREMANAGER_H
#include <string>
#include "spirv-tools/libspirv.h"
#include "dxc/Support/SPIRVOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
namespace spirv {
/// A list of SPIR-V extensions known to our CodeGen.
enum class Extension {
KHR = 0,
KHR_16bit_storage,
KHR_device_group,
KHR_fragment_shading_rate,
KHR_non_semantic_info,
KHR_multiview,
KHR_shader_draw_parameters,
KHR_post_depth_coverage,
KHR_ray_tracing,
KHR_shader_clock,
EXT_demote_to_helper_invocation,
EXT_descriptor_indexing,
EXT_fragment_fully_covered,
EXT_fragment_invocation_density,
EXT_fragment_shader_interlock,
EXT_mesh_shader,
EXT_shader_stencil_export,
EXT_shader_viewport_index_layer,
AMD_gpu_shader_half_float,
AMD_shader_early_and_late_fragment_tests,
GOOGLE_hlsl_functionality1,
GOOGLE_user_type,
NV_ray_tracing,
NV_mesh_shader,
KHR_ray_query,
EXT_shader_image_int64,
KHR_physical_storage_buffer,
KHR_vulkan_memory_model,
NV_compute_shader_derivatives,
KHR_fragment_shader_barycentric,
KHR_maximal_reconvergence,
KHR_float_controls,
NV_shader_subgroup_partitioned,
Unknown,
};
/// The class for handling SPIR-V version and extension requests.
class FeatureManager {
public:
FeatureManager(DiagnosticsEngine &de, const SpirvCodeGenOptions &);
/// Allows the given extension to be used in CodeGen.
bool allowExtension(llvm::StringRef);
/// Allows all extensions to be used in CodeGen.
void allowAllKnownExtensions();
/// Requests the given extension for translating the given target feature at
/// the given source location. Emits an error if the given extension is not
/// permitted to use.
bool requestExtension(Extension, llvm::StringRef target, SourceLocation);
/// Translates extension name to symbol.
Extension getExtensionSymbol(llvm::StringRef name);
/// Translates extension symbol to name.
const char *getExtensionName(Extension symbol);
/// Returns true if the given extension is a KHR extension.
bool isKHRExtension(llvm::StringRef name);
/// Returns the names of all known extensions as a string.
std::string getKnownExtensions(const char *delimiter, const char *prefix = "",
const char *postfix = "");
/// Request the given target environment for translating the given feature at
/// the given source location. Emits an error if the requested target
/// environment does not match user's target environemnt.
bool requestTargetEnv(spv_target_env, llvm::StringRef target, SourceLocation);
/// Returns the target environment corresponding to the target environment
/// that was specified as command line option. If no option is specified, the
/// default (Vulkan 1.0) is returned.
spv_target_env getTargetEnv() const { return targetEnv; }
/// Returns true if the given extension is not part of the core of the target
/// environment.
bool isExtensionRequiredForTargetEnv(Extension);
/// Returns true if the given extension is set in allowedExtensions
bool isExtensionEnabled(Extension);
/// Returns true if the target environment is Vulkan 1.1 or above.
/// Returns false otherwise.
bool isTargetEnvVulkan1p1OrAbove();
/// Returns true if the target environment is SPIR-V 1.4 or above.
/// Returns false otherwise.
bool isTargetEnvSpirv1p4OrAbove();
/// Returns true if the target environment is Vulkan 1.1 with SPIR-V 1.4 or
/// above. Returns false otherwise.
bool isTargetEnvVulkan1p1Spirv1p4OrAbove();
/// Returns true if the target environment is Vulkan 1.2 or above.
/// Returns false otherwise.
bool isTargetEnvVulkan1p2OrAbove();
/// Returns true if the target environment is Vulkan 1.3 or above.
/// Returns false otherwise.
bool isTargetEnvVulkan1p3OrAbove();
/// Returns the spv_target_env matching the input string if possible.
/// This functions matches the spv_target_env with the command-line version
/// of the name ('vulkan1.1', not 'Vulkan 1.1').
/// Returns an empty Optional if no matching env is found.
static llvm::Optional<spv_target_env>
stringToSpvEnvironment(const std::string &target_env);
// Returns the SPIR-V version used for the target environment.
static clang::VersionTuple getSpirvVersion(spv_target_env env);
/// Returns the equivalent to spv_target_env in pretty, human readable form.
/// (SPV_ENV_VULKAN_1_0 -> "Vulkan 1.0").
/// Returns an empty Optional if the name cannot be matched.
static llvm::Optional<std::string>
spvEnvironmentToPrettyName(spv_target_env target_env);
private:
/// Returns whether codegen should allow usage of this extension by default.
bool enabledByDefault(Extension);
/// \brief Wrapper method to create an error message and report it
/// in the diagnostic engine associated with this object.
template <unsigned N>
DiagnosticBuilder emitError(const char (&message)[N], SourceLocation loc) {
const auto diagId =
diags.getCustomDiagID(clang::DiagnosticsEngine::Error, message);
return diags.Report(loc, diagId);
}
/// \brief Wrapper method to create an note message and report it
/// in the diagnostic engine associated with this object.
template <unsigned N>
DiagnosticBuilder emitNote(const char (&message)[N], SourceLocation loc) {
const auto diagId =
diags.getCustomDiagID(clang::DiagnosticsEngine::Note, message);
return diags.Report(loc, diagId);
}
DiagnosticsEngine &diags;
llvm::SmallBitVector allowedExtensions;
spv_target_env targetEnv;
std::string targetEnvStr;
};
} // end namespace spirv
} // end namespace clang
#endif // LLVM_CLANG_LIB_SPIRV_FEATUREMANAGER_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclarationName.h | //===-- DeclarationName.h - Representation of declaration names -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the DeclarationName and DeclarationNameTable classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLARATIONNAME_H
#define LLVM_CLANG_AST_DECLARATIONNAME_H
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
template <typename T> struct DenseMapInfo;
}
namespace clang {
class ASTContext;
class CXXLiteralOperatorIdName;
class CXXOperatorIdName;
class CXXSpecialName;
class DeclarationNameExtra;
class IdentifierInfo;
class MultiKeywordSelector;
enum OverloadedOperatorKind : int;
class QualType;
class Type;
class TypeSourceInfo;
class UsingDirectiveDecl;
template <typename> class CanQual;
typedef CanQual<Type> CanQualType;
/// DeclarationName - The name of a declaration. In the common case,
/// this just stores an IdentifierInfo pointer to a normal
/// name. However, it also provides encodings for Objective-C
/// selectors (optimizing zero- and one-argument selectors, which make
/// up 78% percent of all selectors in Cocoa.h) and special C++ names
/// for constructors, destructors, and conversion functions.
class DeclarationName {
public:
/// NameKind - The kind of name this object contains.
enum NameKind {
Identifier,
ObjCZeroArgSelector,
ObjCOneArgSelector,
ObjCMultiArgSelector,
CXXConstructorName,
CXXDestructorName,
CXXConversionFunctionName,
CXXOperatorName,
CXXLiteralOperatorName,
CXXUsingDirective
};
static const unsigned NumNameKinds = CXXUsingDirective + 1;
private:
/// StoredNameKind - The kind of name that is actually stored in the
/// upper bits of the Ptr field. This is only used internally.
///
/// Note: The entries here are synchronized with the entries in Selector,
/// for efficient translation between the two.
enum StoredNameKind {
StoredIdentifier = 0,
StoredObjCZeroArgSelector = 0x01,
StoredObjCOneArgSelector = 0x02,
StoredDeclarationNameExtra = 0x03,
PtrMask = 0x03
};
/// Ptr - The lowest two bits are used to express what kind of name
/// we're actually storing, using the values of NameKind. Depending
/// on the kind of name this is, the upper bits of Ptr may have one
/// of several different meanings:
///
/// StoredIdentifier - The name is a normal identifier, and Ptr is
/// a normal IdentifierInfo pointer.
///
/// StoredObjCZeroArgSelector - The name is an Objective-C
/// selector with zero arguments, and Ptr is an IdentifierInfo
/// pointer pointing to the selector name.
///
/// StoredObjCOneArgSelector - The name is an Objective-C selector
/// with one argument, and Ptr is an IdentifierInfo pointer
/// pointing to the selector name.
///
/// StoredDeclarationNameExtra - Ptr is actually a pointer to a
/// DeclarationNameExtra structure, whose first value will tell us
/// whether this is an Objective-C selector, C++ operator-id name,
/// or special C++ name.
uintptr_t Ptr;
/// getStoredNameKind - Return the kind of object that is stored in
/// Ptr.
StoredNameKind getStoredNameKind() const {
return static_cast<StoredNameKind>(Ptr & PtrMask);
}
/// getExtra - Get the "extra" information associated with this
/// multi-argument selector or C++ special name.
DeclarationNameExtra *getExtra() const {
assert(getStoredNameKind() == StoredDeclarationNameExtra &&
"Declaration name does not store an Extra structure");
return reinterpret_cast<DeclarationNameExtra *>(Ptr & ~PtrMask);
}
/// getAsCXXSpecialName - If the stored pointer is actually a
/// CXXSpecialName, returns a pointer to it. Otherwise, returns
/// a NULL pointer.
CXXSpecialName *getAsCXXSpecialName() const {
NameKind Kind = getNameKind();
if (Kind >= CXXConstructorName && Kind <= CXXConversionFunctionName)
return reinterpret_cast<CXXSpecialName *>(Ptr & ~PtrMask);
return nullptr;
}
/// getAsCXXOperatorIdName
CXXOperatorIdName *getAsCXXOperatorIdName() const {
if (getNameKind() == CXXOperatorName)
return reinterpret_cast<CXXOperatorIdName *>(Ptr & ~PtrMask);
return nullptr;
}
CXXLiteralOperatorIdName *getAsCXXLiteralOperatorIdName() const {
if (getNameKind() == CXXLiteralOperatorName)
return reinterpret_cast<CXXLiteralOperatorIdName *>(Ptr & ~PtrMask);
return nullptr;
}
// Construct a declaration name from the name of a C++ constructor,
// destructor, or conversion function.
DeclarationName(CXXSpecialName *Name)
: Ptr(reinterpret_cast<uintptr_t>(Name)) {
assert((Ptr & PtrMask) == 0 && "Improperly aligned CXXSpecialName");
Ptr |= StoredDeclarationNameExtra;
}
// Construct a declaration name from the name of a C++ overloaded
// operator.
DeclarationName(CXXOperatorIdName *Name)
: Ptr(reinterpret_cast<uintptr_t>(Name)) {
assert((Ptr & PtrMask) == 0 && "Improperly aligned CXXOperatorId");
Ptr |= StoredDeclarationNameExtra;
}
DeclarationName(CXXLiteralOperatorIdName *Name)
: Ptr(reinterpret_cast<uintptr_t>(Name)) {
assert((Ptr & PtrMask) == 0 && "Improperly aligned CXXLiteralOperatorId");
Ptr |= StoredDeclarationNameExtra;
}
/// Construct a declaration name from a raw pointer.
DeclarationName(uintptr_t Ptr) : Ptr(Ptr) { }
friend class DeclarationNameTable;
friend class NamedDecl;
/// getFETokenInfoAsVoidSlow - Retrieves the front end-specified pointer
/// for this name as a void pointer if it's not an identifier.
void *getFETokenInfoAsVoidSlow() const;
public:
/// DeclarationName - Used to create an empty selector.
DeclarationName() : Ptr(0) { }
// Construct a declaration name from an IdentifierInfo *.
DeclarationName(const IdentifierInfo *II)
: Ptr(reinterpret_cast<uintptr_t>(II)) {
assert((Ptr & PtrMask) == 0 && "Improperly aligned IdentifierInfo");
}
// Construct a declaration name from an Objective-C selector.
DeclarationName(Selector Sel) : Ptr(Sel.InfoPtr) { }
/// getUsingDirectiveName - Return name for all using-directives.
static DeclarationName getUsingDirectiveName();
// operator bool() - Evaluates true when this declaration name is
// non-empty.
explicit operator bool() const {
return ((Ptr & PtrMask) != 0) ||
(reinterpret_cast<IdentifierInfo *>(Ptr & ~PtrMask));
}
/// \brief Evaluates true when this declaration name is empty.
bool isEmpty() const {
return !*this;
}
/// Predicate functions for querying what type of name this is.
bool isIdentifier() const { return getStoredNameKind() == StoredIdentifier; }
bool isObjCZeroArgSelector() const {
return getStoredNameKind() == StoredObjCZeroArgSelector;
}
bool isObjCOneArgSelector() const {
return getStoredNameKind() == StoredObjCOneArgSelector;
}
/// getNameKind - Determine what kind of name this is.
NameKind getNameKind() const;
/// \brief Determines whether the name itself is dependent, e.g., because it
/// involves a C++ type that is itself dependent.
///
/// Note that this does not capture all of the notions of "dependent name",
/// because an identifier can be a dependent name if it is used as the
/// callee in a call expression with dependent arguments.
bool isDependentName() const;
/// getNameAsString - Retrieve the human-readable string for this name.
std::string getAsString() const;
/// getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in
/// this declaration name, or NULL if this declaration name isn't a
/// simple identifier.
IdentifierInfo *getAsIdentifierInfo() const {
if (isIdentifier())
return reinterpret_cast<IdentifierInfo *>(Ptr);
return nullptr;
}
/// getAsOpaqueInteger - Get the representation of this declaration
/// name as an opaque integer.
uintptr_t getAsOpaqueInteger() const { return Ptr; }
/// getAsOpaquePtr - Get the representation of this declaration name as
/// an opaque pointer.
void *getAsOpaquePtr() const { return reinterpret_cast<void*>(Ptr); }
static DeclarationName getFromOpaquePtr(void *P) {
DeclarationName N;
N.Ptr = reinterpret_cast<uintptr_t> (P);
return N;
}
static DeclarationName getFromOpaqueInteger(uintptr_t P) {
DeclarationName N;
N.Ptr = P;
return N;
}
/// getCXXNameType - If this name is one of the C++ names (of a
/// constructor, destructor, or conversion function), return the
/// type associated with that name.
QualType getCXXNameType() const;
/// getCXXOverloadedOperator - If this name is the name of an
/// overloadable operator in C++ (e.g., @c operator+), retrieve the
/// kind of overloaded operator.
OverloadedOperatorKind getCXXOverloadedOperator() const;
/// getCXXLiteralIdentifier - If this name is the name of a literal
/// operator, retrieve the identifier associated with it.
IdentifierInfo *getCXXLiteralIdentifier() const;
/// getObjCSelector - Get the Objective-C selector stored in this
/// declaration name.
Selector getObjCSelector() const {
assert((getNameKind() == ObjCZeroArgSelector ||
getNameKind() == ObjCOneArgSelector ||
getNameKind() == ObjCMultiArgSelector ||
Ptr == 0) && "Not a selector!");
return Selector(Ptr);
}
/// getFETokenInfo/setFETokenInfo - The language front-end is
/// allowed to associate arbitrary metadata with some kinds of
/// declaration names, including normal identifiers and C++
/// constructors, destructors, and conversion functions.
template<typename T>
T *getFETokenInfo() const {
if (const IdentifierInfo *Info = getAsIdentifierInfo())
return Info->getFETokenInfo<T>();
return static_cast<T*>(getFETokenInfoAsVoidSlow());
}
void setFETokenInfo(void *T);
/// operator== - Determine whether the specified names are identical..
friend bool operator==(DeclarationName LHS, DeclarationName RHS) {
return LHS.Ptr == RHS.Ptr;
}
/// operator!= - Determine whether the specified names are different.
friend bool operator!=(DeclarationName LHS, DeclarationName RHS) {
return LHS.Ptr != RHS.Ptr;
}
static DeclarationName getEmptyMarker() {
return DeclarationName(uintptr_t(-1));
}
static DeclarationName getTombstoneMarker() {
return DeclarationName(uintptr_t(-2));
}
static int compare(DeclarationName LHS, DeclarationName RHS);
void dump() const;
};
raw_ostream &operator<<(raw_ostream &OS, DeclarationName N);
/// Ordering on two declaration names. If both names are identifiers,
/// this provides a lexicographical ordering.
inline bool operator<(DeclarationName LHS, DeclarationName RHS) {
return DeclarationName::compare(LHS, RHS) < 0;
}
/// Ordering on two declaration names. If both names are identifiers,
/// this provides a lexicographical ordering.
inline bool operator>(DeclarationName LHS, DeclarationName RHS) {
return DeclarationName::compare(LHS, RHS) > 0;
}
/// Ordering on two declaration names. If both names are identifiers,
/// this provides a lexicographical ordering.
inline bool operator<=(DeclarationName LHS, DeclarationName RHS) {
return DeclarationName::compare(LHS, RHS) <= 0;
}
/// Ordering on two declaration names. If both names are identifiers,
/// this provides a lexicographical ordering.
inline bool operator>=(DeclarationName LHS, DeclarationName RHS) {
return DeclarationName::compare(LHS, RHS) >= 0;
}
/// DeclarationNameTable - Used to store and retrieve DeclarationName
/// instances for the various kinds of declaration names, e.g., normal
/// identifiers, C++ constructor names, etc. This class contains
/// uniqued versions of each of the C++ special names, which can be
/// retrieved using its member functions (e.g.,
/// getCXXConstructorName).
class DeclarationNameTable {
const ASTContext &Ctx;
void *CXXSpecialNamesImpl; // Actually a FoldingSet<CXXSpecialName> *
CXXOperatorIdName *CXXOperatorNames; // Operator names
void *CXXLiteralOperatorNames; // Actually a CXXOperatorIdName*
DeclarationNameTable(const DeclarationNameTable&) = delete;
void operator=(const DeclarationNameTable&) = delete;
public:
DeclarationNameTable(const ASTContext &C);
~DeclarationNameTable();
/// getIdentifier - Create a declaration name that is a simple
/// identifier.
DeclarationName getIdentifier(const IdentifierInfo *ID) {
return DeclarationName(ID);
}
/// getCXXConstructorName - Returns the name of a C++ constructor
/// for the given Type.
DeclarationName getCXXConstructorName(CanQualType Ty);
/// getCXXDestructorName - Returns the name of a C++ destructor
/// for the given Type.
DeclarationName getCXXDestructorName(CanQualType Ty);
/// getCXXConversionFunctionName - Returns the name of a C++
/// conversion function for the given Type.
DeclarationName getCXXConversionFunctionName(CanQualType Ty);
/// getCXXSpecialName - Returns a declaration name for special kind
/// of C++ name, e.g., for a constructor, destructor, or conversion
/// function.
DeclarationName getCXXSpecialName(DeclarationName::NameKind Kind,
CanQualType Ty);
/// getCXXOperatorName - Get the name of the overloadable C++
/// operator corresponding to Op.
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op);
/// getCXXLiteralOperatorName - Get the name of the literal operator function
/// with II as the identifier.
DeclarationName getCXXLiteralOperatorName(IdentifierInfo *II);
};
/// DeclarationNameLoc - Additional source/type location info
/// for a declaration name. Needs a DeclarationName in order
/// to be interpreted correctly.
struct DeclarationNameLoc {
// The source location for identifier stored elsewhere.
// struct {} Identifier;
// Type info for constructors, destructors and conversion functions.
// Locations (if any) for the tilde (destructor) or operator keyword
// (conversion) are stored elsewhere.
struct NT {
TypeSourceInfo* TInfo;
};
// The location (if any) of the operator keyword is stored elsewhere.
struct CXXOpName {
unsigned BeginOpNameLoc;
unsigned EndOpNameLoc;
};
// The location (if any) of the operator keyword is stored elsewhere.
struct CXXLitOpName {
unsigned OpNameLoc;
};
// struct {} CXXUsingDirective;
// struct {} ObjCZeroArgSelector;
// struct {} ObjCOneArgSelector;
// struct {} ObjCMultiArgSelector;
union {
struct NT NamedType;
struct CXXOpName CXXOperatorName;
struct CXXLitOpName CXXLiteralOperatorName;
};
DeclarationNameLoc(DeclarationName Name);
// FIXME: this should go away once all DNLocs are properly initialized.
DeclarationNameLoc() { memset((void*) this, 0, sizeof(*this)); }
}; // struct DeclarationNameLoc
/// DeclarationNameInfo - A collector data type for bundling together
/// a DeclarationName and the correspnding source/type location info.
struct DeclarationNameInfo {
private:
/// Name - The declaration name, also encoding name kind.
DeclarationName Name;
/// Loc - The main source location for the declaration name.
SourceLocation NameLoc;
/// Info - Further source/type location info for special kinds of names.
DeclarationNameLoc LocInfo;
public:
// FIXME: remove it.
DeclarationNameInfo() {}
DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc)
: Name(Name), NameLoc(NameLoc), LocInfo(Name) {}
DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc,
DeclarationNameLoc LocInfo)
: Name(Name), NameLoc(NameLoc), LocInfo(LocInfo) {}
/// getName - Returns the embedded declaration name.
DeclarationName getName() const { return Name; }
/// setName - Sets the embedded declaration name.
void setName(DeclarationName N) { Name = N; }
/// getLoc - Returns the main location of the declaration name.
SourceLocation getLoc() const { return NameLoc; }
/// setLoc - Sets the main location of the declaration name.
void setLoc(SourceLocation L) { NameLoc = L; }
const DeclarationNameLoc &getInfo() const { return LocInfo; }
DeclarationNameLoc &getInfo() { return LocInfo; }
void setInfo(const DeclarationNameLoc &Info) { LocInfo = Info; }
/// getNamedTypeInfo - Returns the source type info associated to
/// the name. Assumes it is a constructor, destructor or conversion.
TypeSourceInfo *getNamedTypeInfo() const {
assert(Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXDestructorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName);
return LocInfo.NamedType.TInfo;
}
/// setNamedTypeInfo - Sets the source type info associated to
/// the name. Assumes it is a constructor, destructor or conversion.
void setNamedTypeInfo(TypeSourceInfo *TInfo) {
assert(Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXDestructorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName);
LocInfo.NamedType.TInfo = TInfo;
}
/// getCXXOperatorNameRange - Gets the range of the operator name
/// (without the operator keyword). Assumes it is a (non-literal) operator.
SourceRange getCXXOperatorNameRange() const {
assert(Name.getNameKind() == DeclarationName::CXXOperatorName);
return SourceRange(
SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.BeginOpNameLoc),
SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.EndOpNameLoc)
);
}
/// setCXXOperatorNameRange - Sets the range of the operator name
/// (without the operator keyword). Assumes it is a C++ operator.
void setCXXOperatorNameRange(SourceRange R) {
assert(Name.getNameKind() == DeclarationName::CXXOperatorName);
LocInfo.CXXOperatorName.BeginOpNameLoc = R.getBegin().getRawEncoding();
LocInfo.CXXOperatorName.EndOpNameLoc = R.getEnd().getRawEncoding();
}
/// getCXXLiteralOperatorNameLoc - Returns the location of the literal
/// operator name (not the operator keyword).
/// Assumes it is a literal operator.
SourceLocation getCXXLiteralOperatorNameLoc() const {
assert(Name.getNameKind() == DeclarationName::CXXLiteralOperatorName);
return SourceLocation::
getFromRawEncoding(LocInfo.CXXLiteralOperatorName.OpNameLoc);
}
/// setCXXLiteralOperatorNameLoc - Sets the location of the literal
/// operator name (not the operator keyword).
/// Assumes it is a literal operator.
void setCXXLiteralOperatorNameLoc(SourceLocation Loc) {
assert(Name.getNameKind() == DeclarationName::CXXLiteralOperatorName);
LocInfo.CXXLiteralOperatorName.OpNameLoc = Loc.getRawEncoding();
}
/// \brief Determine whether this name involves a template parameter.
bool isInstantiationDependent() const;
/// \brief Determine whether this name contains an unexpanded
/// parameter pack.
bool containsUnexpandedParameterPack() const;
/// getAsString - Retrieve the human-readable string for this name.
std::string getAsString() const;
/// printName - Print the human-readable name to a stream.
void printName(raw_ostream &OS) const;
/// getBeginLoc - Retrieve the location of the first token.
SourceLocation getBeginLoc() const { return NameLoc; }
/// getEndLoc - Retrieve the location of the last token.
SourceLocation getEndLoc() const;
/// getSourceRange - The range of the declaration name.
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocStart(), getLocEnd());
}
SourceLocation getLocStart() const LLVM_READONLY {
return getBeginLoc();
}
SourceLocation getLocEnd() const LLVM_READONLY {
SourceLocation EndLoc = getEndLoc();
return EndLoc.isValid() ? EndLoc : getLocStart();
}
};
/// Insertion operator for diagnostics. This allows sending DeclarationName's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
DeclarationName N) {
DB.AddTaggedVal(N.getAsOpaqueInteger(),
DiagnosticsEngine::ak_declarationname);
return DB;
}
/// Insertion operator for partial diagnostics. This allows binding
/// DeclarationName's into a partial diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
DeclarationName N) {
PD.AddTaggedVal(N.getAsOpaqueInteger(),
DiagnosticsEngine::ak_declarationname);
return PD;
}
inline raw_ostream &operator<<(raw_ostream &OS,
DeclarationNameInfo DNInfo) {
DNInfo.printName(OS);
return OS;
}
} // end namespace clang
namespace llvm {
/// Define DenseMapInfo so that DeclarationNames can be used as keys
/// in DenseMap and DenseSets.
template<>
struct DenseMapInfo<clang::DeclarationName> {
static inline clang::DeclarationName getEmptyKey() {
return clang::DeclarationName::getEmptyMarker();
}
static inline clang::DeclarationName getTombstoneKey() {
return clang::DeclarationName::getTombstoneMarker();
}
static unsigned getHashValue(clang::DeclarationName Name) {
return DenseMapInfo<void*>::getHashValue(Name.getAsOpaquePtr());
}
static inline bool
isEqual(clang::DeclarationName LHS, clang::DeclarationName RHS) {
return LHS == RHS;
}
};
template <>
struct isPodLike<clang::DeclarationName> { static const bool value = true; };
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentVisitor.h | //===--- CommentVisitor.h - Visitor for Comment subclasses ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTVISITOR_H
#define LLVM_CLANG_AST_COMMENTVISITOR_H
#include "clang/AST/Comment.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
namespace comments {
template <typename T> struct make_ptr { typedef T *type; };
template <typename T> struct make_const_ptr { typedef const T *type; };
template<template <typename> class Ptr, typename ImplClass, typename RetTy=void>
class CommentVisitorBase {
public:
#define PTR(CLASS) typename Ptr<CLASS>::type
#define DISPATCH(NAME, CLASS) \
return static_cast<ImplClass*>(this)->visit ## NAME(static_cast<PTR(CLASS)>(C))
RetTy visit(PTR(Comment) C) {
if (!C)
return RetTy();
switch (C->getCommentKind()) {
default: llvm_unreachable("Unknown comment kind!");
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
case Comment::CLASS##Kind: DISPATCH(CLASS, CLASS);
#include "clang/AST/CommentNodes.inc"
#undef ABSTRACT_COMMENT
#undef COMMENT
}
}
// If the derived class does not implement a certain Visit* method, fall back
// on Visit* method for the superclass.
#define ABSTRACT_COMMENT(COMMENT) COMMENT
#define COMMENT(CLASS, PARENT) \
RetTy visit ## CLASS(PTR(CLASS) C) { DISPATCH(PARENT, PARENT); }
#include "clang/AST/CommentNodes.inc"
#undef ABSTRACT_COMMENT
#undef COMMENT
RetTy visitComment(PTR(Comment) C) { return RetTy(); }
#undef PTR
#undef DISPATCH
};
template<typename ImplClass, typename RetTy=void>
class CommentVisitor :
public CommentVisitorBase<make_ptr, ImplClass, RetTy> {};
template<typename ImplClass, typename RetTy=void>
class ConstCommentVisitor :
public CommentVisitorBase<make_const_ptr, ImplClass, RetTy> {};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TypeLocVisitor.h | //===--- TypeLocVisitor.h - Visitor for TypeLoc subclasses ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeLocVisitor interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPELOCVISITOR_H
#define LLVM_CLANG_AST_TYPELOCVISITOR_H
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeVisitor.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
#define DISPATCH(CLASSNAME) \
return static_cast<ImplClass*>(this)-> \
Visit##CLASSNAME(TyLoc.castAs<CLASSNAME>())
template<typename ImplClass, typename RetTy=void>
class TypeLocVisitor {
public:
RetTy Visit(TypeLoc TyLoc) {
switch (TyLoc.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
#include "clang/AST/TypeLocNodes.def"
}
llvm_unreachable("unexpected type loc class!");
}
RetTy Visit(UnqualTypeLoc TyLoc) {
switch (TyLoc.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
#include "clang/AST/TypeLocNodes.def"
}
llvm_unreachable("unexpected type loc class!");
}
#define TYPELOC(CLASS, PARENT) \
RetTy Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
DISPATCH(PARENT); \
}
#include "clang/AST/TypeLocNodes.def"
RetTy VisitTypeLoc(TypeLoc TyLoc) { return RetTy(); }
};
#undef DISPATCH
} // end namespace clang
#endif // LLVM_CLANG_AST_TYPELOCVISITOR_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclVisitor.h | //===--- DeclVisitor.h - Visitor for Decl subclasses ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DeclVisitor interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLVISITOR_H
#define LLVM_CLANG_AST_DECLVISITOR_H
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
namespace clang {
namespace declvisitor {
template <typename T> struct make_ptr { typedef T *type; };
template <typename T> struct make_const_ptr { typedef const T *type; };
/// \brief A simple visitor class that helps create declaration visitors.
template<template <typename> class Ptr, typename ImplClass, typename RetTy=void>
class Base {
public:
#define PTR(CLASS) typename Ptr<CLASS>::type
#define DISPATCH(NAME, CLASS) \
return static_cast<ImplClass*>(this)->Visit##NAME(static_cast<PTR(CLASS)>(D))
RetTy Visit(PTR(Decl) D) {
switch (D->getKind()) {
#define DECL(DERIVED, BASE) \
case Decl::DERIVED: DISPATCH(DERIVED##Decl, DERIVED##Decl);
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("Decl that isn't part of DeclNodes.inc!");
}
// If the implementation chooses not to implement a certain visit
// method, fall back to the parent.
#define DECL(DERIVED, BASE) \
RetTy Visit##DERIVED##Decl(PTR(DERIVED##Decl) D) { DISPATCH(BASE, BASE); }
#include "clang/AST/DeclNodes.inc"
RetTy VisitDecl(PTR(Decl) D) { return RetTy(); }
#undef PTR
#undef DISPATCH
};
} // end namespace declvisitor
/// \brief A simple visitor class that helps create declaration visitors.
///
/// This class does not preserve constness of Decl pointers (see also
/// ConstDeclVisitor).
template<typename ImplClass, typename RetTy=void>
class DeclVisitor
: public declvisitor::Base<declvisitor::make_ptr, ImplClass, RetTy> {};
/// \brief A simple visitor class that helps create declaration visitors.
///
/// This class preserves constness of Decl pointers (see also DeclVisitor).
template<typename ImplClass, typename RetTy=void>
class ConstDeclVisitor
: public declvisitor::Base<declvisitor::make_const_ptr, ImplClass, RetTy> {};
} // end namespace clang
#endif // LLVM_CLANG_AST_DECLVISITOR_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/VTableBuilder.h | //===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with generation of the layout of virtual tables.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_VTABLEBUILDER_H
#define LLVM_CLANG_AST_VTABLEBUILDER_H
#include "clang/AST/BaseSubobject.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/ABI.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include <memory>
#include <utility>
namespace clang {
class CXXRecordDecl;
/// \brief Represents a single component in a vtable.
class VTableComponent {
public:
enum Kind {
CK_VCallOffset,
CK_VBaseOffset,
CK_OffsetToTop,
CK_RTTI,
CK_FunctionPointer,
/// \brief A pointer to the complete destructor.
CK_CompleteDtorPointer,
/// \brief A pointer to the deleting destructor.
CK_DeletingDtorPointer,
/// \brief An entry that is never used.
///
/// In some cases, a vtable function pointer will end up never being
/// called. Such vtable function pointers are represented as a
/// CK_UnusedFunctionPointer.
CK_UnusedFunctionPointer
};
VTableComponent() { }
static VTableComponent MakeVCallOffset(CharUnits Offset) {
return VTableComponent(CK_VCallOffset, Offset);
}
static VTableComponent MakeVBaseOffset(CharUnits Offset) {
return VTableComponent(CK_VBaseOffset, Offset);
}
static VTableComponent MakeOffsetToTop(CharUnits Offset) {
return VTableComponent(CK_OffsetToTop, Offset);
}
static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
}
static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
assert(!isa<CXXDestructorDecl>(MD) &&
"Don't use MakeFunction with destructors!");
return VTableComponent(CK_FunctionPointer,
reinterpret_cast<uintptr_t>(MD));
}
static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
return VTableComponent(CK_CompleteDtorPointer,
reinterpret_cast<uintptr_t>(DD));
}
static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
return VTableComponent(CK_DeletingDtorPointer,
reinterpret_cast<uintptr_t>(DD));
}
static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
assert(!isa<CXXDestructorDecl>(MD) &&
"Don't use MakeUnusedFunction with destructors!");
return VTableComponent(CK_UnusedFunctionPointer,
reinterpret_cast<uintptr_t>(MD));
}
static VTableComponent getFromOpaqueInteger(uint64_t I) {
return VTableComponent(I);
}
/// \brief Get the kind of this vtable component.
Kind getKind() const {
return (Kind)(Value & 0x7);
}
CharUnits getVCallOffset() const {
assert(getKind() == CK_VCallOffset && "Invalid component kind!");
return getOffset();
}
CharUnits getVBaseOffset() const {
assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
return getOffset();
}
CharUnits getOffsetToTop() const {
assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
return getOffset();
}
const CXXRecordDecl *getRTTIDecl() const {
assert(getKind() == CK_RTTI && "Invalid component kind!");
return reinterpret_cast<CXXRecordDecl *>(getPointer());
}
const CXXMethodDecl *getFunctionDecl() const {
assert(getKind() == CK_FunctionPointer);
return reinterpret_cast<CXXMethodDecl *>(getPointer());
}
const CXXDestructorDecl *getDestructorDecl() const {
assert((getKind() == CK_CompleteDtorPointer ||
getKind() == CK_DeletingDtorPointer) && "Invalid component kind!");
return reinterpret_cast<CXXDestructorDecl *>(getPointer());
}
const CXXMethodDecl *getUnusedFunctionDecl() const {
assert(getKind() == CK_UnusedFunctionPointer);
return reinterpret_cast<CXXMethodDecl *>(getPointer());
}
private:
VTableComponent(Kind ComponentKind, CharUnits Offset) {
assert((ComponentKind == CK_VCallOffset ||
ComponentKind == CK_VBaseOffset ||
ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!");
assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");
Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind;
}
VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
assert((ComponentKind == CK_RTTI ||
ComponentKind == CK_FunctionPointer ||
ComponentKind == CK_CompleteDtorPointer ||
ComponentKind == CK_DeletingDtorPointer ||
ComponentKind == CK_UnusedFunctionPointer) &&
"Invalid component kind!");
assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
Value = Ptr | ComponentKind;
}
CharUnits getOffset() const {
assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
getKind() == CK_OffsetToTop) && "Invalid component kind!");
return CharUnits::fromQuantity(Value >> 3);
}
uintptr_t getPointer() const {
assert((getKind() == CK_RTTI ||
getKind() == CK_FunctionPointer ||
getKind() == CK_CompleteDtorPointer ||
getKind() == CK_DeletingDtorPointer ||
getKind() == CK_UnusedFunctionPointer) &&
"Invalid component kind!");
return static_cast<uintptr_t>(Value & ~7ULL);
}
explicit VTableComponent(uint64_t Value)
: Value(Value) { }
/// The kind is stored in the lower 3 bits of the value. For offsets, we
/// make use of the facts that classes can't be larger than 2^55 bytes,
/// so we store the offset in the lower part of the 61 bits that remain.
/// (The reason that we're not simply using a PointerIntPair here is that we
/// need the offsets to be 64-bit, even when on a 32-bit machine).
int64_t Value;
};
class VTableLayout {
public:
typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy;
typedef const VTableComponent *vtable_component_iterator;
typedef const VTableThunkTy *vtable_thunk_iterator;
typedef llvm::DenseMap<BaseSubobject, uint64_t> AddressPointsMapTy;
private:
uint64_t NumVTableComponents;
std::unique_ptr<VTableComponent[]> VTableComponents;
/// \brief Contains thunks needed by vtables, sorted by indices.
uint64_t NumVTableThunks;
std::unique_ptr<VTableThunkTy[]> VTableThunks;
/// \brief Address points for all vtables.
AddressPointsMapTy AddressPoints;
bool IsMicrosoftABI;
public:
VTableLayout(uint64_t NumVTableComponents,
const VTableComponent *VTableComponents,
uint64_t NumVTableThunks,
const VTableThunkTy *VTableThunks,
const AddressPointsMapTy &AddressPoints,
bool IsMicrosoftABI);
~VTableLayout();
uint64_t getNumVTableComponents() const {
return NumVTableComponents;
}
vtable_component_iterator vtable_component_begin() const {
return VTableComponents.get();
}
vtable_component_iterator vtable_component_end() const {
return VTableComponents.get() + NumVTableComponents;
}
uint64_t getNumVTableThunks() const { return NumVTableThunks; }
vtable_thunk_iterator vtable_thunk_begin() const {
return VTableThunks.get();
}
vtable_thunk_iterator vtable_thunk_end() const {
return VTableThunks.get() + NumVTableThunks;
}
uint64_t getAddressPoint(BaseSubobject Base) const {
assert(AddressPoints.count(Base) &&
"Did not find address point!");
uint64_t AddressPoint = AddressPoints.lookup(Base);
assert(AddressPoint != 0 || IsMicrosoftABI);
(void)IsMicrosoftABI;
return AddressPoint;
}
const AddressPointsMapTy &getAddressPoints() const {
return AddressPoints;
}
};
class VTableContextBase {
public:
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
bool isMicrosoft() const { return IsMicrosoftABI; }
virtual ~VTableContextBase() {}
protected:
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
/// \brief Contains all thunks that a given method decl will need.
ThunksMapTy Thunks;
/// Compute and store all vtable related information (vtable layout, vbase
/// offset offsets, thunks etc) for the given record decl.
virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;
VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}
public:
virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl());
computeVTableRelatedInformation(MD->getParent());
// This assumes that all the destructors present in the vtable
// use exactly the same set of thunks.
ThunksMapTy::const_iterator I = Thunks.find(MD);
if (I == Thunks.end()) {
// We did not find a thunk for this method.
return nullptr;
}
return &I->second;
}
bool IsMicrosoftABI;
};
class ItaniumVTableContext : public VTableContextBase {
private:
/// \brief Contains the index (relative to the vtable address point)
/// where the function pointer for a virtual function is stored.
typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
MethodVTableIndicesTy MethodVTableIndices;
typedef llvm::DenseMap<const CXXRecordDecl *, const VTableLayout *>
VTableLayoutMapTy;
VTableLayoutMapTy VTableLayouts;
typedef std::pair<const CXXRecordDecl *,
const CXXRecordDecl *> ClassPairTy;
/// \brief vtable offsets for offsets of virtual bases of a class.
///
/// Contains the vtable offset (relative to the address point) in chars
/// where the offsets for virtual bases of a class are stored.
typedef llvm::DenseMap<ClassPairTy, CharUnits>
VirtualBaseClassOffsetOffsetsMapTy;
VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
public:
ItaniumVTableContext(ASTContext &Context);
~ItaniumVTableContext() override;
const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) {
computeVTableRelatedInformation(RD);
assert(VTableLayouts.count(RD) && "No layout for this record decl!");
return *VTableLayouts[RD];
}
VTableLayout *
createConstructionVTableLayout(const CXXRecordDecl *MostDerivedClass,
CharUnits MostDerivedClassOffset,
bool MostDerivedClassIsVirtual,
const CXXRecordDecl *LayoutClass);
/// \brief Locate a virtual function in the vtable.
///
/// Return the index (relative to the vtable address point) where the
/// function pointer for the given virtual function is stored.
uint64_t getMethodVTableIndex(GlobalDecl GD);
/// Return the offset in chars (relative to the vtable address point) where
/// the offset of the virtual base that contains the given base is stored,
/// otherwise, if no virtual base contains the given class, return 0.
///
/// Base must be a virtual base class or an unambiguous base.
CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
const CXXRecordDecl *VBase);
static bool classof(const VTableContextBase *VT) {
return !VT->isMicrosoft();
}
};
/// Holds information about the inheritance path to a virtual base or function
/// table pointer. A record may contain as many vfptrs or vbptrs as there are
/// base subobjects.
struct VPtrInfo {
typedef SmallVector<const CXXRecordDecl *, 1> BasePath;
VPtrInfo(const CXXRecordDecl *RD)
: ReusingBase(RD), BaseWithVPtr(RD), NextBaseToMangle(RD) {}
// Copy constructor.
// FIXME: Uncomment when we've moved to C++11.
// VPtrInfo(const VPtrInfo &) = default;
/// The vtable will hold all of the virtual bases or virtual methods of
/// ReusingBase. This may or may not be the same class as VPtrSubobject.Base.
/// A derived class will reuse the vptr of the first non-virtual base
/// subobject that has one.
const CXXRecordDecl *ReusingBase;
/// BaseWithVPtr is at this offset from its containing complete object or
/// virtual base.
CharUnits NonVirtualOffset;
/// The vptr is stored inside this subobject.
const CXXRecordDecl *BaseWithVPtr;
/// The bases from the inheritance path that got used to mangle the vbtable
/// name. This is not really a full path like a CXXBasePath. It holds the
/// subset of records that need to be mangled into the vbtable symbol name in
/// order to get a unique name.
BasePath MangledPath;
/// The next base to push onto the mangled path if this path is ambiguous in a
/// derived class. If it's null, then it's already been pushed onto the path.
const CXXRecordDecl *NextBaseToMangle;
/// The set of possibly indirect vbases that contain this vbtable. When a
/// derived class indirectly inherits from the same vbase twice, we only keep
/// vtables and their paths from the first instance.
BasePath ContainingVBases;
/// This holds the base classes path from the complete type to the first base
/// with the given vfptr offset, in the base-to-derived order. Only used for
/// vftables.
BasePath PathToBaseWithVPtr;
/// Static offset from the top of the most derived class to this vfptr,
/// including any virtual base offset. Only used for vftables.
CharUnits FullOffsetInMDC;
/// The vptr is stored inside the non-virtual component of this virtual base.
const CXXRecordDecl *getVBaseWithVPtr() const {
return ContainingVBases.empty() ? nullptr : ContainingVBases.front();
}
};
typedef SmallVector<VPtrInfo *, 2> VPtrInfoVector;
/// All virtual base related information about a given record decl. Includes
/// information on all virtual base tables and the path components that are used
/// to mangle them.
struct VirtualBaseInfo {
~VirtualBaseInfo() { llvm::DeleteContainerPointers(VBPtrPaths); }
/// A map from virtual base to vbtable index for doing a conversion from the
/// the derived class to the a base.
llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;
/// Information on all virtual base tables used when this record is the most
/// derived class.
VPtrInfoVector VBPtrPaths;
};
class MicrosoftVTableContext : public VTableContextBase {
public:
struct MethodVFTableLocation {
/// If nonzero, holds the vbtable index of the virtual base with the vfptr.
uint64_t VBTableIndex;
/// If nonnull, holds the last vbase which contains the vfptr that the
/// method definition is adjusted to.
const CXXRecordDecl *VBase;
/// This is the offset of the vfptr from the start of the last vbase, or the
/// complete type if there are no virtual bases.
CharUnits VFPtrOffset;
/// Method's index in the vftable.
uint64_t Index;
MethodVFTableLocation()
: VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()),
Index(0) {}
MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
CharUnits VFPtrOffset, uint64_t Index)
: VBTableIndex(VBTableIndex), VBase(VBase),
VFPtrOffset(VFPtrOffset), Index(Index) {}
bool operator<(const MethodVFTableLocation &other) const {
if (VBTableIndex != other.VBTableIndex) {
assert(VBase != other.VBase);
return VBTableIndex < other.VBTableIndex;
}
return std::tie(VFPtrOffset, Index) <
std::tie(other.VFPtrOffset, other.Index);
}
};
private:
ASTContext &Context;
typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
MethodVFTableLocationsTy;
MethodVFTableLocationsTy MethodVFTableLocations;
typedef llvm::DenseMap<const CXXRecordDecl *, VPtrInfoVector *>
VFPtrLocationsMapTy;
VFPtrLocationsMapTy VFPtrLocations;
typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
typedef llvm::DenseMap<VFTableIdTy, const VTableLayout *> VFTableLayoutMapTy;
VFTableLayoutMapTy VFTableLayouts;
llvm::DenseMap<const CXXRecordDecl *, VirtualBaseInfo *> VBaseInfo;
void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result);
void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
void dumpMethodLocations(const CXXRecordDecl *RD,
const MethodVFTableLocationsTy &NewMethods,
raw_ostream &);
const VirtualBaseInfo *
computeVBTableRelatedInformation(const CXXRecordDecl *RD);
void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD,
VPtrInfoVector &Paths);
public:
MicrosoftVTableContext(ASTContext &Context)
: VTableContextBase(/*MS=*/true), Context(Context) {}
~MicrosoftVTableContext() override;
const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);
const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD,
CharUnits VFPtrOffset);
const MethodVFTableLocation &getMethodVFTableLocation(GlobalDecl GD);
const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override {
// Complete destructors don't have a slot in a vftable, so no thunks needed.
if (isa<CXXDestructorDecl>(GD.getDecl()) &&
GD.getDtorType() == Dtor_Complete)
return nullptr;
return VTableContextBase::getThunkInfo(GD);
}
/// \brief Returns the index of VBase in the vbtable of Derived.
/// VBase must be a morally virtual base of Derived.
/// The vbtable is an array of i32 offsets. The first entry is a self entry,
/// and the rest are offsets from the vbptr to virtual bases.
unsigned getVBTableIndex(const CXXRecordDecl *Derived,
const CXXRecordDecl *VBase);
const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);
static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); }
};
} // namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CharUnits.h | //===--- CharUnits.h - Character units for sizes and offsets ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CharUnits class
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_CHARUNITS_H
#define LLVM_CLANG_AST_CHARUNITS_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
namespace clang {
/// CharUnits - This is an opaque type for sizes expressed in character units.
/// Instances of this type represent a quantity as a multiple of the size
/// of the standard C type, char, on the target architecture. As an opaque
/// type, CharUnits protects you from accidentally combining operations on
/// quantities in bit units and character units.
///
/// In both C and C++, an object of type 'char', 'signed char', or 'unsigned
/// char' occupies exactly one byte, so 'character unit' and 'byte' refer to
/// the same quantity of storage. However, we use the term 'character unit'
/// rather than 'byte' to avoid an implication that a character unit is
/// exactly 8 bits.
///
/// For portability, never assume that a target character is 8 bits wide. Use
/// CharUnit values wherever you calculate sizes, offsets, or alignments
/// in character units.
class CharUnits {
public:
typedef int64_t QuantityType;
private:
QuantityType Quantity;
explicit CharUnits(QuantityType C) : Quantity(C) {}
public:
/// CharUnits - A default constructor.
CharUnits() : Quantity(0) {}
/// Zero - Construct a CharUnits quantity of zero.
static CharUnits Zero() {
return CharUnits(0);
}
/// One - Construct a CharUnits quantity of one.
static CharUnits One() {
return CharUnits(1);
}
/// fromQuantity - Construct a CharUnits quantity from a raw integer type.
static CharUnits fromQuantity(QuantityType Quantity) {
return CharUnits(Quantity);
}
// Compound assignment.
CharUnits& operator+= (const CharUnits &Other) {
Quantity += Other.Quantity;
return *this;
}
CharUnits& operator++ () {
++Quantity;
return *this;
}
CharUnits operator++ (int) {
return CharUnits(Quantity++);
}
CharUnits& operator-= (const CharUnits &Other) {
Quantity -= Other.Quantity;
return *this;
}
CharUnits& operator-- () {
--Quantity;
return *this;
}
CharUnits operator-- (int) {
return CharUnits(Quantity--);
}
// Comparison operators.
bool operator== (const CharUnits &Other) const {
return Quantity == Other.Quantity;
}
bool operator!= (const CharUnits &Other) const {
return Quantity != Other.Quantity;
}
// Relational operators.
bool operator< (const CharUnits &Other) const {
return Quantity < Other.Quantity;
}
bool operator<= (const CharUnits &Other) const {
return Quantity <= Other.Quantity;
}
bool operator> (const CharUnits &Other) const {
return Quantity > Other.Quantity;
}
bool operator>= (const CharUnits &Other) const {
return Quantity >= Other.Quantity;
}
// Other predicates.
/// isZero - Test whether the quantity equals zero.
bool isZero() const { return Quantity == 0; }
/// isOne - Test whether the quantity equals one.
bool isOne() const { return Quantity == 1; }
/// isPositive - Test whether the quantity is greater than zero.
bool isPositive() const { return Quantity > 0; }
/// isNegative - Test whether the quantity is less than zero.
bool isNegative() const { return Quantity < 0; }
/// isPowerOfTwo - Test whether the quantity is a power of two.
/// Zero is not a power of two.
bool isPowerOfTwo() const {
return (Quantity & -Quantity) == Quantity;
}
// Arithmetic operators.
CharUnits operator* (QuantityType N) const {
return CharUnits(Quantity * N);
}
CharUnits operator/ (QuantityType N) const {
return CharUnits(Quantity / N);
}
QuantityType operator/ (const CharUnits &Other) const {
return Quantity / Other.Quantity;
}
CharUnits operator% (QuantityType N) const {
return CharUnits(Quantity % N);
}
QuantityType operator% (const CharUnits &Other) const {
return Quantity % Other.Quantity;
}
CharUnits operator+ (const CharUnits &Other) const {
return CharUnits(Quantity + Other.Quantity);
}
CharUnits operator- (const CharUnits &Other) const {
return CharUnits(Quantity - Other.Quantity);
}
CharUnits operator- () const {
return CharUnits(-Quantity);
}
// Conversions.
/// getQuantity - Get the raw integer representation of this quantity.
QuantityType getQuantity() const { return Quantity; }
/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is
/// greater than or equal to this quantity and is a multiple of \p Align.
/// Align must be non-zero.
CharUnits RoundUpToAlignment(const CharUnits &Align) const {
return CharUnits(llvm::RoundUpToAlignment(Quantity,
Align.Quantity));
}
/// Given that this is a non-zero alignment value, what is the
/// alignment at the given offset?
CharUnits alignmentAtOffset(CharUnits offset) {
return CharUnits(llvm::MinAlign(Quantity, offset.Quantity));
}
}; // class CharUnit
} // namespace clang
inline clang::CharUnits operator* (clang::CharUnits::QuantityType Scale,
const clang::CharUnits &CU) {
return CU * Scale;
}
namespace llvm {
template<> struct DenseMapInfo<clang::CharUnits> {
static clang::CharUnits getEmptyKey() {
clang::CharUnits::QuantityType Quantity =
DenseMapInfo<clang::CharUnits::QuantityType>::getEmptyKey();
return clang::CharUnits::fromQuantity(Quantity);
}
static clang::CharUnits getTombstoneKey() {
clang::CharUnits::QuantityType Quantity =
DenseMapInfo<clang::CharUnits::QuantityType>::getTombstoneKey();
return clang::CharUnits::fromQuantity(Quantity);
}
static unsigned getHashValue(const clang::CharUnits &CU) {
clang::CharUnits::QuantityType Quantity = CU.getQuantity();
return DenseMapInfo<clang::CharUnits::QuantityType>::getHashValue(Quantity);
}
static bool isEqual(const clang::CharUnits &LHS,
const clang::CharUnits &RHS) {
return LHS == RHS;
}
};
template <> struct isPodLike<clang::CharUnits> {
static const bool value = true;
};
} // end namespace llvm
#endif // LLVM_CLANG_AST_CHARUNITS_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentSema.h | //===--- CommentSema.h - Doxygen comment semantic analysis ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the semantic analysis class for Doxygen comments.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTSEMA_H
#define LLVM_CLANG_AST_COMMENTSEMA_H
#include "clang/AST/Comment.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
namespace clang {
class Decl;
class SourceMgr;
class Preprocessor;
namespace comments {
class CommandTraits;
class Sema {
Sema(const Sema &) = delete;
void operator=(const Sema &) = delete;
/// Allocator for AST nodes.
llvm::BumpPtrAllocator &Allocator;
/// Source manager for the comment being parsed.
const SourceManager &SourceMgr;
DiagnosticsEngine &Diags;
CommandTraits &Traits;
const Preprocessor *PP;
/// Information about the declaration this comment is attached to.
DeclInfo *ThisDeclInfo;
/// Comment AST nodes that correspond to parameter names in
/// \c TemplateParameters.
///
/// Contains a valid value if \c DeclInfo->IsFilled is true.
llvm::StringMap<TParamCommandComment *> TemplateParameterDocs;
/// AST node for the \\brief command and its aliases.
const BlockCommandComment *BriefCommand;
/// AST node for the \\headerfile command.
const BlockCommandComment *HeaderfileCommand;
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(Loc, DiagID);
}
/// A stack of HTML tags that are currently open (not matched with closing
/// tags).
SmallVector<HTMLStartTagComment *, 8> HTMLOpenTags;
public:
Sema(llvm::BumpPtrAllocator &Allocator, const SourceManager &SourceMgr,
DiagnosticsEngine &Diags, CommandTraits &Traits,
const Preprocessor *PP);
void setDecl(const Decl *D);
/// Returns a copy of array, owned by Sema's allocator.
template<typename T>
ArrayRef<T> copyArray(ArrayRef<T> Source) {
size_t Size = Source.size();
if (Size != 0) {
T *Mem = Allocator.Allocate<T>(Size);
std::uninitialized_copy(Source.begin(), Source.end(), Mem);
return llvm::makeArrayRef(Mem, Size);
}
return None;
}
ParagraphComment *actOnParagraphComment(
ArrayRef<InlineContentComment *> Content);
BlockCommandComment *actOnBlockCommandStart(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker);
void actOnBlockCommandArgs(BlockCommandComment *Command,
ArrayRef<BlockCommandComment::Argument> Args);
void actOnBlockCommandFinish(BlockCommandComment *Command,
ParagraphComment *Paragraph);
ParamCommandComment *actOnParamCommandStart(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker);
void actOnParamCommandDirectionArg(ParamCommandComment *Command,
SourceLocation ArgLocBegin,
SourceLocation ArgLocEnd,
StringRef Arg);
void actOnParamCommandParamNameArg(ParamCommandComment *Command,
SourceLocation ArgLocBegin,
SourceLocation ArgLocEnd,
StringRef Arg);
void actOnParamCommandFinish(ParamCommandComment *Command,
ParagraphComment *Paragraph);
TParamCommandComment *actOnTParamCommandStart(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker);
void actOnTParamCommandParamNameArg(TParamCommandComment *Command,
SourceLocation ArgLocBegin,
SourceLocation ArgLocEnd,
StringRef Arg);
void actOnTParamCommandFinish(TParamCommandComment *Command,
ParagraphComment *Paragraph);
InlineCommandComment *actOnInlineCommand(SourceLocation CommandLocBegin,
SourceLocation CommandLocEnd,
unsigned CommandID);
InlineCommandComment *actOnInlineCommand(SourceLocation CommandLocBegin,
SourceLocation CommandLocEnd,
unsigned CommandID,
SourceLocation ArgLocBegin,
SourceLocation ArgLocEnd,
StringRef Arg);
InlineContentComment *actOnUnknownCommand(SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef CommandName);
InlineContentComment *actOnUnknownCommand(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID);
TextComment *actOnText(SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef Text);
VerbatimBlockComment *actOnVerbatimBlockStart(SourceLocation Loc,
unsigned CommandID);
VerbatimBlockLineComment *actOnVerbatimBlockLine(SourceLocation Loc,
StringRef Text);
void actOnVerbatimBlockFinish(VerbatimBlockComment *Block,
SourceLocation CloseNameLocBegin,
StringRef CloseName,
ArrayRef<VerbatimBlockLineComment *> Lines);
VerbatimLineComment *actOnVerbatimLine(SourceLocation LocBegin,
unsigned CommandID,
SourceLocation TextBegin,
StringRef Text);
HTMLStartTagComment *actOnHTMLStartTagStart(SourceLocation LocBegin,
StringRef TagName);
void actOnHTMLStartTagFinish(HTMLStartTagComment *Tag,
ArrayRef<HTMLStartTagComment::Attribute> Attrs,
SourceLocation GreaterLoc,
bool IsSelfClosing);
HTMLEndTagComment *actOnHTMLEndTag(SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef TagName);
FullComment *actOnFullComment(ArrayRef<BlockContentComment *> Blocks);
void checkBlockCommandEmptyParagraph(BlockCommandComment *Command);
void checkReturnsCommand(const BlockCommandComment *Command);
/// Emit diagnostics about duplicate block commands that should be
/// used only once per comment, e.g., \\brief and \\returns.
void checkBlockCommandDuplicate(const BlockCommandComment *Command);
void checkDeprecatedCommand(const BlockCommandComment *Comment);
void checkFunctionDeclVerbatimLine(const BlockCommandComment *Comment);
void checkContainerDeclVerbatimLine(const BlockCommandComment *Comment);
void checkContainerDecl(const BlockCommandComment *Comment);
/// Resolve parameter names to parameter indexes in function declaration.
/// Emit diagnostics about unknown parametrs.
void resolveParamCommandIndexes(const FullComment *FC);
bool isFunctionDecl();
bool isAnyFunctionDecl();
/// \returns \c true if declaration that this comment is attached to declares
/// a function pointer.
bool isFunctionPointerVarDecl();
bool isFunctionOrMethodVariadic();
bool isObjCMethodDecl();
bool isObjCPropertyDecl();
bool isTemplateOrSpecialization();
bool isRecordLikeDecl();
bool isClassOrStructDecl();
bool isUnionDecl();
bool isObjCInterfaceDecl();
bool isObjCProtocolDecl();
bool isClassTemplateDecl();
bool isFunctionTemplateDecl();
ArrayRef<const ParmVarDecl *> getParamVars();
/// Extract all important semantic information from
/// \c ThisDeclInfo->ThisDecl into \c ThisDeclInfo members.
void inspectThisDecl();
/// Returns index of a function parameter with a given name.
unsigned resolveParmVarReference(StringRef Name,
ArrayRef<const ParmVarDecl *> ParamVars);
/// Returns index of a function parameter with the name closest to a given
/// typo.
unsigned correctTypoInParmVarReference(StringRef Typo,
ArrayRef<const ParmVarDecl *> ParamVars);
bool resolveTParamReference(StringRef Name,
const TemplateParameterList *TemplateParameters,
SmallVectorImpl<unsigned> *Position);
StringRef correctTypoInTParamReference(
StringRef Typo,
const TemplateParameterList *TemplateParameters);
InlineCommandComment::RenderKind
getInlineCommandRenderKind(StringRef Name) const;
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/APValue.h | //===--- APValue.h - Union class for APFloat/APSInt/Complex -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the APValue class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_APVALUE_H
#define LLVM_CLANG_AST_APVALUE_H
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
namespace clang {
class AddrLabelExpr;
class ASTContext;
class CharUnits;
class DiagnosticBuilder;
class Expr;
class FieldDecl;
class Decl;
class ValueDecl;
class CXXRecordDecl;
class QualType;
/// APValue - This class implements a discriminated union of [uninitialized]
/// [APSInt] [APFloat], [Complex APSInt] [Complex APFloat], [Expr + Offset],
/// [Vector: N * APValue], [Array: N * APValue]
class APValue {
typedef llvm::APSInt APSInt;
typedef llvm::APFloat APFloat;
public:
enum ValueKind {
Uninitialized,
Int,
Float,
ComplexInt,
ComplexFloat,
LValue,
Vector,
Array,
Struct,
Union,
MemberPointer,
AddrLabelDiff
};
typedef llvm::PointerUnion<const ValueDecl *, const Expr *> LValueBase;
typedef llvm::PointerIntPair<const Decl *, 1, bool> BaseOrMemberType;
union LValuePathEntry {
/// BaseOrMember - The FieldDecl or CXXRecordDecl indicating the next item
/// in the path. An opaque value of type BaseOrMemberType.
void *BaseOrMember;
/// ArrayIndex - The array index of the next item in the path.
uint64_t ArrayIndex;
};
struct NoLValuePath {};
struct UninitArray {};
struct UninitStruct {};
private:
ValueKind Kind;
struct ComplexAPSInt {
APSInt Real, Imag;
ComplexAPSInt() : Real(1), Imag(1) {}
};
struct ComplexAPFloat {
APFloat Real, Imag;
ComplexAPFloat() : Real(0.0), Imag(0.0) {}
};
struct LV;
struct Vec {
APValue *Elts;
unsigned NumElts;
Vec() : Elts(nullptr), NumElts(0) {}
~Vec() { delete[] Elts; }
};
struct Arr {
APValue *Elts;
unsigned NumElts, ArrSize;
Arr(unsigned NumElts, unsigned ArrSize);
~Arr();
};
struct StructData {
APValue *Elts;
unsigned NumBases;
unsigned NumFields;
StructData(unsigned NumBases, unsigned NumFields);
~StructData();
};
struct UnionData {
const FieldDecl *Field;
APValue *Value;
UnionData();
~UnionData();
};
struct AddrLabelDiffData {
const AddrLabelExpr* LHSExpr;
const AddrLabelExpr* RHSExpr;
};
struct MemberPointerData;
// We ensure elsewhere that Data is big enough for LV and MemberPointerData.
typedef llvm::AlignedCharArrayUnion<void *, APSInt, APFloat, ComplexAPSInt,
ComplexAPFloat, Vec, Arr, StructData,
UnionData, AddrLabelDiffData> DataType;
static const size_t DataSize = sizeof(DataType);
DataType Data;
public:
APValue() : Kind(Uninitialized) {}
explicit APValue(APSInt I) : Kind(Uninitialized) {
MakeInt(); setInt(std::move(I));
}
explicit APValue(APFloat F) : Kind(Uninitialized) {
MakeFloat(); setFloat(std::move(F));
}
explicit APValue(const APValue *E, unsigned N) : Kind(Uninitialized) {
MakeVector(); setVector(E, N);
}
APValue(APSInt R, APSInt I) : Kind(Uninitialized) {
MakeComplexInt(); setComplexInt(std::move(R), std::move(I));
}
APValue(APFloat R, APFloat I) : Kind(Uninitialized) {
MakeComplexFloat(); setComplexFloat(std::move(R), std::move(I));
}
APValue(const APValue &RHS);
APValue(APValue &&RHS) : Kind(Uninitialized) { swap(RHS); }
APValue(LValueBase B, const CharUnits &O, NoLValuePath N, unsigned CallIndex)
: Kind(Uninitialized) {
MakeLValue(); setLValue(B, O, N, CallIndex);
}
APValue(LValueBase B, const CharUnits &O, ArrayRef<LValuePathEntry> Path,
bool OnePastTheEnd, unsigned CallIndex)
: Kind(Uninitialized) {
MakeLValue(); setLValue(B, O, Path, OnePastTheEnd, CallIndex);
}
APValue(UninitArray, unsigned InitElts, unsigned Size) : Kind(Uninitialized) {
MakeArray(InitElts, Size);
}
APValue(UninitStruct, unsigned B, unsigned M) : Kind(Uninitialized) {
MakeStruct(B, M);
}
explicit APValue(const FieldDecl *D, const APValue &V = APValue())
: Kind(Uninitialized) {
MakeUnion(); setUnion(D, V);
}
APValue(const ValueDecl *Member, bool IsDerivedMember,
ArrayRef<const CXXRecordDecl*> Path) : Kind(Uninitialized) {
MakeMemberPointer(Member, IsDerivedMember, Path);
}
APValue(const AddrLabelExpr* LHSExpr, const AddrLabelExpr* RHSExpr)
: Kind(Uninitialized) {
MakeAddrLabelDiff(); setAddrLabelDiff(LHSExpr, RHSExpr);
}
~APValue() {
MakeUninit();
}
/// \brief Returns whether the object performed allocations.
///
/// If APValues are constructed via placement new, \c needsCleanup()
/// indicates whether the destructor must be called in order to correctly
/// free all allocated memory.
bool needsCleanup() const;
/// \brief Swaps the contents of this and the given APValue.
void swap(APValue &RHS);
ValueKind getKind() const { return Kind; }
bool isUninit() const { return Kind == Uninitialized; }
bool isInt() const { return Kind == Int; }
bool isFloat() const { return Kind == Float; }
bool isComplexInt() const { return Kind == ComplexInt; }
bool isComplexFloat() const { return Kind == ComplexFloat; }
bool isLValue() const { return Kind == LValue; }
bool isVector() const { return Kind == Vector; }
bool isArray() const { return Kind == Array; }
bool isStruct() const { return Kind == Struct; }
bool isUnion() const { return Kind == Union; }
bool isMemberPointer() const { return Kind == MemberPointer; }
bool isAddrLabelDiff() const { return Kind == AddrLabelDiff; }
void dump() const;
void dump(raw_ostream &OS) const;
void printPretty(raw_ostream &OS, ASTContext &Ctx, QualType Ty) const;
std::string getAsString(ASTContext &Ctx, QualType Ty) const;
APSInt &getInt() {
assert(isInt() && "Invalid accessor");
return *(APSInt*)(char*)Data.buffer;
}
const APSInt &getInt() const {
return const_cast<APValue*>(this)->getInt();
}
APFloat &getFloat() {
assert(isFloat() && "Invalid accessor");
return *(APFloat*)(char*)Data.buffer;
}
const APFloat &getFloat() const {
return const_cast<APValue*>(this)->getFloat();
}
APSInt &getComplexIntReal() {
assert(isComplexInt() && "Invalid accessor");
return ((ComplexAPSInt*)(char*)Data.buffer)->Real;
}
const APSInt &getComplexIntReal() const {
return const_cast<APValue*>(this)->getComplexIntReal();
}
APSInt &getComplexIntImag() {
assert(isComplexInt() && "Invalid accessor");
return ((ComplexAPSInt*)(char*)Data.buffer)->Imag;
}
const APSInt &getComplexIntImag() const {
return const_cast<APValue*>(this)->getComplexIntImag();
}
APFloat &getComplexFloatReal() {
assert(isComplexFloat() && "Invalid accessor");
return ((ComplexAPFloat*)(char*)Data.buffer)->Real;
}
const APFloat &getComplexFloatReal() const {
return const_cast<APValue*>(this)->getComplexFloatReal();
}
APFloat &getComplexFloatImag() {
assert(isComplexFloat() && "Invalid accessor");
return ((ComplexAPFloat*)(char*)Data.buffer)->Imag;
}
const APFloat &getComplexFloatImag() const {
return const_cast<APValue*>(this)->getComplexFloatImag();
}
const LValueBase getLValueBase() const;
CharUnits &getLValueOffset();
const CharUnits &getLValueOffset() const {
return const_cast<APValue*>(this)->getLValueOffset();
}
bool isLValueOnePastTheEnd() const;
bool hasLValuePath() const;
ArrayRef<LValuePathEntry> getLValuePath() const;
unsigned getLValueCallIndex() const;
APValue &getVectorElt(unsigned I) {
assert(isVector() && "Invalid accessor");
assert(I < getVectorLength() && "Index out of range");
return ((Vec*)(char*)Data.buffer)->Elts[I];
}
const APValue &getVectorElt(unsigned I) const {
return const_cast<APValue*>(this)->getVectorElt(I);
}
unsigned getVectorLength() const {
assert(isVector() && "Invalid accessor");
return ((const Vec*)(const void *)Data.buffer)->NumElts;
}
APValue &getArrayInitializedElt(unsigned I) {
assert(isArray() && "Invalid accessor");
assert(I < getArrayInitializedElts() && "Index out of range");
return ((Arr*)(char*)Data.buffer)->Elts[I];
}
const APValue &getArrayInitializedElt(unsigned I) const {
return const_cast<APValue*>(this)->getArrayInitializedElt(I);
}
bool hasArrayFiller() const {
return getArrayInitializedElts() != getArraySize();
}
APValue &getArrayFiller() {
assert(isArray() && "Invalid accessor");
assert(hasArrayFiller() && "No array filler");
return ((Arr*)(char*)Data.buffer)->Elts[getArrayInitializedElts()];
}
const APValue &getArrayFiller() const {
return const_cast<APValue*>(this)->getArrayFiller();
}
unsigned getArrayInitializedElts() const {
assert(isArray() && "Invalid accessor");
return ((const Arr*)(const void *)Data.buffer)->NumElts;
}
unsigned getArraySize() const {
assert(isArray() && "Invalid accessor");
return ((const Arr*)(const void *)Data.buffer)->ArrSize;
}
unsigned getStructNumBases() const {
assert(isStruct() && "Invalid accessor");
return ((const StructData*)(const char*)Data.buffer)->NumBases;
}
unsigned getStructNumFields() const {
assert(isStruct() && "Invalid accessor");
return ((const StructData*)(const char*)Data.buffer)->NumFields;
}
APValue &getStructBase(unsigned i) {
assert(isStruct() && "Invalid accessor");
return ((StructData*)(char*)Data.buffer)->Elts[i];
}
APValue &getStructField(unsigned i) {
assert(isStruct() && "Invalid accessor");
return ((StructData*)(char*)Data.buffer)->Elts[getStructNumBases() + i];
}
const APValue &getStructBase(unsigned i) const {
return const_cast<APValue*>(this)->getStructBase(i);
}
const APValue &getStructField(unsigned i) const {
return const_cast<APValue*>(this)->getStructField(i);
}
const FieldDecl *getUnionField() const {
assert(isUnion() && "Invalid accessor");
return ((const UnionData*)(const char*)Data.buffer)->Field;
}
APValue &getUnionValue() {
assert(isUnion() && "Invalid accessor");
return *((UnionData*)(char*)Data.buffer)->Value;
}
const APValue &getUnionValue() const {
return const_cast<APValue*>(this)->getUnionValue();
}
const ValueDecl *getMemberPointerDecl() const;
bool isMemberPointerToDerivedMember() const;
ArrayRef<const CXXRecordDecl*> getMemberPointerPath() const;
const AddrLabelExpr* getAddrLabelDiffLHS() const {
assert(isAddrLabelDiff() && "Invalid accessor");
return ((const AddrLabelDiffData*)(const char*)Data.buffer)->LHSExpr;
}
const AddrLabelExpr* getAddrLabelDiffRHS() const {
assert(isAddrLabelDiff() && "Invalid accessor");
return ((const AddrLabelDiffData*)(const char*)Data.buffer)->RHSExpr;
}
void setInt(APSInt I) {
assert(isInt() && "Invalid accessor");
*(APSInt *)(char *)Data.buffer = std::move(I);
}
void setFloat(APFloat F) {
assert(isFloat() && "Invalid accessor");
*(APFloat *)(char *)Data.buffer = std::move(F);
}
void setVector(const APValue *E, unsigned N) {
assert(isVector() && "Invalid accessor");
((Vec*)(char*)Data.buffer)->Elts = new APValue[N];
((Vec*)(char*)Data.buffer)->NumElts = N;
for (unsigned i = 0; i != N; ++i)
((Vec*)(char*)Data.buffer)->Elts[i] = E[i];
}
void setComplexInt(APSInt R, APSInt I) {
assert(R.getBitWidth() == I.getBitWidth() &&
"Invalid complex int (type mismatch).");
assert(isComplexInt() && "Invalid accessor");
((ComplexAPSInt *)(char *)Data.buffer)->Real = std::move(R);
((ComplexAPSInt *)(char *)Data.buffer)->Imag = std::move(I);
}
void setComplexFloat(APFloat R, APFloat I) {
assert(&R.getSemantics() == &I.getSemantics() &&
"Invalid complex float (type mismatch).");
assert(isComplexFloat() && "Invalid accessor");
((ComplexAPFloat *)(char *)Data.buffer)->Real = std::move(R);
((ComplexAPFloat *)(char *)Data.buffer)->Imag = std::move(I);
}
void setLValue(LValueBase B, const CharUnits &O, NoLValuePath,
unsigned CallIndex);
void setLValue(LValueBase B, const CharUnits &O,
ArrayRef<LValuePathEntry> Path, bool OnePastTheEnd,
unsigned CallIndex);
void setUnion(const FieldDecl *Field, const APValue &Value) {
assert(isUnion() && "Invalid accessor");
((UnionData*)(char*)Data.buffer)->Field = Field;
*((UnionData*)(char*)Data.buffer)->Value = Value;
}
void setAddrLabelDiff(const AddrLabelExpr* LHSExpr,
const AddrLabelExpr* RHSExpr) {
((AddrLabelDiffData*)(char*)Data.buffer)->LHSExpr = LHSExpr;
((AddrLabelDiffData*)(char*)Data.buffer)->RHSExpr = RHSExpr;
}
/// Assign by swapping from a copy of the RHS.
APValue &operator=(APValue RHS) {
swap(RHS);
return *this;
}
private:
void DestroyDataAndMakeUninit();
void MakeUninit() {
if (Kind != Uninitialized)
DestroyDataAndMakeUninit();
}
void MakeInt() {
assert(isUninit() && "Bad state change");
new ((void*)Data.buffer) APSInt(1);
Kind = Int;
}
void MakeFloat() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) APFloat(0.0);
Kind = Float;
}
void MakeVector() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) Vec();
Kind = Vector;
}
void MakeComplexInt() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) ComplexAPSInt();
Kind = ComplexInt;
}
void MakeComplexFloat() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) ComplexAPFloat();
Kind = ComplexFloat;
}
void MakeLValue();
void MakeArray(unsigned InitElts, unsigned Size);
void MakeStruct(unsigned B, unsigned M) {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) StructData(B, M);
Kind = Struct;
}
void MakeUnion() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) UnionData();
Kind = Union;
}
void MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember,
ArrayRef<const CXXRecordDecl*> Path);
void MakeAddrLabelDiff() {
assert(isUninit() && "Bad state change");
new ((void*)(char*)Data.buffer) AddrLabelDiffData();
Kind = AddrLabelDiff;
}
};
} // end namespace clang.
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTMutationListener.h | //===--- ASTMutationListener.h - AST Mutation Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTMutationListener interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTMUTATIONLISTENER_H
#define LLVM_CLANG_AST_ASTMUTATIONLISTENER_H
namespace clang {
class Attr;
class ClassTemplateDecl;
class ClassTemplateSpecializationDecl;
class CXXDestructorDecl;
class CXXRecordDecl;
class Decl;
class DeclContext;
class FunctionDecl;
class FunctionTemplateDecl;
class Module;
class NamedDecl;
class ObjCCategoryDecl;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCPropertyDecl;
class QualType;
class RecordDecl;
class TagDecl;
class VarDecl;
class VarTemplateDecl;
class VarTemplateSpecializationDecl;
/// \brief An abstract interface that should be implemented by listeners
/// that want to be notified when an AST entity gets modified after its
/// initial creation.
class ASTMutationListener {
public:
virtual ~ASTMutationListener();
/// \brief A new TagDecl definition was completed.
virtual void CompletedTagDefinition(const TagDecl *D) { }
/// \brief A new declaration with name has been added to a DeclContext.
virtual void AddedVisibleDecl(const DeclContext *DC, const Decl *D) {}
/// \brief An implicit member was added after the definition was completed.
virtual void AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) {}
/// \brief A template specialization (or partial one) was added to the
/// template declaration.
virtual void AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD,
const ClassTemplateSpecializationDecl *D) {}
/// \brief A template specialization (or partial one) was added to the
/// template declaration.
virtual void
AddedCXXTemplateSpecialization(const VarTemplateDecl *TD,
const VarTemplateSpecializationDecl *D) {}
/// \brief A template specialization (or partial one) was added to the
/// template declaration.
virtual void AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD,
const FunctionDecl *D) {}
/// \brief A function's exception specification has been evaluated or
/// instantiated.
virtual void ResolvedExceptionSpec(const FunctionDecl *FD) {}
/// \brief A function's return type has been deduced.
virtual void DeducedReturnType(const FunctionDecl *FD, QualType ReturnType);
/// \brief A virtual destructor's operator delete has been resolved.
virtual void ResolvedOperatorDelete(const CXXDestructorDecl *DD,
const FunctionDecl *Delete) {}
/// \brief An implicit member got a definition.
virtual void CompletedImplicitDefinition(const FunctionDecl *D) {}
/// \brief A static data member was implicitly instantiated.
virtual void StaticDataMemberInstantiated(const VarDecl *D) {}
/// \brief A function template's definition was instantiated.
virtual void FunctionDefinitionInstantiated(const FunctionDecl *D) {}
/// \brief A new objc category class was added for an interface.
virtual void AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD,
const ObjCInterfaceDecl *IFD) {}
/// \brief A objc class extension redeclared or introduced a property.
///
/// \param Prop the property in the class extension
///
/// \param OrigProp the property from the original interface that was declared
/// or null if the property was introduced.
///
/// \param ClassExt the class extension.
virtual void AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop,
const ObjCPropertyDecl *OrigProp,
const ObjCCategoryDecl *ClassExt) {}
/// \brief A declaration is marked used which was not previously marked used.
///
/// \param D the declaration marked used
virtual void DeclarationMarkedUsed(const Decl *D) {}
/// \brief A declaration is marked as OpenMP threadprivate which was not
/// previously marked as threadprivate.
///
/// \param D the declaration marked OpenMP threadprivate.
virtual void DeclarationMarkedOpenMPThreadPrivate(const Decl *D) {}
/// \brief A definition has been made visible by being redefined locally.
///
/// \param D The definition that was previously not visible.
/// \param M The containing module in which the definition was made visible,
/// if any.
virtual void RedefinedHiddenDefinition(const NamedDecl *D, Module *M) {}
/// \brief An attribute was added to a RecordDecl
///
/// \param Attr The attribute that was added to the Record
///
/// \param Record The RecordDecl that got a new attribute
virtual void AddedAttributeToRecord(const Attr *Attr,
const RecordDecl *Record) {}
// NOTE: If new methods are added they should also be added to
// MultiplexASTMutationListener.
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/Expr.h | //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/APValue.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/HlslTypes.h" // HLSL Change
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class APValue;
class ASTContext;
class BlockDecl;
class CXXBaseSpecifier;
class CXXMemberCallExpr;
class CXXOperatorCallExpr;
class CastExpr;
class Decl;
class IdentifierInfo;
class MaterializeTemporaryExpr;
class NamedDecl;
class ObjCPropertyRefExpr;
class OpaqueValueExpr;
class ParmVarDecl;
class StringLiteral;
class TargetInfo;
class ValueDecl;
/// \brief A simple array of base specifiers.
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
/// \brief An adjustment to be made to the temporary created when emitting a
/// reference binding, which accesses a particular subobject of that temporary.
struct SubobjectAdjustment {
enum {
DerivedToBaseAdjustment,
FieldAdjustment,
MemberPointerAdjustment
} Kind;
struct DTB {
const CastExpr *BasePath;
const CXXRecordDecl *DerivedClass;
};
struct P {
const MemberPointerType *MPT;
Expr *RHS;
};
union {
struct DTB DerivedToBase;
FieldDecl *Field;
struct P Ptr;
};
SubobjectAdjustment(const CastExpr *BasePath,
const CXXRecordDecl *DerivedClass)
: Kind(DerivedToBaseAdjustment) {
DerivedToBase.BasePath = BasePath;
DerivedToBase.DerivedClass = DerivedClass;
}
SubobjectAdjustment(FieldDecl *Field)
: Kind(FieldAdjustment) {
this->Field = Field;
}
SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
: Kind(MemberPointerAdjustment) {
this->Ptr.MPT = MPT;
this->Ptr.RHS = RHS;
}
};
/// Expr - This represents one expression. Note that Expr's are subclasses of
/// Stmt. This allows an expression to be transparently used any place a Stmt
/// is required.
///
class Expr : public Stmt {
QualType TR;
protected:
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
: Stmt(SC)
{
ExprBits.TypeDependent = TD;
ExprBits.ValueDependent = VD;
ExprBits.InstantiationDependent = ID;
ExprBits.ValueKind = VK;
ExprBits.ObjectKind = OK;
ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
setType(T);
}
/// \brief Construct an empty expression.
explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
public:
QualType getType() const { return TR; }
void setType(QualType t) {
// In C++, the type of an expression is always adjusted so that it
// will not have reference type (C++ [expr]p6). Use
// QualType::getNonReferenceType() to retrieve the non-reference
// type. Additionally, inspect Expr::isLvalue to determine whether
// an expression that is adjusted in this manner should be
// considered an lvalue.
assert((t.isNull() || !t->isReferenceType()) &&
"Expressions can't have reference type");
TR = t;
}
/// isValueDependent - Determines whether this expression is
/// value-dependent (C++ [temp.dep.constexpr]). For example, the
/// array bound of "Chars" in the following example is
/// value-dependent.
/// @code
/// template<int Size, char (&Chars)[Size]> struct meta_string;
/// @endcode
bool isValueDependent() const { return ExprBits.ValueDependent; }
/// \brief Set whether this expression is value-dependent or not.
void setValueDependent(bool VD) {
ExprBits.ValueDependent = VD;
if (VD)
ExprBits.InstantiationDependent = true;
}
/// isTypeDependent - Determines whether this expression is
/// type-dependent (C++ [temp.dep.expr]), which means that its type
/// could change from one template instantiation to the next. For
/// example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// @code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// @endcode
bool isTypeDependent() const { return ExprBits.TypeDependent; }
/// \brief Set whether this expression is type-dependent or not.
void setTypeDependent(bool TD) {
ExprBits.TypeDependent = TD;
if (TD)
ExprBits.InstantiationDependent = true;
}
/// \brief Whether this expression is instantiation-dependent, meaning that
/// it depends in some way on a template parameter, even if neither its type
/// nor (constant) value can change due to the template instantiation.
///
/// In the following example, the expression \c sizeof(sizeof(T() + T())) is
/// instantiation-dependent (since it involves a template parameter \c T), but
/// is neither type- nor value-dependent, since the type of the inner
/// \c sizeof is known (\c std::size_t) and therefore the size of the outer
/// \c sizeof is known.
///
/// \code
/// template<typename T>
/// void f(T x, T y) {
/// sizeof(sizeof(T() + T());
/// }
/// \endcode
///
bool isInstantiationDependent() const {
return ExprBits.InstantiationDependent;
}
/// \brief Set whether this expression is instantiation-dependent or not.
void setInstantiationDependent(bool ID) {
ExprBits.InstantiationDependent = ID;
}
/// \brief Whether this expression contains an unexpanded parameter
/// pack (for C++11 variadic templates).
///
/// Given the following function template:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(const F &f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// The expressions \c args and \c static_cast<Types&&>(args) both
/// contain parameter packs.
bool containsUnexpandedParameterPack() const {
return ExprBits.ContainsUnexpandedParameterPack;
}
/// \brief Set the bit that describes whether this expression
/// contains an unexpanded parameter pack.
void setContainsUnexpandedParameterPack(bool PP = true) {
ExprBits.ContainsUnexpandedParameterPack = PP;
}
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
SourceLocation getExprLoc() const LLVM_READONLY;
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in expr, location,
/// and ranges with expr to warn on and source locations/ranges appropriate
/// for a warning.
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const;
/// isLValue - True if this expression is an "l-value" according to
/// the rules of the current language. C and C++ give somewhat
/// different rules for this concept, but in general, the result of
/// an l-value expression identifies a specific object whereas the
/// result of an r-value expression is a value detached from any
/// specific storage.
///
/// C++11 divides the concept of "r-value" into pure r-values
/// ("pr-values") and so-called expiring values ("x-values"), which
/// identify specific objects that can be safely cannibalized for
/// their resources. This is an unfortunate abuse of terminology on
/// the part of the C++ committee. In Clang, when we say "r-value",
/// we generally mean a pr-value.
bool isLValue() const { return getValueKind() == VK_LValue; }
bool isRValue() const { return getValueKind() == VK_RValue; }
bool isXValue() const { return getValueKind() == VK_XValue; }
bool isGLValue() const { return getValueKind() != VK_RValue; }
enum LValueClassification {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_DuplicateMatrixComponents, // HLSL Change
LV_InvalidExpression,
LV_InvalidMessageExpression,
LV_MemberFunction,
LV_SubObjCPropertySetting,
LV_ClassTemporary,
LV_ArrayTemporary
};
/// Reasons why an expression might not be an l-value.
LValueClassification ClassifyLValue(ASTContext &Ctx) const;
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_DuplicateMatrixComponents, // HLSL Change
MLV_InvalidExpression,
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ConstAddrSpace,
MLV_ArrayType,
MLV_NoSetterProperty,
MLV_MemberFunction,
MLV_SubObjCPropertySetting,
MLV_InvalidMessageExpression,
MLV_ClassTemporary,
MLV_ArrayTemporary
};
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
///
/// \param Loc [in,out] - A source location which *may* be filled
/// in with the location of the expression making this a
/// non-modifiable lvalue, if specified.
isModifiableLvalueResult
isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
/// \brief The return type of classify(). Represents the C++11 expression
/// taxonomy.
class Classification {
public:
/// \brief The various classification results. Most of these mean prvalue.
enum Kinds {
CL_LValue,
CL_XValue,
CL_Function, // Functions cannot be lvalues in C.
CL_Void, // Void cannot be an lvalue in C.
CL_AddressableVoid, // Void expression whose address can be taken in C.
CL_DuplicateVectorComponents, // A vector shuffle with dupes.
CL_DuplicateMatrixComponents, // HLSL Change: a matrix shuffle with dupes.
CL_MemberFunction, // An expression referring to a member function
CL_SubObjCPropertySetting,
CL_ClassTemporary, // A temporary of class type, or subobject thereof.
CL_ArrayTemporary, // A temporary of array type.
CL_ObjCMessageRValue, // ObjC message is an rvalue
CL_PRValue // A prvalue for any other reason, of any other type
};
/// \brief The results of modification testing.
enum ModifiableType {
CM_Untested, // testModifiable was false.
CM_Modifiable,
CM_RValue, // Not modifiable because it's an rvalue
CM_Function, // Not modifiable because it's a function; C++ only
CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
CM_ConstQualified,
CM_ConstAddrSpace,
CM_ArrayType,
CM_IncompleteType
};
private:
friend class Expr;
unsigned short Kind;
unsigned short Modifiable;
explicit Classification(Kinds k, ModifiableType m)
: Kind(k), Modifiable(m)
{}
public:
Classification() {}
Kinds getKind() const { return static_cast<Kinds>(Kind); }
ModifiableType getModifiable() const {
assert(Modifiable != CM_Untested && "Did not test for modifiability.");
return static_cast<ModifiableType>(Modifiable);
}
bool isLValue() const { return Kind == CL_LValue; }
bool isXValue() const { return Kind == CL_XValue; }
bool isGLValue() const { return Kind <= CL_XValue; }
bool isPRValue() const { return Kind >= CL_Function; }
bool isRValue() const { return Kind >= CL_XValue; }
bool isModifiable() const { return getModifiable() == CM_Modifiable; }
/// \brief Create a simple, modifiably lvalue
static Classification makeSimpleLValue() {
return Classification(CL_LValue, CM_Modifiable);
}
};
/// \brief Classify - Classify this expression according to the C++11
/// expression taxonomy.
///
/// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
/// old lvalue vs rvalue. This function determines the type of expression this
/// is. There are three expression types:
/// - lvalues are classical lvalues as in C++03.
/// - prvalues are equivalent to rvalues in C++03.
/// - xvalues are expressions yielding unnamed rvalue references, e.g. a
/// function returning an rvalue reference.
/// lvalues and xvalues are collectively referred to as glvalues, while
/// prvalues and xvalues together form rvalues.
Classification Classify(ASTContext &Ctx) const {
return ClassifyImpl(Ctx, nullptr);
}
/// \brief ClassifyModifiable - Classify this expression according to the
/// C++11 expression taxonomy, and see if it is valid on the left side
/// of an assignment.
///
/// This function extends classify in that it also tests whether the
/// expression is modifiable (C99 6.3.2.1p1).
/// \param Loc A source location that might be filled with a relevant location
/// if the expression is not modifiable.
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
return ClassifyImpl(Ctx, &Loc);
}
/// getValueKindForType - Given a formal return or parameter type,
/// give its value kind.
static ExprValueKind getValueKindForType(QualType T) {
if (const ReferenceType *RT = T->getAs<ReferenceType>())
return (isa<LValueReferenceType>(RT)
? VK_LValue
: (RT->getPointeeType()->isFunctionType()
? VK_LValue : VK_XValue));
return VK_RValue;
}
/// getValueKind - The value kind that this expression produces.
ExprValueKind getValueKind() const {
return static_cast<ExprValueKind>(ExprBits.ValueKind);
}
/// getObjectKind - The object kind that this expression produces.
/// Object kinds are meaningful only for expressions that yield an
/// l-value or x-value.
ExprObjectKind getObjectKind() const {
return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
}
bool isOrdinaryOrBitFieldObject() const {
ExprObjectKind OK = getObjectKind();
return (OK == OK_Ordinary || OK == OK_BitField);
}
/// setValueKind - Set the value kind produced by this expression.
void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
/// setObjectKind - Set the object kind produced by this expression.
void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
private:
Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
public:
/// \brief Returns true if this expression is a gl-value that
/// potentially refers to a bit-field.
///
/// In C++, whether a gl-value refers to a bitfield is essentially
/// an aspect of the value-kind type system.
bool refersToBitField() const { return getObjectKind() == OK_BitField; }
/// \brief If this expression refers to a bit-field, retrieve the
/// declaration of that bit-field.
///
/// Note that this returns a non-null pointer in subtly different
/// places than refersToBitField returns true. In particular, this can
/// return a non-null pointer even for r-values loaded from
/// bit-fields, but it will return null for a conditional bit-field.
FieldDecl *getSourceBitField();
const FieldDecl *getSourceBitField() const {
return const_cast<Expr*>(this)->getSourceBitField();
}
/// \brief If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *getObjCProperty() const;
/// \brief Check if this expression is the ObjC 'self' implicit parameter.
bool isObjCSelfExpr() const;
/// \brief Returns whether this expression refers to a vector element.
bool refersToVectorElement() const;
/// \brief Returns whether this expression has a placeholder type.
bool hasPlaceholderType() const {
return getType()->isPlaceholderType();
}
/// \brief Returns whether this expression has a specific placeholder type.
bool hasPlaceholderType(BuiltinType::Kind K) const {
assert(BuiltinType::isPlaceholderTypeKind(K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
return BT->getKind() == K;
return false;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool isKnownToHaveBooleanValue() const;
/// isIntegerConstantExpr - Return true if this expression is a valid integer
/// constant expression, and, if so, return its value in Result. If not a
/// valid i-c-e, return false and fill in Loc (if specified) with the location
/// of the invalid expression.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
SourceLocation *Loc = nullptr,
bool isEvaluated = true) const;
bool isIntegerConstantExpr(const ASTContext &Ctx,
SourceLocation *Loc = nullptr) const;
/// isCXX98IntegralConstantExpr - Return true if this expression is an
/// integral constant expression in C++98. Can only be used in C++.
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
/// isCXX11ConstantExpr - Return true if this expression is a constant
/// expression in C++11. Can only be used in C++.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
SourceLocation *Loc = nullptr) const;
/// isPotentialConstantExpr - Return true if this function's definition
/// might be usable in a constant expression in C++11, if it were marked
/// constexpr. Return false if the function can never produce a constant
/// expression, along with diagnostics describing why not.
static bool isPotentialConstantExpr(const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isPotentialConstantExprUnevaluted - Return true if this expression might
/// be usable in a constant expression in C++11 in an unevaluated context, if
/// it were in function FD marked constexpr. Return false if the function can
/// never produce a constant expression, along with diagnostics describing
/// why not.
static bool isPotentialConstantExprUnevaluated(Expr *E,
const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isConstantInitializer - Returns true if this expression can be emitted to
/// IR as a constant, and thus can be used as a constant initializer in C.
/// If this expression is not constant and Culprit is non-null,
/// it is used to store the address of first non constant expr.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
const Expr **Culprit = nullptr) const;
/// EvalStatus is a struct with detailed info about an evaluation in progress.
struct EvalStatus {
/// HasSideEffects - Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects;
/// Diag - If this is non-null, it will be filled in with a stack of notes
/// indicating why evaluation failed (or why it failed to produce a constant
/// expression).
/// If the expression is unfoldable, the notes will indicate why it's not
/// foldable. If the expression is foldable, but not a constant expression,
/// the notes will describes why it isn't a constant expression. If the
/// expression *is* a constant expression, no notes will be produced.
SmallVectorImpl<PartialDiagnosticAt> *Diag;
EvalStatus() : HasSideEffects(false), Diag(nullptr) {}
// hasSideEffects - Return true if the evaluated expression has
// side effects.
bool hasSideEffects() const {
return HasSideEffects;
}
};
/// EvalResult is a struct with detailed info about an evaluated expression.
struct EvalResult : EvalStatus {
/// Val - This is the value the expression can be folded to.
APValue Val;
// isGlobalLValue - Return true if the evaluated lvalue expression
// is global.
bool isGlobalLValue() const;
};
/// EvaluateAsRValue - Return true if this is a constant which we can fold to
/// an rvalue using any crazy technique (that has nothing to do with language
/// standards) that we want to, even if the expression has side-effects. If
/// this function returns true, it returns the folded constant in Result. If
/// the expression is a glvalue, an lvalue-to-rvalue conversion will be
/// applied.
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
/// EvaluateAsBooleanCondition - Return true if this is a constant
/// which we we can fold and convert to a boolean condition using
/// any crazy technique that we want to, even if the expression has
/// side-effects.
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
/// EvaluateAsInt - Return true if this is a constant which we can fold and
/// convert to an integer, using any crazy technique that we want to.
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded without side-effects, but discard the result.
bool isEvaluatable(const ASTContext &Ctx) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which have any effect other than producing a value. Example is a function
/// call, volatile variable read, or throwing an exception. If
/// IncludePossibleEffects is false, this call treats certain expressions with
/// potential side effects (such as function call-like expressions,
/// instantiation-dependent expressions, or invocations from a macro) as not
/// having side effects.
bool HasSideEffects(const ASTContext &Ctx,
bool IncludePossibleEffects = true) const;
/// \brief Determine whether this expression involves a call to any function
/// that is not trivial.
bool hasNonTrivialCall(const ASTContext &Ctx) const;
/// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
/// integer. This must be called on an expression that constant folds to an
/// integer.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
void EvaluateForOverflow(const ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
/// lvalue with link time known address, with no side-effects.
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
/// EvaluateAsInitializer - Evaluate an expression as if it were the
/// initializer of the given declaration. Returns true if the initializer
/// can be folded to a constant, and produces any relevant notes. In C++11,
/// notes will be produced if the expression is not a constant expression.
bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
const VarDecl *VD,
SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
/// EvaluateWithSubstitution - Evaluate an expression as if from the context
/// of a call to the given function with the given arguments, inside an
/// unevaluated context. Returns true if the expression could be folded to a
/// constant.
bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args) const;
/// \brief Enumeration used to describe the kind of Null pointer constant
/// returned from \c isNullPointerConstant().
enum NullPointerConstantKind {
/// \brief Expression is not a Null pointer constant.
NPCK_NotNull = 0,
/// \brief Expression is a Null pointer constant built from a zero integer
/// expression that is not a simple, possibly parenthesized, zero literal.
/// C++ Core Issue 903 will classify these expressions as "not pointers"
/// once it is adopted.
/// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
NPCK_ZeroExpression,
/// \brief Expression is a Null pointer constant built from a literal zero.
NPCK_ZeroLiteral,
/// \brief Expression is a C++11 nullptr.
NPCK_CXX11_nullptr,
/// \brief Expression is a GNU-style __null constant.
NPCK_GNUNull
};
/// \brief Enumeration used to describe how \c isNullPointerConstant()
/// should cope with value-dependent expressions.
enum NullPointerConstantValueDependence {
/// \brief Specifies that the expression should never be value-dependent.
NPC_NeverValueDependent = 0,
/// \brief Specifies that a value-dependent expression of integral or
/// dependent type should be considered a null pointer constant.
NPC_ValueDependentIsNull,
/// \brief Specifies that a value-dependent expression should be considered
/// to never be a null pointer constant.
NPC_ValueDependentIsNotNull
};
/// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
/// a Null pointer constant. The return value can further distinguish the
/// kind of NULL pointer constant that was detected.
NullPointerConstantKind isNullPointerConstant(
ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const;
/// isOBJCGCCandidate - Return true if this expression may be used in a read/
/// write barrier.
bool isOBJCGCCandidate(ASTContext &Ctx) const;
/// \brief Returns true if this expression is a bound member function.
bool isBoundMemberFunction(ASTContext &Ctx) const;
/// \brief Given an expression of bound-member type, find the type
/// of the member. Returns null if this is an *overloaded* bound
/// member expression.
static QualType findBoundMemberType(const Expr *expr);
/// IgnoreImpCasts - Skip past any implicit casts which might
/// surround this expression. Only skips ImplicitCastExprs.
Expr *IgnoreImpCasts() LLVM_READONLY;
/// IgnoreImplicit - Skip past any implicit AST nodes which might
/// surround this expression.
Expr *IgnoreImplicit() LLVM_READONLY {
return cast<Expr>(Stmt::IgnoreImplicit());
}
const Expr *IgnoreImplicit() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreImplicit();
}
/// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
/// its subexpression. If that subexpression is also a ParenExpr,
/// then this method recursively returns its subexpression, and so forth.
/// Otherwise, the method returns the current Expr.
Expr *IgnoreParens() LLVM_READONLY;
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
/// or CastExprs, returning their operand.
Expr *IgnoreParenCasts() LLVM_READONLY;
/// Ignore casts. Strip off any CastExprs, returning their operand.
Expr *IgnoreCasts() LLVM_READONLY;
/// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
/// any ParenExpr or ImplicitCastExprs, returning their operand.
Expr *IgnoreParenImpCasts() LLVM_READONLY;
/// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
/// call to a conversion operator, return the argument.
Expr *IgnoreConversionOperator() LLVM_READONLY;
const Expr *IgnoreConversionOperator() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreConversionOperator();
}
const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenImpCasts();
}
/// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
/// CastExprs that represent lvalue casts, returning their operand.
Expr *IgnoreParenLValueCasts() LLVM_READONLY;
const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
}
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size). Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
/// Ignore parentheses and derived-to-base casts.
Expr *ignoreParenBaseCasts() LLVM_READONLY;
const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->ignoreParenBaseCasts();
}
/// \brief Determine whether this expression is a default function argument.
///
/// Default arguments are implicitly generated in the abstract syntax tree
/// by semantic analysis for function calls, object constructions, etc. in
/// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
/// this routine also looks through any implicit casts to determine whether
/// the expression is a default argument.
bool isDefaultArgument() const;
/// \brief Determine whether the result of this expression is a
/// temporary object of the given class type.
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
/// \brief Whether this expression is an implicit reference to 'this' in C++.
bool isImplicitCXXThis() const;
const Expr *IgnoreImpCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreImpCasts();
}
const Expr *IgnoreParens() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParens();
}
const Expr *IgnoreParenCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenCasts();
}
/// Strip off casts, but keep parentheses.
const Expr *IgnoreCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreCasts();
}
const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
}
static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
/// \brief For an expression of class type or pointer to class type,
/// return the most derived class decl the expression is known to refer to.
///
/// If this expression is a cast, this method looks through it to find the
/// most derived decl that can be inferred from the expression.
/// This is valid because derived-to-base conversions have undefined
/// behavior if the object isn't dynamically of the derived type.
const CXXRecordDecl *getBestDynamicClassType() const;
/// Walk outwards from an expression we want to bind a reference to and
/// find the expression whose lifetime needs to be extended. Record
/// the LHSs of comma expressions and adjustments needed along the path.
const Expr *skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHS,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// OpaqueValueExpr - An expression referring to an opaque object of a
/// fixed type and value class. These don't correspond to concrete
/// syntax; instead they're used to express operations (usually copy
/// operations) on values whose source is generally obvious from
/// context.
class OpaqueValueExpr : public Expr {
friend class ASTStmtReader;
Expr *SourceExpr;
SourceLocation Loc;
public:
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
ExprObjectKind OK = OK_Ordinary,
Expr *SourceExpr = nullptr)
: Expr(OpaqueValueExprClass, T, VK, OK,
T->isDependentType(),
T->isDependentType() ||
(SourceExpr && SourceExpr->isValueDependent()),
T->isInstantiationDependentType(),
false),
SourceExpr(SourceExpr), Loc(Loc) {
}
/// Given an expression which invokes a copy constructor --- i.e. a
/// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
/// find the OpaqueValueExpr that's the source of the construction.
static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
explicit OpaqueValueExpr(EmptyShell Empty)
: Expr(OpaqueValueExprClass, Empty) { }
/// \brief Retrieve the location of this expression.
SourceLocation getLocation() const { return Loc; }
SourceLocation getLocStart() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getLocStart() : Loc;
}
SourceLocation getLocEnd() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getLocEnd() : Loc;
}
SourceLocation getExprLoc() const LLVM_READONLY {
if (SourceExpr) return SourceExpr->getExprLoc();
return Loc;
}
child_range children() { return child_range(); }
/// The source expression of an opaque value expression is the
/// expression which originally generated the value. This is
/// provided as a convenience for analyses that don't wish to
/// precisely model the execution behavior of the program.
///
/// The source expression is typically set when building the
/// expression which binds the opaque value expression in the first
/// place.
Expr *getSourceExpr() const { return SourceExpr; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OpaqueValueExprClass;
}
};
/// \brief A reference to a declared variable, function, enum, etc.
/// [C99 6.5.1p2]
///
/// This encodes all the information about how a declaration is referenced
/// within an expression.
///
/// There are several optional constructs attached to DeclRefExprs only when
/// they apply in order to conserve memory. These are laid out past the end of
/// the object, and flags in the DeclRefExprBitfield track whether they exist:
///
/// DeclRefExprBits.HasQualifier:
/// Specifies when this declaration reference expression has a C++
/// nested-name-specifier.
/// DeclRefExprBits.HasFoundDecl:
/// Specifies when this declaration reference expression has a record of
/// a NamedDecl (different from the referenced ValueDecl) which was found
/// during name lookup and/or overload resolution.
/// DeclRefExprBits.HasTemplateKWAndArgsInfo:
/// Specifies when this declaration reference expression has an explicit
/// C++ template keyword and/or template argument list.
/// DeclRefExprBits.RefersToEnclosingVariableOrCapture
/// Specifies when this declaration reference expression (validly)
/// refers to an enclosed local or a captured variable.
class DeclRefExpr : public Expr {
/// \brief The declaration that we are referencing.
ValueDecl *D;
/// \brief The location of the declaration name itself.
SourceLocation Loc;
/// \brief Provides source/type location info for the declaration name
/// embedded in D.
DeclarationNameLoc DNLoc;
/// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
NestedNameSpecifierLoc &getInternalQualifierLoc() {
assert(hasQualifier());
return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
}
/// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
}
/// \brief Test whether there is a distinct FoundDecl attached to the end of
/// this DRE.
bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
/// \brief Helper to retrieve the optional NamedDecl through which this
/// reference occurred.
NamedDecl *&getInternalFoundDecl() {
assert(hasFoundDecl());
if (hasQualifier())
return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
return *reinterpret_cast<NamedDecl **>(this + 1);
}
/// \brief Helper to retrieve the optional NamedDecl through which this
/// reference occurred.
NamedDecl *getInternalFoundDecl() const {
return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
}
DeclRefExpr(const ASTContext &Ctx,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
const DeclarationNameInfo &NameInfo,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK);
/// \brief Construct an empty declaration reference expression.
explicit DeclRefExpr(EmptyShell Empty)
: Expr(DeclRefExprClass, Empty) { }
/// \brief Computes the type- and value-dependence flags for this
/// declaration reference expression.
void computeDependence(const ASTContext &C);
public:
DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
D(D), Loc(L), DNLoc(LocInfo) {
DeclRefExprBits.HasQualifier = 0;
DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
DeclRefExprBits.HasFoundDecl = 0;
DeclRefExprBits.HadMultipleCandidates = 0;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
computeDependence(D->getASTContext());
}
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
/// \brief Construct an empty declaration reference expression.
static DeclRefExpr *CreateEmpty(const ASTContext &Context,
bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
void setDecl(ValueDecl *NewD) { D = NewD; }
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
/// \brief Determine whether this declaration reference was preceded by a
/// C++ nested-name-specifier, e.g., \c N::foo.
bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
/// \brief If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name. Otherwise, returns NULL.
NestedNameSpecifier *getQualifier() const {
if (!hasQualifier())
return nullptr;
return getInternalQualifierLoc().getNestedNameSpecifier();
}
/// \brief If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return getInternalQualifierLoc();
}
/// \brief Get the NamedDecl through which this reference occurred.
///
/// This Decl may be different from the ValueDecl actually referred to in the
/// presence of using declarations, etc. It always returns non-NULL, and may
/// simple return the ValueDecl when appropriate.
NamedDecl *getFoundDecl() {
return hasFoundDecl() ? getInternalFoundDecl() : D;
}
/// \brief Get the NamedDecl through which this reference occurred.
/// See non-const variant.
const NamedDecl *getFoundDecl() const {
return hasFoundDecl() ? getInternalFoundDecl() : D;
}
bool hasTemplateKWAndArgsInfo() const {
return DeclRefExprBits.HasTemplateKWAndArgsInfo;
}
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!hasTemplateKWAndArgsInfo())
return nullptr;
if (hasFoundDecl())
return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
&getInternalFoundDecl() + 1);
if (hasQualifier())
return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
&getInternalQualifierLoc() + 1);
return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
}
/// \brief Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// \brief Determines whether the name in this declaration reference
/// was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// \brief Determines whether this declaration reference was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// \brief Retrieve the explicit template argument list that followed the
/// member template name.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *getTemplateKWAndArgsInfo();
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return nullptr;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Returns true if this expression refers to a function that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return DeclRefExprBits.HadMultipleCandidates;
}
/// \brief Sets the flag telling whether this expression refers to
/// a function that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
DeclRefExprBits.HadMultipleCandidates = V;
}
/// \brief Does this DeclRefExpr refer to an enclosing local or a captured
/// variable?
bool refersToEnclosingVariableOrCapture() const {
return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr : public Expr {
public:
enum IdentType {
Func,
Function,
LFunction, // Same as Function, but as wide string.
FuncDName,
FuncSig,
PrettyFunction,
/// \brief The same as PrettyFunction, except that the
/// 'virtual' keyword is omitted for virtual member functions.
PrettyFunctionNoVirtual
};
private:
SourceLocation Loc;
IdentType Type;
Stmt *FnName;
public:
PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
StringLiteral *SL);
/// \brief Construct an empty predefined expression.
explicit PredefinedExpr(EmptyShell Empty)
: Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
IdentType getIdentType() const { return Type; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
StringLiteral *getFunctionName();
const StringLiteral *getFunctionName() const {
return const_cast<PredefinedExpr *>(this)->getFunctionName();
}
static StringRef getIdentTypeName(IdentType IT);
static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PredefinedExprClass;
}
// Iterators
child_range children() { return child_range(&FnName, &FnName + 1); }
friend class ASTStmtReader;
};
/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
/// leaking memory.
///
/// For large floats/integers, APFloat/APInt will allocate memory from the heap
/// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
/// the APFloat/APInt values will never get freed. APNumericStorage uses
/// ASTContext's allocator for memory allocation.
class APNumericStorage {
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
unsigned BitWidth;
bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
APNumericStorage(const APNumericStorage &) = delete;
void operator=(const APNumericStorage &) = delete;
protected:
APNumericStorage() : VAL(0), BitWidth(0) { }
llvm::APInt getIntValue() const {
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
if (NumWords > 1)
return llvm::APInt(BitWidth, NumWords, pVal);
else
return llvm::APInt(BitWidth, VAL);
}
void setIntValue(const ASTContext &C, const llvm::APInt &Val);
};
class APIntStorage : private APNumericStorage {
public:
llvm::APInt getValue() const { return getIntValue(); }
void setValue(const ASTContext &C, const llvm::APInt &Val) {
setIntValue(C, Val);
}
};
class APFloatStorage : private APNumericStorage {
public:
llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
return llvm::APFloat(Semantics, getIntValue());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
setIntValue(C, Val.bitcastToAPInt());
}
};
class IntegerLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
/// \brief Construct an empty integer literal.
explicit IntegerLiteral(EmptyShell Empty)
: Expr(IntegerLiteralClass, Empty) { }
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l);
/// \brief Returns a new integer literal with value 'V' and type 'type'.
/// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
/// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
/// \param V - the value that the returned integer literal contains.
static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l);
/// \brief Returns a new empty integer literal.
static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
/// \brief Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
// Iterators
child_range children() { return child_range(); }
};
class CharacterLiteral : public Expr {
public:
enum CharacterKind {
Ascii,
Wide,
UTF16,
UTF32
};
private:
unsigned Value;
SourceLocation Loc;
public:
// type should be IntTy
CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
SourceLocation l)
: Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
false, false),
Value(value), Loc(l) {
CharacterLiteralBits.Kind = kind;
}
/// \brief Construct an empty character literal.
CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
SourceLocation getLocation() const { return Loc; }
CharacterKind getKind() const {
return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
}
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
unsigned getValue() const { return Value; }
void setLocation(SourceLocation Location) { Loc = Location; }
void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
void setValue(unsigned Val) { Value = Val; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
// Iterators
child_range children() { return child_range(); }
};
class FloatingLiteral : public Expr, private APFloatStorage {
SourceLocation Loc;
FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
QualType Type, SourceLocation L);
/// \brief Construct an empty floating-point literal.
explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
public:
static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L);
static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
llvm::APFloat getValue() const {
return APFloatStorage::getValue(getSemantics());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
APFloatStorage::setValue(C, Val);
}
/// Get a raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
APFloatSemantics getRawSemantics() const {
return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
}
/// Set the raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
void setRawSemantics(APFloatSemantics Sem) {
FloatingLiteralBits.Semantics = Sem;
}
/// Return the APFloat semantics this literal uses.
const llvm::fltSemantics &getSemantics() const;
/// Set the APFloat semantics this literal uses.
void setSemantics(const llvm::fltSemantics &Sem);
bool isExact() const { return FloatingLiteralBits.IsExact; }
void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double getValueAsApproximateDouble() const;
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Stmt *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Val(val) {}
/// \brief Build an empty imaginary literal.
explicit ImaginaryLiteral(EmptyShell Empty)
: Expr(ImaginaryLiteralClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string is returned by getBytes()
/// is NOT null-terminated, and the length of the string is determined by
/// calling getByteLength(). The C type for a string is always a
/// ConstantArrayType. In C++, the char type is const qualified, in C it is
/// not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
/// char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral : public Expr {
public:
enum StringKind {
Ascii,
Wide,
UTF8,
UTF16,
UTF32
};
private:
friend class ASTStmtReader;
union {
const char *asChar;
const uint16_t *asUInt16;
const uint32_t *asUInt32;
} StrData;
unsigned Length;
unsigned CharByteWidth : 4;
unsigned Kind : 3;
unsigned IsPascal : 1;
unsigned NumConcatenated;
SourceLocation TokLocs[1];
StringLiteral(QualType Ty) :
Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
false) {}
static int mapCharByteWidth(TargetInfo const &target,StringKind k);
public:
/// This is the "fully general" constructor that allows representation of
/// strings formed from multiple concatenated tokens.
static StringLiteral *Create(const ASTContext &C, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc, unsigned NumStrs);
/// Simple constructor for string literals made from one token.
static StringLiteral *Create(const ASTContext &C, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
SourceLocation Loc) {
return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
}
/// \brief Construct an empty string literal.
static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
StringRef getString() const {
assert(CharByteWidth==1
&& "This function is used in places that assume strings use char");
return StringRef(StrData.asChar, getByteLength());
}
/// Allow access to clients that need the byte representation, such as
/// ASTWriterStmt::VisitStringLiteral().
StringRef getBytes() const {
// FIXME: StringRef may not be the right type to use as a result for this.
if (CharByteWidth == 1)
return StringRef(StrData.asChar, getByteLength());
if (CharByteWidth == 4)
return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
getByteLength());
assert(CharByteWidth == 2 && "unsupported CharByteWidth");
return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
getByteLength());
}
void outputString(raw_ostream &OS) const;
uint32_t getCodeUnit(size_t i) const {
assert(i < Length && "out of bounds access");
if (CharByteWidth == 1)
return static_cast<unsigned char>(StrData.asChar[i]);
if (CharByteWidth == 4)
return StrData.asUInt32[i];
assert(CharByteWidth == 2 && "unsupported CharByteWidth");
return StrData.asUInt16[i];
}
unsigned getByteLength() const { return CharByteWidth*Length; }
unsigned getLength() const { return Length; }
unsigned getCharByteWidth() const { return CharByteWidth; }
/// \brief Sets the string data to the given string data.
void setString(const ASTContext &C, StringRef Str,
StringKind Kind, bool IsPascal);
StringKind getKind() const { return static_cast<StringKind>(Kind); }
bool isAscii() const { return Kind == Ascii; }
bool isWide() const { return Kind == Wide; }
bool isUTF8() const { return Kind == UTF8; }
bool isUTF16() const { return Kind == UTF16; }
bool isUTF32() const { return Kind == UTF32; }
bool isPascal() const { return IsPascal; }
bool containsNonAsciiOrNull() const {
StringRef Str = getString();
for (unsigned i = 0, e = Str.size(); i != e; ++i)
if (!isASCII(Str[i]) || !Str[i])
return true;
return false;
}
/// getNumConcatenated - Get the number of string literal tokens that were
/// concatenated in translation phase #6 to form this string literal.
unsigned getNumConcatenated() const { return NumConcatenated; }
SourceLocation getStrTokenLoc(unsigned TokNum) const {
assert(TokNum < NumConcatenated && "Invalid tok number");
return TokLocs[TokNum];
}
void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
assert(TokNum < NumConcatenated && "Invalid tok number");
TokLocs[TokNum] = L;
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens
/// and can have escape sequences in them in addition to the usual trigraph
/// and escaped newline business. This routine handles this complexity.
///
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features,
const TargetInfo &Target) const;
typedef const SourceLocation *tokloc_iterator;
tokloc_iterator tokloc_begin() const { return TokLocs; }
tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
SourceLocation getLocEnd() const LLVM_READONLY {
return TokLocs[NumConcatenated - 1];
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Stmt *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType(),
val->getValueKind(), val->getObjectKind(),
val->isTypeDependent(), val->isValueDependent(),
val->isInstantiationDependent(),
val->containsUnexpandedParameterPack()),
L(l), R(r), Val(val) {}
/// \brief Construct an empty parenthesized expression.
explicit ParenExpr(EmptyShell Empty)
: Expr(ParenExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getLocStart() const LLVM_READONLY { return L; }
SourceLocation getLocEnd() const LLVM_READONLY { return R; }
/// \brief Get the location of the left parentheses '('.
SourceLocation getLParen() const { return L; }
void setLParen(SourceLocation Loc) { L = Loc; }
/// \brief Get the location of the right parentheses ')'.
SourceLocation getRParen() const { return R; }
void setRParen(SourceLocation Loc) { R = Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
};
/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
class UnaryOperator : public Expr {
public:
typedef UnaryOperatorKind Opcode;
private:
unsigned Opc : 5;
SourceLocation Loc;
Stmt *Val;
public:
UnaryOperator(Expr *input, Opcode opc, QualType type,
ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
: Expr(UnaryOperatorClass, type, VK, OK,
input->isTypeDependent() || type->isDependentType(),
input->isValueDependent(),
(input->isInstantiationDependent() ||
type->isInstantiationDependentType()),
input->containsUnexpandedParameterPack()),
Opc(opc), Loc(l), Val(input) {}
/// \brief Build an empty unary operator.
explicit UnaryOperator(EmptyShell Empty)
: Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getSubExpr() const { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return Loc; }
void setOperatorLoc(SourceLocation L) { Loc = L; }
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op) {
return Op == UO_PostInc || Op == UO_PostDec;
}
/// isPrefix - Return true if this is a prefix operation, like --x.
static bool isPrefix(Opcode Op) {
return Op == UO_PreInc || Op == UO_PreDec;
}
bool isPrefix() const { return isPrefix(getOpcode()); }
bool isPostfix() const { return isPostfix(getOpcode()); }
static bool isIncrementOp(Opcode Op) {
return Op == UO_PreInc || Op == UO_PostInc;
}
bool isIncrementOp() const {
return isIncrementOp(getOpcode());
}
static bool isDecrementOp(Opcode Op) {
return Op == UO_PreDec || Op == UO_PostDec;
}
bool isDecrementOp() const {
return isDecrementOp(getOpcode());
}
static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
bool isIncrementDecrementOp() const {
return isIncrementDecrementOp(getOpcode());
}
static bool isArithmeticOp(Opcode Op) {
return Op >= UO_Plus && Op <= UO_LNot;
}
bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static StringRef getOpcodeStr(Opcode Op);
/// \brief Retrieve the unary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
/// \brief Retrieve the overloaded operator kind that corresponds to
/// the given unary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
SourceLocation getLocStart() const LLVM_READONLY {
return isPostfix() ? Val->getLocStart() : Loc;
}
SourceLocation getLocEnd() const LLVM_READONLY {
return isPostfix() ? Loc : Val->getLocEnd();
}
SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
};
/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
/// float f;
/// double d;
/// };
/// struct T {
/// int i;
/// struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
class OffsetOfExpr : public Expr {
public:
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
/// \brief The kind of offsetof node we have.
enum Kind {
/// \brief An index into an array.
Array = 0x00,
/// \brief A field.
Field = 0x01,
/// \brief A field in a dependent type, known only by its name.
Identifier = 0x02,
/// \brief An implicit indirection through a C++ base class, when the
/// field found is in a base class.
Base = 0x03
};
private:
enum { MaskBits = 2, Mask = 0x03 };
/// \brief The source range that covers this part of the designator.
SourceRange Range;
/// \brief The data describing the designator, which comes in three
/// different forms, depending on the lower two bits.
/// - An unsigned index into the array of Expr*'s stored after this node
/// in memory, for [constant-expression] designators.
/// - A FieldDecl*, for references to a known field.
/// - An IdentifierInfo*, for references to a field with a given name
/// when the class type is dependent.
/// - A CXXBaseSpecifier*, for references that look at a field in a
/// base class.
uintptr_t Data;
public:
/// \brief Create an offsetof node that refers to an array element.
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
SourceLocation RBracketLoc)
: Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
/// \brief Create an offsetof node that refers to a field.
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
SourceLocation NameLoc)
: Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
/// \brief Create an offsetof node that refers to an identifier.
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
SourceLocation NameLoc)
: Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
/// \brief Create an offsetof node that refers into a C++ base class.
explicit OffsetOfNode(const CXXBaseSpecifier *Base)
: Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
/// \brief Determine what kind of offsetof node this is.
Kind getKind() const {
return static_cast<Kind>(Data & Mask);
}
/// \brief For an array element node, returns the index into the array
/// of expressions.
unsigned getArrayExprIndex() const {
assert(getKind() == Array);
return Data >> 2;
}
/// \brief For a field offsetof node, returns the field.
FieldDecl *getField() const {
assert(getKind() == Field);
return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
}
/// \brief For a field or identifier offsetof node, returns the name of
/// the field.
IdentifierInfo *getFieldName() const;
/// \brief For a base class node, returns the base specifier.
CXXBaseSpecifier *getBase() const {
assert(getKind() == Base);
return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
}
/// \brief Retrieve the source range that covers this offsetof node.
///
/// For an array element node, the source range contains the locations of
/// the square brackets. For a field or identifier node, the source range
/// contains the location of the period (if there is one) and the
/// identifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
};
private:
SourceLocation OperatorLoc, RParenLoc;
// Base type;
TypeSourceInfo *TSInfo;
// Number of sub-components (i.e. instances of OffsetOfNode).
unsigned NumComps;
// Number of sub-expressions (i.e. array subscript expressions).
unsigned NumExprs;
OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc);
explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
: Expr(OffsetOfExprClass, EmptyShell()),
TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
public:
static OffsetOfExpr *Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
static OffsetOfExpr *CreateEmpty(const ASTContext &C,
unsigned NumComps, unsigned NumExprs);
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// \brief Return the location of the right parentheses.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation R) { RParenLoc = R; }
TypeSourceInfo *getTypeSourceInfo() const {
return TSInfo;
}
void setTypeSourceInfo(TypeSourceInfo *tsi) {
TSInfo = tsi;
}
const OffsetOfNode &getComponent(unsigned Idx) const {
assert(Idx < NumComps && "Subscript out of range");
return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
}
void setComponent(unsigned Idx, OffsetOfNode ON) {
assert(Idx < NumComps && "Subscript out of range");
reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
}
unsigned getNumComponents() const {
return NumComps;
}
Expr* getIndexExpr(unsigned Idx) {
assert(Idx < NumExprs && "Subscript out of range");
return reinterpret_cast<Expr **>(
reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
}
const Expr *getIndexExpr(unsigned Idx) const {
return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
}
void setIndexExpr(unsigned Idx, Expr* E) {
assert(Idx < NumComps && "Subscript out of range");
reinterpret_cast<Expr **>(
reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
}
unsigned getNumExpressions() const {
return NumExprs;
}
SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OffsetOfExprClass;
}
// Iterators
child_range children() {
Stmt **begin =
reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
+ NumComps);
return child_range(begin, begin + NumExprs);
}
};
/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
/// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
/// vec_step (OpenCL 1.1 6.11.12).
class UnaryExprOrTypeTraitExpr : public Expr {
union {
TypeSourceInfo *Ty;
Stmt *Ex;
} Argument;
SourceLocation OpLoc, RParenLoc;
public:
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
QualType resultType, SourceLocation op,
SourceLocation rp) :
Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
false, // Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
TInfo->getType()->isDependentType(),
TInfo->getType()->isInstantiationDependentType(),
TInfo->getType()->containsUnexpandedParameterPack()),
OpLoc(op), RParenLoc(rp) {
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
UnaryExprOrTypeTraitExprBits.IsType = true;
Argument.Ty = TInfo;
}
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
QualType resultType, SourceLocation op,
SourceLocation rp);
/// \brief Construct an empty sizeof/alignof expression.
explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
: Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
UnaryExprOrTypeTrait getKind() const {
return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
}
void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
QualType getArgumentType() const {
return getArgumentTypeInfo()->getType();
}
TypeSourceInfo *getArgumentTypeInfo() const {
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
return Argument.Ty;
}
Expr *getArgumentExpr() {
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
return static_cast<Expr*>(Argument.Ex);
}
const Expr *getArgumentExpr() const {
return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
}
void setArgument(Expr *E) {
Argument.Ex = E;
UnaryExprOrTypeTraitExprBits.IsType = false;
}
void setArgument(TypeSourceInfo *TInfo) {
Argument.Ty = TInfo;
UnaryExprOrTypeTraitExprBits.IsType = true;
}
/// Gets the argument type, or the type of the argument expression, whichever
/// is appropriate.
QualType getTypeOfArgument() const {
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
}
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
}
// Iterators
child_range children();
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR=2 };
Stmt* SubExprs[END_EXPR];
SourceLocation RBracketLoc;
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
RBracketLoc(rbracketloc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// \brief Create an empty array subscript expression.
explicit ArraySubscriptExpr(EmptyShell Shell)
: Expr(ArraySubscriptExprClass, Shell) { }
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
/// Note: Because vector element access is also written A[4] we must
/// predicate the format conversion in getBase and getIdx only on the
/// the type of the RHS, as it is possible for the LHS to be a vector of
/// integer type
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getBase() {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
}
const Expr *getBase() const {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
}
Expr *getIdx() {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
}
const Expr *getIdx() const {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
}
SourceLocation getLocStart() const LLVM_READONLY {
return getLHS()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
SourceLocation getRBracketLoc() const { return RBracketLoc; }
void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
enum { FN=0, PREARGS_START=1 };
Stmt **SubExprs;
unsigned NumArgs;
SourceLocation RParenLoc;
protected:
// These versions of the constructor are for derived classes.
CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
SourceLocation rparenloc);
CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
EmptyShell Empty);
Stmt *getPreArg(unsigned i) {
assert(i < getNumPreArgs() && "Prearg access out of range!");
return SubExprs[PREARGS_START+i];
}
const Stmt *getPreArg(unsigned i) const {
assert(i < getNumPreArgs() && "Prearg access out of range!");
return SubExprs[PREARGS_START+i];
}
void setPreArg(unsigned i, Stmt *PreArg) {
assert(i < getNumPreArgs() && "Prearg access out of range!");
SubExprs[PREARGS_START+i] = PreArg;
}
unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
public:
CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
ExprValueKind VK, SourceLocation rparenloc);
/// \brief Build an empty call expression.
CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
void setCallee(Expr *F) { SubExprs[FN] = F; }
Decl *getCalleeDecl();
const Decl *getCalleeDecl() const {
return const_cast<CallExpr*>(this)->getCalleeDecl();
}
/// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
FunctionDecl *getDirectCallee();
const FunctionDecl *getDirectCallee() const {
return const_cast<CallExpr*>(this)->getDirectCallee();
}
/// getNumArgs - Return the number of actual arguments to this call.
///
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve the call arguments.
Expr **getArgs() {
return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
}
const Expr *const *getArgs() const {
return const_cast<CallExpr*>(this)->getArgs();
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
}
/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void setNumArgs(const ASTContext& C, unsigned NumArgs);
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
typedef llvm::iterator_range<arg_iterator> arg_range;
typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
arg_const_range arguments() const {
return arg_const_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
arg_iterator arg_end() {
return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
}
const_arg_iterator arg_begin() const {
return SubExprs+PREARGS_START+getNumPreArgs();
}
const_arg_iterator arg_end() const {
return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
}
/// This method provides fast access to all the subexpressions of
/// a CallExpr without going through the slower virtual child_iterator
/// interface. This provides efficient reverse iteration of the
/// subexpressions. This is currently used for CFG construction.
ArrayRef<Stmt*> getRawSubExprs() {
return llvm::makeArrayRef(SubExprs,
getNumPreArgs() + PREARGS_START + getNumArgs());
}
/// getNumCommas - Return the number of commas that must have been present in
/// this function call.
unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
/// of the callee. If not, return 0.
unsigned getBuiltinCallee() const;
/// \brief Returns \c true if this is a call to a builtin which does not
/// evaluate side-effects within its arguments.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
/// getCallReturnType - Get the return type of the call expr. This is not
/// always the type of the expr itself, if the return type is a reference
/// type.
QualType getCallReturnType(const ASTContext &Ctx) const;
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCallExprConstant &&
T->getStmtClass() <= lastCallExprConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0],
&SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
}
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
///
class MemberExpr : public Expr {
/// Extra data stored in some member expressions.
struct MemberNameQualifier {
/// \brief The nested-name-specifier that qualifies the name, including
/// source-location information.
NestedNameSpecifierLoc QualifierLoc;
/// \brief The DeclAccessPair through which the MemberDecl was found due to
/// name qualifiers.
DeclAccessPair FoundDecl;
};
/// Base - the expression for the base pointer or structure references. In
/// X.F, this is "X".
Stmt *Base;
/// MemberDecl - This is the decl being referenced by the field/member name.
/// In X.F, this is the decl referenced by F.
ValueDecl *MemberDecl;
/// MemberDNLoc - Provides source/type location info for the
/// declaration name embedded in MemberDecl.
DeclarationNameLoc MemberDNLoc;
/// MemberLoc - This is the location of the member name.
SourceLocation MemberLoc;
/// This is the location of the -> or . in the expression.
SourceLocation OperatorLoc;
/// IsArrow - True if this is "X->F", false if this is "X.F".
bool IsArrow : 1;
/// \brief True if this member expression used a nested-name-specifier to
/// refer to the member, e.g., "x->Base::f", or found its member via a using
/// declaration. When true, a MemberNameQualifier
/// structure is allocated immediately after the MemberExpr.
bool HasQualifierOrFoundDecl : 1;
/// \brief True if this member expression specified a template keyword
/// and/or a template argument list explicitly, e.g., x->f<int>,
/// x->template f, x->template f<int>.
/// When true, an ASTTemplateKWAndArgsInfo structure and its
/// TemplateArguments (if any) are allocated immediately after
/// the MemberExpr or, if the member expression also has a qualifier,
/// after the MemberNameQualifier structure.
bool HasTemplateKWAndArgsInfo : 1;
/// \brief True if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool HadMultipleCandidates : 1;
/// \brief Retrieve the qualifier that preceded the member name, if any.
MemberNameQualifier *getMemberQualifier() {
assert(HasQualifierOrFoundDecl);
return reinterpret_cast<MemberNameQualifier *> (this + 1);
}
/// \brief Retrieve the qualifier that preceded the member name, if any.
const MemberNameQualifier *getMemberQualifier() const {
return const_cast<MemberExpr *>(this)->getMemberQualifier();
}
public:
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
QualType ty, ExprValueKind VK, ExprObjectKind OK)
: Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
base->isValueDependent(), base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
IsArrow(isarrow), HasQualifierOrFoundDecl(false),
HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
assert(memberdecl->getDeclName() == NameInfo.getName());
}
// NOTE: this constructor should be used only when it is known that
// the member name can not provide additional syntactic info
// (i.e., source locations for C++ operator names or type source info
// for constructors, destructors and conversion operators).
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
ValueDecl *memberdecl, SourceLocation l, QualType ty,
ExprValueKind VK, ExprObjectKind OK)
: Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
base->isValueDependent(), base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
OperatorLoc(operatorloc), IsArrow(isarrow),
HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
HadMultipleCandidates(false) {}
static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
DeclAccessPair founddecl,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *targs, QualType ty,
ExprValueKind VK, ExprObjectKind OK);
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// \brief Retrieve the member declaration to which this expression refers.
///
/// The returned declaration will either be a FieldDecl or (in C++)
/// a CXXMethodDecl.
ValueDecl *getMemberDecl() const { return MemberDecl; }
void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
/// \brief Retrieves the declaration found by lookup.
DeclAccessPair getFoundDecl() const {
if (!HasQualifierOrFoundDecl)
return DeclAccessPair::make(getMemberDecl(),
getMemberDecl()->getAccess());
return getMemberQualifier()->FoundDecl;
}
/// \brief Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return getQualifier() != nullptr; }
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
if (!HasQualifierOrFoundDecl)
return nullptr;
return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
}
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name, with source-location
/// information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return getMemberQualifier()->QualifierLoc;
}
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo)
return nullptr;
if (!HasQualifierOrFoundDecl)
return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
getMemberQualifier() + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
}
/// \brief Retrieve the location of the template keyword preceding
/// the member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// \brief Determines whether the member name was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieve the explicit template argument list that
/// follow the member template name. This must only be called on an
/// expression with explicit template arguments.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *getTemplateKWAndArgsInfo();
}
/// \brief Retrieve the explicit template argument list that
/// followed the member template name. This must only be called on
/// an expression with explicit template arguments.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return nullptr;
return &getExplicitTemplateArgs();
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Retrieve the member declaration name info.
DeclarationNameInfo getMemberNameInfo() const {
return DeclarationNameInfo(MemberDecl->getDeclName(),
MemberLoc, MemberDNLoc);
}
SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
/// \brief Determine whether the base of this explicit is implicit.
bool isImplicitAccess() const {
return getBase() && getBase()->isImplicitCXXThis();
}
/// \brief Returns true if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return HadMultipleCandidates;
}
/// \brief Sets the flag telling whether this expression refers to
/// a method that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
HadMultipleCandidates = V;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
friend class ASTReader;
friend class ASTStmtWriter;
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
/// LParenLoc - If non-null, this is the location of the left paren in a
/// compound literal like "(int){4}". This can be null if this is a
/// synthesized compound expression.
SourceLocation LParenLoc;
/// The type as written. This can be an incomplete array type, in
/// which case the actual expression type will be different.
/// The int part of the pair stores whether this expr is file scope.
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
Stmt *Init;
public:
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
QualType T, ExprValueKind VK, Expr *init, bool fileScope)
: Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
tinfo->getType()->isDependentType(),
init->isValueDependent(),
(init->isInstantiationDependent() ||
tinfo->getType()->isInstantiationDependentType()),
init->containsUnexpandedParameterPack()),
LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
/// \brief Construct an empty compound literal.
explicit CompoundLiteralExpr(EmptyShell Empty)
: Expr(CompoundLiteralExprClass, Empty) { }
const Expr *getInitializer() const { return cast<Expr>(Init); }
Expr *getInitializer() { return cast<Expr>(Init); }
void setInitializer(Expr *E) { Init = E; }
bool isFileScope() const { return TInfoAndScope.getInt(); }
void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const {
return TInfoAndScope.getPointer();
}
void setTypeSourceInfo(TypeSourceInfo *tinfo) {
TInfoAndScope.setPointer(tinfo);
}
SourceLocation getLocStart() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
if (LParenLoc.isInvalid())
return Init->getLocStart();
return LParenLoc;
}
SourceLocation getLocEnd() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
return Init->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
// Iterators
child_range children() { return child_range(&Init, &Init+1); }
};
/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
private:
Stmt *Op;
bool CastConsistency() const;
const CXXBaseSpecifier * const *path_buffer() const {
return const_cast<CastExpr*>(this)->path_buffer();
}
CXXBaseSpecifier **path_buffer();
void setBasePathSize(unsigned basePathSize) {
CastExprBits.BasePathSize = basePathSize;
assert(CastExprBits.BasePathSize == basePathSize &&
"basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
}
protected:
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
Expr *op, unsigned BasePathSize)
: Expr(SC, ty, VK, OK_Ordinary,
// Cast expressions are type-dependent if the type is
// dependent (C++ [temp.dep.expr]p3).
ty->isDependentType(),
// Cast expressions are value-dependent if the type is
// dependent or if the subexpression is value-dependent.
ty->isDependentType() || (op && op->isValueDependent()),
(ty->isInstantiationDependentType() ||
(op && op->isInstantiationDependent())),
// An implicit cast expression doesn't (lexically) contain an
// unexpanded pack, even if its target type does.
((SC != ImplicitCastExprClass &&
ty->containsUnexpandedParameterPack()) ||
(op && op->containsUnexpandedParameterPack()))),
Op(op) {
assert(kind != CK_Invalid && "creating cast with invalid cast kind");
CastExprBits.Kind = kind;
setBasePathSize(BasePathSize);
assert(CastConsistency());
}
/// \brief Construct an empty cast.
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
: Expr(SC, Empty) {
setBasePathSize(BasePathSize);
}
public:
CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
void setCastKind(CastKind K) { CastExprBits.Kind = K; }
const char *getCastKindName() const;
Expr *getSubExpr() { return cast<Expr>(Op); }
const Expr *getSubExpr() const { return cast<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
/// \brief Retrieve the cast subexpression as it was written in the source
/// code, looking through any implicit casts or other intermediate nodes
/// introduced by semantic analysis.
Expr *getSubExprAsWritten();
const Expr *getSubExprAsWritten() const {
return const_cast<CastExpr *>(this)->getSubExprAsWritten();
}
typedef CXXBaseSpecifier **path_iterator;
typedef const CXXBaseSpecifier * const *path_const_iterator;
bool path_empty() const { return CastExprBits.BasePathSize == 0; }
unsigned path_size() const { return CastExprBits.BasePathSize; }
path_iterator path_begin() { return path_buffer(); }
path_iterator path_end() { return path_buffer() + path_size(); }
path_const_iterator path_begin() const { return path_buffer(); }
path_const_iterator path_end() const { return path_buffer() + path_size(); }
void setCastPath(const CXXCastPath &Path);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCastExprConstant &&
T->getStmtClass() <= lastCastExprConstant;
}
// Iterators
child_range children() { return child_range(&Op, &Op+1); }
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
/// Base& b = d; // initializer is an ImplicitCastExpr
/// // to an lvalue of type Base
/// Base&& r = ref(); // initializer is an ImplicitCastExpr
/// // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr : public CastExpr {
private:
ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
unsigned BasePathLength, ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
}
/// \brief Construct an empty implicit cast.
explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
: CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
public:
enum OnStack_t { OnStack };
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
}
static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind Cat);
static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
SourceLocation getLocStart() const LLVM_READONLY {
return getSubExpr()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getSubExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
};
inline Expr *Expr::IgnoreImpCasts() {
Expr *e = this;
while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
e = ice->getSubExpr();
return e;
}
/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
/// TInfo - Source type info for the (written) type
/// this expression is casting to.
TypeSourceInfo *TInfo;
protected:
ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
TypeSourceInfo *writtenTy)
: CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
/// \brief Construct an empty explicit cast.
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
: CastExpr(SC, Shell, PathSize) { }
public:
/// getTypeInfoAsWritten - Returns the type source info for the type
/// that this expression is casting to.
TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
/// getTypeAsWritten - Returns the type that this expression is
/// casting to, as written in the source code.
QualType getTypeAsWritten() const { return TInfo->getType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExplicitCastExprConstant &&
T->getStmtClass() <= lastExplicitCastExprConstant;
}
};
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr : public ExplicitCastExpr {
SourceLocation LPLoc; // the location of the left paren
SourceLocation RPLoc; // the location of the right paren
CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
unsigned PathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation r)
: ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
writtenTy), LPLoc(l), RPLoc(r) {}
/// \brief Construct an empty C-style explicit cast.
explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
public:
static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, CastKind K,
Expr *Op, const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation R);
static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
SourceLocation getLParenLoc() const { return LPLoc; }
void setLParenLoc(SourceLocation L) { LPLoc = L; }
SourceLocation getRParenLoc() const { return RPLoc; }
void setRParenLoc(SourceLocation L) { RPLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return getSubExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CStyleCastExprClass;
}
};
/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
public:
typedef BinaryOperatorKind Opcode;
private:
unsigned Opc : 6;
// Records the FP_CONTRACT pragma status at the point that this binary
// operator was parsed. This bit is only meaningful for operations on
// floating point types. For all other types it should default to
// false.
unsigned FPContractable : 1;
SourceLocation OpLoc;
enum { LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR];
public:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, bool fpContractable)
: Expr(BinaryOperatorClass, ResTy, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments");
}
/// \brief Construct an empty binary operator.
explicit BinaryOperator(EmptyShell Empty)
: Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getLocStart() const LLVM_READONLY {
return getLHS()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getRHS()->getLocEnd();
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static StringRef getOpcodeStr(Opcode Op);
StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
/// \brief Retrieve the binary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
/// \brief Retrieve the overloaded operator kind that corresponds to
/// the given binary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
/// predicates to categorize the respective opcodes.
bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
bool isShiftOp() const { return isShiftOp(getOpcode()); }
static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
static Opcode negateComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparsion operator.");
case BO_LT: return BO_GE;
case BO_GT: return BO_LE;
case BO_LE: return BO_GT;
case BO_GE: return BO_LT;
case BO_EQ: return BO_NE;
case BO_NE: return BO_EQ;
}
}
static Opcode reverseComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparsion operator.");
case BO_LT: return BO_GT;
case BO_GT: return BO_LT;
case BO_LE: return BO_GE;
case BO_GE: return BO_LE;
case BO_EQ:
case BO_NE:
return Opc;
}
}
static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
static bool isAssignmentOp(Opcode Opc) {
return Opc >= BO_Assign && Opc <= BO_OrAssign;
}
bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
static bool isCompoundAssignmentOp(Opcode Opc) {
return Opc > BO_Assign && Opc <= BO_OrAssign;
}
bool isCompoundAssignmentOp() const {
return isCompoundAssignmentOp(getOpcode());
}
static Opcode getOpForCompoundAssignment(Opcode Opc) {
assert(isCompoundAssignmentOp(Opc));
if (Opc >= BO_AndAssign)
return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
else
return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
}
static bool isShiftAssignOp(Opcode Opc) {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
}
bool isShiftAssignOp() const {
return isShiftAssignOp(getOpcode());
}
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstBinaryOperatorConstant &&
S->getStmtClass() <= lastBinaryOperatorConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
// Set the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
void setFPContractable(bool FPC) { FPContractable = FPC; }
// Get the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
bool isFPContractable() const { return FPContractable; }
protected:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, bool fpContractable, bool dead2)
: Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
BinaryOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), Opc(BO_MulAssign) { }
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the arithmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationLHSType;
QualType ComputationResultType;
public:
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
ExprValueKind VK, ExprObjectKind OK,
QualType CompLHSType, QualType CompResultType,
SourceLocation OpLoc, bool fpContractable)
: BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
true),
ComputationLHSType(CompLHSType),
ComputationResultType(CompResultType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
/// \brief Build an empty compound assignment operator expression.
explicit CompoundAssignOperator(EmptyShell Empty)
: BinaryOperator(CompoundAssignOperatorClass, Empty) { }
// The two computation types are the type the LHS is converted
// to for the computation and the type of the result; the two are
// distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
QualType getComputationLHSType() const { return ComputationLHSType; }
void setComputationLHSType(QualType T) { ComputationLHSType = T; }
QualType getComputationResultType() const { return ComputationResultType; }
void setComputationResultType(QualType T) { ComputationResultType = T; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
/// AbstractConditionalOperator - An abstract base class for
/// ConditionalOperator and BinaryConditionalOperator.
class AbstractConditionalOperator : public Expr {
SourceLocation QuestionLoc, ColonLoc;
friend class ASTStmtReader;
protected:
AbstractConditionalOperator(StmtClass SC, QualType T,
ExprValueKind VK, ExprObjectKind OK,
bool TD, bool VD, bool ID,
bool ContainsUnexpandedParameterPack,
SourceLocation qloc,
SourceLocation cloc)
: Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
QuestionLoc(qloc), ColonLoc(cloc) {}
AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) { }
public:
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const;
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const;
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const;
SourceLocation getQuestionLoc() const { return QuestionLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass ||
T->getStmtClass() == BinaryConditionalOperatorClass;
}
};
/// ConditionalOperator - The ?: ternary operator. The GNU "missing
/// middle" extension is a BinaryConditionalOperator.
class ConditionalOperator : public AbstractConditionalOperator {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
friend class ASTStmtReader;
public:
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
SourceLocation CLoc, Expr *rhs,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
// FIXME: the type of the conditional operator doesn't
// depend on the type of the conditional, but the standard
// seems to imply that it could. File a bug!
(lhs->isTypeDependent() || rhs->isTypeDependent()),
(cond->isValueDependent() || lhs->isValueDependent() ||
rhs->isValueDependent()),
(cond->isInstantiationDependent() ||
lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(cond->containsUnexpandedParameterPack() ||
lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack()),
QLoc, CLoc) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// \brief Build an empty conditional operator.
explicit ConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
SourceLocation getLocStart() const LLVM_READONLY {
return getCond()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getRHS()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// BinaryConditionalOperator - The GNU extension to the conditional
/// operator which allows the middle operand to be omitted.
///
/// This is a different expression kind on the assumption that almost
/// every client ends up needing to know that these are different.
class BinaryConditionalOperator : public AbstractConditionalOperator {
enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
/// - the common condition/left-hand-side expression, which will be
/// evaluated as the opaque value
/// - the condition, expressed in terms of the opaque value
/// - the left-hand-side, expressed in terms of the opaque value
/// - the right-hand-side
Stmt *SubExprs[NUM_SUBEXPRS];
OpaqueValueExpr *OpaqueValue;
friend class ASTStmtReader;
public:
BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
Expr *cond, Expr *lhs, Expr *rhs,
SourceLocation qloc, SourceLocation cloc,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
(common->isTypeDependent() || rhs->isTypeDependent()),
(common->isValueDependent() || rhs->isValueDependent()),
(common->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(common->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack()),
qloc, cloc),
OpaqueValue(opaqueValue) {
SubExprs[COMMON] = common;
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
}
/// \brief Build an empty conditional operator.
explicit BinaryConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
/// \brief getCommon - Return the common expression, written to the
/// left of the condition. The opaque value will be bound to the
/// result of this expression.
Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
/// \brief getOpaqueValue - Return the opaque value placeholder.
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
/// \brief getCond - Return the condition expression; this is defined
/// in terms of the opaque value.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
/// \brief getTrueExpr - Return the subexpression which will be
/// evaluated if the condition evaluates to true; this is defined
/// in terms of the opaque value.
Expr *getTrueExpr() const {
return cast<Expr>(SubExprs[LHS]);
}
/// \brief getFalseExpr - Return the subexpression which will be
/// evaluated if the condnition evaluates to false; this is
/// defined in terms of the opaque value.
Expr *getFalseExpr() const {
return cast<Expr>(SubExprs[RHS]);
}
SourceLocation getLocStart() const LLVM_READONLY {
return getCommon()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getFalseExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == BinaryConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
};
inline Expr *AbstractConditionalOperator::getCond() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getCond();
return cast<BinaryConditionalOperator>(this)->getCond();
}
inline Expr *AbstractConditionalOperator::getTrueExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getTrueExpr();
return cast<BinaryConditionalOperator>(this)->getTrueExpr();
}
inline Expr *AbstractConditionalOperator::getFalseExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getFalseExpr();
return cast<BinaryConditionalOperator>(this)->getFalseExpr();
}
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelDecl *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
QualType t)
: Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
false),
AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
/// \brief Build an empty address of a label expression.
explicit AddrLabelExpr(EmptyShell Empty)
: Expr(AddrLabelExprClass, Empty) { }
SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
LabelDecl *getLabel() const { return Label; }
void setLabel(LabelDecl *L) { Label = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
///
/// A StmtExpr is always an r-value; values "returned" out of a
/// StmtExpr will be copied.
class StmtExpr : public Expr {
Stmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
// FIXME: Does type-dependence need to be computed differently?
// FIXME: Do we need to compute instantiation instantiation-dependence for
// statements? (ugh!)
StmtExpr(CompoundStmt *substmt, QualType T,
SourceLocation lp, SourceLocation rp) :
Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
T->isDependentType(), false, false, false),
SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
/// \brief Build an empty statement expression.
explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
void setSubStmt(CompoundStmt *S) { SubStmt = S; }
SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
// Iterators
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
};
/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
// SubExprs - the list of values passed to the __builtin_shufflevector
// function. The first two are vectors, and the rest are constant
// indices. The number of values in this list is always
// 2+the number of indices in the vector type.
Stmt **SubExprs;
unsigned NumExprs;
public:
ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
SourceLocation BLoc, SourceLocation RP);
/// \brief Build an empty vector-shuffle expression.
explicit ShuffleVectorExpr(EmptyShell Empty)
: Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ShuffleVectorExprClass;
}
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
/// constant expression, the actual arguments passed in, and the function
/// pointers.
unsigned getNumSubExprs() const { return NumExprs; }
/// \brief Retrieve the array of expressions.
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
/// getExpr - Return the Expr at the specified index.
Expr *getExpr(unsigned Index) {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
const Expr *getExpr(unsigned Index) const {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
}
};
/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
/// This AST node provides support for converting a vector type to another
/// vector type of the same arity.
class ConvertVectorExpr : public Expr {
private:
Stmt *SrcExpr;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
public:
ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(ConvertVectorExprClass, DstType, VK, OK,
DstType->isDependentType(),
DstType->isDependentType() || SrcExpr->isValueDependent(),
(DstType->isInstantiationDependentType() ||
SrcExpr->isInstantiationDependent()),
(DstType->containsUnexpandedParameterPack() ||
SrcExpr->containsUnexpandedParameterPack())),
SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getTypeSourceInfo - Return the destination type.
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
void setTypeSourceInfo(TypeSourceInfo *ti) {
TInfo = ti;
}
/// getBuiltinLoc - Return the location of the __builtin_convertvector token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConvertVectorExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
/// visible way: the type is the same as that of the chosen subexpression,
/// and all predicates (whether it's an l-value, whether it's an integer
/// constant expression, etc.) return the same result as for the chosen
/// sub-expression.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
bool CondIsTrue;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
QualType t, ExprValueKind VK, ExprObjectKind OK,
SourceLocation RP, bool condIsTrue,
bool TypeDependent, bool ValueDependent)
: Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
(cond->isInstantiationDependent() ||
lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(cond->containsUnexpandedParameterPack() ||
lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// \brief Build an empty __builtin_choose_expr.
explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
/// isConditionTrue - Return whether the condition is true (i.e. not
/// equal to zero).
bool isConditionTrue() const {
assert(!isConditionDependent() &&
"Dependent condition isn't true or false");
return CondIsTrue;
}
void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
bool isConditionDependent() const {
return getCond()->isTypeDependent() || getCond()->isValueDependent();
}
/// getChosenSubExpr - Return the subexpression chosen according to the
/// condition.
Expr *getChosenSubExpr() const {
return isConditionTrue() ? getLHS() : getRHS();
}
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
/// TokenLoc - The location of the __null keyword.
SourceLocation TokenLoc;
public:
GNUNullExpr(QualType Ty, SourceLocation Loc)
: Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
false),
TokenLoc(Loc) { }
/// \brief Build an empty GNU __null expression.
explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
/// getTokenLocation - The location of the __null token.
SourceLocation getTokenLocation() const { return TokenLoc; }
void setTokenLocation(SourceLocation L) { TokenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GNUNullExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// VAArgExpr, used for the builtin function __builtin_va_arg.
class VAArgExpr : public Expr {
Stmt *Val;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
public:
VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
SourceLocation RPLoc, QualType t)
: Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
t->isDependentType(), false,
(TInfo->getType()->isInstantiationDependentType() ||
e->isInstantiationDependent()),
(TInfo->getType()->containsUnexpandedParameterPack() ||
e->containsUnexpandedParameterPack())),
Val(e), TInfo(TInfo),
BuiltinLoc(BLoc),
RParenLoc(RPLoc) { }
/// \brief Create an empty __builtin_va_arg expression.
explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == VAArgExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
};
/// @brief Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// After semantic analysis has completed, given an initializer list,
/// method isSemanticForm() returns true if and only if this is the
/// semantic form of the initializer list (note: the same AST node
/// may at the same time be the syntactic form).
/// Given the semantic form of the initializer list, one can retrieve
/// the syntactic form of that initializer list (when different)
/// using method getSyntacticForm(); the method returns null if applied
/// to a initializer list which is already in syntactic form.
/// Similarly, given the syntactic form (i.e., an initializer list such
/// that isSemanticForm() returns false), one can retrieve the semantic
/// form using method getSemanticForm().
/// Since many initializer lists have the same syntactic and semantic forms,
/// getSyntacticForm() may return NULL, indicating that the current
/// semantic initializer list also serves as its syntactic form.
class InitListExpr : public Expr {
// FIXME: Eliminate this vector in favor of ASTContext allocation
typedef ASTVector<Stmt *> InitExprsTy;
InitExprsTy InitExprs;
SourceLocation LBraceLoc, RBraceLoc;
/// The alternative form of the initializer list (if it exists).
/// The int part of the pair stores whether this initializer list is
/// in semantic form. If not null, the pointer points to:
/// - the syntactic form, if this is in semantic form;
/// - the semantic form, if this is in syntactic form.
llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
/// \brief Either:
/// If this initializer list initializes an array with more elements than
/// there are initializers in the list, specifies an expression to be used
/// for value initialization of the rest of the elements.
/// Or
/// If this initializer list initializes a union, specifies which
/// field within the union will be initialized.
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
public:
InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
/// \brief Build an empty initializer list.
explicit InitListExpr(EmptyShell Empty)
: Expr(InitListExprClass, Empty) { }
unsigned getNumInits() const { return InitExprs.size(); }
/// \brief Retrieve the set of initializers.
Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
const Expr *getInit(unsigned Init) const {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
Expr *getInit(unsigned Init) {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < getNumInits() && "Initializer access out of range!");
InitExprs[Init] = expr;
if (expr) {
ExprBits.TypeDependent |= expr->isTypeDependent();
ExprBits.ValueDependent |= expr->isValueDependent();
ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
ExprBits.ContainsUnexpandedParameterPack |=
expr->containsUnexpandedParameterPack();
}
}
/// \brief Reserve space for some number of initializers.
void reserveInits(const ASTContext &C, unsigned NumInits);
/// @brief Specify the number of initializers
///
/// If there are more than @p NumInits initializers, the remaining
/// initializers will be destroyed. If there are fewer than @p
/// NumInits initializers, NULL expressions will be added for the
/// unknown initializers.
void resizeInits(const ASTContext &Context, unsigned NumInits);
/// @brief Updates the initializer at index @p Init with the new
/// expression @p expr, and returns the old expression at that
/// location.
///
/// When @p Init is out of range for this initializer list, the
/// initializer list will be extended with NULL expressions to
/// accommodate the new entry.
Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
/// \brief If this initializer list initializes an array with more elements
/// than there are initializers in the list, specifies an expression to be
/// used for value initialization of the rest of the elements.
Expr *getArrayFiller() {
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
}
const Expr *getArrayFiller() const {
return const_cast<InitListExpr *>(this)->getArrayFiller();
}
void setArrayFiller(Expr *filler);
/// \brief Return true if this is an array initializer and its array "filler"
/// has been set.
bool hasArrayFiller() const { return getArrayFiller(); }
/// \brief If this initializes a union, specifies which field in the
/// union to initialize.
///
/// Typically, this field is the first named field within the
/// union. However, a designated initializer can specify the
/// initialization of a different field within the union.
FieldDecl *getInitializedFieldInUnion() {
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
}
const FieldDecl *getInitializedFieldInUnion() const {
return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
}
void setInitializedFieldInUnion(FieldDecl *FD) {
assert((FD == nullptr
|| getInitializedFieldInUnion() == nullptr
|| getInitializedFieldInUnion() == FD)
&& "Only one field of a union may be initialized at a time!");
ArrayFillerOrUnionFieldInit = FD;
}
// Explicit InitListExpr's originate from source code (and have valid source
// locations). Implicit InitListExpr's are created by the semantic analyzer.
bool isExplicit() {
return LBraceLoc.isValid() && RBraceLoc.isValid();
}
// Is this an initializer for an array of characters, initialized by a string
// literal or an @encode?
bool isStringLiteralInit() const;
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
bool isSemanticForm() const { return AltForm.getInt(); }
InitListExpr *getSemanticForm() const {
return isSemanticForm() ? nullptr : AltForm.getPointer();
}
InitListExpr *getSyntacticForm() const {
return isSemanticForm() ? AltForm.getPointer() : nullptr;
}
void setSyntacticForm(InitListExpr *Init) {
AltForm.setPointer(Init);
AltForm.setInt(true);
Init->AltForm.setPointer(this);
Init->AltForm.setInt(false);
}
bool hadArrayRangeDesignator() const {
return InitListExprBits.HadArrayRangeDesignator != 0;
}
void sawArrayRangeDesignator(bool ARD = true) {
InitListExprBits.HadArrayRangeDesignator = ARD;
}
bool isVectorInitWithCXXFunctionalCastExpr() const {
return InitListExprBits.VectorInitWithCXXFunctionalCastExpr != 0;
}
void sawVectorInitWithCXXFunctionalCastExpr(bool InitWithCast) {
InitListExprBits.VectorInitWithCXXFunctionalCastExpr = InitWithCast;
}
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
// Iterators
child_range children() {
// FIXME: This does not include the array filler expression.
if (InitExprs.empty()) return child_range();
return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
}
typedef InitExprsTy::iterator iterator;
typedef InitExprsTy::const_iterator const_iterator;
typedef InitExprsTy::reverse_iterator reverse_iterator;
typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
iterator begin() { return InitExprs.begin(); }
const_iterator begin() const { return InitExprs.begin(); }
iterator end() { return InitExprs.end(); }
const_iterator end() const { return InitExprs.end(); }
reverse_iterator rbegin() { return InitExprs.rbegin(); }
const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
reverse_iterator rend() { return InitExprs.rend(); }
const_reverse_iterator rend() const { return InitExprs.rend(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// @brief Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
/// double x;
/// double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initialization expression will be 1.0.
class DesignatedInitExpr : public Expr {
public:
/// \brief Forward declaration of the Designator class.
class Designator;
private:
/// The location of the '=' or ':' prior to the actual initializer
/// expression.
SourceLocation EqualOrColonLoc;
/// Whether this designated initializer used the GNU deprecated
/// syntax rather than the C99 '=' syntax.
bool GNUSyntax : 1;
/// The number of designators in this initializer expression.
unsigned NumDesignators : 15;
/// The number of subexpressions of this initializer expression,
/// which contains both the initializer and any additional
/// expressions used by array and array-range designators.
unsigned NumSubExprs : 16;
/// \brief The designators in this designated initialization
/// expression.
Designator *Designators;
DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
const Designator *Designators,
SourceLocation EqualOrColonLoc, bool GNUSyntax,
ArrayRef<Expr*> IndexExprs, Expr *Init);
explicit DesignatedInitExpr(unsigned NumSubExprs)
: Expr(DesignatedInitExprClass, EmptyShell()),
NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
public:
/// A field designator, e.g., ".x".
struct FieldDesignator {
/// Refers to the field that is being initialized. The low bit
/// of this field determines whether this is actually a pointer
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
/// initially constructed, a field designator will store an
/// IdentifierInfo*. After semantic analysis has resolved that
/// name, the field designator will instead store a FieldDecl*.
uintptr_t NameOrField;
/// The location of the '.' in the designated initializer.
unsigned DotLoc;
/// The location of the field name in the designated initializer.
unsigned FieldLoc;
};
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator {
/// Location of the first index expression within the designated
/// initializer expression's list of subexpressions.
unsigned Index;
/// The location of the '[' starting the array range designator.
unsigned LBracketLoc;
/// The location of the ellipsis separating the start and end
/// indices. Only valid for GNU array-range designators.
unsigned EllipsisLoc;
/// The location of the ']' terminating the array range designator.
unsigned RBracketLoc;
};
/// @brief Represents a single C99 designator.
///
/// @todo This class is infuriatingly similar to clang::Designator,
/// but minor differences (storing indices vs. storing pointers)
/// keep us from reusing it. Try harder, later, to rectify these
/// differences.
class Designator {
/// @brief The kind of designator this describes.
enum {
FieldDesignator,
ArrayDesignator,
ArrayRangeDesignator
} Kind;
union {
/// A field designator, e.g., ".x".
struct FieldDesignator Field;
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator ArrayOrRange;
};
friend class DesignatedInitExpr;
public:
Designator() {}
/// @brief Initializes a field designator.
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
SourceLocation FieldLoc)
: Kind(FieldDesignator) {
Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
Field.DotLoc = DotLoc.getRawEncoding();
Field.FieldLoc = FieldLoc.getRawEncoding();
}
/// @brief Initializes an array designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation RBracketLoc)
: Kind(ArrayDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
/// @brief Initializes a GNU array-range designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
: Kind(ArrayRangeDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
bool isFieldDesignator() const { return Kind == FieldDesignator; }
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
IdentifierInfo *getFieldName() const;
FieldDecl *getField() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return nullptr;
else
return reinterpret_cast<FieldDecl *>(Field.NameOrField);
}
void setField(FieldDecl *FD) {
assert(Kind == FieldDesignator && "Only valid on a field designator");
Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
}
SourceLocation getDotLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.DotLoc);
}
SourceLocation getFieldLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.FieldLoc);
}
SourceLocation getLBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
}
SourceLocation getRBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
}
SourceLocation getEllipsisLoc() const {
assert(Kind == ArrayRangeDesignator &&
"Only valid on an array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
}
unsigned getFirstExprIndex() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.Index;
}
SourceLocation getLocStart() const LLVM_READONLY {
if (Kind == FieldDesignator)
return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
else
return getLBracketLoc();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocStart(), getLocEnd());
}
};
static DesignatedInitExpr *Create(const ASTContext &C,
Designator *Designators,
unsigned NumDesignators,
ArrayRef<Expr*> IndexExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, Expr *Init);
static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
unsigned NumIndexExprs);
/// @brief Returns the number of designators in this initializer.
unsigned size() const { return NumDesignators; }
// Iterator access to the designators.
typedef Designator *designators_iterator;
designators_iterator designators_begin() { return Designators; }
designators_iterator designators_end() {
return Designators + NumDesignators;
}
typedef const Designator *const_designators_iterator;
const_designators_iterator designators_begin() const { return Designators; }
const_designators_iterator designators_end() const {
return Designators + NumDesignators;
}
typedef llvm::iterator_range<designators_iterator> designators_range;
designators_range designators() {
return designators_range(designators_begin(), designators_end());
}
typedef llvm::iterator_range<const_designators_iterator>
designators_const_range;
designators_const_range designators() const {
return designators_const_range(designators_begin(), designators_end());
}
typedef std::reverse_iterator<designators_iterator>
reverse_designators_iterator;
reverse_designators_iterator designators_rbegin() {
return reverse_designators_iterator(designators_end());
}
reverse_designators_iterator designators_rend() {
return reverse_designators_iterator(designators_begin());
}
typedef std::reverse_iterator<const_designators_iterator>
const_reverse_designators_iterator;
const_reverse_designators_iterator designators_rbegin() const {
return const_reverse_designators_iterator(designators_end());
}
const_reverse_designators_iterator designators_rend() const {
return const_reverse_designators_iterator(designators_begin());
}
Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
void setDesignators(const ASTContext &C, const Designator *Desigs,
unsigned NumDesigs);
Expr *getArrayIndex(const Designator &D) const;
Expr *getArrayRangeStart(const Designator &D) const;
Expr *getArrayRangeEnd(const Designator &D) const;
/// @brief Retrieve the location of the '=' that precedes the
/// initializer value itself, if present.
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
/// @brief Determines whether this designated initializer used the
/// deprecated GNU syntax for designated initializers.
bool usesGNUSyntax() const { return GNUSyntax; }
void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
/// @brief Retrieve the initializer value.
Expr *getInit() const {
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
}
void setInit(Expr *init) {
*child_begin() = init;
}
/// \brief Retrieve the total number of subexpressions in this
/// designated initializer expression, including the actual
/// initialized value and any expressions that occur within array
/// and array-range designators.
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr *getSubExpr(unsigned Idx) const {
assert(Idx < NumSubExprs && "Subscript out of range");
return cast<Expr>(reinterpret_cast<Stmt *const *>(this + 1)[Idx]);
}
void setSubExpr(unsigned Idx, Expr *E) {
assert(Idx < NumSubExprs && "Subscript out of range");
reinterpret_cast<Stmt **>(this + 1)[Idx] = E;
}
/// \brief Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void ExpandDesignator(const ASTContext &C, unsigned Idx,
const Designator *First, const Designator *Last);
SourceRange getDesignatorsSourceRange() const;
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitExprClass;
}
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
return child_range(begin, begin + NumSubExprs);
}
};
/// \brief Represents a place-holder for an object not to be initialized by
/// anything.
///
/// This only makes sense when it appears as part of an updater of a
/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
/// initializes a big object, and the NoInitExpr's mark the spots within the
/// big object not to be overwritten by the updater.
///
/// \see DesignatedInitUpdateExpr
class NoInitExpr : public Expr {
public:
explicit NoInitExpr(QualType ty)
: Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
false, false, ty->isInstantiationDependentType(), false) { }
explicit NoInitExpr(EmptyShell Empty)
: Expr(NoInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == NoInitExprClass;
}
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() { return child_range(); }
};
// In cases like:
// struct Q { int a, b, c; };
// Q *getQ();
// void foo() {
// struct A { Q q; } a = { *getQ(), .q.b = 3 };
// }
//
// We will have an InitListExpr for a, with type A, and then a
// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
//
class DesignatedInitUpdateExpr : public Expr {
// BaseAndUpdaterExprs[0] is the base expression;
// BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
Stmt *BaseAndUpdaterExprs[2];
public:
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
Expr *baseExprs, SourceLocation rBraceLoc);
explicit DesignatedInitUpdateExpr(EmptyShell Empty)
: Expr(DesignatedInitUpdateExprClass, Empty) { }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitUpdateExprClass;
}
Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
InitListExpr *getUpdater() const {
return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
}
void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
// Iterators
// children = the base and the updater
child_range children() {
return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
}
};
/// \brief Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
explicit ImplicitValueInitExpr(QualType ty)
: Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
false, false, ty->isInstantiationDependentType(), false) { }
/// \brief Construct an empty implicit value initialization.
explicit ImplicitValueInitExpr(EmptyShell Empty)
: Expr(ImplicitValueInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitValueInitExprClass;
}
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() { return child_range(); }
};
class ParenListExpr : public Expr {
Stmt **Exprs;
unsigned NumExprs;
SourceLocation LParenLoc, RParenLoc;
public:
ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
ArrayRef<Expr*> exprs, SourceLocation rparenloc);
/// \brief Build an empty paren list.
explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
unsigned getNumExprs() const { return NumExprs; }
const Expr* getExpr(unsigned Init) const {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr* getExpr(unsigned Init) {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenListExprClass;
}
// Iterators
child_range children() {
return child_range(&Exprs[0], &Exprs[0]+NumExprs);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief Represents a C11 generic selection.
///
/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
/// expression, followed by one or more generic associations. Each generic
/// association specifies a type name and an expression, or "default" and an
/// expression (in which case it is known as a default generic association).
/// The type and value of the generic selection are identical to those of its
/// result expression, which is defined as the expression in the generic
/// association with a type name that is compatible with the type of the
/// controlling expression, or the expression in the default generic association
/// if no types are compatible. For example:
///
/// @code
/// _Generic(X, double: 1, float: 2, default: 3)
/// @endcode
///
/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
/// or 3 if "hello".
///
/// As an extension, generic selections are allowed in C++, where the following
/// additional semantics apply:
///
/// Any generic selection whose controlling expression is type-dependent or
/// which names a dependent type in its association list is result-dependent,
/// which means that the choice of result expression is dependent.
/// Result-dependent generic associations are both type- and value-dependent.
class GenericSelectionExpr : public Expr {
enum { CONTROLLING, END_EXPR };
TypeSourceInfo **AssocTypes;
Stmt **SubExprs;
unsigned NumAssocs, ResultIndex;
SourceLocation GenericLoc, DefaultLoc, RParenLoc;
public:
GenericSelectionExpr(const ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// This constructor is used in the result-dependent case.
GenericSelectionExpr(const ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack);
explicit GenericSelectionExpr(EmptyShell Empty)
: Expr(GenericSelectionExprClass, Empty) { }
unsigned getNumAssocs() const { return NumAssocs; }
SourceLocation getGenericLoc() const { return GenericLoc; }
SourceLocation getDefaultLoc() const { return DefaultLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
const Expr *getAssocExpr(unsigned i) const {
return cast<Expr>(SubExprs[END_EXPR+i]);
}
Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
return AssocTypes[i];
}
TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
QualType getAssocType(unsigned i) const {
if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
return TS->getType();
else
return QualType();
}
const Expr *getControllingExpr() const {
return cast<Expr>(SubExprs[CONTROLLING]);
}
Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
/// Whether this generic selection is result-dependent.
bool isResultDependent() const { return ResultIndex == -1U; }
/// The zero-based index of the result expression's generic association in
/// the generic selection's association list. Defined only if the
/// generic selection is not result-dependent.
unsigned getResultIndex() const {
assert(!isResultDependent() && "Generic selection is result-dependent");
return ResultIndex;
}
/// The generic selection's result expression. Defined only if the
/// generic selection is not result-dependent.
const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GenericSelectionExprClass;
}
child_range children() {
return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
}
friend class ASTStmtReader;
};
//===----------------------------------------------------------------------===//
// Clang Extensions
// //
///////////////////////////////////////////////////////////////////////////////
/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
public:
ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc)
: Expr(ExtVectorElementExprClass, ty, VK,
(VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
base->isTypeDependent(), base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), Accessor(&accessor), AccessorLoc(loc) {}
/// \brief Build an empty vector element expression.
explicit ExtVectorElementExpr(EmptyShell Empty)
: Expr(ExtVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into an llvm
/// aggregate Constant of ConstantInt(s).
void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
SourceLocation getLocStart() const LLVM_READONLY {
return getBase()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtVectorElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
};
// HLSL Change Starts
/// ExtMatrixElementExpr - This represents access to specific elements of a
/// matrix, and may occur on the left hand side or right hand side.
///
/// Note that the base may have either matrix or pointer to matrix type, just
/// like a struct field reference.
///
class ExtMatrixElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
hlsl::MatrixMemberAccessPositions Positions;
public:
ExtMatrixElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc, hlsl::MatrixMemberAccessPositions positions)
: Expr(ExtMatrixElementExprClass, ty, VK,
(VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
base->isTypeDependent(), base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), Accessor(&accessor), AccessorLoc(loc), Positions(positions) {}
/// \brief Build an empty vector element expression.
explicit ExtMatrixElementExpr(EmptyShell Empty)
: Expr(ExtMatrixElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const { return Positions.Count; }
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const { return Positions.ContainsDuplicateElements(); }
/// getEncodedElementAccess - Encode the elements accessed
hlsl::MatrixMemberAccessPositions getEncodedElementAccess() const { return Positions; }
/// getEncodedElementAccess - Encode the elements accessed
void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const {
for (uint32_t i = 0; i < Positions.Count; i++) {
uint32_t row, col;
// Save both row and col.
Positions.GetPosition(i, &row, &col);
Elts.push_back(row);
Elts.push_back(col);
}
}
SourceLocation getLocStart() const LLVM_READONLY{
return getBase()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY{ return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const { return getBase()->getType()->isPointerType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtMatrixElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base + 1); }
};
/// HLSLVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class HLSLVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
hlsl::VectorMemberAccessPositions Positions;
public:
HLSLVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc, hlsl::VectorMemberAccessPositions positions)
: Expr(HLSLVectorElementExprClass, ty, VK,
(VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
base->isTypeDependent(), base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), Accessor(&accessor), AccessorLoc(loc), Positions(positions) {}
/// \brief Build an empty vector element expression.
explicit HLSLVectorElementExpr(EmptyShell Empty)
: Expr(HLSLVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const { return Positions.Count; }
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const { return Positions.ContainsDuplicateElements(); }
/// getEncodedElementAccess - Encode the elements accessed
hlsl::VectorMemberAccessPositions getEncodedElementAccess() const { return Positions; }
/// getEncodedElementAccess - Encode the elements accessed
void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const {
StringRef Comp = Accessor->getName();
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
uint64_t Index = ExtVectorType::getPointAccessorIdx(Comp[i]);
Elts.push_back(Index);
}
}
SourceLocation getLocStart() const LLVM_READONLY{
return getBase()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY{ return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const { return getBase()->getType()->isPointerType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == HLSLVectorElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base + 1); }
};
// HLSL Change Ends
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
BlockDecl *TheBlock;
public:
BlockExpr(BlockDecl *BD, QualType ty)
: Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
ty->isDependentType(), ty->isDependentType(),
ty->isInstantiationDependentType() || BD->isDependentContext(),
false),
TheBlock(BD) {}
/// \brief Build an empty block expression.
explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
const BlockDecl *getBlockDecl() const { return TheBlock; }
BlockDecl *getBlockDecl() { return TheBlock; }
void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
// Convenience functions for probing the underlying BlockDecl.
SourceLocation getCaretLocation() const;
const Stmt *getBody() const;
Stmt *getBody();
SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
/// getFunctionType - Return the underlying function type for this block.
const FunctionProtoType *getFunctionType() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
/// This AST node provides support for reinterpreting a type to another
/// type of the same size.
class AsTypeExpr : public Expr {
private:
Stmt *SrcExpr;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
public:
AsTypeExpr(Expr* SrcExpr, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(AsTypeExprClass, DstType, VK, OK,
DstType->isDependentType(),
DstType->isDependentType() || SrcExpr->isValueDependent(),
(DstType->isInstantiationDependentType() ||
SrcExpr->isInstantiationDependent()),
(DstType->containsUnexpandedParameterPack() ||
SrcExpr->containsUnexpandedParameterPack())),
SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getBuiltinLoc - Return the location of the __builtin_astype token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AsTypeExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
};
/// PseudoObjectExpr - An expression which accesses a pseudo-object
/// l-value. A pseudo-object is an abstract object, accesses to which
/// are translated to calls. The pseudo-object expression has a
/// syntactic form, which shows how the expression was actually
/// written in the source code, and a semantic form, which is a series
/// of expressions to be executed in order which detail how the
/// operation is actually evaluated. Optionally, one of the semantic
/// forms may also provide a result value for the expression.
///
/// If any of the semantic-form expressions is an OpaqueValueExpr,
/// that OVE is required to have a source expression, and it is bound
/// to the result of that source expression. Such OVEs may appear
/// only in subsequent semantic-form expressions and as
/// sub-expressions of the syntactic form.
///
/// PseudoObjectExpr should be used only when an operation can be
/// usefully described in terms of fairly simple rewrite rules on
/// objects and functions that are meant to be used by end-developers.
/// For example, under the Itanium ABI, dynamic casts are implemented
/// as a call to a runtime function called __dynamic_cast; using this
/// class to describe that would be inappropriate because that call is
/// not really part of the user-visible semantics, and instead the
/// cast is properly reflected in the AST and IR-generation has been
/// taught to generate the call as necessary. In contrast, an
/// Objective-C property access is semantically defined to be
/// equivalent to a particular message send, and this is very much
/// part of the user model. The name of this class encourages this
/// modelling design.
class PseudoObjectExpr : public Expr {
// PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
// Always at least two, because the first sub-expression is the
// syntactic form.
// PseudoObjectExprBits.ResultIndex - The index of the
// sub-expression holding the result. 0 means the result is void,
// which is unambiguous because it's the index of the syntactic
// form. Note that this is therefore 1 higher than the value passed
// in to Create, which is an index within the semantic forms.
// Note also that ASTStmtWriter assumes this encoding.
Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
const Expr * const *getSubExprsBuffer() const {
return reinterpret_cast<const Expr * const *>(this + 1);
}
friend class ASTStmtReader;
PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntactic, ArrayRef<Expr*> semantic,
unsigned resultIndex);
PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
unsigned getNumSubExprs() const {
return PseudoObjectExprBits.NumSubExprs;
}
public:
/// NoResult - A value for the result index indicating that there is
/// no semantic result.
enum : unsigned { NoResult = ~0U };
static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
ArrayRef<Expr*> semantic,
unsigned resultIndex);
static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
unsigned numSemanticExprs);
/// Return the syntactic form of this expression, i.e. the
/// expression it actually looks like. Likely to be expressed in
/// terms of OpaqueValueExprs bound in the semantic form.
Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
/// Return the index of the result-bearing expression into the semantics
/// expressions, or PseudoObjectExpr::NoResult if there is none.
unsigned getResultExprIndex() const {
if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
return PseudoObjectExprBits.ResultIndex - 1;
}
/// Return the result-bearing expression, or null if there is none.
Expr *getResultExpr() {
if (PseudoObjectExprBits.ResultIndex == 0)
return nullptr;
return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
}
const Expr *getResultExpr() const {
return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
}
unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
typedef Expr * const *semantics_iterator;
typedef const Expr * const *const_semantics_iterator;
semantics_iterator semantics_begin() {
return getSubExprsBuffer() + 1;
}
const_semantics_iterator semantics_begin() const {
return getSubExprsBuffer() + 1;
}
semantics_iterator semantics_end() {
return getSubExprsBuffer() + getNumSubExprs();
}
const_semantics_iterator semantics_end() const {
return getSubExprsBuffer() + getNumSubExprs();
}
Expr *getSemanticExpr(unsigned index) {
assert(index + 1 < getNumSubExprs());
return getSubExprsBuffer()[index + 1];
}
const Expr *getSemanticExpr(unsigned index) const {
return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSyntacticForm()->getExprLoc();
}
SourceLocation getLocStart() const LLVM_READONLY {
return getSyntacticForm()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getSyntacticForm()->getLocEnd();
}
child_range children() {
Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
return child_range(cs, cs + getNumSubExprs());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == PseudoObjectExprClass;
}
};
/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
/// All of these instructions take one primary pointer and at least one memory
/// order.
class AtomicExpr : public Expr {
public:
enum AtomicOp {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
#include "clang/Basic/Builtins.def"
// Avoid trailing comma
BI_First = 0
};
// The ABI values for various atomic memory orderings.
enum AtomicOrderingKind {
AO_ABI_memory_order_relaxed = 0,
AO_ABI_memory_order_consume = 1,
AO_ABI_memory_order_acquire = 2,
AO_ABI_memory_order_release = 3,
AO_ABI_memory_order_acq_rel = 4,
AO_ABI_memory_order_seq_cst = 5
};
private:
enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
Stmt* SubExprs[END_EXPR];
unsigned NumSubExprs;
SourceLocation BuiltinLoc, RParenLoc;
AtomicOp Op;
friend class ASTStmtReader;
public:
AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
AtomicOp op, SourceLocation RP);
/// \brief Determine the number of arguments the specified atomic builtin
/// should have.
static unsigned getNumSubExprs(AtomicOp Op);
/// \brief Build an empty AtomicExpr.
explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
Expr *getPtr() const {
return cast<Expr>(SubExprs[PTR]);
}
Expr *getOrder() const {
return cast<Expr>(SubExprs[ORDER]);
}
Expr *getVal1() const {
if (Op == AO__c11_atomic_init)
return cast<Expr>(SubExprs[ORDER]);
assert(NumSubExprs > VAL1);
return cast<Expr>(SubExprs[VAL1]);
}
Expr *getOrderFail() const {
assert(NumSubExprs > ORDER_FAIL);
return cast<Expr>(SubExprs[ORDER_FAIL]);
}
Expr *getVal2() const {
if (Op == AO__atomic_exchange)
return cast<Expr>(SubExprs[ORDER_FAIL]);
assert(NumSubExprs > VAL2);
return cast<Expr>(SubExprs[VAL2]);
}
Expr *getWeak() const {
assert(NumSubExprs > WEAK);
return cast<Expr>(SubExprs[WEAK]);
}
AtomicOp getOp() const { return Op; }
unsigned getNumSubExprs() { return NumSubExprs; }
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
bool isVolatile() const {
return getPtr()->getType()->getPointeeType().isVolatileQualified();
}
bool isCmpXChg() const {
return getOp() == AO__c11_atomic_compare_exchange_strong ||
getOp() == AO__c11_atomic_compare_exchange_weak ||
getOp() == AO__atomic_compare_exchange ||
getOp() == AO__atomic_compare_exchange_n;
}
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AtomicExprClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs+NumSubExprs);
}
};
/// TypoExpr - Internal placeholder for expressions where typo correction
/// still needs to be performed and/or an error diagnostic emitted.
class TypoExpr : public Expr {
public:
TypoExpr(QualType T)
: Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
/*isTypeDependent*/ true,
/*isValueDependent*/ true,
/*isInstantiationDependent*/ true,
/*containsUnexpandedParameterPack*/ false) {
assert(T->isDependentType() && "TypoExpr given a non-dependent type");
}
child_range children() { return child_range(); }
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/GlobalDecl.h | //===--- GlobalDecl.h - Global declaration holder ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A GlobalDecl can hold either a regular variable/function or a C++ ctor/dtor
// together with its type.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_GLOBALDECL_H
#define LLVM_CLANG_AST_GLOBALDECL_H
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/ABI.h"
namespace clang {
/// GlobalDecl - represents a global declaration. This can either be a
/// CXXConstructorDecl and the constructor type (Base, Complete).
/// a CXXDestructorDecl and the destructor type (Base, Complete) or
/// a VarDecl, a FunctionDecl or a BlockDecl.
class GlobalDecl {
llvm::PointerIntPair<const Decl*, 2> Value;
void Init(const Decl *D) {
assert(!isa<CXXConstructorDecl>(D) && "Use other ctor with ctor decls!");
assert(!isa<CXXDestructorDecl>(D) && "Use other ctor with dtor decls!");
Value.setPointer(D);
}
public:
GlobalDecl() {}
GlobalDecl(const VarDecl *D) { Init(D);}
GlobalDecl(const FunctionDecl *D) { Init(D); }
GlobalDecl(const BlockDecl *D) { Init(D); }
GlobalDecl(const CapturedDecl *D) { Init(D); }
GlobalDecl(const ObjCMethodDecl *D) { Init(D); }
GlobalDecl(const CXXConstructorDecl *D, CXXCtorType Type)
: Value(D, Type) {}
GlobalDecl(const CXXDestructorDecl *D, CXXDtorType Type)
: Value(D, Type) {}
GlobalDecl getCanonicalDecl() const {
GlobalDecl CanonGD;
CanonGD.Value.setPointer(Value.getPointer()->getCanonicalDecl());
CanonGD.Value.setInt(Value.getInt());
return CanonGD;
}
const Decl *getDecl() const { return Value.getPointer(); }
CXXCtorType getCtorType() const {
assert(isa<CXXConstructorDecl>(getDecl()) && "Decl is not a ctor!");
return static_cast<CXXCtorType>(Value.getInt());
}
CXXDtorType getDtorType() const {
assert(isa<CXXDestructorDecl>(getDecl()) && "Decl is not a dtor!");
return static_cast<CXXDtorType>(Value.getInt());
}
friend bool operator==(const GlobalDecl &LHS, const GlobalDecl &RHS) {
return LHS.Value == RHS.Value;
}
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static GlobalDecl getFromOpaquePtr(void *P) {
GlobalDecl GD;
GD.Value.setFromOpaqueValue(P);
return GD;
}
GlobalDecl getWithDecl(const Decl *D) {
GlobalDecl Result(*this);
Result.Value.setPointer(D);
return Result;
}
};
} // end namespace clang
namespace llvm {
template<class> struct DenseMapInfo;
template<> struct DenseMapInfo<clang::GlobalDecl> {
static inline clang::GlobalDecl getEmptyKey() {
return clang::GlobalDecl();
}
static inline clang::GlobalDecl getTombstoneKey() {
return clang::GlobalDecl::
getFromOpaquePtr(reinterpret_cast<void*>(-1));
}
static unsigned getHashValue(clang::GlobalDecl GD) {
return DenseMapInfo<void*>::getHashValue(GD.getAsOpaquePtr());
}
static bool isEqual(clang::GlobalDecl LHS,
clang::GlobalDecl RHS) {
return LHS == RHS;
}
};
// GlobalDecl isn't *technically* a POD type. However, its copy constructor,
// copy assignment operator, and destructor are all trivial.
template <>
struct isPodLike<clang::GlobalDecl> {
static const bool value = true;
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TemplateName.h | //===--- TemplateName.h - C++ Template Name Representation-------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TemplateName interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TEMPLATENAME_H
#define LLVM_CLANG_AST_TEMPLATENAME_H
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerUnion.h"
namespace clang {
class ASTContext;
class DependentTemplateName;
class DiagnosticBuilder;
class IdentifierInfo;
class NamedDecl;
class NestedNameSpecifier;
enum OverloadedOperatorKind : int;
class OverloadedTemplateStorage;
struct PrintingPolicy;
class QualifiedTemplateName;
class SubstTemplateTemplateParmPackStorage;
class SubstTemplateTemplateParmStorage;
class TemplateArgument;
class TemplateDecl;
class TemplateTemplateParmDecl;
/// \brief Implementation class used to describe either a set of overloaded
/// template names or an already-substituted template template parameter pack.
class UncommonTemplateNameStorage {
protected:
enum Kind {
Overloaded,
SubstTemplateTemplateParm,
SubstTemplateTemplateParmPack
};
struct BitsTag {
/// \brief A Kind.
unsigned Kind : 2;
/// \brief The number of stored templates or template arguments,
/// depending on which subclass we have.
unsigned Size : 30;
};
union {
struct BitsTag Bits;
void *PointerAlignment;
};
UncommonTemplateNameStorage(Kind kind, unsigned size) {
Bits.Kind = kind;
Bits.Size = size;
}
public:
unsigned size() const { return Bits.Size; }
OverloadedTemplateStorage *getAsOverloadedStorage() {
return Bits.Kind == Overloaded
? reinterpret_cast<OverloadedTemplateStorage *>(this)
: nullptr;
}
SubstTemplateTemplateParmStorage *getAsSubstTemplateTemplateParm() {
return Bits.Kind == SubstTemplateTemplateParm
? reinterpret_cast<SubstTemplateTemplateParmStorage *>(this)
: nullptr;
}
SubstTemplateTemplateParmPackStorage *getAsSubstTemplateTemplateParmPack() {
return Bits.Kind == SubstTemplateTemplateParmPack
? reinterpret_cast<SubstTemplateTemplateParmPackStorage *>(this)
: nullptr;
}
};
/// \brief A structure for storing the information associated with an
/// overloaded template name.
class OverloadedTemplateStorage : public UncommonTemplateNameStorage {
friend class ASTContext;
OverloadedTemplateStorage(unsigned size)
: UncommonTemplateNameStorage(Overloaded, size) { }
NamedDecl **getStorage() {
return reinterpret_cast<NamedDecl **>(this + 1);
}
NamedDecl * const *getStorage() const {
return reinterpret_cast<NamedDecl *const *>(this + 1);
}
public:
typedef NamedDecl *const *iterator;
iterator begin() const { return getStorage(); }
iterator end() const { return getStorage() + size(); }
};
/// \brief A structure for storing an already-substituted template template
/// parameter pack.
///
/// This kind of template names occurs when the parameter pack has been
/// provided with a template template argument pack in a context where its
/// enclosing pack expansion could not be fully expanded.
class SubstTemplateTemplateParmPackStorage
: public UncommonTemplateNameStorage, public llvm::FoldingSetNode
{
TemplateTemplateParmDecl *Parameter;
const TemplateArgument *Arguments;
public:
SubstTemplateTemplateParmPackStorage(TemplateTemplateParmDecl *Parameter,
unsigned Size,
const TemplateArgument *Arguments)
: UncommonTemplateNameStorage(SubstTemplateTemplateParmPack, Size),
Parameter(Parameter), Arguments(Arguments) { }
/// \brief Retrieve the template template parameter pack being substituted.
TemplateTemplateParmDecl *getParameterPack() const {
return Parameter;
}
/// \brief Retrieve the template template argument pack with which this
/// parameter was substituted.
TemplateArgument getArgumentPack() const;
void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context);
static void Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
TemplateTemplateParmDecl *Parameter,
const TemplateArgument &ArgPack);
};
/// \brief Represents a C++ template name within the type system.
///
/// A C++ template name refers to a template within the C++ type
/// system. In most cases, a template name is simply a reference to a
/// class template, e.g.
///
/// \code
/// template<typename T> class X { };
///
/// X<int> xi;
/// \endcode
///
/// Here, the 'X' in \c X<int> is a template name that refers to the
/// declaration of the class template X, above. Template names can
/// also refer to function templates, C++0x template aliases, etc.
///
/// Some template names are dependent. For example, consider:
///
/// \code
/// template<typename MetaFun, typename T1, typename T2> struct apply2 {
/// typedef typename MetaFun::template apply<T1, T2>::type type;
/// };
/// \endcode
///
/// Here, "apply" is treated as a template name within the typename
/// specifier in the typedef. "apply" is a nested template, and can
/// only be understood in the context of
class TemplateName {
typedef llvm::PointerUnion4<TemplateDecl *,
UncommonTemplateNameStorage *,
QualifiedTemplateName *,
DependentTemplateName *> StorageType;
StorageType Storage;
explicit TemplateName(void *Ptr) {
Storage = StorageType::getFromOpaqueValue(Ptr);
}
public:
// \brief Kind of name that is actually stored.
enum NameKind {
/// \brief A single template declaration.
Template,
/// \brief A set of overloaded template declarations.
OverloadedTemplate,
/// \brief A qualified template name, where the qualification is kept
/// to describe the source code as written.
QualifiedTemplate,
/// \brief A dependent template name that has not been resolved to a
/// template (or set of templates).
DependentTemplate,
/// \brief A template template parameter that has been substituted
/// for some other template name.
SubstTemplateTemplateParm,
/// \brief A template template parameter pack that has been substituted for
/// a template template argument pack, but has not yet been expanded into
/// individual arguments.
SubstTemplateTemplateParmPack
};
TemplateName() : Storage() { }
explicit TemplateName(TemplateDecl *Template) : Storage(Template) { }
explicit TemplateName(OverloadedTemplateStorage *Storage)
: Storage(Storage) { }
explicit TemplateName(SubstTemplateTemplateParmStorage *Storage);
explicit TemplateName(SubstTemplateTemplateParmPackStorage *Storage)
: Storage(Storage) { }
explicit TemplateName(QualifiedTemplateName *Qual) : Storage(Qual) { }
explicit TemplateName(DependentTemplateName *Dep) : Storage(Dep) { }
/// \brief Determine whether this template name is NULL.
bool isNull() const { return Storage.isNull(); }
// \brief Get the kind of name that is actually stored.
NameKind getKind() const;
/// \brief Retrieve the underlying template declaration that
/// this template name refers to, if known.
///
/// \returns The template declaration that this template name refers
/// to, if any. If the template name does not refer to a specific
/// declaration because it is a dependent name, or if it refers to a
/// set of function templates, returns NULL.
TemplateDecl *getAsTemplateDecl() const;
/// \brief Retrieve the underlying, overloaded function template
// declarations that this template name refers to, if known.
///
/// \returns The set of overloaded function templates that this template
/// name refers to, if known. If the template name does not refer to a
/// specific set of function templates because it is a dependent name or
/// refers to a single template, returns NULL.
OverloadedTemplateStorage *getAsOverloadedTemplate() const {
if (UncommonTemplateNameStorage *Uncommon =
Storage.dyn_cast<UncommonTemplateNameStorage *>())
return Uncommon->getAsOverloadedStorage();
return nullptr;
}
/// \brief Retrieve the substituted template template parameter, if
/// known.
///
/// \returns The storage for the substituted template template parameter,
/// if known. Otherwise, returns NULL.
SubstTemplateTemplateParmStorage *getAsSubstTemplateTemplateParm() const {
if (UncommonTemplateNameStorage *uncommon =
Storage.dyn_cast<UncommonTemplateNameStorage *>())
return uncommon->getAsSubstTemplateTemplateParm();
return nullptr;
}
/// \brief Retrieve the substituted template template parameter pack, if
/// known.
///
/// \returns The storage for the substituted template template parameter pack,
/// if known. Otherwise, returns NULL.
SubstTemplateTemplateParmPackStorage *
getAsSubstTemplateTemplateParmPack() const {
if (UncommonTemplateNameStorage *Uncommon =
Storage.dyn_cast<UncommonTemplateNameStorage *>())
return Uncommon->getAsSubstTemplateTemplateParmPack();
return nullptr;
}
/// \brief Retrieve the underlying qualified template name
/// structure, if any.
QualifiedTemplateName *getAsQualifiedTemplateName() const {
return Storage.dyn_cast<QualifiedTemplateName *>();
}
/// \brief Retrieve the underlying dependent template name
/// structure, if any.
DependentTemplateName *getAsDependentTemplateName() const {
return Storage.dyn_cast<DependentTemplateName *>();
}
TemplateName getUnderlying() const;
/// \brief Determines whether this is a dependent template name.
bool isDependent() const;
/// \brief Determines whether this is a template name that somehow
/// depends on a template parameter.
bool isInstantiationDependent() const;
/// \brief Determines whether this template name contains an
/// unexpanded parameter pack (for C++0x variadic templates).
bool containsUnexpandedParameterPack() const;
/// \brief Print the template name.
///
/// \param OS the output stream to which the template name will be
/// printed.
///
/// \param SuppressNNS if true, don't print the
/// nested-name-specifier that precedes the template name (if it has
/// one).
void print(raw_ostream &OS, const PrintingPolicy &Policy,
bool SuppressNNS = false) const;
/// \brief Debugging aid that dumps the template name.
void dump(raw_ostream &OS) const;
/// \brief Debugging aid that dumps the template name to standard
/// error.
void dump() const;
void Profile(llvm::FoldingSetNodeID &ID) {
ID.AddPointer(Storage.getOpaqueValue());
}
/// \brief Retrieve the template name as a void pointer.
void *getAsVoidPointer() const { return Storage.getOpaqueValue(); }
/// \brief Build a template name from a void pointer.
static TemplateName getFromVoidPointer(void *Ptr) {
return TemplateName(Ptr);
}
};
/// Insertion operator for diagnostics. This allows sending TemplateName's
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
TemplateName N);
/// \brief A structure for storing the information associated with a
/// substituted template template parameter.
class SubstTemplateTemplateParmStorage
: public UncommonTemplateNameStorage, public llvm::FoldingSetNode {
friend class ASTContext;
TemplateTemplateParmDecl *Parameter;
TemplateName Replacement;
SubstTemplateTemplateParmStorage(TemplateTemplateParmDecl *parameter,
TemplateName replacement)
: UncommonTemplateNameStorage(SubstTemplateTemplateParm, 0),
Parameter(parameter), Replacement(replacement) {}
public:
TemplateTemplateParmDecl *getParameter() const { return Parameter; }
TemplateName getReplacement() const { return Replacement; }
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
TemplateTemplateParmDecl *parameter,
TemplateName replacement);
};
inline TemplateName::TemplateName(SubstTemplateTemplateParmStorage *Storage)
: Storage(Storage) { }
inline TemplateName TemplateName::getUnderlying() const {
if (SubstTemplateTemplateParmStorage *subst
= getAsSubstTemplateTemplateParm())
return subst->getReplacement().getUnderlying();
return *this;
}
/// \brief Represents a template name that was expressed as a
/// qualified name.
///
/// This kind of template name refers to a template name that was
/// preceded by a nested name specifier, e.g., \c std::vector. Here,
/// the nested name specifier is "std::" and the template name is the
/// declaration for "vector". The QualifiedTemplateName class is only
/// used to provide "sugar" for template names that were expressed
/// with a qualified name, and has no semantic meaning. In this
/// manner, it is to TemplateName what ElaboratedType is to Type,
/// providing extra syntactic sugar for downstream clients.
class QualifiedTemplateName : public llvm::FoldingSetNode {
/// \brief The nested name specifier that qualifies the template name.
///
/// The bit is used to indicate whether the "template" keyword was
/// present before the template name itself. Note that the
/// "template" keyword is always redundant in this case (otherwise,
/// the template name would be a dependent name and we would express
/// this name with DependentTemplateName).
llvm::PointerIntPair<NestedNameSpecifier *, 1> Qualifier;
/// \brief The template declaration or set of overloaded function templates
/// that this qualified name refers to.
TemplateDecl *Template;
friend class ASTContext;
QualifiedTemplateName(NestedNameSpecifier *NNS, bool TemplateKeyword,
TemplateDecl *Template)
: Qualifier(NNS, TemplateKeyword? 1 : 0),
Template(Template) { }
public:
/// \brief Return the nested name specifier that qualifies this name.
NestedNameSpecifier *getQualifier() const { return Qualifier.getPointer(); }
/// \brief Whether the template name was prefixed by the "template"
/// keyword.
bool hasTemplateKeyword() const { return Qualifier.getInt(); }
/// \brief The template declaration that this qualified name refers
/// to.
TemplateDecl *getDecl() const { return Template; }
/// \brief The template declaration to which this qualified name
/// refers.
TemplateDecl *getTemplateDecl() const { return Template; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getQualifier(), hasTemplateKeyword(), getTemplateDecl());
}
static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
bool TemplateKeyword, TemplateDecl *Template) {
ID.AddPointer(NNS);
ID.AddBoolean(TemplateKeyword);
ID.AddPointer(Template);
}
};
/// \brief Represents a dependent template name that cannot be
/// resolved prior to template instantiation.
///
/// This kind of template name refers to a dependent template name,
/// including its nested name specifier (if any). For example,
/// DependentTemplateName can refer to "MetaFun::template apply",
/// where "MetaFun::" is the nested name specifier and "apply" is the
/// template name referenced. The "template" keyword is implied.
class DependentTemplateName : public llvm::FoldingSetNode {
/// \brief The nested name specifier that qualifies the template
/// name.
///
/// The bit stored in this qualifier describes whether the \c Name field
/// is interpreted as an IdentifierInfo pointer (when clear) or as an
/// overloaded operator kind (when set).
llvm::PointerIntPair<NestedNameSpecifier *, 1, bool> Qualifier;
/// \brief The dependent template name.
union {
/// \brief The identifier template name.
///
/// Only valid when the bit on \c Qualifier is clear.
const IdentifierInfo *Identifier;
/// \brief The overloaded operator name.
///
/// Only valid when the bit on \c Qualifier is set.
OverloadedOperatorKind Operator;
};
/// \brief The canonical template name to which this dependent
/// template name refers.
///
/// The canonical template name for a dependent template name is
/// another dependent template name whose nested name specifier is
/// canonical.
TemplateName CanonicalTemplateName;
friend class ASTContext;
DependentTemplateName(NestedNameSpecifier *Qualifier,
const IdentifierInfo *Identifier)
: Qualifier(Qualifier, false), Identifier(Identifier),
CanonicalTemplateName(this) { }
DependentTemplateName(NestedNameSpecifier *Qualifier,
const IdentifierInfo *Identifier,
TemplateName Canon)
: Qualifier(Qualifier, false), Identifier(Identifier),
CanonicalTemplateName(Canon) { }
DependentTemplateName(NestedNameSpecifier *Qualifier,
OverloadedOperatorKind Operator)
: Qualifier(Qualifier, true), Operator(Operator),
CanonicalTemplateName(this) { }
DependentTemplateName(NestedNameSpecifier *Qualifier,
OverloadedOperatorKind Operator,
TemplateName Canon)
: Qualifier(Qualifier, true), Operator(Operator),
CanonicalTemplateName(Canon) { }
public:
/// \brief Return the nested name specifier that qualifies this name.
NestedNameSpecifier *getQualifier() const { return Qualifier.getPointer(); }
/// \brief Determine whether this template name refers to an identifier.
bool isIdentifier() const { return !Qualifier.getInt(); }
/// \brief Returns the identifier to which this template name refers.
const IdentifierInfo *getIdentifier() const {
assert(isIdentifier() && "Template name isn't an identifier?");
return Identifier;
}
/// \brief Determine whether this template name refers to an overloaded
/// operator.
bool isOverloadedOperator() const { return Qualifier.getInt(); }
/// \brief Return the overloaded operator to which this template name refers.
OverloadedOperatorKind getOperator() const {
assert(isOverloadedOperator() &&
"Template name isn't an overloaded operator?");
return Operator;
}
void Profile(llvm::FoldingSetNodeID &ID) {
if (isIdentifier())
Profile(ID, getQualifier(), getIdentifier());
else
Profile(ID, getQualifier(), getOperator());
}
static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
const IdentifierInfo *Identifier) {
ID.AddPointer(NNS);
ID.AddBoolean(false);
ID.AddPointer(Identifier);
}
static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator) {
ID.AddPointer(NNS);
ID.AddBoolean(true);
ID.AddInteger(Operator);
}
};
} // end namespace clang.
namespace llvm {
/// \brief The clang::TemplateName class is effectively a pointer.
template<>
class PointerLikeTypeTraits<clang::TemplateName> {
public:
static inline void *getAsVoidPointer(clang::TemplateName TN) {
return TN.getAsVoidPointer();
}
static inline clang::TemplateName getFromVoidPointer(void *Ptr) {
return clang::TemplateName::getFromVoidPointer(Ptr);
}
// No bits are available!
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm.
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TypeLoc.h | //===--- TypeLoc.h - Type Source Info Wrapper -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::TypeLoc interface and its subclasses.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPELOC_H
#define LLVM_CLANG_AST_TYPELOC_H
#include "clang/AST/Decl.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class ASTContext;
class ParmVarDecl;
class TypeSourceInfo;
class UnqualTypeLoc;
// Predeclare all the type nodes.
#define ABSTRACT_TYPELOC(Class, Base)
#define TYPELOC(Class, Base) \
class Class##TypeLoc;
#include "clang/AST/TypeLocNodes.def"
/// \brief Base wrapper for a particular "section" of type source info.
///
/// A client should use the TypeLoc subclasses through castAs()/getAs()
/// in order to get at the actual information.
class TypeLoc {
protected:
// The correctness of this relies on the property that, for Type *Ty,
// QualType(Ty, 0).getAsOpaquePtr() == (void*) Ty
const void *Ty;
void *Data;
public:
/// \brief Convert to the specified TypeLoc type, asserting that this TypeLoc
/// is of the desired type.
///
/// \pre T::isKind(*this)
template<typename T>
T castAs() const {
assert(T::isKind(*this));
T t;
TypeLoc& tl = t;
tl = *this;
return t;
}
/// \brief Convert to the specified TypeLoc type, returning a null TypeLoc if
/// this TypeLoc is not of the desired type.
template<typename T>
T getAs() const {
if (!T::isKind(*this))
return T();
T t;
TypeLoc& tl = t;
tl = *this;
return t;
}
/// The kinds of TypeLocs. Equivalent to the Type::TypeClass enum,
/// except it also defines a Qualified enum that corresponds to the
/// QualifiedLoc class.
enum TypeLocClass {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
Class = Type::Class,
#include "clang/AST/TypeNodes.def"
Qualified
};
TypeLoc() : Ty(nullptr), Data(nullptr) { }
TypeLoc(QualType ty, void *opaqueData)
: Ty(ty.getAsOpaquePtr()), Data(opaqueData) { }
TypeLoc(const Type *ty, void *opaqueData)
: Ty(ty), Data(opaqueData) { }
TypeLocClass getTypeLocClass() const {
if (getType().hasLocalQualifiers()) return Qualified;
return (TypeLocClass) getType()->getTypeClass();
}
bool isNull() const { return !Ty; }
explicit operator bool() const { return Ty; }
/// \brief Returns the size of type source info data block for the given type.
static unsigned getFullDataSizeForType(QualType Ty);
/// \brief Returns the alignment of type source info data block for
/// the given type.
static unsigned getLocalAlignmentForType(QualType Ty);
/// \brief Get the type for which this source info wrapper provides
/// information.
QualType getType() const {
return QualType::getFromOpaquePtr(Ty);
}
const Type *getTypePtr() const {
return QualType::getFromOpaquePtr(Ty).getTypePtr();
}
/// \brief Get the pointer where source information is stored.
void *getOpaqueData() const {
return Data;
}
/// \brief Get the begin source location.
SourceLocation getBeginLoc() const;
/// \brief Get the end source location.
SourceLocation getEndLoc() const;
/// \brief Get the full source range.
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getBeginLoc(), getEndLoc());
}
SourceLocation getLocStart() const LLVM_READONLY { return getBeginLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
/// \brief Get the local source range.
SourceRange getLocalSourceRange() const {
return getLocalSourceRangeImpl(*this);
}
/// \brief Returns the size of the type source info data block.
unsigned getFullDataSize() const {
return getFullDataSizeForType(getType());
}
/// \brief Get the next TypeLoc pointed by this TypeLoc, e.g for "int*" the
/// TypeLoc is a PointerLoc and next TypeLoc is for "int".
TypeLoc getNextTypeLoc() const {
return getNextTypeLocImpl(*this);
}
/// \brief Skips past any qualifiers, if this is qualified.
UnqualTypeLoc getUnqualifiedLoc() const; // implemented in this header
TypeLoc IgnoreParens() const;
/// \brief Initializes this to state that every location in this
/// type is the given location.
///
/// This method exists to provide a simple transition for code that
/// relies on location-less types.
void initialize(ASTContext &Context, SourceLocation Loc) const {
initializeImpl(Context, *this, Loc);
}
/// \brief Initializes this by copying its information from another
/// TypeLoc of the same type.
void initializeFullCopy(TypeLoc Other) const {
assert(getType() == Other.getType());
size_t Size = getFullDataSize();
memcpy(getOpaqueData(), Other.getOpaqueData(), Size);
}
/// \brief Initializes this by copying its information from another
/// TypeLoc of the same type. The given size must be the full data
/// size.
void initializeFullCopy(TypeLoc Other, unsigned Size) const {
assert(getType() == Other.getType());
assert(getFullDataSize() == Size);
memcpy(getOpaqueData(), Other.getOpaqueData(), Size);
}
/// Copies the other type loc into this one.
void copy(TypeLoc other);
friend bool operator==(const TypeLoc &LHS, const TypeLoc &RHS) {
return LHS.Ty == RHS.Ty && LHS.Data == RHS.Data;
}
friend bool operator!=(const TypeLoc &LHS, const TypeLoc &RHS) {
return !(LHS == RHS);
}
/// Find the location of the nullability specifier (__nonnull,
/// __nullable, or __null_unspecifier), if there is one.
SourceLocation findNullabilityLoc() const;
private:
static bool isKind(const TypeLoc&) {
return true;
}
static void initializeImpl(ASTContext &Context, TypeLoc TL,
SourceLocation Loc);
static TypeLoc getNextTypeLocImpl(TypeLoc TL);
static TypeLoc IgnoreParensImpl(TypeLoc TL);
static SourceRange getLocalSourceRangeImpl(TypeLoc TL);
};
/// \brief Return the TypeLoc for a type source info.
inline TypeLoc TypeSourceInfo::getTypeLoc() const {
return TypeLoc(Ty, const_cast<void*>(static_cast<const void*>(this + 1)));
}
/// \brief Wrapper of type source information for a type with
/// no direct qualifiers.
class UnqualTypeLoc : public TypeLoc {
public:
UnqualTypeLoc() {}
UnqualTypeLoc(const Type *Ty, void *Data) : TypeLoc(Ty, Data) {}
const Type *getTypePtr() const {
return reinterpret_cast<const Type*>(Ty);
}
TypeLocClass getTypeLocClass() const {
return (TypeLocClass) getTypePtr()->getTypeClass();
}
private:
friend class TypeLoc;
static bool isKind(const TypeLoc &TL) {
return !TL.getType().hasLocalQualifiers();
}
};
/// \brief Wrapper of type source information for a type with
/// non-trivial direct qualifiers.
///
/// Currently, we intentionally do not provide source location for
/// type qualifiers.
class QualifiedTypeLoc : public TypeLoc {
public:
SourceRange getLocalSourceRange() const {
return SourceRange();
}
UnqualTypeLoc getUnqualifiedLoc() const {
unsigned align =
TypeLoc::getLocalAlignmentForType(QualType(getTypePtr(), 0));
uintptr_t dataInt = reinterpret_cast<uintptr_t>(Data);
dataInt = llvm::RoundUpToAlignment(dataInt, align);
return UnqualTypeLoc(getTypePtr(), reinterpret_cast<void*>(dataInt));
}
/// Initializes the local data of this type source info block to
/// provide no information.
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
// do nothing
}
void copyLocal(TypeLoc other) {
// do nothing
}
TypeLoc getNextTypeLoc() const {
return getUnqualifiedLoc();
}
/// \brief Returns the size of the type source info data block that is
/// specific to this type.
unsigned getLocalDataSize() const {
// In fact, we don't currently preserve any location information
// for qualifiers.
return 0;
}
/// \brief Returns the alignment of the type source info data block that is
/// specific to this type.
unsigned getLocalDataAlignment() const {
// We don't preserve any location information.
return 1;
}
private:
friend class TypeLoc;
static bool isKind(const TypeLoc &TL) {
return TL.getType().hasLocalQualifiers();
}
};
inline UnqualTypeLoc TypeLoc::getUnqualifiedLoc() const {
if (QualifiedTypeLoc Loc = getAs<QualifiedTypeLoc>())
return Loc.getUnqualifiedLoc();
return castAs<UnqualTypeLoc>();
}
/// A metaprogramming base class for TypeLoc classes which correspond
/// to a particular Type subclass. It is accepted for a single
/// TypeLoc class to correspond to multiple Type classes.
///
/// \tparam Base a class from which to derive
/// \tparam Derived the class deriving from this one
/// \tparam TypeClass the concrete Type subclass associated with this
/// location type
/// \tparam LocalData the structure type of local location data for
/// this type
///
/// TypeLocs with non-constant amounts of local data should override
/// getExtraLocalDataSize(); getExtraLocalData() will then point to
/// this extra memory.
///
/// TypeLocs with an inner type should define
/// QualType getInnerType() const
/// and getInnerTypeLoc() will then point to this inner type's
/// location data.
///
/// A word about hierarchies: this template is not designed to be
/// derived from multiple times in a hierarchy. It is also not
/// designed to be used for classes where subtypes might provide
/// different amounts of source information. It should be subclassed
/// only at the deepest portion of the hierarchy where all children
/// have identical source information; if that's an abstract type,
/// then further descendents should inherit from
/// InheritingConcreteTypeLoc instead.
template <class Base, class Derived, class TypeClass, class LocalData>
class ConcreteTypeLoc : public Base {
const Derived *asDerived() const {
return static_cast<const Derived*>(this);
}
friend class TypeLoc;
static bool isKind(const TypeLoc &TL) {
return !TL.getType().hasLocalQualifiers() &&
Derived::classofType(TL.getTypePtr());
}
static bool classofType(const Type *Ty) {
return TypeClass::classof(Ty);
}
public:
unsigned getLocalDataAlignment() const {
return std::max(llvm::alignOf<LocalData>(),
asDerived()->getExtraLocalDataAlignment());
}
unsigned getLocalDataSize() const {
unsigned size = sizeof(LocalData);
unsigned extraAlign = asDerived()->getExtraLocalDataAlignment();
size = llvm::RoundUpToAlignment(size, extraAlign);
size += asDerived()->getExtraLocalDataSize();
return size;
}
void copyLocal(Derived other) {
// Some subclasses have no data to copy.
if (asDerived()->getLocalDataSize() == 0) return;
// Copy the fixed-sized local data.
memcpy(getLocalData(), other.getLocalData(), sizeof(LocalData));
// Copy the variable-sized local data. We need to do this
// separately because the padding in the source and the padding in
// the destination might be different.
memcpy(getExtraLocalData(), other.getExtraLocalData(),
asDerived()->getExtraLocalDataSize());
}
TypeLoc getNextTypeLoc() const {
return getNextTypeLoc(asDerived()->getInnerType());
}
const TypeClass *getTypePtr() const {
return cast<TypeClass>(Base::getTypePtr());
}
protected:
unsigned getExtraLocalDataSize() const {
return 0;
}
unsigned getExtraLocalDataAlignment() const {
return 1;
}
LocalData *getLocalData() const {
return static_cast<LocalData*>(Base::Data);
}
/// Gets a pointer past the Info structure; useful for classes with
/// local data that can't be captured in the Info (e.g. because it's
/// of variable size).
void *getExtraLocalData() const {
unsigned size = sizeof(LocalData);
unsigned extraAlign = asDerived()->getExtraLocalDataAlignment();
size = llvm::RoundUpToAlignment(size, extraAlign);
return reinterpret_cast<char*>(Base::Data) + size;
}
void *getNonLocalData() const {
uintptr_t data = reinterpret_cast<uintptr_t>(Base::Data);
data += asDerived()->getLocalDataSize();
data = llvm::RoundUpToAlignment(data, getNextTypeAlign());
return reinterpret_cast<void*>(data);
}
struct HasNoInnerType {};
HasNoInnerType getInnerType() const { return HasNoInnerType(); }
TypeLoc getInnerTypeLoc() const {
return TypeLoc(asDerived()->getInnerType(), getNonLocalData());
}
private:
unsigned getInnerTypeSize() const {
return getInnerTypeSize(asDerived()->getInnerType());
}
unsigned getInnerTypeSize(HasNoInnerType _) const {
return 0;
}
unsigned getInnerTypeSize(QualType _) const {
return getInnerTypeLoc().getFullDataSize();
}
unsigned getNextTypeAlign() const {
return getNextTypeAlign(asDerived()->getInnerType());
}
unsigned getNextTypeAlign(HasNoInnerType _) const {
return 1;
}
unsigned getNextTypeAlign(QualType T) const {
return TypeLoc::getLocalAlignmentForType(T);
}
TypeLoc getNextTypeLoc(HasNoInnerType _) const {
return TypeLoc();
}
TypeLoc getNextTypeLoc(QualType T) const {
return TypeLoc(T, getNonLocalData());
}
};
/// A metaprogramming class designed for concrete subtypes of abstract
/// types where all subtypes share equivalently-structured source
/// information. See the note on ConcreteTypeLoc.
template <class Base, class Derived, class TypeClass>
class InheritingConcreteTypeLoc : public Base {
friend class TypeLoc;
static bool classofType(const Type *Ty) {
return TypeClass::classof(Ty);
}
static bool isKind(const TypeLoc &TL) {
return !TL.getType().hasLocalQualifiers() &&
Derived::classofType(TL.getTypePtr());
}
static bool isKind(const UnqualTypeLoc &TL) {
return Derived::classofType(TL.getTypePtr());
}
public:
const TypeClass *getTypePtr() const {
return cast<TypeClass>(Base::getTypePtr());
}
};
struct TypeSpecLocInfo {
SourceLocation NameLoc;
};
/// \brief A reasonable base class for TypeLocs that correspond to
/// types that are written as a type-specifier.
class TypeSpecTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
TypeSpecTypeLoc,
Type,
TypeSpecLocInfo> {
public:
enum { LocalDataSize = sizeof(TypeSpecLocInfo),
LocalDataAlignment = llvm::AlignOf<TypeSpecLocInfo>::Alignment };
SourceLocation getNameLoc() const {
return this->getLocalData()->NameLoc;
}
void setNameLoc(SourceLocation Loc) {
this->getLocalData()->NameLoc = Loc;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getNameLoc(), getNameLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setNameLoc(Loc);
}
private:
friend class TypeLoc;
static bool isKind(const TypeLoc &TL);
};
struct BuiltinLocInfo {
SourceLocation BuiltinLoc;
};
/// \brief Wrapper for source info for builtin types.
class BuiltinTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
BuiltinTypeLoc,
BuiltinType,
BuiltinLocInfo> {
public:
SourceLocation getBuiltinLoc() const {
return getLocalData()->BuiltinLoc;
}
void setBuiltinLoc(SourceLocation Loc) {
getLocalData()->BuiltinLoc = Loc;
}
SourceLocation getNameLoc() const { return getBuiltinLoc(); }
WrittenBuiltinSpecs& getWrittenBuiltinSpecs() {
return *(static_cast<WrittenBuiltinSpecs*>(getExtraLocalData()));
}
const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
return *(static_cast<WrittenBuiltinSpecs*>(getExtraLocalData()));
}
bool needsExtraLocalData() const {
BuiltinType::Kind bk = getTypePtr()->getKind();
return (bk >= BuiltinType::UShort && bk <= BuiltinType::UInt128)
|| (bk >= BuiltinType::Short && bk <= BuiltinType::LongDouble)
|| bk == BuiltinType::UChar
|| bk == BuiltinType::SChar;
}
unsigned getExtraLocalDataSize() const {
return needsExtraLocalData() ? sizeof(WrittenBuiltinSpecs) : 0;
}
unsigned getExtraLocalDataAlignment() const {
return needsExtraLocalData() ? llvm::alignOf<WrittenBuiltinSpecs>() : 1;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getBuiltinLoc(), getBuiltinLoc());
}
TypeSpecifierSign getWrittenSignSpec() const {
if (needsExtraLocalData())
return static_cast<TypeSpecifierSign>(getWrittenBuiltinSpecs().Sign);
else
return TSS_unspecified;
}
bool hasWrittenSignSpec() const {
return getWrittenSignSpec() != TSS_unspecified;
}
void setWrittenSignSpec(TypeSpecifierSign written) {
if (needsExtraLocalData())
getWrittenBuiltinSpecs().Sign = written;
}
TypeSpecifierWidth getWrittenWidthSpec() const {
if (needsExtraLocalData())
return static_cast<TypeSpecifierWidth>(getWrittenBuiltinSpecs().Width);
else
return TSW_unspecified;
}
bool hasWrittenWidthSpec() const {
return getWrittenWidthSpec() != TSW_unspecified;
}
void setWrittenWidthSpec(TypeSpecifierWidth written) {
if (needsExtraLocalData())
getWrittenBuiltinSpecs().Width = written;
}
TypeSpecifierType getWrittenTypeSpec() const;
bool hasWrittenTypeSpec() const {
return getWrittenTypeSpec() != TST_unspecified;
}
void setWrittenTypeSpec(TypeSpecifierType written) {
if (needsExtraLocalData())
getWrittenBuiltinSpecs().Type = written;
}
bool hasModeAttr() const {
if (needsExtraLocalData())
return getWrittenBuiltinSpecs().ModeAttr;
else
return false;
}
void setModeAttr(bool written) {
if (needsExtraLocalData())
getWrittenBuiltinSpecs().ModeAttr = written;
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setBuiltinLoc(Loc);
if (needsExtraLocalData()) {
WrittenBuiltinSpecs &wbs = getWrittenBuiltinSpecs();
wbs.Sign = TSS_unspecified;
wbs.Width = TSW_unspecified;
wbs.Type = TST_unspecified;
wbs.ModeAttr = false;
}
}
};
/// \brief Wrapper for source info for typedefs.
class TypedefTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
TypedefTypeLoc,
TypedefType> {
public:
TypedefNameDecl *getTypedefNameDecl() const {
return getTypePtr()->getDecl();
}
};
/// \brief Wrapper for source info for injected class names of class
/// templates.
class InjectedClassNameTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
InjectedClassNameTypeLoc,
InjectedClassNameType> {
public:
CXXRecordDecl *getDecl() const {
return getTypePtr()->getDecl();
}
};
/// \brief Wrapper for source info for unresolved typename using decls.
class UnresolvedUsingTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
UnresolvedUsingTypeLoc,
UnresolvedUsingType> {
public:
UnresolvedUsingTypenameDecl *getDecl() const {
return getTypePtr()->getDecl();
}
};
/// \brief Wrapper for source info for tag types. Note that this only
/// records source info for the name itself; a type written 'struct foo'
/// should be represented as an ElaboratedTypeLoc. We currently
/// only do that when C++ is enabled because of the expense of
/// creating an ElaboratedType node for so many type references in C.
class TagTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
TagTypeLoc,
TagType> {
public:
TagDecl *getDecl() const { return getTypePtr()->getDecl(); }
/// \brief True if the tag was defined in this type specifier.
bool isDefinition() const {
TagDecl *D = getDecl();
return D->isCompleteDefinition() &&
(D->getIdentifier() == nullptr || D->getLocation() == getNameLoc());
}
};
/// \brief Wrapper for source info for record types.
class RecordTypeLoc : public InheritingConcreteTypeLoc<TagTypeLoc,
RecordTypeLoc,
RecordType> {
public:
RecordDecl *getDecl() const { return getTypePtr()->getDecl(); }
};
/// \brief Wrapper for source info for enum types.
class EnumTypeLoc : public InheritingConcreteTypeLoc<TagTypeLoc,
EnumTypeLoc,
EnumType> {
public:
EnumDecl *getDecl() const { return getTypePtr()->getDecl(); }
};
/// \brief Wrapper for template type parameters.
class TemplateTypeParmTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
TemplateTypeParmTypeLoc,
TemplateTypeParmType> {
public:
TemplateTypeParmDecl *getDecl() const { return getTypePtr()->getDecl(); }
};
/// \brief Wrapper for substituted template type parameters.
class SubstTemplateTypeParmTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
SubstTemplateTypeParmTypeLoc,
SubstTemplateTypeParmType> {
};
/// \brief Wrapper for substituted template type parameters.
class SubstTemplateTypeParmPackTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
SubstTemplateTypeParmPackTypeLoc,
SubstTemplateTypeParmPackType> {
};
struct AttributedLocInfo {
union {
Expr *ExprOperand;
/// A raw SourceLocation.
unsigned EnumOperandLoc;
};
SourceRange OperandParens;
SourceLocation AttrLoc;
};
/// \brief Type source information for an attributed type.
class AttributedTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
AttributedTypeLoc,
AttributedType,
AttributedLocInfo> {
public:
AttributedType::Kind getAttrKind() const {
return getTypePtr()->getAttrKind();
}
bool hasAttrExprOperand() const {
return (getAttrKind() >= AttributedType::FirstExprOperandKind &&
getAttrKind() <= AttributedType::LastExprOperandKind);
}
bool hasAttrEnumOperand() const {
return (getAttrKind() >= AttributedType::FirstEnumOperandKind &&
getAttrKind() <= AttributedType::LastEnumOperandKind);
}
bool hasAttrOperand() const {
return hasAttrExprOperand() || hasAttrEnumOperand();
}
/// The modified type, which is generally canonically different from
/// the attribute type.
/// int main(int, char**) __attribute__((noreturn))
/// ~~~ ~~~~~~~~~~~~~
TypeLoc getModifiedLoc() const {
return getInnerTypeLoc();
}
/// The location of the attribute name, i.e.
/// __attribute__((regparm(1000)))
/// ^~~~~~~
SourceLocation getAttrNameLoc() const {
return getLocalData()->AttrLoc;
}
void setAttrNameLoc(SourceLocation loc) {
getLocalData()->AttrLoc = loc;
}
/// The attribute's expression operand, if it has one.
/// void *cur_thread __attribute__((address_space(21)))
/// ^~
Expr *getAttrExprOperand() const {
assert(hasAttrExprOperand());
return getLocalData()->ExprOperand;
}
void setAttrExprOperand(Expr *e) {
assert(hasAttrExprOperand());
getLocalData()->ExprOperand = e;
}
/// The location of the attribute's enumerated operand, if it has one.
/// void * __attribute__((objc_gc(weak)))
/// ^~~~
SourceLocation getAttrEnumOperandLoc() const {
assert(hasAttrEnumOperand());
return SourceLocation::getFromRawEncoding(getLocalData()->EnumOperandLoc);
}
void setAttrEnumOperandLoc(SourceLocation loc) {
assert(hasAttrEnumOperand());
getLocalData()->EnumOperandLoc = loc.getRawEncoding();
}
/// The location of the parentheses around the operand, if there is
/// an operand.
/// void * __attribute__((objc_gc(weak)))
/// ^ ^
SourceRange getAttrOperandParensRange() const {
assert(hasAttrOperand());
return getLocalData()->OperandParens;
}
void setAttrOperandParensRange(SourceRange range) {
assert(hasAttrOperand());
getLocalData()->OperandParens = range;
}
SourceRange getLocalSourceRange() const {
// Note that this does *not* include the range of the attribute
// enclosure, e.g.:
// __attribute__((foo(bar)))
// ^~~~~~~~~~~~~~~ ~~
// or
// [[foo(bar)]]
// ^~ ~~
// That enclosure doesn't necessarily belong to a single attribute
// anyway.
SourceRange range(getAttrNameLoc());
if (hasAttrOperand())
range.setEnd(getAttrOperandParensRange().getEnd());
return range;
}
void initializeLocal(ASTContext &Context, SourceLocation loc) {
setAttrNameLoc(loc);
if (hasAttrExprOperand()) {
setAttrOperandParensRange(SourceRange(loc));
setAttrExprOperand(nullptr);
} else if (hasAttrEnumOperand()) {
setAttrOperandParensRange(SourceRange(loc));
setAttrEnumOperandLoc(loc);
}
}
QualType getInnerType() const {
return getTypePtr()->getModifiedType();
}
};
struct ObjCObjectTypeLocInfo {
SourceLocation TypeArgsLAngleLoc;
SourceLocation TypeArgsRAngleLoc;
SourceLocation ProtocolLAngleLoc;
SourceLocation ProtocolRAngleLoc;
bool HasBaseTypeAsWritten;
};
// A helper class for defining ObjC TypeLocs that can qualified with
// protocols.
//
// TypeClass basically has to be either ObjCInterfaceType or
// ObjCObjectPointerType.
class ObjCObjectTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
ObjCObjectTypeLoc,
ObjCObjectType,
ObjCObjectTypeLocInfo> {
// TypeSourceInfo*'s are stored after Info, one for each type argument.
TypeSourceInfo **getTypeArgLocArray() const {
return (TypeSourceInfo**)this->getExtraLocalData();
}
// SourceLocations are stored after the type argument information, one for
// each Protocol.
SourceLocation *getProtocolLocArray() const {
return (SourceLocation*)(getTypeArgLocArray() + getNumTypeArgs());
}
public:
SourceLocation getTypeArgsLAngleLoc() const {
return this->getLocalData()->TypeArgsLAngleLoc;
}
void setTypeArgsLAngleLoc(SourceLocation Loc) {
this->getLocalData()->TypeArgsLAngleLoc = Loc;
}
SourceLocation getTypeArgsRAngleLoc() const {
return this->getLocalData()->TypeArgsRAngleLoc;
}
void setTypeArgsRAngleLoc(SourceLocation Loc) {
this->getLocalData()->TypeArgsRAngleLoc = Loc;
}
unsigned getNumTypeArgs() const {
return this->getTypePtr()->getTypeArgsAsWritten().size();
}
TypeSourceInfo *getTypeArgTInfo(unsigned i) const {
assert(i < getNumTypeArgs() && "Index is out of bounds!");
return getTypeArgLocArray()[i];
}
void setTypeArgTInfo(unsigned i, TypeSourceInfo *TInfo) {
assert(i < getNumTypeArgs() && "Index is out of bounds!");
getTypeArgLocArray()[i] = TInfo;
}
SourceLocation getProtocolLAngleLoc() const {
return this->getLocalData()->ProtocolLAngleLoc;
}
void setProtocolLAngleLoc(SourceLocation Loc) {
this->getLocalData()->ProtocolLAngleLoc = Loc;
}
SourceLocation getProtocolRAngleLoc() const {
return this->getLocalData()->ProtocolRAngleLoc;
}
void setProtocolRAngleLoc(SourceLocation Loc) {
this->getLocalData()->ProtocolRAngleLoc = Loc;
}
unsigned getNumProtocols() const {
return this->getTypePtr()->getNumProtocols();
}
SourceLocation getProtocolLoc(unsigned i) const {
assert(i < getNumProtocols() && "Index is out of bounds!");
return getProtocolLocArray()[i];
}
void setProtocolLoc(unsigned i, SourceLocation Loc) {
assert(i < getNumProtocols() && "Index is out of bounds!");
getProtocolLocArray()[i] = Loc;
}
ObjCProtocolDecl *getProtocol(unsigned i) const {
assert(i < getNumProtocols() && "Index is out of bounds!");
return *(this->getTypePtr()->qual_begin() + i);
}
ArrayRef<SourceLocation> getProtocolLocs() const {
return llvm::makeArrayRef(getProtocolLocArray(), getNumProtocols());
}
bool hasBaseTypeAsWritten() const {
return getLocalData()->HasBaseTypeAsWritten;
}
void setHasBaseTypeAsWritten(bool HasBaseType) {
getLocalData()->HasBaseTypeAsWritten = HasBaseType;
}
TypeLoc getBaseLoc() const {
return getInnerTypeLoc();
}
SourceRange getLocalSourceRange() const {
SourceLocation start = getTypeArgsLAngleLoc();
if (start.isInvalid())
start = getProtocolLAngleLoc();
SourceLocation end = getProtocolRAngleLoc();
if (end.isInvalid())
end = getTypeArgsRAngleLoc();
return SourceRange(start, end);
}
void initializeLocal(ASTContext &Context, SourceLocation Loc);
unsigned getExtraLocalDataSize() const {
return this->getNumTypeArgs() * sizeof(TypeSourceInfo *)
+ this->getNumProtocols() * sizeof(SourceLocation);
}
unsigned getExtraLocalDataAlignment() const {
assert(llvm::alignOf<ObjCObjectTypeLoc>()
>= llvm::alignOf<TypeSourceInfo *>() &&
"not enough alignment for tail-allocated data");
return llvm::alignOf<TypeSourceInfo *>();
}
QualType getInnerType() const {
return getTypePtr()->getBaseType();
}
};
struct ObjCInterfaceLocInfo {
SourceLocation NameLoc;
SourceLocation NameEndLoc;
};
/// \brief Wrapper for source info for ObjC interfaces.
class ObjCInterfaceTypeLoc : public ConcreteTypeLoc<ObjCObjectTypeLoc,
ObjCInterfaceTypeLoc,
ObjCInterfaceType,
ObjCInterfaceLocInfo> {
public:
ObjCInterfaceDecl *getIFaceDecl() const {
return getTypePtr()->getDecl();
}
SourceLocation getNameLoc() const {
return getLocalData()->NameLoc;
}
void setNameLoc(SourceLocation Loc) {
getLocalData()->NameLoc = Loc;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getNameLoc(), getNameEndLoc());
}
SourceLocation getNameEndLoc() const {
return getLocalData()->NameEndLoc;
}
void setNameEndLoc(SourceLocation Loc) {
getLocalData()->NameEndLoc = Loc;
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setNameLoc(Loc);
setNameEndLoc(Loc);
}
};
struct ParenLocInfo {
SourceLocation LParenLoc;
SourceLocation RParenLoc;
};
class ParenTypeLoc
: public ConcreteTypeLoc<UnqualTypeLoc, ParenTypeLoc, ParenType,
ParenLocInfo> {
public:
SourceLocation getLParenLoc() const {
return this->getLocalData()->LParenLoc;
}
SourceLocation getRParenLoc() const {
return this->getLocalData()->RParenLoc;
}
void setLParenLoc(SourceLocation Loc) {
this->getLocalData()->LParenLoc = Loc;
}
void setRParenLoc(SourceLocation Loc) {
this->getLocalData()->RParenLoc = Loc;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getLParenLoc(), getRParenLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setLParenLoc(Loc);
setRParenLoc(Loc);
}
TypeLoc getInnerLoc() const {
return getInnerTypeLoc();
}
QualType getInnerType() const {
return this->getTypePtr()->getInnerType();
}
};
inline TypeLoc TypeLoc::IgnoreParens() const {
if (ParenTypeLoc::isKind(*this))
return IgnoreParensImpl(*this);
return *this;
}
struct AdjustedLocInfo { }; // Nothing.
class AdjustedTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc, AdjustedTypeLoc,
AdjustedType, AdjustedLocInfo> {
public:
TypeLoc getOriginalLoc() const {
return getInnerTypeLoc();
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
// do nothing
}
QualType getInnerType() const {
// The inner type is the undecayed type, since that's what we have source
// location information for.
return getTypePtr()->getOriginalType();
}
SourceRange getLocalSourceRange() const {
return SourceRange();
}
unsigned getLocalDataSize() const {
// sizeof(AdjustedLocInfo) is 1, but we don't need its address to be unique
// anyway. TypeLocBuilder can't handle data sizes of 1.
return 0; // No data.
}
};
/// \brief Wrapper for source info for pointers decayed from arrays and
/// functions.
class DecayedTypeLoc : public InheritingConcreteTypeLoc<
AdjustedTypeLoc, DecayedTypeLoc, DecayedType> {
};
struct PointerLikeLocInfo {
SourceLocation StarLoc;
};
/// A base class for
template <class Derived, class TypeClass, class LocalData = PointerLikeLocInfo>
class PointerLikeTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc, Derived,
TypeClass, LocalData> {
public:
SourceLocation getSigilLoc() const {
return this->getLocalData()->StarLoc;
}
void setSigilLoc(SourceLocation Loc) {
this->getLocalData()->StarLoc = Loc;
}
TypeLoc getPointeeLoc() const {
return this->getInnerTypeLoc();
}
SourceRange getLocalSourceRange() const {
return SourceRange(getSigilLoc(), getSigilLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setSigilLoc(Loc);
}
QualType getInnerType() const {
return this->getTypePtr()->getPointeeType();
}
};
/// \brief Wrapper for source info for pointers.
class PointerTypeLoc : public PointerLikeTypeLoc<PointerTypeLoc,
PointerType> {
public:
SourceLocation getStarLoc() const {
return getSigilLoc();
}
void setStarLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
};
/// \brief Wrapper for source info for block pointers.
class BlockPointerTypeLoc : public PointerLikeTypeLoc<BlockPointerTypeLoc,
BlockPointerType> {
public:
SourceLocation getCaretLoc() const {
return getSigilLoc();
}
void setCaretLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
};
struct MemberPointerLocInfo : public PointerLikeLocInfo {
TypeSourceInfo *ClassTInfo;
};
/// \brief Wrapper for source info for member pointers.
class MemberPointerTypeLoc : public PointerLikeTypeLoc<MemberPointerTypeLoc,
MemberPointerType,
MemberPointerLocInfo> {
public:
SourceLocation getStarLoc() const {
return getSigilLoc();
}
void setStarLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
const Type *getClass() const {
return getTypePtr()->getClass();
}
TypeSourceInfo *getClassTInfo() const {
return getLocalData()->ClassTInfo;
}
void setClassTInfo(TypeSourceInfo* TI) {
getLocalData()->ClassTInfo = TI;
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setSigilLoc(Loc);
setClassTInfo(nullptr);
}
SourceRange getLocalSourceRange() const {
if (TypeSourceInfo *TI = getClassTInfo())
return SourceRange(TI->getTypeLoc().getBeginLoc(), getStarLoc());
else
return SourceRange(getStarLoc());
}
};
/// Wraps an ObjCPointerType with source location information.
class ObjCObjectPointerTypeLoc :
public PointerLikeTypeLoc<ObjCObjectPointerTypeLoc,
ObjCObjectPointerType> {
public:
SourceLocation getStarLoc() const {
return getSigilLoc();
}
void setStarLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
};
class ReferenceTypeLoc : public PointerLikeTypeLoc<ReferenceTypeLoc,
ReferenceType> {
public:
QualType getInnerType() const {
return getTypePtr()->getPointeeTypeAsWritten();
}
};
class LValueReferenceTypeLoc :
public InheritingConcreteTypeLoc<ReferenceTypeLoc,
LValueReferenceTypeLoc,
LValueReferenceType> {
public:
SourceLocation getAmpLoc() const {
return getSigilLoc();
}
void setAmpLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
};
class RValueReferenceTypeLoc :
public InheritingConcreteTypeLoc<ReferenceTypeLoc,
RValueReferenceTypeLoc,
RValueReferenceType> {
public:
SourceLocation getAmpAmpLoc() const {
return getSigilLoc();
}
void setAmpAmpLoc(SourceLocation Loc) {
setSigilLoc(Loc);
}
};
struct FunctionLocInfo {
SourceLocation LocalRangeBegin;
SourceLocation LParenLoc;
SourceLocation RParenLoc;
SourceLocation LocalRangeEnd;
};
/// \brief Wrapper for source info for functions.
class FunctionTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
FunctionTypeLoc,
FunctionType,
FunctionLocInfo> {
public:
SourceLocation getLocalRangeBegin() const {
return getLocalData()->LocalRangeBegin;
}
void setLocalRangeBegin(SourceLocation L) {
getLocalData()->LocalRangeBegin = L;
}
SourceLocation getLocalRangeEnd() const {
return getLocalData()->LocalRangeEnd;
}
void setLocalRangeEnd(SourceLocation L) {
getLocalData()->LocalRangeEnd = L;
}
SourceLocation getLParenLoc() const {
return this->getLocalData()->LParenLoc;
}
void setLParenLoc(SourceLocation Loc) {
this->getLocalData()->LParenLoc = Loc;
}
SourceLocation getRParenLoc() const {
return this->getLocalData()->RParenLoc;
}
void setRParenLoc(SourceLocation Loc) {
this->getLocalData()->RParenLoc = Loc;
}
SourceRange getParensRange() const {
return SourceRange(getLParenLoc(), getRParenLoc());
}
ArrayRef<ParmVarDecl *> getParams() const {
return llvm::makeArrayRef(getParmArray(), getNumParams());
}
// ParmVarDecls* are stored after Info, one for each parameter.
ParmVarDecl **getParmArray() const {
return (ParmVarDecl**) getExtraLocalData();
}
unsigned getNumParams() const {
if (isa<FunctionNoProtoType>(getTypePtr()))
return 0;
return cast<FunctionProtoType>(getTypePtr())->getNumParams();
}
ParmVarDecl *getParam(unsigned i) const { return getParmArray()[i]; }
void setParam(unsigned i, ParmVarDecl *VD) { getParmArray()[i] = VD; }
TypeLoc getReturnLoc() const {
return getInnerTypeLoc();
}
SourceRange getLocalSourceRange() const {
return SourceRange(getLocalRangeBegin(), getLocalRangeEnd());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setLocalRangeBegin(Loc);
setLParenLoc(Loc);
setRParenLoc(Loc);
setLocalRangeEnd(Loc);
for (unsigned i = 0, e = getNumParams(); i != e; ++i)
setParam(i, nullptr);
}
/// \brief Returns the size of the type source info data block that is
/// specific to this type.
unsigned getExtraLocalDataSize() const {
return getNumParams() * sizeof(ParmVarDecl *);
}
unsigned getExtraLocalDataAlignment() const {
return llvm::alignOf<ParmVarDecl*>();
}
QualType getInnerType() const { return getTypePtr()->getReturnType(); }
};
class FunctionProtoTypeLoc :
public InheritingConcreteTypeLoc<FunctionTypeLoc,
FunctionProtoTypeLoc,
FunctionProtoType> {
};
class FunctionNoProtoTypeLoc :
public InheritingConcreteTypeLoc<FunctionTypeLoc,
FunctionNoProtoTypeLoc,
FunctionNoProtoType> {
};
struct ArrayLocInfo {
SourceLocation LBracketLoc, RBracketLoc;
Expr *Size;
};
/// \brief Wrapper for source info for arrays.
class ArrayTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
ArrayTypeLoc,
ArrayType,
ArrayLocInfo> {
public:
SourceLocation getLBracketLoc() const {
return getLocalData()->LBracketLoc;
}
void setLBracketLoc(SourceLocation Loc) {
getLocalData()->LBracketLoc = Loc;
}
SourceLocation getRBracketLoc() const {
return getLocalData()->RBracketLoc;
}
void setRBracketLoc(SourceLocation Loc) {
getLocalData()->RBracketLoc = Loc;
}
SourceRange getBracketsRange() const {
return SourceRange(getLBracketLoc(), getRBracketLoc());
}
Expr *getSizeExpr() const {
return getLocalData()->Size;
}
void setSizeExpr(Expr *Size) {
getLocalData()->Size = Size;
}
TypeLoc getElementLoc() const {
return getInnerTypeLoc();
}
SourceRange getLocalSourceRange() const {
return SourceRange(getLBracketLoc(), getRBracketLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setLBracketLoc(Loc);
setRBracketLoc(Loc);
setSizeExpr(nullptr);
}
QualType getInnerType() const { return getTypePtr()->getElementType(); }
};
class ConstantArrayTypeLoc :
public InheritingConcreteTypeLoc<ArrayTypeLoc,
ConstantArrayTypeLoc,
ConstantArrayType> {
};
class IncompleteArrayTypeLoc :
public InheritingConcreteTypeLoc<ArrayTypeLoc,
IncompleteArrayTypeLoc,
IncompleteArrayType> {
};
class DependentSizedArrayTypeLoc :
public InheritingConcreteTypeLoc<ArrayTypeLoc,
DependentSizedArrayTypeLoc,
DependentSizedArrayType> {
};
class VariableArrayTypeLoc :
public InheritingConcreteTypeLoc<ArrayTypeLoc,
VariableArrayTypeLoc,
VariableArrayType> {
};
// Location information for a TemplateName. Rudimentary for now.
struct TemplateNameLocInfo {
SourceLocation NameLoc;
};
struct TemplateSpecializationLocInfo : TemplateNameLocInfo {
SourceLocation TemplateKWLoc;
SourceLocation LAngleLoc;
SourceLocation RAngleLoc;
};
class TemplateSpecializationTypeLoc :
public ConcreteTypeLoc<UnqualTypeLoc,
TemplateSpecializationTypeLoc,
TemplateSpecializationType,
TemplateSpecializationLocInfo> {
public:
SourceLocation getTemplateKeywordLoc() const {
return getLocalData()->TemplateKWLoc;
}
void setTemplateKeywordLoc(SourceLocation Loc) {
getLocalData()->TemplateKWLoc = Loc;
}
SourceLocation getLAngleLoc() const {
return getLocalData()->LAngleLoc;
}
void setLAngleLoc(SourceLocation Loc) {
getLocalData()->LAngleLoc = Loc;
}
SourceLocation getRAngleLoc() const {
return getLocalData()->RAngleLoc;
}
void setRAngleLoc(SourceLocation Loc) {
getLocalData()->RAngleLoc = Loc;
}
unsigned getNumArgs() const {
return getTypePtr()->getNumArgs();
}
void setArgLocInfo(unsigned i, TemplateArgumentLocInfo AI) {
getArgInfos()[i] = AI;
}
TemplateArgumentLocInfo getArgLocInfo(unsigned i) const {
return getArgInfos()[i];
}
TemplateArgumentLoc getArgLoc(unsigned i) const {
return TemplateArgumentLoc(getTypePtr()->getArg(i), getArgLocInfo(i));
}
SourceLocation getTemplateNameLoc() const {
return getLocalData()->NameLoc;
}
void setTemplateNameLoc(SourceLocation Loc) {
getLocalData()->NameLoc = Loc;
}
/// \brief - Copy the location information from the given info.
void copy(TemplateSpecializationTypeLoc Loc) {
unsigned size = getFullDataSize();
assert(size == Loc.getFullDataSize());
// We're potentially copying Expr references here. We don't
// bother retaining them because TypeSourceInfos live forever, so
// as long as the Expr was retained when originally written into
// the TypeLoc, we're okay.
memcpy(Data, Loc.Data, size);
}
SourceRange getLocalSourceRange() const {
if (getTemplateKeywordLoc().isValid())
return SourceRange(getTemplateKeywordLoc(), getRAngleLoc());
else
return SourceRange(getTemplateNameLoc(), getRAngleLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setTemplateKeywordLoc(Loc);
setTemplateNameLoc(Loc);
setLAngleLoc(Loc);
setRAngleLoc(Loc);
initializeArgLocs(Context, getNumArgs(), getTypePtr()->getArgs(),
getArgInfos(), Loc);
}
static void initializeArgLocs(ASTContext &Context, unsigned NumArgs,
const TemplateArgument *Args,
TemplateArgumentLocInfo *ArgInfos,
SourceLocation Loc);
unsigned getExtraLocalDataSize() const {
return getNumArgs() * sizeof(TemplateArgumentLocInfo);
}
unsigned getExtraLocalDataAlignment() const {
return llvm::alignOf<TemplateArgumentLocInfo>();
}
private:
TemplateArgumentLocInfo *getArgInfos() const {
return static_cast<TemplateArgumentLocInfo*>(getExtraLocalData());
}
};
//===----------------------------------------------------------------------===//
//
// All of these need proper implementations.
//
// //
///////////////////////////////////////////////////////////////////////////////
// FIXME: size expression and attribute locations (or keyword if we
// ever fully support altivec syntax).
class VectorTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
VectorTypeLoc,
VectorType> {
};
// FIXME: size expression and attribute locations.
class ExtVectorTypeLoc : public InheritingConcreteTypeLoc<VectorTypeLoc,
ExtVectorTypeLoc,
ExtVectorType> {
};
// FIXME: attribute locations.
// For some reason, this isn't a subtype of VectorType.
class DependentSizedExtVectorTypeLoc :
public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
DependentSizedExtVectorTypeLoc,
DependentSizedExtVectorType> {
};
// FIXME: location of the '_Complex' keyword.
class ComplexTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
ComplexTypeLoc,
ComplexType> {
};
struct TypeofLocInfo {
SourceLocation TypeofLoc;
SourceLocation LParenLoc;
SourceLocation RParenLoc;
};
struct TypeOfExprTypeLocInfo : public TypeofLocInfo {
};
struct TypeOfTypeLocInfo : public TypeofLocInfo {
TypeSourceInfo* UnderlyingTInfo;
};
template <class Derived, class TypeClass, class LocalData = TypeofLocInfo>
class TypeofLikeTypeLoc
: public ConcreteTypeLoc<UnqualTypeLoc, Derived, TypeClass, LocalData> {
public:
SourceLocation getTypeofLoc() const {
return this->getLocalData()->TypeofLoc;
}
void setTypeofLoc(SourceLocation Loc) {
this->getLocalData()->TypeofLoc = Loc;
}
SourceLocation getLParenLoc() const {
return this->getLocalData()->LParenLoc;
}
void setLParenLoc(SourceLocation Loc) {
this->getLocalData()->LParenLoc = Loc;
}
SourceLocation getRParenLoc() const {
return this->getLocalData()->RParenLoc;
}
void setRParenLoc(SourceLocation Loc) {
this->getLocalData()->RParenLoc = Loc;
}
SourceRange getParensRange() const {
return SourceRange(getLParenLoc(), getRParenLoc());
}
void setParensRange(SourceRange range) {
setLParenLoc(range.getBegin());
setRParenLoc(range.getEnd());
}
SourceRange getLocalSourceRange() const {
return SourceRange(getTypeofLoc(), getRParenLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setTypeofLoc(Loc);
setLParenLoc(Loc);
setRParenLoc(Loc);
}
};
class TypeOfExprTypeLoc : public TypeofLikeTypeLoc<TypeOfExprTypeLoc,
TypeOfExprType,
TypeOfExprTypeLocInfo> {
public:
Expr* getUnderlyingExpr() const {
return getTypePtr()->getUnderlyingExpr();
}
// Reimplemented to account for GNU/C++ extension
// typeof unary-expression
// where there are no parentheses.
SourceRange getLocalSourceRange() const;
};
class TypeOfTypeLoc
: public TypeofLikeTypeLoc<TypeOfTypeLoc, TypeOfType, TypeOfTypeLocInfo> {
public:
QualType getUnderlyingType() const {
return this->getTypePtr()->getUnderlyingType();
}
TypeSourceInfo* getUnderlyingTInfo() const {
return this->getLocalData()->UnderlyingTInfo;
}
void setUnderlyingTInfo(TypeSourceInfo* TI) const {
this->getLocalData()->UnderlyingTInfo = TI;
}
void initializeLocal(ASTContext &Context, SourceLocation Loc);
};
// FIXME: location of the 'decltype' and parens.
class DecltypeTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
DecltypeTypeLoc,
DecltypeType> {
public:
Expr *getUnderlyingExpr() const { return getTypePtr()->getUnderlyingExpr(); }
};
struct UnaryTransformTypeLocInfo {
// FIXME: While there's only one unary transform right now, future ones may
// need different representations
SourceLocation KWLoc, LParenLoc, RParenLoc;
TypeSourceInfo *UnderlyingTInfo;
};
class UnaryTransformTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
UnaryTransformTypeLoc,
UnaryTransformType,
UnaryTransformTypeLocInfo> {
public:
SourceLocation getKWLoc() const { return getLocalData()->KWLoc; }
void setKWLoc(SourceLocation Loc) { getLocalData()->KWLoc = Loc; }
SourceLocation getLParenLoc() const { return getLocalData()->LParenLoc; }
void setLParenLoc(SourceLocation Loc) { getLocalData()->LParenLoc = Loc; }
SourceLocation getRParenLoc() const { return getLocalData()->RParenLoc; }
void setRParenLoc(SourceLocation Loc) { getLocalData()->RParenLoc = Loc; }
TypeSourceInfo* getUnderlyingTInfo() const {
return getLocalData()->UnderlyingTInfo;
}
void setUnderlyingTInfo(TypeSourceInfo *TInfo) {
getLocalData()->UnderlyingTInfo = TInfo;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getKWLoc(), getRParenLoc());
}
SourceRange getParensRange() const {
return SourceRange(getLParenLoc(), getRParenLoc());
}
void setParensRange(SourceRange Range) {
setLParenLoc(Range.getBegin());
setRParenLoc(Range.getEnd());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setKWLoc(Loc);
setRParenLoc(Loc);
setLParenLoc(Loc);
}
};
class AutoTypeLoc : public InheritingConcreteTypeLoc<TypeSpecTypeLoc,
AutoTypeLoc,
AutoType> {
};
struct ElaboratedLocInfo {
SourceLocation ElaboratedKWLoc;
/// \brief Data associated with the nested-name-specifier location.
void *QualifierData;
};
class ElaboratedTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
ElaboratedTypeLoc,
ElaboratedType,
ElaboratedLocInfo> {
public:
SourceLocation getElaboratedKeywordLoc() const {
return this->getLocalData()->ElaboratedKWLoc;
}
void setElaboratedKeywordLoc(SourceLocation Loc) {
this->getLocalData()->ElaboratedKWLoc = Loc;
}
NestedNameSpecifierLoc getQualifierLoc() const {
return NestedNameSpecifierLoc(getTypePtr()->getQualifier(),
getLocalData()->QualifierData);
}
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc) {
assert(QualifierLoc.getNestedNameSpecifier()
== getTypePtr()->getQualifier() &&
"Inconsistent nested-name-specifier pointer");
getLocalData()->QualifierData = QualifierLoc.getOpaqueData();
}
SourceRange getLocalSourceRange() const {
if (getElaboratedKeywordLoc().isValid())
if (getQualifierLoc())
return SourceRange(getElaboratedKeywordLoc(),
getQualifierLoc().getEndLoc());
else
return SourceRange(getElaboratedKeywordLoc());
else
return getQualifierLoc().getSourceRange();
}
void initializeLocal(ASTContext &Context, SourceLocation Loc);
TypeLoc getNamedTypeLoc() const {
return getInnerTypeLoc();
}
QualType getInnerType() const {
return getTypePtr()->getNamedType();
}
void copy(ElaboratedTypeLoc Loc) {
unsigned size = getFullDataSize();
assert(size == Loc.getFullDataSize());
memcpy(Data, Loc.Data, size);
}
};
// This is exactly the structure of an ElaboratedTypeLoc whose inner
// type is some sort of TypeDeclTypeLoc.
struct DependentNameLocInfo : ElaboratedLocInfo {
SourceLocation NameLoc;
};
class DependentNameTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc,
DependentNameTypeLoc,
DependentNameType,
DependentNameLocInfo> {
public:
SourceLocation getElaboratedKeywordLoc() const {
return this->getLocalData()->ElaboratedKWLoc;
}
void setElaboratedKeywordLoc(SourceLocation Loc) {
this->getLocalData()->ElaboratedKWLoc = Loc;
}
NestedNameSpecifierLoc getQualifierLoc() const {
return NestedNameSpecifierLoc(getTypePtr()->getQualifier(),
getLocalData()->QualifierData);
}
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc) {
assert(QualifierLoc.getNestedNameSpecifier()
== getTypePtr()->getQualifier() &&
"Inconsistent nested-name-specifier pointer");
getLocalData()->QualifierData = QualifierLoc.getOpaqueData();
}
SourceLocation getNameLoc() const {
return this->getLocalData()->NameLoc;
}
void setNameLoc(SourceLocation Loc) {
this->getLocalData()->NameLoc = Loc;
}
SourceRange getLocalSourceRange() const {
if (getElaboratedKeywordLoc().isValid())
return SourceRange(getElaboratedKeywordLoc(), getNameLoc());
else
return SourceRange(getQualifierLoc().getBeginLoc(), getNameLoc());
}
void copy(DependentNameTypeLoc Loc) {
unsigned size = getFullDataSize();
assert(size == Loc.getFullDataSize());
memcpy(Data, Loc.Data, size);
}
void initializeLocal(ASTContext &Context, SourceLocation Loc);
};
struct DependentTemplateSpecializationLocInfo : DependentNameLocInfo {
SourceLocation TemplateKWLoc;
SourceLocation LAngleLoc;
SourceLocation RAngleLoc;
// followed by a TemplateArgumentLocInfo[]
};
class DependentTemplateSpecializationTypeLoc :
public ConcreteTypeLoc<UnqualTypeLoc,
DependentTemplateSpecializationTypeLoc,
DependentTemplateSpecializationType,
DependentTemplateSpecializationLocInfo> {
public:
SourceLocation getElaboratedKeywordLoc() const {
return this->getLocalData()->ElaboratedKWLoc;
}
void setElaboratedKeywordLoc(SourceLocation Loc) {
this->getLocalData()->ElaboratedKWLoc = Loc;
}
NestedNameSpecifierLoc getQualifierLoc() const {
if (!getLocalData()->QualifierData)
return NestedNameSpecifierLoc();
return NestedNameSpecifierLoc(getTypePtr()->getQualifier(),
getLocalData()->QualifierData);
}
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc) {
if (!QualifierLoc) {
// Even if we have a nested-name-specifier in the dependent
// template specialization type, we won't record the nested-name-specifier
// location information when this type-source location information is
// part of a nested-name-specifier.
getLocalData()->QualifierData = nullptr;
return;
}
assert(QualifierLoc.getNestedNameSpecifier()
== getTypePtr()->getQualifier() &&
"Inconsistent nested-name-specifier pointer");
getLocalData()->QualifierData = QualifierLoc.getOpaqueData();
}
SourceLocation getTemplateKeywordLoc() const {
return getLocalData()->TemplateKWLoc;
}
void setTemplateKeywordLoc(SourceLocation Loc) {
getLocalData()->TemplateKWLoc = Loc;
}
SourceLocation getTemplateNameLoc() const {
return this->getLocalData()->NameLoc;
}
void setTemplateNameLoc(SourceLocation Loc) {
this->getLocalData()->NameLoc = Loc;
}
SourceLocation getLAngleLoc() const {
return this->getLocalData()->LAngleLoc;
}
void setLAngleLoc(SourceLocation Loc) {
this->getLocalData()->LAngleLoc = Loc;
}
SourceLocation getRAngleLoc() const {
return this->getLocalData()->RAngleLoc;
}
void setRAngleLoc(SourceLocation Loc) {
this->getLocalData()->RAngleLoc = Loc;
}
unsigned getNumArgs() const {
return getTypePtr()->getNumArgs();
}
void setArgLocInfo(unsigned i, TemplateArgumentLocInfo AI) {
getArgInfos()[i] = AI;
}
TemplateArgumentLocInfo getArgLocInfo(unsigned i) const {
return getArgInfos()[i];
}
TemplateArgumentLoc getArgLoc(unsigned i) const {
return TemplateArgumentLoc(getTypePtr()->getArg(i), getArgLocInfo(i));
}
SourceRange getLocalSourceRange() const {
if (getElaboratedKeywordLoc().isValid())
return SourceRange(getElaboratedKeywordLoc(), getRAngleLoc());
else if (getQualifierLoc())
return SourceRange(getQualifierLoc().getBeginLoc(), getRAngleLoc());
else if (getTemplateKeywordLoc().isValid())
return SourceRange(getTemplateKeywordLoc(), getRAngleLoc());
else
return SourceRange(getTemplateNameLoc(), getRAngleLoc());
}
void copy(DependentTemplateSpecializationTypeLoc Loc) {
unsigned size = getFullDataSize();
assert(size == Loc.getFullDataSize());
memcpy(Data, Loc.Data, size);
}
void initializeLocal(ASTContext &Context, SourceLocation Loc);
unsigned getExtraLocalDataSize() const {
return getNumArgs() * sizeof(TemplateArgumentLocInfo);
}
unsigned getExtraLocalDataAlignment() const {
return llvm::alignOf<TemplateArgumentLocInfo>();
}
private:
TemplateArgumentLocInfo *getArgInfos() const {
return static_cast<TemplateArgumentLocInfo*>(getExtraLocalData());
}
};
struct PackExpansionTypeLocInfo {
SourceLocation EllipsisLoc;
};
class PackExpansionTypeLoc
: public ConcreteTypeLoc<UnqualTypeLoc, PackExpansionTypeLoc,
PackExpansionType, PackExpansionTypeLocInfo> {
public:
SourceLocation getEllipsisLoc() const {
return this->getLocalData()->EllipsisLoc;
}
void setEllipsisLoc(SourceLocation Loc) {
this->getLocalData()->EllipsisLoc = Loc;
}
SourceRange getLocalSourceRange() const {
return SourceRange(getEllipsisLoc(), getEllipsisLoc());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setEllipsisLoc(Loc);
}
TypeLoc getPatternLoc() const {
return getInnerTypeLoc();
}
QualType getInnerType() const {
return this->getTypePtr()->getPattern();
}
};
struct AtomicTypeLocInfo {
SourceLocation KWLoc, LParenLoc, RParenLoc;
};
class AtomicTypeLoc : public ConcreteTypeLoc<UnqualTypeLoc, AtomicTypeLoc,
AtomicType, AtomicTypeLocInfo> {
public:
TypeLoc getValueLoc() const {
return this->getInnerTypeLoc();
}
SourceRange getLocalSourceRange() const {
return SourceRange(getKWLoc(), getRParenLoc());
}
SourceLocation getKWLoc() const {
return this->getLocalData()->KWLoc;
}
void setKWLoc(SourceLocation Loc) {
this->getLocalData()->KWLoc = Loc;
}
SourceLocation getLParenLoc() const {
return this->getLocalData()->LParenLoc;
}
void setLParenLoc(SourceLocation Loc) {
this->getLocalData()->LParenLoc = Loc;
}
SourceLocation getRParenLoc() const {
return this->getLocalData()->RParenLoc;
}
void setRParenLoc(SourceLocation Loc) {
this->getLocalData()->RParenLoc = Loc;
}
SourceRange getParensRange() const {
return SourceRange(getLParenLoc(), getRParenLoc());
}
void setParensRange(SourceRange Range) {
setLParenLoc(Range.getBegin());
setRParenLoc(Range.getEnd());
}
void initializeLocal(ASTContext &Context, SourceLocation Loc) {
setKWLoc(Loc);
setLParenLoc(Loc);
setRParenLoc(Loc);
}
QualType getInnerType() const {
return this->getTypePtr()->getValueType();
}
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTConsumer.h | //===--- ASTConsumer.h - Abstract interface for reading ASTs ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTConsumer class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTCONSUMER_H
#define LLVM_CLANG_AST_ASTCONSUMER_H
#include "llvm/ADT/StringRef.h"
namespace clang {
class ASTContext;
class CXXMethodDecl;
class CXXRecordDecl;
class Decl;
class DeclGroupRef;
class ASTMutationListener;
class ASTDeserializationListener; // layering violation because void* is ugly
class SemaConsumer; // layering violation required for safe SemaConsumer
class TagDecl;
class VarDecl;
class FunctionDecl;
class ImportDecl;
/// ASTConsumer - This is an abstract interface that should be implemented by
/// clients that read ASTs. This abstraction layer allows the client to be
/// independent of the AST producer (e.g. parser vs AST dump file reader, etc).
class ASTConsumer {
/// \brief Whether this AST consumer also requires information about
/// semantic analysis.
bool SemaConsumer;
friend class SemaConsumer;
public:
ASTConsumer() : SemaConsumer(false) { }
virtual ~ASTConsumer() {}
/// Initialize - This is called to initialize the consumer, providing the
/// ASTContext.
virtual void Initialize(ASTContext &Context) {}
/// HandleTopLevelDecl - Handle the specified top-level declaration. This is
/// called by the parser to process every top-level Decl*.
///
/// \returns true to continue parsing, or false to abort parsing.
virtual bool HandleTopLevelDecl(DeclGroupRef D);
/// \brief This callback is invoked each time an inline method definition is
/// completed.
virtual void HandleInlineMethodDefinition(CXXMethodDecl *D) {}
/// HandleInterestingDecl - Handle the specified interesting declaration. This
/// is called by the AST reader when deserializing things that might interest
/// the consumer. The default implementation forwards to HandleTopLevelDecl.
virtual void HandleInterestingDecl(DeclGroupRef D);
/// HandleTranslationUnit - This method is called when the ASTs for entire
/// translation unit have been parsed.
virtual void HandleTranslationUnit(ASTContext &Ctx) {}
/// HandleTagDeclDefinition - This callback is invoked each time a TagDecl
/// (e.g. struct, union, enum, class) is completed. This allows the client to
/// hack on the type, which can occur at any point in the file (because these
/// can be defined in declspecs).
virtual void HandleTagDeclDefinition(TagDecl *D) {}
/// \brief This callback is invoked the first time each TagDecl is required to
/// be complete.
virtual void HandleTagDeclRequiredDefinition(const TagDecl *D) {}
/// \brief Invoked when a function is implicitly instantiated.
/// Note that at this point point it does not have a body, its body is
/// instantiated at the end of the translation unit and passed to
/// HandleTopLevelDecl.
virtual void HandleCXXImplicitFunctionInstantiation(FunctionDecl *D) {}
/// \brief Handle the specified top-level declaration that occurred inside
/// and ObjC container.
/// The default implementation ignored them.
virtual void HandleTopLevelDeclInObjCContainer(DeclGroupRef D);
/// \brief Handle an ImportDecl that was implicitly created due to an
/// inclusion directive.
/// The default implementation passes it to HandleTopLevelDecl.
virtual void HandleImplicitImportDecl(ImportDecl *D);
/// \brief Handle a pragma that appends to Linker Options. Currently this
/// only exists to support Microsoft's #pragma comment(linker, "/foo").
virtual void HandleLinkerOptionPragma(llvm::StringRef Opts) {}
/// \brief Handle a pragma that emits a mismatch identifier and value to the
/// object file for the linker to work with. Currently, this only exists to
/// support Microsoft's #pragma detect_mismatch.
virtual void HandleDetectMismatch(llvm::StringRef Name,
llvm::StringRef Value) {}
/// \brief Handle a dependent library created by a pragma in the source.
/// Currently this only exists to support Microsoft's
/// #pragma comment(lib, "/foo").
virtual void HandleDependentLibrary(llvm::StringRef Lib) {}
/// CompleteTentativeDefinition - Callback invoked at the end of a translation
/// unit to notify the consumer that the given tentative definition should be
/// completed.
///
/// The variable declaration itself will be a tentative
/// definition. If it had an incomplete array type, its type will
/// have already been changed to an array of size 1. However, the
/// declaration remains a tentative definition and has not been
/// modified by the introduction of an implicit zero initializer.
virtual void CompleteTentativeDefinition(VarDecl *D) {}
/// HandleCXXStaticMemberVarInstantiation - Tell the consumer that this
// variable has been instantiated.
virtual void HandleCXXStaticMemberVarInstantiation(VarDecl *D) {}
/// \brief Callback involved at the end of a translation unit to
/// notify the consumer that a vtable for the given C++ class is
/// required.
///
/// \param RD The class whose vtable was used.
virtual void HandleVTable(CXXRecordDecl *RD) {}
/// \brief If the consumer is interested in entities getting modified after
/// their initial creation, it should return a pointer to
/// an ASTMutationListener here.
virtual ASTMutationListener *GetASTMutationListener() { return nullptr; }
/// \brief If the consumer is interested in entities being deserialized from
/// AST files, it should return a pointer to a ASTDeserializationListener here
virtual ASTDeserializationListener *GetASTDeserializationListener() {
return nullptr;
}
/// PrintStats - If desired, print any statistics.
virtual void PrintStats() {}
/// \brief This callback is called for each function if the Parser was
/// initialized with \c SkipFunctionBodies set to \c true.
///
/// \return \c true if the function's body should be skipped. The function
/// body may be parsed anyway if it is needed (for instance, if it contains
/// the code completion point or is constexpr).
virtual bool shouldSkipFunctionBody(Decl *D) { return true; }
};
} // end namespace clang.
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/HlslTypes.h | //===--- HlslTypes.h - Type system for HLSL ----*- C++ -*-===//
///////////////////////////////////////////////////////////////////////////////
// //
// HlslTypes.h //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
///
/// \file //
/// \brief Defines the HLSL type system interface. //
///
// //
///////////////////////////////////////////////////////////////////////////////
#ifndef LLVM_CLANG_AST_HLSLTYPES_H
#define LLVM_CLANG_AST_HLSLTYPES_H
#include "dxc/DXIL/DxilConstants.h"
#include "dxc/DXIL/DxilNodeProps.h"
#include "dxc/WinAdapter.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Type.h" // needs QualType
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
namespace clang {
class ASTContext;
class AttributeList;
class CXXMethodDecl;
class CXXRecordDecl;
class ClassTemplateDecl;
class ExtVectorType;
class FunctionDecl;
class FunctionTemplateDecl;
class InheritableAttr;
class NamedDecl;
class ParmVarDecl;
class Sema;
class TypeSourceInfo;
class TypedefDecl;
class VarDecl;
} // namespace clang
namespace hlsl {
/// <summary>Initializes the specified context to support HLSL
/// compilation.</summary>
void InitializeASTContextForHLSL(clang::ASTContext &context);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Type system enumerations.
/// <summary>Scalar types for HLSL identified by a single keyword.</summary>
enum HLSLScalarType {
HLSLScalarType_unknown,
HLSLScalarType_bool,
HLSLScalarType_int,
HLSLScalarType_uint,
HLSLScalarType_dword,
HLSLScalarType_half,
HLSLScalarType_float,
HLSLScalarType_double,
HLSLScalarType_float_min10,
HLSLScalarType_float_min16,
HLSLScalarType_int_min12,
HLSLScalarType_int_min16,
HLSLScalarType_uint_min16,
HLSLScalarType_float_lit,
HLSLScalarType_int_lit,
HLSLScalarType_int16,
HLSLScalarType_int32,
HLSLScalarType_int64,
HLSLScalarType_uint16,
HLSLScalarType_uint32,
HLSLScalarType_uint64,
HLSLScalarType_float16,
HLSLScalarType_float32,
HLSLScalarType_float64,
HLSLScalarType_int8_4packed,
HLSLScalarType_uint8_4packed
};
HLSLScalarType MakeUnsigned(HLSLScalarType T);
static const HLSLScalarType HLSLScalarType_minvalid = HLSLScalarType_bool;
static const HLSLScalarType HLSLScalarType_max = HLSLScalarType_uint8_4packed;
static const size_t HLSLScalarTypeCount =
static_cast<size_t>(HLSLScalarType_max) + 1;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Type annotations and descriptors.
struct MatrixMemberAccessPositions {
uint32_t IsValid : 1; // Whether the member access is valid.
uint32_t Count : 3; // Count of row/col pairs.
uint32_t R0_Row : 2; // Zero-based row index for first position.
uint32_t R0_Col : 2; // Zero-based column index for first position.
uint32_t R1_Row : 2; // ...
uint32_t R1_Col : 2;
uint32_t R2_Row : 2;
uint32_t R2_Col : 2;
uint32_t R3_Row : 2;
uint32_t R3_Col : 2;
bool ContainsDuplicateElements() const {
return IsValid &&
((Count > 1 && ((R1_Row == R0_Row && R1_Col == R0_Col))) ||
(Count > 2 && ((R2_Row == R0_Row && R2_Col == R0_Col) ||
(R2_Row == R1_Row && R2_Col == R1_Col))) ||
(Count > 3 && ((R3_Row == R0_Row && R3_Col == R0_Col) ||
(R3_Row == R1_Row && R3_Col == R1_Col) ||
(R3_Row == R2_Row && R3_Col == R2_Col))));
}
void GetPosition(uint32_t index, uint32_t *row, uint32_t *col) const {
assert(index < 4);
switch (index) {
case 0:
*row = R0_Row;
*col = R0_Col;
break;
case 1:
*row = R1_Row;
*col = R1_Col;
break;
case 2:
*row = R2_Row;
*col = R2_Col;
break;
default:
case 3:
*row = R3_Row;
*col = R3_Col;
break;
}
assert(*row <= 3);
assert(*col <= 3);
}
void SetPosition(uint32_t index, uint32_t row, uint32_t col) {
assert(index < 4);
assert(row <= 3);
assert(col <= 3);
switch (index) {
case 0:
R0_Row = row;
R0_Col = col;
break;
case 1:
R1_Row = row;
R1_Col = col;
break;
case 2:
R2_Row = row;
R2_Col = col;
break;
default:
case 3:
R3_Row = row;
R3_Col = col;
break;
}
}
};
struct VectorMemberAccessPositions {
uint32_t IsValid : 1; // Whether the member access is valid.
uint32_t Count : 3; // Count of swizzle components.
uint32_t Swz0 : 2; // Zero-based swizzle index for first position.
uint32_t Swz1 : 2;
uint32_t Swz2 : 2;
uint32_t Swz3 : 2;
bool ContainsDuplicateElements() const {
return IsValid && ((Count > 1 && (Swz1 == Swz0)) ||
(Count > 2 && ((Swz2 == Swz0) || (Swz2 == Swz1))) ||
(Count > 3 &&
((Swz3 == Swz0) || (Swz3 == Swz1) || (Swz3 == Swz2))));
}
void GetPosition(uint32_t index, uint32_t *col) const {
assert(index < 4);
switch (index) {
case 0:
*col = Swz0;
break;
case 1:
*col = Swz1;
break;
case 2:
*col = Swz2;
break;
default:
case 3:
*col = Swz3;
break;
}
assert(*col <= 3);
}
void SetPosition(uint32_t index, uint32_t col) {
assert(index < 4);
assert(col <= 3);
switch (index) {
case 0:
Swz0 = col;
break;
case 1:
Swz1 = col;
break;
case 2:
Swz2 = col;
break;
default:
case 3:
Swz3 = col;
break;
}
}
};
/// <summary>Base class for annotations that are rarely used.</summary>
struct UnusualAnnotation {
public:
enum UnusualAnnotationKind {
UA_RegisterAssignment,
UA_ConstantPacking,
UA_SemanticDecl,
UA_PayloadAccessQualifier
};
private:
const UnusualAnnotationKind Kind;
public:
UnusualAnnotation(UnusualAnnotationKind kind) : Kind(kind), Loc() {}
UnusualAnnotation(UnusualAnnotationKind kind, clang::SourceLocation loc)
: Kind(kind), Loc(loc) {}
UnusualAnnotation(const UnusualAnnotation &other)
: Kind(other.Kind), Loc(other.Loc) {}
UnusualAnnotationKind getKind() const { return Kind; }
UnusualAnnotation *CopyToASTContext(clang::ASTContext &Context);
static llvm::ArrayRef<UnusualAnnotation *>
CopyToASTContextArray(clang::ASTContext &Context, UnusualAnnotation **begin,
size_t count);
/// <summary>Location where the annotation was parsed.</summary>
clang::SourceLocation Loc;
};
/// <summary>Use this structure to capture a ': register' definition.</summary>
struct RegisterAssignment : public UnusualAnnotation {
/// <summary>Initializes a new RegisterAssignment in invalid state.</summary>
RegisterAssignment() : UnusualAnnotation(UA_RegisterAssignment) {}
llvm::StringRef ShaderProfile;
bool IsValid = false;
char RegisterType = 0; // Lower-case letter, 0 if not explicitly set
uint32_t RegisterNumber = 0; // Iff RegisterType != 0
llvm::Optional<uint32_t>
RegisterSpace; // Set only if explicit "spaceN" syntax
uint32_t RegisterOffset = 0;
void setIsValid(bool value) { IsValid = value; }
bool isSpaceOnly() const {
return RegisterType == 0 && RegisterSpace.hasValue();
}
static bool classof(const UnusualAnnotation *UA) {
return UA->getKind() == UA_RegisterAssignment;
}
};
// <summary>Use this structure to capture a ': in/out' definiton.</summary>
struct PayloadAccessAnnotation : public UnusualAnnotation {
/// <summary>Initializes a new PayloadAccessAnnotation in invalid
/// state.</summary>
PayloadAccessAnnotation() : UnusualAnnotation(UA_PayloadAccessQualifier){};
DXIL::PayloadAccessQualifier qualifier =
DXIL::PayloadAccessQualifier::NoAccess;
llvm::SmallVector<DXIL::PayloadAccessShaderStage, 4> ShaderStages;
static bool classof(const UnusualAnnotation *UA) {
return UA->getKind() == UA_PayloadAccessQualifier;
}
};
/// <summary>Use this structure to capture a ': packoffset'
/// definition.</summary>
struct ConstantPacking : public UnusualAnnotation {
/// <summary>Initializes a new ConstantPacking in invalid state.</summary>
ConstantPacking()
: UnusualAnnotation(UA_ConstantPacking), Subcomponent(0),
ComponentOffset(0), IsValid(0) {}
uint32_t Subcomponent; // Subcomponent specified.
unsigned ComponentOffset : 2; // 0-3 for the offset specified.
unsigned IsValid : 1; // Whether the declaration is valid.
void setIsValid(bool value) { IsValid = value ? 1 : 0; }
static bool classof(const UnusualAnnotation *UA) {
return UA->getKind() == UA_ConstantPacking;
}
};
/// <summary>Use this structure to capture a ': SEMANTIC' definition.</summary>
struct SemanticDecl : public UnusualAnnotation {
/// <summary>Initializes a new SemanticDecl in invalid state.</summary>
SemanticDecl() : UnusualAnnotation(UA_SemanticDecl), SemanticName() {}
/// <summary>Initializes a new SemanticDecl with the specified name.</summary>
SemanticDecl(llvm::StringRef name)
: UnusualAnnotation(UA_SemanticDecl), SemanticName(name) {}
/// <summary>Name for semantic.</summary>
llvm::StringRef SemanticName;
static bool classof(const UnusualAnnotation *UA) {
return UA->getKind() == UA_SemanticDecl;
}
};
/// Returns a ParameterModifier initialized as per the attribute list.
ParameterModifier ParamModFromAttributeList(clang::AttributeList *pAttributes);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// AST manipulation functions.
void AddHLSLMatrixTemplate(clang::ASTContext &context,
clang::ClassTemplateDecl *vectorTemplateDecl,
clang::ClassTemplateDecl **matrixTemplateDecl);
void AddHLSLVectorTemplate(clang::ASTContext &context,
clang::ClassTemplateDecl **vectorTemplateDecl);
void AddHLSLNodeOutputRecordTemplate(
clang::ASTContext &context, DXIL::NodeIOKind Type,
_Outptr_ clang::ClassTemplateDecl **outputRecordTemplateDecl,
bool isCompleteType = true);
clang::CXXRecordDecl *DeclareRecordTypeWithHandle(clang::ASTContext &context,
llvm::StringRef name,
bool isCompleteType = true);
void AddRaytracingConstants(clang::ASTContext &context);
void AddSamplerFeedbackConstants(clang::ASTContext &context);
void AddBarrierConstants(clang::ASTContext &context);
/// <summary>Adds the implementation for std::is_equal.</summary>
void AddStdIsEqualImplementation(clang::ASTContext &context, clang::Sema &sema);
/// <summary>
/// Adds a new template type in the specified context with the given name. The
/// record type will have a handle field.
/// </summary>
/// <parm name="context">AST context to which template will be added.</param>
/// <parm name="templateArgCount">Number of template arguments (one or
/// two).</param> <parm name="defaultTypeArgValue">If assigned, the default
/// argument for the element template.</param>
clang::CXXRecordDecl *DeclareTemplateTypeWithHandle(
clang::ASTContext &context, llvm::StringRef name,
uint8_t templateArgCount = 1,
clang::TypeSourceInfo *defaultTypeArgValue = nullptr);
clang::CXXRecordDecl *DeclareTemplateTypeWithHandleInDeclContext(
clang::ASTContext &context, clang::DeclContext *declContext,
llvm::StringRef name, uint8_t templateArgCount,
clang::TypeSourceInfo *defaultTypeArgValue);
clang::CXXRecordDecl *DeclareUIntTemplatedTypeWithHandle(
clang::ASTContext &context, llvm::StringRef typeName,
llvm::StringRef templateParamName,
clang::TagTypeKind tagKind = clang::TagTypeKind::TTK_Class);
clang::CXXRecordDecl *DeclareUIntTemplatedTypeWithHandleInDeclContext(
clang::ASTContext &context, clang::DeclContext *declContext,
llvm::StringRef typeName, llvm::StringRef templateParamName,
clang::TagTypeKind tagKind = clang::TagTypeKind::TTK_Class);
clang::CXXRecordDecl *DeclareConstantBufferViewType(clang::ASTContext &context,
bool bTBuf);
clang::CXXRecordDecl *DeclareRayQueryType(clang::ASTContext &context);
clang::CXXRecordDecl *DeclareResourceType(clang::ASTContext &context,
bool bSampler);
clang::CXXRecordDecl *
DeclareNodeOrRecordType(clang::ASTContext &Ctx, DXIL::NodeIOKind Type,
bool IsRecordTypeTemplate = false, bool IsConst = false,
bool HasGetMethods = false, bool IsArray = false,
bool IsCompleteType = false);
#ifdef ENABLE_SPIRV_CODEGEN
clang::CXXRecordDecl *DeclareInlineSpirvType(clang::ASTContext &context,
clang::DeclContext *declContext,
llvm::StringRef typeName,
bool opaque);
clang::CXXRecordDecl *DeclareVkIntegralConstant(
clang::ASTContext &context, clang::DeclContext *declContext,
llvm::StringRef typeName, clang::ClassTemplateDecl **templateDecl);
#endif
clang::CXXRecordDecl *DeclareNodeOutputArray(clang::ASTContext &Ctx,
DXIL::NodeIOKind Type,
clang::CXXRecordDecl *OutputType,
bool IsRecordTypeTemplate);
clang::CXXRecordDecl *
DeclareRecordTypeWithHandleAndNoMemberFunctions(clang::ASTContext &context,
llvm::StringRef name);
clang::VarDecl *DeclareBuiltinGlobal(llvm::StringRef name, clang::QualType Ty,
clang::ASTContext &context);
/// <summary>Create a function template declaration for the specified
/// method.</summary> <param name="context">AST context in which to
/// work.</param> <param name="recordDecl">Class in which the function template
/// is declared.</param> <param name="functionDecl">Function for which a
/// template is created.</params> <param
/// name="templateParamNamedDecls">Declarations for templates to the
/// function.</param> <param name="templateParamNamedDeclsCount">Count of
/// template declarations.</param> <returns>A new function template declaration
/// already declared in the class scope.</returns>
clang::FunctionTemplateDecl *
CreateFunctionTemplateDecl(clang::ASTContext &context,
clang::CXXRecordDecl *recordDecl,
clang::CXXMethodDecl *functionDecl,
clang::NamedDecl **templateParamNamedDecls,
size_t templateParamNamedDeclsCount);
clang::TypedefDecl *CreateMatrixSpecializationShorthand(
clang::ASTContext &context, clang::QualType matrixSpecialization,
HLSLScalarType scalarType, size_t rowCount, size_t colCount);
clang::TypedefDecl *
CreateVectorSpecializationShorthand(clang::ASTContext &context,
clang::QualType vectorSpecialization,
HLSLScalarType scalarType, size_t colCount);
const clang::ExtVectorType *
ConvertHLSLVecMatTypeToExtVectorType(const clang::ASTContext &,
clang::QualType);
bool IsHLSLVecMatType(clang::QualType);
clang::RecordDecl *GetRecordDeclFromNodeObjectType(clang::QualType ObjectTy);
bool IsHLSLVecType(clang::QualType type);
bool IsHLSLMatType(clang::QualType type);
clang::QualType GetElementTypeOrType(clang::QualType type);
bool HasHLSLMatOrientation(clang::QualType type, bool *pIsRowMajor = nullptr);
bool IsHLSLMatRowMajor(clang::QualType type, bool defaultValue);
bool IsHLSLUnsigned(clang::QualType type);
bool IsHLSLMinPrecision(clang::QualType type);
bool HasHLSLUNormSNorm(clang::QualType type, bool *pIsSNorm = nullptr);
bool HasHLSLGloballyCoherent(clang::QualType type);
bool IsHLSLInputPatchType(clang::QualType type);
bool IsHLSLOutputPatchType(clang::QualType type);
bool IsHLSLPointStreamType(clang::QualType type);
bool IsHLSLLineStreamType(clang::QualType type);
bool IsHLSLTriangleStreamType(clang::QualType type);
bool IsHLSLStreamOutputType(clang::QualType type);
bool IsHLSLResourceType(clang::QualType type);
bool IsHLSLNodeInputType(clang::QualType type);
bool IsHLSLDynamicResourceType(clang::QualType type);
bool IsHLSLDynamicSamplerType(clang::QualType type);
bool IsHLSLNodeType(clang::QualType type);
bool IsHLSLObjectWithImplicitMemberAccess(clang::QualType type);
bool IsHLSLObjectWithImplicitROMemberAccess(clang::QualType type);
bool IsHLSLRWNodeInputRecordType(clang::QualType type);
bool IsHLSLRONodeInputRecordType(clang::QualType type);
bool IsHLSLNodeOutputType(clang::QualType type);
DXIL::NodeIOKind GetNodeIOType(clang::QualType type);
bool IsHLSLStructuredBufferType(clang::QualType type);
bool IsHLSLNumericOrAggregateOfNumericType(clang::QualType type);
bool IsHLSLNumericUserDefinedType(clang::QualType type);
bool IsHLSLCopyableAnnotatableRecord(clang::QualType QT);
bool IsHLSLBuiltinRayAttributeStruct(clang::QualType QT);
bool IsHLSLAggregateType(clang::QualType type);
clang::QualType GetHLSLResourceResultType(clang::QualType type);
unsigned GetHLSLResourceTemplateUInt(clang::QualType type);
bool IsIncompleteHLSLResourceArrayType(clang::ASTContext &context,
clang::QualType type);
clang::QualType GetHLSLResourceTemplateParamType(clang::QualType type);
clang::QualType GetHLSLInputPatchElementType(clang::QualType type);
unsigned GetHLSLInputPatchCount(clang::QualType type);
clang::QualType GetHLSLOutputPatchElementType(clang::QualType type);
unsigned GetHLSLOutputPatchCount(clang::QualType type);
bool IsHLSLSubobjectType(clang::QualType type);
bool GetHLSLSubobjectKind(clang::QualType type,
DXIL::SubobjectKind &subobjectKind,
DXIL::HitGroupType &ghType);
bool IsHLSLRayQueryType(clang::QualType type);
bool GetHLSLNodeIORecordType(const clang::ParmVarDecl *parmDecl,
NodeFlags &nodeKind);
bool IsArrayConstantStringType(const clang::QualType type);
bool IsPointerStringType(const clang::QualType type);
bool IsStringType(const clang::QualType type);
bool IsStringLiteralType(const clang::QualType type);
void GetRowsAndColsForAny(clang::QualType type, uint32_t &rowCount,
uint32_t &colCount);
uint32_t GetElementCount(clang::QualType type);
uint32_t GetArraySize(clang::QualType type);
uint32_t GetHLSLVecSize(clang::QualType type);
void GetRowsAndCols(clang::QualType type, uint32_t &rowCount,
uint32_t &colCount);
void GetHLSLMatRowColCount(clang::QualType type, uint32_t &row, uint32_t &col);
clang::QualType GetHLSLMatElementType(clang::QualType type);
clang::QualType GetHLSLVecElementType(clang::QualType type);
bool IsIntrinsicOp(const clang::FunctionDecl *FD);
bool GetIntrinsicOp(const clang::FunctionDecl *FD, unsigned &opcode,
llvm::StringRef &group);
bool GetIntrinsicLowering(const clang::FunctionDecl *FD, llvm::StringRef &S);
bool IsUserDefinedRecordType(clang::QualType type);
bool DoesTypeDefineOverloadedOperator(clang::QualType typeWithOperator,
clang::OverloadedOperatorKind opc,
clang::QualType paramType);
bool IsPatchConstantFunctionDecl(const clang::FunctionDecl *FD);
/// <summary>Adds a function declaration to the specified class
/// record.</summary> <param name="context">ASTContext that owns
/// declarations.</param> <param name="recordDecl">Record declaration in which
/// to add function.</param> <param name="resultType">Result type for
/// function.</param> <param name="paramTypes">Types for function
/// parameters.</param> <param name="paramNames">Names for function
/// parameters.</param> <param name="declarationName">Name for function.</param>
/// <param name="isConst">Whether the function is a const function.</param>
/// <returns>The method declaration for the function.</returns>
clang::CXXMethodDecl *CreateObjectFunctionDeclarationWithParams(
clang::ASTContext &context, clang::CXXRecordDecl *recordDecl,
clang::QualType resultType, llvm::ArrayRef<clang::QualType> paramTypes,
llvm::ArrayRef<clang::StringRef> paramNames,
clang::DeclarationName declarationName, bool isConst,
bool isTemplateFunction = false);
DXIL::ResourceClass GetResourceClassForType(const clang::ASTContext &context,
clang::QualType Ty);
bool TryParseMatrixShorthand(const char *typeName, size_t typeNameLen,
HLSLScalarType *parsedType, int *rowCount,
int *colCount,
const clang::LangOptions &langOption);
bool TryParseVectorShorthand(const char *typeName, size_t typeNameLen,
HLSLScalarType *parsedType, int *elementCount,
const clang::LangOptions &langOption);
bool TryParseScalar(const char *typeName, size_t typeNameLen,
HLSLScalarType *parsedType,
const clang::LangOptions &langOption);
bool TryParseAny(const char *typeName, size_t typeNameLen,
HLSLScalarType *parsedType, int *rowCount, int *colCount,
const clang::LangOptions &langOption);
bool TryParseString(const char *typeName, size_t typeNameLen,
const clang::LangOptions &langOptions);
bool TryParseMatrixOrVectorDimension(const char *typeName, size_t typeNameLen,
int *rowCount, int *colCount,
const clang::LangOptions &langOption);
} // namespace hlsl
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/Type.h | //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Type interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
enum {
TypeAlignmentInBits = 4,
TypeAlignment = 1 << TypeAlignmentInBits
};
class Type;
class ExtQuals;
class QualType;
}
namespace llvm {
template <typename T>
class PointerLikeTypeTraits;
template<>
class PointerLikeTypeTraits< ::clang::Type*> {
public:
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
static inline ::clang::Type *getFromVoidPointer(void *P) {
return static_cast< ::clang::Type*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template<>
class PointerLikeTypeTraits< ::clang::ExtQuals*> {
public:
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
return static_cast< ::clang::ExtQuals*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template <>
struct isPodLike<clang::QualType> { static const bool value = true; };
}
namespace clang {
class ASTContext;
class TypedefNameDecl;
class TemplateDecl;
class TemplateTypeParmDecl;
class NonTypeTemplateParmDecl;
class TemplateTemplateParmDecl;
class TagDecl;
class RecordDecl;
class CXXRecordDecl;
class EnumDecl;
class FieldDecl;
class FunctionDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCMethodDecl;
class UnresolvedUsingTypenameDecl;
class Expr;
class Stmt;
class SourceLocation;
class StmtIteratorBase;
class TemplateArgument;
class TemplateArgumentLoc;
class TemplateArgumentListInfo;
class ElaboratedType;
class ExtQuals;
class ExtQualsTypeCommonBase;
struct PrintingPolicy;
template <typename> class CanQual;
typedef CanQual<Type> CanQualType;
// Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"
/// Qualifiers - The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
Const = 0x1,
Restrict = 0x2,
Volatile = 0x4,
CVRMask = Const | Volatile | Restrict
};
enum GC {
GCNone = 0,
Weak,
Strong
};
enum ObjCLifetime {
/// There is no lifetime qualification on this type.
OCL_None,
/// This object can be modified without requiring retains or
/// releases.
OCL_ExplicitNone,
/// Assigning into this object requires the old value to be
/// released and the new value to be retained. The timing of the
/// release of the old value is inexact: it may be moved to
/// immediately after the last known point where the value is
/// live.
OCL_Strong,
/// Reading or writing from this object requires a barrier call.
OCL_Weak,
/// Assigning into this object requires a lifetime extension.
OCL_Autoreleasing
};
enum {
/// The maximum supported address space number.
/// 24 bits should be enough for anyone.
MaxAddressSpace = 0xffffffu,
/// The width of the "fast" qualifier mask.
FastWidth = 3,
/// The fast qualifier mask.
FastMask = (1 << FastWidth) - 1
};
Qualifiers() : Mask(0) {}
/// \brief Returns the common set of qualifiers while removing them from
/// the given sets.
static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
// If both are only CVR-qualified, bit operations are sufficient.
if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
Qualifiers Q;
Q.Mask = L.Mask & R.Mask;
L.Mask &= ~Q.Mask;
R.Mask &= ~Q.Mask;
return Q;
}
Qualifiers Q;
unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
Q.addCVRQualifiers(CommonCRV);
L.removeCVRQualifiers(CommonCRV);
R.removeCVRQualifiers(CommonCRV);
if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
Q.setObjCGCAttr(L.getObjCGCAttr());
L.removeObjCGCAttr();
R.removeObjCGCAttr();
}
if (L.getObjCLifetime() == R.getObjCLifetime()) {
Q.setObjCLifetime(L.getObjCLifetime());
L.removeObjCLifetime();
R.removeObjCLifetime();
}
if (L.getAddressSpace() == R.getAddressSpace()) {
Q.setAddressSpace(L.getAddressSpace());
L.removeAddressSpace();
R.removeAddressSpace();
}
return Q;
}
static Qualifiers fromFastMask(unsigned Mask) {
Qualifiers Qs;
Qs.addFastQualifiers(Mask);
return Qs;
}
static Qualifiers fromCVRMask(unsigned CVR) {
Qualifiers Qs;
Qs.addCVRQualifiers(CVR);
return Qs;
}
// Deserialize qualifiers from an opaque representation.
static Qualifiers fromOpaqueValue(unsigned opaque) {
Qualifiers Qs;
Qs.Mask = opaque;
return Qs;
}
// Serialize these qualifiers into an opaque representation.
unsigned getAsOpaqueValue() const {
return Mask;
}
bool hasConst() const { return Mask & Const; }
void setConst(bool flag) {
Mask = (Mask & ~Const) | (flag ? Const : 0);
}
void removeConst() { Mask &= ~Const; }
void addConst() { Mask |= Const; }
bool hasVolatile() const { return Mask & Volatile; }
void setVolatile(bool flag) {
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
}
void removeVolatile() { Mask &= ~Volatile; }
void addVolatile() { Mask |= Volatile; }
bool hasRestrict() const { return Mask & Restrict; }
void setRestrict(bool flag) {
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
}
void removeRestrict() { Mask &= ~Restrict; }
void addRestrict() { Mask |= Restrict; }
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
void setCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask = (Mask & ~CVRMask) | mask;
}
void removeCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask &= ~mask;
}
void removeCVRQualifiers() {
removeCVRQualifiers(CVRMask);
}
void addCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask |= mask;
}
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
void setObjCGCAttr(GC type) {
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
}
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
void addObjCGCAttr(GC type) {
assert(type);
setObjCGCAttr(type);
}
Qualifiers withoutObjCGCAttr() const {
Qualifiers qs = *this;
qs.removeObjCGCAttr();
return qs;
}
Qualifiers withoutObjCLifetime() const {
Qualifiers qs = *this;
qs.removeObjCLifetime();
return qs;
}
bool hasObjCLifetime() const { return Mask & LifetimeMask; }
ObjCLifetime getObjCLifetime() const {
return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
}
void setObjCLifetime(ObjCLifetime type) {
Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
}
void removeObjCLifetime() { setObjCLifetime(OCL_None); }
void addObjCLifetime(ObjCLifetime type) {
assert(type);
assert(!hasObjCLifetime());
Mask |= (type << LifetimeShift);
}
/// True if the lifetime is neither None or ExplicitNone.
bool hasNonTrivialObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime > OCL_ExplicitNone);
}
/// True if the lifetime is either strong or weak.
bool hasStrongOrWeakObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime == OCL_Strong || lifetime == OCL_Weak);
}
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
void setAddressSpace(unsigned space) {
assert(space <= MaxAddressSpace);
Mask = (Mask & ~AddressSpaceMask)
| (((uint32_t) space) << AddressSpaceShift);
}
void removeAddressSpace() { setAddressSpace(0); }
void addAddressSpace(unsigned space) {
assert(space);
setAddressSpace(space);
}
// Fast qualifiers are those that can be allocated directly
// on a QualType object.
bool hasFastQualifiers() const { return getFastQualifiers(); }
unsigned getFastQualifiers() const { return Mask & FastMask; }
void setFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask = (Mask & ~FastMask) | mask;
}
void removeFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask &= ~mask;
}
void removeFastQualifiers() {
removeFastQualifiers(FastMask);
}
void addFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask |= mask;
}
/// hasNonFastQualifiers - Return true if the set contains any
/// qualifiers which require an ExtQuals node to be allocated.
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
Qualifiers getNonFastQualifiers() const {
Qualifiers Quals = *this;
Quals.setFastQualifiers(0);
return Quals;
}
/// hasQualifiers - Return true if the set contains any qualifiers.
bool hasQualifiers() const { return Mask; }
bool empty() const { return !Mask; }
/// \brief Add the qualifiers from the given set to this set.
void addQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-or it in.
if (!(Q.Mask & ~CVRMask))
Mask |= Q.Mask;
else {
Mask |= (Q.Mask & CVRMask);
if (Q.hasAddressSpace())
addAddressSpace(Q.getAddressSpace());
if (Q.hasObjCGCAttr())
addObjCGCAttr(Q.getObjCGCAttr());
if (Q.hasObjCLifetime())
addObjCLifetime(Q.getObjCLifetime());
}
}
/// \brief Remove the qualifiers from the given set from this set.
void removeQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-and the inverse in.
if (!(Q.Mask & ~CVRMask))
Mask &= ~Q.Mask;
else {
Mask &= ~(Q.Mask & CVRMask);
if (getObjCGCAttr() == Q.getObjCGCAttr())
removeObjCGCAttr();
if (getObjCLifetime() == Q.getObjCLifetime())
removeObjCLifetime();
if (getAddressSpace() == Q.getAddressSpace())
removeAddressSpace();
}
}
/// \brief Add the qualifiers from the given set to this set, given that
/// they don't conflict.
void addConsistentQualifiers(Qualifiers qs) {
assert(getAddressSpace() == qs.getAddressSpace() ||
!hasAddressSpace() || !qs.hasAddressSpace());
assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
!hasObjCGCAttr() || !qs.hasObjCGCAttr());
assert(getObjCLifetime() == qs.getObjCLifetime() ||
!hasObjCLifetime() || !qs.hasObjCLifetime());
Mask |= qs.Mask;
}
/// \brief Returns true if this address space is a superset of the other one.
/// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
/// overlapping address spaces.
/// CL1.1 or CL1.2:
/// every address space is a superset of itself.
/// CL2.0 adds:
/// __generic is a superset of any address space except for __constant.
bool isAddressSpaceSupersetOf(Qualifiers other) const {
return
// Address spaces must match exactly.
getAddressSpace() == other.getAddressSpace() ||
// Otherwise in OpenCLC v2.0 s6.5.5: every address space except
// for __constant can be used as __generic.
(getAddressSpace() == LangAS::opencl_generic &&
other.getAddressSpace() != LangAS::opencl_constant);
}
/// \brief Determines if these qualifiers compatibly include another set.
/// Generally this answers the question of whether an object with the other
/// qualifiers can be safely used as an object with these qualifiers.
bool compatiblyIncludes(Qualifiers other) const {
return isAddressSpaceSupersetOf(other) &&
// ObjC GC qualifiers can match, be added, or be removed, but can't
// be changed.
(getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
!other.hasObjCGCAttr()) &&
// ObjC lifetime qualifiers must match exactly.
getObjCLifetime() == other.getObjCLifetime() &&
// CVR qualifiers may subset.
(((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
}
/// \brief Determines if these qualifiers compatibly include another set of
/// qualifiers from the narrow perspective of Objective-C ARC lifetime.
///
/// One set of Objective-C lifetime qualifiers compatibly includes the other
/// if the lifetime qualifiers match, or if both are non-__weak and the
/// including set also contains the 'const' qualifier.
bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
if (getObjCLifetime() == other.getObjCLifetime())
return true;
if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
return false;
return hasConst();
}
/// \brief Determine whether this set of qualifiers is a strict superset of
/// another set of qualifiers, not considering qualifier compatibility.
bool isStrictSupersetOf(Qualifiers Other) const;
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
explicit operator bool() const { return hasQualifiers(); }
Qualifiers &operator+=(Qualifiers R) {
addQualifiers(R);
return *this;
}
// Union two qualifier sets. If an enumerated qualifier appears
// in both sets, use the one from the right.
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
L += R;
return L;
}
Qualifiers &operator-=(Qualifiers R) {
removeQualifiers(R);
return *this;
}
/// \brief Compute the difference between two qualifier sets.
friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
L -= R;
return L;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const;
bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
bool appendSpaceIfNonEmpty = false) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Mask);
}
private:
// bits: |0 1 2|3 .. 4|5 .. 7|8 ... 31|
// |C R V|GCAttr|Lifetime|AddressSpace|
uint32_t Mask;
static const uint32_t GCAttrMask = 0x18;
static const uint32_t GCAttrShift = 3;
static const uint32_t LifetimeMask = 0xE0;
static const uint32_t LifetimeShift = 5;
static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
static const uint32_t AddressSpaceShift = 8;
};
/// A std::pair-like structure for storing a qualified type split
/// into its local qualifiers and its locally-unqualified type.
struct SplitQualType {
/// The locally-unqualified type.
const Type *Ty;
/// The local qualifiers.
Qualifiers Quals;
SplitQualType() : Ty(nullptr), Quals() {}
SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
SplitQualType getSingleStepDesugaredType() const; // end of this file
// Make std::tie work.
std::pair<const Type *,Qualifiers> asPair() const {
return std::pair<const Type *, Qualifiers>(Ty, Quals);
}
friend bool operator==(SplitQualType a, SplitQualType b) {
return a.Ty == b.Ty && a.Quals == b.Quals;
}
friend bool operator!=(SplitQualType a, SplitQualType b) {
return a.Ty != b.Ty || a.Quals != b.Quals;
}
};
/// The kind of type we are substituting Objective-C type arguments into.
///
/// The kind of substitution affects the replacement of type parameters when
/// no concrete type information is provided, e.g., when dealing with an
/// unspecialized type.
enum class ObjCSubstitutionContext {
/// An ordinary type.
Ordinary,
/// The result type of a method or function.
Result,
/// The parameter type of a method or function.
Parameter,
/// The type of a property.
Property,
/// The superclass of a type.
Superclass,
};
/// QualType - For efficiency, we don't store CV-qualified types as nodes on
/// their own: instead each reference to a type stores the qualifiers. This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer. To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer. A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
// Thankfully, these are efficiently composable.
llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
Qualifiers::FastWidth> Value;
const ExtQuals *getExtQualsUnsafe() const {
return Value.getPointer().get<const ExtQuals*>();
}
const Type *getTypePtrUnsafe() const {
return Value.getPointer().get<const Type*>();
}
const ExtQualsTypeCommonBase *getCommonPtr() const {
assert(!isNull() && "Cannot retrieve a NULL type pointer");
uintptr_t CommonPtrVal
= reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
}
friend class QualifierCollector;
public:
QualType() {}
QualType(const Type *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
QualType(const ExtQuals *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
/// Retrieves a pointer to the underlying (unqualified) type.
///
/// This function requires that the type not be NULL. If the type might be
/// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
const Type *getTypePtr() const;
const Type *getTypePtrOrNull() const;
/// Retrieves a pointer to the name of the base type.
const IdentifierInfo *getBaseTypeIdentifier() const;
/// Divides a QualType into its unqualified type and a set of local
/// qualifiers.
SplitQualType split() const;
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static QualType getFromOpaquePtr(const void *Ptr) {
QualType T;
T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
return T;
}
const Type &operator*() const {
return *getTypePtr();
}
const Type *operator->() const {
return getTypePtr();
}
bool isCanonical() const;
bool isCanonicalAsParam() const;
/// isNull - Return true if this QualType doesn't point to a type yet.
bool isNull() const {
return Value.getPointer().isNull();
}
/// \brief Determine whether this particular QualType instance has the
/// "const" qualifier set, without looking through typedefs that may have
/// added "const" at a different level.
bool isLocalConstQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Const);
}
/// \brief Determine whether this type is const-qualified.
bool isConstQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "restrict" qualifier set, without looking through typedefs that may have
/// added "restrict" at a different level.
bool isLocalRestrictQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Restrict);
}
/// \brief Determine whether this type is restrict-qualified.
bool isRestrictQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "volatile" qualifier set, without looking through typedefs that may have
/// added "volatile" at a different level.
bool isLocalVolatileQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Volatile);
}
/// \brief Determine whether this type is volatile-qualified.
bool isVolatileQualified() const;
/// \brief Determine whether this particular QualType instance has any
/// qualifiers, without looking through any typedefs that might add
/// qualifiers at a different level.
bool hasLocalQualifiers() const {
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
}
/// \brief Determine whether this type has any qualifiers.
bool hasQualifiers() const;
/// \brief Determine whether this particular QualType instance has any
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
/// instance.
bool hasLocalNonFastQualifiers() const {
return Value.getPointer().is<const ExtQuals*>();
}
/// \brief Retrieve the set of qualifiers local to this particular QualType
/// instance, not including any qualifiers acquired through typedefs or
/// other sugar.
Qualifiers getLocalQualifiers() const;
/// \brief Retrieve the set of qualifiers applied to this type.
Qualifiers getQualifiers() const;
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// local to this particular QualType instance, not including any qualifiers
/// acquired through typedefs or other sugar.
unsigned getLocalCVRQualifiers() const {
return getLocalFastQualifiers();
}
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type.
unsigned getCVRQualifiers() const;
bool isConstant(ASTContext& Ctx) const {
return QualType::isConstant(*this, Ctx);
}
/// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
bool isPODType(ASTContext &Context) const;
/// isCXX98PODType() - Return true if this is a POD type according to the
/// rules of the C++98 standard, regardless of the current compilation's
/// language.
bool isCXX98PODType(ASTContext &Context) const;
/// isCXX11PODType() - Return true if this is a POD type according to the
/// more relaxed rules of the C++11 standard, regardless of the current
/// compilation's language.
/// (C++0x [basic.types]p9)
bool isCXX11PODType(ASTContext &Context) const;
/// isTrivialType - Return true if this is a trivial type
/// (C++0x [basic.types]p9)
bool isTrivialType(ASTContext &Context) const;
/// isTriviallyCopyableType - Return true if this is a trivially
/// copyable type (C++0x [basic.types]p9)
bool isTriviallyCopyableType(ASTContext &Context) const;
// Don't promise in the API that anything besides 'const' can be
// easily added.
/// addConst - add the specified type qualifier to this QualType.
void addConst() {
addFastQualifiers(Qualifiers::Const);
}
QualType withConst() const {
return withFastQualifiers(Qualifiers::Const);
}
/// addVolatile - add the specified type qualifier to this QualType.
void addVolatile() {
addFastQualifiers(Qualifiers::Volatile);
}
QualType withVolatile() const {
return withFastQualifiers(Qualifiers::Volatile);
}
/// Add the restrict qualifier to this QualType.
void addRestrict() {
addFastQualifiers(Qualifiers::Restrict);
}
QualType withRestrict() const {
return withFastQualifiers(Qualifiers::Restrict);
}
QualType withCVRQualifiers(unsigned CVR) const {
return withFastQualifiers(CVR);
}
void addFastQualifiers(unsigned TQs) {
assert(!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!");
Value.setInt(Value.getInt() | TQs);
}
void removeLocalConst();
void removeLocalVolatile();
void removeLocalRestrict();
void removeLocalCVRQualifiers(unsigned Mask);
void removeLocalFastQualifiers() { Value.setInt(0); }
void removeLocalFastQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
Value.setInt(Value.getInt() & ~Mask);
}
// Creates a type with the given qualifiers in addition to any
// qualifiers already on this type.
QualType withFastQualifiers(unsigned TQs) const {
QualType T = *this;
T.addFastQualifiers(TQs);
return T;
}
// Creates a type with exactly the given fast qualifiers, removing
// any existing fast qualifiers.
QualType withExactLocalFastQualifiers(unsigned TQs) const {
return withoutLocalFastQualifiers().withFastQualifiers(TQs);
}
// Removes fast qualifiers, but leaves any extended qualifiers in place.
QualType withoutLocalFastQualifiers() const {
QualType T = *this;
T.removeLocalFastQualifiers();
return T;
}
QualType getCanonicalType() const;
/// \brief Return this type with all of the instance-specific qualifiers
/// removed, but without removing any qualifiers that may have been applied
/// through typedefs.
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
/// \brief Retrieve the unqualified variant of the given type,
/// removing as little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the
/// least-desugared type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedType() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline QualType getUnqualifiedType() const;
/// getSplitUnqualifiedType - Retrieve the unqualified variant of the
/// given type, removing as little sugar as possible.
///
/// Like getUnqualifiedType(), but also returns the set of
/// qualifiers that were built up.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline SplitQualType getSplitUnqualifiedType() const;
/// \brief Determine whether this type is more qualified than the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isMoreQualifiedThan(QualType Other) const;
/// \brief Determine whether this type is at least as qualified as the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isAtLeastAsQualifiedAs(QualType Other) const;
QualType getNonReferenceType() const;
/// \brief Determine the type of a (typically non-lvalue) expression with the
/// specified result type.
///
/// This routine should be used for expressions for which the return type is
/// explicitly specified (e.g., in a cast or call) and isn't necessarily
/// an lvalue. It removes a top-level reference (since there are no
/// expressions of reference type) and deletes top-level cvr-qualifiers
/// from non-class types (in C++) or all types (in C).
QualType getNonLValueExprType(const ASTContext &Context) const;
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// Qualifiers are left in place.
QualType getDesugaredType(const ASTContext &Context) const {
return getDesugaredType(*this, Context);
}
SplitQualType getSplitDesugaredType() const {
return getSplitDesugaredType(*this);
}
/// \brief Return the specified type with one level of "sugar" removed from
/// the type.
///
/// This routine takes off the first typedef, typeof, etc. If the outer level
/// of the type is already concrete, it returns it unmodified.
QualType getSingleStepDesugaredType(const ASTContext &Context) const {
return getSingleStepDesugaredTypeImpl(*this, Context);
}
/// IgnoreParens - Returns the specified type after dropping any
/// outer-level parentheses.
QualType IgnoreParens() const {
if (isa<ParenType>(*this))
return QualType::IgnoreParens(*this);
return *this;
}
/// operator==/!= - Indicate whether the specified types and qualifiers are
/// identical.
friend bool operator==(const QualType &LHS, const QualType &RHS) {
return LHS.Value == RHS.Value;
}
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
std::string getAsString() const {
return getAsString(split());
}
static std::string getAsString(SplitQualType split) {
return getAsString(split.Ty, split.Quals);
}
static std::string getAsString(const Type *ty, Qualifiers qs);
std::string getAsString(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine()) const {
print(split(), OS, Policy, PlaceHolder);
}
static void print(SplitQualType split, raw_ostream &OS,
const PrintingPolicy &policy, const Twine &PlaceHolder) {
return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
}
static void print(const Type *ty, Qualifiers qs,
raw_ostream &OS, const PrintingPolicy &policy,
const Twine &PlaceHolder);
void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
return getAsStringInternal(split(), Str, Policy);
}
static void getAsStringInternal(SplitQualType split, std::string &out,
const PrintingPolicy &policy) {
return getAsStringInternal(split.Ty, split.Quals, out, policy);
}
static void getAsStringInternal(const Type *ty, Qualifiers qs,
std::string &out,
const PrintingPolicy &policy);
class StreamedQualTypeHelper {
const QualType &T;
const PrintingPolicy &Policy;
const Twine &PlaceHolder;
public:
StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
const Twine &PlaceHolder)
: T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
friend raw_ostream &operator<<(raw_ostream &OS,
const StreamedQualTypeHelper &SQT) {
SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
return OS;
}
};
StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine()) const {
return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
}
void dump(const char *s) const;
void dump() const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
/// getAddressSpace - Return the address space of this type.
inline unsigned getAddressSpace() const;
/// getObjCGCAttr - Returns gc attribute of this type.
inline Qualifiers::GC getObjCGCAttr() const;
/// isObjCGCWeak true when Type is objc's weak.
bool isObjCGCWeak() const {
return getObjCGCAttr() == Qualifiers::Weak;
}
/// isObjCGCStrong true when Type is objc's strong.
bool isObjCGCStrong() const {
return getObjCGCAttr() == Qualifiers::Strong;
}
/// getObjCLifetime - Returns lifetime attribute of this type.
Qualifiers::ObjCLifetime getObjCLifetime() const {
return getQualifiers().getObjCLifetime();
}
bool hasNonTrivialObjCLifetime() const {
return getQualifiers().hasNonTrivialObjCLifetime();
}
bool hasStrongOrWeakObjCLifetime() const {
return getQualifiers().hasStrongOrWeakObjCLifetime();
}
enum DestructionKind {
DK_none,
DK_cxx_destructor,
DK_objc_strong_lifetime,
DK_objc_weak_lifetime
};
/// isDestructedType - nonzero if objects of this type require
/// non-trivial work to clean up after. Non-zero because it's
/// conceivable that qualifiers (objc_gc(weak)?) could make
/// something require destruction.
DestructionKind isDestructedType() const {
return isDestructedTypeImpl(*this);
}
/// \brief Determine whether expressions of the given type are forbidden
/// from being lvalues in C.
///
/// The expression types that are forbidden to be lvalues are:
/// - 'void', but not qualified void
/// - function types
///
/// The exact rule here is C99 6.3.2.1:
/// An lvalue is an expression with an object type or an incomplete
/// type other than void.
bool isCForbiddenLValueType() const;
/// Substitute type arguments for the Objective-C type parameters used in the
/// subject type.
///
/// \param ctx ASTContext in which the type exists.
///
/// \param typeArgs The type arguments that will be substituted for the
/// Objective-C type parameters in the subject type, which are generally
/// computed via \c Type::getObjCSubstitutions. If empty, the type
/// parameters will be replaced with their bounds or id/Class, as appropriate
/// for the context.
///
/// \param context The context in which the subject type was written.
///
/// \returns the resulting type.
QualType substObjCTypeArgs(ASTContext &ctx,
ArrayRef<QualType> typeArgs,
ObjCSubstitutionContext context) const;
/// Substitute type arguments from an object type for the Objective-C type
/// parameters used in the subject type.
///
/// This operation combines the computation of type arguments for
/// substitution (\c Type::getObjCSubstitutions) with the actual process of
/// substitution (\c QualType::substObjCTypeArgs) for the convenience of
/// callers that need to perform a single substitution in isolation.
///
/// \param objectType The type of the object whose member type we're
/// substituting into. For example, this might be the receiver of a message
/// or the base of a property access.
///
/// \param dc The declaration context from which the subject type was
/// retrieved, which indicates (for example) which type parameters should
/// be substituted.
///
/// \param context The context in which the subject type was written.
///
/// \returns the subject type after replacing all of the Objective-C type
/// parameters with their corresponding arguments.
QualType substObjCMemberType(QualType objectType,
const DeclContext *dc,
ObjCSubstitutionContext context) const;
/// Strip Objective-C "__kindof" types from the given type.
QualType stripObjCKindOfType(const ASTContext &ctx) const;
private:
// These methods are implemented in a separate translation unit;
// "static"-ize them to avoid creating temporary QualTypes in the
// caller.
static bool isConstant(QualType T, ASTContext& Ctx);
static QualType getDesugaredType(QualType T, const ASTContext &Context);
static SplitQualType getSplitDesugaredType(QualType T);
static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
static QualType getSingleStepDesugaredTypeImpl(QualType type,
const ASTContext &C);
static QualType IgnoreParens(QualType T);
static DestructionKind isDestructedTypeImpl(QualType type);
};
} // end clang.
namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type< ::clang::QualType> {
typedef const ::clang::Type *SimpleType;
static SimpleType getSimplifiedValue(::clang::QualType Val) {
return Val.getTypePtr();
}
};
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
static inline void *getAsVoidPointer(clang::QualType P) {
return P.getAsOpaquePtr();
}
static inline clang::QualType getFromVoidPointer(void *P) {
return clang::QualType::getFromOpaquePtr(P);
}
// Various qualifiers go in low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
/// \brief Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
///
class ExtQualsTypeCommonBase {
ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
: BaseType(baseType), CanonicalType(canon) {}
/// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
/// a self-referential pointer (for \c Type).
///
/// This pointer allows an efficient mapping from a QualType to its
/// underlying type pointer.
const Type *const BaseType;
/// \brief The canonical type of this type. A QualType.
QualType CanonicalType;
friend class QualType;
friend class Type;
friend class ExtQuals;
};
/// ExtQuals - We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type. Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
// NOTE: changing the fast qualifiers should be straightforward as
// long as you don't make 'const' non-fast.
// 1. Qualifiers:
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
// Fast qualifiers must occupy the low-order bits.
// b) Update Qualifiers::FastWidth and FastMask.
// 2. QualType:
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
// b) Update remove{Volatile,Restrict}, defined near the end of
// this header.
// 3. ASTContext:
// a) Update get{Volatile,Restrict}Type.
/// Quals - the immutable set of qualifiers applied by this
/// node; always contains extended qualifiers.
Qualifiers Quals;
ExtQuals *this_() { return this; }
public:
ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
: ExtQualsTypeCommonBase(baseType,
canon.isNull() ? QualType(this_(), 0) : canon),
Quals(quals)
{
assert(Quals.hasNonFastQualifiers()
&& "ExtQuals created with no fast qualifiers");
assert(!Quals.hasFastQualifiers()
&& "ExtQuals created with fast qualifiers");
}
Qualifiers getQualifiers() const { return Quals; }
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
Qualifiers::ObjCLifetime getObjCLifetime() const {
return Quals.getObjCLifetime();
}
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
const Type *getBaseType() const { return BaseType; }
public:
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, getBaseType(), Quals);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const Type *BaseType,
Qualifiers Quals) {
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
ID.AddPointer(BaseType);
Quals.Profile(ID);
}
};
/// \brief The kind of C++0x ref-qualifier associated with a function type,
/// which determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
/// \brief No ref-qualifier was provided.
RQ_None = 0,
/// \brief An lvalue ref-qualifier was provided (\c &).
RQ_LValue,
/// \brief An rvalue ref-qualifier was provided (\c &&).
RQ_RValue
};
/// Type - This is the base class of the type hierarchy. A central concept
/// with types is that each type always has a canonical type. A canonical type
/// is the type with any typedef names stripped out of it or the types it
/// references. For example, consider:
///
/// typedef int foo;
/// typedef foo* bar;
/// 'int *' 'foo *' 'bar'
///
/// There will be a Type object created for 'int'. Since int is canonical, its
/// canonicaltype pointer points to itself. There is also a Type for 'foo' (a
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used. Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type : public ExtQualsTypeCommonBase {
public:
enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
TagFirst = Record, TagLast = Enum
};
private:
Type(const Type &) = delete;
void operator=(const Type &) = delete;
/// Bitfields required by the Type class.
class TypeBitfields {
friend class Type;
template <class T> friend class TypePropertyCache;
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
unsigned TC : 8;
/// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
unsigned Dependent : 1;
/// \brief Whether this type somehow involves a template parameter, even
/// if the resolution of the type does not depend on a template parameter.
unsigned InstantiationDependent : 1;
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
unsigned VariablyModified : 1;
/// \brief Whether this type contains an unexpanded parameter pack
/// (for C++0x variadic templates).
unsigned ContainsUnexpandedParameterPack : 1;
/// \brief True if the cache (i.e. the bitfields here starting with
/// 'Cache') is valid.
mutable unsigned CacheValid : 1;
/// \brief Linkage of this type.
mutable unsigned CachedLinkage : 3;
/// \brief Whether this type involves and local or unnamed types.
mutable unsigned CachedLocalOrUnnamed : 1;
/// \brief FromAST - Whether this type comes from an AST file.
mutable unsigned FromAST : 1;
bool isCacheValid() const {
return CacheValid;
}
Linkage getLinkage() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return static_cast<Linkage>(CachedLinkage);
}
bool hasLocalOrUnnamedType() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return CachedLocalOrUnnamed;
}
};
enum { NumTypeBits = 18 };
protected:
// These classes allow subclasses to somewhat cleanly pack bitfields
// into Type.
class ArrayTypeBitfields {
friend class ArrayType;
unsigned : NumTypeBits;
/// IndexTypeQuals - CVR qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
unsigned IndexTypeQuals : 3;
/// SizeModifier - storage class qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
/// Actually an ArrayType::ArraySizeModifier.
unsigned SizeModifier : 3;
};
class BuiltinTypeBitfields {
friend class BuiltinType;
unsigned : NumTypeBits;
/// The kind (BuiltinType::Kind) of builtin type this is.
unsigned Kind : 8;
};
class FunctionTypeBitfields {
friend class FunctionType;
friend class FunctionProtoType;
unsigned : NumTypeBits;
/// Extra information which affects how the function is called, like
/// regparm and the calling convention.
unsigned ExtInfo : 9;
/// TypeQuals - Used only by FunctionProtoType, put here to pack with the
/// other bitfields.
/// The qualifiers are part of FunctionProtoType because...
///
/// C++ 8.3.5p4: The return type, the parameter type list and the
/// cv-qualifier-seq, [...], are part of the function type.
unsigned TypeQuals : 3;
/// \brief The ref-qualifier associated with a \c FunctionProtoType.
///
/// This is a value of type \c RefQualifierKind.
unsigned RefQualifier : 2;
};
class ObjCObjectTypeBitfields {
friend class ObjCObjectType;
unsigned : NumTypeBits;
/// The number of type arguments stored directly on this object type.
unsigned NumTypeArgs : 7;
/// NumProtocols - The number of protocols stored directly on this
/// object type.
unsigned NumProtocols : 6;
/// Whether this is a "kindof" type.
unsigned IsKindOf : 1;
};
static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
class ReferenceTypeBitfields {
friend class ReferenceType;
unsigned : NumTypeBits;
/// True if the type was originally spelled with an lvalue sigil.
/// This is never true of rvalue references but can also be false
/// on lvalue references because of C++0x [dcl.typedef]p9,
/// as follows:
///
/// typedef int &ref; // lvalue, spelled lvalue
/// typedef int &&rvref; // rvalue
/// ref &a; // lvalue, inner ref, spelled lvalue
/// ref &&a; // lvalue, inner ref
/// rvref &a; // lvalue, inner ref, spelled lvalue
/// rvref &&a; // rvalue, inner ref
unsigned SpelledAsLValue : 1;
/// True if the inner type is a reference type. This only happens
/// in non-canonical forms.
unsigned InnerRef : 1;
};
class TypeWithKeywordBitfields {
friend class TypeWithKeyword;
unsigned : NumTypeBits;
/// An ElaboratedTypeKeyword. 8 bits for efficient access.
unsigned Keyword : 8;
};
class VectorTypeBitfields {
friend class VectorType;
unsigned : NumTypeBits;
/// VecKind - The kind of vector, either a generic vector type or some
/// target-specific vector type such as for AltiVec or Neon.
unsigned VecKind : 3;
/// NumElements - The number of elements in the vector.
unsigned NumElements : 29 - NumTypeBits;
enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
};
class AttributedTypeBitfields {
friend class AttributedType;
unsigned : NumTypeBits;
/// AttrKind - an AttributedType::Kind
unsigned AttrKind : 32 - NumTypeBits;
};
class AutoTypeBitfields {
friend class AutoType;
unsigned : NumTypeBits;
/// Was this placeholder type spelled as 'decltype(auto)'?
unsigned IsDecltypeAuto : 1;
};
union {
TypeBitfields TypeBits;
ArrayTypeBitfields ArrayTypeBits;
AttributedTypeBitfields AttributedTypeBits;
AutoTypeBitfields AutoTypeBits;
BuiltinTypeBitfields BuiltinTypeBits;
FunctionTypeBitfields FunctionTypeBits;
ObjCObjectTypeBitfields ObjCObjectTypeBits;
ReferenceTypeBitfields ReferenceTypeBits;
TypeWithKeywordBitfields TypeWithKeywordBits;
VectorTypeBitfields VectorTypeBits;
};
private:
/// \brief Set whether this type comes from an AST file.
void setFromAST(bool V = true) const {
TypeBits.FromAST = V;
}
template <class T> friend class TypePropertyCache;
protected:
// silence VC++ warning C4355: 'this' : used in base member initializer list
Type *this_() { return this; }
Type(TypeClass tc, QualType canon, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: ExtQualsTypeCommonBase(this,
canon.isNull() ? QualType(this_(), 0) : canon) {
TypeBits.TC = tc;
TypeBits.Dependent = Dependent;
TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
TypeBits.VariablyModified = VariablyModified;
TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
TypeBits.CacheValid = false;
TypeBits.CachedLocalOrUnnamed = false;
TypeBits.CachedLinkage = NoLinkage;
TypeBits.FromAST = false;
}
friend class ASTContext;
void setDependent(bool D = true) {
TypeBits.Dependent = D;
if (D)
TypeBits.InstantiationDependent = true;
}
void setInstantiationDependent(bool D = true) {
TypeBits.InstantiationDependent = D; }
void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
}
void setContainsUnexpandedParameterPack(bool PP = true) {
TypeBits.ContainsUnexpandedParameterPack = PP;
}
public:
TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
/// \brief Whether this type comes from an AST file.
bool isFromAST() const { return TypeBits.FromAST; }
/// \brief Whether this type is or contains an unexpanded parameter
/// pack, used to support C++0x variadic templates.
///
/// A type that contains a parameter pack shall be expanded by the
/// ellipsis operator at some point. For example, the typedef in the
/// following example contains an unexpanded parameter pack 'T':
///
/// \code
/// template<typename ...T>
/// struct X {
/// typedef T* pointer_types; // ill-formed; T is a parameter pack.
/// };
/// \endcode
///
/// Note that this routine does not specify which
bool containsUnexpandedParameterPack() const {
return TypeBits.ContainsUnexpandedParameterPack;
}
/// Determines if this type would be canonical if it had no further
/// qualification.
bool isCanonicalUnqualified() const {
return CanonicalType == QualType(this, 0);
}
/// Pull a single level of sugar off of this locally-unqualified type.
/// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
/// or QualType::getSingleStepDesugaredType(const ASTContext&).
QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
/// object types, function types, and incomplete types.
/// isIncompleteType - Return true if this is an incomplete type.
/// A type that can describe objects, but which lacks information needed to
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
/// routine will need to determine if the size is actually required.
///
/// \brief Def If non-NULL, and the type refers to some kind of declaration
/// that can be completed (such as a C struct, C++ class, or Objective-C
/// class), will be set to the declaration.
bool isIncompleteType(NamedDecl **Def = nullptr) const;
/// isIncompleteOrObjectType - Return true if this is an incomplete or object
/// type, in other words, not a function type.
bool isIncompleteOrObjectType() const {
return !isFunctionType();
}
/// \brief Determine whether this type is an object type.
bool isObjectType() const {
// C++ [basic.types]p8:
// An object type is a (possibly cv-qualified) type that is not a
// function type, not a reference type, and not a void type.
return !isReferenceType() && !isFunctionType() && !isVoidType();
}
/// isLiteralType - Return true if this is a literal type
/// (C++11 [basic.types]p10)
bool isLiteralType(const ASTContext &Ctx) const;
/// \brief Test if this type is a standard-layout type.
/// (C++0x [basic.type]p9)
bool isStandardLayoutType() const;
/// Helper methods to distinguish type categories. All type predicates
/// operate on the canonical type, ignoring typedefs and qualifiers.
/// isBuiltinType - returns true if the type is a builtin type.
bool isBuiltinType() const;
/// isSpecificBuiltinType - Test for a particular builtin type.
bool isSpecificBuiltinType(unsigned K) const;
/// isPlaceholderType - Test for a type which does not represent an
/// actual type-system type but is instead used as a placeholder for
/// various convenient purposes within Clang. All such types are
/// BuiltinTypes.
bool isPlaceholderType() const;
const BuiltinType *getAsPlaceholderType() const;
/// isSpecificPlaceholderType - Test for a specific placeholder type.
bool isSpecificPlaceholderType(unsigned K) const;
/// isNonOverloadPlaceholderType - Test for a placeholder type
/// other than Overload; see BuiltinType::isNonOverloadPlaceholderType.
bool isNonOverloadPlaceholderType() const;
/// isIntegerType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
bool isEnumeralType() const;
bool isBooleanType() const;
bool isCharType() const;
bool isWideCharType() const;
bool isChar16Type() const;
bool isChar32Type() const;
bool isAnyCharacterType() const;
bool isIntegralType(ASTContext &Ctx) const;
/// \brief Determine whether this type is an integral or enumeration type.
bool isIntegralOrEnumerationType() const;
/// \brief Determine whether this type is an integral or unscoped enumeration
/// type.
bool isIntegralOrUnscopedEnumerationType() const;
/// Floating point categories.
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
/// isComplexType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isComplexType() const; // C99 6.2.5p11 (complex)
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
bool isVoidType() const; // C99 6.2.5p19
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
bool isAggregateType() const;
bool isFundamentalType() const;
bool isCompoundType() const;
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
bool isVoidPointerType() const;
bool isReferenceType() const;
bool isLValueReferenceType() const;
bool isRValueReferenceType() const;
bool isFunctionPointerType() const;
bool isMemberPointerType() const;
bool isMemberFunctionPointerType() const;
bool isMemberDataPointerType() const;
bool isArrayType() const;
bool isConstantArrayType() const;
bool isIncompleteArrayType() const;
bool isVariableArrayType() const;
bool isDependentSizedArrayType() const;
bool isRecordType() const;
bool isClassType() const;
bool isStructureType() const;
bool isObjCBoxableRecordType() const;
bool isInterfaceType() const;
bool isStructureOrClassType() const;
bool isUnionType() const;
bool isComplexIntegerType() const; // GCC _Complex integer type.
bool isVectorType() const; // GCC vector type.
bool isExtVectorType() const; // Extended vector type.
bool isObjCObjectPointerType() const; // pointer to ObjC object
bool isObjCRetainableType() const; // ObjC object or block pointer
bool isObjCLifetimeType() const; // (array of)* retainable type
bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
bool isObjCNSObjectType() const; // __attribute__((NSObject))
bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
// for the common case.
bool isObjCObjectType() const; // NSString or typeof(*(id)0)
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
bool isObjCQualifiedIdType() const; // id<foo>
bool isObjCQualifiedClassType() const; // Class<foo>
bool isObjCObjectOrInterfaceType() const;
bool isObjCIdType() const; // id
/// Whether the type is Objective-C 'id' or a __kindof type of an
/// object type, e.g., __kindof NSView * or __kindof id
/// <NSCopying>.
///
/// \param bound Will be set to the bound on non-id subtype types,
/// which will be (possibly specialized) Objective-C class type, or
/// null for 'id.
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
const ObjCObjectType *&bound) const;
bool isObjCClassType() const; // Class
/// Whether the type is Objective-C 'Class' or a __kindof type of an
/// Class type, e.g., __kindof Class <NSCopying>.
///
/// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
/// here because Objective-C's type system cannot express "a class
/// object for a subclass of NSFoo".
bool isObjCClassOrClassKindOfType() const;
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
bool isObjCSelType() const; // Class
bool isObjCBuiltinType() const; // 'id' or 'Class'
bool isObjCARCBridgableType() const;
bool isCARCBridgableType() const;
bool isTemplateTypeParmType() const; // C++ template type parameter
bool isNullPtrType() const; // C++0x nullptr_t
bool isAtomicType() const; // C11 _Atomic()
bool isImage1dT() const; // OpenCL image1d_t
bool isImage1dArrayT() const; // OpenCL image1d_array_t
bool isImage1dBufferT() const; // OpenCL image1d_buffer_t
bool isImage2dT() const; // OpenCL image2d_t
bool isImage2dArrayT() const; // OpenCL image2d_array_t
bool isImage3dT() const; // OpenCL image3d_t
bool isImageType() const; // Any OpenCL image type
bool isSamplerT() const; // OpenCL sampler_t
bool isEventT() const; // OpenCL event_t
bool isOpenCLSpecificType() const; // Any OpenCL specific type
/// Determines if this type, which must satisfy
/// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
/// than implicitly __strong.
bool isObjCARCImplicitlyUnretainedType() const;
/// Return the implicit lifetime for this type, which must not be dependent.
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
enum ScalarTypeKind {
STK_CPointer,
STK_BlockPointer,
STK_ObjCObjectPointer,
STK_MemberPointer,
STK_Bool,
STK_Integral,
STK_Floating,
STK_IntegralComplex,
STK_FloatingComplex
};
/// getScalarTypeKind - Given that this is a scalar type, classify it.
ScalarTypeKind getScalarTypeKind() const;
/// isDependentType - Whether this type is a dependent type, meaning
/// that its definition somehow depends on a template parameter
/// (C++ [temp.dep.type]).
bool isDependentType() const { return TypeBits.Dependent; }
/// \brief Determine whether this type is an instantiation-dependent type,
/// meaning that the type involves a template parameter (even if the
/// definition does not actually depend on the type substituted for that
/// template parameter).
bool isInstantiationDependentType() const {
return TypeBits.InstantiationDependent;
}
/// \brief Determine whether this type is an undeduced type, meaning that
/// it somehow involves a C++11 'auto' type which has not yet been deduced.
bool isUndeducedType() const;
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
/// \brief Whether this type involves a variable-length array type
/// with a definite size.
bool hasSizedVLAType() const;
/// \brief Whether this type is or contains a local or unnamed type.
bool hasUnnamedOrLocalType() const;
bool isOverloadableType() const;
/// \brief Determine wither this type is a C++ elaborated-type-specifier.
bool isElaboratedTypeSpecifier() const;
bool canDecayToPointerType() const;
/// hasPointerRepresentation - Whether this type is represented
/// natively as a pointer; this includes pointers, references, block
/// pointers, and Objective-C interface, qualified id, and qualified
/// interface types, as well as nullptr_t.
bool hasPointerRepresentation() const;
/// hasObjCPointerRepresentation - Whether this type can represent
/// an objective pointer type for the purpose of GC'ability
bool hasObjCPointerRepresentation() const;
/// \brief Determine whether this type has an integer representation
/// of some sort, e.g., it is an integer type or a vector.
bool hasIntegerRepresentation() const;
/// \brief Determine whether this type has an signed integer representation
/// of some sort, e.g., it is an signed integer type or a vector.
bool hasSignedIntegerRepresentation() const;
/// \brief Determine whether this type has an unsigned integer representation
/// of some sort, e.g., it is an unsigned integer type or a vector.
bool hasUnsignedIntegerRepresentation() const;
/// \brief Determine whether this type has a floating-point representation
/// of some sort, e.g., it is a floating-point type or a vector thereof.
bool hasFloatingRepresentation() const;
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const RecordType *getAsUnionType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
const ObjCObjectType *getAsObjCInterfaceType() const;
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
/// \brief Retrieves the CXXRecordDecl that this type refers to, either
/// because the type is a RecordType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
CXXRecordDecl *getAsCXXRecordDecl() const;
/// \brief Retrieves the TagDecl that this type refers to, either
/// because the type is a TagType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
TagDecl *getAsTagDecl() const;
/// If this is a pointer or reference to a RecordType, return the
/// CXXRecordDecl that that type refers to.
///
/// If this is not a pointer or reference, or the type being pointed to does
/// not refer to a CXXRecordDecl, returns NULL.
const CXXRecordDecl *getPointeeCXXRecordDecl() const;
/// \brief Get the AutoType whose type will be deduced for a variable with
/// an initializer of this type. This looks through declarators like pointer
/// types, but not through decltype or typedefs.
AutoType *getContainedAutoType() const;
/// Member-template getAs<specific type>'. Look through sugar for
/// an instance of \<specific type>. This scheme will eventually
/// replace the specific getAsXXXX methods above.
///
/// There are some specializations of this member template listed
/// immediately following this class.
template <typename T> const T *getAs() const;
/// A variant of getAs<> for array types which silently discards
/// qualifiers from the outermost type.
const ArrayType *getAsArrayTypeUnsafe() const;
/// Member-template castAs<specific type>. Look through sugar for
/// the underlying instance of \<specific type>.
///
/// This method has the same relationship to getAs<T> as cast<T> has
/// to dyn_cast<T>; which is to say, the underlying type *must*
/// have the intended type, and this method will never return null.
template <typename T> const T *castAs() const;
/// A variant of castAs<> for array type which silently discards
/// qualifiers from the outermost type.
const ArrayType *castAsArrayTypeUnsafe() const;
/// getBaseElementTypeUnsafe - Get the base element type of this
/// type, potentially discarding type qualifiers. This method
/// should never be used when type qualifiers are meaningful.
const Type *getBaseElementTypeUnsafe() const;
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *getArrayElementTypeNoTypeQual() const;
/// getPointeeType - If this is a pointer, ObjC object pointer, or block
/// pointer, this returns the respective pointee.
QualType getPointeeType() const;
/// getUnqualifiedDesugaredType() - Return the specified type with
/// any "sugar" removed from the type, removing any typedefs,
/// typeofs, etc., as well as any qualifiers.
const Type *getUnqualifiedDesugaredType() const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// or an enum decl which has a signed representation.
bool isSignedIntegerType() const;
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
/// or an enum decl which has an unsigned representation.
bool isUnsignedIntegerType() const;
/// Determines whether this is an integer type that is signed or an
/// enumeration types whose underlying type is a signed integer type.
bool isSignedIntegerOrEnumerationType() const;
/// Determines whether this is an integer type that is unsigned or an
/// enumeration types whose underlying type is a unsigned integer type.
bool isUnsignedIntegerOrEnumerationType() const;
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types.
bool isConstantSizeType() const;
/// isSpecifierType - Returns true if this type can be represented by some
/// set of type specifiers.
bool isSpecifierType() const;
/// \brief Determine the linkage of this type.
Linkage getLinkage() const;
/// \brief Determine the visibility of this type.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// \brief Return true if the visibility was explicitly set is the code.
bool isVisibilityExplicit() const {
return getLinkageAndVisibility().isVisibilityExplicit();
}
/// \brief Determine the linkage and visibility of this type.
LinkageInfo getLinkageAndVisibility() const;
/// \brief True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// Determine the nullability of the given type.
///
/// Note that nullability is only captured as sugar within the type
/// system, not as part of the canonical type, so nullability will
/// be lost by canonicalization and desugaring.
Optional<NullabilityKind> getNullability(const ASTContext &context) const;
/// Determine whether the given type can have a nullability
/// specifier applied to it, i.e., if it is any kind of pointer type
/// or a dependent type that could instantiate to any kind of
/// pointer type.
bool canHaveNullability() const;
/// Retrieve the set of substitutions required when accessing a member
/// of the Objective-C receiver type that is declared in the given context.
///
/// \c *this is the type of the object we're operating on, e.g., the
/// receiver for a message send or the base of a property access, and is
/// expected to be of some object or object pointer type.
///
/// \param dc The declaration context for which we are building up a
/// substitution mapping, which should be an Objective-C class, extension,
/// category, or method within.
///
/// \returns an array of type arguments that can be substituted for
/// the type parameters of the given declaration context in any type described
/// within that context, or an empty optional to indicate that no
/// substitution is required.
Optional<ArrayRef<QualType>>
getObjCSubstitutions(const DeclContext *dc) const;
/// Determines if this is an ObjC interface type that may accept type
/// parameters.
bool acceptsObjCTypeParams() const;
const char *getTypeClassName() const;
QualType getCanonicalTypeInternal() const {
return CanonicalType;
}
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
void dump() const;
friend class ASTReader;
friend class ASTWriter;
};
/// \brief This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const;
/// \brief This will check for a TemplateSpecializationType by removing any
/// existing sugar until it reaches a TemplateSpecializationType or a
/// non-sugared type.
template <> const TemplateSpecializationType *Type::getAs() const;
/// \brief This will check for an AttributedType by removing any existing sugar
/// until it reaches an AttributedType or a non-sugared type.
template <> const AttributedType *Type::getAs() const;
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"
/// BuiltinType - This class is used for builtin types like 'int'. Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
enum Kind {
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
};
public:
BuiltinType(Kind K)
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
/*InstantiationDependent=*/(K == Dependent),
/*VariablyModified=*/false,
/*Unexpanded paramter pack=*/false) {
BuiltinTypeBits.Kind = K;
}
Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
StringRef getName(const PrintingPolicy &Policy) const;
const char *getNameAsCString(const PrintingPolicy &Policy) const {
// The StringRef is null-terminated.
StringRef str = getName(Policy);
assert(!str.empty() && str.data()[str.size()] == '\0');
return str.data();
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isInteger() const {
return getKind() >= Bool && getKind() <= LitInt; // HLSL Change: last int in list is LitInt, not Int128
}
bool isSignedInteger() const {
return getKind() >= Char_S && getKind() <= LitInt; // HLSL Change: last signed int in list is LitInt, not Int128
}
bool isUnsignedInteger() const {
return getKind() >= Bool && getKind() <= UInt128;
}
bool isFloatingPoint() const {
return getKind() >= Half && getKind() <= LitFloat; // HLSL Change: last floating point in list is LitFloat, not LongDouble
}
/// Determines whether the given kind corresponds to a placeholder type.
static bool isPlaceholderTypeKind(Kind K) {
return K >= Overload;
}
/// Determines whether this type is a placeholder type, i.e. a type
/// which cannot appear in arbitrary positions in a fully-formed
/// expression.
bool isPlaceholderType() const {
return isPlaceholderTypeKind(getKind());
}
/// Determines whether this type is a placeholder type other than
/// Overload. Most placeholder types require only syntactic
/// information about their context in order to be resolved (e.g.
/// whether it is a call expression), which means they can (and
/// should) be resolved in an earlier "phase" of analysis.
/// Overload expressions sometimes pick up further information
/// from their context, like whether the context expects a
/// specific function-pointer type, and so frequently need
/// special treatment.
bool isNonOverloadPlaceholderType() const {
return getKind() > Overload;
}
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
};
/// ComplexType - C99 6.2.5p11 - Complex values. This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
QualType ElementType;
ComplexType(QualType Element, QualType CanonicalPtr) :
Type(Complex, CanonicalPtr, Element->isDependentType(),
Element->isInstantiationDependentType(),
Element->isVariablyModifiedType(),
Element->containsUnexpandedParameterPack()),
ElementType(Element) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
ID.AddPointer(Element.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
};
/// ParenType - Sugar for parentheses used when specifying types.
///
class ParenType : public Type, public llvm::FoldingSetNode {
QualType Inner;
ParenType(QualType InnerType, QualType CanonType) :
Type(Paren, CanonType, InnerType->isDependentType(),
InnerType->isInstantiationDependentType(),
InnerType->isVariablyModifiedType(),
InnerType->containsUnexpandedParameterPack()),
Inner(InnerType) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getInnerType() const { return Inner; }
bool isSugared() const { return true; }
QualType desugar() const { return getInnerType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getInnerType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
Inner.Profile(ID);
}
static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
};
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
PointerType(QualType Pointee, QualType CanonicalPtr) :
Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
/// \brief Returns true if address spaces of pointers overlap.
/// OpenCL v2.0 defines conversion rules for pointers to different
/// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
/// address spaces.
/// CL1.1 or CL1.2:
/// address spaces overlap iff they are they same.
/// CL2.0 adds:
/// __generic overlaps with any address space except for __constant.
bool isAddressSpaceOverlapping(const PointerType &other) const {
Qualifiers thisQuals = PointeeType.getQualifiers();
Qualifiers otherQuals = other.getPointeeType().getQualifiers();
// Address spaces overlap if at least one of them is a superset of another
return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
otherQuals.isAddressSpaceSupersetOf(thisQuals);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
};
/// \brief Represents a type which was implicitly adjusted by the semantic
/// engine for arbitrary reasons. For example, array and function types can
/// decay, and function types can have their calling conventions adjusted.
class AdjustedType : public Type, public llvm::FoldingSetNode {
QualType OriginalTy;
QualType AdjustedTy;
protected:
AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
QualType CanonicalPtr)
: Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
OriginalTy->isInstantiationDependentType(),
OriginalTy->isVariablyModifiedType(),
OriginalTy->containsUnexpandedParameterPack()),
OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
friend class ASTContext; // ASTContext creates these.
public:
QualType getOriginalType() const { return OriginalTy; }
QualType getAdjustedType() const { return AdjustedTy; }
bool isSugared() const { return true; }
QualType desugar() const { return AdjustedTy; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, OriginalTy, AdjustedTy);
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
ID.AddPointer(Orig.getAsOpaquePtr());
ID.AddPointer(New.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
}
};
/// \brief Represents a pointer type decayed from an array or function type.
class DecayedType : public AdjustedType {
DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
: AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
assert(isa<PointerType>(getAdjustedType()));
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getDecayedType() const { return getAdjustedType(); }
QualType getPointeeType() const {
return cast<PointerType>(getDecayedType())->getPointeeType();
}
static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
};
/// BlockPointerType - pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType; // Block is some kind of pointer type
BlockPointerType(QualType Pointee, QualType CanonicalCls) :
Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
// Get the pointee type. Pointee is required to always be a function type.
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == BlockPointer;
}
};
/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
protected:
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
Type(tc, CanonicalRef, Referencee->isDependentType(),
Referencee->isInstantiationDependentType(),
Referencee->isVariablyModifiedType(),
Referencee->containsUnexpandedParameterPack()),
PointeeType(Referencee)
{
ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
}
public:
bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
const ReferenceType *T = this;
while (T->isInnerRef())
T = T->PointeeType->castAs<ReferenceType>();
return T->PointeeType;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, PointeeType, isSpelledAsLValue());
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Referencee,
bool SpelledAsLValue) {
ID.AddPointer(Referencee.getAsOpaquePtr());
ID.AddBoolean(SpelledAsLValue);
}
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference ||
T->getTypeClass() == RValueReference;
}
};
/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
///
class LValueReferenceType : public ReferenceType {
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
{}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference;
}
};
/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
///
class RValueReferenceType : public ReferenceType {
RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == RValueReference;
}
};
/// MemberPointerType - C++ 8.3.3 - Pointers to members
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
/// The class of which the pointee is a member. Must ultimately be a
/// RecordType, but could be a typedef or a template parameter too.
const Type *Class;
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
Type(MemberPointer, CanonicalPtr,
Cls->isDependentType() || Pointee->isDependentType(),
(Cls->isInstantiationDependentType() ||
Pointee->isInstantiationDependentType()),
Pointee->isVariablyModifiedType(),
(Cls->containsUnexpandedParameterPack() ||
Pointee->containsUnexpandedParameterPack())),
PointeeType(Pointee), Class(Cls) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if the member type (i.e. the pointee type) is a
/// function type rather than a data-member type.
bool isMemberFunctionPointer() const {
return PointeeType->isFunctionProtoType();
}
/// Returns true if the member type (i.e. the pointee type) is a
/// data type rather than a function type.
bool isMemberDataPointer() const {
return !PointeeType->isFunctionProtoType();
}
const Type *getClass() const { return Class; }
CXXRecordDecl *getMostRecentCXXRecordDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType(), getClass());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
const Type *Class) {
ID.AddPointer(Pointee.getAsOpaquePtr());
ID.AddPointer(Class);
}
static bool classof(const Type *T) {
return T->getTypeClass() == MemberPointer;
}
};
/// ArrayType - C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
/// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
/// an array with a static size (e.g. int X[static 4]), or an array
/// with a star size (e.g. int X[*]).
/// 'static' is only allowed on function parameters.
enum ArraySizeModifier {
Normal, Static, Star
};
private:
/// ElementType - The element type of the array.
QualType ElementType;
protected:
// C++ [temp.dep.type]p1:
// A type is dependent if it is...
// - an array type constructed from any dependent type or whose
// size is specified by a constant expression that is
// value-dependent,
ArrayType(TypeClass tc, QualType et, QualType can,
ArraySizeModifier sm, unsigned tq,
bool ContainsUnexpandedParameterPack)
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
et->isInstantiationDependentType() || tc == DependentSizedArray,
(tc == VariableArray || et->isVariablyModifiedType()),
ContainsUnexpandedParameterPack),
ElementType(et) {
ArrayTypeBits.IndexTypeQuals = tq;
ArrayTypeBits.SizeModifier = sm;
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
ArraySizeModifier getSizeModifier() const {
return ArraySizeModifier(ArrayTypeBits.SizeModifier);
}
Qualifiers getIndexTypeQualifiers() const {
return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
}
unsigned getIndexTypeCVRQualifiers() const {
return ArrayTypeBits.IndexTypeQuals;
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray ||
T->getTypeClass() == VariableArray ||
T->getTypeClass() == IncompleteArray ||
T->getTypeClass() == DependentSizedArray;
}
};
/// ConstantArrayType - This class represents the canonical version of
/// C arrays with a specified constant size. For example, the canonical
/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
/// type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
llvm::APInt Size; // Allows us to unique the type.
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
ArraySizeModifier sm, unsigned tq)
: ArrayType(ConstantArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
Size(size) {}
protected:
ConstantArrayType(TypeClass tc, QualType et, QualType can,
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
: ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
Size(size) {}
friend class ASTContext; // ASTContext creates these.
public:
const llvm::APInt &getSize() const { return Size; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// \brief Determine the number of bits required to address a member of
// an array with the given element type and number of elements.
static unsigned getNumAddressingBits(ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements);
/// \brief Determine the maximum number of active bits that an array's size
/// can require, which limits the maximum size of the array.
static unsigned getMaxSizeBits(ASTContext &Context);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSize(),
getSizeModifier(), getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(ArraySize.getZExtValue());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray;
}
};
/// IncompleteArrayType - This class represents C arrays with an unspecified
/// size. For example 'int A[]' has an IncompleteArrayType where the element
/// type is 'int' and the size is unspecified.
class IncompleteArrayType : public ArrayType {
IncompleteArrayType(QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: ArrayType(IncompleteArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()) {}
friend class ASTContext; // ASTContext creates these.
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == IncompleteArray;
}
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSizeModifier(),
getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
ArraySizeModifier SizeMod, unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
};
/// VariableArrayType - This class represents C arrays with a specified size
/// which is not an integer-constant-expression. For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
/// int Y[x];
/// ++x;
/// int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
/// SizeExpr - An assignment expression. VLA's are only permitted within
/// a function block.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
VariableArrayType(QualType et, QualType can, Expr *e,
ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(VariableArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
SizeExpr((Stmt*) e), Brackets(brackets) {}
friend class ASTContext; // ASTContext creates these.
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == VariableArray;
}
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
llvm_unreachable("Cannot unique VariableArrayTypes.");
}
};
/// DependentSizedArrayType - This type represents an array type in
/// C++ whose size is a value-dependent expression. For example:
///
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
const ASTContext &Context;
/// \brief An assignment expression that will instantiate to the
/// size of the array.
///
/// The expression itself might be NULL, in which case the array
/// type will have its size deduced from an initializer.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
Expr *e, ArraySizeModifier sm, unsigned tq,
SourceRange brackets);
friend class ASTContext; // ASTContext creates these.
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedArray;
}
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(),
getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ET, ArraySizeModifier SizeMod,
unsigned TypeQuals, Expr *E);
};
/// DependentSizedExtVectorType - This type represent an extended vector type
/// where either the type or size is dependent. For example:
/// @code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// @endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
const ASTContext &Context;
Expr *SizeExpr;
/// ElementType - The element type of the array.
QualType ElementType;
SourceLocation loc;
DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
QualType can, Expr *SizeExpr, SourceLocation loc);
friend class ASTContext;
public:
Expr *getSizeExpr() const { return SizeExpr; }
QualType getElementType() const { return ElementType; }
SourceLocation getAttributeLoc() const { return loc; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedExtVector;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ElementType, Expr *SizeExpr);
};
/// VectorType - GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
public:
enum VectorKind {
GenericVector, // not a target-specific vector type
AltiVecVector, // is AltiVec vector
AltiVecPixel, // is AltiVec 'vector Pixel'
AltiVecBool, // is AltiVec 'vector bool ...'
NeonVector, // is ARM Neon vector
NeonPolyVector // is ARM Neon polynomial vector
};
protected:
/// ElementType - The element type of the vector.
QualType ElementType;
VectorType(QualType vecType, unsigned nElements, QualType canonType,
VectorKind vecKind);
VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, VectorKind vecKind);
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
unsigned getNumElements() const { return VectorTypeBits.NumElements; }
static bool isVectorSizeTooLarge(unsigned NumElements) {
return NumElements > VectorTypeBitfields::MaxNumElements;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
VectorKind getVectorKind() const {
return VectorKind(VectorTypeBits.VecKind);
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getNumElements(),
getTypeClass(), getVectorKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
unsigned NumElements, TypeClass TypeClass,
VectorKind VecKind) {
ID.AddPointer(ElementType.getAsOpaquePtr());
ID.AddInteger(NumElements);
ID.AddInteger(TypeClass);
ID.AddInteger(VecKind);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
}
};
/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points, colors, and textures (modeled after OpenGL Shading Language).
class ExtVectorType : public VectorType {
ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
friend class ASTContext; // ASTContext creates these.
public:
// HLSL Change Starts - HLSL specific rules for vector member access
enum AccessorSet {
AccessorSetUnknown,
AccessorSetXyzw,
AccessorSetRgba
};
static AccessorSet getPointAccessorSet(char c) {
if (c == 'x' || c == 'y' || c == 'z' || c == 'w') {
return AccessorSetXyzw;
}
else if (c == 'r' || c == 'g' || c == 'b' || c == 'a') {
return AccessorSetRgba;
}
return AccessorSetUnknown;
}
static int getPointAccessorIdx(char c) {
switch (c) {
default: return -1;
case 'r': case 'x': return 0;
case 'g': case 'y': return 1;
case 'b': case 'z': return 2;
case 'a': case 'w': return 3;
}
}
// HLSL Change Ends - HLSL specific rules for vector member access
static int getNumericAccessorIdx(char c) {
switch (c) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A':
case 'a': return 10;
case 'B':
case 'b': return 11;
case 'C':
case 'c': return 12;
case 'D':
case 'd': return 13;
case 'E':
case 'e': return 14;
case 'F':
case 'f': return 15;
}
}
static int getAccessorIdx(char c) {
if (int idx = getPointAccessorIdx(c)+1) return idx-1;
return getNumericAccessorIdx(c);
}
bool isAccessorWithinNumElements(char c) const {
if (int idx = getAccessorIdx(c)+1)
return unsigned(idx-1) < getNumElements();
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ExtVector;
}
};
/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
///
class FunctionType : public Type {
// The type returned by the function.
QualType ResultType;
public:
/// ExtInfo - A class which abstracts out some details necessary for
/// making a call.
///
/// It is not actually used directly for storing this information in
/// a FunctionType, although FunctionType does currently use the
/// same bit-pattern.
///
// If you add a field (say Foo), other than the obvious places (both,
// constructors, compile failures), what you need to update is
// * Operator==
// * getFoo
// * withFoo
// * functionType. Add Foo, getFoo.
// * ASTContext::getFooType
// * ASTContext::mergeFunctionTypes
// * FunctionNoProtoType::Profile
// * FunctionProtoType::Profile
// * TypePrinter::PrintFunctionProto
// * AST read and write
// * Codegen
class ExtInfo {
// Feel free to rearrange or add bits, but if you go over 9,
// you'll need to adjust both the Bits field below and
// Type::FunctionTypeBitfields.
// | CC |noreturn|produces|regparm|
// |0 .. 3| 4 | 5 | 6 .. 8|
//
// regparm is either 0 (no regparm attribute) or the regparm value+1.
enum { CallConvMask = 0xF };
enum { NoReturnMask = 0x10 };
enum { ProducesResultMask = 0x20 };
enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
RegParmOffset = 6 }; // Assumed to be the last field
uint16_t Bits;
ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
friend class FunctionType;
public:
// Constructor with no defaults. Use this when you know that you
// have all the elements (when reading an AST file for example).
ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
bool producesResult) {
assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
Bits = ((unsigned) cc) |
(noReturn ? NoReturnMask : 0) |
(producesResult ? ProducesResultMask : 0) |
(hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
}
// Constructor with all defaults. Use when for example creating a
// function know to use defaults.
ExtInfo() : Bits(CC_C) { }
// Constructor with just the calling convention, which is an important part
// of the canonical type.
ExtInfo(CallingConv CC) : Bits(CC) { }
bool getNoReturn() const { return Bits & NoReturnMask; }
bool getProducesResult() const { return Bits & ProducesResultMask; }
bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
unsigned getRegParm() const {
unsigned RegParm = Bits >> RegParmOffset;
if (RegParm > 0)
--RegParm;
return RegParm;
}
CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
bool operator==(ExtInfo Other) const {
return Bits == Other.Bits;
}
bool operator!=(ExtInfo Other) const {
return Bits != Other.Bits;
}
// Note that we don't have setters. That is by design, use
// the following with methods instead of mutating these objects.
ExtInfo withNoReturn(bool noReturn) const {
if (noReturn)
return ExtInfo(Bits | NoReturnMask);
else
return ExtInfo(Bits & ~NoReturnMask);
}
ExtInfo withProducesResult(bool producesResult) const {
if (producesResult)
return ExtInfo(Bits | ProducesResultMask);
else
return ExtInfo(Bits & ~ProducesResultMask);
}
ExtInfo withRegParm(unsigned RegParm) const {
assert(RegParm < 7 && "Invalid regparm value");
return ExtInfo((Bits & ~RegParmMask) |
((RegParm + 1) << RegParmOffset));
}
ExtInfo withCallingConv(CallingConv cc) const {
return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Bits);
}
};
protected:
FunctionType(TypeClass tc, QualType res,
QualType Canonical, bool Dependent,
bool InstantiationDependent,
bool VariablyModified, bool ContainsUnexpandedParameterPack,
ExtInfo Info)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack),
ResultType(res) {
FunctionTypeBits.ExtInfo = Info.Bits;
}
unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
public:
QualType getReturnType() const { return ResultType; }
bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
/// \brief Determine whether this function type includes the GNU noreturn
/// attribute. The C++11 [[noreturn]] attribute does not affect the function
/// type.
bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
CallingConv getCallConv() const { return getExtInfo().getCC(); }
ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
/// \brief Determine the type of an expression that calls a function of
/// this type.
QualType getCallResultType(ASTContext &Context) const {
return getReturnType().getNonLValueExprType(Context);
}
static StringRef getNameForCallConv(CallingConv CC);
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto ||
T->getTypeClass() == FunctionProto;
}
};
/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
: FunctionType(FunctionNoProto, Result, Canonical,
/*Dependent=*/false, /*InstantiationDependent=*/false,
Result->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false, Info) {}
friend class ASTContext; // ASTContext creates these.
public:
// No additional state past what FunctionType provides.
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReturnType(), getExtInfo());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
ExtInfo Info) {
Info.Profile(ID);
ID.AddPointer(ResultType.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto;
}
};
/// FunctionProtoType - Represents a prototype with parameter type info, e.g.
/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
/// parameters, not as having a single void parameter. Such a type can have an
/// exception specification, but this specification is not part of the canonical
/// type.
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
public:
struct ExceptionSpecInfo {
ExceptionSpecInfo()
: Type(EST_None), NoexceptExpr(nullptr),
SourceDecl(nullptr), SourceTemplate(nullptr) {}
ExceptionSpecInfo(ExceptionSpecificationType EST)
: Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
SourceTemplate(nullptr) {}
/// The kind of exception specification this is.
ExceptionSpecificationType Type;
/// Explicitly-specified list of exception types.
ArrayRef<QualType> Exceptions;
/// Noexcept expression, if this is EST_ComputedNoexcept.
Expr *NoexceptExpr;
/// The function whose exception specification this is, for
/// EST_Unevaluated and EST_Uninstantiated.
FunctionDecl *SourceDecl;
/// The function template whose exception specification this is instantiated
/// from, for EST_Uninstantiated.
FunctionDecl *SourceTemplate;
};
/// ExtProtoInfo - Extra information about a function prototype.
struct ExtProtoInfo {
ExtProtoInfo()
: Variadic(false), HasTrailingReturn(false), TypeQuals(0),
RefQualifier(RQ_None), ConsumedParameters(nullptr) {}
ExtProtoInfo(CallingConv CC)
: ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
RefQualifier(RQ_None), ConsumedParameters(nullptr) {}
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
ExtProtoInfo Result(*this);
Result.ExceptionSpec = O;
return Result;
}
FunctionType::ExtInfo ExtInfo;
bool Variadic : 1;
bool HasTrailingReturn : 1;
unsigned char TypeQuals;
RefQualifierKind RefQualifier;
ExceptionSpecInfo ExceptionSpec;
const bool *ConsumedParameters;
};
private:
/// \brief Determine whether there are any argument types that
/// contain an unexpanded parameter pack.
static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
unsigned numArgs) {
for (unsigned Idx = 0; Idx < numArgs; ++Idx)
if (ArgArray[Idx]->containsUnexpandedParameterPack())
return true;
return false;
}
FunctionProtoType(QualType result, ArrayRef<QualType> params,
QualType canonical, const ExtProtoInfo &epi,
ArrayRef<hlsl::ParameterModifier> paramMods);
/// The number of parameters this function has, not counting '...'.
unsigned NumParams : 15;
/// NumExceptions - The number of types in the exception spec, if any.
unsigned NumExceptions : 9;
/// ExceptionSpecType - The type of exception specification this function has.
unsigned ExceptionSpecType : 4;
/// HasAnyConsumedParams - Whether this function has any consumed parameters.
unsigned HasAnyConsumedParams : 1;
/// Variadic - Whether the function is variadic.
unsigned Variadic : 1;
/// HasTrailingReturn - Whether this function has a trailing return type.
unsigned HasTrailingReturn : 1;
// ParamInfo - There is an variable size array after the class in memory that
// holds the parameter types.
// Exceptions - There is another variable size array after ArgInfo that
// holds the exception types.
// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
// to the expression in the noexcept() specifier.
// ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
// be a pair of FunctionDecl* pointing to the function which should be used to
// instantiate this function type's exception specification, and the function
// from which it should be instantiated.
// ConsumedParameters - A variable size array, following Exceptions
// and of length NumParams, holding flags indicating which parameters
// are consumed. This only appears if HasAnyConsumedParams is true.
// ParameterModifiers - A variable sized array of hlsl::ParameterModifier.
friend class ASTContext; // ASTContext creates these.
const bool *getConsumedParamsBuffer() const {
assert(hasAnyConsumedParams());
// Find the end of the exceptions.
Expr *const *eh_end = reinterpret_cast<Expr *const *>(param_type_end());
if (getExceptionSpecType() != EST_ComputedNoexcept)
eh_end += NumExceptions;
else
eh_end += 1; // NoexceptExpr
return reinterpret_cast<const bool*>(eh_end);
}
public:
unsigned getNumParams() const { return NumParams; }
QualType getParamType(unsigned i) const {
assert(i < NumParams && "invalid parameter index");
return param_type_begin()[i];
}
ArrayRef<QualType> getParamTypes() const {
return llvm::makeArrayRef(param_type_begin(), param_type_end());
}
ExtProtoInfo getExtProtoInfo() const {
ExtProtoInfo EPI;
EPI.ExtInfo = getExtInfo();
EPI.Variadic = isVariadic();
EPI.HasTrailingReturn = hasTrailingReturn();
EPI.ExceptionSpec.Type = getExceptionSpecType();
EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
EPI.RefQualifier = getRefQualifier();
if (EPI.ExceptionSpec.Type == EST_Dynamic) {
EPI.ExceptionSpec.Exceptions = exceptions();
} else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
} else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
} else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
}
if (hasAnyConsumedParams())
EPI.ConsumedParameters = getConsumedParamsBuffer();
return EPI;
}
/// \brief Get the kind of exception specification on this function.
ExceptionSpecificationType getExceptionSpecType() const {
return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
}
/// \brief Return whether this function has any kind of exception spec.
bool hasExceptionSpec() const {
return getExceptionSpecType() != EST_None;
}
/// \brief Return whether this function has a dynamic (throw) exception spec.
bool hasDynamicExceptionSpec() const {
return isDynamicExceptionSpec(getExceptionSpecType());
}
/// \brief Return whether this function has a noexcept exception spec.
bool hasNoexceptExceptionSpec() const {
return isNoexceptExceptionSpec(getExceptionSpecType());
}
/// \brief Return whether this function has a dependent exception spec.
bool hasDependentExceptionSpec() const;
/// \brief Result type of getNoexceptSpec().
enum NoexceptResult {
NR_NoNoexcept, ///< There is no noexcept specifier.
NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
NR_Dependent, ///< The noexcept specifier is dependent.
NR_Throw, ///< The noexcept specifier evaluates to false.
NR_Nothrow ///< The noexcept specifier evaluates to true.
};
/// \brief Get the meaning of the noexcept spec on this function, if any.
NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
unsigned getNumExceptions() const { return NumExceptions; }
QualType getExceptionType(unsigned i) const {
assert(i < NumExceptions && "Invalid exception number!");
return exception_begin()[i];
}
Expr *getNoexceptExpr() const {
if (getExceptionSpecType() != EST_ComputedNoexcept)
return nullptr;
// NoexceptExpr sits where the arguments end.
return *reinterpret_cast<Expr *const *>(param_type_end());
}
/// \brief If this function type has an exception specification which hasn't
/// been determined yet (either because it has not been evaluated or because
/// it has not been instantiated), this is the function whose exception
/// specification is represented by this type.
FunctionDecl *getExceptionSpecDecl() const {
if (getExceptionSpecType() != EST_Uninstantiated &&
getExceptionSpecType() != EST_Unevaluated)
return nullptr;
return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
}
/// \brief If this function type has an uninstantiated exception
/// specification, this is the function whose exception specification
/// should be instantiated to find the exception specification for
/// this type.
FunctionDecl *getExceptionSpecTemplate() const {
if (getExceptionSpecType() != EST_Uninstantiated)
return nullptr;
return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
}
/// \brief Determine whether this function type has a non-throwing exception
/// specification. If this depends on template arguments, returns
/// \c ResultIfDependent.
bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
bool isVariadic() const { return Variadic; }
/// \brief Determines whether this function prototype contains a
/// parameter pack at the end.
///
/// A function template whose last parameter is a parameter pack can be
/// called with an arbitrary number of arguments, much like a variadic
/// function.
bool isTemplateVariadic() const;
bool hasTrailingReturn() const { return HasTrailingReturn; }
unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
/// \brief Retrieve the ref-qualifier associated with this function type.
RefQualifierKind getRefQualifier() const {
return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
}
typedef const QualType *param_type_iterator;
typedef llvm::iterator_range<param_type_iterator> param_type_range;
param_type_range param_types() const {
return param_type_range(param_type_begin(), param_type_end());
}
param_type_iterator param_type_begin() const {
return reinterpret_cast<const QualType *>(this+1);
}
param_type_iterator param_type_end() const {
return param_type_begin() + NumParams;
}
typedef const QualType *exception_iterator;
ArrayRef<QualType> exceptions() const {
return llvm::makeArrayRef(exception_begin(), exception_end());
}
exception_iterator exception_begin() const {
// exceptions begin where arguments end
return param_type_end();
}
exception_iterator exception_end() const {
if (getExceptionSpecType() != EST_Dynamic)
return exception_begin();
return exception_begin() + NumExceptions;
}
// HLSL Change Starts
ArrayRef<hlsl::ParameterModifier> getParamMods() const {
return llvm::makeArrayRef(parammods_begin(), parammods_end());
}
const hlsl::ParameterModifier *parammods_begin() const {
// param modifiers begin where exceptions end
return (const hlsl::ParameterModifier*)exception_end();
}
const hlsl::ParameterModifier *parammods_end() const {
// modifiers begin where arguments end (in place of exceptions, in HLSL)
return parammods_begin() + NumParams;
}
// HLSL Change Ends
bool hasAnyConsumedParams() const { return HasAnyConsumedParams; }
bool isParamConsumed(unsigned I) const {
assert(I < getNumParams() && "parameter index out of range");
if (hasAnyConsumedParams())
return getConsumedParamsBuffer()[I];
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void printExceptionSpecification(raw_ostream &OS,
const PrintingPolicy &Policy) const;
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionProto;
}
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
param_type_iterator ArgTys, unsigned NumArgs,
const ExtProtoInfo &EPI,
ArrayRef<hlsl::ParameterModifier> ParamMods, // HLSL Change
const ASTContext &Context);
};
/// \brief Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
/// using typename Base<T>::foo;
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
UnresolvedUsingTypenameDecl *Decl;
UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
: Type(UnresolvedUsing, QualType(), true, true, false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
friend class ASTContext; // ASTContext creates these.
public:
UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == UnresolvedUsing;
}
void Profile(llvm::FoldingSetNodeID &ID) {
return Profile(ID, Decl);
}
static void Profile(llvm::FoldingSetNodeID &ID,
UnresolvedUsingTypenameDecl *D) {
ID.AddPointer(D);
}
};
class TypedefType : public Type {
TypedefNameDecl *Decl;
protected:
TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
: Type(tc, can, can->isDependentType(),
can->isInstantiationDependentType(),
can->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<TypedefNameDecl*>(D)) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
TypedefNameDecl *getDecl() const { return Decl; }
bool isSugared() const { return true; }
QualType desugar() const;
static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
};
/// TypeOfExprType (GCC extension).
class TypeOfExprType : public Type {
Expr *TOExpr;
protected:
TypeOfExprType(Expr *E, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return TOExpr; }
/// \brief Remove a single level of sugar.
QualType desugar() const;
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
};
/// \brief Internal representation of canonical, dependent
/// typeof(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
: public TypeOfExprType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentTypeOfExprType(const ASTContext &Context, Expr *E)
: TypeOfExprType(E), Context(Context) { }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// TypeOfType (GCC extension).
class TypeOfType : public Type {
QualType TOType;
TypeOfType(QualType T, QualType can)
: Type(TypeOf, can, T->isDependentType(),
T->isInstantiationDependentType(),
T->isVariablyModifiedType(),
T->containsUnexpandedParameterPack()),
TOType(T) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getUnderlyingType() const { return TOType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
};
/// DecltypeType (C++0x)
class DecltypeType : public Type {
Expr *E;
QualType UnderlyingType;
protected:
DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return E; }
QualType getUnderlyingType() const { return UnderlyingType; }
/// \brief Remove a single level of sugar.
QualType desugar() const;
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
};
/// \brief Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentDecltypeType(const ASTContext &Context, Expr *E);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// \brief A unary type transform, which is a type constructed from another
class UnaryTransformType : public Type {
public:
enum UTTKind {
EnumUnderlyingType
};
private:
/// The untransformed type.
QualType BaseType;
/// The transformed type if not dependent, otherwise the same as BaseType.
QualType UnderlyingType;
UTTKind UKind;
protected:
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
QualType CanonicalTy);
friend class ASTContext;
public:
bool isSugared() const { return !isDependentType(); }
QualType desugar() const { return UnderlyingType; }
QualType getUnderlyingType() const { return UnderlyingType; }
QualType getBaseType() const { return BaseType; }
UTTKind getUTTKind() const { return UKind; }
static bool classof(const Type *T) {
return T->getTypeClass() == UnaryTransform;
}
};
class TagType : public Type {
/// Stores the TagDecl associated with this type. The decl may point to any
/// TagDecl that declares the entity.
TagDecl * decl;
friend class ASTReader;
protected:
TagType(TypeClass TC, const TagDecl *D, QualType can);
public:
TagDecl *getDecl() const;
/// @brief Determines whether this type is in the process of being
/// defined.
bool isBeingDefined() const;
static bool classof(const Type *T) {
return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
}
};
/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
explicit RecordType(const RecordDecl *D)
: TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
explicit RecordType(TypeClass TC, RecordDecl *D)
: TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
RecordDecl *getDecl() const {
return reinterpret_cast<RecordDecl*>(TagType::getDecl());
}
// FIXME: This predicate is a helper to QualType/Type. It needs to
// recursively check all fields for const-ness. If any field is declared
// const, it needs to return false.
bool hasConstFields() const { return false; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Record; }
};
/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
explicit EnumType(const EnumDecl *D)
: TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
EnumDecl *getDecl() const {
return reinterpret_cast<EnumDecl*>(TagType::getDecl());
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
};
/// AttributedType - An attributed type is a type to which a type
/// attribute has been applied. The "modified type" is the
/// fully-sugared type to which the attributed type was applied;
/// generally it is not canonically equivalent to the attributed type.
/// The "equivalent type" is the minimally-desugared type which the
/// type is canonically equivalent to.
///
/// For example, in the following attributed type:
/// int32_t __attribute__((vector_size(16)))
/// - the modified type is the TypedefType for int32_t
/// - the equivalent type is VectorType(16, int32_t)
/// - the canonical type is VectorType(16, int)
class AttributedType : public Type, public llvm::FoldingSetNode {
public:
// It is really silly to have yet another attribute-kind enum, but
// clang::attr::Kind doesn't currently cover the pure type attrs.
enum Kind {
// Expression operand.
attr_address_space,
attr_regparm,
attr_vector_size,
attr_neon_vector_type,
attr_neon_polyvector_type,
FirstExprOperandKind = attr_address_space,
LastExprOperandKind = attr_neon_polyvector_type,
// Enumerated operand (string or keyword).
attr_objc_gc,
attr_objc_ownership,
attr_pcs,
attr_pcs_vfp,
FirstEnumOperandKind = attr_objc_gc,
LastEnumOperandKind = attr_pcs_vfp,
// No operand.
attr_noreturn,
attr_cdecl,
attr_fastcall,
attr_stdcall,
attr_thiscall,
attr_pascal,
attr_vectorcall,
attr_inteloclbicc,
attr_ms_abi,
attr_sysv_abi,
attr_ptr32,
attr_ptr64,
attr_sptr,
attr_uptr,
attr_nonnull,
attr_nullable,
attr_null_unspecified,
attr_objc_kindof,
// HLSL Change Begins
attr_hlsl_unorm,
attr_hlsl_snorm,
attr_hlsl_row_major,
attr_hlsl_column_major,
attr_hlsl_globallycoherent,
// HLSL Change Ends
};
private:
QualType ModifiedType;
QualType EquivalentType;
friend class ASTContext; // creates these
AttributedType(QualType canon, Kind attrKind,
QualType modified, QualType equivalent)
: Type(Attributed, canon, canon->isDependentType(),
canon->isInstantiationDependentType(),
canon->isVariablyModifiedType(),
canon->containsUnexpandedParameterPack()),
ModifiedType(modified), EquivalentType(equivalent) {
AttributedTypeBits.AttrKind = attrKind;
}
public:
Kind getAttrKind() const {
return static_cast<Kind>(AttributedTypeBits.AttrKind);
}
QualType getModifiedType() const { return ModifiedType; }
QualType getEquivalentType() const { return EquivalentType; }
bool isSugared() const { return true; }
QualType desugar() const { return getEquivalentType(); }
bool isMSTypeSpec() const;
bool isHLSLTypeSpec() const; // HLSL Change
bool isCallingConv() const;
llvm::Optional<NullabilityKind> getImmediateNullability() const;
/// Retrieve the attribute kind corresponding to the given
/// nullability kind.
static Kind getNullabilityAttrKind(NullabilityKind kind) {
switch (kind) {
case NullabilityKind::NonNull:
return attr_nonnull;
case NullabilityKind::Nullable:
return attr_nullable;
case NullabilityKind::Unspecified:
return attr_null_unspecified;
}
llvm_unreachable("Unknown nullability kind.");
}
/// Strip off the top-level nullability annotation on the given
/// type, if it's there.
///
/// \param T The type to strip. If the type is exactly an
/// AttributedType specifying nullability (without looking through
/// type sugar), the nullability is returned and this type changed
/// to the underlying modified type.
///
/// \returns the top-level nullability, if present.
static Optional<NullabilityKind> stripOuterNullability(QualType &T);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
}
static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
QualType modified, QualType equivalent) {
ID.AddInteger(attrKind);
ID.AddPointer(modified.getAsOpaquePtr());
ID.AddPointer(equivalent.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Attributed;
}
};
class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
// Helper data collector for canonical types.
struct CanonicalTTPTInfo {
unsigned Depth : 15;
unsigned ParameterPack : 1;
unsigned Index : 16;
};
union {
// Info for the canonical type.
CanonicalTTPTInfo CanTTPTInfo;
// Info for the non-canonical type.
TemplateTypeParmDecl *TTPDecl;
};
/// Build a non-canonical type.
TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
: Type(TemplateTypeParm, Canon, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
Canon->containsUnexpandedParameterPack()),
TTPDecl(TTPDecl) { }
/// Build the canonical type.
TemplateTypeParmType(unsigned D, unsigned I, bool PP)
: Type(TemplateTypeParm, QualType(this, 0),
/*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false, PP) {
CanTTPTInfo.Depth = D;
CanTTPTInfo.Index = I;
CanTTPTInfo.ParameterPack = PP;
}
friend class ASTContext; // ASTContext creates these
const CanonicalTTPTInfo& getCanTTPTInfo() const {
QualType Can = getCanonicalTypeInternal();
return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
}
public:
unsigned getDepth() const { return getCanTTPTInfo().Depth; }
unsigned getIndex() const { return getCanTTPTInfo().Index; }
bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
TemplateTypeParmDecl *getDecl() const {
return isCanonicalUnqualified() ? nullptr : TTPDecl;
}
IdentifierInfo *getIdentifier() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
}
static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
unsigned Index, bool ParameterPack,
TemplateTypeParmDecl *TTPDecl) {
ID.AddInteger(Depth);
ID.AddInteger(Index);
ID.AddBoolean(ParameterPack);
ID.AddPointer(TTPDecl);
}
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateTypeParm;
}
};
/// \brief Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these. They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
// The original type parameter.
const TemplateTypeParmType *Replaced;
SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
: Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
Canon->isInstantiationDependentType(),
Canon->isVariablyModifiedType(),
Canon->containsUnexpandedParameterPack()),
Replaced(Param) { }
friend class ASTContext;
public:
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
/// Gets the type that was substituted for the template
/// parameter.
QualType getReplacementType() const {
return getCanonicalTypeInternal();
}
bool isSugared() const { return true; }
QualType desugar() const { return getReplacementType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getReplacementType());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
QualType Replacement) {
ID.AddPointer(Replaced);
ID.AddPointer(Replacement.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParm;
}
};
/// \brief Represents the result of substituting a set of types for a template
/// type parameter pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this type node is used to represent a template type
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
/// at the current pack substitution index.
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
/// \brief The original type parameter.
const TemplateTypeParmType *Replaced;
/// \brief A pointer to the set of template arguments that this
/// parameter pack is instantiated with.
const TemplateArgument *Arguments;
/// \brief The number of template arguments in \c Arguments.
unsigned NumArguments;
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
QualType Canon,
const TemplateArgument &ArgPack);
friend class ASTContext;
public:
IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
TemplateArgument getArgumentPack() const;
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack);
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParmPack;
}
};
/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
///
/// These types are usually a placeholder for a deduced type. However, before
/// the initializer is attached, or if the initializer is type-dependent, there
/// is no deduced type and an auto type is canonical. In the latter case, it is
/// also a dependent type.
class AutoType : public Type, public llvm::FoldingSetNode {
AutoType(QualType DeducedType, bool IsDecltypeAuto,
bool IsDependent)
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
/*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
/*VariablyModified=*/false,
/*ContainsParameterPack=*/DeducedType.isNull()
? false : DeducedType->containsUnexpandedParameterPack()) {
assert((DeducedType.isNull() || !IsDependent) &&
"auto deduced to dependent type");
AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
}
friend class ASTContext; // ASTContext creates these
public:
bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
bool isSugared() const { return !isCanonicalUnqualified(); }
QualType desugar() const { return getCanonicalTypeInternal(); }
/// \brief Get the type deduced for this auto type, or null if it's either
/// not been deduced or was deduced to a dependent type.
QualType getDeducedType() const {
return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
}
bool isDeduced() const {
return !isCanonicalUnqualified() || isDependentType();
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDeducedType(), isDecltypeAuto(),
isDependentType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
bool IsDecltypeAuto, bool IsDependent) {
ID.AddPointer(Deduced.getAsOpaquePtr());
ID.AddBoolean(IsDecltypeAuto);
ID.AddBoolean(IsDependent);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Auto;
}
};
/// \brief Represents a type template specialization; the template
/// must be a class template, a type alias template, or a template
/// template parameter. A template which cannot be resolved to one of
/// these, e.g. because it is written with a dependent scope
/// specifier, is instead represented as a
/// @c DependentTemplateSpecializationType.
///
/// A non-dependent template specialization type is always "sugar",
/// typically for a @c RecordType. For example, a class template
/// specialization type of @c vector<int> will refer to a tag type for
/// the instantiation @c std::vector<int, std::allocator<int>>
///
/// Template specializations are dependent if either the template or
/// any of the template arguments are dependent, in which case the
/// type may also be canonical.
///
/// Instances of this type are allocated with a trailing array of
/// TemplateArguments, followed by a QualType representing the
/// non-canonical aliased type when the template is a type alias
/// template.
class TemplateSpecializationType
: public Type, public llvm::FoldingSetNode {
/// \brief The name of the template being specialized. This is
/// either a TemplateName::Template (in which case it is a
/// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
/// TypeAliasTemplateDecl*), a
/// TemplateName::SubstTemplateTemplateParmPack, or a
/// TemplateName::SubstTemplateTemplateParm (in which case the
/// replacement must, recursively, be one of these).
TemplateName Template;
/// \brief - The number of template arguments named in this class
/// template specialization.
unsigned NumArgs : 31;
/// \brief Whether this template specialization type is a substituted
/// type alias.
bool TypeAlias : 1;
TemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs, QualType Canon,
QualType Aliased);
friend class ASTContext; // ASTContext creates these
public:
/// \brief Determine whether any of the given template arguments are
/// dependent.
static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
unsigned NumArgs,
bool &InstantiationDependent);
static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
bool &InstantiationDependent);
/// \brief Print a template argument list, including the '<' and '>'
/// enclosing the template arguments.
static void PrintTemplateArgumentList(raw_ostream &OS,
const TemplateArgument *Args,
unsigned NumArgs,
const PrintingPolicy &Policy,
bool SkipBrackets = false);
static void PrintTemplateArgumentList(raw_ostream &OS,
const TemplateArgumentLoc *Args,
unsigned NumArgs,
const PrintingPolicy &Policy);
static void PrintTemplateArgumentList(raw_ostream &OS,
const TemplateArgumentListInfo &,
const PrintingPolicy &Policy);
/// True if this template specialization type matches a current
/// instantiation in the context in which it is found.
bool isCurrentInstantiation() const {
return isa<InjectedClassNameType>(getCanonicalTypeInternal());
}
/// \brief Determine if this template specialization type is for a type alias
/// template that has been substituted.
///
/// Nearly every template specialization type whose template is an alias
/// template will be substituted. However, this is not the case when
/// the specialization contains a pack expansion but the template alias
/// does not have a corresponding parameter pack, e.g.,
///
/// \code
/// template<typename T, typename U, typename V> struct S;
/// template<typename T, typename U> using A = S<T, int, U>;
/// template<typename... Ts> struct X {
/// typedef A<Ts...> type; // not a type alias
/// };
/// \endcode
bool isTypeAlias() const { return TypeAlias; }
/// Get the aliased type, if this is a specialization of a type alias
/// template.
QualType getAliasedType() const {
assert(isTypeAlias() && "not a type alias template specialization");
return *reinterpret_cast<const QualType*>(end());
}
typedef const TemplateArgument * iterator;
iterator begin() const { return getArgs(); }
iterator end() const; // defined inline in TemplateBase.h
/// \brief Retrieve the name of the template that we are specializing.
TemplateName getTemplateName() const { return Template; }
/// \brief Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return reinterpret_cast<const TemplateArgument *>(this + 1);
}
/// \brief Retrieve the number of template arguments.
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve a specific template argument as a type.
/// \pre @c isArgType(Arg)
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
bool isSugared() const {
return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
}
QualType desugar() const { return getCanonicalTypeInternal(); }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
Profile(ID, Template, getArgs(), NumArgs, Ctx);
if (isTypeAlias())
getAliasedType().Profile(ID);
}
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
const ASTContext &Context);
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateSpecialization;
}
};
/// \brief The injected class name of a C++ class template or class
/// template partial specialization. Used to record that a type was
/// spelled with a bare identifier rather than as a template-id; the
/// equivalent for non-templated classes is just RecordType.
///
/// Injected class name types are always dependent. Template
/// instantiation turns these into RecordTypes.
///
/// Injected class name types are always canonical. This works
/// because it is impossible to compare an injected class name type
/// with the corresponding non-injected template type, for the same
/// reason that it is impossible to directly compare template
/// parameters from different dependent contexts: injected class name
/// types can only occur within the scope of a particular templated
/// declaration, and within that scope every template specialization
/// will canonicalize to the injected class name (when appropriate
/// according to the rules of the language).
class InjectedClassNameType : public Type {
CXXRecordDecl *Decl;
/// The template specialization which this type represents.
/// For example, in
/// template <class T> class A { ... };
/// this is A<T>, whereas in
/// template <class X, class Y> class A<B<X,Y> > { ... };
/// this is A<B<X,Y> >.
///
/// It is always unqualified, always a template specialization type,
/// and always dependent.
QualType InjectedType;
friend class ASTContext; // ASTContext creates these.
friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
// currently suitable for AST reading, too much
// interdependencies.
InjectedClassNameType(CXXRecordDecl *D, QualType TST)
: Type(InjectedClassName, QualType(), /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(D), InjectedType(TST) {
assert(isa<TemplateSpecializationType>(TST));
assert(!TST.hasQualifiers());
assert(TST->isDependentType());
}
public:
QualType getInjectedSpecializationType() const { return InjectedType; }
const TemplateSpecializationType *getInjectedTST() const {
return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
}
CXXRecordDecl *getDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == InjectedClassName;
}
};
/// \brief The kind of a tag type.
enum TagTypeKind {
/// \brief The "struct" keyword.
TTK_Struct,
/// \brief The "__interface" keyword.
TTK_Interface,
/// \brief The "union" keyword.
TTK_Union,
/// \brief The "class" keyword.
TTK_Class,
/// \brief The "enum" keyword.
TTK_Enum
};
/// \brief The elaboration keyword that precedes a qualified type name or
/// introduces an elaborated-type-specifier.
enum ElaboratedTypeKeyword {
/// \brief The "struct" keyword introduces the elaborated-type-specifier.
ETK_Struct,
/// \brief The "__interface" keyword introduces the elaborated-type-specifier.
ETK_Interface,
/// \brief The "union" keyword introduces the elaborated-type-specifier.
ETK_Union,
/// \brief The "class" keyword introduces the elaborated-type-specifier.
ETK_Class,
/// \brief The "enum" keyword introduces the elaborated-type-specifier.
ETK_Enum,
/// \brief The "typename" keyword precedes the qualified type name, e.g.,
/// \c typename T::type.
ETK_Typename,
/// \brief No keyword precedes the qualified type name.
ETK_None
};
/// A helper class for Type nodes having an ElaboratedTypeKeyword.
/// The keyword in stored in the free bits of the base class.
/// Also provides a few static helpers for converting and printing
/// elaborated type keyword and tag type kind enumerations.
class TypeWithKeyword : public Type {
protected:
TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
QualType Canonical, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack) {
TypeWithKeywordBits.Keyword = Keyword;
}
public:
ElaboratedTypeKeyword getKeyword() const {
return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
}
/// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into an elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
/// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into a tag type kind. It is an error to provide a type specifier
/// which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
/// getKeywordForTagDeclKind - Converts a TagTypeKind into an
/// elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
/// getTagTypeKindForKeyword - Converts an elaborated type keyword into
// a TagTypeKind. It is an error to provide an elaborated type keyword
/// which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
static StringRef getTagTypeKindName(TagTypeKind Kind) {
return getKeywordName(getKeywordForTagTypeKind(Kind));
}
class CannotCastToThisType {};
static CannotCastToThisType classof(const Type *);
};
/// \brief Represents a type that was referred to using an elaborated type
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
/// or both.
///
/// This type is used to keep track of a type name as written in the
/// source code, including tag keywords and any nested-name-specifiers.
/// The type itself is always "sugar", used to express what was written
/// in the source code but containing no additional semantic information.
class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The type that this qualified name refers to.
QualType NamedType;
ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
QualType NamedType, QualType CanonType)
: TypeWithKeyword(Keyword, Elaborated, CanonType,
NamedType->isDependentType(),
NamedType->isInstantiationDependentType(),
NamedType->isVariablyModifiedType(),
NamedType->containsUnexpandedParameterPack()),
NNS(NNS), NamedType(NamedType) {
assert(!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.");
}
friend class ASTContext; // ASTContext creates these
public:
~ElaboratedType();
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the qualified-id.
QualType getNamedType() const { return NamedType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getNamedType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, NamedType);
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType NamedType) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
NamedType.Profile(ID);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Elaborated;
}
};
/// \brief Represents a qualified type name for which the type name is
/// dependent.
///
/// DependentNameType represents a class of dependent types that involve a
/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
/// name of a type. The DependentNameType may start with a "typename" (for a
/// typename-specifier), "class", "struct", "union", or "enum" (for a
/// dependent elaborated-type-specifier), or nothing (in contexts where we
/// know that we must be referring to a type, e.g., in a base class specifier).
/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
/// mode, this type is used with non-dependent names to delay name lookup until
/// instantiation.
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The type that this typename specifier refers to.
const IdentifierInfo *Name;
DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
const IdentifierInfo *Name, QualType CanonType)
: TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
NNS->containsUnexpandedParameterPack()),
NNS(NNS), Name(Name) {}
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the typename specifier as an
/// identifier.
///
/// This routine will return a non-NULL identifier pointer when the
/// form of the original typename was terminated by an identifier,
/// e.g., "typename T::type".
const IdentifierInfo *getIdentifier() const {
return Name;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, Name);
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
ID.AddPointer(Name);
}
static bool classof(const Type *T) {
return T->getTypeClass() == DependentName;
}
};
/// DependentTemplateSpecializationType - Represents a template
/// specialization type whose template cannot be resolved, e.g.
/// A<T>::template B<T>
class DependentTemplateSpecializationType :
public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The identifier of the template.
const IdentifierInfo *Name;
/// \brief - The number of template arguments named in this class
/// template specialization.
unsigned NumArgs;
const TemplateArgument *getArgBuffer() const {
return reinterpret_cast<const TemplateArgument*>(this+1);
}
TemplateArgument *getArgBuffer() {
return reinterpret_cast<TemplateArgument*>(this+1);
}
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args,
QualType Canon);
friend class ASTContext; // ASTContext creates these
public:
NestedNameSpecifier *getQualifier() const { return NNS; }
const IdentifierInfo *getIdentifier() const { return Name; }
/// \brief Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return getArgBuffer();
}
/// \brief Retrieve the number of template arguments.
unsigned getNumArgs() const { return NumArgs; }
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
typedef const TemplateArgument * iterator;
iterator begin() const { return getArgs(); }
iterator end() const; // inline in TemplateBase.h
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args);
static bool classof(const Type *T) {
return T->getTypeClass() == DependentTemplateSpecialization;
}
};
/// \brief Represents a pack expansion of types.
///
/// Pack expansions are part of C++0x variadic templates. A pack
/// expansion contains a pattern, which itself contains one or more
/// "unexpanded" parameter packs. When instantiated, a pack expansion
/// produces a series of types, each instantiated from the pattern of
/// the expansion, where the Ith instantiation of the pattern uses the
/// Ith arguments bound to each of the unexpanded parameter packs. The
/// pack expansion is considered to "expand" these unexpanded
/// parameter packs.
///
/// \code
/// template<typename ...Types> struct tuple;
///
/// template<typename ...Types>
/// struct tuple_of_references {
/// typedef tuple<Types&...> type;
/// };
/// \endcode
///
/// Here, the pack expansion \c Types&... is represented via a
/// PackExpansionType whose pattern is Types&.
class PackExpansionType : public Type, public llvm::FoldingSetNode {
/// \brief The pattern of the pack expansion.
QualType Pattern;
/// \brief The number of expansions that this pack expansion will
/// generate when substituted (+1), or indicates that
///
/// This field will only have a non-zero value when some of the parameter
/// packs that occur within the pattern have been substituted but others have
/// not.
unsigned NumExpansions;
PackExpansionType(QualType Pattern, QualType Canon,
Optional<unsigned> NumExpansions)
: Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
/*InstantiationDependent=*/true,
/*VariablyModified=*/Pattern->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Pattern(Pattern),
NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the pattern of this pack expansion, which is the
/// type that will be repeatedly instantiated when instantiating the
/// pack expansion itself.
QualType getPattern() const { return Pattern; }
/// \brief Retrieve the number of expansions that this pack expansion will
/// generate, if known.
Optional<unsigned> getNumExpansions() const {
if (NumExpansions)
return NumExpansions - 1;
return None;
}
bool isSugared() const { return !Pattern->isDependentType(); }
QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPattern(), getNumExpansions());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
Optional<unsigned> NumExpansions) {
ID.AddPointer(Pattern.getAsOpaquePtr());
ID.AddBoolean(NumExpansions.hasValue());
if (NumExpansions)
ID.AddInteger(*NumExpansions);
}
static bool classof(const Type *T) {
return T->getTypeClass() == PackExpansion;
}
};
/// ObjCObjectType - Represents a class type in Objective C.
///
/// Every Objective C type is a combination of a base type, a set of
/// type arguments (optional, for parameterized classes) and a list of
/// protocols.
///
/// Given the following declarations:
/// \code
/// \@class C<T>;
/// \@protocol P;
/// \endcode
///
/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
/// with base C and no protocols.
///
/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
/// protocol list.
/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
/// and protocol list [P].
///
/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
/// and no protocols.
///
/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
/// this should get its own sugar class to better represent the source.
class ObjCObjectType : public Type {
// ObjCObjectType.NumTypeArgs - the number of type arguments stored
// after the ObjCObjectPointerType node.
// ObjCObjectType.NumProtocols - the number of protocols stored
// after the type arguments of ObjCObjectPointerType node.
//
// These protocols are those written directly on the type. If
// protocol qualifiers ever become additive, the iterators will need
// to get kindof complicated.
//
// In the canonical object type, these are sorted alphabetically
// and uniqued.
/// Either a BuiltinType or an InterfaceType or sugar for either.
QualType BaseType;
/// Cached superclass type.
mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
CachedSuperClassType;
ObjCProtocolDecl * const *getProtocolStorage() const {
return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
}
QualType *getTypeArgStorage();
const QualType *getTypeArgStorage() const {
return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
}
ObjCProtocolDecl **getProtocolStorage();
protected:
ObjCObjectType(QualType Canonical, QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf);
enum Nonce_ObjCInterface { Nonce_ObjCInterface };
ObjCObjectType(enum Nonce_ObjCInterface)
: Type(ObjCInterface, QualType(), false, false, false, false),
BaseType(QualType(this_(), 0)) {
ObjCObjectTypeBits.NumProtocols = 0;
ObjCObjectTypeBits.NumTypeArgs = 0;
ObjCObjectTypeBits.IsKindOf = 0;
}
void computeSuperClassTypeSlow() const;
public:
/// getBaseType - Gets the base type of this object type. This is
/// always (possibly sugar for) one of:
/// - the 'id' builtin type (as opposed to the 'id' type visible to the
/// user, which is a typedef for an ObjCObjectPointerType)
/// - the 'Class' builtin type (same caveat)
/// - an ObjCObjectType (currently always an ObjCInterfaceType)
QualType getBaseType() const { return BaseType; }
bool isObjCId() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
}
bool isObjCClass() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
}
bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
bool isObjCUnqualifiedIdOrClass() const {
if (!qual_empty()) return false;
if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
return T->getKind() == BuiltinType::ObjCId ||
T->getKind() == BuiltinType::ObjCClass;
return false;
}
bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
/// Gets the interface declaration for this object type, if the base type
/// really is an interface.
ObjCInterfaceDecl *getInterface() const;
/// Determine whether this object type is "specialized", meaning
/// that it has type arguments.
bool isSpecialized() const;
/// Determine whether this object type was written with type arguments.
bool isSpecializedAsWritten() const {
return ObjCObjectTypeBits.NumTypeArgs > 0;
}
/// Determine whether this object type is "unspecialized", meaning
/// that it has no type arguments.
bool isUnspecialized() const { return !isSpecialized(); }
/// Determine whether this object type is "unspecialized" as
/// written, meaning that it has no type arguments.
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
/// Retrieve the type arguments of this object type (semantically).
ArrayRef<QualType> getTypeArgs() const;
/// Retrieve the type arguments of this object type as they were
/// written.
ArrayRef<QualType> getTypeArgsAsWritten() const {
return ArrayRef<QualType>(getTypeArgStorage(),
ObjCObjectTypeBits.NumTypeArgs);
}
typedef ObjCProtocolDecl * const *qual_iterator;
typedef llvm::iterator_range<qual_iterator> qual_range;
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
qual_iterator qual_begin() const { return getProtocolStorage(); }
qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
bool qual_empty() const { return getNumProtocols() == 0; }
/// getNumProtocols - Return the number of qualifying protocols in this
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
/// \brief Fetch a protocol by index.
ObjCProtocolDecl *getProtocol(unsigned I) const {
assert(I < getNumProtocols() && "Out-of-range protocol access");
return qual_begin()[I];
}
/// Retrieve all of the protocol qualifiers.
ArrayRef<ObjCProtocolDecl *> getProtocols() const {
return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
}
/// Whether this is a "__kindof" type as written.
bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
/// Whether this ia a "__kindof" type (semantically).
bool isKindOfType() const;
/// Retrieve the type of the superclass of this object type.
///
/// This operation substitutes any type arguments into the
/// superclass of the current class type, potentially producing a
/// specialization of the superclass type. Produces a null type if
/// there is no superclass.
QualType getSuperClassType() const {
if (!CachedSuperClassType.getInt())
computeSuperClassTypeSlow();
assert(CachedSuperClassType.getInt() && "Superclass not set?");
return QualType(CachedSuperClassType.getPointer(), 0);
}
/// Strip off the Objective-C "kindof" type and (with it) any
/// protocol qualifiers.
QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObject ||
T->getTypeClass() == ObjCInterface;
}
};
/// ObjCObjectTypeImpl - A class providing a concrete implementation
/// of ObjCObjectType, so as to not increase the footprint of
/// ObjCInterfaceType. Code outside of ASTContext and the core type
/// system should not reference this type.
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
friend class ASTContext;
// If anyone adds fields here, ObjCObjectType::getProtocolStorage()
// will need to be modified.
ObjCObjectTypeImpl(QualType Canonical, QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf)
: ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
public:
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf);
};
inline QualType *ObjCObjectType::getTypeArgStorage() {
return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
}
inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
return reinterpret_cast<ObjCProtocolDecl**>(
getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
}
/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
/// object oriented design. They basically correspond to C++ classes. There
/// are two kinds of interface types, normal interfaces like "NSString" and
/// qualified interfaces, which are qualified with a protocol list like
/// "NSString<NSCopyable, NSAmazing>".
///
/// ObjCInterfaceType guarantees the following properties when considered
/// as a subtype of its superclass, ObjCObjectType:
/// - There are no protocol qualifiers. To reinforce this, code which
/// tries to invoke the protocol methods via an ObjCInterfaceType will
/// fail to compile.
/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
/// T->getBaseType() == QualType(T, 0).
class ObjCInterfaceType : public ObjCObjectType {
mutable ObjCInterfaceDecl *Decl;
ObjCInterfaceType(const ObjCInterfaceDecl *D)
: ObjCObjectType(Nonce_ObjCInterface),
Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
friend class ASTContext; // ASTContext creates these.
friend class ASTReader;
friend class ObjCInterfaceDecl;
public:
/// getDecl - Get the declaration of this interface.
ObjCInterfaceDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCInterface;
}
// Nonsense to "hide" certain members of ObjCObjectType within this
// class. People asking for protocols on an ObjCInterfaceType are
// not going to get what they want: ObjCInterfaceTypes are
// guaranteed to have no protocols.
enum {
qual_iterator,
qual_begin,
qual_end,
getNumProtocols,
getProtocol
};
};
inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
QualType baseType = getBaseType();
while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
return T->getDecl();
baseType = ObjT->getBaseType();
}
return nullptr;
}
/// ObjCObjectPointerType - Used to represent a pointer to an
/// Objective C object. These are constructed from pointer
/// declarators when the pointee type is an ObjCObjectType (or sugar
/// for one). In addition, the 'id' and 'Class' types are typedefs
/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
/// are translated into these.
///
/// Pointers to pointers to Objective C objects are still PointerTypes;
/// only the first level of pointer gets it own type implementation.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
ObjCObjectPointerType(QualType Canonical, QualType Pointee)
: Type(ObjCObjectPointer, Canonical,
Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {}
friend class ASTContext; // ASTContext creates these.
public:
/// getPointeeType - Gets the type pointed to by this ObjC pointer.
/// The result will always be an ObjCObjectType or sugar thereof.
QualType getPointeeType() const { return PointeeType; }
/// getObjCObjectType - Gets the type pointed to by this ObjC
/// pointer. This method always returns non-null.
///
/// This method is equivalent to getPointeeType() except that
/// it discards any typedefs (or other sugar) between this
/// type and the "outermost" object type. So for:
/// \code
/// \@class A; \@protocol P; \@protocol Q;
/// typedef A<P> AP;
/// typedef A A1;
/// typedef A1<P> A1P;
/// typedef A1P<Q> A1PQ;
/// \endcode
/// For 'A*', getObjectType() will return 'A'.
/// For 'A<P>*', getObjectType() will return 'A<P>'.
/// For 'AP*', getObjectType() will return 'A<P>'.
/// For 'A1*', getObjectType() will return 'A'.
/// For 'A1<P>*', getObjectType() will return 'A1<P>'.
/// For 'A1P*', getObjectType() will return 'A1<P>'.
/// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
/// adding protocols to a protocol-qualified base discards the
/// old qualifiers (for now). But if it didn't, getObjectType()
/// would return 'A1P<Q>' (and we'd have to make iterating over
/// qualifiers more complicated).
const ObjCObjectType *getObjectType() const {
return PointeeType->castAs<ObjCObjectType>();
}
/// getInterfaceType - If this pointer points to an Objective C
/// \@interface type, gets the type for that interface. Any protocol
/// qualifiers on the interface are ignored.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
const ObjCInterfaceType *getInterfaceType() const;
/// getInterfaceDecl - If this pointer points to an Objective \@interface
/// type, gets the declaration for that interface.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
ObjCInterfaceDecl *getInterfaceDecl() const {
return getObjectType()->getInterface();
}
/// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
/// its object type is the primitive 'id' type with no protocols.
bool isObjCIdType() const {
return getObjectType()->isObjCUnqualifiedId();
}
/// isObjCClassType - True if this is equivalent to the 'Class' type,
/// i.e. if its object tive is the primitive 'Class' type with no protocols.
bool isObjCClassType() const {
return getObjectType()->isObjCUnqualifiedClass();
}
/// isObjCIdOrClassType - True if this is equivalent to the 'id' or
/// 'Class' type,
bool isObjCIdOrClassType() const {
return getObjectType()->isObjCUnqualifiedIdOrClass();
}
/// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
/// non-empty set of protocols.
bool isObjCQualifiedIdType() const {
return getObjectType()->isObjCQualifiedId();
}
/// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
/// some non-empty set of protocols.
bool isObjCQualifiedClassType() const {
return getObjectType()->isObjCQualifiedClass();
}
/// Whether this is a "__kindof" type.
bool isKindOfType() const { return getObjectType()->isKindOfType(); }
/// Whether this type is specialized, meaning that it has type arguments.
bool isSpecialized() const { return getObjectType()->isSpecialized(); }
/// Whether this type is specialized, meaning that it has type arguments.
bool isSpecializedAsWritten() const {
return getObjectType()->isSpecializedAsWritten();
}
/// Whether this type is unspecialized, meaning that is has no type arguments.
bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
/// Determine whether this object type is "unspecialized" as
/// written, meaning that it has no type arguments.
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
/// Retrieve the type arguments for this type.
ArrayRef<QualType> getTypeArgs() const {
return getObjectType()->getTypeArgs();
}
/// Retrieve the type arguments for this type.
ArrayRef<QualType> getTypeArgsAsWritten() const {
return getObjectType()->getTypeArgsAsWritten();
}
/// An iterator over the qualifiers on the object type. Provided
/// for convenience. This will always iterate over the full set of
/// protocols on a type, not just those provided directly.
typedef ObjCObjectType::qual_iterator qual_iterator;
typedef llvm::iterator_range<qual_iterator> qual_range;
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
qual_iterator qual_begin() const {
return getObjectType()->qual_begin();
}
qual_iterator qual_end() const {
return getObjectType()->qual_end();
}
bool qual_empty() const { return getObjectType()->qual_empty(); }
/// getNumProtocols - Return the number of qualifying protocols on
/// the object type.
unsigned getNumProtocols() const {
return getObjectType()->getNumProtocols();
}
/// \brief Retrieve a qualifying protocol by index on the object
/// type.
ObjCProtocolDecl *getProtocol(unsigned I) const {
return getObjectType()->getProtocol(I);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// Retrieve the type of the superclass of this object pointer type.
///
/// This operation substitutes any type arguments into the
/// superclass of the current class type, potentially producing a
/// pointer to a specialization of the superclass type. Produces a
/// null type if there is no superclass.
QualType getSuperClassType() const;
/// Strip off the Objective-C "kindof" type and (with it) any
/// protocol qualifiers.
const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
const ASTContext &ctx) const;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObjectPointer;
}
};
class AtomicType : public Type, public llvm::FoldingSetNode {
QualType ValueType;
AtomicType(QualType ValTy, QualType Canonical)
: Type(Atomic, Canonical, ValTy->isDependentType(),
ValTy->isInstantiationDependentType(),
ValTy->isVariablyModifiedType(),
ValTy->containsUnexpandedParameterPack()),
ValueType(ValTy) {}
friend class ASTContext; // ASTContext creates these.
public:
/// getValueType - Gets the type contained by this atomic type, i.e.
/// the type returned by performing an atomic load of this atomic type.
QualType getValueType() const { return ValueType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getValueType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Atomic;
}
};
/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
public:
QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
/// Collect any qualifiers on the given type and return an
/// unqualified type. The qualifiers are assumed to be consistent
/// with those already in the type.
const Type *strip(QualType type) {
addFastQualifiers(type.getLocalFastQualifiers());
if (!type.hasLocalNonFastQualifiers())
return type.getTypePtrUnsafe();
const ExtQuals *extQuals = type.getExtQualsUnsafe();
addConsistentQualifiers(extQuals->getQualifiers());
return extQuals->getBaseType();
}
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, QualType QT) const;
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, const Type* T) const;
};
// Inline function definitions.
inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
SplitQualType desugar =
Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
desugar.Quals.addConsistentQualifiers(Quals);
return desugar;
}
inline const Type *QualType::getTypePtr() const {
return getCommonPtr()->BaseType;
}
inline const Type *QualType::getTypePtrOrNull() const {
return (isNull() ? nullptr : getCommonPtr()->BaseType);
}
inline SplitQualType QualType::split() const {
if (!hasLocalNonFastQualifiers())
return SplitQualType(getTypePtrUnsafe(),
Qualifiers::fromFastMask(getLocalFastQualifiers()));
const ExtQuals *eq = getExtQualsUnsafe();
Qualifiers qs = eq->getQualifiers();
qs.addFastQualifiers(getLocalFastQualifiers());
return SplitQualType(eq->getBaseType(), qs);
}
inline Qualifiers QualType::getLocalQualifiers() const {
Qualifiers Quals;
if (hasLocalNonFastQualifiers())
Quals = getExtQualsUnsafe()->getQualifiers();
Quals.addFastQualifiers(getLocalFastQualifiers());
return Quals;
}
inline Qualifiers QualType::getQualifiers() const {
Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
quals.addFastQualifiers(getLocalFastQualifiers());
return quals;
}
inline unsigned QualType::getCVRQualifiers() const {
unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
cvr |= getLocalCVRQualifiers();
return cvr;
}
inline QualType QualType::getCanonicalType() const {
QualType canon = getCommonPtr()->CanonicalType;
return canon.withFastQualifiers(getLocalFastQualifiers());
}
inline bool QualType::isCanonical() const {
return getTypePtr()->isCanonicalUnqualified();
}
inline bool QualType::isCanonicalAsParam() const {
if (!isCanonical()) return false;
if (hasLocalQualifiers()) return false;
const Type *T = getTypePtr();
if (T->isVariablyModifiedType() && T->hasSizedVLAType())
return false;
return !isa<FunctionType>(T) && !isa<ArrayType>(T);
}
inline bool QualType::isConstQualified() const {
return isLocalConstQualified() ||
getCommonPtr()->CanonicalType.isLocalConstQualified();
}
inline bool QualType::isRestrictQualified() const {
return isLocalRestrictQualified() ||
getCommonPtr()->CanonicalType.isLocalRestrictQualified();
}
inline bool QualType::isVolatileQualified() const {
return isLocalVolatileQualified() ||
getCommonPtr()->CanonicalType.isLocalVolatileQualified();
}
inline bool QualType::hasQualifiers() const {
return hasLocalQualifiers() ||
getCommonPtr()->CanonicalType.hasLocalQualifiers();
}
inline QualType QualType::getUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return QualType(getTypePtr(), 0);
return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
}
inline SplitQualType QualType::getSplitUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return split();
return getSplitUnqualifiedTypeImpl(*this);
}
inline void QualType::removeLocalConst() {
removeLocalFastQualifiers(Qualifiers::Const);
}
inline void QualType::removeLocalRestrict() {
removeLocalFastQualifiers(Qualifiers::Restrict);
}
inline void QualType::removeLocalVolatile() {
removeLocalFastQualifiers(Qualifiers::Volatile);
}
inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
// Fast path: we don't need to touch the slow qualifiers.
removeLocalFastQualifiers(Mask);
}
/// getAddressSpace - Return the address space of this type.
inline unsigned QualType::getAddressSpace() const {
return getQualifiers().getAddressSpace();
}
/// getObjCGCAttr - Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
return getQualifiers().getObjCGCAttr();
}
inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
if (const PointerType *PT = t.getAs<PointerType>()) {
if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
return FT->getExtInfo();
} else if (const FunctionType *FT = t.getAs<FunctionType>())
return FT->getExtInfo();
return FunctionType::ExtInfo();
}
inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
return getFunctionExtInfo(*t);
}
/// isMoreQualifiedThan - Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType other) const {
Qualifiers myQuals = getQualifiers();
Qualifiers otherQuals = other.getQualifiers();
return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
}
/// isAtLeastAsQualifiedAs - Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
return getQualifiers().compatiblyIncludes(other.getQualifiers());
}
/// getNonReferenceType - If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
/// If an expression initially has the type "reference to T" (8.3.2,
/// 8.5.3), the type is adjusted to "T" prior to any further
/// analysis, the expression designates the object or function
/// denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
inline bool QualType::isCForbiddenLValueType() const {
return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
getTypePtr()->isFunctionType());
}
/// \brief Tests whether the type is categorized as a fundamental type.
///
/// \returns True for types specified in C++0x [basic.fundamental].
inline bool Type::isFundamentalType() const {
return isVoidType() ||
// FIXME: It's really annoying that we don't have an
// 'isArithmeticType()' which agrees with the standard definition.
(isArithmeticType() && !isEnumeralType());
}
/// \brief Tests whether the type is categorized as a compound type.
///
/// \returns True for types specified in C++0x [basic.compound].
inline bool Type::isCompoundType() const {
// C++0x [basic.compound]p1:
// Compound types can be constructed in the following ways:
// -- arrays of objects of a given type [...];
return isArrayType() ||
// -- functions, which have parameters of given types [...];
isFunctionType() ||
// -- pointers to void or objects or functions [...];
isPointerType() ||
// -- references to objects or functions of a given type. [...]
isReferenceType() ||
// -- classes containing a sequence of objects of various types, [...];
isRecordType() ||
// -- unions, which are classes capable of containing objects of different
// types at different times;
isUnionType() ||
// -- enumerations, which comprise a set of named constant values. [...];
isEnumeralType() ||
// -- pointers to non-static class members, [...].
isMemberPointerType();
}
inline bool Type::isFunctionType() const {
return isa<FunctionType>(CanonicalType);
}
inline bool Type::isPointerType() const {
return isa<PointerType>(CanonicalType);
}
inline bool Type::isAnyPointerType() const {
return isPointerType() || isObjCObjectPointerType();
}
inline bool Type::isBlockPointerType() const {
return isa<BlockPointerType>(CanonicalType);
}
inline bool Type::isReferenceType() const {
return isa<ReferenceType>(CanonicalType);
}
inline bool Type::isLValueReferenceType() const {
return isa<LValueReferenceType>(CanonicalType);
}
inline bool Type::isRValueReferenceType() const {
return isa<RValueReferenceType>(CanonicalType);
}
inline bool Type::isFunctionPointerType() const {
if (const PointerType *T = getAs<PointerType>())
return T->getPointeeType()->isFunctionType();
else
return false;
}
inline bool Type::isMemberPointerType() const {
return isa<MemberPointerType>(CanonicalType);
}
inline bool Type::isMemberFunctionPointerType() const {
if (const MemberPointerType* T = getAs<MemberPointerType>())
return T->isMemberFunctionPointer();
else
return false;
}
inline bool Type::isMemberDataPointerType() const {
if (const MemberPointerType* T = getAs<MemberPointerType>())
return T->isMemberDataPointer();
else
return false;
}
inline bool Type::isArrayType() const {
return isa<ArrayType>(CanonicalType);
}
inline bool Type::isConstantArrayType() const {
return isa<ConstantArrayType>(CanonicalType);
}
inline bool Type::isIncompleteArrayType() const {
return isa<IncompleteArrayType>(CanonicalType);
}
inline bool Type::isVariableArrayType() const {
return isa<VariableArrayType>(CanonicalType);
}
inline bool Type::isDependentSizedArrayType() const {
return isa<DependentSizedArrayType>(CanonicalType);
}
inline bool Type::isBuiltinType() const {
return isa<BuiltinType>(CanonicalType);
}
inline bool Type::isRecordType() const {
return isa<RecordType>(CanonicalType);
}
inline bool Type::isEnumeralType() const {
return isa<EnumType>(CanonicalType);
}
inline bool Type::isAnyComplexType() const {
return isa<ComplexType>(CanonicalType);
}
inline bool Type::isVectorType() const {
return isa<VectorType>(CanonicalType);
}
inline bool Type::isExtVectorType() const {
return isa<ExtVectorType>(CanonicalType);
}
inline bool Type::isObjCObjectPointerType() const {
return isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isObjCObjectType() const {
return isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isObjCObjectOrInterfaceType() const {
return isa<ObjCInterfaceType>(CanonicalType) ||
isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isAtomicType() const {
return isa<AtomicType>(CanonicalType);
}
inline bool Type::isObjCQualifiedIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedIdType();
return false;
}
inline bool Type::isObjCQualifiedClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedClassType();
return false;
}
inline bool Type::isObjCIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCIdType();
return false;
}
inline bool Type::isObjCClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCClassType();
return false;
}
inline bool Type::isObjCSelType() const {
if (const PointerType *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
return false;
}
inline bool Type::isObjCBuiltinType() const {
return isObjCIdType() || isObjCClassType() || isObjCSelType();
}
inline bool Type::isImage1dT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage1d);
}
inline bool Type::isImage1dArrayT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
}
inline bool Type::isImage1dBufferT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
}
inline bool Type::isImage2dT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage2d);
}
inline bool Type::isImage2dArrayT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
}
inline bool Type::isImage3dT() const {
return isSpecificBuiltinType(BuiltinType::OCLImage3d);
}
inline bool Type::isSamplerT() const {
return isSpecificBuiltinType(BuiltinType::OCLSampler);
}
inline bool Type::isEventT() const {
return isSpecificBuiltinType(BuiltinType::OCLEvent);
}
inline bool Type::isImageType() const {
return isImage3dT() ||
isImage2dT() || isImage2dArrayT() ||
isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
}
inline bool Type::isOpenCLSpecificType() const {
return isSamplerT() || isEventT() || isImageType();
}
inline bool Type::isTemplateTypeParmType() const {
return isa<TemplateTypeParmType>(CanonicalType);
}
inline bool Type::isSpecificBuiltinType(unsigned K) const {
if (const BuiltinType *BT = getAs<BuiltinType>())
if (BT->getKind() == (BuiltinType::Kind) K)
return true;
return false;
}
inline bool Type::isPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return BT->isPlaceholderType();
return false;
}
inline const BuiltinType *Type::getAsPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
if (BT->isPlaceholderType())
return BT;
return nullptr;
}
inline bool Type::isSpecificPlaceholderType(unsigned K) const {
assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return (BT->getKind() == (BuiltinType::Kind) K);
return false;
}
inline bool Type::isNonOverloadPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return BT->isNonOverloadPlaceholderType();
return false;
}
inline bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
inline bool Type::isHalfType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Half;
// FIXME: Should we allow complex __fp16? Probably not.
return false;
}
inline bool Type::isNullPtrType() const {
if (const BuiltinType *BT = getAs<BuiltinType>())
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
extern bool IsEnumDeclComplete(EnumDecl *);
extern bool IsEnumDeclScoped(EnumDecl *);
inline bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LitInt; // HLSL Change Int128 to LitInt
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
return IsEnumDeclComplete(ET->getDecl()) &&
!IsEnumDeclScoped(ET->getDecl());
}
return false;
}
inline bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() > BuiltinType::Void &&
BT->getKind() <= BuiltinType::NullPtr;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// Enums are scalar types, but only if they are defined. Incomplete enums
// are not treated as scalar types.
return IsEnumDeclComplete(ET->getDecl());
return isa<PointerType>(CanonicalType) ||
isa<BlockPointerType>(CanonicalType) ||
isa<MemberPointerType>(CanonicalType) ||
isa<ComplexType>(CanonicalType) ||
isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isIntegralOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LitInt; // HLSL Change - Int128 to LitInt
// Check for a complete enum type; incomplete enum types are not properly an
// enumeration type in the sense required here.
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return IsEnumDeclComplete(ET->getDecl());
return false;
}
inline bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
return false;
}
inline bool Type::isUndeducedType() const {
const AutoType *AT = getContainedAutoType();
return AT && !AT->isDeduced();
}
/// \brief Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
return isDependentType() || isRecordType() || isEnumeralType();
}
/// \brief Determines whether this type can decay to a pointer type.
inline bool Type::canDecayToPointerType() const {
return isFunctionType() || isArrayType();
}
inline bool Type::hasPointerRepresentation() const {
return (isPointerType() || isReferenceType() || isBlockPointerType() ||
isObjCObjectPointerType() || isNullPtrType());
}
inline bool Type::hasObjCPointerRepresentation() const {
return isObjCObjectPointerType();
}
inline const Type *Type::getBaseElementTypeUnsafe() const {
const Type *type = this;
while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
type = arrayType->getElementType().getTypePtr();
return type;
}
/// Insertion operator for diagnostics. This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
QualType T) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return DB;
}
/// Insertion operator for partial diagnostics. This allows sending QualType's
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
QualType T) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return PD;
}
// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
std::is_base_of<ArrayType, T>::value)>
struct ArrayType_cannot_be_used_with_getAs {};
template<typename T>
struct ArrayType_cannot_be_used_with_getAs<T, true>;
// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
ArrayType_cannot_be_used_with_getAs<T> at;
(void)at;
// If this is directly a T type, return it.
if (const T *Ty = dyn_cast<T>(this))
return Ty;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<T>(CanonicalType))
return nullptr;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<T>(getUnqualifiedDesugaredType());
}
inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
// If this is directly an array type, return it.
if (const ArrayType *arr = dyn_cast<ArrayType>(this))
return arr;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return nullptr;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
template <typename T> const T *Type::castAs() const {
ArrayType_cannot_be_used_with_getAs<T> at;
(void) at;
if (const T *ty = dyn_cast<T>(this)) return ty;
assert(isa<T>(CanonicalType));
return cast<T>(getUnqualifiedDesugaredType());
}
inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
assert(isa<ArrayType>(CanonicalType));
if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentDiagnostic.h | //===--- CommentDiagnostic.h - Diagnostics for the AST library --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTDIAGNOSTIC_H
#define LLVM_CLANG_AST_COMMENTDIAGNOSTIC_H
#include "clang/Basic/Diagnostic.h"
namespace clang {
namespace diag {
enum {
#define DIAG(ENUM,FLAGS,DEFAULT_MAPPING,DESC,GROUP,\
SFINAE,NOWERROR,SHOWINSYSHEADER,CATEGORY) ENUM,
#define COMMENTSTART
#include "clang/Basic/DiagnosticCommentKinds.inc"
#undef DIAG
NUM_BUILTIN_COMMENT_DIAGNOSTICS
};
} // end namespace diag
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTTypeTraits.h | //===--- ASTTypeTraits.h ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Provides a dynamic type identifier and a dynamically typed node container
// that can be used to store an AST base node at runtime in the same storage in
// a type safe way.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTTYPETRAITS_H
#define LLVM_CLANG_AST_ASTTYPETRAITS_H
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/AlignOf.h"
namespace llvm {
class raw_ostream;
}
namespace clang {
struct PrintingPolicy;
namespace ast_type_traits {
/// \brief Kind identifier.
///
/// It can be constructed from any node kind and allows for runtime type
/// hierarchy checks.
/// Use getFromNodeKind<T>() to construct them.
class ASTNodeKind {
public:
/// \brief Empty identifier. It matches nothing.
ASTNodeKind() : KindId(NKI_None) {}
/// \brief Construct an identifier for T.
template <class T>
static ASTNodeKind getFromNodeKind() {
return ASTNodeKind(KindToKindId<T>::Id);
}
/// \{
/// \brief Construct an identifier for the dynamic type of the node
static ASTNodeKind getFromNode(const Decl &D);
static ASTNodeKind getFromNode(const Stmt &S);
static ASTNodeKind getFromNode(const Type &T);
/// \}
/// \brief Returns \c true if \c this and \c Other represent the same kind.
bool isSame(ASTNodeKind Other) const;
/// \brief Returns \c true only for the default \c ASTNodeKind()
bool isNone() const { return KindId == NKI_None; }
/// \brief Returns \c true if \c this is a base kind of (or same as) \c Other.
/// \param Distance If non-null, used to return the distance between \c this
/// and \c Other in the class hierarchy.
bool isBaseOf(ASTNodeKind Other, unsigned *Distance = nullptr) const;
/// \brief String representation of the kind.
StringRef asStringRef() const;
/// \brief Strict weak ordering for ASTNodeKind.
bool operator<(const ASTNodeKind &Other) const {
return KindId < Other.KindId;
}
/// \brief Return the most derived type between \p Kind1 and \p Kind2.
///
/// Return ASTNodeKind() if they are not related.
static ASTNodeKind getMostDerivedType(ASTNodeKind Kind1, ASTNodeKind Kind2);
/// \brief Return the most derived common ancestor between Kind1 and Kind2.
///
/// Return ASTNodeKind() if they are not related.
static ASTNodeKind getMostDerivedCommonAncestor(ASTNodeKind Kind1,
ASTNodeKind Kind2);
/// \brief Hooks for using ASTNodeKind as a key in a DenseMap.
struct DenseMapInfo {
// ASTNodeKind() is a good empty key because it is represented as a 0.
static inline ASTNodeKind getEmptyKey() { return ASTNodeKind(); }
// NKI_NumberOfKinds is not a valid value, so it is good for a
// tombstone key.
static inline ASTNodeKind getTombstoneKey() {
return ASTNodeKind(NKI_NumberOfKinds);
}
static unsigned getHashValue(const ASTNodeKind &Val) { return Val.KindId; }
static bool isEqual(const ASTNodeKind &LHS, const ASTNodeKind &RHS) {
return LHS.KindId == RHS.KindId;
}
};
private:
/// \brief Kind ids.
///
/// Includes all possible base and derived kinds.
enum NodeKindId {
NKI_None,
NKI_CXXCtorInitializer,
NKI_TemplateArgument,
NKI_NestedNameSpecifier,
NKI_NestedNameSpecifierLoc,
NKI_QualType,
NKI_TypeLoc,
NKI_Decl,
#define DECL(DERIVED, BASE) NKI_##DERIVED##Decl,
#include "clang/AST/DeclNodes.inc"
NKI_Stmt,
#define STMT(DERIVED, BASE) NKI_##DERIVED,
#include "clang/AST/StmtNodes.inc"
NKI_Type,
#define TYPE(DERIVED, BASE) NKI_##DERIVED##Type,
#include "clang/AST/TypeNodes.def"
NKI_NumberOfKinds
};
/// \brief Use getFromNodeKind<T>() to construct the kind.
ASTNodeKind(NodeKindId KindId) : KindId(KindId) {}
/// \brief Returns \c true if \c Base is a base kind of (or same as) \c
/// Derived.
/// \param Distance If non-null, used to return the distance between \c Base
/// and \c Derived in the class hierarchy.
static bool isBaseOf(NodeKindId Base, NodeKindId Derived, unsigned *Distance);
/// \brief Helper meta-function to convert a kind T to its enum value.
///
/// This struct is specialized below for all known kinds.
template <class T> struct KindToKindId {
static const NodeKindId Id = NKI_None;
};
template <class T>
struct KindToKindId<const T> : KindToKindId<T> {};
/// \brief Per kind info.
struct KindInfo {
/// \brief The id of the parent kind, or None if it has no parent.
NodeKindId ParentId;
/// \brief Name of the kind.
const char *Name;
};
static const KindInfo AllKindInfo[NKI_NumberOfKinds];
NodeKindId KindId;
};
#define KIND_TO_KIND_ID(Class) \
template <> struct ASTNodeKind::KindToKindId<Class> { \
static const NodeKindId Id = NKI_##Class; \
};
KIND_TO_KIND_ID(CXXCtorInitializer)
KIND_TO_KIND_ID(TemplateArgument)
KIND_TO_KIND_ID(NestedNameSpecifier)
KIND_TO_KIND_ID(NestedNameSpecifierLoc)
KIND_TO_KIND_ID(QualType)
KIND_TO_KIND_ID(TypeLoc)
KIND_TO_KIND_ID(Decl)
KIND_TO_KIND_ID(Stmt)
KIND_TO_KIND_ID(Type)
#define DECL(DERIVED, BASE) KIND_TO_KIND_ID(DERIVED##Decl)
#include "clang/AST/DeclNodes.inc"
#define STMT(DERIVED, BASE) KIND_TO_KIND_ID(DERIVED)
#include "clang/AST/StmtNodes.inc"
#define TYPE(DERIVED, BASE) KIND_TO_KIND_ID(DERIVED##Type)
#include "clang/AST/TypeNodes.def"
#undef KIND_TO_KIND_ID
inline raw_ostream &operator<<(raw_ostream &OS, ASTNodeKind K) {
OS << K.asStringRef();
return OS;
}
/// \brief A dynamically typed AST node container.
///
/// Stores an AST node in a type safe way. This allows writing code that
/// works with different kinds of AST nodes, despite the fact that they don't
/// have a common base class.
///
/// Use \c create(Node) to create a \c DynTypedNode from an AST node,
/// and \c get<T>() to retrieve the node as type T if the types match.
///
/// See \c ASTNodeKind for which node base types are currently supported;
/// You can create DynTypedNodes for all nodes in the inheritance hierarchy of
/// the supported base types.
class DynTypedNode {
public:
/// \brief Creates a \c DynTypedNode from \c Node.
template <typename T>
static DynTypedNode create(const T &Node) {
return BaseConverter<T>::create(Node);
}
/// \brief Retrieve the stored node as type \c T.
///
/// Returns NULL if the stored node does not have a type that is
/// convertible to \c T.
///
/// For types that have identity via their pointer in the AST
/// (like \c Stmt, \c Decl, \c Type and \c NestedNameSpecifier) the returned
/// pointer points to the referenced AST node.
/// For other types (like \c QualType) the value is stored directly
/// in the \c DynTypedNode, and the returned pointer points at
/// the storage inside DynTypedNode. For those nodes, do not
/// use the pointer outside the scope of the DynTypedNode.
template <typename T>
const T *get() const {
return BaseConverter<T>::get(NodeKind, Storage.buffer);
}
/// \brief Retrieve the stored node as type \c T.
///
/// Similar to \c get(), but asserts that the type is what we are expecting.
template <typename T>
const T &getUnchecked() const {
return BaseConverter<T>::getUnchecked(NodeKind, Storage.buffer);
}
ASTNodeKind getNodeKind() const { return NodeKind; }
/// \brief Returns a pointer that identifies the stored AST node.
///
/// Note that this is not supported by all AST nodes. For AST nodes
/// that don't have a pointer-defined identity inside the AST, this
/// method returns NULL.
const void *getMemoizationData() const { return MemoizationData; }
/// \brief Prints the node to the given output stream.
void print(llvm::raw_ostream &OS, const PrintingPolicy &PP) const;
/// \brief Dumps the node to the given output stream.
void dump(llvm::raw_ostream &OS, SourceManager &SM) const;
/// \brief For nodes which represent textual entities in the source code,
/// return their SourceRange. For all other nodes, return SourceRange().
SourceRange getSourceRange() const;
/// @{
/// \brief Imposes an order on \c DynTypedNode.
///
/// Supports comparison of nodes that support memoization.
/// FIXME: Implement comparsion for other node types (currently
/// only Stmt, Decl, Type and NestedNameSpecifier return memoization data).
bool operator<(const DynTypedNode &Other) const {
assert(getMemoizationData() && Other.getMemoizationData());
return getMemoizationData() < Other.getMemoizationData();
}
bool operator==(const DynTypedNode &Other) const {
// DynTypedNode::create() stores the exact kind of the node in NodeKind.
// If they contain the same node, their NodeKind must be the same.
if (!NodeKind.isSame(Other.NodeKind))
return false;
// FIXME: Implement for other types.
if (ASTNodeKind::getFromNodeKind<QualType>().isSame(NodeKind))
return getUnchecked<QualType>() == Other.getUnchecked<QualType>();
assert(getMemoizationData() && Other.getMemoizationData());
return getMemoizationData() == Other.getMemoizationData();
}
bool operator!=(const DynTypedNode &Other) const {
return !operator==(Other);
}
/// @}
private:
/// \brief Takes care of converting from and to \c T.
template <typename T, typename EnablerT = void> struct BaseConverter;
/// \brief Converter that uses dyn_cast<T> from a stored BaseT*.
template <typename T, typename BaseT> struct DynCastPtrConverter {
static const T *get(ASTNodeKind NodeKind, const char Storage[]) {
if (ASTNodeKind::getFromNodeKind<T>().isBaseOf(NodeKind))
return cast<T>(*reinterpret_cast<BaseT *const *>(Storage));
return nullptr;
}
static const T &getUnchecked(ASTNodeKind NodeKind, const char Storage[]) {
assert(ASTNodeKind::getFromNodeKind<T>().isBaseOf(NodeKind));
return *cast<T>(*reinterpret_cast<BaseT *const *>(Storage));
}
static DynTypedNode create(const BaseT &Node) {
DynTypedNode Result;
Result.NodeKind = ASTNodeKind::getFromNode(Node);
Result.MemoizationData = &Node;
new (Result.Storage.buffer) const BaseT * (&Node);
return Result;
}
};
/// \brief Converter that stores T* (by pointer).
template <typename T> struct PtrConverter {
static const T *get(ASTNodeKind NodeKind, const char Storage[]) {
if (ASTNodeKind::getFromNodeKind<T>().isSame(NodeKind))
return *reinterpret_cast<T *const *>(Storage);
return nullptr;
}
static const T &getUnchecked(ASTNodeKind NodeKind, const char Storage[]) {
assert(ASTNodeKind::getFromNodeKind<T>().isSame(NodeKind));
return **reinterpret_cast<T *const *>(Storage);
}
static DynTypedNode create(const T &Node) {
DynTypedNode Result;
Result.NodeKind = ASTNodeKind::getFromNodeKind<T>();
Result.MemoizationData = &Node;
new (Result.Storage.buffer) const T * (&Node);
return Result;
}
};
/// \brief Converter that stores T (by value).
template <typename T> struct ValueConverter {
static const T *get(ASTNodeKind NodeKind, const char Storage[]) {
if (ASTNodeKind::getFromNodeKind<T>().isSame(NodeKind))
return reinterpret_cast<const T *>(Storage);
return nullptr;
}
static const T &getUnchecked(ASTNodeKind NodeKind, const char Storage[]) {
assert(ASTNodeKind::getFromNodeKind<T>().isSame(NodeKind));
return *reinterpret_cast<const T *>(Storage);
}
static DynTypedNode create(const T &Node) {
DynTypedNode Result;
Result.NodeKind = ASTNodeKind::getFromNodeKind<T>();
Result.MemoizationData = nullptr;
new (Result.Storage.buffer) T(Node);
return Result;
}
};
ASTNodeKind NodeKind;
const void *MemoizationData;
/// \brief Stores the data of the node.
///
/// Note that we can store \c Decls, \c Stmts, \c Types,
/// \c NestedNameSpecifiers and \c CXXCtorInitializer by pointer as they are
/// guaranteed to be unique pointers pointing to dedicated storage in the AST.
/// \c QualTypes, \c NestedNameSpecifierLocs, \c TypeLocs and
/// \c TemplateArguments on the other hand do not have storage or unique
/// pointers and thus need to be stored by value.
typedef llvm::AlignedCharArrayUnion<
Decl *, Stmt *, Type *, NestedNameSpecifier *, CXXCtorInitializer *>
KindsByPointer;
llvm::AlignedCharArrayUnion<KindsByPointer, TemplateArgument,
NestedNameSpecifierLoc, QualType, TypeLoc>
Storage;
};
template <typename T>
struct DynTypedNode::BaseConverter<
T, typename std::enable_if<std::is_base_of<Decl, T>::value>::type>
: public DynCastPtrConverter<T, Decl> {};
template <typename T>
struct DynTypedNode::BaseConverter<
T, typename std::enable_if<std::is_base_of<Stmt, T>::value>::type>
: public DynCastPtrConverter<T, Stmt> {};
template <typename T>
struct DynTypedNode::BaseConverter<
T, typename std::enable_if<std::is_base_of<Type, T>::value>::type>
: public DynCastPtrConverter<T, Type> {};
template <>
struct DynTypedNode::BaseConverter<
NestedNameSpecifier, void> : public PtrConverter<NestedNameSpecifier> {};
template <>
struct DynTypedNode::BaseConverter<
CXXCtorInitializer, void> : public PtrConverter<CXXCtorInitializer> {};
template <>
struct DynTypedNode::BaseConverter<
TemplateArgument, void> : public ValueConverter<TemplateArgument> {};
template <>
struct DynTypedNode::BaseConverter<
NestedNameSpecifierLoc,
void> : public ValueConverter<NestedNameSpecifierLoc> {};
template <>
struct DynTypedNode::BaseConverter<QualType,
void> : public ValueConverter<QualType> {};
template <>
struct DynTypedNode::BaseConverter<
TypeLoc, void> : public ValueConverter<TypeLoc> {};
// The only operation we allow on unsupported types is \c get.
// This allows to conveniently use \c DynTypedNode when having an arbitrary
// AST node that is not supported, but prevents misuse - a user cannot create
// a DynTypedNode from arbitrary types.
template <typename T, typename EnablerT> struct DynTypedNode::BaseConverter {
static const T *get(ASTNodeKind NodeKind, const char Storage[]) {
return NULL;
}
};
} // end namespace ast_type_traits
} // end namespace clang
namespace llvm {
template <>
struct DenseMapInfo<clang::ast_type_traits::ASTNodeKind>
: clang::ast_type_traits::ASTNodeKind::DenseMapInfo {};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/AttrIterator.h | //===--- AttrIterator.h - Classes for attribute iteration -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Attr vector and specific_attr_iterator interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ATTRITERATOR_H
#define LLVM_CLANG_AST_ATTRITERATOR_H
#include "clang/Basic/LLVM.h"
#include <iterator>
namespace clang {
class ASTContext;
class Attr;
}
// Defined in ASTContext.h
void *operator new(size_t Bytes, const clang::ASTContext &C,
size_t Alignment = 8);
// FIXME: Being forced to not have a default argument here due to redeclaration
// rules on default arguments sucks
void *operator new[](size_t Bytes, const clang::ASTContext &C,
size_t Alignment);
// It is good practice to pair new/delete operators. Also, MSVC gives many
// warnings if a matching delete overload is not declared, even though the
// throw() spec guarantees it will not be implicitly called.
void operator delete(void *Ptr, const clang::ASTContext &C, size_t);
void operator delete[](void *Ptr, const clang::ASTContext &C, size_t);
namespace clang {
/// AttrVec - A vector of Attr, which is how they are stored on the AST.
typedef SmallVector<Attr*, 2> AttrVec;
typedef SmallVector<const Attr*, 2> ConstAttrVec;
/// specific_attr_iterator - Iterates over a subrange of an AttrVec, only
/// providing attributes that are of a specific type.
template <typename SpecificAttr, typename Container = AttrVec>
class specific_attr_iterator {
typedef typename Container::const_iterator Iterator;
/// Current - The current, underlying iterator.
/// In order to ensure we don't dereference an invalid iterator unless
/// specifically requested, we don't necessarily advance this all the
/// way. Instead, we advance it when an operation is requested; if the
/// operation is acting on what should be a past-the-end iterator,
/// then we offer no guarantees, but this way we do not dereference a
/// past-the-end iterator when we move to a past-the-end position.
mutable Iterator Current;
void AdvanceToNext() const {
while (!isa<SpecificAttr>(*Current))
++Current;
}
void AdvanceToNext(Iterator I) const {
while (Current != I && !isa<SpecificAttr>(*Current))
++Current;
}
public:
typedef SpecificAttr* value_type;
typedef SpecificAttr* reference;
typedef SpecificAttr* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
specific_attr_iterator() : Current() { }
explicit specific_attr_iterator(Iterator i) : Current(i) { }
reference operator*() const {
AdvanceToNext();
return cast<SpecificAttr>(*Current);
}
pointer operator->() const {
AdvanceToNext();
return cast<SpecificAttr>(*Current);
}
specific_attr_iterator& operator++() {
++Current;
return *this;
}
specific_attr_iterator operator++(int) {
specific_attr_iterator Tmp(*this);
++(*this);
return Tmp;
}
friend bool operator==(specific_attr_iterator Left,
specific_attr_iterator Right) {
assert((Left.Current == nullptr) == (Right.Current == nullptr));
if (Left.Current < Right.Current)
Left.AdvanceToNext(Right.Current);
else
Right.AdvanceToNext(Left.Current);
return Left.Current == Right.Current;
}
friend bool operator!=(specific_attr_iterator Left,
specific_attr_iterator Right) {
return !(Left == Right);
}
};
template <typename SpecificAttr, typename Container>
inline specific_attr_iterator<SpecificAttr, Container>
specific_attr_begin(const Container& container) {
return specific_attr_iterator<SpecificAttr, Container>(container.begin());
}
template <typename SpecificAttr, typename Container>
inline specific_attr_iterator<SpecificAttr, Container>
specific_attr_end(const Container& container) {
return specific_attr_iterator<SpecificAttr, Container>(container.end());
}
template <typename SpecificAttr, typename Container>
inline bool hasSpecificAttr(const Container& container) {
return specific_attr_begin<SpecificAttr>(container) !=
specific_attr_end<SpecificAttr>(container);
}
template <typename SpecificAttr, typename Container>
inline SpecificAttr *getSpecificAttr(const Container& container) {
specific_attr_iterator<SpecificAttr, Container> i =
specific_attr_begin<SpecificAttr>(container);
if (i != specific_attr_end<SpecificAttr>(container))
return *i;
else
return nullptr;
}
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TypeLocNodes.def | //===-- TypeLocNodes.def - Metadata about TypeLoc wrappers ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeLoc info database. Each node is
// enumerated by providing its core name (e.g., "Pointer" for "PointerTypeLoc")
// and base class (e.g., "DeclaratorLoc"). All nodes except QualifiedTypeLoc
// are associated
//
// TYPELOC(Class, Base) - A TypeLoc subclass. If UNQUAL_TYPELOC is
// provided, there will be exactly one of these, Qualified.
//
// UNQUAL_TYPELOC(Class, Base, Type) - An UnqualTypeLoc subclass.
//
// ABSTRACT_TYPELOC(Class) - Refers to TypeSpecLoc and DeclaratorLoc.
//
//===----------------------------------------------------------------------===//
#ifndef UNQUAL_TYPELOC
# define UNQUAL_TYPELOC(Class, Base) TYPELOC(Class, Base)
#endif
#ifndef ABSTRACT_TYPELOC
# define ABSTRACT_TYPELOC(Class, Base) UNQUAL_TYPELOC(Class, Base)
#endif
TYPELOC(Qualified, TypeLoc)
#define TYPE(Class, Base) UNQUAL_TYPELOC(Class, Base##Loc)
#define ABSTRACT_TYPE(Class, Base) ABSTRACT_TYPELOC(Class, Base##Loc)
#include "clang/AST/TypeNodes.def"
#undef DECLARATOR_TYPELOC
#undef TYPESPEC_TYPELOC
#undef ABSTRACT_TYPELOC
#undef UNQUAL_TYPELOC
#undef TYPELOC
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentLexer.h | //===--- CommentLexer.h - Lexer for structured comments ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines lexer for structured comments and supporting token class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTLEXER_H
#define LLVM_CLANG_AST_COMMENTLEXER_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
namespace clang {
namespace comments {
class Lexer;
class TextTokenRetokenizer;
struct CommandInfo;
class CommandTraits;
namespace tok {
enum TokenKind {
eof,
newline,
text,
unknown_command, // Command that does not have an ID.
backslash_command, // Command with an ID, that used backslash marker.
at_command, // Command with an ID, that used 'at' marker.
verbatim_block_begin,
verbatim_block_line,
verbatim_block_end,
verbatim_line_name,
verbatim_line_text,
html_start_tag, // <tag
html_ident, // attr
html_equals, // =
html_quoted_string, // "blah\"blah" or 'blah\'blah'
html_greater, // >
html_slash_greater, // />
html_end_tag // </tag
};
} // end namespace tok
/// \brief Comment token.
class Token {
friend class Lexer;
friend class TextTokenRetokenizer;
/// The location of the token.
SourceLocation Loc;
/// The actual kind of the token.
tok::TokenKind Kind;
/// Length of the token spelling in comment. Can be 0 for synthenized
/// tokens.
unsigned Length;
/// Contains text value associated with a token.
const char *TextPtr;
/// Integer value associated with a token.
///
/// If the token is a konwn command, contains command ID and TextPtr is
/// unused (command spelling can be found with CommandTraits). Otherwise,
/// contains the length of the string that starts at TextPtr.
unsigned IntVal;
public:
SourceLocation getLocation() const LLVM_READONLY { return Loc; }
void setLocation(SourceLocation SL) { Loc = SL; }
SourceLocation getEndLocation() const LLVM_READONLY {
if (Length == 0 || Length == 1)
return Loc;
return Loc.getLocWithOffset(Length - 1);
}
tok::TokenKind getKind() const LLVM_READONLY { return Kind; }
void setKind(tok::TokenKind K) { Kind = K; }
bool is(tok::TokenKind K) const LLVM_READONLY { return Kind == K; }
bool isNot(tok::TokenKind K) const LLVM_READONLY { return Kind != K; }
unsigned getLength() const LLVM_READONLY { return Length; }
void setLength(unsigned L) { Length = L; }
StringRef getText() const LLVM_READONLY {
assert(is(tok::text));
return StringRef(TextPtr, IntVal);
}
void setText(StringRef Text) {
assert(is(tok::text));
TextPtr = Text.data();
IntVal = Text.size();
}
StringRef getUnknownCommandName() const LLVM_READONLY {
assert(is(tok::unknown_command));
return StringRef(TextPtr, IntVal);
}
void setUnknownCommandName(StringRef Name) {
assert(is(tok::unknown_command));
TextPtr = Name.data();
IntVal = Name.size();
}
unsigned getCommandID() const LLVM_READONLY {
assert(is(tok::backslash_command) || is(tok::at_command));
return IntVal;
}
void setCommandID(unsigned ID) {
assert(is(tok::backslash_command) || is(tok::at_command));
IntVal = ID;
}
unsigned getVerbatimBlockID() const LLVM_READONLY {
assert(is(tok::verbatim_block_begin) || is(tok::verbatim_block_end));
return IntVal;
}
void setVerbatimBlockID(unsigned ID) {
assert(is(tok::verbatim_block_begin) || is(tok::verbatim_block_end));
IntVal = ID;
}
StringRef getVerbatimBlockText() const LLVM_READONLY {
assert(is(tok::verbatim_block_line));
return StringRef(TextPtr, IntVal);
}
void setVerbatimBlockText(StringRef Text) {
assert(is(tok::verbatim_block_line));
TextPtr = Text.data();
IntVal = Text.size();
}
unsigned getVerbatimLineID() const LLVM_READONLY {
assert(is(tok::verbatim_line_name));
return IntVal;
}
void setVerbatimLineID(unsigned ID) {
assert(is(tok::verbatim_line_name));
IntVal = ID;
}
StringRef getVerbatimLineText() const LLVM_READONLY {
assert(is(tok::verbatim_line_text));
return StringRef(TextPtr, IntVal);
}
void setVerbatimLineText(StringRef Text) {
assert(is(tok::verbatim_line_text));
TextPtr = Text.data();
IntVal = Text.size();
}
StringRef getHTMLTagStartName() const LLVM_READONLY {
assert(is(tok::html_start_tag));
return StringRef(TextPtr, IntVal);
}
void setHTMLTagStartName(StringRef Name) {
assert(is(tok::html_start_tag));
TextPtr = Name.data();
IntVal = Name.size();
}
StringRef getHTMLIdent() const LLVM_READONLY {
assert(is(tok::html_ident));
return StringRef(TextPtr, IntVal);
}
void setHTMLIdent(StringRef Name) {
assert(is(tok::html_ident));
TextPtr = Name.data();
IntVal = Name.size();
}
StringRef getHTMLQuotedString() const LLVM_READONLY {
assert(is(tok::html_quoted_string));
return StringRef(TextPtr, IntVal);
}
void setHTMLQuotedString(StringRef Str) {
assert(is(tok::html_quoted_string));
TextPtr = Str.data();
IntVal = Str.size();
}
StringRef getHTMLTagEndName() const LLVM_READONLY {
assert(is(tok::html_end_tag));
return StringRef(TextPtr, IntVal);
}
void setHTMLTagEndName(StringRef Name) {
assert(is(tok::html_end_tag));
TextPtr = Name.data();
IntVal = Name.size();
}
void dump(const Lexer &L, const SourceManager &SM) const;
};
/// \brief Comment lexer.
class Lexer {
private:
Lexer(const Lexer &) = delete;
void operator=(const Lexer &) = delete;
/// Allocator for strings that are semantic values of tokens and have to be
/// computed (for example, resolved decimal character references).
llvm::BumpPtrAllocator &Allocator;
DiagnosticsEngine &Diags;
const CommandTraits &Traits;
const char *const BufferStart;
const char *const BufferEnd;
SourceLocation FileLoc;
const char *BufferPtr;
/// One past end pointer for the current comment. For BCPL comments points
/// to newline or BufferEnd, for C comments points to star in '*/'.
const char *CommentEnd;
enum LexerCommentState {
LCS_BeforeComment,
LCS_InsideBCPLComment,
LCS_InsideCComment,
LCS_BetweenComments
};
/// Low-level lexer state, track if we are inside or outside of comment.
LexerCommentState CommentState;
enum LexerState {
/// Lexing normal comment text
LS_Normal,
/// Finished lexing verbatim block beginning command, will lex first body
/// line.
LS_VerbatimBlockFirstLine,
/// Lexing verbatim block body line-by-line, skipping line-starting
/// decorations.
LS_VerbatimBlockBody,
/// Finished lexing verbatim line beginning command, will lex text (one
/// line).
LS_VerbatimLineText,
/// Finished lexing \verbatim <TAG \endverbatim part, lexing tag attributes.
LS_HTMLStartTag,
/// Finished lexing \verbatim </TAG \endverbatim part, lexing '>'.
LS_HTMLEndTag
};
/// Current lexing mode.
LexerState State;
/// If State is LS_VerbatimBlock, contains the name of verbatim end
/// command, including command marker.
SmallString<16> VerbatimBlockEndCommandName;
/// Given a character reference name (e.g., "lt"), return the character that
/// it stands for (e.g., "<").
StringRef resolveHTMLNamedCharacterReference(StringRef Name) const;
/// Given a Unicode codepoint as base-10 integer, return the character.
StringRef resolveHTMLDecimalCharacterReference(StringRef Name) const;
/// Given a Unicode codepoint as base-16 integer, return the character.
StringRef resolveHTMLHexCharacterReference(StringRef Name) const;
void formTokenWithChars(Token &Result, const char *TokEnd,
tok::TokenKind Kind);
void formTextToken(Token &Result, const char *TokEnd) {
StringRef Text(BufferPtr, TokEnd - BufferPtr);
formTokenWithChars(Result, TokEnd, tok::text);
Result.setText(Text);
}
SourceLocation getSourceLocation(const char *Loc) const {
assert(Loc >= BufferStart && Loc <= BufferEnd &&
"Location out of range for this buffer!");
const unsigned CharNo = Loc - BufferStart;
return FileLoc.getLocWithOffset(CharNo);
}
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(Loc, DiagID);
}
/// Eat string matching regexp \code \s*\* \endcode.
void skipLineStartingDecorations();
/// Lex stuff inside comments. CommentEnd should be set correctly.
void lexCommentText(Token &T);
void setupAndLexVerbatimBlock(Token &T,
const char *TextBegin,
char Marker, const CommandInfo *Info);
void lexVerbatimBlockFirstLine(Token &T);
void lexVerbatimBlockBody(Token &T);
void setupAndLexVerbatimLine(Token &T, const char *TextBegin,
const CommandInfo *Info);
void lexVerbatimLineText(Token &T);
void lexHTMLCharacterReference(Token &T);
void setupAndLexHTMLStartTag(Token &T);
void lexHTMLStartTag(Token &T);
void setupAndLexHTMLEndTag(Token &T);
void lexHTMLEndTag(Token &T);
public:
Lexer(llvm::BumpPtrAllocator &Allocator, DiagnosticsEngine &Diags,
const CommandTraits &Traits,
SourceLocation FileLoc,
const char *BufferStart, const char *BufferEnd);
void lex(Token &T);
StringRef getSpelling(const Token &Tok,
const SourceManager &SourceMgr,
bool *Invalid = nullptr) const;
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTUnresolvedSet.h | //===-- ASTUnresolvedSet.h - Unresolved sets of declarations ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides an UnresolvedSet-like class, whose contents are
// allocated using the allocator associated with an ASTContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTUNRESOLVEDSET_H
#define LLVM_CLANG_AST_ASTUNRESOLVEDSET_H
#include "clang/AST/ASTVector.h"
#include "clang/AST/UnresolvedSet.h"
namespace clang {
/// \brief An UnresolvedSet-like class which uses the ASTContext's allocator.
class ASTUnresolvedSet {
struct DeclsTy : ASTVector<DeclAccessPair> {
DeclsTy() {}
DeclsTy(ASTContext &C, unsigned N) : ASTVector<DeclAccessPair>(C, N) {}
bool isLazy() const { return getTag(); }
void setLazy(bool Lazy) { setTag(Lazy); }
};
DeclsTy Decls;
friend class LazyASTUnresolvedSet;
public:
ASTUnresolvedSet() {}
ASTUnresolvedSet(ASTContext &C, unsigned N) : Decls(C, N) {}
typedef UnresolvedSetIterator iterator;
typedef UnresolvedSetIterator const_iterator;
iterator begin() { return iterator(Decls.begin()); }
iterator end() { return iterator(Decls.end()); }
const_iterator begin() const { return const_iterator(Decls.begin()); }
const_iterator end() const { return const_iterator(Decls.end()); }
void addDecl(ASTContext &C, NamedDecl *D, AccessSpecifier AS) {
Decls.push_back(DeclAccessPair::make(D, AS), C);
}
/// Replaces the given declaration with the new one, once.
///
/// \return true if the set changed
bool replace(const NamedDecl *Old, NamedDecl *New, AccessSpecifier AS) {
for (DeclsTy::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) {
if (I->getDecl() == Old) {
I->set(New, AS);
return true;
}
}
return false;
}
void erase(unsigned I) { Decls[I] = Decls.pop_back_val(); }
void clear() { Decls.clear(); }
bool empty() const { return Decls.empty(); }
unsigned size() const { return Decls.size(); }
void reserve(ASTContext &C, unsigned N) {
Decls.reserve(C, N);
}
void append(ASTContext &C, iterator I, iterator E) {
Decls.append(C, I.I, E.I);
}
DeclAccessPair &operator[](unsigned I) { return Decls[I]; }
const DeclAccessPair &operator[](unsigned I) const { return Decls[I]; }
};
/// \brief An UnresolvedSet-like class that might not have been loaded from the
/// external AST source yet.
class LazyASTUnresolvedSet {
mutable ASTUnresolvedSet Impl;
void getFromExternalSource(ASTContext &C) const;
public:
ASTUnresolvedSet &get(ASTContext &C) const {
if (Impl.Decls.isLazy())
getFromExternalSource(C);
return Impl;
}
void reserve(ASTContext &C, unsigned N) { Impl.reserve(C, N); }
void addLazyDecl(ASTContext &C, uintptr_t ID, AccessSpecifier AS) {
assert(Impl.empty() || Impl.Decls.isLazy());
Impl.Decls.setLazy(true);
Impl.addDecl(C, reinterpret_cast<NamedDecl*>(ID << 2), AS);
}
};
} // namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TypeNodes.def | //===-- TypeNodes.def - Metadata about Type AST nodes -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the AST type info database. Each type node is
// enumerated by providing its name (e.g., "Builtin" or "Enum") and
// base class (e.g., "Type" or "TagType"). Depending on where in the
// abstract syntax tree the type will show up, the enumeration uses
// one of five different macros:
//
// TYPE(Class, Base) - A type that can show up anywhere in the AST,
// and might be dependent, canonical, or non-canonical. All clients
// will need to understand these types.
//
// ABSTRACT_TYPE(Class, Base) - An abstract class that shows up in
// the type hierarchy but has no concrete instances.
//
// NON_CANONICAL_TYPE(Class, Base) - A type that can show up
// anywhere in the AST but will never be a part of a canonical
// type. Clients that only need to deal with canonical types
// (ignoring, e.g., typedefs and other type alises used for
// pretty-printing) can ignore these types.
//
// DEPENDENT_TYPE(Class, Base) - A type that will only show up
// within a C++ template that has not been instantiated, e.g., a
// type that is always dependent. Clients that do not need to deal
// with uninstantiated C++ templates can ignore these types.
//
// NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) - A type that
// is non-canonical unless it is dependent. Defaults to TYPE because
// it is neither reliably dependent nor reliably non-canonical.
//
// There is a sixth macro, independent of the others. Most clients
// will not need to use it.
//
// LEAF_TYPE(Class) - A type that never has inner types. Clients
// which can operate on such types more efficiently may wish to do so.
//
//===----------------------------------------------------------------------===//
#ifndef ABSTRACT_TYPE
# define ABSTRACT_TYPE(Class, Base) TYPE(Class, Base)
#endif
#ifndef NON_CANONICAL_TYPE
# define NON_CANONICAL_TYPE(Class, Base) TYPE(Class, Base)
#endif
#ifndef DEPENDENT_TYPE
# define DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
#endif
#ifndef NON_CANONICAL_UNLESS_DEPENDENT_TYPE
# define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
#endif
TYPE(Builtin, Type)
TYPE(Complex, Type)
TYPE(Pointer, Type)
TYPE(BlockPointer, Type)
ABSTRACT_TYPE(Reference, Type)
TYPE(LValueReference, ReferenceType)
TYPE(RValueReference, ReferenceType)
TYPE(MemberPointer, Type)
ABSTRACT_TYPE(Array, Type)
TYPE(ConstantArray, ArrayType)
TYPE(IncompleteArray, ArrayType)
TYPE(VariableArray, ArrayType)
DEPENDENT_TYPE(DependentSizedArray, ArrayType)
DEPENDENT_TYPE(DependentSizedExtVector, Type)
TYPE(Vector, Type)
TYPE(ExtVector, VectorType)
ABSTRACT_TYPE(Function, Type)
TYPE(FunctionProto, FunctionType)
TYPE(FunctionNoProto, FunctionType)
DEPENDENT_TYPE(UnresolvedUsing, Type)
NON_CANONICAL_TYPE(Paren, Type)
NON_CANONICAL_TYPE(Typedef, Type)
NON_CANONICAL_TYPE(Adjusted, Type)
NON_CANONICAL_TYPE(Decayed, AdjustedType)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOfExpr, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOf, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Decltype, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(UnaryTransform, Type)
ABSTRACT_TYPE(Tag, Type)
TYPE(Record, TagType)
TYPE(Enum, TagType)
NON_CANONICAL_TYPE(Elaborated, Type)
NON_CANONICAL_TYPE(Attributed, Type)
DEPENDENT_TYPE(TemplateTypeParm, Type)
NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
TYPE(Auto, Type)
DEPENDENT_TYPE(InjectedClassName, Type)
DEPENDENT_TYPE(DependentName, Type)
DEPENDENT_TYPE(DependentTemplateSpecialization, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(PackExpansion, Type)
TYPE(ObjCObject, Type)
TYPE(ObjCInterface, ObjCObjectType)
TYPE(ObjCObjectPointer, Type)
TYPE(Atomic, Type)
#ifdef LAST_TYPE
LAST_TYPE(Atomic)
#undef LAST_TYPE
#endif
// These types are always leaves in the type hierarchy.
#ifdef LEAF_TYPE
LEAF_TYPE(Enum)
LEAF_TYPE(Builtin)
LEAF_TYPE(Record)
LEAF_TYPE(InjectedClassName)
LEAF_TYPE(ObjCInterface)
LEAF_TYPE(TemplateTypeParm)
#undef LEAF_TYPE
#endif
#undef NON_CANONICAL_UNLESS_DEPENDENT_TYPE
#undef DEPENDENT_TYPE
#undef NON_CANONICAL_TYPE
#undef ABSTRACT_TYPE
#undef TYPE
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/RawCommentList.h | //===--- RawCommentList.h - Classes for processing raw comments -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_RAWCOMMENTLIST_H
#define LLVM_CLANG_AST_RAWCOMMENTLIST_H
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/ArrayRef.h"
namespace clang {
class ASTContext;
class ASTReader;
class Decl;
class Preprocessor;
namespace comments {
class FullComment;
} // end namespace comments
class RawComment {
public:
enum CommentKind {
RCK_Invalid, ///< Invalid comment
RCK_OrdinaryBCPL, ///< Any normal BCPL comments
RCK_OrdinaryC, ///< Any normal C comment
RCK_BCPLSlash, ///< \code /// stuff \endcode
RCK_BCPLExcl, ///< \code //! stuff \endcode
RCK_JavaDoc, ///< \code /** stuff */ \endcode
RCK_Qt, ///< \code /*! stuff */ \endcode, also used by HeaderDoc
RCK_Merged ///< Two or more documentation comments merged together
};
RawComment() : Kind(RCK_Invalid), IsAlmostTrailingComment(false) { }
RawComment(const SourceManager &SourceMgr, SourceRange SR,
bool Merged, bool ParseAllComments);
CommentKind getKind() const LLVM_READONLY {
return (CommentKind) Kind;
}
bool isInvalid() const LLVM_READONLY {
return Kind == RCK_Invalid;
}
bool isMerged() const LLVM_READONLY {
return Kind == RCK_Merged;
}
/// Is this comment attached to any declaration?
bool isAttached() const LLVM_READONLY {
return IsAttached;
}
void setAttached() {
IsAttached = true;
}
/// Returns true if it is a comment that should be put after a member:
/// \code ///< stuff \endcode
/// \code //!< stuff \endcode
/// \code /**< stuff */ \endcode
/// \code /*!< stuff */ \endcode
bool isTrailingComment() const LLVM_READONLY {
assert(isDocumentation());
return IsTrailingComment;
}
/// Returns true if it is a probable typo:
/// \code //< stuff \endcode
/// \code /*< stuff */ \endcode
bool isAlmostTrailingComment() const LLVM_READONLY {
return IsAlmostTrailingComment;
}
/// Returns true if this comment is not a documentation comment.
bool isOrdinary() const LLVM_READONLY {
return ((Kind == RCK_OrdinaryBCPL) || (Kind == RCK_OrdinaryC)) &&
!ParseAllComments;
}
/// Returns true if this comment any kind of a documentation comment.
bool isDocumentation() const LLVM_READONLY {
return !isInvalid() && !isOrdinary();
}
/// Returns whether we are parsing all comments.
bool isParseAllComments() const LLVM_READONLY {
return ParseAllComments;
}
/// Returns raw comment text with comment markers.
StringRef getRawText(const SourceManager &SourceMgr) const {
if (RawTextValid)
return RawText;
RawText = getRawTextSlow(SourceMgr);
RawTextValid = true;
return RawText;
}
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
const char *getBriefText(const ASTContext &Context) const {
if (BriefTextValid)
return BriefText;
return extractBriefText(Context);
}
/// Parse the comment, assuming it is attached to decl \c D.
comments::FullComment *parse(const ASTContext &Context,
const Preprocessor *PP, const Decl *D) const;
private:
SourceRange Range;
mutable StringRef RawText;
mutable const char *BriefText;
mutable bool RawTextValid : 1; ///< True if RawText is valid
mutable bool BriefTextValid : 1; ///< True if BriefText is valid
unsigned Kind : 3;
/// True if comment is attached to a declaration in ASTContext.
bool IsAttached : 1;
bool IsTrailingComment : 1;
bool IsAlmostTrailingComment : 1;
/// When true, ordinary comments starting with "//" and "/*" will be
/// considered as documentation comments.
bool ParseAllComments : 1;
/// \brief Constructor for AST deserialization.
RawComment(SourceRange SR, CommentKind K, bool IsTrailingComment,
bool IsAlmostTrailingComment,
bool ParseAllComments) :
Range(SR), RawTextValid(false), BriefTextValid(false), Kind(K),
IsAttached(false), IsTrailingComment(IsTrailingComment),
IsAlmostTrailingComment(IsAlmostTrailingComment),
ParseAllComments(ParseAllComments)
{ }
StringRef getRawTextSlow(const SourceManager &SourceMgr) const;
const char *extractBriefText(const ASTContext &Context) const;
friend class ASTReader;
};
/// \brief Compare comments' source locations.
template<>
class BeforeThanCompare<RawComment> {
const SourceManager &SM;
public:
explicit BeforeThanCompare(const SourceManager &SM) : SM(SM) { }
bool operator()(const RawComment &LHS, const RawComment &RHS) {
return SM.isBeforeInTranslationUnit(LHS.getLocStart(), RHS.getLocStart());
}
bool operator()(const RawComment *LHS, const RawComment *RHS) {
return operator()(*LHS, *RHS);
}
};
/// \brief This class represents all comments included in the translation unit,
/// sorted in order of appearance in the translation unit.
class RawCommentList {
public:
RawCommentList(SourceManager &SourceMgr) : SourceMgr(SourceMgr) {}
void addComment(const RawComment &RC, llvm::BumpPtrAllocator &Allocator);
ArrayRef<RawComment *> getComments() const {
return Comments;
}
private:
SourceManager &SourceMgr;
std::vector<RawComment *> Comments;
void addDeserializedComments(ArrayRef<RawComment *> DeserializedComments);
friend class ASTReader;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentParser.h | //===--- CommentParser.h - Doxygen comment parser ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Doxygen comment parser.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTPARSER_H
#define LLVM_CLANG_AST_COMMENTPARSER_H
#include "clang/AST/Comment.h"
#include "clang/AST/CommentLexer.h"
#include "clang/AST/CommentSema.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/Support/Allocator.h"
namespace clang {
class SourceManager;
namespace comments {
class CommandTraits;
/// Doxygen comment parser.
class Parser {
Parser(const Parser &) = delete;
void operator=(const Parser &) = delete;
friend class TextTokenRetokenizer;
Lexer &L;
Sema &S;
/// Allocator for anything that goes into AST nodes.
llvm::BumpPtrAllocator &Allocator;
/// Source manager for the comment being parsed.
const SourceManager &SourceMgr;
DiagnosticsEngine &Diags;
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(Loc, DiagID);
}
const CommandTraits &Traits;
/// Current lookahead token. We can safely assume that all tokens are from
/// a single source file.
Token Tok;
/// A stack of additional lookahead tokens.
SmallVector<Token, 8> MoreLATokens;
void consumeToken() {
if (MoreLATokens.empty())
L.lex(Tok);
else
Tok = MoreLATokens.pop_back_val();
}
void putBack(const Token &OldTok) {
MoreLATokens.push_back(Tok);
Tok = OldTok;
}
void putBack(ArrayRef<Token> Toks) {
if (Toks.empty())
return;
MoreLATokens.push_back(Tok);
MoreLATokens.append(Toks.rbegin(), std::prev(Toks.rend()));
Tok = Toks[0];
}
bool isTokBlockCommand() {
return (Tok.is(tok::backslash_command) || Tok.is(tok::at_command)) &&
Traits.getCommandInfo(Tok.getCommandID())->IsBlockCommand;
}
public:
Parser(Lexer &L, Sema &S, llvm::BumpPtrAllocator &Allocator,
const SourceManager &SourceMgr, DiagnosticsEngine &Diags,
const CommandTraits &Traits);
/// Parse arguments for \\param command.
void parseParamCommandArgs(ParamCommandComment *PC,
TextTokenRetokenizer &Retokenizer);
/// Parse arguments for \\tparam command.
void parseTParamCommandArgs(TParamCommandComment *TPC,
TextTokenRetokenizer &Retokenizer);
void parseBlockCommandArgs(BlockCommandComment *BC,
TextTokenRetokenizer &Retokenizer,
unsigned NumArgs);
BlockCommandComment *parseBlockCommand();
InlineCommandComment *parseInlineCommand();
HTMLStartTagComment *parseHTMLStartTag();
HTMLEndTagComment *parseHTMLEndTag();
BlockContentComment *parseParagraphOrBlockCommand();
VerbatimBlockComment *parseVerbatimBlock();
VerbatimLineComment *parseVerbatimLine();
BlockContentComment *parseBlockContent();
FullComment *parseFullComment();
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/NestedNameSpecifier.h | //===--- NestedNameSpecifier.h - C++ nested name specifiers -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the NestedNameSpecifier class, which represents
// a C++ nested-name-specifier.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_NESTEDNAMESPECIFIER_H
#define LLVM_CLANG_AST_NESTEDNAMESPECIFIER_H
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class ASTContext;
class CXXRecordDecl;
class NamespaceAliasDecl;
class NamespaceDecl;
class IdentifierInfo;
struct PrintingPolicy;
class Type;
class TypeLoc;
class LangOptions;
/// \brief Represents a C++ nested name specifier, such as
/// "\::std::vector<int>::".
///
/// C++ nested name specifiers are the prefixes to qualified
/// namespaces. For example, "foo::" in "foo::x" is a nested name
/// specifier. Nested name specifiers are made up of a sequence of
/// specifiers, each of which can be a namespace, type, identifier
/// (for dependent names), decltype specifier, or the global specifier ('::').
/// The last two specifiers can only appear at the start of a
/// nested-namespace-specifier.
class NestedNameSpecifier : public llvm::FoldingSetNode {
/// \brief Enumeration describing
enum StoredSpecifierKind {
StoredIdentifier = 0,
StoredDecl = 1,
StoredTypeSpec = 2,
StoredTypeSpecWithTemplate = 3
};
/// \brief The nested name specifier that precedes this nested name
/// specifier.
///
/// The pointer is the nested-name-specifier that precedes this
/// one. The integer stores one of the first four values of type
/// SpecifierKind.
llvm::PointerIntPair<NestedNameSpecifier *, 2, StoredSpecifierKind> Prefix;
/// \brief The last component in the nested name specifier, which
/// can be an identifier, a declaration, or a type.
///
/// When the pointer is NULL, this specifier represents the global
/// specifier '::'. Otherwise, the pointer is one of
/// IdentifierInfo*, Namespace*, or Type*, depending on the kind of
/// specifier as encoded within the prefix.
void* Specifier;
public:
/// \brief The kind of specifier that completes this nested name
/// specifier.
enum SpecifierKind {
/// \brief An identifier, stored as an IdentifierInfo*.
Identifier,
/// \brief A namespace, stored as a NamespaceDecl*.
Namespace,
/// \brief A namespace alias, stored as a NamespaceAliasDecl*.
NamespaceAlias,
/// \brief A type, stored as a Type*.
TypeSpec,
/// \brief A type that was preceded by the 'template' keyword,
/// stored as a Type*.
TypeSpecWithTemplate,
/// \brief The global specifier '::'. There is no stored value.
Global,
/// \brief Microsoft's '__super' specifier, stored as a CXXRecordDecl* of
/// the class it appeared in.
Super
};
private:
/// \brief Builds the global specifier.
NestedNameSpecifier()
: Prefix(nullptr, StoredIdentifier), Specifier(nullptr) {}
/// \brief Copy constructor used internally to clone nested name
/// specifiers.
NestedNameSpecifier(const NestedNameSpecifier &Other)
: llvm::FoldingSetNode(Other), Prefix(Other.Prefix),
Specifier(Other.Specifier) {
}
void operator=(const NestedNameSpecifier &) = delete;
/// \brief Either find or insert the given nested name specifier
/// mockup in the given context.
static NestedNameSpecifier *FindOrInsert(const ASTContext &Context,
const NestedNameSpecifier &Mockup);
public:
/// \brief Builds a specifier combining a prefix and an identifier.
///
/// The prefix must be dependent, since nested name specifiers
/// referencing an identifier are only permitted when the identifier
/// cannot be resolved.
static NestedNameSpecifier *Create(const ASTContext &Context,
NestedNameSpecifier *Prefix,
IdentifierInfo *II);
/// \brief Builds a nested name specifier that names a namespace.
static NestedNameSpecifier *Create(const ASTContext &Context,
NestedNameSpecifier *Prefix,
const NamespaceDecl *NS);
/// \brief Builds a nested name specifier that names a namespace alias.
static NestedNameSpecifier *Create(const ASTContext &Context,
NestedNameSpecifier *Prefix,
NamespaceAliasDecl *Alias);
/// \brief Builds a nested name specifier that names a type.
static NestedNameSpecifier *Create(const ASTContext &Context,
NestedNameSpecifier *Prefix,
bool Template, const Type *T);
/// \brief Builds a specifier that consists of just an identifier.
///
/// The nested-name-specifier is assumed to be dependent, but has no
/// prefix because the prefix is implied by something outside of the
/// nested name specifier, e.g., in "x->Base::f", the "x" has a dependent
/// type.
static NestedNameSpecifier *Create(const ASTContext &Context,
IdentifierInfo *II);
/// \brief Returns the nested name specifier representing the global
/// scope.
static NestedNameSpecifier *GlobalSpecifier(const ASTContext &Context);
/// \brief Returns the nested name specifier representing the __super scope
/// for the given CXXRecordDecl.
static NestedNameSpecifier *SuperSpecifier(const ASTContext &Context,
CXXRecordDecl *RD);
/// \brief Return the prefix of this nested name specifier.
///
/// The prefix contains all of the parts of the nested name
/// specifier that preced this current specifier. For example, for a
/// nested name specifier that represents "foo::bar::", the current
/// specifier will contain "bar::" and the prefix will contain
/// "foo::".
NestedNameSpecifier *getPrefix() const { return Prefix.getPointer(); }
/// \brief Determine what kind of nested name specifier is stored.
SpecifierKind getKind() const;
/// \brief Retrieve the identifier stored in this nested name
/// specifier.
IdentifierInfo *getAsIdentifier() const {
if (Prefix.getInt() == StoredIdentifier)
return (IdentifierInfo *)Specifier;
return nullptr;
}
/// \brief Retrieve the namespace stored in this nested name
/// specifier.
NamespaceDecl *getAsNamespace() const;
/// \brief Retrieve the namespace alias stored in this nested name
/// specifier.
NamespaceAliasDecl *getAsNamespaceAlias() const;
/// \brief Retrieve the record declaration stored in this nested name
/// specifier.
CXXRecordDecl *getAsRecordDecl() const;
/// \brief Retrieve the type stored in this nested name specifier.
const Type *getAsType() const {
if (Prefix.getInt() == StoredTypeSpec ||
Prefix.getInt() == StoredTypeSpecWithTemplate)
return (const Type *)Specifier;
return nullptr;
}
/// \brief Whether this nested name specifier refers to a dependent
/// type or not.
bool isDependent() const;
/// \brief Whether this nested name specifier involves a template
/// parameter.
bool isInstantiationDependent() const;
/// \brief Whether this nested-name-specifier contains an unexpanded
/// parameter pack (for C++11 variadic templates).
bool containsUnexpandedParameterPack() const;
/// \brief Print this nested name specifier to the given output
/// stream.
void print(raw_ostream &OS, const PrintingPolicy &Policy) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(Prefix.getOpaqueValue());
ID.AddPointer(Specifier);
}
/// \brief Dump the nested name specifier to standard output to aid
/// in debugging.
void dump(const LangOptions &LO);
};
/// \brief A C++ nested-name-specifier augmented with source location
/// information.
class NestedNameSpecifierLoc {
NestedNameSpecifier *Qualifier;
void *Data;
/// \brief Determines the data length for the last component in the
/// given nested-name-specifier.
static unsigned getLocalDataLength(NestedNameSpecifier *Qualifier);
/// \brief Determines the data length for the entire
/// nested-name-specifier.
static unsigned getDataLength(NestedNameSpecifier *Qualifier);
public:
/// \brief Construct an empty nested-name-specifier.
NestedNameSpecifierLoc() : Qualifier(nullptr), Data(nullptr) { }
/// \brief Construct a nested-name-specifier with source location information
/// from
NestedNameSpecifierLoc(NestedNameSpecifier *Qualifier, void *Data)
: Qualifier(Qualifier), Data(Data) { }
/// \brief Evalutes true when this nested-name-specifier location is
/// non-empty.
explicit operator bool() const { return Qualifier; }
/// \brief Evalutes true when this nested-name-specifier location is
/// empty.
bool hasQualifier() const { return Qualifier; }
/// \brief Retrieve the nested-name-specifier to which this instance
/// refers.
NestedNameSpecifier *getNestedNameSpecifier() const {
return Qualifier;
}
/// \brief Retrieve the opaque pointer that refers to source-location data.
void *getOpaqueData() const { return Data; }
/// \brief Retrieve the source range covering the entirety of this
/// nested-name-specifier.
///
/// For example, if this instance refers to a nested-name-specifier
/// \c \::std::vector<int>::, the returned source range would cover
/// from the initial '::' to the last '::'.
SourceRange getSourceRange() const LLVM_READONLY;
/// \brief Retrieve the source range covering just the last part of
/// this nested-name-specifier, not including the prefix.
///
/// For example, if this instance refers to a nested-name-specifier
/// \c \::std::vector<int>::, the returned source range would cover
/// from "vector" to the last '::'.
SourceRange getLocalSourceRange() const;
/// \brief Retrieve the location of the beginning of this
/// nested-name-specifier.
SourceLocation getBeginLoc() const {
return getSourceRange().getBegin();
}
/// \brief Retrieve the location of the end of this
/// nested-name-specifier.
SourceLocation getEndLoc() const {
return getSourceRange().getEnd();
}
/// \brief Retrieve the location of the beginning of this
/// component of the nested-name-specifier.
SourceLocation getLocalBeginLoc() const {
return getLocalSourceRange().getBegin();
}
/// \brief Retrieve the location of the end of this component of the
/// nested-name-specifier.
SourceLocation getLocalEndLoc() const {
return getLocalSourceRange().getEnd();
}
/// \brief Return the prefix of this nested-name-specifier.
///
/// For example, if this instance refers to a nested-name-specifier
/// \c \::std::vector<int>::, the prefix is \c \::std::. Note that the
/// returned prefix may be empty, if this is the first component of
/// the nested-name-specifier.
NestedNameSpecifierLoc getPrefix() const {
if (!Qualifier)
return *this;
return NestedNameSpecifierLoc(Qualifier->getPrefix(), Data);
}
/// \brief For a nested-name-specifier that refers to a type,
/// retrieve the type with source-location information.
TypeLoc getTypeLoc() const;
/// \brief Determines the data length for the entire
/// nested-name-specifier.
unsigned getDataLength() const { return getDataLength(Qualifier); }
friend bool operator==(NestedNameSpecifierLoc X,
NestedNameSpecifierLoc Y) {
return X.Qualifier == Y.Qualifier && X.Data == Y.Data;
}
friend bool operator!=(NestedNameSpecifierLoc X,
NestedNameSpecifierLoc Y) {
return !(X == Y);
}
};
/// \brief Class that aids in the construction of nested-name-specifiers along
/// with source-location information for all of the components of the
/// nested-name-specifier.
class NestedNameSpecifierLocBuilder {
/// \brief The current representation of the nested-name-specifier we're
/// building.
NestedNameSpecifier *Representation;
/// \brief Buffer used to store source-location information for the
/// nested-name-specifier.
///
/// Note that we explicitly manage the buffer (rather than using a
/// SmallVector) because \c Declarator expects it to be possible to memcpy()
/// a \c CXXScopeSpec, and CXXScopeSpec uses a NestedNameSpecifierLocBuilder.
char *Buffer;
/// \brief The size of the buffer used to store source-location information
/// for the nested-name-specifier.
unsigned BufferSize;
/// \brief The capacity of the buffer used to store source-location
/// information for the nested-name-specifier.
unsigned BufferCapacity;
public:
NestedNameSpecifierLocBuilder()
: Representation(nullptr), Buffer(nullptr), BufferSize(0),
BufferCapacity(0) {}
NestedNameSpecifierLocBuilder(const NestedNameSpecifierLocBuilder &Other);
NestedNameSpecifierLocBuilder &
operator=(const NestedNameSpecifierLocBuilder &Other);
~NestedNameSpecifierLocBuilder() {
if (BufferCapacity)
delete[] Buffer;
}
/// \brief Retrieve the representation of the nested-name-specifier.
NestedNameSpecifier *getRepresentation() const { return Representation; }
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'type::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param TemplateKWLoc The location of the 'template' keyword, if present.
///
/// \param TL The TypeLoc that describes the type preceding the '::'.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'identifier::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Identifier The identifier.
///
/// \param IdentifierLoc The location of the identifier.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, IdentifierInfo *Identifier,
SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Namespace The namespace.
///
/// \param NamespaceLoc The location of the namespace name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceDecl *Namespace,
SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace-alias::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Alias The namespace alias.
///
/// \param AliasLoc The location of the namespace alias
/// name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
SourceLocation AliasLoc, SourceLocation ColonColonLoc);
/// \brief Turn this (empty) nested-name-specifier into the global
/// nested-name-specifier '::'.
void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
/// \brief Turns this (empty) nested-name-specifier into '__super'
/// nested-name-specifier.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param RD The declaration of the class in which nested-name-specifier
/// appeared.
///
/// \param SuperLoc The location of the '__super' keyword.
/// name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
SourceLocation SuperLoc, SourceLocation ColonColonLoc);
/// \brief Make a new nested-name-specifier from incomplete source-location
/// information.
///
/// This routine should be used very, very rarely, in cases where we
/// need to synthesize a nested-name-specifier. Most code should instead use
/// \c Adopt() with a proper \c NestedNameSpecifierLoc.
void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
SourceRange R);
/// \brief Adopt an existing nested-name-specifier (with source-range
/// information).
void Adopt(NestedNameSpecifierLoc Other);
/// \brief Retrieve the source range covered by this nested-name-specifier.
SourceRange getSourceRange() const LLVM_READONLY {
return NestedNameSpecifierLoc(Representation, Buffer).getSourceRange();
}
/// \brief Retrieve a nested-name-specifier with location information,
/// copied into the given AST context.
///
/// \param Context The context into which this nested-name-specifier will be
/// copied.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
/// \brief Retrieve a nested-name-specifier with location
/// information based on the information in this builder.
///
/// This loc will contain references to the builder's internal data and may
/// be invalidated by any change to the builder.
NestedNameSpecifierLoc getTemporary() const {
return NestedNameSpecifierLoc(Representation, Buffer);
}
/// \brief Clear out this builder, and prepare it to build another
/// nested-name-specifier with source-location information.
void Clear() {
Representation = nullptr;
BufferSize = 0;
}
/// \brief Retrieve the underlying buffer.
///
/// \returns A pair containing a pointer to the buffer of source-location
/// data and the size of the source-location data that resides in that
/// buffer.
std::pair<char *, unsigned> getBuffer() const {
return std::make_pair(Buffer, BufferSize);
}
};
/// Insertion operator for diagnostics. This allows sending
/// NestedNameSpecifiers into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
NestedNameSpecifier *NNS) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(NNS),
DiagnosticsEngine::ak_nestednamespec);
return DB;
}
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CanonicalType.h | //===-- CanonicalType.h - C Language Family Type Representation -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CanQual class template, which provides access to
// canonical types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_CANONICALTYPE_H
#define LLVM_CLANG_AST_CANONICALTYPE_H
#include "clang/AST/Type.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Casting.h"
namespace clang {
template<typename T> class CanProxy;
template<typename T> struct CanProxyAdaptor;
//----------------------------------------------------------------------------//
// Canonical, qualified type template
//----------------------------------------------------------------------------//
/// \brief Represents a canonical, potentially-qualified type.
///
/// The CanQual template is a lightweight smart pointer that provides access
/// to the canonical representation of a type, where all typedefs and other
/// syntactic sugar has been eliminated. A CanQualType may also have various
/// qualifiers (const, volatile, restrict) attached to it.
///
/// The template type parameter @p T is one of the Type classes (PointerType,
/// BuiltinType, etc.). The type stored within @c CanQual<T> will be of that
/// type (or some subclass of that type). The typedef @c CanQualType is just
/// a shorthand for @c CanQual<Type>.
///
/// An instance of @c CanQual<T> can be implicitly converted to a
/// @c CanQual<U> when T is derived from U, which essentially provides an
/// implicit upcast. For example, @c CanQual<LValueReferenceType> can be
/// converted to @c CanQual<ReferenceType>. Note that any @c CanQual type can
/// be implicitly converted to a QualType, but the reverse operation requires
/// a call to ASTContext::getCanonicalType().
///
///
template<typename T = Type>
class CanQual {
/// \brief The actual, canonical type.
QualType Stored;
public:
/// \brief Constructs a NULL canonical type.
CanQual() : Stored() { }
/// \brief Converting constructor that permits implicit upcasting of
/// canonical type pointers.
template <typename U>
CanQual(const CanQual<U> &Other,
typename std::enable_if<std::is_base_of<T, U>::value, int>::type = 0);
/// \brief Retrieve the underlying type pointer, which refers to a
/// canonical type.
///
/// The underlying pointer must not be NULL.
const T *getTypePtr() const { return cast<T>(Stored.getTypePtr()); }
/// \brief Retrieve the underlying type pointer, which refers to a
/// canonical type, or NULL.
///
const T *getTypePtrOrNull() const {
return cast_or_null<T>(Stored.getTypePtrOrNull());
}
/// \brief Implicit conversion to a qualified type.
operator QualType() const { return Stored; }
/// \brief Implicit conversion to bool.
explicit operator bool() const { return !isNull(); }
bool isNull() const {
return Stored.isNull();
}
SplitQualType split() const { return Stored.split(); }
/// \brief Retrieve a canonical type pointer with a different static type,
/// upcasting or downcasting as needed.
///
/// The getAs() function is typically used to try to downcast to a
/// more specific (canonical) type in the type system. For example:
///
/// @code
/// void f(CanQual<Type> T) {
/// if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) {
/// // look at Ptr's pointee type
/// }
/// }
/// @endcode
///
/// \returns A proxy pointer to the same type, but with the specified
/// static type (@p U). If the dynamic type is not the specified static type
/// or a derived class thereof, a NULL canonical type.
template<typename U> CanProxy<U> getAs() const;
template<typename U> CanProxy<U> castAs() const;
/// \brief Overloaded arrow operator that produces a canonical type
/// proxy.
CanProxy<T> operator->() const;
/// \brief Retrieve all qualifiers.
Qualifiers getQualifiers() const { return Stored.getLocalQualifiers(); }
/// \brief Retrieve the const/volatile/restrict qualifiers.
unsigned getCVRQualifiers() const { return Stored.getLocalCVRQualifiers(); }
/// \brief Determines whether this type has any qualifiers
bool hasQualifiers() const { return Stored.hasLocalQualifiers(); }
bool isConstQualified() const {
return Stored.isLocalConstQualified();
}
bool isVolatileQualified() const {
return Stored.isLocalVolatileQualified();
}
bool isRestrictQualified() const {
return Stored.isLocalRestrictQualified();
}
/// \brief Determines if this canonical type is furthermore
/// canonical as a parameter. The parameter-canonicalization
/// process decays arrays to pointers and drops top-level qualifiers.
bool isCanonicalAsParam() const {
return Stored.isCanonicalAsParam();
}
/// \brief Retrieve the unqualified form of this type.
CanQual<T> getUnqualifiedType() const;
/// \brief Retrieves a version of this type with const applied.
/// Note that this does not always yield a canonical type.
QualType withConst() const {
return Stored.withConst();
}
/// \brief Determines whether this canonical type is more qualified than
/// the @p Other canonical type.
bool isMoreQualifiedThan(CanQual<T> Other) const {
return Stored.isMoreQualifiedThan(Other.Stored);
}
/// \brief Determines whether this canonical type is at least as qualified as
/// the @p Other canonical type.
bool isAtLeastAsQualifiedAs(CanQual<T> Other) const {
return Stored.isAtLeastAsQualifiedAs(Other.Stored);
}
/// \brief If the canonical type is a reference type, returns the type that
/// it refers to; otherwise, returns the type itself.
CanQual<Type> getNonReferenceType() const;
/// \brief Retrieve the internal representation of this canonical type.
void *getAsOpaquePtr() const { return Stored.getAsOpaquePtr(); }
/// \brief Construct a canonical type from its internal representation.
static CanQual<T> getFromOpaquePtr(void *Ptr);
/// \brief Builds a canonical type from a QualType.
///
/// This routine is inherently unsafe, because it requires the user to
/// ensure that the given type is a canonical type with the correct
// (dynamic) type.
static CanQual<T> CreateUnsafe(QualType Other);
void dump() const { Stored.dump(); }
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
};
template<typename T, typename U>
inline bool operator==(CanQual<T> x, CanQual<U> y) {
return x.getAsOpaquePtr() == y.getAsOpaquePtr();
}
template<typename T, typename U>
inline bool operator!=(CanQual<T> x, CanQual<U> y) {
return x.getAsOpaquePtr() != y.getAsOpaquePtr();
}
/// \brief Represents a canonical, potentially-qualified type.
typedef CanQual<Type> CanQualType;
inline CanQualType Type::getCanonicalTypeUnqualified() const {
return CanQualType::CreateUnsafe(getCanonicalTypeInternal());
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
CanQualType T) {
DB << static_cast<QualType>(T);
return DB;
}
//----------------------------------------------------------------------------//
// Internal proxy classes used by canonical types
//----------------------------------------------------------------------------//
#define LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(Accessor) \
CanQualType Accessor() const { \
return CanQualType::CreateUnsafe(this->getTypePtr()->Accessor()); \
}
#define LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type, Accessor) \
Type Accessor() const { return this->getTypePtr()->Accessor(); }
/// \brief Base class of all canonical proxy types, which is responsible for
/// storing the underlying canonical type and providing basic conversions.
template<typename T>
class CanProxyBase {
protected:
CanQual<T> Stored;
public:
/// \brief Retrieve the pointer to the underlying Type
const T *getTypePtr() const { return Stored.getTypePtr(); }
/// \brief Implicit conversion to the underlying pointer.
///
/// Also provides the ability to use canonical type proxies in a Boolean
// context,e.g.,
/// @code
/// if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) { ... }
/// @endcode
operator const T*() const { return this->Stored.getTypePtrOrNull(); }
/// \brief Try to convert the given canonical type to a specific structural
/// type.
template<typename U> CanProxy<U> getAs() const {
return this->Stored.template getAs<U>();
}
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type::TypeClass, getTypeClass)
// Type predicates
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjectType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteOrObjectType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariablyModifiedType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isEnumeralType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBooleanType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isCharType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isWideCharType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealFloatingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyComplexType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFloatingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArithmeticType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDerivedType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isScalarType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAggregateType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFunctionPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isMemberFunctionPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isInterfaceType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureOrClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnionType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isNullPtrType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDependentType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isOverloadableType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArrayType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasPointerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasObjCPointerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasSignedIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasUnsignedIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasFloatingRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isPromotableIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isConstantSizeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSpecifierType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(CXXRecordDecl*, getAsCXXRecordDecl)
/// \brief Retrieve the proxy-adaptor type.
///
/// This arrow operator is used when CanProxyAdaptor has been specialized
/// for the given type T. In that case, we reference members of the
/// CanProxyAdaptor specialization. Otherwise, this operator will be hidden
/// by the arrow operator in the primary CanProxyAdaptor template.
const CanProxyAdaptor<T> *operator->() const {
return static_cast<const CanProxyAdaptor<T> *>(this);
}
};
/// \brief Replacable canonical proxy adaptor class that provides the link
/// between a canonical type and the accessors of the type.
///
/// The CanProxyAdaptor is a replaceable class template that is instantiated
/// as part of each canonical proxy type. The primary template merely provides
/// redirection to the underlying type (T), e.g., @c PointerType. One can
/// provide specializations of this class template for each underlying type
/// that provide accessors returning canonical types (@c CanQualType) rather
/// than the more typical @c QualType, to propagate the notion of "canonical"
/// through the system.
template<typename T>
struct CanProxyAdaptor : CanProxyBase<T> { };
/// \brief Canonical proxy type returned when retrieving the members of a
/// canonical type or as the result of the @c CanQual<T>::getAs member
/// function.
///
/// The CanProxy type mainly exists as a proxy through which operator-> will
/// look to either map down to a raw T* (e.g., PointerType*) or to a proxy
/// type that provides canonical-type access to the fields of the type.
template<typename T>
class CanProxy : public CanProxyAdaptor<T> {
public:
/// \brief Build a NULL proxy.
CanProxy() { }
/// \brief Build a proxy to the given canonical type.
CanProxy(CanQual<T> Stored) { this->Stored = Stored; }
/// \brief Implicit conversion to the stored canonical type.
operator CanQual<T>() const { return this->Stored; }
};
} // end namespace clang
namespace llvm {
/// Implement simplify_type for CanQual<T>, so that we can dyn_cast from
/// CanQual<T> to a specific Type class. We're prefer isa/dyn_cast/cast/etc.
/// to return smart pointer (proxies?).
template<typename T>
struct simplify_type< ::clang::CanQual<T> > {
typedef const T *SimpleType;
static SimpleType getSimplifiedValue(::clang::CanQual<T> Val) {
return Val.getTypePtr();
}
};
// Teach SmallPtrSet that CanQual<T> is "basically a pointer".
template<typename T>
class PointerLikeTypeTraits<clang::CanQual<T> > {
public:
static inline void *getAsVoidPointer(clang::CanQual<T> P) {
return P.getAsOpaquePtr();
}
static inline clang::CanQual<T> getFromVoidPointer(void *P) {
return clang::CanQual<T>::getFromOpaquePtr(P);
}
// qualifier information is encoded in the low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
//----------------------------------------------------------------------------//
// Canonical proxy adaptors for canonical type nodes.
//----------------------------------------------------------------------------//
/// \brief Iterator adaptor that turns an iterator over canonical QualTypes
/// into an iterator over CanQualTypes.
template <typename InputIterator>
struct CanTypeIterator
: llvm::iterator_adaptor_base<
CanTypeIterator<InputIterator>, InputIterator,
typename std::iterator_traits<InputIterator>::iterator_category,
CanQualType,
typename std::iterator_traits<InputIterator>::difference_type,
CanProxy<Type>, CanQualType> {
CanTypeIterator() {}
explicit CanTypeIterator(InputIterator Iter)
: CanTypeIterator::iterator_adaptor_base(std::move(Iter)) {}
CanQualType operator*() const { return CanQualType::CreateUnsafe(*this->I); }
CanProxy<Type> operator->() const;
};
template<>
struct CanProxyAdaptor<ComplexType> : public CanProxyBase<ComplexType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
};
template<>
struct CanProxyAdaptor<PointerType> : public CanProxyBase<PointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<BlockPointerType>
: public CanProxyBase<BlockPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<ReferenceType> : public CanProxyBase<ReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<LValueReferenceType>
: public CanProxyBase<LValueReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<RValueReferenceType>
: public CanProxyBase<RValueReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<MemberPointerType>
: public CanProxyBase<MemberPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Type *, getClass)
};
// CanProxyAdaptors for arrays are intentionally unimplemented because
// they are not safe.
template<> struct CanProxyAdaptor<ArrayType>;
template<> struct CanProxyAdaptor<ConstantArrayType>;
template<> struct CanProxyAdaptor<IncompleteArrayType>;
template<> struct CanProxyAdaptor<VariableArrayType>;
template<> struct CanProxyAdaptor<DependentSizedArrayType>;
template<>
struct CanProxyAdaptor<DependentSizedExtVectorType>
: public CanProxyBase<DependentSizedExtVectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Expr *, getSizeExpr)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(SourceLocation, getAttributeLoc)
};
template<>
struct CanProxyAdaptor<VectorType> : public CanProxyBase<VectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
};
template<>
struct CanProxyAdaptor<ExtVectorType> : public CanProxyBase<ExtVectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
};
template<>
struct CanProxyAdaptor<FunctionType> : public CanProxyBase<FunctionType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
};
template<>
struct CanProxyAdaptor<FunctionNoProtoType>
: public CanProxyBase<FunctionNoProtoType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
};
template<>
struct CanProxyAdaptor<FunctionProtoType>
: public CanProxyBase<FunctionProtoType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumParams)
CanQualType getParamType(unsigned i) const {
return CanQualType::CreateUnsafe(this->getTypePtr()->getParamType(i));
}
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariadic)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getTypeQuals)
typedef CanTypeIterator<FunctionProtoType::param_type_iterator>
param_type_iterator;
param_type_iterator param_type_begin() const {
return param_type_iterator(this->getTypePtr()->param_type_begin());
}
param_type_iterator param_type_end() const {
return param_type_iterator(this->getTypePtr()->param_type_end());
}
// Note: canonical function types never have exception specifications
};
template<>
struct CanProxyAdaptor<TypeOfType> : public CanProxyBase<TypeOfType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
};
template<>
struct CanProxyAdaptor<DecltypeType> : public CanProxyBase<DecltypeType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Expr *, getUnderlyingExpr)
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
};
template <>
struct CanProxyAdaptor<UnaryTransformType>
: public CanProxyBase<UnaryTransformType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(UnaryTransformType::UTTKind, getUTTKind)
};
template<>
struct CanProxyAdaptor<TagType> : public CanProxyBase<TagType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TagDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
};
template<>
struct CanProxyAdaptor<RecordType> : public CanProxyBase<RecordType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(RecordDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasConstFields)
};
template<>
struct CanProxyAdaptor<EnumType> : public CanProxyBase<EnumType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(EnumDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
};
template<>
struct CanProxyAdaptor<TemplateTypeParmType>
: public CanProxyBase<TemplateTypeParmType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getDepth)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getIndex)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isParameterPack)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TemplateTypeParmDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(IdentifierInfo *, getIdentifier)
};
template<>
struct CanProxyAdaptor<ObjCObjectType>
: public CanProxyBase<ObjCObjectType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceDecl *,
getInterface)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedId)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedClass)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedId)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClass)
typedef ObjCObjectPointerType::qual_iterator qual_iterator;
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
};
template<>
struct CanProxyAdaptor<ObjCObjectPointerType>
: public CanProxyBase<ObjCObjectPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceType *,
getInterfaceType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCIdType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedIdType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClassType)
typedef ObjCObjectPointerType::qual_iterator qual_iterator;
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
};
//----------------------------------------------------------------------------//
// Method and function definitions
//----------------------------------------------------------------------------//
template<typename T>
inline CanQual<T> CanQual<T>::getUnqualifiedType() const {
return CanQual<T>::CreateUnsafe(Stored.getLocalUnqualifiedType());
}
template<typename T>
inline CanQual<Type> CanQual<T>::getNonReferenceType() const {
if (CanQual<ReferenceType> RefType = getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
template<typename T>
CanQual<T> CanQual<T>::getFromOpaquePtr(void *Ptr) {
CanQual<T> Result;
Result.Stored = QualType::getFromOpaquePtr(Ptr);
assert((!Result || Result.Stored.getAsOpaquePtr() == (void*)-1 ||
Result.Stored.isCanonical()) && "Type is not canonical!");
return Result;
}
template<typename T>
CanQual<T> CanQual<T>::CreateUnsafe(QualType Other) {
assert((Other.isNull() || Other.isCanonical()) && "Type is not canonical!");
assert((Other.isNull() || isa<T>(Other.getTypePtr())) &&
"Dynamic type does not meet the static type's requires");
CanQual<T> Result;
Result.Stored = Other;
return Result;
}
template<typename T>
template<typename U>
CanProxy<U> CanQual<T>::getAs() const {
ArrayType_cannot_be_used_with_getAs<U> at;
(void)at;
if (Stored.isNull())
return CanProxy<U>();
if (isa<U>(Stored.getTypePtr()))
return CanQual<U>::CreateUnsafe(Stored);
return CanProxy<U>();
}
template<typename T>
template<typename U>
CanProxy<U> CanQual<T>::castAs() const {
ArrayType_cannot_be_used_with_getAs<U> at;
(void)at;
assert(!Stored.isNull() && isa<U>(Stored.getTypePtr()));
return CanQual<U>::CreateUnsafe(Stored);
}
template<typename T>
CanProxy<T> CanQual<T>::operator->() const {
return CanProxy<T>(*this);
}
template <typename InputIterator>
CanProxy<Type> CanTypeIterator<InputIterator>::operator->() const {
return CanProxy<Type>(*this);
}
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/Comment.h | //===--- Comment.h - Comment AST nodes --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines comment AST nodes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENT_H
#define LLVM_CLANG_AST_COMMENT_H
#include "clang/AST/CommentCommandTraits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
class Decl;
class ParmVarDecl;
class TemplateParameterList;
namespace comments {
class FullComment;
/// Describes the syntax that was used in a documentation command.
///
/// Exact values of this enumeration are important because they used to select
/// parts of diagnostic messages. Audit diagnostics before changing or adding
/// a new value.
enum CommandMarkerKind {
/// Command started with a backslash character:
/// \code
/// \foo
/// \endcode
CMK_Backslash = 0,
/// Command started with an 'at' character:
/// \code
/// @foo
/// \endcode
CMK_At = 1
};
/// Any part of the comment.
/// Abstract class.
class Comment {
protected:
/// Preferred location to show caret.
SourceLocation Loc;
/// Source range of this AST node.
SourceRange Range;
class CommentBitfields {
friend class Comment;
/// Type of this AST node.
unsigned Kind : 8;
};
enum { NumCommentBits = 8 };
class InlineContentCommentBitfields {
friend class InlineContentComment;
unsigned : NumCommentBits;
/// True if there is a newline after this inline content node.
/// (There is no separate AST node for a newline.)
unsigned HasTrailingNewline : 1;
};
enum { NumInlineContentCommentBits = NumCommentBits + 1 };
class TextCommentBitfields {
friend class TextComment;
unsigned : NumInlineContentCommentBits;
/// True if \c IsWhitespace field contains a valid value.
mutable unsigned IsWhitespaceValid : 1;
/// True if this comment AST node contains only whitespace.
mutable unsigned IsWhitespace : 1;
};
enum { NumTextCommentBits = NumInlineContentCommentBits + 2 };
class InlineCommandCommentBitfields {
friend class InlineCommandComment;
unsigned : NumInlineContentCommentBits;
unsigned RenderKind : 2;
unsigned CommandID : CommandInfo::NumCommandIDBits;
};
enum { NumInlineCommandCommentBits = NumInlineContentCommentBits + 2 +
CommandInfo::NumCommandIDBits };
class HTMLTagCommentBitfields {
friend class HTMLTagComment;
unsigned : NumInlineContentCommentBits;
/// True if we found that this tag is malformed in some way.
unsigned IsMalformed : 1;
};
enum { NumHTMLTagCommentBits = NumInlineContentCommentBits + 1 };
class HTMLStartTagCommentBitfields {
friend class HTMLStartTagComment;
unsigned : NumHTMLTagCommentBits;
/// True if this tag is self-closing (e. g., <br />). This is based on tag
/// spelling in comment (plain <br> would not set this flag).
unsigned IsSelfClosing : 1;
};
enum { NumHTMLStartTagCommentBits = NumHTMLTagCommentBits + 1 };
class ParagraphCommentBitfields {
friend class ParagraphComment;
unsigned : NumCommentBits;
/// True if \c IsWhitespace field contains a valid value.
mutable unsigned IsWhitespaceValid : 1;
/// True if this comment AST node contains only whitespace.
mutable unsigned IsWhitespace : 1;
};
enum { NumParagraphCommentBits = NumCommentBits + 2 };
class BlockCommandCommentBitfields {
friend class BlockCommandComment;
unsigned : NumCommentBits;
unsigned CommandID : CommandInfo::NumCommandIDBits;
/// Describes the syntax that was used in a documentation command.
/// Contains values from CommandMarkerKind enum.
unsigned CommandMarker : 1;
};
enum { NumBlockCommandCommentBits = NumCommentBits +
CommandInfo::NumCommandIDBits + 1 };
class ParamCommandCommentBitfields {
friend class ParamCommandComment;
unsigned : NumBlockCommandCommentBits;
/// Parameter passing direction, see ParamCommandComment::PassDirection.
unsigned Direction : 2;
/// True if direction was specified explicitly in the comment.
unsigned IsDirectionExplicit : 1;
};
enum { NumParamCommandCommentBits = NumBlockCommandCommentBits + 3 };
union {
CommentBitfields CommentBits;
InlineContentCommentBitfields InlineContentCommentBits;
TextCommentBitfields TextCommentBits;
InlineCommandCommentBitfields InlineCommandCommentBits;
HTMLTagCommentBitfields HTMLTagCommentBits;
HTMLStartTagCommentBitfields HTMLStartTagCommentBits;
ParagraphCommentBitfields ParagraphCommentBits;
BlockCommandCommentBitfields BlockCommandCommentBits;
ParamCommandCommentBitfields ParamCommandCommentBits;
};
void setSourceRange(SourceRange SR) {
Range = SR;
}
void setLocation(SourceLocation L) {
Loc = L;
}
public:
enum CommentKind {
NoCommentKind = 0,
#define COMMENT(CLASS, PARENT) CLASS##Kind,
#define COMMENT_RANGE(BASE, FIRST, LAST) \
First##BASE##Constant=FIRST##Kind, Last##BASE##Constant=LAST##Kind,
#define LAST_COMMENT_RANGE(BASE, FIRST, LAST) \
First##BASE##Constant=FIRST##Kind, Last##BASE##Constant=LAST##Kind
#define ABSTRACT_COMMENT(COMMENT)
#include "clang/AST/CommentNodes.inc"
};
Comment(CommentKind K,
SourceLocation LocBegin,
SourceLocation LocEnd) :
Loc(LocBegin), Range(SourceRange(LocBegin, LocEnd)) {
CommentBits.Kind = K;
}
CommentKind getCommentKind() const {
return static_cast<CommentKind>(CommentBits.Kind);
}
const char *getCommentKindName() const;
void dump() const;
void dumpColor() const;
void dump(const ASTContext &Context) const;
void dump(raw_ostream &OS, const CommandTraits *Traits,
const SourceManager *SM) const;
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY {
return Range.getBegin();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return Range.getEnd();
}
SourceLocation getLocation() const LLVM_READONLY { return Loc; }
typedef Comment * const *child_iterator;
child_iterator child_begin() const;
child_iterator child_end() const;
// TODO: const child iterator
unsigned child_count() const {
return child_end() - child_begin();
}
};
/// Inline content (contained within a block).
/// Abstract class.
class InlineContentComment : public Comment {
protected:
InlineContentComment(CommentKind K,
SourceLocation LocBegin,
SourceLocation LocEnd) :
Comment(K, LocBegin, LocEnd) {
InlineContentCommentBits.HasTrailingNewline = 0;
}
public:
static bool classof(const Comment *C) {
return C->getCommentKind() >= FirstInlineContentCommentConstant &&
C->getCommentKind() <= LastInlineContentCommentConstant;
}
void addTrailingNewline() {
InlineContentCommentBits.HasTrailingNewline = 1;
}
bool hasTrailingNewline() const {
return InlineContentCommentBits.HasTrailingNewline;
}
};
/// Plain text.
class TextComment : public InlineContentComment {
StringRef Text;
public:
TextComment(SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef Text) :
InlineContentComment(TextCommentKind, LocBegin, LocEnd),
Text(Text) {
TextCommentBits.IsWhitespaceValid = false;
}
static bool classof(const Comment *C) {
return C->getCommentKind() == TextCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
StringRef getText() const LLVM_READONLY { return Text; }
bool isWhitespace() const {
if (TextCommentBits.IsWhitespaceValid)
return TextCommentBits.IsWhitespace;
TextCommentBits.IsWhitespace = isWhitespaceNoCache();
TextCommentBits.IsWhitespaceValid = true;
return TextCommentBits.IsWhitespace;
}
private:
bool isWhitespaceNoCache() const;
};
/// A command with word-like arguments that is considered inline content.
class InlineCommandComment : public InlineContentComment {
public:
struct Argument {
SourceRange Range;
StringRef Text;
Argument(SourceRange Range, StringRef Text) : Range(Range), Text(Text) { }
};
/// The most appropriate rendering mode for this command, chosen on command
/// semantics in Doxygen.
enum RenderKind {
RenderNormal,
RenderBold,
RenderMonospaced,
RenderEmphasized
};
protected:
/// Command arguments.
ArrayRef<Argument> Args;
public:
InlineCommandComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
RenderKind RK,
ArrayRef<Argument> Args) :
InlineContentComment(InlineCommandCommentKind, LocBegin, LocEnd),
Args(Args) {
InlineCommandCommentBits.RenderKind = RK;
InlineCommandCommentBits.CommandID = CommandID;
}
static bool classof(const Comment *C) {
return C->getCommentKind() == InlineCommandCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
unsigned getCommandID() const {
return InlineCommandCommentBits.CommandID;
}
StringRef getCommandName(const CommandTraits &Traits) const {
return Traits.getCommandInfo(getCommandID())->Name;
}
SourceRange getCommandNameRange() const {
return SourceRange(getLocStart().getLocWithOffset(-1),
getLocEnd());
}
RenderKind getRenderKind() const {
return static_cast<RenderKind>(InlineCommandCommentBits.RenderKind);
}
unsigned getNumArgs() const {
return Args.size();
}
StringRef getArgText(unsigned Idx) const {
return Args[Idx].Text;
}
SourceRange getArgRange(unsigned Idx) const {
return Args[Idx].Range;
}
};
/// Abstract class for opening and closing HTML tags. HTML tags are always
/// treated as inline content (regardless HTML semantics).
class HTMLTagComment : public InlineContentComment {
protected:
StringRef TagName;
SourceRange TagNameRange;
HTMLTagComment(CommentKind K,
SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef TagName,
SourceLocation TagNameBegin,
SourceLocation TagNameEnd) :
InlineContentComment(K, LocBegin, LocEnd),
TagName(TagName),
TagNameRange(TagNameBegin, TagNameEnd) {
setLocation(TagNameBegin);
HTMLTagCommentBits.IsMalformed = 0;
}
public:
static bool classof(const Comment *C) {
return C->getCommentKind() >= FirstHTMLTagCommentConstant &&
C->getCommentKind() <= LastHTMLTagCommentConstant;
}
StringRef getTagName() const LLVM_READONLY { return TagName; }
SourceRange getTagNameSourceRange() const LLVM_READONLY {
SourceLocation L = getLocation();
return SourceRange(L.getLocWithOffset(1),
L.getLocWithOffset(1 + TagName.size()));
}
bool isMalformed() const {
return HTMLTagCommentBits.IsMalformed;
}
void setIsMalformed() {
HTMLTagCommentBits.IsMalformed = 1;
}
};
/// An opening HTML tag with attributes.
class HTMLStartTagComment : public HTMLTagComment {
public:
class Attribute {
public:
SourceLocation NameLocBegin;
StringRef Name;
SourceLocation EqualsLoc;
SourceRange ValueRange;
StringRef Value;
Attribute() { }
Attribute(SourceLocation NameLocBegin, StringRef Name) :
NameLocBegin(NameLocBegin), Name(Name),
EqualsLoc(SourceLocation()),
ValueRange(SourceRange()), Value(StringRef())
{ }
Attribute(SourceLocation NameLocBegin, StringRef Name,
SourceLocation EqualsLoc,
SourceRange ValueRange, StringRef Value) :
NameLocBegin(NameLocBegin), Name(Name),
EqualsLoc(EqualsLoc),
ValueRange(ValueRange), Value(Value)
{ }
SourceLocation getNameLocEnd() const {
return NameLocBegin.getLocWithOffset(Name.size());
}
SourceRange getNameRange() const {
return SourceRange(NameLocBegin, getNameLocEnd());
}
};
private:
ArrayRef<Attribute> Attributes;
public:
HTMLStartTagComment(SourceLocation LocBegin,
StringRef TagName) :
HTMLTagComment(HTMLStartTagCommentKind,
LocBegin, LocBegin.getLocWithOffset(1 + TagName.size()),
TagName,
LocBegin.getLocWithOffset(1),
LocBegin.getLocWithOffset(1 + TagName.size())) {
HTMLStartTagCommentBits.IsSelfClosing = false;
}
static bool classof(const Comment *C) {
return C->getCommentKind() == HTMLStartTagCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
unsigned getNumAttrs() const {
return Attributes.size();
}
const Attribute &getAttr(unsigned Idx) const {
return Attributes[Idx];
}
void setAttrs(ArrayRef<Attribute> Attrs) {
Attributes = Attrs;
if (!Attrs.empty()) {
const Attribute &Attr = Attrs.back();
SourceLocation L = Attr.ValueRange.getEnd();
if (L.isValid())
Range.setEnd(L);
else {
Range.setEnd(Attr.getNameLocEnd());
}
}
}
void setGreaterLoc(SourceLocation GreaterLoc) {
Range.setEnd(GreaterLoc);
}
bool isSelfClosing() const {
return HTMLStartTagCommentBits.IsSelfClosing;
}
void setSelfClosing() {
HTMLStartTagCommentBits.IsSelfClosing = true;
}
};
/// A closing HTML tag.
class HTMLEndTagComment : public HTMLTagComment {
public:
HTMLEndTagComment(SourceLocation LocBegin,
SourceLocation LocEnd,
StringRef TagName) :
HTMLTagComment(HTMLEndTagCommentKind,
LocBegin, LocEnd,
TagName,
LocBegin.getLocWithOffset(2),
LocBegin.getLocWithOffset(2 + TagName.size()))
{ }
static bool classof(const Comment *C) {
return C->getCommentKind() == HTMLEndTagCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
};
/// Block content (contains inline content).
/// Abstract class.
class BlockContentComment : public Comment {
protected:
BlockContentComment(CommentKind K,
SourceLocation LocBegin,
SourceLocation LocEnd) :
Comment(K, LocBegin, LocEnd)
{ }
public:
static bool classof(const Comment *C) {
return C->getCommentKind() >= FirstBlockContentCommentConstant &&
C->getCommentKind() <= LastBlockContentCommentConstant;
}
};
/// A single paragraph that contains inline content.
class ParagraphComment : public BlockContentComment {
ArrayRef<InlineContentComment *> Content;
public:
ParagraphComment(ArrayRef<InlineContentComment *> Content) :
BlockContentComment(ParagraphCommentKind,
SourceLocation(),
SourceLocation()),
Content(Content) {
if (Content.empty()) {
ParagraphCommentBits.IsWhitespace = true;
ParagraphCommentBits.IsWhitespaceValid = true;
return;
}
ParagraphCommentBits.IsWhitespaceValid = false;
setSourceRange(SourceRange(Content.front()->getLocStart(),
Content.back()->getLocEnd()));
setLocation(Content.front()->getLocStart());
}
static bool classof(const Comment *C) {
return C->getCommentKind() == ParagraphCommentKind;
}
child_iterator child_begin() const {
return reinterpret_cast<child_iterator>(Content.begin());
}
child_iterator child_end() const {
return reinterpret_cast<child_iterator>(Content.end());
}
bool isWhitespace() const {
if (ParagraphCommentBits.IsWhitespaceValid)
return ParagraphCommentBits.IsWhitespace;
ParagraphCommentBits.IsWhitespace = isWhitespaceNoCache();
ParagraphCommentBits.IsWhitespaceValid = true;
return ParagraphCommentBits.IsWhitespace;
}
private:
bool isWhitespaceNoCache() const;
};
/// A command that has zero or more word-like arguments (number of word-like
/// arguments depends on command name) and a paragraph as an argument
/// (e. g., \\brief).
class BlockCommandComment : public BlockContentComment {
public:
struct Argument {
SourceRange Range;
StringRef Text;
Argument() { }
Argument(SourceRange Range, StringRef Text) : Range(Range), Text(Text) { }
};
protected:
/// Word-like arguments.
ArrayRef<Argument> Args;
/// Paragraph argument.
ParagraphComment *Paragraph;
BlockCommandComment(CommentKind K,
SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker) :
BlockContentComment(K, LocBegin, LocEnd),
Paragraph(nullptr) {
setLocation(getCommandNameBeginLoc());
BlockCommandCommentBits.CommandID = CommandID;
BlockCommandCommentBits.CommandMarker = CommandMarker;
}
public:
BlockCommandComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker) :
BlockContentComment(BlockCommandCommentKind, LocBegin, LocEnd),
Paragraph(nullptr) {
setLocation(getCommandNameBeginLoc());
BlockCommandCommentBits.CommandID = CommandID;
BlockCommandCommentBits.CommandMarker = CommandMarker;
}
static bool classof(const Comment *C) {
return C->getCommentKind() >= FirstBlockCommandCommentConstant &&
C->getCommentKind() <= LastBlockCommandCommentConstant;
}
child_iterator child_begin() const {
return reinterpret_cast<child_iterator>(&Paragraph);
}
child_iterator child_end() const {
return reinterpret_cast<child_iterator>(&Paragraph + 1);
}
unsigned getCommandID() const {
return BlockCommandCommentBits.CommandID;
}
StringRef getCommandName(const CommandTraits &Traits) const {
return Traits.getCommandInfo(getCommandID())->Name;
}
SourceLocation getCommandNameBeginLoc() const {
return getLocStart().getLocWithOffset(1);
}
SourceRange getCommandNameRange(const CommandTraits &Traits) const {
StringRef Name = getCommandName(Traits);
return SourceRange(getCommandNameBeginLoc(),
getLocStart().getLocWithOffset(1 + Name.size()));
}
unsigned getNumArgs() const {
return Args.size();
}
StringRef getArgText(unsigned Idx) const {
return Args[Idx].Text;
}
SourceRange getArgRange(unsigned Idx) const {
return Args[Idx].Range;
}
void setArgs(ArrayRef<Argument> A) {
Args = A;
if (Args.size() > 0) {
SourceLocation NewLocEnd = Args.back().Range.getEnd();
if (NewLocEnd.isValid())
setSourceRange(SourceRange(getLocStart(), NewLocEnd));
}
}
ParagraphComment *getParagraph() const LLVM_READONLY {
return Paragraph;
}
bool hasNonWhitespaceParagraph() const {
return Paragraph && !Paragraph->isWhitespace();
}
void setParagraph(ParagraphComment *PC) {
Paragraph = PC;
SourceLocation NewLocEnd = PC->getLocEnd();
if (NewLocEnd.isValid())
setSourceRange(SourceRange(getLocStart(), NewLocEnd));
}
CommandMarkerKind getCommandMarker() const LLVM_READONLY {
return static_cast<CommandMarkerKind>(
BlockCommandCommentBits.CommandMarker);
}
};
/// Doxygen \\param command.
class ParamCommandComment : public BlockCommandComment {
private:
/// Parameter index in the function declaration.
unsigned ParamIndex;
public:
enum : unsigned {
InvalidParamIndex = ~0U,
VarArgParamIndex = ~0U/*InvalidParamIndex*/ - 1U
};
ParamCommandComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker) :
BlockCommandComment(ParamCommandCommentKind, LocBegin, LocEnd,
CommandID, CommandMarker),
ParamIndex(InvalidParamIndex) {
ParamCommandCommentBits.Direction = In;
ParamCommandCommentBits.IsDirectionExplicit = false;
}
static bool classof(const Comment *C) {
return C->getCommentKind() == ParamCommandCommentKind;
}
enum PassDirection {
In,
Out,
InOut
};
static const char *getDirectionAsString(PassDirection D);
PassDirection getDirection() const LLVM_READONLY {
return static_cast<PassDirection>(ParamCommandCommentBits.Direction);
}
bool isDirectionExplicit() const LLVM_READONLY {
return ParamCommandCommentBits.IsDirectionExplicit;
}
void setDirection(PassDirection Direction, bool Explicit) {
ParamCommandCommentBits.Direction = Direction;
ParamCommandCommentBits.IsDirectionExplicit = Explicit;
}
bool hasParamName() const {
return getNumArgs() > 0;
}
StringRef getParamName(const FullComment *FC) const;
StringRef getParamNameAsWritten() const {
return Args[0].Text;
}
SourceRange getParamNameRange() const {
return Args[0].Range;
}
bool isParamIndexValid() const LLVM_READONLY {
return ParamIndex != InvalidParamIndex;
}
bool isVarArgParam() const LLVM_READONLY {
return ParamIndex == VarArgParamIndex;
}
void setIsVarArgParam() {
ParamIndex = VarArgParamIndex;
assert(isParamIndexValid());
}
unsigned getParamIndex() const LLVM_READONLY {
assert(isParamIndexValid());
assert(!isVarArgParam());
return ParamIndex;
}
void setParamIndex(unsigned Index) {
ParamIndex = Index;
assert(isParamIndexValid());
assert(!isVarArgParam());
}
};
/// Doxygen \\tparam command, describes a template parameter.
class TParamCommandComment : public BlockCommandComment {
private:
/// If this template parameter name was resolved (found in template parameter
/// list), then this stores a list of position indexes in all template
/// parameter lists.
///
/// For example:
/// \verbatim
/// template<typename C, template<typename T> class TT>
/// void test(TT<int> aaa);
/// \endverbatim
/// For C: Position = { 0 }
/// For TT: Position = { 1 }
/// For T: Position = { 1, 0 }
ArrayRef<unsigned> Position;
public:
TParamCommandComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
CommandMarkerKind CommandMarker) :
BlockCommandComment(TParamCommandCommentKind, LocBegin, LocEnd, CommandID,
CommandMarker)
{ }
static bool classof(const Comment *C) {
return C->getCommentKind() == TParamCommandCommentKind;
}
bool hasParamName() const {
return getNumArgs() > 0;
}
StringRef getParamName(const FullComment *FC) const;
StringRef getParamNameAsWritten() const {
return Args[0].Text;
}
SourceRange getParamNameRange() const {
return Args[0].Range;
}
bool isPositionValid() const LLVM_READONLY {
return !Position.empty();
}
unsigned getDepth() const {
assert(isPositionValid());
return Position.size();
}
unsigned getIndex(unsigned Depth) const {
assert(isPositionValid());
return Position[Depth];
}
void setPosition(ArrayRef<unsigned> NewPosition) {
Position = NewPosition;
assert(isPositionValid());
}
};
/// A line of text contained in a verbatim block.
class VerbatimBlockLineComment : public Comment {
StringRef Text;
public:
VerbatimBlockLineComment(SourceLocation LocBegin,
StringRef Text) :
Comment(VerbatimBlockLineCommentKind,
LocBegin,
LocBegin.getLocWithOffset(Text.size())),
Text(Text)
{ }
static bool classof(const Comment *C) {
return C->getCommentKind() == VerbatimBlockLineCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
StringRef getText() const LLVM_READONLY {
return Text;
}
};
/// A verbatim block command (e. g., preformatted code). Verbatim block has an
/// opening and a closing command and contains multiple lines of text
/// (VerbatimBlockLineComment nodes).
class VerbatimBlockComment : public BlockCommandComment {
protected:
StringRef CloseName;
SourceLocation CloseNameLocBegin;
ArrayRef<VerbatimBlockLineComment *> Lines;
public:
VerbatimBlockComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID) :
BlockCommandComment(VerbatimBlockCommentKind,
LocBegin, LocEnd, CommandID,
CMK_At) // FIXME: improve source fidelity.
{ }
static bool classof(const Comment *C) {
return C->getCommentKind() == VerbatimBlockCommentKind;
}
child_iterator child_begin() const {
return reinterpret_cast<child_iterator>(Lines.begin());
}
child_iterator child_end() const {
return reinterpret_cast<child_iterator>(Lines.end());
}
void setCloseName(StringRef Name, SourceLocation LocBegin) {
CloseName = Name;
CloseNameLocBegin = LocBegin;
}
void setLines(ArrayRef<VerbatimBlockLineComment *> L) {
Lines = L;
}
StringRef getCloseName() const {
return CloseName;
}
unsigned getNumLines() const {
return Lines.size();
}
StringRef getText(unsigned LineIdx) const {
return Lines[LineIdx]->getText();
}
};
/// A verbatim line command. Verbatim line has an opening command, a single
/// line of text (up to the newline after the opening command) and has no
/// closing command.
class VerbatimLineComment : public BlockCommandComment {
protected:
StringRef Text;
SourceLocation TextBegin;
public:
VerbatimLineComment(SourceLocation LocBegin,
SourceLocation LocEnd,
unsigned CommandID,
SourceLocation TextBegin,
StringRef Text) :
BlockCommandComment(VerbatimLineCommentKind,
LocBegin, LocEnd,
CommandID,
CMK_At), // FIXME: improve source fidelity.
Text(Text),
TextBegin(TextBegin)
{ }
static bool classof(const Comment *C) {
return C->getCommentKind() == VerbatimLineCommentKind;
}
child_iterator child_begin() const { return nullptr; }
child_iterator child_end() const { return nullptr; }
StringRef getText() const {
return Text;
}
SourceRange getTextRange() const {
return SourceRange(TextBegin, getLocEnd());
}
};
/// Information about the declaration, useful to clients of FullComment.
struct DeclInfo {
/// Declaration the comment is actually attached to (in the source).
/// Should not be NULL.
const Decl *CommentDecl;
/// CurrentDecl is the declaration with which the FullComment is associated.
///
/// It can be different from \c CommentDecl. It happens when we we decide
/// that the comment originally attached to \c CommentDecl is fine for
/// \c CurrentDecl too (for example, for a redeclaration or an overrider of
/// \c CommentDecl).
///
/// The information in the DeclInfo corresponds to CurrentDecl.
const Decl *CurrentDecl;
/// Parameters that can be referenced by \\param if \c CommentDecl is something
/// that we consider a "function".
ArrayRef<const ParmVarDecl *> ParamVars;
/// Function return type if \c CommentDecl is something that we consider
/// a "function".
QualType ReturnType;
/// Template parameters that can be referenced by \\tparam if \c CommentDecl is
/// a template (\c IsTemplateDecl or \c IsTemplatePartialSpecialization is
/// true).
const TemplateParameterList *TemplateParameters;
/// A simplified description of \c CommentDecl kind that should be good enough
/// for documentation rendering purposes.
enum DeclKind {
/// Everything else not explicitly mentioned below.
OtherKind,
/// Something that we consider a "function":
/// \li function,
/// \li function template,
/// \li function template specialization,
/// \li member function,
/// \li member function template,
/// \li member function template specialization,
/// \li ObjC method,
/// \li a typedef for a function pointer, member function pointer,
/// ObjC block.
FunctionKind,
/// Something that we consider a "class":
/// \li class/struct,
/// \li class template,
/// \li class template (partial) specialization.
ClassKind,
/// Something that we consider a "variable":
/// \li namespace scope variables;
/// \li static and non-static class data members;
/// \li enumerators.
VariableKind,
/// A C++ namespace.
NamespaceKind,
/// A C++ typedef-name (a 'typedef' decl specifier or alias-declaration),
/// see \c TypedefNameDecl.
TypedefKind,
/// An enumeration or scoped enumeration.
EnumKind
};
/// What kind of template specialization \c CommentDecl is.
enum TemplateDeclKind {
NotTemplate,
Template,
TemplateSpecialization,
TemplatePartialSpecialization
};
/// If false, only \c CommentDecl is valid.
unsigned IsFilled : 1;
/// Simplified kind of \c CommentDecl, see \c DeclKind enum.
unsigned Kind : 3;
/// Is \c CommentDecl a template declaration.
unsigned TemplateKind : 2;
/// Is \c CommentDecl an ObjCMethodDecl.
unsigned IsObjCMethod : 1;
/// Is \c CommentDecl a non-static member function of C++ class or
/// instance method of ObjC class.
/// Can be true only if \c IsFunctionDecl is true.
unsigned IsInstanceMethod : 1;
/// Is \c CommentDecl a static member function of C++ class or
/// class method of ObjC class.
/// Can be true only if \c IsFunctionDecl is true.
unsigned IsClassMethod : 1;
void fill();
DeclKind getKind() const LLVM_READONLY {
return static_cast<DeclKind>(Kind);
}
TemplateDeclKind getTemplateKind() const LLVM_READONLY {
return static_cast<TemplateDeclKind>(TemplateKind);
}
};
/// A full comment attached to a declaration, contains block content.
class FullComment : public Comment {
ArrayRef<BlockContentComment *> Blocks;
DeclInfo *ThisDeclInfo;
public:
FullComment(ArrayRef<BlockContentComment *> Blocks, DeclInfo *D) :
Comment(FullCommentKind, SourceLocation(), SourceLocation()),
Blocks(Blocks), ThisDeclInfo(D) {
if (Blocks.empty())
return;
setSourceRange(SourceRange(Blocks.front()->getLocStart(),
Blocks.back()->getLocEnd()));
setLocation(Blocks.front()->getLocStart());
}
static bool classof(const Comment *C) {
return C->getCommentKind() == FullCommentKind;
}
child_iterator child_begin() const {
return reinterpret_cast<child_iterator>(Blocks.begin());
}
child_iterator child_end() const {
return reinterpret_cast<child_iterator>(Blocks.end());
}
const Decl *getDecl() const LLVM_READONLY {
return ThisDeclInfo->CommentDecl;
}
const DeclInfo *getDeclInfo() const LLVM_READONLY {
if (!ThisDeclInfo->IsFilled)
ThisDeclInfo->fill();
return ThisDeclInfo;
}
ArrayRef<BlockContentComment *> getBlocks() const { return Blocks; }
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/UnresolvedSet.h | //===-- UnresolvedSet.h - Unresolved sets of declarations ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the UnresolvedSet class, which is used to store
// collections of declarations in the AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_UNRESOLVEDSET_H
#define LLVM_CLANG_AST_UNRESOLVEDSET_H
#include "clang/AST/DeclAccessPair.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
namespace clang {
/// The iterator over UnresolvedSets. Serves as both the const and
/// non-const iterator.
class UnresolvedSetIterator : public llvm::iterator_adaptor_base<
UnresolvedSetIterator, DeclAccessPair *,
std::random_access_iterator_tag, NamedDecl *,
std::ptrdiff_t, NamedDecl *, NamedDecl *> {
friend class UnresolvedSetImpl;
friend class ASTUnresolvedSet;
friend class OverloadExpr;
explicit UnresolvedSetIterator(DeclAccessPair *Iter)
: iterator_adaptor_base(Iter) {}
explicit UnresolvedSetIterator(const DeclAccessPair *Iter)
: iterator_adaptor_base(const_cast<DeclAccessPair *>(Iter)) {}
public:
UnresolvedSetIterator() {}
NamedDecl *getDecl() const { return I->getDecl(); }
void setDecl(NamedDecl *ND) const { return I->setDecl(ND); }
AccessSpecifier getAccess() const { return I->getAccess(); }
void setAccess(AccessSpecifier AS) { I->setAccess(AS); }
const DeclAccessPair &getPair() const { return *I; }
NamedDecl *operator*() const { return getDecl(); }
NamedDecl *operator->() const { return **this; }
};
/// \brief A set of unresolved declarations.
class UnresolvedSetImpl {
typedef SmallVectorImpl<DeclAccessPair> DeclsTy;
// Don't allow direct construction, and only permit subclassing by
// UnresolvedSet.
private:
template <unsigned N> friend class UnresolvedSet;
UnresolvedSetImpl() {}
UnresolvedSetImpl(const UnresolvedSetImpl &) {}
public:
// We don't currently support assignment through this iterator, so we might
// as well use the same implementation twice.
typedef UnresolvedSetIterator iterator;
typedef UnresolvedSetIterator const_iterator;
iterator begin() { return iterator(decls().begin()); }
iterator end() { return iterator(decls().end()); }
const_iterator begin() const { return const_iterator(decls().begin()); }
const_iterator end() const { return const_iterator(decls().end()); }
void addDecl(NamedDecl *D) {
addDecl(D, AS_none);
}
void addDecl(NamedDecl *D, AccessSpecifier AS) {
decls().push_back(DeclAccessPair::make(D, AS));
}
/// Replaces the given declaration with the new one, once.
///
/// \return true if the set changed
bool replace(const NamedDecl* Old, NamedDecl *New) {
for (DeclsTy::iterator I = decls().begin(), E = decls().end(); I != E; ++I)
if (I->getDecl() == Old)
return (I->setDecl(New), true);
return false;
}
/// Replaces the declaration at the given iterator with the new one,
/// preserving the original access bits.
void replace(iterator I, NamedDecl *New) { I.I->setDecl(New); }
void replace(iterator I, NamedDecl *New, AccessSpecifier AS) {
I.I->set(New, AS);
}
void erase(unsigned I) { decls()[I] = decls().pop_back_val(); }
void erase(iterator I) { *I.I = decls().pop_back_val(); }
void setAccess(iterator I, AccessSpecifier AS) { I.I->setAccess(AS); }
void clear() { decls().clear(); }
void set_size(unsigned N) { decls().set_size(N); }
bool empty() const { return decls().empty(); }
unsigned size() const { return decls().size(); }
void append(iterator I, iterator E) { decls().append(I.I, E.I); }
DeclAccessPair &operator[](unsigned I) { return decls()[I]; }
const DeclAccessPair &operator[](unsigned I) const { return decls()[I]; }
private:
// These work because the only permitted subclass is UnresolvedSetImpl
DeclsTy &decls() {
return *reinterpret_cast<DeclsTy*>(this);
}
const DeclsTy &decls() const {
return *reinterpret_cast<const DeclsTy*>(this);
}
};
/// \brief A set of unresolved declarations.
template <unsigned InlineCapacity> class UnresolvedSet :
public UnresolvedSetImpl {
SmallVector<DeclAccessPair, InlineCapacity> Decls;
};
} // namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTDiagnostic.h | //===--- ASTDiagnostic.h - Diagnostics for the AST library ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTDIAGNOSTIC_H
#define LLVM_CLANG_AST_ASTDIAGNOSTIC_H
#include "clang/Basic/Diagnostic.h"
namespace clang {
namespace diag {
enum {
#define DIAG(ENUM,FLAGS,DEFAULT_MAPPING,DESC,GROUP,\
SFINAE,NOWERROR,SHOWINSYSHEADER,CATEGORY) ENUM,
#define ASTSTART
#include "clang/Basic/DiagnosticASTKinds.inc"
#undef DIAG
NUM_BUILTIN_AST_DIAGNOSTICS
};
} // end namespace diag
/// \brief DiagnosticsEngine argument formatting function for diagnostics that
/// involve AST nodes.
///
/// This function formats diagnostic arguments for various AST nodes,
/// including types, declaration names, nested name specifiers, and
/// declaration contexts, into strings that can be printed as part of
/// diagnostics. It is meant to be used as the argument to
/// \c DiagnosticsEngine::SetArgToStringFn(), where the cookie is an \c
/// ASTContext pointer.
void FormatASTNodeDiagnosticArgument(
DiagnosticsEngine::ArgumentKind Kind,
intptr_t Val,
StringRef Modifier,
StringRef Argument,
ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
SmallVectorImpl<char> &Output,
void *Cookie,
ArrayRef<intptr_t> QualTypeVals);
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DataRecursiveASTVisitor.h | //===--- DataRecursiveASTVisitor.h - Data-Recursive AST Visitor -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DataRecursiveASTVisitor interface, which recursively
// traverses the entire AST, using data recursion for Stmts/Exprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DATARECURSIVEASTVISITOR_H
#define LLVM_CLANG_AST_DATARECURSIVEASTVISITOR_H
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
// The following three macros are used for meta programming. The code
// using them is responsible for defining macro OPERATOR().
// All unary operators.
#define UNARYOP_LIST() \
OPERATOR(PostInc) OPERATOR(PostDec) OPERATOR(PreInc) OPERATOR(PreDec) \
OPERATOR(AddrOf) OPERATOR(Deref) OPERATOR(Plus) OPERATOR(Minus) \
OPERATOR(Not) OPERATOR(LNot) OPERATOR(Real) OPERATOR(Imag) \
OPERATOR(Extension)
// All binary operators (excluding compound assign operators).
#define BINOP_LIST() \
OPERATOR(PtrMemD) OPERATOR(PtrMemI) OPERATOR(Mul) OPERATOR(Div) \
OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) OPERATOR(Shr) \
OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) OPERATOR(GE) OPERATOR(EQ) \
OPERATOR(NE) OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) OPERATOR(LAnd) \
OPERATOR(LOr) OPERATOR(Assign) OPERATOR(Comma)
// All compound assign operators.
#define CAO_LIST() \
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
namespace clang {
// Reduce the diff between RecursiveASTVisitor / DataRecursiveASTVisitor to
// make it easier to track changes and keep the two in sync.
#define RecursiveASTVisitor DataRecursiveASTVisitor
// A helper macro to implement short-circuiting when recursing. It
// invokes CALL_EXPR, which must be a method call, on the derived
// object (s.t. a user of RecursiveASTVisitor can override the method
// in CALL_EXPR).
#define TRY_TO(CALL_EXPR) \
do { \
if (!getDerived().CALL_EXPR) \
return false; \
} while (0)
/// \brief A class that does preorder depth-first traversal on the
/// entire Clang AST and visits each node.
///
/// This class performs three distinct tasks:
/// 1. traverse the AST (i.e. go to each node);
/// 2. at a given node, walk up the class hierarchy, starting from
/// the node's dynamic type, until the top-most class (e.g. Stmt,
/// Decl, or Type) is reached.
/// 3. given a (node, class) combination, where 'class' is some base
/// class of the dynamic type of 'node', call a user-overridable
/// function to actually visit the node.
///
/// These tasks are done by three groups of methods, respectively:
/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
/// for traversing an AST rooted at x. This method simply
/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
/// then recursively visits the child nodes of x.
/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
/// similarly.
/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
/// any child node of x. Instead, it first calls WalkUpFromBar(x)
/// where Bar is the direct parent class of Foo (unless Foo has
/// no parent), and then calls VisitFoo(x) (see the next list item).
/// 3. VisitFoo(Foo *x) does task #3.
///
/// These three method groups are tiered (Traverse* > WalkUpFrom* >
/// Visit*). A method (e.g. Traverse*) may call methods from the same
/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
/// It may not call methods from a higher tier.
///
/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
/// is Foo's super class) before calling VisitFoo(), the result is
/// that the Visit*() methods for a given node are called in the
/// top-down order (e.g. for a node of type NamespaceDecl, the order will
/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
///
/// This scheme guarantees that all Visit*() calls for the same AST
/// node are grouped together. In other words, Visit*() methods for
/// different nodes are never interleaved.
///
/// Stmts are traversed internally using a data queue to avoid a stack overflow
/// with hugely nested ASTs.
///
/// Clients of this visitor should subclass the visitor (providing
/// themselves as the template argument, using the curiously recurring
/// template pattern) and override any of the Traverse*, WalkUpFrom*,
/// and Visit* methods for declarations, types, statements,
/// expressions, or other AST nodes where the visitor should customize
/// behavior. Most users only need to override Visit*. Advanced
/// users may override Traverse* and WalkUpFrom* to implement custom
/// traversal strategies. Returning false from one of these overridden
/// functions will abort the entire traversal.
///
/// By default, this visitor tries to visit every part of the explicit
/// source code exactly once. The default policy towards templates
/// is to descend into the 'pattern' class or function body, not any
/// explicit or implicit instantiations. Explicit specializations
/// are still visited, and the patterns of partial specializations
/// are visited separately. This behavior can be changed by
/// overriding shouldVisitTemplateInstantiations() in the derived class
/// to return true, in which case all known implicit and explicit
/// instantiations will be visited at the same time as the pattern
/// from which they were produced.
template <typename Derived> class RecursiveASTVisitor {
public:
/// \brief Return a reference to the derived class.
Derived &getDerived() { return *static_cast<Derived *>(this); }
/// \brief Return whether this visitor should recurse into
/// template instantiations.
bool shouldVisitTemplateInstantiations() const { return false; }
/// \brief Return whether this visitor should recurse into the types of
/// TypeLocs.
bool shouldWalkTypesOfTypeLocs() const { return true; }
/// \brief Recursively visit a statement or expression, by
/// dispatching to Traverse*() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseStmt(Stmt *S);
/// \brief Recursively visit a type, by dispatching to
/// Traverse*Type() based on the argument's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type).
bool TraverseType(QualType T);
/// \brief Recursively visit a type with location, by dispatching to
/// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseTypeLoc(TypeLoc TL);
/// \brief Recursively visit an attribute, by dispatching to
/// Traverse*Attr() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseAttr(Attr *At);
/// \brief Recursively visit a declaration, by dispatching to
/// Traverse*Decl() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseDecl(Decl *D);
/// \brief Recursively visit a C++ nested-name-specifier.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
/// \brief Recursively visit a C++ nested-name-specifier with location
/// information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
/// \brief Recursively visit a name with its location information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
/// \brief Recursively visit a template name and dispatch to the
/// appropriate method.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateName(TemplateName Template);
/// \brief Recursively visit a template argument and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: migrate callers to TemplateArgumentLoc instead.
bool TraverseTemplateArgument(const TemplateArgument &Arg);
/// \brief Recursively visit a template argument location and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
/// \brief Recursively visit a set of template arguments.
/// This can be overridden by a subclass, but it's not expected that
/// will be needed -- this visitor always dispatches to another.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
bool TraverseTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs);
/// \brief Recursively visit a constructor initializer. This
/// automatically dispatches to another visitor for the initializer
/// expression, but not for the name of the initializer, so may
/// be overridden for clients that need access to the name.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
/// \brief Recursively visit a lambda capture.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C);
/// \brief Recursively visit the body of a lambda expression.
///
/// This provides a hook for visitors that need more context when visiting
/// \c LE->getBody().
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseLambdaBody(LambdaExpr *LE);
// ---- Methods on Attrs ----
// \brief Visit an attribute.
bool VisitAttr(Attr *A) { return true; }
// Declare Traverse* and empty Visit* for all Attr classes.
#define ATTR_VISITOR_DECLS_ONLY
#include "clang/AST/AttrVisitor.inc"
#undef ATTR_VISITOR_DECLS_ONLY
// ---- Methods on Stmts ----
// Declare Traverse*() for all concrete Stmt classes.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) bool Traverse##CLASS(CLASS *S);
#include "clang/AST/StmtNodes.inc"
// The above header #undefs ABSTRACT_STMT and STMT upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
bool VisitStmt(Stmt *S) { return true; }
#define STMT(CLASS, PARENT) \
bool WalkUpFrom##CLASS(CLASS *S) { \
TRY_TO(WalkUpFrom##PARENT(S)); \
TRY_TO(Visit##CLASS(S)); \
return true; \
} \
bool Visit##CLASS(CLASS *S) { return true; }
#include "clang/AST/StmtNodes.inc"
// Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
// operator methods. Unary operators are not classes in themselves
// (they're all opcodes in UnaryOperator) but do have visitors.
#define OPERATOR(NAME) \
bool TraverseUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnary##NAME(S)); \
StmtQueueAction StmtQueue(*this); \
StmtQueue.queue(S->getSubExpr()); \
return true; \
} \
bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnaryOperator(S)); \
TRY_TO(VisitUnary##NAME(S)); \
return true; \
} \
bool VisitUnary##NAME(UnaryOperator *S) { return true; }
UNARYOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
// operator methods. Binary operators are not classes in themselves
// (they're all opcodes in BinaryOperator) but do have visitors.
#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
bool TraverseBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFromBin##NAME(S)); \
StmtQueueAction StmtQueue(*this); \
StmtQueue.queue(S->getLHS()); \
StmtQueue.queue(S->getRHS()); \
return true; \
} \
bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
TRY_TO(VisitBin##NAME(S)); \
return true; \
} \
bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
BINOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
// assignment methods. Compound assignment operators are not
// classes in themselves (they're all opcodes in
// CompoundAssignOperator) but do have visitors.
#define OPERATOR(NAME) \
GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
CAO_LIST()
#undef OPERATOR
#undef GENERAL_BINOP_FALLBACK
// ---- Methods on Types ----
// FIXME: revamp to take TypeLoc's rather than Types.
// Declare Traverse*() for all concrete Type classes.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) bool Traverse##CLASS##Type(CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
// The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Type classes.
bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
bool VisitType(Type *T) { return true; }
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
TRY_TO(WalkUpFrom##BASE(T)); \
TRY_TO(Visit##CLASS##Type(T)); \
return true; \
} \
bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on TypeLocs ----
// FIXME: this currently just calls the matching Type methods
// Declare Traverse*() for all concrete TypeLoc classes.
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
#include "clang/AST/TypeLocNodes.def"
// The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
bool VisitTypeLoc(TypeLoc TL) { return true; }
// QualifiedTypeLoc and UnqualTypeLoc are not declared in
// TypeNodes.def and thus need to be handled specially.
bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
// Note that BASE includes trailing 'Type' which CLASS doesn't.
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
TRY_TO(Visit##CLASS##TypeLoc(TL)); \
return true; \
} \
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on Decls ----
// Declare Traverse*() for all concrete Decl classes.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) bool Traverse##CLASS##Decl(CLASS##Decl *D);
#include "clang/AST/DeclNodes.inc"
// The above header #undefs ABSTRACT_DECL and DECL upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Decl classes.
bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
bool VisitDecl(Decl *D) { return true; }
#define DECL(CLASS, BASE) \
bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
TRY_TO(WalkUpFrom##BASE(D)); \
TRY_TO(Visit##CLASS##Decl(D)); \
return true; \
} \
bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
#include "clang/AST/DeclNodes.inc"
private:
// These are helper methods used by more than one Traverse* method.
bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
bool TraverseClassInstantiations(ClassTemplateDecl *D);
bool TraverseVariableInstantiations(VarTemplateDecl *D);
bool TraverseFunctionInstantiations(FunctionTemplateDecl *D);
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
unsigned Count);
bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
bool TraverseRecordHelper(RecordDecl *D);
bool TraverseCXXRecordHelper(CXXRecordDecl *D);
bool TraverseDeclaratorHelper(DeclaratorDecl *D);
bool TraverseDeclContextHelper(DeclContext *DC);
bool TraverseFunctionHelper(FunctionDecl *D);
bool TraverseVarHelper(VarDecl *D);
bool TraverseOMPExecutableDirective(OMPExecutableDirective *S);
bool TraverseOMPLoopDirective(OMPLoopDirective *S);
bool TraverseOMPClause(OMPClause *C);
#define OPENMP_CLAUSE(Name, Class) bool Visit##Class(Class *C);
#include "clang/Basic/OpenMPKinds.def"
/// \brief Process clauses with list of variables.
template <typename T> bool VisitOMPClauseList(T *Node);
typedef SmallVector<Stmt *, 16> StmtsTy;
typedef SmallVector<StmtsTy *, 4> QueuesTy;
QueuesTy Queues;
class NewQueueRAII {
RecursiveASTVisitor &RAV;
public:
NewQueueRAII(StmtsTy &queue, RecursiveASTVisitor &RAV) : RAV(RAV) {
RAV.Queues.push_back(&queue);
}
~NewQueueRAII() { RAV.Queues.pop_back(); }
};
StmtsTy &getCurrentQueue() {
assert(!Queues.empty() && "base TraverseStmt was never called?");
return *Queues.back();
}
public:
class StmtQueueAction {
StmtsTy &CurrQueue;
public:
explicit StmtQueueAction(RecursiveASTVisitor &RAV)
: CurrQueue(RAV.getCurrentQueue()) {}
void queue(Stmt *S) { CurrQueue.push_back(S); }
};
};
#define DISPATCH(NAME, CLASS, VAR) \
return getDerived().Traverse##NAME(static_cast<CLASS *>(VAR))
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) {
if (!S)
return true;
StmtsTy Queue, StmtsToEnqueue;
Queue.push_back(S);
NewQueueRAII NQ(StmtsToEnqueue, *this);
while (!Queue.empty()) {
S = Queue.pop_back_val();
if (!S)
continue;
StmtsToEnqueue.clear();
#define DISPATCH_STMT(NAME, CLASS, VAR) \
TRY_TO(Traverse##NAME(static_cast<CLASS *>(VAR))); \
break
// If we have a binary expr, dispatch to the subcode of the binop. A smart
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
// below.
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
switch (BinOp->getOpcode()) {
#define OPERATOR(NAME) \
case BO_##NAME: \
DISPATCH_STMT(Bin##NAME, BinaryOperator, S);
BINOP_LIST()
#undef OPERATOR
#undef BINOP_LIST
#define OPERATOR(NAME) \
case BO_##NAME##Assign: \
DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S);
CAO_LIST()
#undef OPERATOR
#undef CAO_LIST
}
} else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
switch (UnOp->getOpcode()) {
#define OPERATOR(NAME) \
case UO_##NAME: \
DISPATCH_STMT(Unary##NAME, UnaryOperator, S);
UNARYOP_LIST()
#undef OPERATOR
#undef UNARYOP_LIST
}
} else {
// Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
switch (S->getStmtClass()) {
case Stmt::NoStmtClass:
break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: \
DISPATCH_STMT(CLASS, CLASS, S);
#include "clang/AST/StmtNodes.inc"
}
}
Queue.append(StmtsToEnqueue.rbegin(), StmtsToEnqueue.rend());
}
return true;
}
#undef DISPATCH_STMT
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
if (T.isNull())
return true;
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
case Type::CLASS: \
DISPATCH(CLASS##Type, CLASS##Type, const_cast<Type *>(T.getTypePtr()));
#include "clang/AST/TypeNodes.def"
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
if (TL.isNull())
return true;
switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
case TypeLoc::CLASS: \
return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
return true;
}
// Define the Traverse*Attr(Attr* A) methods
#define VISITORCLASS RecursiveASTVisitor
#include "clang/AST/AttrVisitor.inc"
#undef VISITORCLASS
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
if (!D)
return true;
// As a syntax visitor, we want to ignore declarations for
// implicitly-defined declarations (ones not typed explicitly by the
// user).
if (D->isImplicit())
return true;
switch (D->getKind()) {
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
case Decl::CLASS: \
if (!getDerived().Traverse##CLASS##Decl(static_cast<CLASS##Decl *>(D))) \
return false; \
break;
#include "clang/AST/DeclNodes.inc"
}
// Visit any attributes attached to this declaration.
for (auto *I : D->attrs()) {
if (!getDerived().TraverseAttr(I))
return false;
}
return true;
}
#undef DISPATCH
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
NestedNameSpecifier *NNS) {
if (!NNS)
return true;
if (NNS->getPrefix())
TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS) {
if (!NNS)
return true;
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
switch (NNS.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
DeclarationNameInfo NameInfo) {
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type:
return getDerived().TraverseType(Arg.getAsType());
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(Arg.getAsExpr());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
// FIXME: no template name location?
// FIXME: no source locations for a template argument pack?
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
const TemplateArgumentLoc &ArgLoc) {
const TemplateArgument &Arg = ArgLoc.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type: {
// FIXME: how can TSI ever be NULL?
if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
else
return getDerived().TraverseType(Arg.getAsType());
}
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (ArgLoc.getTemplateQualifierLoc())
TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
ArgLoc.getTemplateQualifierLoc()));
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
const TemplateArgument *Args, unsigned NumArgs) {
for (unsigned I = 0; I != NumArgs; ++I) {
TRY_TO(TraverseTemplateArgument(Args[I]));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
CXXCtorInitializer *Init) {
if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
if (Init->isWritten())
TRY_TO(TraverseStmt(Init->getInit()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr *LE,
const LambdaCapture *C) {
if (LE->isInitCapture(C))
TRY_TO(TraverseDecl(C->getCapturedVar()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseLambdaBody(LambdaExpr *LE) {
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(LE->getBody());
return true;
}
// ----------------- Type traversal -----------------
// This macro makes available a variable T, the passed-in type.
#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE(TYPE *T) { \
TRY_TO(WalkUpFrom##TYPE(T)); \
{ CODE; } \
return true; \
}
DEF_TRAVERSE_TYPE(BuiltinType, {})
DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(BlockPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(LValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(RValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(MemberPointerType, {
TRY_TO(TraverseType(QualType(T->getClass(), 0)));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(AdjustedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(DecayedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(ConstantArrayType,
{ TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(IncompleteArrayType,
{ TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(VariableArrayType, {
TRY_TO(TraverseType(T->getElementType()));
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
TRY_TO(TraverseType(T->getElementType()));
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(FunctionNoProtoType,
{ TRY_TO(TraverseType(T->getReturnType())); })
DEF_TRAVERSE_TYPE(FunctionProtoType, {
TRY_TO(TraverseType(T->getReturnType()));
for (const auto &A : T->param_types()) {
TRY_TO(TraverseType(A));
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPE(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPE(TypedefType, {})
DEF_TRAVERSE_TYPE(TypeOfExprType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(DecltypeType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(UnaryTransformType, {
TRY_TO(TraverseType(T->getBaseType()));
TRY_TO(TraverseType(T->getUnderlyingType()));
})
DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); })
DEF_TRAVERSE_TYPE(RecordType, {})
DEF_TRAVERSE_TYPE(EnumType, {})
DEF_TRAVERSE_TYPE(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, {})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, {})
DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(InjectedClassNameType, {})
DEF_TRAVERSE_TYPE(AttributedType,
{ TRY_TO(TraverseType(T->getModifiedType())); })
DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); })
DEF_TRAVERSE_TYPE(ElaboratedType, {
if (T->getQualifier()) {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
}
TRY_TO(TraverseType(T->getNamedType()));
})
DEF_TRAVERSE_TYPE(DependentNameType,
{ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); })
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); })
DEF_TRAVERSE_TYPE(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPE(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (T->getBaseType().getTypePtr() != T)
TRY_TO(TraverseType(T->getBaseType()));
for (auto typeArg : T->getTypeArgsAsWritten()) {
TRY_TO(TraverseType(typeArg));
}
})
DEF_TRAVERSE_TYPE(ObjCObjectPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); })
#undef DEF_TRAVERSE_TYPE
// ----------------- TypeLoc traversal -----------------
// This macro makes available a variable TL, the passed-in TypeLoc.
// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
// continue to work.
#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
if (getDerived().shouldWalkTypesOfTypeLocs()) \
TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE *>(TL.getTypePtr()))); \
TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
{ CODE; } \
return true; \
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(QualifiedTypeLoc TL) {
// Move this over to the 'main' typeloc tree. Note that this is a
// move -- we pretend that we were really looking at the unqualified
// typeloc all along -- rather than a recursion, so we don't follow
// the normal CRTP plan of going through
// getDerived().TraverseTypeLoc. If we did, we'd be traversing
// twice for the same type (once as a QualifiedTypeLoc version of
// the type, once as an UnqualifiedTypeLoc version of the type),
// which in effect means we'd call VisitTypeLoc twice with the
// 'same' type. This solves that problem, at the cost of never
// seeing the qualified version of the type (unless the client
// subclasses TraverseQualifiedTypeLoc themselves). It's not a
// perfect solution. A perfect solution probably requires making
// QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
// wrapper around Type* -- rather than being its own class in the
// type hierarchy.
return TraverseTypeLoc(TL.getUnqualifiedLoc());
}
DEF_TRAVERSE_TYPELOC(BuiltinType, {})
// FIXME: ComplexTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ComplexType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(PointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(BlockPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(LValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(RValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
// FIXME: location of base class?
// We traverse this in the type case as well, but how is it not reached through
// the pointee type?
DEF_TRAVERSE_TYPELOC(MemberPointerType, {
TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(AdjustedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
DEF_TRAVERSE_TYPELOC(DecayedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
// This isn't available for ArrayType, but is for the ArrayTypeLoc.
TRY_TO(TraverseStmt(TL.getSizeExpr()));
return true;
}
DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(VariableArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
// FIXME: order? why not size expr first?
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(VectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: size and attributes
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ExtVectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType,
{ TRY_TO(TraverseTypeLoc(TL.getReturnLoc())); })
// FIXME: location of exception specifications (attributes?)
DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
TRY_TO(TraverseTypeLoc(TL.getReturnLoc()));
const FunctionProtoType *T = TL.getTypePtr();
for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
if (TL.getParam(I)) {
TRY_TO(TraverseDecl(TL.getParam(I)));
} else if (I < T->getNumParams()) {
TRY_TO(TraverseType(T->getParamType(I)));
}
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPELOC(TypedefType, {})
DEF_TRAVERSE_TYPELOC(TypeOfExprType,
{ TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); })
DEF_TRAVERSE_TYPELOC(TypeOfType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
// FIXME: location of underlying expr
DEF_TRAVERSE_TYPELOC(DecltypeType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(AutoType, {
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(RecordType, {})
DEF_TRAVERSE_TYPELOC(EnumType, {})
DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, {})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, {})
// FIXME: use the loc for the template name?
DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, {})
DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(AttributedType,
{ TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); })
DEF_TRAVERSE_TYPELOC(ElaboratedType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentNameType, {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(PackExpansionType,
{ TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); })
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
TRY_TO(TraverseTypeLoc(TL.getTypeArgTInfo(i)->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
#undef DEF_TRAVERSE_TYPELOC
// ----------------- Decl traversal -----------------
//
// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
// the children that come from the DeclContext associated with it.
// Therefore each Traverse* only needs to worry about children other
// than those.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (auto *Child : DC->decls()) {
// BlockDecls and CapturedDecls are traversed through BlockExprs and
// CapturedStmts respectively.
if (!isa<BlockDecl>(Child) && !isa<CapturedDecl>(Child))
TRY_TO(TraverseDecl(Child));
}
return true;
}
// This macro makes available a variable D, the passed-in decl.
#define DEF_TRAVERSE_DECL(DECL, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##DECL(DECL *D) { \
TRY_TO(WalkUpFrom##DECL(D)); \
{ CODE; } \
TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
return true; \
}
DEF_TRAVERSE_DECL(AccessSpecDecl, {})
DEF_TRAVERSE_DECL(BlockDecl, {
if (TypeSourceInfo *TInfo = D->getSignatureAsWritten())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
TRY_TO(TraverseStmt(D->getBody()));
for (const auto &I : D->captures()) {
if (I.hasCopyExpr()) {
TRY_TO(TraverseStmt(I.getCopyExpr()));
}
}
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(CapturedDecl, {
TRY_TO(TraverseStmt(D->getBody()));
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(EmptyDecl, {})
DEF_TRAVERSE_DECL(FileScopeAsmDecl,
{ TRY_TO(TraverseStmt(D->getAsmString())); })
DEF_TRAVERSE_DECL(ImportDecl, {})
DEF_TRAVERSE_DECL(FriendDecl, {
// Friend is either decl or a type.
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
})
DEF_TRAVERSE_DECL(FriendTemplateDecl, {
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
TemplateParameterList *TPL = D->getTemplateParameterList(I);
for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end();
ITPL != ETPL; ++ITPL) {
TRY_TO(TraverseDecl(*ITPL));
}
}
})
DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl,
{ TRY_TO(TraverseDecl(D->getSpecialization())); })
DEF_TRAVERSE_DECL(LinkageSpecDecl, {})
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {// FIXME: implement this
})
DEF_TRAVERSE_DECL(StaticAssertDecl, {
TRY_TO(TraverseStmt(D->getAssertExpr()));
TRY_TO(TraverseStmt(D->getMessage()));
})
DEF_TRAVERSE_DECL(
TranslationUnitDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(ExternCContextDecl, {})
DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
// We shouldn't traverse an aliased namespace, since it will be
// defined (and, therefore, traversed) somewhere else.
//
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(LabelDecl, {// There is no code in a LabelDecl.
})
DEF_TRAVERSE_DECL(HLSLBufferDecl, {}) // HLSL Change.
DEF_TRAVERSE_DECL(
NamespaceDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCCategoryDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamList()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
return true;
})
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamListAsWritten()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
if (TypeSourceInfo *superTInfo = D->getSuperClassTInfo()) {
TRY_TO(TraverseTypeLoc(superTInfo->getTypeLoc()));
}
})
DEF_TRAVERSE_DECL(ObjCProtocolDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCMethodDecl, {
if (D->getReturnTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(D->getReturnTypeSourceInfo()->getTypeLoc()));
}
for (ObjCMethodDecl::param_iterator I = D->param_begin(), E = D->param_end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody()));
}
return true;
})
DEF_TRAVERSE_DECL(ObjCTypeParamDecl, {
if (D->hasExplicitBound()) {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
}
})
DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
return true;
})
DEF_TRAVERSE_DECL(UsingDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
})
DEF_TRAVERSE_DECL(UsingShadowDecl, {})
DEF_TRAVERSE_DECL(OMPThreadPrivateDecl, {
for (auto *I : D->varlists()) {
TRY_TO(TraverseStmt(I));
}
})
// A helper method for TemplateDecl's children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
TemplateParameterList *TPL) {
if (TPL) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
return true;
}
// A helper method for traversing the implicit instantiations of a
// class template.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations(
ClassTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
// We don't want to visit injected-class-names in this traversal.
if (cast<CXXRecordDecl>(RD)->isInjectedClassName())
continue;
switch (
cast<ClassTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
DEF_TRAVERSE_DECL(ClassTemplateDecl, {
CXXRecordDecl *TempDecl = D->getTemplatedDecl();
TRY_TO(TraverseDecl(TempDecl));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// class templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the class instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseClassInstantiations(D));
// Note that getInstantiatedFromMemberTemplate() is just a link
// from a template instantiation back to the template from which
// it was instantiated, and thus should not be traversed.
})
// A helper method for traversing the implicit instantiations of a
// class template.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVariableInstantiations(
VarTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
switch (
cast<VarTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
DEF_TRAVERSE_DECL(VarTemplateDecl, {
VarDecl *TempDecl = D->getTemplatedDecl();
TRY_TO(TraverseDecl(TempDecl));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// variable templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the variable instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseVariableInstantiations(D));
// Note that getInstantiatedFromMemberTemplate() is just a link
// from a template instantiation back to the template from which
// it was instantiated, and thus should not be traversed.
})
// A helper method for traversing the instantiations of a
// function while skipping its specializations.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations(
FunctionTemplateDecl *D) {
for (auto *FD : D->specializations()) {
for (auto *RD : FD->redecls()) {
switch (RD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We don't know what kind of FunctionDecl this is.
TRY_TO(TraverseDecl(RD));
break;
// No need to visit explicit instantiations, we'll find the node
// eventually.
// FIXME: This is incorrect; there is no other node for an explicit
// instantiation of a function template specialization.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
break;
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
DEF_TRAVERSE_DECL(FunctionTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// function templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the function instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseFunctionInstantiations(D));
})
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
// D is the "T" in something like
// template <template <typename> class T> class container { };
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
if (D->hasDefaultArgument()) {
TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
}
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
// D is the "T" in something like "template<typename T> class vector;"
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
if (D->hasDefaultArgument())
TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
})
DEF_TRAVERSE_DECL(TypedefDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the typedef, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
// A dependent using declaration which was marked with 'typename'.
// template<class T> class A : public B<T> { using typename B<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(EnumDecl, {
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// The enumerators are already traversed by
// decls_begin()/decls_end().
})
// Helper methods for RecordDecl and its children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(RecordDecl *D) {
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the source.
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(CXXRecordDecl *D) {
if (!TraverseRecordHelper(D))
return false;
if (D->isCompleteDefinition()) {
for (const auto &I : D->bases()) {
TRY_TO(TraverseTypeLoc(I.getTypeSourceInfo()->getTypeLoc()));
}
// We don't traverse the friends or the conversions, as they are
// already in decls_begin()/decls_end().
}
return true;
}
DEF_TRAVERSE_DECL(RecordDecl, { TRY_TO(TraverseRecordHelper(D)); })
DEF_TRAVERSE_DECL(CXXRecordDecl, { TRY_TO(TraverseCXXRecordHelper(D)); })
DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, {
// For implicit instantiations ("set<int> x;"), we don't want to
// recurse at all, since the instatiated class isn't written in
// the source code anywhere. (Note the instatiated *type* --
// set<int> -- is written, and will still get a callback of
// TemplateSpecializationType). For explicit instantiations
// ("template set<int>;"), we do need a callback, since this
// is the only callback that's made for this instantiation.
// We use getTypeAsWritten() to distinguish.
if (TypeSourceInfo *TSI = D->getTypeAsWritten())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
if (!getDerived().shouldVisitTemplateInstantiations() &&
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
// Returning from here skips traversing the
// declaration context of the ClassTemplateSpecializationDecl
// (embedded in the DEF_TRAVERSE_DECL() macro)
// which contains the instantiated members of the class.
return true;
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
const TemplateArgumentLoc *TAL, unsigned Count) {
for (unsigned I = 0; I < Count; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
}
return true;
}
DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, {
// The partial specialization.
if (TemplateParameterList *TPL = D->getTemplateParameters()) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
// The args that remains unspecialized.
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
// Don't need the ClassTemplatePartialSpecializationHelper, even
// though that's our parent class -- we already visit all the
// template args here.
TRY_TO(TraverseCXXRecordHelper(D));
// Instantiations will have been visited with the primary template.
})
DEF_TRAVERSE_DECL(EnumConstantDecl, { TRY_TO(TraverseStmt(D->getInitExpr())); })
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
// Like UnresolvedUsingTypenameDecl, but without the 'typename':
// template <class T> Class A : public Base<T> { using Base<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
return true;
}
DEF_TRAVERSE_DECL(MSPropertyDecl, { TRY_TO(TraverseDeclaratorHelper(D)); })
DEF_TRAVERSE_DECL(FieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
else if (D->hasInClassInitializer())
TRY_TO(TraverseStmt(D->getInClassInitializer()));
})
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
DEF_TRAVERSE_DECL(ObjCIvarDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
// If we're an explicit template specialization, iterate over the
// template args that were explicitly specified. If we were doing
// this in typing order, we'd do it between the return type and
// the function args, but both are handled by the FunctionTypeLoc
// above, so we have to choose one side. I've decided to do before.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
// A specialization might not have explicit template arguments if it has
// a templated return type and concrete arguments.
if (const ASTTemplateArgumentListInfo *TALI =
FTSI->TemplateArgumentsAsWritten) {
TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
TALI->NumTemplateArgs));
}
}
}
// Visit the function type itself, which can be either
// FunctionNoProtoType or FunctionProtoType, or a typedef. This
// also covers the return type and the function parameters,
// including exception specifications.
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
// Constructor initializers.
for (auto *I : Ctor->inits()) {
TRY_TO(TraverseConstructorInitializer(I));
}
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody())); // Function body.
}
return true;
}
DEF_TRAVERSE_DECL(FunctionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXMethodDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXConstructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
// CXXConversionDecl is the declaration of a type conversion operator.
// It's not a cast expression.
DEF_TRAVERSE_DECL(CXXConversionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDestructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
TRY_TO(TraverseDeclaratorHelper(D));
// Default params are taken care of when we traverse the ParmVarDecl.
if (!isa<ParmVarDecl>(D))
TRY_TO(TraverseStmt(D->getInit()));
return true;
}
DEF_TRAVERSE_DECL(VarDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(VarTemplateSpecializationDecl, {
// For implicit instantiations, we don't want to
// recurse at all, since the instatiated class isn't written in
// the source code anywhere.
if (TypeSourceInfo *TSI = D->getTypeAsWritten())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
if (!getDerived().shouldVisitTemplateInstantiations() &&
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
// Returning from here skips traversing the
// declaration context of the VarTemplateSpecializationDecl
// (embedded in the DEF_TRAVERSE_DECL() macro).
return true;
})
DEF_TRAVERSE_DECL(VarTemplatePartialSpecializationDecl, {
// The partial specialization.
if (TemplateParameterList *TPL = D->getTemplateParameters()) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
// The args that remains unspecialized.
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
// Don't need the VarTemplatePartialSpecializationHelper, even
// though that's our parent class -- we already visit all the
// template args here.
TRY_TO(TraverseVarHelper(D));
// Instantiations will have been visited with the primary
// template.
})
DEF_TRAVERSE_DECL(ImplicitParamDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
// A non-type template parameter, e.g. "S" in template<int S> class Foo ...
TRY_TO(TraverseDeclaratorHelper(D));
TRY_TO(TraverseStmt(D->getDefaultArgument()));
})
DEF_TRAVERSE_DECL(ParmVarDecl, {
TRY_TO(TraverseVarHelper(D));
if (D->hasDefaultArg() && D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
if (D->hasDefaultArg() && !D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getDefaultArg()));
})
#undef DEF_TRAVERSE_DECL
// ----------------- Stmt traversal -----------------
//
// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
// over the children defined in children() (every stmt defines these,
// though sometimes the range is empty). Each individual Traverse*
// method only needs to worry about children other than those. To see
// what children() does for a given class, see, e.g.,
// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
// This macro makes available a variable S, the passed-in stmt.
#define DEF_TRAVERSE_STMT(STMT, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##STMT(STMT *S) { \
TRY_TO(WalkUpFrom##STMT(S)); \
StmtQueueAction StmtQueue(*this); \
{ CODE; } \
for (Stmt *SubStmt : S->children()) { \
StmtQueue.queue(SubStmt); \
} \
return true; \
}
DEF_TRAVERSE_STMT(GCCAsmStmt, {
StmtQueue.queue(S->getAsmString());
for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
StmtQueue.queue(S->getInputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
StmtQueue.queue(S->getOutputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
StmtQueue.queue(S->getClobberStringLiteral(I));
}
// children() iterates over inputExpr and outputExpr.
})
DEF_TRAVERSE_STMT(
MSAsmStmt,
{// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once
// added this needs to be implemented.
})
DEF_TRAVERSE_STMT(CXXCatchStmt, {
TRY_TO(TraverseDecl(S->getExceptionDecl()));
// children() iterates over the handler block.
})
DEF_TRAVERSE_STMT(DeclStmt, {
for (auto *I : S->decls()) {
TRY_TO(TraverseDecl(I));
}
// Suppress the default iteration over children() by
// returning. Here's why: A DeclStmt looks like 'type var [=
// initializer]'. The decls above already traverse over the
// initializers, so we don't have to do it again (which
// children() would do).
return true;
})
DEF_TRAVERSE_STMT(DiscardStmt, {}) // HLSL Change.
// These non-expr stmts (most of them), do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BreakStmt, {})
DEF_TRAVERSE_STMT(CXXTryStmt, {})
DEF_TRAVERSE_STMT(CaseStmt, {})
DEF_TRAVERSE_STMT(CompoundStmt, {})
DEF_TRAVERSE_STMT(ContinueStmt, {})
DEF_TRAVERSE_STMT(DefaultStmt, {})
DEF_TRAVERSE_STMT(DoStmt, {})
DEF_TRAVERSE_STMT(ForStmt, {})
DEF_TRAVERSE_STMT(GotoStmt, {})
DEF_TRAVERSE_STMT(IfStmt, {})
DEF_TRAVERSE_STMT(IndirectGotoStmt, {})
DEF_TRAVERSE_STMT(LabelStmt, {})
DEF_TRAVERSE_STMT(AttributedStmt, {})
DEF_TRAVERSE_STMT(NullStmt, {})
DEF_TRAVERSE_STMT(ObjCAtCatchStmt, {})
DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, {})
DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, {})
DEF_TRAVERSE_STMT(ObjCAtThrowStmt, {})
DEF_TRAVERSE_STMT(ObjCAtTryStmt, {})
DEF_TRAVERSE_STMT(ObjCForCollectionStmt, {})
DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, {})
DEF_TRAVERSE_STMT(CXXForRangeStmt, {})
DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
})
DEF_TRAVERSE_STMT(ReturnStmt, {})
DEF_TRAVERSE_STMT(SwitchStmt, {})
DEF_TRAVERSE_STMT(WhileStmt, {})
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(DeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getExplicitTemplateArgs().getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(MemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(
ImplicitCastExpr,
{// We don't traverse the cast type, as it's not written in the
// source code.
})
DEF_TRAVERSE_STMT(CStyleCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXConstCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
// InitListExpr is a tricky one, because we want to do all our work on
// the syntactic form of the listexpr, but this method takes the
// semantic form by default. We can't use the macro helper because it
// calls WalkUp*() on the semantic form, before our code can convert
// to the syntactic form.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) {
if (InitListExpr *Syn = S->getSyntacticForm())
S = Syn;
TRY_TO(WalkUpFromInitListExpr(S));
StmtQueueAction StmtQueue(*this);
// All we need are the default actions. FIXME: use a helper function.
for (Stmt *SubStmt : S->children()) {
StmtQueue.queue(SubStmt);
}
return true;
}
// GenericSelectionExpr is a special case because the types and expressions
// are interleaved. We also need to watch out for null types (default
// generic associations).
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseGenericSelectionExpr(
GenericSelectionExpr *S) {
TRY_TO(WalkUpFromGenericSelectionExpr(S));
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(S->getControllingExpr());
for (unsigned i = 0; i != S->getNumAssocs(); ++i) {
if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i))
TRY_TO(TraverseTypeLoc(TS->getTypeLoc()));
StmtQueue.queue(S->getAssocExpr(i));
}
return true;
}
// PseudoObjectExpr is a special case because of the wierdness with
// syntactic expressions and opaque values.
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraversePseudoObjectExpr(PseudoObjectExpr *S) {
TRY_TO(WalkUpFromPseudoObjectExpr(S));
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(S->getSyntacticForm());
for (PseudoObjectExpr::semantics_iterator i = S->semantics_begin(),
e = S->semantics_end();
i != e; ++i) {
Expr *sub = *i;
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
sub = OVE->getSourceExpr();
StmtQueue.queue(sub);
}
return true;
}
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
// This is called for code like 'return T()' where T is a built-in
// (i.e. non-class) type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXNewExpr, {
// The child-iterator will pick up the other arguments.
TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(OffsetOfExpr, {
// The child-iterator will pick up the expression representing
// the field.
// FIMXE: for code like offsetof(Foo, a.b.c), should we get
// making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isArgumentType())
TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTypeidExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(MSPropertyRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
})
DEF_TRAVERSE_STMT(CXXUuidofExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(TypeTraitExpr, {
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ExpressionTraitExpr,
{ StmtQueue.queue(S->getQueriedExpression()); })
// HLSL Change begin.
DEF_TRAVERSE_STMT(ExtMatrixElementExpr, {})
DEF_TRAVERSE_STMT(HLSLVectorElementExpr, {})
// HLSL Change end.
DEF_TRAVERSE_STMT(VAArgExpr, {
// The child-iterator will pick up the expression argument.
TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
// This is called for code like 'return T()' where T is a class type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// Walk only the visible parts of lambda expressions.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) {
TRY_TO(WalkUpFromLambdaExpr(S));
for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
CEnd = S->explicit_capture_end();
C != CEnd; ++C) {
TRY_TO(TraverseLambdaCapture(S, C));
}
TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
FunctionProtoTypeLoc Proto = TL.castAs<FunctionProtoTypeLoc>();
if (S->hasExplicitParameters() && S->hasExplicitResultType()) {
// Visit the whole type.
TRY_TO(TraverseTypeLoc(TL));
} else {
if (S->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumParams(); I != N; ++I) {
TRY_TO(TraverseDecl(Proto.getParam(I)));
}
} else if (S->hasExplicitResultType()) {
TRY_TO(TraverseTypeLoc(Proto.getReturnLoc()));
}
auto *T = Proto.getTypePtr();
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
}
TRY_TO(TraverseLambdaBody(S));
return true;
}
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
// This is called for code like 'T()', where T is a template argument.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// These expressions all might take explicit template arguments.
// We traverse those if so. FIXME: implement these.
DEF_TRAVERSE_STMT(CXXConstructExpr, {})
DEF_TRAVERSE_STMT(CallExpr, {})
DEF_TRAVERSE_STMT(CXXMemberCallExpr, {})
// These exprs (most of them), do not need any action except iterating
// over the children.
DEF_TRAVERSE_STMT(AddrLabelExpr, {})
DEF_TRAVERSE_STMT(ArraySubscriptExpr, {})
DEF_TRAVERSE_STMT(BlockExpr, {
TRY_TO(TraverseDecl(S->getBlockDecl()));
return true; // no child statements to loop through.
})
DEF_TRAVERSE_STMT(ChooseExpr, {})
DEF_TRAVERSE_STMT(CompoundLiteralExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, {})
DEF_TRAVERSE_STMT(CXXDefaultInitExpr, {})
DEF_TRAVERSE_STMT(CXXDeleteExpr, {})
DEF_TRAVERSE_STMT(ExprWithCleanups, {})
DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXStdInitializerListExpr, {})
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXThisExpr, {})
DEF_TRAVERSE_STMT(CXXThrowExpr, {})
DEF_TRAVERSE_STMT(UserDefinedLiteral, {})
DEF_TRAVERSE_STMT(DesignatedInitExpr, {})
DEF_TRAVERSE_STMT(DesignatedInitUpdateExpr, {})
DEF_TRAVERSE_STMT(ExtVectorElementExpr, {})
DEF_TRAVERSE_STMT(GNUNullExpr, {})
DEF_TRAVERSE_STMT(ImplicitValueInitExpr, {})
DEF_TRAVERSE_STMT(NoInitExpr, {})
DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(ObjCEncodeExpr, {
if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCIsaExpr, {})
DEF_TRAVERSE_STMT(ObjCIvarRefExpr, {})
DEF_TRAVERSE_STMT(ObjCMessageExpr, {
if (TypeSourceInfo *TInfo = S->getClassReceiverTypeInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, {})
DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, {})
DEF_TRAVERSE_STMT(ObjCProtocolExpr, {})
DEF_TRAVERSE_STMT(ObjCSelectorExpr, {})
DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, {})
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ParenExpr, {})
DEF_TRAVERSE_STMT(ParenListExpr, {})
DEF_TRAVERSE_STMT(PredefinedExpr, {})
DEF_TRAVERSE_STMT(ShuffleVectorExpr, {})
DEF_TRAVERSE_STMT(ConvertVectorExpr, {})
DEF_TRAVERSE_STMT(StmtExpr, {})
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(SEHTryStmt, {})
DEF_TRAVERSE_STMT(SEHExceptStmt, {})
DEF_TRAVERSE_STMT(SEHFinallyStmt, {})
DEF_TRAVERSE_STMT(SEHLeaveStmt, {})
DEF_TRAVERSE_STMT(CapturedStmt, { TRY_TO(TraverseDecl(S->getCapturedDecl())); })
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, {})
DEF_TRAVERSE_STMT(OpaqueValueExpr, {})
DEF_TRAVERSE_STMT(TypoExpr, {})
DEF_TRAVERSE_STMT(CUDAKernelCallExpr, {})
// These operators (all of them) do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BinaryConditionalOperator, {})
DEF_TRAVERSE_STMT(ConditionalOperator, {})
DEF_TRAVERSE_STMT(UnaryOperator, {})
DEF_TRAVERSE_STMT(BinaryOperator, {})
DEF_TRAVERSE_STMT(CompoundAssignOperator, {})
DEF_TRAVERSE_STMT(CXXNoexceptExpr, {})
DEF_TRAVERSE_STMT(PackExpansionExpr, {})
DEF_TRAVERSE_STMT(SizeOfPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, {})
DEF_TRAVERSE_STMT(FunctionParmPackExpr, {})
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXFoldExpr, {})
DEF_TRAVERSE_STMT(AtomicExpr, {})
// These literals (all of them) do not need any action.
DEF_TRAVERSE_STMT(IntegerLiteral, {})
DEF_TRAVERSE_STMT(CharacterLiteral, {})
DEF_TRAVERSE_STMT(FloatingLiteral, {})
DEF_TRAVERSE_STMT(ImaginaryLiteral, {})
DEF_TRAVERSE_STMT(StringLiteral, {})
DEF_TRAVERSE_STMT(ObjCStringLiteral, {})
DEF_TRAVERSE_STMT(ObjCBoxedExpr, {})
DEF_TRAVERSE_STMT(ObjCArrayLiteral, {})
DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, {})
// Traverse OpenCL: AsType, Convert.
DEF_TRAVERSE_STMT(AsTypeExpr, {})
// OpenMP directives.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPExecutableDirective(
OMPExecutableDirective *S) {
for (auto *C : S->clauses()) {
TRY_TO(TraverseOMPClause(C));
}
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseOMPLoopDirective(OMPLoopDirective *S) {
return TraverseOMPExecutableDirective(S);
}
DEF_TRAVERSE_STMT(OMPParallelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSingleDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCriticalDirective, {
TRY_TO(TraverseDeclarationNameInfo(S->getDirectiveName()));
TRY_TO(TraverseOMPExecutableDirective(S));
})
DEF_TRAVERSE_STMT(OMPParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskyieldDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPBarrierDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskwaitDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskgroupDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancellationPointDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPFlushDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPOrderedDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPAtomicDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
// OpenMP clauses.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPClause(OMPClause *C) {
if (!C)
return true;
switch (C->getClauseKind()) {
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_##Name: \
TRY_TO(Visit##Class(static_cast<Class *>(C))); \
break;
#include "clang/Basic/OpenMPKinds.def"
case OMPC_threadprivate:
case OMPC_unknown:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPIfClause(OMPIfClause *C) {
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFinalClause(OMPFinalClause *C) {
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
TRY_TO(TraverseStmt(C->getNumThreads()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSafelenClause(OMPSafelenClause *C) {
TRY_TO(TraverseStmt(C->getSafelen()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPCollapseClause(OMPCollapseClause *C) {
TRY_TO(TraverseStmt(C->getNumForLoops()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDefaultClause(OMPDefaultClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPProcBindClause(OMPProcBindClause *) {
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPScheduleClause(OMPScheduleClause *C) {
TRY_TO(TraverseStmt(C->getChunkSize()));
TRY_TO(TraverseStmt(C->getHelperChunkSize()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPOrderedClause(OMPOrderedClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPNowaitClause(OMPNowaitClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUntiedClause(OMPUntiedClause *) {
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPMergeableClause(OMPMergeableClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPReadClause(OMPReadClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPWriteClause(OMPWriteClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUpdateClause(OMPUpdateClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPCaptureClause(OMPCaptureClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSeqCstClause(OMPSeqCstClause *) {
return true;
}
template <typename Derived>
template <typename T>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseList(T *Node) {
for (auto *E : Node->varlists()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPPrivateClause(OMPPrivateClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->private_copies()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFirstprivateClause(
OMPFirstprivateClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->private_copies()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->inits()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPLastprivateClause(
OMPLastprivateClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->private_copies()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->source_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->destination_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->assignment_ops()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSharedClause(OMPSharedClause *C) {
TRY_TO(VisitOMPClauseList(C));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPLinearClause(OMPLinearClause *C) {
TRY_TO(TraverseStmt(C->getStep()));
TRY_TO(TraverseStmt(C->getCalcStep()));
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->inits()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->updates()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->finals()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAlignedClause(OMPAlignedClause *C) {
TRY_TO(TraverseStmt(C->getAlignment()));
TRY_TO(VisitOMPClauseList(C));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPCopyinClause(OMPCopyinClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->source_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->destination_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->assignment_ops()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPCopyprivateClause(
OMPCopyprivateClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->source_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->destination_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->assignment_ops()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPReductionClause(OMPReductionClause *C) {
TRY_TO(TraverseNestedNameSpecifierLoc(C->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(C->getNameInfo()));
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->lhs_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->rhs_exprs()) {
TRY_TO(TraverseStmt(E));
}
for (auto *E : C->reduction_ops()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFlushClause(OMPFlushClause *C) {
TRY_TO(VisitOMPClauseList(C));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDependClause(OMPDependClause *C) {
TRY_TO(VisitOMPClauseList(C));
return true;
}
// FIXME: look at the following tricky-seeming exprs to see if we
// need to recurse on anything. These are ones that have methods
// returning decls or qualtypes or nestednamespecifier -- though I'm
// not sure if they own them -- or just seemed very complicated, or
// had lots of sub-types to explore.
//
// VisitOverloadExpr and its children: recurse on template args? etc?
// FIXME: go through all the stmts and exprs again, and see which of them
// create new types, and recurse on the types (TypeLocs?) of those.
// Candidates:
//
// http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html
// http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html
// http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html
// Every class that has getQualifier.
#undef DEF_TRAVERSE_STMT
#undef TRY_TO
#undef RecursiveASTVisitor
} // end namespace clang
#endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentBriefParser.h | //===--- CommentBriefParser.h - Dumb comment parser -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a very simple Doxygen comment parser.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTBRIEFPARSER_H
#define LLVM_CLANG_AST_COMMENTBRIEFPARSER_H
#include "clang/AST/CommentLexer.h"
namespace clang {
namespace comments {
/// A very simple comment parser that extracts "a brief description".
///
/// Due to a variety of comment styles, it considers the following as "a brief
/// description", in order of priority:
/// \li a \\brief or \\short command,
/// \li the first paragraph,
/// \li a \\result or \\return or \\returns paragraph.
class BriefParser {
Lexer &L;
const CommandTraits &Traits;
/// Current lookahead token.
Token Tok;
SourceLocation ConsumeToken() {
SourceLocation Loc = Tok.getLocation();
L.lex(Tok);
return Loc;
}
public:
BriefParser(Lexer &L, const CommandTraits &Traits);
/// Return the best "brief description" we can find.
std::string Parse();
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/Stmt.h | //===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Stmt interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMT_H
#define LLVM_CLANG_AST_STMT_H
#include "clang/AST/DeclGroup.h"
#include "clang/AST/StmtIterator.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <string>
namespace llvm {
class FoldingSetNodeID;
}
namespace clang {
class ASTContext;
class Attr;
class CapturedDecl;
class Decl;
class Expr;
class IdentifierInfo;
class LabelDecl;
class ParmVarDecl;
class PrinterHelper;
struct PrintingPolicy;
class QualType;
class RecordDecl;
class SourceManager;
class StringLiteral;
class SwitchStmt;
class Token;
class VarDecl;
//===--------------------------------------------------------------------===//
// ExprIterator - Iterators for iterating over Stmt* arrays that contain
// only Expr*. This is needed because AST nodes use Stmt* arrays to store
// references to children (to be compatible with StmtIterator).
//===--------------------------------------------------------------------===//
class Stmt;
class Expr;
class ExprIterator {
Stmt** I;
public:
using REFERENCE = Expr *&;
using iterator_category = std::forward_iterator_tag;
using value_type = REFERENCE;
using difference_type = std::ptrdiff_t;
using pointer = REFERENCE;
using reference = REFERENCE;
ExprIterator(Stmt** i) : I(i) {}
ExprIterator() : I(nullptr) {}
ExprIterator& operator++() { ++I; return *this; }
ExprIterator operator-(size_t i) { return I-i; }
ExprIterator operator+(size_t i) { return I+i; }
Expr* operator[](size_t idx);
// FIXME: Verify that this will correctly return a signed distance.
signed operator-(const ExprIterator& R) const { return I - R.I; }
Expr* operator*() const;
Expr* operator->() const;
bool operator==(const ExprIterator& R) const { return I == R.I; }
bool operator!=(const ExprIterator& R) const { return I != R.I; }
bool operator>(const ExprIterator& R) const { return I > R.I; }
bool operator>=(const ExprIterator& R) const { return I >= R.I; }
};
class ConstExprIterator {
const Stmt * const *I;
public:
using REFERENCE = Expr *&;
using iterator_category = std::forward_iterator_tag;
using value_type = REFERENCE;
using difference_type = std::ptrdiff_t;
using pointer = REFERENCE;
using reference = REFERENCE;
ConstExprIterator(const Stmt * const *i) : I(i) {}
ConstExprIterator() : I(nullptr) {}
ConstExprIterator& operator++() { ++I; return *this; }
ConstExprIterator operator+(size_t i) const { return I+i; }
ConstExprIterator operator-(size_t i) const { return I-i; }
const Expr * operator[](size_t idx) const;
signed operator-(const ConstExprIterator& R) const { return I - R.I; }
const Expr * operator*() const;
const Expr * operator->() const;
bool operator==(const ConstExprIterator& R) const { return I == R.I; }
bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
bool operator>(const ConstExprIterator& R) const { return I > R.I; }
bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
};
//===----------------------------------------------------------------------===//
// AST classes for statements.
// //
///////////////////////////////////////////////////////////////////////////////
/// Stmt - This represents one statement.
///
class LLVM_ALIGNAS(LLVM_PTR_SIZE) Stmt {
public:
enum StmtClass {
NoStmtClass = 0,
#define STMT(CLASS, PARENT) CLASS##Class,
#define STMT_RANGE(BASE, FIRST, LAST) \
first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
#define ABSTRACT_STMT(STMT)
#include "clang/AST/StmtNodes.inc"
};
// Make vanilla 'new' and 'delete' illegal for Stmts.
protected:
void* operator new(size_t bytes) throw() {
llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
}
void operator delete(void* data) throw() {
llvm_unreachable("Stmts cannot be released with regular 'delete'.");
}
class StmtBitfields {
friend class Stmt;
/// \brief The statement class.
unsigned sClass : 8;
};
enum { NumStmtBits = 8 };
class CompoundStmtBitfields {
friend class CompoundStmt;
unsigned : NumStmtBits;
unsigned NumStmts : 32 - NumStmtBits;
};
class ExprBitfields {
friend class Expr;
friend class DeclRefExpr; // computeDependence
friend class InitListExpr; // ctor
friend class DesignatedInitExpr; // ctor
friend class BlockDeclRefExpr; // ctor
friend class ASTStmtReader; // deserialization
friend class CXXNewExpr; // ctor
friend class DependentScopeDeclRefExpr; // ctor
friend class CXXConstructExpr; // ctor
friend class CallExpr; // ctor
friend class OffsetOfExpr; // ctor
friend class ObjCMessageExpr; // ctor
friend class ObjCArrayLiteral; // ctor
friend class ObjCDictionaryLiteral; // ctor
friend class ShuffleVectorExpr; // ctor
friend class ParenListExpr; // ctor
friend class CXXUnresolvedConstructExpr; // ctor
friend class CXXDependentScopeMemberExpr; // ctor
friend class OverloadExpr; // ctor
friend class PseudoObjectExpr; // ctor
friend class AtomicExpr; // ctor
unsigned : NumStmtBits;
unsigned ValueKind : 2;
unsigned ObjectKind : 2;
unsigned TypeDependent : 1;
unsigned ValueDependent : 1;
unsigned InstantiationDependent : 1;
unsigned ContainsUnexpandedParameterPack : 1;
};
enum { NumExprBits = 16 };
class CharacterLiteralBitfields {
friend class CharacterLiteral;
unsigned : NumExprBits;
unsigned Kind : 2;
};
enum APFloatSemantics {
IEEEhalf,
IEEEsingle,
IEEEdouble,
x87DoubleExtended,
IEEEquad,
PPCDoubleDouble
};
class FloatingLiteralBitfields {
friend class FloatingLiteral;
unsigned : NumExprBits;
unsigned Semantics : 3; // Provides semantics for APFloat construction
unsigned IsExact : 1;
};
class UnaryExprOrTypeTraitExprBitfields {
friend class UnaryExprOrTypeTraitExpr;
unsigned : NumExprBits;
unsigned Kind : 3; // HLSL Change
unsigned IsType : 1; // true if operand is a type, false if an expression.
};
class DeclRefExprBitfields {
friend class DeclRefExpr;
friend class ASTStmtReader; // deserialization
unsigned : NumExprBits;
unsigned HasQualifier : 1;
unsigned HasTemplateKWAndArgsInfo : 1;
unsigned HasFoundDecl : 1;
unsigned HadMultipleCandidates : 1;
unsigned RefersToEnclosingVariableOrCapture : 1;
};
class CastExprBitfields {
friend class CastExpr;
unsigned : NumExprBits;
unsigned Kind : 7; // HLSL Change
unsigned BasePathSize : 32 - 7 - NumExprBits; // HLSL Change
};
class CallExprBitfields {
friend class CallExpr;
unsigned : NumExprBits;
unsigned NumPreArgs : 1;
};
class ExprWithCleanupsBitfields {
friend class ExprWithCleanups;
friend class ASTStmtReader; // deserialization
unsigned : NumExprBits;
unsigned NumObjects : 32 - NumExprBits;
};
class PseudoObjectExprBitfields {
friend class PseudoObjectExpr;
friend class ASTStmtReader; // deserialization
unsigned : NumExprBits;
// These don't need to be particularly wide, because they're
// strictly limited by the forms of expressions we permit.
unsigned NumSubExprs : 8;
unsigned ResultIndex : 32 - 8 - NumExprBits;
};
class ObjCIndirectCopyRestoreExprBitfields {
friend class ObjCIndirectCopyRestoreExpr;
unsigned : NumExprBits;
unsigned ShouldCopy : 1;
};
class InitListExprBitfields {
friend class InitListExpr;
unsigned : NumExprBits;
/// Whether this initializer list originally had a GNU array-range
/// designator in it. This is a temporary marker used by CodeGen.
unsigned HadArrayRangeDesignator : 1;
// HLSL Change begin - mark vector init like float4(a,b,c,d).
unsigned VectorInitWithCXXFunctionalCastExpr : 1;
// HLSL Change end.
};
class TypeTraitExprBitfields {
friend class TypeTraitExpr;
friend class ASTStmtReader;
friend class ASTStmtWriter;
unsigned : NumExprBits;
/// \brief The kind of type trait, which is a value of a TypeTrait enumerator.
unsigned Kind : 8;
/// \brief If this expression is not value-dependent, this indicates whether
/// the trait evaluated true or false.
unsigned Value : 1;
/// \brief The number of arguments to this type trait.
unsigned NumArgs : 32 - 8 - 1 - NumExprBits;
};
union {
StmtBitfields StmtBits;
CompoundStmtBitfields CompoundStmtBits;
ExprBitfields ExprBits;
CharacterLiteralBitfields CharacterLiteralBits;
FloatingLiteralBitfields FloatingLiteralBits;
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits;
DeclRefExprBitfields DeclRefExprBits;
CastExprBitfields CastExprBits;
CallExprBitfields CallExprBits;
ExprWithCleanupsBitfields ExprWithCleanupsBits;
PseudoObjectExprBitfields PseudoObjectExprBits;
ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
InitListExprBitfields InitListExprBits;
TypeTraitExprBitfields TypeTraitExprBits;
};
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
// Only allow allocation of Stmts using the allocator in ASTContext
// or by doing a placement new.
void* operator new(size_t bytes, const ASTContext& C,
unsigned alignment = 8);
void* operator new(size_t bytes, const ASTContext* C,
unsigned alignment = 8) {
return operator new(bytes, *C, alignment);
}
void* operator new(size_t bytes, void* mem) throw() {
return mem;
}
void operator delete(void*, const ASTContext&, unsigned) throw() { }
void operator delete(void*, const ASTContext*, unsigned) throw() { }
void operator delete(void*, size_t) throw() { }
void operator delete(void*, void*) throw() { }
public:
/// \brief A placeholder type used to construct an empty shell of a
/// type, that will be filled in later (e.g., by some
/// de-serialization).
struct EmptyShell { };
private:
/// \brief Whether statistic collection is enabled.
static bool StatisticsEnabled;
protected:
/// \brief Construct an empty statement.
explicit Stmt(StmtClass SC, EmptyShell) : Stmt(SC) {}
public:
Stmt(StmtClass SC) {
static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
"Insufficient alignment!");
StmtBits.sClass = SC;
if (StatisticsEnabled) Stmt::addStmtClass(SC);
}
StmtClass getStmtClass() const {
return static_cast<StmtClass>(StmtBits.sClass);
}
const char *getStmtClassName() const;
/// SourceLocation tokens are not useful in isolation - they are low level
/// value objects created/interpreted by SourceManager. We assume AST
/// clients will have a pointer to the respective SourceManager.
SourceRange getSourceRange() const LLVM_READONLY;
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
// global temp stats (until we have a per-module visitor)
static void addStmtClass(const StmtClass s);
static void EnableStatistics();
static void PrintStats();
/// \brief Dumps the specified AST fragment and all subtrees to
/// \c llvm::errs().
void dump() const;
void dump(SourceManager &SM) const;
void dump(raw_ostream &OS, SourceManager &SM) const;
void dump(raw_ostream &OS) const;
/// dumpColor - same as dump(), but forces color highlighting.
void dumpColor() const;
/// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
/// back to its original source language syntax.
void dumpPretty(const ASTContext &Context) const;
void printPretty(raw_ostream &OS, PrinterHelper *Helper,
const PrintingPolicy &Policy,
unsigned Indentation = 0) const;
/// viewAST - Visualize an AST rooted at this Stmt* using GraphViz. Only
/// works on systems with GraphViz (Mac OS X) or dot+gv installed.
void viewAST() const;
/// Skip past any implicit AST nodes which might surround this
/// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
Stmt *IgnoreImplicit();
/// \brief Skip no-op (attributed, compound) container stmts and skip captured
/// stmt at the top, if \a IgnoreCaptured is true.
Stmt *IgnoreContainers(bool IgnoreCaptured = false);
const Stmt *stripLabelLikeStatements() const;
Stmt *stripLabelLikeStatements() {
return const_cast<Stmt*>(
const_cast<const Stmt*>(this)->stripLabelLikeStatements());
}
/// Child Iterators: All subclasses must implement 'children'
/// to permit easy iteration over the substatements/subexpessions of an
/// AST node. This permits easy iteration over all nodes in the AST.
typedef StmtIterator child_iterator;
typedef ConstStmtIterator const_child_iterator;
typedef StmtRange child_range;
typedef ConstStmtRange const_child_range;
child_range children();
const_child_range children() const {
return const_cast<Stmt*>(this)->children();
}
child_iterator child_begin() { return children().first; }
child_iterator child_end() { return children().second; }
const_child_iterator child_begin() const { return children().first; }
const_child_iterator child_end() const { return children().second; }
/// \brief Produce a unique representation of the given statement.
///
/// \param ID once the profiling operation is complete, will contain
/// the unique representation of the given statement.
///
/// \param Context the AST context in which the statement resides
///
/// \param Canonical whether the profile should be based on the canonical
/// representation of this statement (e.g., where non-type template
/// parameters are identified by index/level rather than their
/// declaration pointers) or the exact representation of the statement as
/// written in the source.
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
bool Canonical) const;
};
/// DeclStmt - Adaptor class for mixing declarations with statements and
/// expressions. For example, CompoundStmt mixes statements, expressions
/// and declarations (variables, types). Another example is ForStmt, where
/// the first statement can be an expression or a declaration.
///
class DeclStmt : public Stmt {
DeclGroupRef DG;
SourceLocation StartLoc, EndLoc;
public:
DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
StartLoc(startLoc), EndLoc(endLoc) {}
/// \brief Build an empty declaration statement.
explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
/// isSingleDecl - This method returns true if this DeclStmt refers
/// to a single Decl.
bool isSingleDecl() const {
return DG.isSingleDecl();
}
const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
Decl *getSingleDecl() { return DG.getSingleDecl(); }
const DeclGroupRef getDeclGroup() const { return DG; }
DeclGroupRef getDeclGroup() { return DG; }
void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
SourceLocation getStartLoc() const { return StartLoc; }
void setStartLoc(SourceLocation L) { StartLoc = L; }
SourceLocation getEndLoc() const { return EndLoc; }
void setEndLoc(SourceLocation L) { EndLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return StartLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclStmtClass;
}
// Iterators over subexpressions.
child_range children() {
return child_range(child_iterator(DG.begin(), DG.end()),
child_iterator(DG.end(), DG.end()));
}
typedef DeclGroupRef::iterator decl_iterator;
typedef DeclGroupRef::const_iterator const_decl_iterator;
typedef llvm::iterator_range<decl_iterator> decl_range;
typedef llvm::iterator_range<const_decl_iterator> decl_const_range;
decl_range decls() { return decl_range(decl_begin(), decl_end()); }
decl_const_range decls() const {
return decl_const_range(decl_begin(), decl_end());
}
decl_iterator decl_begin() { return DG.begin(); }
decl_iterator decl_end() { return DG.end(); }
const_decl_iterator decl_begin() const { return DG.begin(); }
const_decl_iterator decl_end() const { return DG.end(); }
typedef std::reverse_iterator<decl_iterator> reverse_decl_iterator;
reverse_decl_iterator decl_rbegin() {
return reverse_decl_iterator(decl_end());
}
reverse_decl_iterator decl_rend() {
return reverse_decl_iterator(decl_begin());
}
};
/// NullStmt - This is the null statement ";": C99 6.8.3p3.
///
class NullStmt : public Stmt {
SourceLocation SemiLoc;
/// \brief True if the null statement was preceded by an empty macro, e.g:
/// @code
/// #define CALL(x)
/// CALL(0);
/// @endcode
bool HasLeadingEmptyMacro;
public:
NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
: Stmt(NullStmtClass), SemiLoc(L),
HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}
/// \brief Build an empty null statement.
explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
HasLeadingEmptyMacro(false) { }
SourceLocation getSemiLoc() const { return SemiLoc; }
void setSemiLoc(SourceLocation L) { SemiLoc = L; }
bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }
SourceLocation getLocStart() const LLVM_READONLY { return SemiLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return SemiLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == NullStmtClass;
}
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
// HLSL Change: Adding discard statement support
/// discard - This is the hlsl discard statement "discard;".
///
class DiscardStmt : public Stmt {
SourceLocation Loc;
public:
DiscardStmt(SourceLocation L)
: Stmt(DiscardStmtClass)
, Loc(L)
{}
/// \brief Build an empty Discard statement.
explicit DiscardStmt(EmptyShell Empty)
: Stmt(DiscardStmtClass, Empty)
{}
SourceLocation getLoc() const { return Loc; }
void setLoc(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == DiscardStmtClass;
}
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
// End of HLSL Change
/// CompoundStmt - This represents a group of statements like { stmt stmt }.
///
class CompoundStmt : public Stmt {
Stmt** Body;
SourceLocation LBraceLoc, RBraceLoc;
friend class ASTStmtReader;
public:
CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
SourceLocation LB, SourceLocation RB);
// \brief Build an empty compound statement with a location.
explicit CompoundStmt(SourceLocation Loc)
: Stmt(CompoundStmtClass), Body(nullptr), LBraceLoc(Loc), RBraceLoc(Loc) {
CompoundStmtBits.NumStmts = 0;
}
// \brief Build an empty compound statement.
explicit CompoundStmt(EmptyShell Empty)
: Stmt(CompoundStmtClass, Empty), Body(nullptr) {
CompoundStmtBits.NumStmts = 0;
}
void setStmts(const ASTContext &C, Stmt **Stmts, unsigned NumStmts);
bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
unsigned size() const { return CompoundStmtBits.NumStmts; }
typedef Stmt** body_iterator;
typedef llvm::iterator_range<body_iterator> body_range;
body_range body() { return body_range(body_begin(), body_end()); }
body_iterator body_begin() { return Body; }
body_iterator body_end() { return Body + size(); }
Stmt *body_front() { return !body_empty() ? Body[0] : nullptr; }
Stmt *body_back() { return !body_empty() ? Body[size()-1] : nullptr; }
void setLastStmt(Stmt *S) {
assert(!body_empty() && "setLastStmt");
Body[size()-1] = S;
}
typedef Stmt* const * const_body_iterator;
typedef llvm::iterator_range<const_body_iterator> body_const_range;
body_const_range body() const {
return body_const_range(body_begin(), body_end());
}
const_body_iterator body_begin() const { return Body; }
const_body_iterator body_end() const { return Body + size(); }
const Stmt *body_front() const {
return !body_empty() ? Body[0] : nullptr;
}
const Stmt *body_back() const {
return !body_empty() ? Body[size() - 1] : nullptr;
}
typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
reverse_body_iterator body_rbegin() {
return reverse_body_iterator(body_end());
}
reverse_body_iterator body_rend() {
return reverse_body_iterator(body_begin());
}
typedef std::reverse_iterator<const_body_iterator>
const_reverse_body_iterator;
const_reverse_body_iterator body_rbegin() const {
return const_reverse_body_iterator(body_end());
}
const_reverse_body_iterator body_rend() const {
return const_reverse_body_iterator(body_begin());
}
SourceLocation getLocStart() const LLVM_READONLY { return LBraceLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RBraceLoc; }
SourceLocation getLBracLoc() const { return LBraceLoc; }
SourceLocation getRBracLoc() const { return RBraceLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundStmtClass;
}
// Iterators
child_range children() {
return child_range(Body, Body + CompoundStmtBits.NumStmts);
}
const_child_range children() const {
return child_range(Body, Body + CompoundStmtBits.NumStmts);
}
};
// SwitchCase is the base class for CaseStmt and DefaultStmt,
class SwitchCase : public Stmt {
protected:
// A pointer to the following CaseStmt or DefaultStmt class,
// used by SwitchStmt.
SwitchCase *NextSwitchCase;
SourceLocation KeywordLoc;
SourceLocation ColonLoc;
SwitchCase(StmtClass SC, SourceLocation KWLoc, SourceLocation ColonLoc)
: Stmt(SC), NextSwitchCase(nullptr), KeywordLoc(KWLoc), ColonLoc(ColonLoc) {
}
SwitchCase(StmtClass SC, EmptyShell)
: Stmt(SC), NextSwitchCase(nullptr) {}
public:
const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
SourceLocation getKeywordLoc() const { return KeywordLoc; }
void setKeywordLoc(SourceLocation L) { KeywordLoc = L; }
SourceLocation getColonLoc() const { return ColonLoc; }
void setColonLoc(SourceLocation L) { ColonLoc = L; }
Stmt *getSubStmt();
const Stmt *getSubStmt() const {
return const_cast<SwitchCase*>(this)->getSubStmt();
}
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CaseStmtClass ||
T->getStmtClass() == DefaultStmtClass;
}
};
class CaseStmt : public SwitchCase {
SourceLocation EllipsisLoc;
enum { LHS, RHS, SUBSTMT, END_EXPR };
Stmt* SubExprs[END_EXPR]; // The expression for the RHS is Non-null for
// GNU "case 1 ... 4" extension
public:
CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
SourceLocation ellipsisLoc, SourceLocation colonLoc)
: SwitchCase(CaseStmtClass, caseLoc, colonLoc) {
SubExprs[SUBSTMT] = nullptr;
SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
EllipsisLoc = ellipsisLoc;
}
/// \brief Build an empty switch case statement.
explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass, Empty) { }
SourceLocation getCaseLoc() const { return KeywordLoc; }
void setCaseLoc(SourceLocation L) { KeywordLoc = L; }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
SourceLocation getColonLoc() const { return ColonLoc; }
void setColonLoc(SourceLocation L) { ColonLoc = L; }
Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
const Expr *getLHS() const {
return reinterpret_cast<const Expr*>(SubExprs[LHS]);
}
const Expr *getRHS() const {
return reinterpret_cast<const Expr*>(SubExprs[RHS]);
}
const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
// Handle deeply nested case statements with iteration instead of recursion.
const CaseStmt *CS = this;
while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
CS = CS2;
return CS->getSubStmt()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CaseStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
}
};
class DefaultStmt : public SwitchCase {
Stmt* SubStmt;
public:
DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
SwitchCase(DefaultStmtClass, DL, CL), SubStmt(substmt) {}
/// \brief Build an empty default statement.
explicit DefaultStmt(EmptyShell Empty)
: SwitchCase(DefaultStmtClass, Empty) { }
Stmt *getSubStmt() { return SubStmt; }
const Stmt *getSubStmt() const { return SubStmt; }
void setSubStmt(Stmt *S) { SubStmt = S; }
SourceLocation getDefaultLoc() const { return KeywordLoc; }
void setDefaultLoc(SourceLocation L) { KeywordLoc = L; }
SourceLocation getColonLoc() const { return ColonLoc; }
void setColonLoc(SourceLocation L) { ColonLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DefaultStmtClass;
}
// Iterators
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
};
inline SourceLocation SwitchCase::getLocEnd() const {
if (const CaseStmt *CS = dyn_cast<CaseStmt>(this))
return CS->getLocEnd();
return cast<DefaultStmt>(this)->getLocEnd();
}
/// LabelStmt - Represents a label, which has a substatement. For example:
/// foo: return;
///
class LabelStmt : public Stmt {
SourceLocation IdentLoc;
LabelDecl *TheDecl;
Stmt *SubStmt;
public:
LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
: Stmt(LabelStmtClass), IdentLoc(IL), TheDecl(D), SubStmt(substmt) {
static_assert(sizeof(LabelStmt) ==
2 * sizeof(SourceLocation) + 2 * sizeof(void *),
"LabelStmt too big");
}
// \brief Build an empty label statement.
explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
SourceLocation getIdentLoc() const { return IdentLoc; }
LabelDecl *getDecl() const { return TheDecl; }
void setDecl(LabelDecl *D) { TheDecl = D; }
const char *getName() const;
Stmt *getSubStmt() { return SubStmt; }
const Stmt *getSubStmt() const { return SubStmt; }
void setIdentLoc(SourceLocation L) { IdentLoc = L; }
void setSubStmt(Stmt *SS) { SubStmt = SS; }
SourceLocation getLocStart() const LLVM_READONLY { return IdentLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == LabelStmtClass;
}
};
/// \brief Represents an attribute applied to a statement.
///
/// Represents an attribute applied to a statement. For example:
/// [[omp::for(...)]] for (...) { ... }
///
class AttributedStmt : public Stmt {
Stmt *SubStmt;
SourceLocation AttrLoc;
unsigned NumAttrs;
friend class ASTStmtReader;
AttributedStmt(SourceLocation Loc, ArrayRef<const Attr*> Attrs, Stmt *SubStmt)
: Stmt(AttributedStmtClass), SubStmt(SubStmt), AttrLoc(Loc),
NumAttrs(Attrs.size()) {
memcpy(getAttrArrayPtr(), Attrs.data(), Attrs.size() * sizeof(Attr *));
}
explicit AttributedStmt(EmptyShell Empty, unsigned NumAttrs)
: Stmt(AttributedStmtClass, Empty), NumAttrs(NumAttrs) {
memset(getAttrArrayPtr(), 0, NumAttrs * sizeof(Attr *));
}
Attr *const *getAttrArrayPtr() const {
return reinterpret_cast<Attr *const *>(this + 1);
}
Attr **getAttrArrayPtr() { return reinterpret_cast<Attr **>(this + 1); }
public:
static AttributedStmt *Create(const ASTContext &C, SourceLocation Loc,
ArrayRef<const Attr*> Attrs, Stmt *SubStmt);
// \brief Build an empty attributed statement.
static AttributedStmt *CreateEmpty(const ASTContext &C, unsigned NumAttrs);
SourceLocation getAttrLoc() const { return AttrLoc; }
ArrayRef<const Attr*> getAttrs() const {
return llvm::makeArrayRef(getAttrArrayPtr(), NumAttrs);
}
Stmt *getSubStmt() { return SubStmt; }
const Stmt *getSubStmt() const { return SubStmt; }
SourceLocation getLocStart() const LLVM_READONLY { return AttrLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
child_range children() { return child_range(&SubStmt, &SubStmt + 1); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AttributedStmtClass;
}
};
/// IfStmt - This represents an if/then/else.
///
class IfStmt : public Stmt {
enum { VAR, COND, THEN, ELSE, END_EXPR };
Stmt* SubExprs[END_EXPR];
SourceLocation IfLoc;
SourceLocation ElseLoc;
SourceLocation MergeLoc;
public:
IfStmt(const ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
Stmt *then, SourceLocation EL = SourceLocation(),
Stmt *elsev = nullptr);
/// \brief Build an empty if/then/else statement
explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
/// \brief Retrieve the variable declared in this "if" statement, if any.
///
/// In the following example, "x" is the condition variable.
/// \code
/// if (int x = foo()) {
/// printf("x is %d", x);
/// }
/// \endcode
VarDecl *getConditionVariable() const;
void setConditionVariable(const ASTContext &C, VarDecl *V);
/// If this IfStmt has a condition variable, return the faux DeclStmt
/// associated with the creation of that condition variable.
const DeclStmt *getConditionVariableDeclStmt() const {
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
}
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
const Stmt *getThen() const { return SubExprs[THEN]; }
void setThen(Stmt *S) { SubExprs[THEN] = S; }
const Stmt *getElse() const { return SubExprs[ELSE]; }
void setElse(Stmt *S) { SubExprs[ELSE] = S; }
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
Stmt *getThen() { return SubExprs[THEN]; }
Stmt *getElse() { return SubExprs[ELSE]; }
SourceLocation getIfLoc() const { return IfLoc; }
void setIfLoc(SourceLocation L) { IfLoc = L; }
SourceLocation getElseLoc() const { return ElseLoc; }
void setElseLoc(SourceLocation L) { ElseLoc = L; }
SourceLocation getMergeLoc() const { return MergeLoc; }
void setMergeLoc(SourceLocation L) { MergeLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return IfLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
if (SubExprs[ELSE])
return SubExprs[ELSE]->getLocEnd();
else
return SubExprs[THEN]->getLocEnd();
}
// Iterators over subexpressions. The iterators will include iterating
// over the initialization expression referenced by the condition variable.
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == IfStmtClass;
}
};
/// SwitchStmt - This represents a 'switch' stmt.
///
class SwitchStmt : public Stmt {
SourceLocation SwitchLoc;
enum { VAR, COND, BODY, END_EXPR };
Stmt* SubExprs[END_EXPR];
// This points to a linked list of case and default statements and, if the
// SwitchStmt is a switch on an enum value, records whether all the enum
// values were covered by CaseStmts. The coverage information value is meant
// to be a hint for possible clients.
llvm::PointerIntPair<SwitchCase *, 1, bool> FirstCase;
public:
SwitchStmt(const ASTContext &C, VarDecl *Var, Expr *cond);
/// \brief Build a empty switch statement.
explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
/// \brief Retrieve the variable declared in this "switch" statement, if any.
///
/// In the following example, "x" is the condition variable.
/// \code
/// switch (int x = foo()) {
/// case 0: break;
/// // ...
/// }
/// \endcode
VarDecl *getConditionVariable() const;
void setConditionVariable(const ASTContext &C, VarDecl *V);
/// If this SwitchStmt has a condition variable, return the faux DeclStmt
/// associated with the creation of that condition variable.
const DeclStmt *getConditionVariableDeclStmt() const {
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
}
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
const Stmt *getBody() const { return SubExprs[BODY]; }
const SwitchCase *getSwitchCaseList() const { return FirstCase.getPointer(); }
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
Stmt *getBody() { return SubExprs[BODY]; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SwitchCase *getSwitchCaseList() { return FirstCase.getPointer(); }
/// \brief Set the case list for this switch statement.
void setSwitchCaseList(SwitchCase *SC) { FirstCase.setPointer(SC); }
SourceLocation getSwitchLoc() const { return SwitchLoc; }
void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
void setBody(Stmt *S, SourceLocation SL) {
SubExprs[BODY] = S;
SwitchLoc = SL;
}
void addSwitchCase(SwitchCase *SC) {
assert(!SC->getNextSwitchCase()
&& "case/default already added to a switch");
SC->setNextSwitchCase(FirstCase.getPointer());
FirstCase.setPointer(SC);
}
/// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
/// switch over an enum value then all cases have been explicitly covered.
void setAllEnumCasesCovered() { FirstCase.setInt(true); }
/// Returns true if the SwitchStmt is a switch of an enum value and all cases
/// have been explicitly covered.
bool isAllEnumCasesCovered() const { return FirstCase.getInt(); }
SourceLocation getLocStart() const LLVM_READONLY { return SwitchLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return SubExprs[BODY] ? SubExprs[BODY]->getLocEnd() : SubExprs[COND]->getLocEnd();
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SwitchStmtClass;
}
};
/// WhileStmt - This represents a 'while' stmt.
///
class WhileStmt : public Stmt {
SourceLocation WhileLoc;
enum { VAR, COND, BODY, END_EXPR };
Stmt* SubExprs[END_EXPR];
public:
WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
SourceLocation WL);
/// \brief Build an empty while statement.
explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
/// \brief Retrieve the variable declared in this "while" statement, if any.
///
/// In the following example, "x" is the condition variable.
/// \code
/// while (int x = random()) {
/// // ...
/// }
/// \endcode
VarDecl *getConditionVariable() const;
void setConditionVariable(const ASTContext &C, VarDecl *V);
/// If this WhileStmt has a condition variable, return the faux DeclStmt
/// associated with the creation of that condition variable.
const DeclStmt *getConditionVariableDeclStmt() const {
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
}
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
Stmt *getBody() { return SubExprs[BODY]; }
const Stmt *getBody() const { return SubExprs[BODY]; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getWhileLoc() const { return WhileLoc; }
void setWhileLoc(SourceLocation L) { WhileLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return WhileLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return SubExprs[BODY]->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == WhileStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// DoStmt - This represents a 'do/while' stmt.
///
class DoStmt : public Stmt {
SourceLocation DoLoc;
enum { BODY, COND, END_EXPR };
Stmt* SubExprs[END_EXPR];
SourceLocation WhileLoc;
SourceLocation RParenLoc; // Location of final ')' in do stmt condition.
public:
DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
SourceLocation RP)
: Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
SubExprs[BODY] = body;
}
/// \brief Build an empty do-while statement.
explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
Stmt *getBody() { return SubExprs[BODY]; }
const Stmt *getBody() const { return SubExprs[BODY]; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getDoLoc() const { return DoLoc; }
void setDoLoc(SourceLocation L) { DoLoc = L; }
SourceLocation getWhileLoc() const { return WhileLoc; }
void setWhileLoc(SourceLocation L) { WhileLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return DoLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == DoStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// ForStmt - This represents a 'for (init;cond;inc)' stmt. Note that any of
/// the init/cond/inc parts of the ForStmt will be null if they were not
/// specified in the source.
///
class ForStmt : public Stmt {
SourceLocation ForLoc;
enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
SourceLocation LParenLoc, RParenLoc;
public:
ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
SourceLocation RP);
/// \brief Build an empty for statement.
explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
Stmt *getInit() { return SubExprs[INIT]; }
/// \brief Retrieve the variable declared in this "for" statement, if any.
///
/// In the following example, "y" is the condition variable.
/// \code
/// for (int x = random(); int y = mangle(x); ++x) {
/// // ...
/// }
/// \endcode
VarDecl *getConditionVariable() const;
void setConditionVariable(const ASTContext &C, VarDecl *V);
/// If this ForStmt has a condition variable, return the faux DeclStmt
/// associated with the creation of that condition variable.
const DeclStmt *getConditionVariableDeclStmt() const {
return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
}
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
Expr *getInc() { return reinterpret_cast<Expr*>(SubExprs[INC]); }
Stmt *getBody() { return SubExprs[BODY]; }
const Stmt *getInit() const { return SubExprs[INIT]; }
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
const Expr *getInc() const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
const Stmt *getBody() const { return SubExprs[BODY]; }
void setInit(Stmt *S) { SubExprs[INIT] = S; }
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getForLoc() const { return ForLoc; }
void setForLoc(SourceLocation L) { ForLoc = L; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return ForLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return SubExprs[BODY]->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ForStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
};
/// GotoStmt - This represents a direct goto.
///
class GotoStmt : public Stmt {
LabelDecl *Label;
SourceLocation GotoLoc;
SourceLocation LabelLoc;
public:
GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
: Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
/// \brief Build an empty goto statement.
explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
LabelDecl *getLabel() const { return Label; }
void setLabel(LabelDecl *D) { Label = D; }
SourceLocation getGotoLoc() const { return GotoLoc; }
void setGotoLoc(SourceLocation L) { GotoLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GotoStmtClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// IndirectGotoStmt - This represents an indirect goto.
///
class IndirectGotoStmt : public Stmt {
SourceLocation GotoLoc;
SourceLocation StarLoc;
Stmt *Target;
public:
IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
Expr *target)
: Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
Target((Stmt*)target) {}
/// \brief Build an empty indirect goto statement.
explicit IndirectGotoStmt(EmptyShell Empty)
: Stmt(IndirectGotoStmtClass, Empty) { }
void setGotoLoc(SourceLocation L) { GotoLoc = L; }
SourceLocation getGotoLoc() const { return GotoLoc; }
void setStarLoc(SourceLocation L) { StarLoc = L; }
SourceLocation getStarLoc() const { return StarLoc; }
Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
/// getConstantTarget - Returns the fixed target of this indirect
/// goto, if one exists.
LabelDecl *getConstantTarget();
const LabelDecl *getConstantTarget() const {
return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
}
SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Target->getLocEnd(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IndirectGotoStmtClass;
}
// Iterators
child_range children() { return child_range(&Target, &Target+1); }
};
/// ContinueStmt - This represents a continue.
///
class ContinueStmt : public Stmt {
SourceLocation ContinueLoc;
public:
ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
/// \brief Build an empty continue statement.
explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
SourceLocation getContinueLoc() const { return ContinueLoc; }
void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return ContinueLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return ContinueLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ContinueStmtClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// BreakStmt - This represents a break.
///
class BreakStmt : public Stmt {
SourceLocation BreakLoc;
public:
BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {
static_assert(sizeof(BreakStmt) == 2 * sizeof(SourceLocation),
"BreakStmt too large");
}
/// \brief Build an empty break statement.
explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
SourceLocation getBreakLoc() const { return BreakLoc; }
void setBreakLoc(SourceLocation L) { BreakLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return BreakLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return BreakLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == BreakStmtClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ReturnStmt - This represents a return, optionally of an expression:
/// return;
/// return 4;
///
/// Note that GCC allows return with no argument in a function declared to
/// return a value, and it allows returning a value in functions declared to
/// return void. We explicitly model this in the AST, which means you can't
/// depend on the return type of the function and the presence of an argument.
///
class ReturnStmt : public Stmt {
SourceLocation RetLoc;
Stmt *RetExpr;
const VarDecl *NRVOCandidate;
public:
explicit ReturnStmt(SourceLocation RL) : ReturnStmt(RL, nullptr, nullptr) {}
ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
: Stmt(ReturnStmtClass), RetLoc(RL), RetExpr((Stmt *)E),
NRVOCandidate(NRVOCandidate) {}
/// \brief Build an empty return expression.
explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
const Expr *getRetValue() const;
Expr *getRetValue();
void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
SourceLocation getReturnLoc() const { return RetLoc; }
void setReturnLoc(SourceLocation L) { RetLoc = L; }
/// \brief Retrieve the variable that might be used for the named return
/// value optimization.
///
/// The optimization itself can only be performed if the variable is
/// also marked as an NRVO object.
const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
SourceLocation getLocStart() const LLVM_READONLY { return RetLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return RetExpr ? RetExpr->getLocEnd() : RetLoc;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ReturnStmtClass;
}
// Iterators
child_range children() {
if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
return child_range();
}
};
/// AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
///
class AsmStmt : public Stmt {
protected:
SourceLocation AsmLoc;
/// \brief True if the assembly statement does not have any input or output
/// operands.
bool IsSimple;
/// \brief If true, treat this inline assembly as having side effects.
/// This assembly statement should not be optimized, deleted or moved.
bool IsVolatile;
unsigned NumOutputs;
unsigned NumInputs;
unsigned NumClobbers;
Stmt **Exprs;
AsmStmt(StmtClass SC, SourceLocation asmloc, bool issimple, bool isvolatile,
unsigned numoutputs, unsigned numinputs, unsigned numclobbers) :
Stmt (SC), AsmLoc(asmloc), IsSimple(issimple), IsVolatile(isvolatile),
NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) { }
friend class ASTStmtReader;
public:
/// \brief Build an empty inline-assembly statement.
explicit AsmStmt(StmtClass SC, EmptyShell Empty) :
Stmt(SC, Empty), Exprs(nullptr) { }
SourceLocation getAsmLoc() const { return AsmLoc; }
void setAsmLoc(SourceLocation L) { AsmLoc = L; }
bool isSimple() const { return IsSimple; }
void setSimple(bool V) { IsSimple = V; }
bool isVolatile() const { return IsVolatile; }
void setVolatile(bool V) { IsVolatile = V; }
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
//===--- Asm String Analysis ---===//
/// Assemble final IR asm string.
std::string generateAsmString(const ASTContext &C) const;
//===--- Output operands ---===//
unsigned getNumOutputs() const { return NumOutputs; }
/// getOutputConstraint - Return the constraint string for the specified
/// output operand. All output constraints are known to be non-empty (either
/// '=' or '+').
StringRef getOutputConstraint(unsigned i) const;
/// isOutputPlusConstraint - Return true if the specified output constraint
/// is a "+" constraint (which is both an input and an output) or false if it
/// is an "=" constraint (just an output).
bool isOutputPlusConstraint(unsigned i) const {
return getOutputConstraint(i)[0] == '+';
}
const Expr *getOutputExpr(unsigned i) const;
/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned getNumPlusOperands() const;
//===--- Input operands ---===//
unsigned getNumInputs() const { return NumInputs; }
/// getInputConstraint - Return the specified input constraint. Unlike output
/// constraints, these can be empty.
StringRef getInputConstraint(unsigned i) const;
const Expr *getInputExpr(unsigned i) const;
//===--- Other ---===//
unsigned getNumClobbers() const { return NumClobbers; }
StringRef getClobber(unsigned i) const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == GCCAsmStmtClass ||
T->getStmtClass() == MSAsmStmtClass;
}
// Input expr iterators.
typedef ExprIterator inputs_iterator;
typedef ConstExprIterator const_inputs_iterator;
typedef llvm::iterator_range<inputs_iterator> inputs_range;
typedef llvm::iterator_range<const_inputs_iterator> inputs_const_range;
inputs_iterator begin_inputs() {
return &Exprs[0] + NumOutputs;
}
inputs_iterator end_inputs() {
return &Exprs[0] + NumOutputs + NumInputs;
}
inputs_range inputs() { return inputs_range(begin_inputs(), end_inputs()); }
const_inputs_iterator begin_inputs() const {
return &Exprs[0] + NumOutputs;
}
const_inputs_iterator end_inputs() const {
return &Exprs[0] + NumOutputs + NumInputs;
}
inputs_const_range inputs() const {
return inputs_const_range(begin_inputs(), end_inputs());
}
// Output expr iterators.
typedef ExprIterator outputs_iterator;
typedef ConstExprIterator const_outputs_iterator;
typedef llvm::iterator_range<outputs_iterator> outputs_range;
typedef llvm::iterator_range<const_outputs_iterator> outputs_const_range;
outputs_iterator begin_outputs() {
return &Exprs[0];
}
outputs_iterator end_outputs() {
return &Exprs[0] + NumOutputs;
}
outputs_range outputs() {
return outputs_range(begin_outputs(), end_outputs());
}
const_outputs_iterator begin_outputs() const {
return &Exprs[0];
}
const_outputs_iterator end_outputs() const {
return &Exprs[0] + NumOutputs;
}
outputs_const_range outputs() const {
return outputs_const_range(begin_outputs(), end_outputs());
}
child_range children() {
return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
}
};
/// This represents a GCC inline-assembly statement extension.
///
class GCCAsmStmt : public AsmStmt {
SourceLocation RParenLoc;
StringLiteral *AsmStr;
// FIXME: If we wanted to, we could allocate all of these in one big array.
StringLiteral **Constraints;
StringLiteral **Clobbers;
IdentifierInfo **Names;
friend class ASTStmtReader;
public:
GCCAsmStmt(const ASTContext &C, SourceLocation asmloc, bool issimple,
bool isvolatile, unsigned numoutputs, unsigned numinputs,
IdentifierInfo **names, StringLiteral **constraints, Expr **exprs,
StringLiteral *asmstr, unsigned numclobbers,
StringLiteral **clobbers, SourceLocation rparenloc);
/// \brief Build an empty inline-assembly statement.
explicit GCCAsmStmt(EmptyShell Empty) : AsmStmt(GCCAsmStmtClass, Empty),
Constraints(nullptr), Clobbers(nullptr), Names(nullptr) { }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
//===--- Asm String Analysis ---===//
const StringLiteral *getAsmString() const { return AsmStr; }
StringLiteral *getAsmString() { return AsmStr; }
void setAsmString(StringLiteral *E) { AsmStr = E; }
/// AsmStringPiece - this is part of a decomposed asm string specification
/// (for use with the AnalyzeAsmString function below). An asm string is
/// considered to be a concatenation of these parts.
class AsmStringPiece {
public:
enum Kind {
String, // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
Operand // Operand reference, with optional modifier %c4.
};
private:
Kind MyKind;
std::string Str;
unsigned OperandNo;
// Source range for operand references.
CharSourceRange Range;
public:
AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
AsmStringPiece(unsigned OpNo, const std::string &S, SourceLocation Begin,
SourceLocation End)
: MyKind(Operand), Str(S), OperandNo(OpNo),
Range(CharSourceRange::getCharRange(Begin, End)) {
}
bool isString() const { return MyKind == String; }
bool isOperand() const { return MyKind == Operand; }
const std::string &getString() const {
return Str;
}
unsigned getOperandNo() const {
assert(isOperand());
return OperandNo;
}
CharSourceRange getRange() const {
assert(isOperand() && "Range is currently used only for Operands.");
return Range;
}
/// getModifier - Get the modifier for this operand, if present. This
/// returns '\0' if there was no modifier.
char getModifier() const;
};
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces. If the asm string is erroneous, emit errors and return
/// true, otherwise return false. This handles canonicalization and
/// translation of strings from GCC syntax to LLVM IR syntax, and handles
//// flattening of named references like %[foo] to Operand AsmStringPiece's.
unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
const ASTContext &C, unsigned &DiagOffs) const;
/// Assemble final IR asm string.
std::string generateAsmString(const ASTContext &C) const;
//===--- Output operands ---===//
IdentifierInfo *getOutputIdentifier(unsigned i) const {
return Names[i];
}
StringRef getOutputName(unsigned i) const {
if (IdentifierInfo *II = getOutputIdentifier(i))
return II->getName();
return StringRef();
}
StringRef getOutputConstraint(unsigned i) const;
const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
return Constraints[i];
}
StringLiteral *getOutputConstraintLiteral(unsigned i) {
return Constraints[i];
}
Expr *getOutputExpr(unsigned i);
const Expr *getOutputExpr(unsigned i) const {
return const_cast<GCCAsmStmt*>(this)->getOutputExpr(i);
}
//===--- Input operands ---===//
IdentifierInfo *getInputIdentifier(unsigned i) const {
return Names[i + NumOutputs];
}
StringRef getInputName(unsigned i) const {
if (IdentifierInfo *II = getInputIdentifier(i))
return II->getName();
return StringRef();
}
StringRef getInputConstraint(unsigned i) const;
const StringLiteral *getInputConstraintLiteral(unsigned i) const {
return Constraints[i + NumOutputs];
}
StringLiteral *getInputConstraintLiteral(unsigned i) {
return Constraints[i + NumOutputs];
}
Expr *getInputExpr(unsigned i);
void setInputExpr(unsigned i, Expr *E);
const Expr *getInputExpr(unsigned i) const {
return const_cast<GCCAsmStmt*>(this)->getInputExpr(i);
}
private:
void setOutputsAndInputsAndClobbers(const ASTContext &C,
IdentifierInfo **Names,
StringLiteral **Constraints,
Stmt **Exprs,
unsigned NumOutputs,
unsigned NumInputs,
StringLiteral **Clobbers,
unsigned NumClobbers);
public:
//===--- Other ---===//
/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int getNamedOperand(StringRef SymbolicName) const;
StringRef getClobber(unsigned i) const;
StringLiteral *getClobberStringLiteral(unsigned i) { return Clobbers[i]; }
const StringLiteral *getClobberStringLiteral(unsigned i) const {
return Clobbers[i];
}
SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GCCAsmStmtClass;
}
};
/// This represents a Microsoft inline-assembly statement extension.
///
class MSAsmStmt : public AsmStmt {
SourceLocation LBraceLoc, EndLoc;
StringRef AsmStr;
unsigned NumAsmToks;
Token *AsmToks;
StringRef *Constraints;
StringRef *Clobbers;
friend class ASTStmtReader;
public:
MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
SourceLocation lbraceloc, bool issimple, bool isvolatile,
ArrayRef<Token> asmtoks, unsigned numoutputs, unsigned numinputs,
ArrayRef<StringRef> constraints,
ArrayRef<Expr*> exprs, StringRef asmstr,
ArrayRef<StringRef> clobbers, SourceLocation endloc);
/// \brief Build an empty MS-style inline-assembly statement.
explicit MSAsmStmt(EmptyShell Empty) : AsmStmt(MSAsmStmtClass, Empty),
NumAsmToks(0), AsmToks(nullptr), Constraints(nullptr), Clobbers(nullptr) { }
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation L) { LBraceLoc = L; }
SourceLocation getEndLoc() const { return EndLoc; }
void setEndLoc(SourceLocation L) { EndLoc = L; }
bool hasBraces() const { return LBraceLoc.isValid(); }
unsigned getNumAsmToks() { return NumAsmToks; }
Token *getAsmToks() { return AsmToks; }
//===--- Asm String Analysis ---===//
StringRef getAsmString() const { return AsmStr; }
/// Assemble final IR asm string.
std::string generateAsmString(const ASTContext &C) const;
//===--- Output operands ---===//
StringRef getOutputConstraint(unsigned i) const {
assert(i < NumOutputs);
return Constraints[i];
}
Expr *getOutputExpr(unsigned i);
const Expr *getOutputExpr(unsigned i) const {
return const_cast<MSAsmStmt*>(this)->getOutputExpr(i);
}
//===--- Input operands ---===//
StringRef getInputConstraint(unsigned i) const {
assert(i < NumInputs);
return Constraints[i + NumOutputs];
}
Expr *getInputExpr(unsigned i);
void setInputExpr(unsigned i, Expr *E);
const Expr *getInputExpr(unsigned i) const {
return const_cast<MSAsmStmt*>(this)->getInputExpr(i);
}
//===--- Other ---===//
ArrayRef<StringRef> getAllConstraints() const {
return llvm::makeArrayRef(Constraints, NumInputs + NumOutputs);
}
ArrayRef<StringRef> getClobbers() const {
return llvm::makeArrayRef(Clobbers, NumClobbers);
}
ArrayRef<Expr*> getAllExprs() const {
return llvm::makeArrayRef(reinterpret_cast<Expr**>(Exprs),
NumInputs + NumOutputs);
}
StringRef getClobber(unsigned i) const { return getClobbers()[i]; }
private:
void initialize(const ASTContext &C, StringRef AsmString,
ArrayRef<Token> AsmToks, ArrayRef<StringRef> Constraints,
ArrayRef<Expr*> Exprs, ArrayRef<StringRef> Clobbers);
public:
SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == MSAsmStmtClass;
}
child_range children() {
return child_range(&Exprs[0], &Exprs[NumInputs + NumOutputs]);
}
};
class SEHExceptStmt : public Stmt {
SourceLocation Loc;
Stmt *Children[2];
enum { FILTER_EXPR, BLOCK };
SEHExceptStmt(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block);
friend class ASTReader;
friend class ASTStmtReader;
explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }
public:
static SEHExceptStmt* Create(const ASTContext &C,
SourceLocation ExceptLoc,
Expr *FilterExpr,
Stmt *Block);
SourceLocation getLocStart() const LLVM_READONLY { return getExceptLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
SourceLocation getExceptLoc() const { return Loc; }
SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
Expr *getFilterExpr() const {
return reinterpret_cast<Expr*>(Children[FILTER_EXPR]);
}
CompoundStmt *getBlock() const {
return cast<CompoundStmt>(Children[BLOCK]);
}
child_range children() {
return child_range(Children,Children+2);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SEHExceptStmtClass;
}
};
class SEHFinallyStmt : public Stmt {
SourceLocation Loc;
Stmt *Block;
SEHFinallyStmt(SourceLocation Loc,
Stmt *Block);
friend class ASTReader;
friend class ASTStmtReader;
explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }
public:
static SEHFinallyStmt* Create(const ASTContext &C,
SourceLocation FinallyLoc,
Stmt *Block);
SourceLocation getLocStart() const LLVM_READONLY { return getFinallyLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
SourceLocation getFinallyLoc() const { return Loc; }
SourceLocation getEndLoc() const { return Block->getLocEnd(); }
CompoundStmt *getBlock() const { return cast<CompoundStmt>(Block); }
child_range children() {
return child_range(&Block,&Block+1);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SEHFinallyStmtClass;
}
};
class SEHTryStmt : public Stmt {
bool IsCXXTry;
SourceLocation TryLoc;
Stmt *Children[2];
enum { TRY = 0, HANDLER = 1 };
SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler);
friend class ASTReader;
friend class ASTStmtReader;
explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }
public:
static SEHTryStmt* Create(const ASTContext &C, bool isCXXTry,
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler);
SourceLocation getLocStart() const LLVM_READONLY { return getTryLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
SourceLocation getTryLoc() const { return TryLoc; }
SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
bool getIsCXXTry() const { return IsCXXTry; }
CompoundStmt* getTryBlock() const {
return cast<CompoundStmt>(Children[TRY]);
}
Stmt *getHandler() const { return Children[HANDLER]; }
/// Returns 0 if not defined
SEHExceptStmt *getExceptHandler() const;
SEHFinallyStmt *getFinallyHandler() const;
child_range children() {
return child_range(Children,Children+2);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SEHTryStmtClass;
}
};
/// Represents a __leave statement.
///
class SEHLeaveStmt : public Stmt {
SourceLocation LeaveLoc;
public:
explicit SEHLeaveStmt(SourceLocation LL)
: Stmt(SEHLeaveStmtClass), LeaveLoc(LL) {}
/// \brief Build an empty __leave statement.
explicit SEHLeaveStmt(EmptyShell Empty) : Stmt(SEHLeaveStmtClass, Empty) { }
SourceLocation getLeaveLoc() const { return LeaveLoc; }
void setLeaveLoc(SourceLocation L) { LeaveLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return LeaveLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return LeaveLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SEHLeaveStmtClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief This captures a statement into a function. For example, the following
/// pragma annotated compound statement can be represented as a CapturedStmt,
/// and this compound statement is the body of an anonymous outlined function.
/// @code
/// #pragma omp parallel
/// {
/// compute();
/// }
/// @endcode
class CapturedStmt : public Stmt {
public:
/// \brief The different capture forms: by 'this', by reference, capture for
/// variable-length array type etc.
enum VariableCaptureKind {
VCK_This,
VCK_ByRef,
VCK_VLAType,
};
/// \brief Describes the capture of either a variable, or 'this', or
/// variable-length array type.
class Capture {
llvm::PointerIntPair<VarDecl *, 2, VariableCaptureKind> VarAndKind;
SourceLocation Loc;
public:
/// \brief Create a new capture.
///
/// \param Loc The source location associated with this capture.
///
/// \param Kind The kind of capture (this, ByRef, ...).
///
/// \param Var The variable being captured, or null if capturing this.
///
Capture(SourceLocation Loc, VariableCaptureKind Kind,
VarDecl *Var = nullptr)
: VarAndKind(Var, Kind), Loc(Loc) {
switch (Kind) {
case VCK_This:
assert(!Var && "'this' capture cannot have a variable!");
break;
case VCK_ByRef:
assert(Var && "capturing by reference must have a variable!");
break;
case VCK_VLAType:
assert(!Var &&
"Variable-length array type capture cannot have a variable!");
break;
}
}
/// \brief Determine the kind of capture.
VariableCaptureKind getCaptureKind() const { return VarAndKind.getInt(); }
/// \brief Retrieve the source location at which the variable or 'this' was
/// first used.
SourceLocation getLocation() const { return Loc; }
/// \brief Determine whether this capture handles the C++ 'this' pointer.
bool capturesThis() const { return getCaptureKind() == VCK_This; }
/// \brief Determine whether this capture handles a variable.
bool capturesVariable() const { return getCaptureKind() == VCK_ByRef; }
/// \brief Determine whether this capture handles a variable-length array
/// type.
bool capturesVariableArrayType() const {
return getCaptureKind() == VCK_VLAType;
}
/// \brief Retrieve the declaration of the variable being captured.
///
/// This operation is only valid if this capture captures a variable.
VarDecl *getCapturedVar() const {
assert(capturesVariable() &&
"No variable available for 'this' or VAT capture");
return VarAndKind.getPointer();
}
friend class ASTStmtReader;
};
private:
/// \brief The number of variable captured, including 'this'.
unsigned NumCaptures;
/// \brief The pointer part is the implicit the outlined function and the
/// int part is the captured region kind, 'CR_Default' etc.
llvm::PointerIntPair<CapturedDecl *, 1, CapturedRegionKind> CapDeclAndKind;
/// \brief The record for captured variables, a RecordDecl or CXXRecordDecl.
RecordDecl *TheRecordDecl;
/// \brief Construct a captured statement.
CapturedStmt(Stmt *S, CapturedRegionKind Kind, ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD);
/// \brief Construct an empty captured statement.
CapturedStmt(EmptyShell Empty, unsigned NumCaptures);
Stmt **getStoredStmts() const {
return reinterpret_cast<Stmt **>(const_cast<CapturedStmt *>(this) + 1);
}
Capture *getStoredCaptures() const;
void setCapturedStmt(Stmt *S) { getStoredStmts()[NumCaptures] = S; }
public:
static CapturedStmt *Create(const ASTContext &Context, Stmt *S,
CapturedRegionKind Kind,
ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits,
CapturedDecl *CD, RecordDecl *RD);
static CapturedStmt *CreateDeserialized(const ASTContext &Context,
unsigned NumCaptures);
/// \brief Retrieve the statement being captured.
Stmt *getCapturedStmt() { return getStoredStmts()[NumCaptures]; }
const Stmt *getCapturedStmt() const {
return const_cast<CapturedStmt *>(this)->getCapturedStmt();
}
/// \brief Retrieve the outlined function declaration.
CapturedDecl *getCapturedDecl() { return CapDeclAndKind.getPointer(); }
const CapturedDecl *getCapturedDecl() const {
return const_cast<CapturedStmt *>(this)->getCapturedDecl();
}
/// \brief Set the outlined function declaration.
void setCapturedDecl(CapturedDecl *D) {
assert(D && "null CapturedDecl");
CapDeclAndKind.setPointer(D);
}
/// \brief Retrieve the captured region kind.
CapturedRegionKind getCapturedRegionKind() const {
return CapDeclAndKind.getInt();
}
/// \brief Set the captured region kind.
void setCapturedRegionKind(CapturedRegionKind Kind) {
CapDeclAndKind.setInt(Kind);
}
/// \brief Retrieve the record declaration for captured variables.
const RecordDecl *getCapturedRecordDecl() const { return TheRecordDecl; }
/// \brief Set the record declaration for captured variables.
void setCapturedRecordDecl(RecordDecl *D) {
assert(D && "null RecordDecl");
TheRecordDecl = D;
}
/// \brief True if this variable has been captured.
bool capturesVariable(const VarDecl *Var) const;
/// \brief An iterator that walks over the captures.
typedef Capture *capture_iterator;
typedef const Capture *const_capture_iterator;
typedef llvm::iterator_range<capture_iterator> capture_range;
typedef llvm::iterator_range<const_capture_iterator> capture_const_range;
capture_range captures() {
return capture_range(capture_begin(), capture_end());
}
capture_const_range captures() const {
return capture_const_range(capture_begin(), capture_end());
}
/// \brief Retrieve an iterator pointing to the first capture.
capture_iterator capture_begin() { return getStoredCaptures(); }
const_capture_iterator capture_begin() const { return getStoredCaptures(); }
/// \brief Retrieve an iterator pointing past the end of the sequence of
/// captures.
capture_iterator capture_end() const {
return getStoredCaptures() + NumCaptures;
}
/// \brief Retrieve the number of captures, including 'this'.
unsigned capture_size() const { return NumCaptures; }
/// \brief Iterator that walks over the capture initialization arguments.
typedef Expr **capture_init_iterator;
typedef llvm::iterator_range<capture_init_iterator> capture_init_range;
capture_init_range capture_inits() const {
return capture_init_range(capture_init_begin(), capture_init_end());
}
/// \brief Retrieve the first initialization argument.
capture_init_iterator capture_init_begin() const {
return reinterpret_cast<Expr **>(getStoredStmts());
}
/// \brief Retrieve the iterator pointing one past the last initialization
/// argument.
capture_init_iterator capture_init_end() const {
return capture_init_begin() + NumCaptures;
}
SourceLocation getLocStart() const LLVM_READONLY {
return getCapturedStmt()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getCapturedStmt()->getLocEnd();
}
SourceRange getSourceRange() const LLVM_READONLY {
return getCapturedStmt()->getSourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CapturedStmtClass;
}
child_range children();
friend class ASTStmtReader;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/TypeVisitor.h | //===--- TypeVisitor.h - Visitor for Type subclasses ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeVisitor interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPEVISITOR_H
#define LLVM_CLANG_AST_TYPEVISITOR_H
#include "clang/AST/Type.h"
namespace clang {
#define DISPATCH(CLASS) \
return static_cast<ImplClass*>(this)-> \
Visit##CLASS(static_cast<const CLASS*>(T))
/// \brief An operation on a type.
///
/// \tparam ImplClass Class implementing the operation. Must be inherited from
/// TypeVisitor.
/// \tparam RetTy %Type of result produced by the operation.
///
/// The class implements polymorphic operation on an object of type derived
/// from Type. The operation is performed by calling method Visit. It then
/// dispatches the call to function \c VisitFooType, if actual argument type
/// is \c FooType.
///
/// The class implements static polymorphism using Curiously Recurring
/// Template Pattern. It is designed to be a base class for some concrete
/// class:
///
/// \code
/// class SomeVisitor : public TypeVisitor<SomeVisitor,sometype> { ... };
/// ...
/// Type *atype = ...
/// ...
/// SomeVisitor avisitor;
/// sometype result = avisitor.Visit(atype);
/// \endcode
///
/// Actual treatment is made by methods of the derived class, TypeVisitor only
/// dispatches call to the appropriate method. If the implementation class
/// \c ImplClass provides specific action for some type, say
/// \c ConstantArrayType, it should define method
/// <tt>VisitConstantArrayType(const ConstantArrayType*)</tt>. Otherwise
/// \c TypeVisitor dispatches call to the method that handles parent type. In
/// this example handlers are tried in the sequence:
///
/// \li <tt>ImplClass::VisitConstantArrayType(const ConstantArrayType*)</tt>
/// \li <tt>ImplClass::VisitArrayType(const ArrayType*)</tt>
/// \li <tt>ImplClass::VisitType(const Type*)</tt>
/// \li <tt>TypeVisitor::VisitType(const Type*)</tt>
///
/// The first function of this sequence that is defined will handle object of
/// type \c ConstantArrayType.
template<typename ImplClass, typename RetTy=void>
class TypeVisitor {
public:
/// \brief Performs the operation associated with this visitor object.
RetTy Visit(const Type *T) {
// Top switch stmt: dispatch to VisitFooType for each FooType.
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) case Type::CLASS: DISPATCH(CLASS##Type);
#include "clang/AST/TypeNodes.def"
}
llvm_unreachable("Unknown type class!");
}
// If the implementation chooses not to implement a certain visit method, fall
// back on superclass.
#define TYPE(CLASS, PARENT) RetTy Visit##CLASS##Type(const CLASS##Type *T) { \
DISPATCH(PARENT); \
}
#include "clang/AST/TypeNodes.def"
/// \brief Method called if \c ImpClass doesn't provide specific handler
/// for some type class.
RetTy VisitType(const Type*) { return RetTy(); }
};
#undef DISPATCH
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ExprObjC.h | //===--- ExprObjC.h - Classes for representing ObjC expressions -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ExprObjC interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPROBJC_H
#define LLVM_CLANG_AST_EXPROBJC_H
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/SelectorLocationsKind.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class IdentifierInfo;
class ASTContext;
/// ObjCStringLiteral, used for Objective-C string literals
/// i.e. @"foo".
class ObjCStringLiteral : public Expr {
Stmt *String;
SourceLocation AtLoc;
public:
ObjCStringLiteral(StringLiteral *SL, QualType T, SourceLocation L)
: Expr(ObjCStringLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
String(SL), AtLoc(L) {}
explicit ObjCStringLiteral(EmptyShell Empty)
: Expr(ObjCStringLiteralClass, Empty) {}
StringLiteral *getString() { return cast<StringLiteral>(String); }
const StringLiteral *getString() const { return cast<StringLiteral>(String); }
void setString(StringLiteral *S) { String = S; }
SourceLocation getAtLoc() const { return AtLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return String->getLocEnd(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCStringLiteralClass;
}
// Iterators
child_range children() { return child_range(&String, &String+1); }
};
/// ObjCBoolLiteralExpr - Objective-C Boolean Literal.
///
class ObjCBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
ObjCBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(ObjCBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false), Value(val), Loc(l) {}
explicit ObjCBoolLiteralExpr(EmptyShell Empty)
: Expr(ObjCBoolLiteralExprClass, Empty) { }
bool getValue() const { return Value; }
void setValue(bool V) { Value = V; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBoolLiteralExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ObjCBoxedExpr - used for generalized expression boxing.
/// as in: @(strdup("hello world")), @(random()) or @(view.frame)
/// Also used for boxing non-parenthesized numeric literals;
/// as in: @42 or \@true (c++/objc++) or \@__yes (c/objc).
class ObjCBoxedExpr : public Expr {
Stmt *SubExpr;
ObjCMethodDecl *BoxingMethod;
SourceRange Range;
public:
ObjCBoxedExpr(Expr *E, QualType T, ObjCMethodDecl *method,
SourceRange R)
: Expr(ObjCBoxedExprClass, T, VK_RValue, OK_Ordinary,
E->isTypeDependent(), E->isValueDependent(),
E->isInstantiationDependent(), E->containsUnexpandedParameterPack()),
SubExpr(E), BoxingMethod(method), Range(R) {}
explicit ObjCBoxedExpr(EmptyShell Empty)
: Expr(ObjCBoxedExprClass, Empty) {}
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
ObjCMethodDecl *getBoxingMethod() const {
return BoxingMethod;
}
SourceLocation getAtLoc() const { return Range.getBegin(); }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY {
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBoxedExprClass;
}
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr+1); }
typedef ConstExprIterator const_arg_iterator;
const_arg_iterator arg_begin() const {
return reinterpret_cast<Stmt const * const*>(&SubExpr);
}
const_arg_iterator arg_end() const {
return reinterpret_cast<Stmt const * const*>(&SubExpr + 1);
}
friend class ASTStmtReader;
};
/// ObjCArrayLiteral - used for objective-c array containers; as in:
/// @[@"Hello", NSApp, [NSNumber numberWithInt:42]];
class ObjCArrayLiteral : public Expr {
unsigned NumElements;
SourceRange Range;
ObjCMethodDecl *ArrayWithObjectsMethod;
ObjCArrayLiteral(ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl * Method,
SourceRange SR);
explicit ObjCArrayLiteral(EmptyShell Empty, unsigned NumElements)
: Expr(ObjCArrayLiteralClass, Empty), NumElements(NumElements) {}
public:
static ObjCArrayLiteral *Create(const ASTContext &C,
ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl * Method,
SourceRange SR);
static ObjCArrayLiteral *CreateEmpty(const ASTContext &C,
unsigned NumElements);
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCArrayLiteralClass;
}
/// \brief Retrieve elements of array of literals.
Expr **getElements() { return reinterpret_cast<Expr **>(this + 1); }
/// \brief Retrieve elements of array of literals.
const Expr * const *getElements() const {
return reinterpret_cast<const Expr * const*>(this + 1);
}
/// getNumElements - Return number of elements of objective-c array literal.
unsigned getNumElements() const { return NumElements; }
/// getExpr - Return the Expr at the specified index.
Expr *getElement(unsigned Index) {
assert((Index < NumElements) && "Arg access out of range!");
return cast<Expr>(getElements()[Index]);
}
const Expr *getElement(unsigned Index) const {
assert((Index < NumElements) && "Arg access out of range!");
return cast<Expr>(getElements()[Index]);
}
ObjCMethodDecl *getArrayWithObjectsMethod() const {
return ArrayWithObjectsMethod;
}
// Iterators
child_range children() {
return child_range((Stmt **)getElements(),
(Stmt **)getElements() + NumElements);
}
friend class ASTStmtReader;
};
/// \brief An element in an Objective-C dictionary literal.
///
struct ObjCDictionaryElement {
/// \brief The key for the dictionary element.
Expr *Key;
/// \brief The value of the dictionary element.
Expr *Value;
/// \brief The location of the ellipsis, if this is a pack expansion.
SourceLocation EllipsisLoc;
/// \brief The number of elements this pack expansion will expand to, if
/// this is a pack expansion and is known.
Optional<unsigned> NumExpansions;
/// \brief Determines whether this dictionary element is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
};
} // end namespace clang
namespace llvm {
template <> struct isPodLike<clang::ObjCDictionaryElement> : std::true_type {};
}
namespace clang {
/// ObjCDictionaryLiteral - AST node to represent objective-c dictionary
/// literals; as in: @{@"name" : NSUserName(), @"date" : [NSDate date] };
class ObjCDictionaryLiteral : public Expr {
/// \brief Key/value pair used to store the key and value of a given element.
///
/// Objects of this type are stored directly after the expression.
struct KeyValuePair {
Expr *Key;
Expr *Value;
};
/// \brief Data that describes an element that is a pack expansion, used if any
/// of the elements in the dictionary literal are pack expansions.
struct ExpansionData {
/// \brief The location of the ellipsis, if this element is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// \brief If non-zero, the number of elements that this pack
/// expansion will expand to (+1).
unsigned NumExpansionsPlusOne;
};
/// \brief The number of elements in this dictionary literal.
unsigned NumElements : 31;
/// \brief Determine whether this dictionary literal has any pack expansions.
///
/// If the dictionary literal has pack expansions, then there will
/// be an array of pack expansion data following the array of
/// key/value pairs, which provide the locations of the ellipses (if
/// any) and number of elements in the expansion (if known). If
/// there are no pack expansions, we optimize away this storage.
unsigned HasPackExpansions : 1;
SourceRange Range;
ObjCMethodDecl *DictWithObjectsMethod;
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR);
explicit ObjCDictionaryLiteral(EmptyShell Empty, unsigned NumElements,
bool HasPackExpansions)
: Expr(ObjCDictionaryLiteralClass, Empty), NumElements(NumElements),
HasPackExpansions(HasPackExpansions) {}
KeyValuePair *getKeyValues() {
return reinterpret_cast<KeyValuePair *>(this + 1);
}
const KeyValuePair *getKeyValues() const {
return reinterpret_cast<const KeyValuePair *>(this + 1);
}
ExpansionData *getExpansionData() {
if (!HasPackExpansions)
return nullptr;
return reinterpret_cast<ExpansionData *>(getKeyValues() + NumElements);
}
const ExpansionData *getExpansionData() const {
if (!HasPackExpansions)
return nullptr;
return reinterpret_cast<const ExpansionData *>(getKeyValues()+NumElements);
}
public:
static ObjCDictionaryLiteral *Create(const ASTContext &C,
ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR);
static ObjCDictionaryLiteral *CreateEmpty(const ASTContext &C,
unsigned NumElements,
bool HasPackExpansions);
/// getNumElements - Return number of elements of objective-c dictionary
/// literal.
unsigned getNumElements() const { return NumElements; }
ObjCDictionaryElement getKeyValueElement(unsigned Index) const {
assert((Index < NumElements) && "Arg access out of range!");
const KeyValuePair &KV = getKeyValues()[Index];
ObjCDictionaryElement Result = { KV.Key, KV.Value, SourceLocation(), None };
if (HasPackExpansions) {
const ExpansionData &Expansion = getExpansionData()[Index];
Result.EllipsisLoc = Expansion.EllipsisLoc;
if (Expansion.NumExpansionsPlusOne > 0)
Result.NumExpansions = Expansion.NumExpansionsPlusOne - 1;
}
return Result;
}
ObjCMethodDecl *getDictWithObjectsMethod() const
{ return DictWithObjectsMethod; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCDictionaryLiteralClass;
}
// Iterators
child_range children() {
// Note: we're taking advantage of the layout of the KeyValuePair struct
// here. If that struct changes, this code will need to change as well.
return child_range(reinterpret_cast<Stmt **>(this + 1),
reinterpret_cast<Stmt **>(this + 1) + NumElements * 2);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// ObjCEncodeExpr, used for \@encode in Objective-C. \@encode has the same
/// type and behavior as StringLiteral except that the string initializer is
/// obtained from ASTContext with the encoding type as an argument.
class ObjCEncodeExpr : public Expr {
TypeSourceInfo *EncodedType;
SourceLocation AtLoc, RParenLoc;
public:
ObjCEncodeExpr(QualType T, TypeSourceInfo *EncodedType,
SourceLocation at, SourceLocation rp)
: Expr(ObjCEncodeExprClass, T, VK_LValue, OK_Ordinary,
EncodedType->getType()->isDependentType(),
EncodedType->getType()->isDependentType(),
EncodedType->getType()->isInstantiationDependentType(),
EncodedType->getType()->containsUnexpandedParameterPack()),
EncodedType(EncodedType), AtLoc(at), RParenLoc(rp) {}
explicit ObjCEncodeExpr(EmptyShell Empty) : Expr(ObjCEncodeExprClass, Empty){}
SourceLocation getAtLoc() const { return AtLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
QualType getEncodedType() const { return EncodedType->getType(); }
TypeSourceInfo *getEncodedTypeSourceInfo() const { return EncodedType; }
void setEncodedTypeSourceInfo(TypeSourceInfo *EncType) {
EncodedType = EncType;
}
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCEncodeExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ObjCSelectorExpr used for \@selector in Objective-C.
class ObjCSelectorExpr : public Expr {
Selector SelName;
SourceLocation AtLoc, RParenLoc;
public:
ObjCSelectorExpr(QualType T, Selector selInfo,
SourceLocation at, SourceLocation rp)
: Expr(ObjCSelectorExprClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
SelName(selInfo), AtLoc(at), RParenLoc(rp){}
explicit ObjCSelectorExpr(EmptyShell Empty)
: Expr(ObjCSelectorExprClass, Empty) {}
Selector getSelector() const { return SelName; }
void setSelector(Selector S) { SelName = S; }
SourceLocation getAtLoc() const { return AtLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
/// getNumArgs - Return the number of actual arguments to this call.
unsigned getNumArgs() const { return SelName.getNumArgs(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCSelectorExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// ObjCProtocolExpr used for protocol expression in Objective-C.
///
/// This is used as: \@protocol(foo), as in:
/// \code
/// [obj conformsToProtocol:@protocol(foo)]
/// \endcode
///
/// The return type is "Protocol*".
class ObjCProtocolExpr : public Expr {
ObjCProtocolDecl *TheProtocol;
SourceLocation AtLoc, ProtoLoc, RParenLoc;
public:
ObjCProtocolExpr(QualType T, ObjCProtocolDecl *protocol,
SourceLocation at, SourceLocation protoLoc, SourceLocation rp)
: Expr(ObjCProtocolExprClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
TheProtocol(protocol), AtLoc(at), ProtoLoc(protoLoc), RParenLoc(rp) {}
explicit ObjCProtocolExpr(EmptyShell Empty)
: Expr(ObjCProtocolExprClass, Empty) {}
ObjCProtocolDecl *getProtocol() const { return TheProtocol; }
void setProtocol(ObjCProtocolDecl *P) { TheProtocol = P; }
SourceLocation getProtocolIdLoc() const { return ProtoLoc; }
SourceLocation getAtLoc() const { return AtLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCProtocolExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// ObjCIvarRefExpr - A reference to an ObjC instance variable.
class ObjCIvarRefExpr : public Expr {
ObjCIvarDecl *D;
Stmt *Base;
SourceLocation Loc;
/// OpLoc - This is the location of '.' or '->'
SourceLocation OpLoc;
bool IsArrow:1; // True if this is "X->F", false if this is "X.F".
bool IsFreeIvar:1; // True if ivar reference has no base (self assumed).
public:
ObjCIvarRefExpr(ObjCIvarDecl *d, QualType t,
SourceLocation l, SourceLocation oploc,
Expr *base,
bool arrow = false, bool freeIvar = false) :
Expr(ObjCIvarRefExprClass, t, VK_LValue,
d->isBitField() ? OK_BitField : OK_Ordinary,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
D(d), Base(base), Loc(l), OpLoc(oploc),
IsArrow(arrow), IsFreeIvar(freeIvar) {}
explicit ObjCIvarRefExpr(EmptyShell Empty)
: Expr(ObjCIvarRefExprClass, Empty) {}
ObjCIvarDecl *getDecl() { return D; }
const ObjCIvarDecl *getDecl() const { return D; }
void setDecl(ObjCIvarDecl *d) { D = d; }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr * base) { Base = base; }
bool isArrow() const { return IsArrow; }
bool isFreeIvar() const { return IsFreeIvar; }
void setIsArrow(bool A) { IsArrow = A; }
void setIsFreeIvar(bool A) { IsFreeIvar = A; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY {
return isFreeIvar() ? Loc : getBase()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getOpLoc() const { return OpLoc; }
void setOpLoc(SourceLocation L) { OpLoc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCIvarRefExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
};
/// ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC
/// property.
class ObjCPropertyRefExpr : public Expr {
private:
/// If the bool is true, this is an implicit property reference; the
/// pointer is an (optional) ObjCMethodDecl and Setter may be set.
/// if the bool is false, this is an explicit property reference;
/// the pointer is an ObjCPropertyDecl and Setter is always null.
llvm::PointerIntPair<NamedDecl*, 1, bool> PropertyOrGetter;
/// \brief Indicates whether the property reference will result in a message
/// to the getter, the setter, or both.
/// This applies to both implicit and explicit property references.
enum MethodRefFlags {
MethodRef_None = 0,
MethodRef_Getter = 0x1,
MethodRef_Setter = 0x2
};
/// \brief Contains the Setter method pointer and MethodRefFlags bit flags.
llvm::PointerIntPair<ObjCMethodDecl *, 2, unsigned> SetterAndMethodRefFlags;
// FIXME: Maybe we should store the property identifier here,
// because it's not rederivable from the other data when there's an
// implicit property with no getter (because the 'foo' -> 'setFoo:'
// transformation is lossy on the first character).
SourceLocation IdLoc;
/// \brief When the receiver in property access is 'super', this is
/// the location of the 'super' keyword. When it's an interface,
/// this is that interface.
SourceLocation ReceiverLoc;
llvm::PointerUnion3<Stmt*, const Type*, ObjCInterfaceDecl*> Receiver;
public:
ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, Expr *base)
: Expr(ObjCPropertyRefExprClass, t, VK, OK,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
PropertyOrGetter(PD, false), SetterAndMethodRefFlags(),
IdLoc(l), ReceiverLoc(), Receiver(base) {
assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, SourceLocation sl, QualType st)
: Expr(ObjCPropertyRefExprClass, t, VK, OK,
/*TypeDependent=*/false, false, st->isInstantiationDependentType(),
st->containsUnexpandedParameterPack()),
PropertyOrGetter(PD, false), SetterAndMethodRefFlags(),
IdLoc(l), ReceiverLoc(sl), Receiver(st.getTypePtr()) {
assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc, Expr *Base)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false,
Base->isValueDependent(), Base->isInstantiationDependent(),
Base->containsUnexpandedParameterPack()),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(), Receiver(Base) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc,
SourceLocation SuperLoc, QualType SuperTy)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(SuperLoc), Receiver(SuperTy.getTypePtr()) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc,
SourceLocation ReceiverLoc, ObjCInterfaceDecl *Receiver)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(ReceiverLoc), Receiver(Receiver) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
explicit ObjCPropertyRefExpr(EmptyShell Empty)
: Expr(ObjCPropertyRefExprClass, Empty) {}
bool isImplicitProperty() const { return PropertyOrGetter.getInt(); }
bool isExplicitProperty() const { return !PropertyOrGetter.getInt(); }
ObjCPropertyDecl *getExplicitProperty() const {
assert(!isImplicitProperty());
return cast<ObjCPropertyDecl>(PropertyOrGetter.getPointer());
}
ObjCMethodDecl *getImplicitPropertyGetter() const {
assert(isImplicitProperty());
return cast_or_null<ObjCMethodDecl>(PropertyOrGetter.getPointer());
}
ObjCMethodDecl *getImplicitPropertySetter() const {
assert(isImplicitProperty());
return SetterAndMethodRefFlags.getPointer();
}
Selector getGetterSelector() const {
if (isImplicitProperty())
return getImplicitPropertyGetter()->getSelector();
return getExplicitProperty()->getGetterName();
}
Selector getSetterSelector() const {
if (isImplicitProperty())
return getImplicitPropertySetter()->getSelector();
return getExplicitProperty()->getSetterName();
}
/// \brief True if the property reference will result in a message to the
/// getter.
/// This applies to both implicit and explicit property references.
bool isMessagingGetter() const {
return SetterAndMethodRefFlags.getInt() & MethodRef_Getter;
}
/// \brief True if the property reference will result in a message to the
/// setter.
/// This applies to both implicit and explicit property references.
bool isMessagingSetter() const {
return SetterAndMethodRefFlags.getInt() & MethodRef_Setter;
}
void setIsMessagingGetter(bool val = true) {
setMethodRefFlag(MethodRef_Getter, val);
}
void setIsMessagingSetter(bool val = true) {
setMethodRefFlag(MethodRef_Setter, val);
}
const Expr *getBase() const {
return cast<Expr>(Receiver.get<Stmt*>());
}
Expr *getBase() {
return cast<Expr>(Receiver.get<Stmt*>());
}
SourceLocation getLocation() const { return IdLoc; }
SourceLocation getReceiverLocation() const { return ReceiverLoc; }
QualType getSuperReceiverType() const {
return QualType(Receiver.get<const Type*>(), 0);
}
ObjCInterfaceDecl *getClassReceiver() const {
return Receiver.get<ObjCInterfaceDecl*>();
}
bool isObjectReceiver() const { return Receiver.is<Stmt*>(); }
bool isSuperReceiver() const { return Receiver.is<const Type*>(); }
bool isClassReceiver() const { return Receiver.is<ObjCInterfaceDecl*>(); }
/// Determine the type of the base, regardless of the kind of receiver.
QualType getReceiverType(const ASTContext &ctx) const;
SourceLocation getLocStart() const LLVM_READONLY {
return isObjectReceiver() ? getBase()->getLocStart() :getReceiverLocation();
}
SourceLocation getLocEnd() const LLVM_READONLY { return IdLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCPropertyRefExprClass;
}
// Iterators
child_range children() {
if (Receiver.is<Stmt*>()) {
Stmt **begin = reinterpret_cast<Stmt**>(&Receiver); // hack!
return child_range(begin, begin+1);
}
return child_range();
}
private:
friend class ASTStmtReader;
friend class ASTStmtWriter;
void setExplicitProperty(ObjCPropertyDecl *D, unsigned methRefFlags) {
PropertyOrGetter.setPointer(D);
PropertyOrGetter.setInt(false);
SetterAndMethodRefFlags.setPointer(nullptr);
SetterAndMethodRefFlags.setInt(methRefFlags);
}
void setImplicitProperty(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
unsigned methRefFlags) {
PropertyOrGetter.setPointer(Getter);
PropertyOrGetter.setInt(true);
SetterAndMethodRefFlags.setPointer(Setter);
SetterAndMethodRefFlags.setInt(methRefFlags);
}
void setBase(Expr *Base) { Receiver = Base; }
void setSuperReceiver(QualType T) { Receiver = T.getTypePtr(); }
void setClassReceiver(ObjCInterfaceDecl *D) { Receiver = D; }
void setLocation(SourceLocation L) { IdLoc = L; }
void setReceiverLocation(SourceLocation Loc) { ReceiverLoc = Loc; }
void setMethodRefFlag(MethodRefFlags flag, bool val) {
unsigned f = SetterAndMethodRefFlags.getInt();
if (val)
f |= flag;
else
f &= ~flag;
SetterAndMethodRefFlags.setInt(f);
}
};
/// ObjCSubscriptRefExpr - used for array and dictionary subscripting.
/// array[4] = array[3]; dictionary[key] = dictionary[alt_key];
///
class ObjCSubscriptRefExpr : public Expr {
// Location of ']' in an indexing expression.
SourceLocation RBracket;
// array/dictionary base expression.
// for arrays, this is a numeric expression. For dictionaries, this is
// an objective-c object pointer expression.
enum { BASE, KEY, END_EXPR };
Stmt* SubExprs[END_EXPR];
ObjCMethodDecl *GetAtIndexMethodDecl;
// For immutable objects this is null. When ObjCSubscriptRefExpr is to read
// an indexed object this is null too.
ObjCMethodDecl *SetAtIndexMethodDecl;
public:
ObjCSubscriptRefExpr(Expr *base, Expr *key, QualType T,
ExprValueKind VK, ExprObjectKind OK,
ObjCMethodDecl *getMethod,
ObjCMethodDecl *setMethod, SourceLocation RB)
: Expr(ObjCSubscriptRefExprClass, T, VK, OK,
base->isTypeDependent() || key->isTypeDependent(),
base->isValueDependent() || key->isValueDependent(),
base->isInstantiationDependent() || key->isInstantiationDependent(),
(base->containsUnexpandedParameterPack() ||
key->containsUnexpandedParameterPack())),
RBracket(RB),
GetAtIndexMethodDecl(getMethod),
SetAtIndexMethodDecl(setMethod)
{SubExprs[BASE] = base; SubExprs[KEY] = key;}
explicit ObjCSubscriptRefExpr(EmptyShell Empty)
: Expr(ObjCSubscriptRefExprClass, Empty) {}
static ObjCSubscriptRefExpr *Create(const ASTContext &C,
Expr *base,
Expr *key, QualType T,
ObjCMethodDecl *getMethod,
ObjCMethodDecl *setMethod,
SourceLocation RB);
SourceLocation getRBracket() const { return RBracket; }
void setRBracket(SourceLocation RB) { RBracket = RB; }
SourceLocation getLocStart() const LLVM_READONLY {
return SubExprs[BASE]->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return RBracket; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCSubscriptRefExprClass;
}
Expr *getBaseExpr() const { return cast<Expr>(SubExprs[BASE]); }
void setBaseExpr(Stmt *S) { SubExprs[BASE] = S; }
Expr *getKeyExpr() const { return cast<Expr>(SubExprs[KEY]); }
void setKeyExpr(Stmt *S) { SubExprs[KEY] = S; }
ObjCMethodDecl *getAtIndexMethodDecl() const {
return GetAtIndexMethodDecl;
}
ObjCMethodDecl *setAtIndexMethodDecl() const {
return SetAtIndexMethodDecl;
}
bool isArraySubscriptRefExpr() const {
return getKeyExpr()->getType()->isIntegralOrEnumerationType();
}
child_range children() {
return child_range(SubExprs, SubExprs+END_EXPR);
}
private:
friend class ASTStmtReader;
};
/// \brief An expression that sends a message to the given Objective-C
/// object or class.
///
/// The following contains two message send expressions:
///
/// \code
/// [[NSString alloc] initWithString:@"Hello"]
/// \endcode
///
/// The innermost message send invokes the "alloc" class method on the
/// NSString class, while the outermost message send invokes the
/// "initWithString" instance method on the object returned from
/// NSString's "alloc". In all, an Objective-C message send can take
/// on four different (although related) forms:
///
/// 1. Send to an object instance.
/// 2. Send to a class.
/// 3. Send to the superclass instance of the current class.
/// 4. Send to the superclass of the current class.
///
/// All four kinds of message sends are modeled by the ObjCMessageExpr
/// class, and can be distinguished via \c getReceiverKind(). Example:
///
class ObjCMessageExpr : public Expr {
/// \brief Stores either the selector that this message is sending
/// to (when \c HasMethod is zero) or an \c ObjCMethodDecl pointer
/// referring to the method that we type-checked against.
uintptr_t SelectorOrMethod;
enum { NumArgsBitWidth = 16 };
/// \brief The number of arguments in the message send, not
/// including the receiver.
unsigned NumArgs : NumArgsBitWidth;
void setNumArgs(unsigned Num) {
assert((Num >> NumArgsBitWidth) == 0 && "Num of args is out of range!");
NumArgs = Num;
}
/// \brief The kind of message send this is, which is one of the
/// ReceiverKind values.
///
/// We pad this out to a byte to avoid excessive masking and shifting.
unsigned Kind : 8;
/// \brief Whether we have an actual method prototype in \c
/// SelectorOrMethod.
///
/// When non-zero, we have a method declaration; otherwise, we just
/// have a selector.
unsigned HasMethod : 1;
/// \brief Whether this message send is a "delegate init call",
/// i.e. a call of an init method on self from within an init method.
unsigned IsDelegateInitCall : 1;
/// \brief Whether this message send was implicitly generated by
/// the implementation rather than explicitly written by the user.
unsigned IsImplicit : 1;
/// \brief Whether the locations of the selector identifiers are in a
/// "standard" position, a enum SelectorLocationsKind.
unsigned SelLocsKind : 2;
/// \brief When the message expression is a send to 'super', this is
/// the location of the 'super' keyword.
SourceLocation SuperLoc;
/// \brief The source locations of the open and close square
/// brackets ('[' and ']', respectively).
SourceLocation LBracLoc, RBracLoc;
ObjCMessageExpr(EmptyShell Empty, unsigned NumArgs)
: Expr(ObjCMessageExprClass, Empty), SelectorOrMethod(0), Kind(0),
HasMethod(0), IsDelegateInitCall(0), IsImplicit(0), SelLocsKind(0) {
setNumArgs(NumArgs);
}
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
void initArgsAndSelLocs(ArrayRef<Expr *> Args,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK);
/// \brief Retrieve the pointer value of the message receiver.
void *getReceiverPointer() const {
return *const_cast<void **>(
reinterpret_cast<const void * const*>(this + 1));
}
/// \brief Set the pointer value of the message receiver.
void setReceiverPointer(void *Value) {
*reinterpret_cast<void **>(this + 1) = Value;
}
SelectorLocationsKind getSelLocsKind() const {
return (SelectorLocationsKind)SelLocsKind;
}
bool hasStandardSelLocs() const {
return getSelLocsKind() != SelLoc_NonStandard;
}
/// \brief Get a pointer to the stored selector identifiers locations array.
/// No locations will be stored if HasStandardSelLocs is true.
SourceLocation *getStoredSelLocs() {
return reinterpret_cast<SourceLocation*>(getArgs() + getNumArgs());
}
const SourceLocation *getStoredSelLocs() const {
return reinterpret_cast<const SourceLocation*>(getArgs() + getNumArgs());
}
/// \brief Get the number of stored selector identifiers locations.
/// No locations will be stored if HasStandardSelLocs is true.
unsigned getNumStoredSelLocs() const {
if (hasStandardSelLocs())
return 0;
return getNumSelectorLocs();
}
static ObjCMessageExpr *alloc(const ASTContext &C,
ArrayRef<Expr *> Args,
SourceLocation RBraceLoc,
ArrayRef<SourceLocation> SelLocs,
Selector Sel,
SelectorLocationsKind &SelLocsK);
static ObjCMessageExpr *alloc(const ASTContext &C,
unsigned NumArgs,
unsigned NumStoredSelLocs);
public:
/// \brief The kind of receiver this message is sending to.
enum ReceiverKind {
/// \brief The receiver is a class.
Class = 0,
/// \brief The receiver is an object instance.
Instance,
/// \brief The receiver is a superclass.
SuperClass,
/// \brief The receiver is the instance of the superclass object.
SuperInstance
};
/// \brief Create a message send to super.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param SuperLoc The location of the "super" keyword.
///
/// \param IsInstanceSuper Whether this is an instance "super"
/// message (otherwise, it's a class "super" message).
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create a class message send.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param Receiver The type of the receiver, including
/// source-location information.
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create an instance message send.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param Receiver The expression used to produce the object that
/// will receive this message.
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SeLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create an empty Objective-C message expression, to be
/// filled in by subsequent calls.
///
/// \param Context The context in which the message send will be created.
///
/// \param NumArgs The number of message arguments, not including
/// the receiver.
static ObjCMessageExpr *CreateEmpty(const ASTContext &Context,
unsigned NumArgs,
unsigned NumStoredSelLocs);
/// \brief Indicates whether the message send was implicitly
/// generated by the implementation. If false, it was written explicitly
/// in the source code.
bool isImplicit() const { return IsImplicit; }
/// \brief Determine the kind of receiver that this message is being
/// sent to.
ReceiverKind getReceiverKind() const { return (ReceiverKind)Kind; }
/// \brief Source range of the receiver.
SourceRange getReceiverRange() const;
/// \brief Determine whether this is an instance message to either a
/// computed object or to super.
bool isInstanceMessage() const {
return getReceiverKind() == Instance || getReceiverKind() == SuperInstance;
}
/// \brief Determine whether this is an class message to either a
/// specified class or to super.
bool isClassMessage() const {
return getReceiverKind() == Class || getReceiverKind() == SuperClass;
}
/// \brief Returns the object expression (receiver) for an instance message,
/// or null for a message that is not an instance message.
Expr *getInstanceReceiver() {
if (getReceiverKind() == Instance)
return static_cast<Expr *>(getReceiverPointer());
return nullptr;
}
const Expr *getInstanceReceiver() const {
return const_cast<ObjCMessageExpr*>(this)->getInstanceReceiver();
}
/// \brief Turn this message send into an instance message that
/// computes the receiver object with the given expression.
void setInstanceReceiver(Expr *rec) {
Kind = Instance;
setReceiverPointer(rec);
}
/// \brief Returns the type of a class message send, or NULL if the
/// message is not a class message.
QualType getClassReceiver() const {
if (TypeSourceInfo *TSInfo = getClassReceiverTypeInfo())
return TSInfo->getType();
return QualType();
}
/// \brief Returns a type-source information of a class message
/// send, or NULL if the message is not a class message.
TypeSourceInfo *getClassReceiverTypeInfo() const {
if (getReceiverKind() == Class)
return reinterpret_cast<TypeSourceInfo *>(getReceiverPointer());
return nullptr;
}
void setClassReceiver(TypeSourceInfo *TSInfo) {
Kind = Class;
setReceiverPointer(TSInfo);
}
/// \brief Retrieve the location of the 'super' keyword for a class
/// or instance message to 'super', otherwise an invalid source location.
SourceLocation getSuperLoc() const {
if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass)
return SuperLoc;
return SourceLocation();
}
/// \brief Retrieve the receiver type to which this message is being directed.
///
/// This routine cross-cuts all of the different kinds of message
/// sends to determine what the underlying (statically known) type
/// of the receiver will be; use \c getReceiverKind() to determine
/// whether the message is a class or an instance method, whether it
/// is a send to super or not, etc.
///
/// \returns The type of the receiver.
QualType getReceiverType() const;
/// \brief Retrieve the Objective-C interface to which this message
/// is being directed, if known.
///
/// This routine cross-cuts all of the different kinds of message
/// sends to determine what the underlying (statically known) type
/// of the receiver will be; use \c getReceiverKind() to determine
/// whether the message is a class or an instance method, whether it
/// is a send to super or not, etc.
///
/// \returns The Objective-C interface if known, otherwise NULL.
ObjCInterfaceDecl *getReceiverInterface() const;
/// \brief Retrieve the type referred to by 'super'.
///
/// The returned type will either be an ObjCInterfaceType (for an
/// class message to super) or an ObjCObjectPointerType that refers
/// to a class (for an instance message to super);
QualType getSuperType() const {
if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass)
return QualType::getFromOpaquePtr(getReceiverPointer());
return QualType();
}
void setSuper(SourceLocation Loc, QualType T, bool IsInstanceSuper) {
Kind = IsInstanceSuper? SuperInstance : SuperClass;
SuperLoc = Loc;
setReceiverPointer(T.getAsOpaquePtr());
}
Selector getSelector() const;
void setSelector(Selector S) {
HasMethod = false;
SelectorOrMethod = reinterpret_cast<uintptr_t>(S.getAsOpaquePtr());
}
const ObjCMethodDecl *getMethodDecl() const {
if (HasMethod)
return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod);
return nullptr;
}
ObjCMethodDecl *getMethodDecl() {
if (HasMethod)
return reinterpret_cast<ObjCMethodDecl *>(SelectorOrMethod);
return nullptr;
}
void setMethodDecl(ObjCMethodDecl *MD) {
HasMethod = true;
SelectorOrMethod = reinterpret_cast<uintptr_t>(MD);
}
ObjCMethodFamily getMethodFamily() const {
if (HasMethod) return getMethodDecl()->getMethodFamily();
return getSelector().getMethodFamily();
}
/// \brief Return the number of actual arguments in this message,
/// not counting the receiver.
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve the arguments to this message, not including the
/// receiver.
Expr **getArgs() {
return reinterpret_cast<Expr **>(this + 1) + 1;
}
const Expr * const *getArgs() const {
return reinterpret_cast<const Expr * const *>(this + 1) + 1;
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(getArgs()[Arg]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(getArgs()[Arg]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
getArgs()[Arg] = ArgExpr;
}
/// isDelegateInitCall - Answers whether this message send has been
/// tagged as a "delegate init call", i.e. a call to a method in the
/// -init family on self from within an -init method implementation.
bool isDelegateInitCall() const { return IsDelegateInitCall; }
void setDelegateInitCall(bool isDelegate) { IsDelegateInitCall = isDelegate; }
SourceLocation getLeftLoc() const { return LBracLoc; }
SourceLocation getRightLoc() const { return RBracLoc; }
SourceLocation getSelectorStartLoc() const {
if (isImplicit())
return getLocStart();
return getSelectorLoc(0);
}
SourceLocation getSelectorLoc(unsigned Index) const {
assert(Index < getNumSelectorLocs() && "Index out of range!");
if (hasStandardSelLocs())
return getStandardSelectorLoc(Index, getSelector(),
getSelLocsKind() == SelLoc_StandardWithSpace,
llvm::makeArrayRef(const_cast<Expr**>(getArgs()),
getNumArgs()),
RBracLoc);
return getStoredSelLocs()[Index];
}
void getSelectorLocs(SmallVectorImpl<SourceLocation> &SelLocs) const;
unsigned getNumSelectorLocs() const {
if (isImplicit())
return 0;
Selector Sel = getSelector();
if (Sel.isUnarySelector())
return 1;
return Sel.getNumArgs();
}
void setSourceRange(SourceRange R) {
LBracLoc = R.getBegin();
RBracLoc = R.getEnd();
}
SourceLocation getLocStart() const LLVM_READONLY { return LBracLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RBracLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCMessageExprClass;
}
// Iterators
child_range children();
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator arg_begin() { return reinterpret_cast<Stmt **>(getArgs()); }
arg_iterator arg_end() {
return reinterpret_cast<Stmt **>(getArgs() + NumArgs);
}
const_arg_iterator arg_begin() const {
return reinterpret_cast<Stmt const * const*>(getArgs());
}
const_arg_iterator arg_end() const {
return reinterpret_cast<Stmt const * const*>(getArgs() + NumArgs);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
/// (similar in spirit to MemberExpr).
class ObjCIsaExpr : public Expr {
/// Base - the expression for the base object pointer.
Stmt *Base;
/// IsaMemberLoc - This is the location of the 'isa'.
SourceLocation IsaMemberLoc;
/// OpLoc - This is the location of '.' or '->'
SourceLocation OpLoc;
/// IsArrow - True if this is "X->F", false if this is "X.F".
bool IsArrow;
public:
ObjCIsaExpr(Expr *base, bool isarrow, SourceLocation l, SourceLocation oploc,
QualType ty)
: Expr(ObjCIsaExprClass, ty, VK_LValue, OK_Ordinary,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
/*ContainsUnexpandedParameterPack=*/false),
Base(base), IsaMemberLoc(l), OpLoc(oploc), IsArrow(isarrow) {}
/// \brief Build an empty expression.
explicit ObjCIsaExpr(EmptyShell Empty) : Expr(ObjCIsaExprClass, Empty) { }
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getIsaMemberLoc() const { return IsaMemberLoc; }
void setIsaMemberLoc(SourceLocation L) { IsaMemberLoc = L; }
SourceLocation getOpLoc() const { return OpLoc; }
void setOpLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY {
return getBase()->getLocStart();
}
SourceLocation getBaseLocEnd() const LLVM_READONLY {
return getBase()->getLocEnd();
}
SourceLocation getLocEnd() const LLVM_READONLY { return IsaMemberLoc; }
SourceLocation getExprLoc() const LLVM_READONLY { return IsaMemberLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCIsaExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
};
/// ObjCIndirectCopyRestoreExpr - Represents the passing of a function
/// argument by indirect copy-restore in ARC. This is used to support
/// passing indirect arguments with the wrong lifetime, e.g. when
/// passing the address of a __strong local variable to an 'out'
/// parameter. This expression kind is only valid in an "argument"
/// position to some sort of call expression.
///
/// The parameter must have type 'pointer to T', and the argument must
/// have type 'pointer to U', where T and U agree except possibly in
/// qualification. If the argument value is null, then a null pointer
/// is passed; otherwise it points to an object A, and:
/// 1. A temporary object B of type T is initialized, either by
/// zero-initialization (used when initializing an 'out' parameter)
/// or copy-initialization (used when initializing an 'inout'
/// parameter).
/// 2. The address of the temporary is passed to the function.
/// 3. If the call completes normally, A is move-assigned from B.
/// 4. Finally, A is destroyed immediately.
///
/// Currently 'T' must be a retainable object lifetime and must be
/// __autoreleasing; this qualifier is ignored when initializing
/// the value.
class ObjCIndirectCopyRestoreExpr : public Expr {
Stmt *Operand;
// unsigned ObjCIndirectCopyRestoreBits.ShouldCopy : 1;
friend class ASTReader;
friend class ASTStmtReader;
void setShouldCopy(bool shouldCopy) {
ObjCIndirectCopyRestoreExprBits.ShouldCopy = shouldCopy;
}
explicit ObjCIndirectCopyRestoreExpr(EmptyShell Empty)
: Expr(ObjCIndirectCopyRestoreExprClass, Empty) { }
public:
ObjCIndirectCopyRestoreExpr(Expr *operand, QualType type, bool shouldCopy)
: Expr(ObjCIndirectCopyRestoreExprClass, type, VK_LValue, OK_Ordinary,
operand->isTypeDependent(), operand->isValueDependent(),
operand->isInstantiationDependent(),
operand->containsUnexpandedParameterPack()),
Operand(operand) {
setShouldCopy(shouldCopy);
}
Expr *getSubExpr() { return cast<Expr>(Operand); }
const Expr *getSubExpr() const { return cast<Expr>(Operand); }
/// shouldCopy - True if we should do the 'copy' part of the
/// copy-restore. If false, the temporary will be zero-initialized.
bool shouldCopy() const { return ObjCIndirectCopyRestoreExprBits.ShouldCopy; }
child_range children() { return child_range(&Operand, &Operand+1); }
// Source locations are determined by the subexpression.
SourceLocation getLocStart() const LLVM_READONLY {
return Operand->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return Operand->getLocEnd();}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSubExpr()->getExprLoc();
}
static bool classof(const Stmt *s) {
return s->getStmtClass() == ObjCIndirectCopyRestoreExprClass;
}
};
/// \brief An Objective-C "bridged" cast expression, which casts between
/// Objective-C pointers and C pointers, transferring ownership in the process.
///
/// \code
/// NSString *str = (__bridge_transfer NSString *)CFCreateString();
/// \endcode
class ObjCBridgedCastExpr : public ExplicitCastExpr {
SourceLocation LParenLoc;
SourceLocation BridgeKeywordLoc;
unsigned Kind : 2;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
ObjCBridgedCastExpr(SourceLocation LParenLoc, ObjCBridgeCastKind Kind,
CastKind CK, SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo, Expr *Operand)
: ExplicitCastExpr(ObjCBridgedCastExprClass, TSInfo->getType(), VK_RValue,
CK, Operand, 0, TSInfo),
LParenLoc(LParenLoc), BridgeKeywordLoc(BridgeKeywordLoc), Kind(Kind) { }
/// \brief Construct an empty Objective-C bridged cast.
explicit ObjCBridgedCastExpr(EmptyShell Shell)
: ExplicitCastExpr(ObjCBridgedCastExprClass, Shell, 0) { }
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Determine which kind of bridge is being performed via this cast.
ObjCBridgeCastKind getBridgeKind() const {
return static_cast<ObjCBridgeCastKind>(Kind);
}
/// \brief Retrieve the kind of bridge being performed as a string.
StringRef getBridgeKindName() const;
/// \brief The location of the bridge keyword.
SourceLocation getBridgeKeywordLoc() const { return BridgeKeywordLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return getSubExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBridgedCastExprClass;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclFriend.h | //===-- DeclFriend.h - Classes for C++ friend declarations -*- C++ -*------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the section of the AST representing C++ friend
// declarations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLFRIEND_H
#define LLVM_CLANG_AST_DECLFRIEND_H
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/Support/Compiler.h"
namespace clang {
/// FriendDecl - Represents the declaration of a friend entity,
/// which can be a function, a type, or a templated function or type.
// For example:
///
/// @code
/// template <typename T> class A {
/// friend int foo(T);
/// friend class B;
/// friend T; // only in C++0x
/// template <typename U> friend class C;
/// template <typename U> friend A& operator+=(A&, const U&) { ... }
/// };
/// @endcode
///
/// The semantic context of a friend decl is its declaring class.
class FriendDecl : public Decl {
virtual void anchor();
public:
typedef llvm::PointerUnion<NamedDecl*,TypeSourceInfo*> FriendUnion;
private:
// The declaration that's a friend of this class.
FriendUnion Friend;
// A pointer to the next friend in the sequence.
LazyDeclPtr NextFriend;
// Location of the 'friend' specifier.
SourceLocation FriendLoc;
/// True if this 'friend' declaration is unsupported. Eventually we
/// will support every possible friend declaration, but for now we
/// silently ignore some and set this flag to authorize all access.
bool UnsupportedFriend : 1;
// The number of "outer" template parameter lists in non-templatic
// (currently unsupported) friend type declarations, such as
// template <class T> friend class A<T>::B;
unsigned NumTPLists : 31;
// The tail-allocated friend type template parameter lists (if any).
TemplateParameterList* const *getTPLists() const {
return reinterpret_cast<TemplateParameterList* const *>(this + 1);
}
TemplateParameterList **getTPLists() {
return reinterpret_cast<TemplateParameterList**>(this + 1);
}
friend class CXXRecordDecl::friend_iterator;
friend class CXXRecordDecl;
FriendDecl(DeclContext *DC, SourceLocation L, FriendUnion Friend,
SourceLocation FriendL,
ArrayRef<TemplateParameterList*> FriendTypeTPLists)
: Decl(Decl::Friend, DC, L),
Friend(Friend),
NextFriend(),
FriendLoc(FriendL),
UnsupportedFriend(false),
NumTPLists(FriendTypeTPLists.size()) {
for (unsigned i = 0; i < NumTPLists; ++i)
getTPLists()[i] = FriendTypeTPLists[i];
}
FriendDecl(EmptyShell Empty, unsigned NumFriendTypeTPLists)
: Decl(Decl::Friend, Empty), NextFriend(),
NumTPLists(NumFriendTypeTPLists) { }
FriendDecl *getNextFriend() {
if (!NextFriend.isOffset())
return cast_or_null<FriendDecl>(NextFriend.get(nullptr));
return getNextFriendSlowCase();
}
FriendDecl *getNextFriendSlowCase();
public:
static FriendDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, FriendUnion Friend_,
SourceLocation FriendL,
ArrayRef<TemplateParameterList*> FriendTypeTPLists
= None);
static FriendDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned FriendTypeNumTPLists);
/// If this friend declaration names an (untemplated but possibly
/// dependent) type, return the type; otherwise return null. This
/// is used for elaborated-type-specifiers and, in C++0x, for
/// arbitrary friend type declarations.
TypeSourceInfo *getFriendType() const {
return Friend.dyn_cast<TypeSourceInfo*>();
}
unsigned getFriendTypeNumTemplateParameterLists() const {
return NumTPLists;
}
TemplateParameterList *getFriendTypeTemplateParameterList(unsigned N) const {
assert(N < NumTPLists);
return getTPLists()[N];
}
/// If this friend declaration doesn't name a type, return the inner
/// declaration.
NamedDecl *getFriendDecl() const {
return Friend.dyn_cast<NamedDecl*>();
}
/// Retrieves the location of the 'friend' keyword.
SourceLocation getFriendLoc() const {
return FriendLoc;
}
/// Retrieves the source range for the friend declaration.
SourceRange getSourceRange() const override LLVM_READONLY {
if (NamedDecl *ND = getFriendDecl()) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
return FD->getSourceRange();
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
return FTD->getSourceRange();
if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
return CTD->getSourceRange();
if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(ND)) {
if (DD->getOuterLocStart() != DD->getInnerLocStart())
return DD->getSourceRange();
}
return SourceRange(getFriendLoc(), ND->getLocEnd());
}
else if (TypeSourceInfo *TInfo = getFriendType()) {
SourceLocation StartL = (NumTPLists == 0)
? getFriendLoc()
: getTPLists()[0]->getTemplateLoc();
return SourceRange(StartL, TInfo->getTypeLoc().getEndLoc());
}
else
return SourceRange(getFriendLoc(), getLocation());
}
/// Determines if this friend kind is unsupported.
bool isUnsupportedFriend() const {
return UnsupportedFriend;
}
void setUnsupportedFriend(bool Unsupported) {
UnsupportedFriend = Unsupported;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::Friend; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// An iterator over the friend declarations of a class.
class CXXRecordDecl::friend_iterator {
FriendDecl *Ptr;
friend class CXXRecordDecl;
explicit friend_iterator(FriendDecl *Ptr) : Ptr(Ptr) {}
public:
friend_iterator() {}
typedef FriendDecl *value_type;
typedef FriendDecl *reference;
typedef FriendDecl *pointer;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
reference operator*() const { return Ptr; }
friend_iterator &operator++() {
assert(Ptr && "attempt to increment past end of friend list");
Ptr = Ptr->getNextFriend();
return *this;
}
friend_iterator operator++(int) {
friend_iterator tmp = *this;
++*this;
return tmp;
}
bool operator==(const friend_iterator &Other) const {
return Ptr == Other.Ptr;
}
bool operator!=(const friend_iterator &Other) const {
return Ptr != Other.Ptr;
}
friend_iterator &operator+=(difference_type N) {
assert(N >= 0 && "cannot rewind a CXXRecordDecl::friend_iterator");
while (N--)
++*this;
return *this;
}
friend_iterator operator+(difference_type N) const {
friend_iterator tmp = *this;
tmp += N;
return tmp;
}
};
inline CXXRecordDecl::friend_iterator CXXRecordDecl::friend_begin() const {
return friend_iterator(getFirstFriend());
}
inline CXXRecordDecl::friend_iterator CXXRecordDecl::friend_end() const {
return friend_iterator(nullptr);
}
inline CXXRecordDecl::friend_range CXXRecordDecl::friends() const {
return friend_range(friend_begin(), friend_end());
}
inline void CXXRecordDecl::pushFriendDecl(FriendDecl *FD) {
assert(!FD->NextFriend && "friend already has next friend?");
FD->NextFriend = data().FirstFriend;
data().FirstFriend = FD;
}
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/SelectorLocationsKind.h | //===--- SelectorLocationsKind.h - Kind of selector locations ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Describes whether the identifier locations for a selector are "standard"
// or not.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_SELECTORLOCATIONSKIND_H
#define LLVM_CLANG_AST_SELECTORLOCATIONSKIND_H
#include "clang/Basic/LLVM.h"
namespace clang {
class Selector;
class SourceLocation;
class Expr;
class ParmVarDecl;
/// \brief Whether all locations of the selector identifiers are in a
/// "standard" position.
enum SelectorLocationsKind {
/// \brief Non-standard.
SelLoc_NonStandard = 0,
/// \brief For nullary selectors, immediately before the end:
/// "[foo release]" / "-(void)release;"
/// Or immediately before the arguments:
/// "[foo first:1 second:2]" / "-(id)first:(int)x second:(int)y;
SelLoc_StandardNoSpace = 1,
/// \brief For nullary selectors, immediately before the end:
/// "[foo release]" / "-(void)release;"
/// Or with a space between the arguments:
/// "[foo first: 1 second: 2]" / "-(id)first: (int)x second: (int)y;
SelLoc_StandardWithSpace = 2
};
/// \brief Returns true if all \p SelLocs are in a "standard" location.
SelectorLocationsKind hasStandardSelectorLocs(Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ArrayRef<Expr *> Args,
SourceLocation EndLoc);
/// \brief Get the "standard" location of a selector identifier, e.g:
/// For nullary selectors, immediately before ']': "[foo release]"
///
/// \param WithArgSpace if true the standard location is with a space apart
/// before arguments: "[foo first: 1 second: 2]"
/// If false: "[foo first:1 second:2]"
SourceLocation getStandardSelectorLoc(unsigned Index,
Selector Sel,
bool WithArgSpace,
ArrayRef<Expr *> Args,
SourceLocation EndLoc);
/// \brief Returns true if all \p SelLocs are in a "standard" location.
SelectorLocationsKind hasStandardSelectorLocs(Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ArrayRef<ParmVarDecl *> Args,
SourceLocation EndLoc);
/// \brief Get the "standard" location of a selector identifier, e.g:
/// For nullary selectors, immediately before ']': "[foo release]"
///
/// \param WithArgSpace if true the standard location is with a space apart
/// before arguments: "-(id)first: (int)x second: (int)y;"
/// If false: "-(id)first:(int)x second:(int)y;"
SourceLocation getStandardSelectorLoc(unsigned Index,
Selector Sel,
bool WithArgSpace,
ArrayRef<ParmVarDecl *> Args,
SourceLocation EndLoc);
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CMakeLists.txt | clang_tablegen(Attrs.inc -gen-clang-attr-classes
-I ${CMAKE_CURRENT_SOURCE_DIR}/../../
SOURCE ../Basic/Attr.td
TARGET ClangAttrClasses)
clang_tablegen(AttrImpl.inc -gen-clang-attr-impl
-I ${CMAKE_CURRENT_SOURCE_DIR}/../../
SOURCE ../Basic/Attr.td
TARGET ClangAttrImpl)
clang_tablegen(AttrDump.inc -gen-clang-attr-dump
-I ${CMAKE_CURRENT_SOURCE_DIR}/../../
SOURCE ../Basic/Attr.td
TARGET ClangAttrDump)
clang_tablegen(AttrVisitor.inc -gen-clang-attr-ast-visitor
-I ${CMAKE_CURRENT_SOURCE_DIR}/../../
SOURCE ../Basic/Attr.td
TARGET ClangAttrVisitor)
clang_tablegen(StmtNodes.inc -gen-clang-stmt-nodes
SOURCE ../Basic/StmtNodes.td
TARGET ClangStmtNodes)
clang_tablegen(DeclNodes.inc -gen-clang-decl-nodes
SOURCE ../Basic/DeclNodes.td
TARGET ClangDeclNodes)
clang_tablegen(CommentNodes.inc -gen-clang-comment-nodes
SOURCE ../Basic/CommentNodes.td
TARGET ClangCommentNodes)
clang_tablegen(CommentHTMLTags.inc -gen-clang-comment-html-tags
SOURCE CommentHTMLTags.td
TARGET ClangCommentHTMLTags)
clang_tablegen(CommentHTMLTagsProperties.inc -gen-clang-comment-html-tags-properties
SOURCE CommentHTMLTags.td
TARGET ClangCommentHTMLTagsProperties)
clang_tablegen(CommentHTMLNamedCharacterReferences.inc -gen-clang-comment-html-named-character-references
SOURCE CommentHTMLNamedCharacterReferences.td
TARGET ClangCommentHTMLNamedCharacterReferences)
clang_tablegen(CommentCommandInfo.inc -gen-clang-comment-command-info
SOURCE CommentCommands.td
TARGET ClangCommentCommandInfo)
clang_tablegen(CommentCommandList.inc -gen-clang-comment-command-list
SOURCE CommentCommands.td
TARGET ClangCommentCommandList)
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/OpenMPClause.h | //===- OpenMPClause.h - Classes for OpenMP clauses --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// \brief This file defines OpenMP AST classes for clauses.
/// There are clauses for executable directives, clauses for declarative
/// directives and clauses which can be used in both kinds of directives.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_OPENMPCLAUSE_H
#define LLVM_CLANG_AST_OPENMPCLAUSE_H
#include "clang/AST/Expr.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/SourceLocation.h"
namespace clang {
//===----------------------------------------------------------------------===//
// AST classes for clauses.
// //
///////////////////////////////////////////////////////////////////////////////
/// \brief This is a basic class for representing single OpenMP clause.
///
class OMPClause {
/// \brief Starting location of the clause (the clause keyword).
SourceLocation StartLoc;
/// \brief Ending location of the clause.
SourceLocation EndLoc;
/// \brief Kind of the clause.
OpenMPClauseKind Kind;
protected:
OMPClause(OpenMPClauseKind K, SourceLocation StartLoc, SourceLocation EndLoc)
: StartLoc(StartLoc), EndLoc(EndLoc), Kind(K) {}
public:
/// \brief Returns the starting location of the clause.
SourceLocation getLocStart() const { return StartLoc; }
/// \brief Returns the ending location of the clause.
SourceLocation getLocEnd() const { return EndLoc; }
/// \brief Sets the starting location of the clause.
void setLocStart(SourceLocation Loc) { StartLoc = Loc; }
/// \brief Sets the ending location of the clause.
void setLocEnd(SourceLocation Loc) { EndLoc = Loc; }
/// \brief Returns kind of OpenMP clause (private, shared, reduction, etc.).
OpenMPClauseKind getClauseKind() const { return Kind; }
bool isImplicit() const { return StartLoc.isInvalid(); }
StmtRange children();
ConstStmtRange children() const {
return const_cast<OMPClause *>(this)->children();
}
static bool classof(const OMPClause *) { return true; }
};
/// \brief This represents clauses with the list of variables like 'private',
/// 'firstprivate', 'copyin', 'shared', or 'reduction' clauses in the
/// '#pragma omp ...' directives.
template <class T> class OMPVarListClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Number of variables in the list.
unsigned NumVars;
protected:
/// \brief Fetches list of variables associated with this clause.
MutableArrayRef<Expr *> getVarRefs() {
return MutableArrayRef<Expr *>(
reinterpret_cast<Expr **>(
reinterpret_cast<char *>(this) +
llvm::RoundUpToAlignment(sizeof(T), llvm::alignOf<Expr *>())),
NumVars);
}
/// \brief Sets the list of variables for this clause.
void setVarRefs(ArrayRef<Expr *> VL) {
assert(VL.size() == NumVars &&
"Number of variables is not the same as the preallocated buffer");
std::copy(
VL.begin(), VL.end(),
reinterpret_cast<Expr **>(
reinterpret_cast<char *>(this) +
llvm::RoundUpToAlignment(sizeof(T), llvm::alignOf<Expr *>())));
}
/// \brief Build a clause with \a N variables
///
/// \param K Kind of the clause.
/// \param StartLoc Starting location of the clause (the clause keyword).
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPVarListClause(OpenMPClauseKind K, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc, unsigned N)
: OMPClause(K, StartLoc, EndLoc), LParenLoc(LParenLoc), NumVars(N) {}
public:
typedef MutableArrayRef<Expr *>::iterator varlist_iterator;
typedef ArrayRef<const Expr *>::iterator varlist_const_iterator;
typedef llvm::iterator_range<varlist_iterator> varlist_range;
typedef llvm::iterator_range<varlist_const_iterator> varlist_const_range;
unsigned varlist_size() const { return NumVars; }
bool varlist_empty() const { return NumVars == 0; }
varlist_range varlists() {
return varlist_range(varlist_begin(), varlist_end());
}
varlist_const_range varlists() const {
return varlist_const_range(varlist_begin(), varlist_end());
}
varlist_iterator varlist_begin() { return getVarRefs().begin(); }
varlist_iterator varlist_end() { return getVarRefs().end(); }
varlist_const_iterator varlist_begin() const { return getVarRefs().begin(); }
varlist_const_iterator varlist_end() const { return getVarRefs().end(); }
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Fetches list of all variables in the clause.
ArrayRef<const Expr *> getVarRefs() const {
return llvm::makeArrayRef(
reinterpret_cast<const Expr *const *>(
reinterpret_cast<const char *>(this) +
llvm::RoundUpToAlignment(sizeof(T), llvm::alignOf<const Expr *>())),
NumVars);
}
};
/// \brief This represents 'if' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp parallel if(a > 5)
/// \endcode
/// In this example directive '#pragma omp parallel' has simple 'if'
/// clause with condition 'a > 5'.
///
class OMPIfClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Condition of the 'if' clause.
Stmt *Condition;
/// \brief Set condition.
///
void setCondition(Expr *Cond) { Condition = Cond; }
public:
/// \brief Build 'if' clause with condition \a Cond.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param Cond Condition of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPIfClause(Expr *Cond, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc)
: OMPClause(OMPC_if, StartLoc, EndLoc), LParenLoc(LParenLoc),
Condition(Cond) {}
/// \brief Build an empty clause.
///
OMPIfClause()
: OMPClause(OMPC_if, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), Condition(nullptr) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Returns condition.
Expr *getCondition() const { return cast_or_null<Expr>(Condition); }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_if;
}
StmtRange children() { return StmtRange(&Condition, &Condition + 1); }
};
/// \brief This represents 'final' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp task final(a > 5)
/// \endcode
/// In this example directive '#pragma omp task' has simple 'final'
/// clause with condition 'a > 5'.
///
class OMPFinalClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Condition of the 'if' clause.
Stmt *Condition;
/// \brief Set condition.
///
void setCondition(Expr *Cond) { Condition = Cond; }
public:
/// \brief Build 'final' clause with condition \a Cond.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param Cond Condition of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPFinalClause(Expr *Cond, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc)
: OMPClause(OMPC_final, StartLoc, EndLoc), LParenLoc(LParenLoc),
Condition(Cond) {}
/// \brief Build an empty clause.
///
OMPFinalClause()
: OMPClause(OMPC_final, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), Condition(nullptr) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Returns condition.
Expr *getCondition() const { return cast_or_null<Expr>(Condition); }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_final;
}
StmtRange children() { return StmtRange(&Condition, &Condition + 1); }
};
/// \brief This represents 'num_threads' clause in the '#pragma omp ...'
/// directive.
///
/// \code
/// #pragma omp parallel num_threads(6)
/// \endcode
/// In this example directive '#pragma omp parallel' has simple 'num_threads'
/// clause with number of threads '6'.
///
class OMPNumThreadsClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Condition of the 'num_threads' clause.
Stmt *NumThreads;
/// \brief Set condition.
///
void setNumThreads(Expr *NThreads) { NumThreads = NThreads; }
public:
/// \brief Build 'num_threads' clause with condition \a NumThreads.
///
/// \param NumThreads Number of threads for the construct.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
///
OMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc)
: OMPClause(OMPC_num_threads, StartLoc, EndLoc), LParenLoc(LParenLoc),
NumThreads(NumThreads) {}
/// \brief Build an empty clause.
///
OMPNumThreadsClause()
: OMPClause(OMPC_num_threads, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), NumThreads(nullptr) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Returns number of threads.
Expr *getNumThreads() const { return cast_or_null<Expr>(NumThreads); }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_num_threads;
}
StmtRange children() { return StmtRange(&NumThreads, &NumThreads + 1); }
};
/// \brief This represents 'safelen' clause in the '#pragma omp ...'
/// directive.
///
/// \code
/// #pragma omp simd safelen(4)
/// \endcode
/// In this example directive '#pragma omp simd' has clause 'safelen'
/// with single expression '4'.
/// If the safelen clause is used then no two iterations executed
/// concurrently with SIMD instructions can have a greater distance
/// in the logical iteration space than its value. The parameter of
/// the safelen clause must be a constant positive integer expression.
///
class OMPSafelenClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Safe iteration space distance.
Stmt *Safelen;
/// \brief Set safelen.
void setSafelen(Expr *Len) { Safelen = Len; }
public:
/// \brief Build 'safelen' clause.
///
/// \param Len Expression associated with this clause.
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPSafelenClause(Expr *Len, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc)
: OMPClause(OMPC_safelen, StartLoc, EndLoc), LParenLoc(LParenLoc),
Safelen(Len) {}
/// \brief Build an empty clause.
///
explicit OMPSafelenClause()
: OMPClause(OMPC_safelen, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), Safelen(nullptr) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Return safe iteration space distance.
Expr *getSafelen() const { return cast_or_null<Expr>(Safelen); }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_safelen;
}
StmtRange children() { return StmtRange(&Safelen, &Safelen + 1); }
};
/// \brief This represents 'collapse' clause in the '#pragma omp ...'
/// directive.
///
/// \code
/// #pragma omp simd collapse(3)
/// \endcode
/// In this example directive '#pragma omp simd' has clause 'collapse'
/// with single expression '3'.
/// The parameter must be a constant positive integer expression, it specifies
/// the number of nested loops that should be collapsed into a single iteration
/// space.
///
class OMPCollapseClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief Number of for-loops.
Stmt *NumForLoops;
/// \brief Set the number of associated for-loops.
void setNumForLoops(Expr *Num) { NumForLoops = Num; }
public:
/// \brief Build 'collapse' clause.
///
/// \param Num Expression associated with this clause.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
///
OMPCollapseClause(Expr *Num, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc)
: OMPClause(OMPC_collapse, StartLoc, EndLoc), LParenLoc(LParenLoc),
NumForLoops(Num) {}
/// \brief Build an empty clause.
///
explicit OMPCollapseClause()
: OMPClause(OMPC_collapse, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), NumForLoops(nullptr) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Return the number of associated for-loops.
Expr *getNumForLoops() const { return cast_or_null<Expr>(NumForLoops); }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_collapse;
}
StmtRange children() { return StmtRange(&NumForLoops, &NumForLoops + 1); }
};
/// \brief This represents 'default' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp parallel default(shared)
/// \endcode
/// In this example directive '#pragma omp parallel' has simple 'default'
/// clause with kind 'shared'.
///
class OMPDefaultClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief A kind of the 'default' clause.
OpenMPDefaultClauseKind Kind;
/// \brief Start location of the kind in source code.
SourceLocation KindKwLoc;
/// \brief Set kind of the clauses.
///
/// \param K Argument of clause.
///
void setDefaultKind(OpenMPDefaultClauseKind K) { Kind = K; }
/// \brief Set argument location.
///
/// \param KLoc Argument location.
///
void setDefaultKindKwLoc(SourceLocation KLoc) { KindKwLoc = KLoc; }
public:
/// \brief Build 'default' clause with argument \a A ('none' or 'shared').
///
/// \param A Argument of the clause ('none' or 'shared').
/// \param ALoc Starting location of the argument.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
///
OMPDefaultClause(OpenMPDefaultClauseKind A, SourceLocation ALoc,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc)
: OMPClause(OMPC_default, StartLoc, EndLoc), LParenLoc(LParenLoc),
Kind(A), KindKwLoc(ALoc) {}
/// \brief Build an empty clause.
///
OMPDefaultClause()
: OMPClause(OMPC_default, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), Kind(OMPC_DEFAULT_unknown),
KindKwLoc(SourceLocation()) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Returns kind of the clause.
OpenMPDefaultClauseKind getDefaultKind() const { return Kind; }
/// \brief Returns location of clause kind.
SourceLocation getDefaultKindKwLoc() const { return KindKwLoc; }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_default;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'proc_bind' clause in the '#pragma omp ...'
/// directive.
///
/// \code
/// #pragma omp parallel proc_bind(master)
/// \endcode
/// In this example directive '#pragma omp parallel' has simple 'proc_bind'
/// clause with kind 'master'.
///
class OMPProcBindClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief A kind of the 'proc_bind' clause.
OpenMPProcBindClauseKind Kind;
/// \brief Start location of the kind in source code.
SourceLocation KindKwLoc;
/// \brief Set kind of the clause.
///
/// \param K Kind of clause.
///
void setProcBindKind(OpenMPProcBindClauseKind K) { Kind = K; }
/// \brief Set clause kind location.
///
/// \param KLoc Kind location.
///
void setProcBindKindKwLoc(SourceLocation KLoc) { KindKwLoc = KLoc; }
public:
/// \brief Build 'proc_bind' clause with argument \a A ('master', 'close' or
/// 'spread').
///
/// \param A Argument of the clause ('master', 'close' or 'spread').
/// \param ALoc Starting location of the argument.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
///
OMPProcBindClause(OpenMPProcBindClauseKind A, SourceLocation ALoc,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc)
: OMPClause(OMPC_proc_bind, StartLoc, EndLoc), LParenLoc(LParenLoc),
Kind(A), KindKwLoc(ALoc) {}
/// \brief Build an empty clause.
///
OMPProcBindClause()
: OMPClause(OMPC_proc_bind, SourceLocation(), SourceLocation()),
LParenLoc(SourceLocation()), Kind(OMPC_PROC_BIND_unknown),
KindKwLoc(SourceLocation()) {}
/// \brief Sets the location of '('.
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Returns kind of the clause.
OpenMPProcBindClauseKind getProcBindKind() const { return Kind; }
/// \brief Returns location of clause kind.
SourceLocation getProcBindKindKwLoc() const { return KindKwLoc; }
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_proc_bind;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'schedule' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp for schedule(static, 3)
/// \endcode
/// In this example directive '#pragma omp for' has 'schedule' clause with
/// arguments 'static' and '3'.
///
class OMPScheduleClause : public OMPClause {
friend class OMPClauseReader;
/// \brief Location of '('.
SourceLocation LParenLoc;
/// \brief A kind of the 'schedule' clause.
OpenMPScheduleClauseKind Kind;
/// \brief Start location of the schedule ind in source code.
SourceLocation KindLoc;
/// \brief Location of ',' (if any).
SourceLocation CommaLoc;
/// \brief Chunk size and a reference to pseudo variable for combined
/// directives.
enum { CHUNK_SIZE, HELPER_CHUNK_SIZE, NUM_EXPRS };
Stmt *ChunkSizes[NUM_EXPRS];
/// \brief Set schedule kind.
///
/// \param K Schedule kind.
///
void setScheduleKind(OpenMPScheduleClauseKind K) { Kind = K; }
/// \brief Sets the location of '('.
///
/// \param Loc Location of '('.
///
void setLParenLoc(SourceLocation Loc) { LParenLoc = Loc; }
/// \brief Set schedule kind start location.
///
/// \param KLoc Schedule kind location.
///
void setScheduleKindLoc(SourceLocation KLoc) { KindLoc = KLoc; }
/// \brief Set location of ','.
///
/// \param Loc Location of ','.
///
void setCommaLoc(SourceLocation Loc) { CommaLoc = Loc; }
/// \brief Set chunk size.
///
/// \param E Chunk size.
///
void setChunkSize(Expr *E) { ChunkSizes[CHUNK_SIZE] = E; }
/// \brief Set helper chunk size.
///
/// \param E Helper chunk size.
///
void setHelperChunkSize(Expr *E) { ChunkSizes[HELPER_CHUNK_SIZE] = E; }
public:
/// \brief Build 'schedule' clause with schedule kind \a Kind and chunk size
/// expression \a ChunkSize.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param KLoc Starting location of the argument.
/// \param CommaLoc Location of ','.
/// \param EndLoc Ending location of the clause.
/// \param Kind Schedule kind.
/// \param ChunkSize Chunk size.
/// \param HelperChunkSize Helper chunk size for combined directives.
///
OMPScheduleClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation KLoc, SourceLocation CommaLoc,
SourceLocation EndLoc, OpenMPScheduleClauseKind Kind,
Expr *ChunkSize, Expr *HelperChunkSize)
: OMPClause(OMPC_schedule, StartLoc, EndLoc), LParenLoc(LParenLoc),
Kind(Kind), KindLoc(KLoc), CommaLoc(CommaLoc) {
ChunkSizes[CHUNK_SIZE] = ChunkSize;
ChunkSizes[HELPER_CHUNK_SIZE] = HelperChunkSize;
}
/// \brief Build an empty clause.
///
explicit OMPScheduleClause()
: OMPClause(OMPC_schedule, SourceLocation(), SourceLocation()),
Kind(OMPC_SCHEDULE_unknown) {
ChunkSizes[CHUNK_SIZE] = nullptr;
ChunkSizes[HELPER_CHUNK_SIZE] = nullptr;
}
/// \brief Get kind of the clause.
///
OpenMPScheduleClauseKind getScheduleKind() const { return Kind; }
/// \brief Get location of '('.
///
SourceLocation getLParenLoc() { return LParenLoc; }
/// \brief Get kind location.
///
SourceLocation getScheduleKindLoc() { return KindLoc; }
/// \brief Get location of ','.
///
SourceLocation getCommaLoc() { return CommaLoc; }
/// \brief Get chunk size.
///
Expr *getChunkSize() { return dyn_cast_or_null<Expr>(ChunkSizes[CHUNK_SIZE]); }
/// \brief Get chunk size.
///
Expr *getChunkSize() const {
return dyn_cast_or_null<Expr>(ChunkSizes[CHUNK_SIZE]);
}
/// \brief Get helper chunk size.
///
Expr *getHelperChunkSize() {
return dyn_cast_or_null<Expr>(ChunkSizes[HELPER_CHUNK_SIZE]);
}
/// \brief Get helper chunk size.
///
Expr *getHelperChunkSize() const {
return dyn_cast_or_null<Expr>(ChunkSizes[HELPER_CHUNK_SIZE]);
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_schedule;
}
StmtRange children() {
return StmtRange(&ChunkSizes[CHUNK_SIZE], &ChunkSizes[CHUNK_SIZE] + 1);
}
};
/// \brief This represents 'ordered' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp for ordered
/// \endcode
/// In this example directive '#pragma omp for' has 'ordered' clause.
///
class OMPOrderedClause : public OMPClause {
public:
/// \brief Build 'ordered' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_ordered, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPOrderedClause()
: OMPClause(OMPC_ordered, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_ordered;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'nowait' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp for nowait
/// \endcode
/// In this example directive '#pragma omp for' has 'nowait' clause.
///
class OMPNowaitClause : public OMPClause {
public:
/// \brief Build 'nowait' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPNowaitClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_nowait, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPNowaitClause()
: OMPClause(OMPC_nowait, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_nowait;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'untied' clause in the '#pragma omp ...' directive.
///
/// \code
/// #pragma omp task untied
/// \endcode
/// In this example directive '#pragma omp task' has 'untied' clause.
///
class OMPUntiedClause : public OMPClause {
public:
/// \brief Build 'untied' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPUntiedClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_untied, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPUntiedClause()
: OMPClause(OMPC_untied, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_untied;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'mergeable' clause in the '#pragma omp ...'
/// directive.
///
/// \code
/// #pragma omp task mergeable
/// \endcode
/// In this example directive '#pragma omp task' has 'mergeable' clause.
///
class OMPMergeableClause : public OMPClause {
public:
/// \brief Build 'mergeable' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPMergeableClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_mergeable, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPMergeableClause()
: OMPClause(OMPC_mergeable, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_mergeable;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'read' clause in the '#pragma omp atomic' directive.
///
/// \code
/// #pragma omp atomic read
/// \endcode
/// In this example directive '#pragma omp atomic' has 'read' clause.
///
class OMPReadClause : public OMPClause {
public:
/// \brief Build 'read' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPReadClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_read, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPReadClause() : OMPClause(OMPC_read, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_read;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'write' clause in the '#pragma omp atomic' directive.
///
/// \code
/// #pragma omp atomic write
/// \endcode
/// In this example directive '#pragma omp atomic' has 'write' clause.
///
class OMPWriteClause : public OMPClause {
public:
/// \brief Build 'write' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPWriteClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_write, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPWriteClause()
: OMPClause(OMPC_write, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_write;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'update' clause in the '#pragma omp atomic'
/// directive.
///
/// \code
/// #pragma omp atomic update
/// \endcode
/// In this example directive '#pragma omp atomic' has 'update' clause.
///
class OMPUpdateClause : public OMPClause {
public:
/// \brief Build 'update' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPUpdateClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_update, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPUpdateClause()
: OMPClause(OMPC_update, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_update;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'capture' clause in the '#pragma omp atomic'
/// directive.
///
/// \code
/// #pragma omp atomic capture
/// \endcode
/// In this example directive '#pragma omp atomic' has 'capture' clause.
///
class OMPCaptureClause : public OMPClause {
public:
/// \brief Build 'capture' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPCaptureClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_capture, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPCaptureClause()
: OMPClause(OMPC_capture, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_capture;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents 'seq_cst' clause in the '#pragma omp atomic'
/// directive.
///
/// \code
/// #pragma omp atomic seq_cst
/// \endcode
/// In this example directive '#pragma omp atomic' has 'seq_cst' clause.
///
class OMPSeqCstClause : public OMPClause {
public:
/// \brief Build 'seq_cst' clause.
///
/// \param StartLoc Starting location of the clause.
/// \param EndLoc Ending location of the clause.
///
OMPSeqCstClause(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPClause(OMPC_seq_cst, StartLoc, EndLoc) {}
/// \brief Build an empty clause.
///
OMPSeqCstClause()
: OMPClause(OMPC_seq_cst, SourceLocation(), SourceLocation()) {}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_seq_cst;
}
StmtRange children() { return StmtRange(); }
};
/// \brief This represents clause 'private' in the '#pragma omp ...' directives.
///
/// \code
/// #pragma omp parallel private(a,b)
/// \endcode
/// In this example directive '#pragma omp parallel' has clause 'private'
/// with the variables 'a' and 'b'.
///
class OMPPrivateClause : public OMPVarListClause<OMPPrivateClause> {
friend class OMPClauseReader;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPPrivateClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPPrivateClause>(OMPC_private, StartLoc, LParenLoc,
EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPPrivateClause(unsigned N)
: OMPVarListClause<OMPPrivateClause>(OMPC_private, SourceLocation(),
SourceLocation(), SourceLocation(),
N) {}
/// \brief Sets the list of references to private copies with initializers for
/// new private variables.
/// \param VL List of references.
void setPrivateCopies(ArrayRef<Expr *> VL);
/// \brief Gets the list of references to private copies with initializers for
/// new private variables.
MutableArrayRef<Expr *> getPrivateCopies() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getPrivateCopies() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param PrivateVL List of references to private copies with initializers.
///
static OMPPrivateClause *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL,
ArrayRef<Expr *> PrivateVL);
/// \brief Creates an empty clause with the place for \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPPrivateClause *CreateEmpty(const ASTContext &C, unsigned N);
typedef MutableArrayRef<Expr *>::iterator private_copies_iterator;
typedef ArrayRef<const Expr *>::iterator private_copies_const_iterator;
typedef llvm::iterator_range<private_copies_iterator> private_copies_range;
typedef llvm::iterator_range<private_copies_const_iterator>
private_copies_const_range;
private_copies_range private_copies() {
return private_copies_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
private_copies_const_range private_copies() const {
return private_copies_const_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_private;
}
};
/// \brief This represents clause 'firstprivate' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp parallel firstprivate(a,b)
/// \endcode
/// In this example directive '#pragma omp parallel' has clause 'firstprivate'
/// with the variables 'a' and 'b'.
///
class OMPFirstprivateClause : public OMPVarListClause<OMPFirstprivateClause> {
friend class OMPClauseReader;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPFirstprivateClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPFirstprivateClause>(OMPC_firstprivate, StartLoc,
LParenLoc, EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPFirstprivateClause(unsigned N)
: OMPVarListClause<OMPFirstprivateClause>(
OMPC_firstprivate, SourceLocation(), SourceLocation(),
SourceLocation(), N) {}
/// \brief Sets the list of references to private copies with initializers for
/// new private variables.
/// \param VL List of references.
void setPrivateCopies(ArrayRef<Expr *> VL);
/// \brief Gets the list of references to private copies with initializers for
/// new private variables.
MutableArrayRef<Expr *> getPrivateCopies() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getPrivateCopies() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Sets the list of references to initializer variables for new
/// private variables.
/// \param VL List of references.
void setInits(ArrayRef<Expr *> VL);
/// \brief Gets the list of references to initializer variables for new
/// private variables.
MutableArrayRef<Expr *> getInits() {
return MutableArrayRef<Expr *>(getPrivateCopies().end(), varlist_size());
}
ArrayRef<const Expr *> getInits() const {
return llvm::makeArrayRef(getPrivateCopies().end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the original variables.
/// \param PrivateVL List of references to private copies with initializers.
/// \param InitVL List of references to auto generated variables used for
/// initialization of a single array element. Used if firstprivate variable is
/// of array type.
///
static OMPFirstprivateClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> PrivateVL,
ArrayRef<Expr *> InitVL);
/// \brief Creates an empty clause with the place for \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPFirstprivateClause *CreateEmpty(const ASTContext &C, unsigned N);
typedef MutableArrayRef<Expr *>::iterator private_copies_iterator;
typedef ArrayRef<const Expr *>::iterator private_copies_const_iterator;
typedef llvm::iterator_range<private_copies_iterator> private_copies_range;
typedef llvm::iterator_range<private_copies_const_iterator>
private_copies_const_range;
private_copies_range private_copies() {
return private_copies_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
private_copies_const_range private_copies() const {
return private_copies_const_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
typedef MutableArrayRef<Expr *>::iterator inits_iterator;
typedef ArrayRef<const Expr *>::iterator inits_const_iterator;
typedef llvm::iterator_range<inits_iterator> inits_range;
typedef llvm::iterator_range<inits_const_iterator> inits_const_range;
inits_range inits() {
return inits_range(getInits().begin(), getInits().end());
}
inits_const_range inits() const {
return inits_const_range(getInits().begin(), getInits().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_firstprivate;
}
};
/// \brief This represents clause 'lastprivate' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp simd lastprivate(a,b)
/// \endcode
/// In this example directive '#pragma omp simd' has clause 'lastprivate'
/// with the variables 'a' and 'b'.
class OMPLastprivateClause : public OMPVarListClause<OMPLastprivateClause> {
// There are 4 additional tail-allocated arrays at the end of the class:
// 1. Contains list of pseudo variables with the default initialization for
// each non-firstprivate variables. Used in codegen for initialization of
// lastprivate copies.
// 2. List of helper expressions for proper generation of assignment operation
// required for lastprivate clause. This list represents private variables
// (for arrays, single array element).
// 3. List of helper expressions for proper generation of assignment operation
// required for lastprivate clause. This list represents original variables
// (for arrays, single array element).
// 4. List of helper expressions that represents assignment operation:
// \code
// DstExprs = SrcExprs;
// \endcode
// Required for proper codegen of final assignment performed by the
// lastprivate clause.
//
friend class OMPClauseReader;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPLastprivateClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPLastprivateClause>(OMPC_lastprivate, StartLoc,
LParenLoc, EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPLastprivateClause(unsigned N)
: OMPVarListClause<OMPLastprivateClause>(
OMPC_lastprivate, SourceLocation(), SourceLocation(),
SourceLocation(), N) {}
/// \brief Get the list of helper expressions for initialization of private
/// copies for lastprivate variables.
MutableArrayRef<Expr *> getPrivateCopies() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getPrivateCopies() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent private variables (for arrays, single
/// array element) in the final assignment statement performed by the
/// lastprivate clause.
void setSourceExprs(ArrayRef<Expr *> SrcExprs);
/// \brief Get the list of helper source expressions.
MutableArrayRef<Expr *> getSourceExprs() {
return MutableArrayRef<Expr *>(getPrivateCopies().end(), varlist_size());
}
ArrayRef<const Expr *> getSourceExprs() const {
return llvm::makeArrayRef(getPrivateCopies().end(), varlist_size());
}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent original variables (for arrays, single
/// array element) in the final assignment statement performed by the
/// lastprivate clause.
void setDestinationExprs(ArrayRef<Expr *> DstExprs);
/// \brief Get the list of helper destination expressions.
MutableArrayRef<Expr *> getDestinationExprs() {
return MutableArrayRef<Expr *>(getSourceExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getDestinationExprs() const {
return llvm::makeArrayRef(getSourceExprs().end(), varlist_size());
}
/// \brief Set list of helper assignment expressions, required for proper
/// codegen of the clause. These expressions are assignment expressions that
/// assign private copy of the variable to original variable.
void setAssignmentOps(ArrayRef<Expr *> AssignmentOps);
/// \brief Get the list of helper assignment expressions.
MutableArrayRef<Expr *> getAssignmentOps() {
return MutableArrayRef<Expr *>(getDestinationExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getAssignmentOps() const {
return llvm::makeArrayRef(getDestinationExprs().end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param SrcExprs List of helper expressions for proper generation of
/// assignment operation required for lastprivate clause. This list represents
/// private variables (for arrays, single array element).
/// \param DstExprs List of helper expressions for proper generation of
/// assignment operation required for lastprivate clause. This list represents
/// original variables (for arrays, single array element).
/// \param AssignmentOps List of helper expressions that represents assignment
/// operation:
/// \code
/// DstExprs = SrcExprs;
/// \endcode
/// Required for proper codegen of final assignment performed by the
/// lastprivate clause.
///
///
static OMPLastprivateClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps);
/// \brief Creates an empty clause with the place for \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPLastprivateClause *CreateEmpty(const ASTContext &C, unsigned N);
typedef MutableArrayRef<Expr *>::iterator helper_expr_iterator;
typedef ArrayRef<const Expr *>::iterator helper_expr_const_iterator;
typedef llvm::iterator_range<helper_expr_iterator> helper_expr_range;
typedef llvm::iterator_range<helper_expr_const_iterator>
helper_expr_const_range;
/// \brief Set list of helper expressions, required for generation of private
/// copies of original lastprivate variables.
void setPrivateCopies(ArrayRef<Expr *> PrivateCopies);
helper_expr_const_range private_copies() const {
return helper_expr_const_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
helper_expr_range private_copies() {
return helper_expr_range(getPrivateCopies().begin(),
getPrivateCopies().end());
}
helper_expr_const_range source_exprs() const {
return helper_expr_const_range(getSourceExprs().begin(),
getSourceExprs().end());
}
helper_expr_range source_exprs() {
return helper_expr_range(getSourceExprs().begin(), getSourceExprs().end());
}
helper_expr_const_range destination_exprs() const {
return helper_expr_const_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_range destination_exprs() {
return helper_expr_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_const_range assignment_ops() const {
return helper_expr_const_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
helper_expr_range assignment_ops() {
return helper_expr_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_lastprivate;
}
};
/// \brief This represents clause 'shared' in the '#pragma omp ...' directives.
///
/// \code
/// #pragma omp parallel shared(a,b)
/// \endcode
/// In this example directive '#pragma omp parallel' has clause 'shared'
/// with the variables 'a' and 'b'.
///
class OMPSharedClause : public OMPVarListClause<OMPSharedClause> {
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPSharedClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPSharedClause>(OMPC_shared, StartLoc, LParenLoc,
EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPSharedClause(unsigned N)
: OMPVarListClause<OMPSharedClause>(OMPC_shared, SourceLocation(),
SourceLocation(), SourceLocation(),
N) {}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
///
static OMPSharedClause *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL);
/// \brief Creates an empty clause with \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPSharedClause *CreateEmpty(const ASTContext &C, unsigned N);
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_shared;
}
};
/// \brief This represents clause 'reduction' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp parallel reduction(+:a,b)
/// \endcode
/// In this example directive '#pragma omp parallel' has clause 'reduction'
/// with operator '+' and the variables 'a' and 'b'.
///
class OMPReductionClause : public OMPVarListClause<OMPReductionClause> {
friend class OMPClauseReader;
/// \brief Location of ':'.
SourceLocation ColonLoc;
/// \brief Nested name specifier for C++.
NestedNameSpecifierLoc QualifierLoc;
/// \brief Name of custom operator.
DeclarationNameInfo NameInfo;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param ColonLoc Location of ':'.
/// \param N Number of the variables in the clause.
/// \param QualifierLoc The nested-name qualifier with location information
/// \param NameInfo The full name info for reduction identifier.
///
OMPReductionClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc, unsigned N,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo)
: OMPVarListClause<OMPReductionClause>(OMPC_reduction, StartLoc,
LParenLoc, EndLoc, N),
ColonLoc(ColonLoc), QualifierLoc(QualifierLoc), NameInfo(NameInfo) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPReductionClause(unsigned N)
: OMPVarListClause<OMPReductionClause>(OMPC_reduction, SourceLocation(),
SourceLocation(), SourceLocation(),
N),
ColonLoc(), QualifierLoc(), NameInfo() {}
/// \brief Sets location of ':' symbol in clause.
void setColonLoc(SourceLocation CL) { ColonLoc = CL; }
/// \brief Sets the name info for specified reduction identifier.
void setNameInfo(DeclarationNameInfo DNI) { NameInfo = DNI; }
/// \brief Sets the nested name specifier.
void setQualifierLoc(NestedNameSpecifierLoc NSL) { QualifierLoc = NSL; }
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent LHS expression in the final
/// reduction expression performed by the reduction clause.
void setLHSExprs(ArrayRef<Expr *> LHSExprs);
/// \brief Get the list of helper LHS expressions.
MutableArrayRef<Expr *> getLHSExprs() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getLHSExprs() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent RHS expression in the final
/// reduction expression performed by the reduction clause.
/// Also, variables in these expressions are used for proper initialization of
/// reduction copies.
void setRHSExprs(ArrayRef<Expr *> RHSExprs);
/// \brief Get the list of helper destination expressions.
MutableArrayRef<Expr *> getRHSExprs() {
return MutableArrayRef<Expr *>(getLHSExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getRHSExprs() const {
return llvm::makeArrayRef(getLHSExprs().end(), varlist_size());
}
/// \brief Set list of helper reduction expressions, required for proper
/// codegen of the clause. These expressions are binary expressions or
/// operator/custom reduction call that calculates new value from source
/// helper expressions to destination helper expressions.
void setReductionOps(ArrayRef<Expr *> ReductionOps);
/// \brief Get the list of helper reduction expressions.
MutableArrayRef<Expr *> getReductionOps() {
return MutableArrayRef<Expr *>(getRHSExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getReductionOps() const {
return llvm::makeArrayRef(getRHSExprs().end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param ColonLoc Location of ':'.
/// \param EndLoc Ending location of the clause.
/// \param VL The variables in the clause.
/// \param QualifierLoc The nested-name qualifier with location information
/// \param NameInfo The full name info for reduction identifier.
/// \param LHSExprs List of helper expressions for proper generation of
/// assignment operation required for copyprivate clause. This list represents
/// LHSs of the reduction expressions.
/// \param RHSExprs List of helper expressions for proper generation of
/// assignment operation required for copyprivate clause. This list represents
/// RHSs of the reduction expressions.
/// Also, variables in these expressions are used for proper initialization of
/// reduction copies.
/// \param ReductionOps List of helper expressions that represents reduction
/// expressions:
/// \code
/// LHSExprs binop RHSExprs;
/// operator binop(LHSExpr, RHSExpr);
/// <CutomReduction>(LHSExpr, RHSExpr);
/// \endcode
/// Required for proper codegen of final reduction operation performed by the
/// reduction clause.
///
static OMPReductionClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef<Expr *> VL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, ArrayRef<Expr *> LHSExprs,
ArrayRef<Expr *> RHSExprs, ArrayRef<Expr *> ReductionOps);
/// \brief Creates an empty clause with the place for \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPReductionClause *CreateEmpty(const ASTContext &C, unsigned N);
/// \brief Gets location of ':' symbol in clause.
SourceLocation getColonLoc() const { return ColonLoc; }
/// \brief Gets the name info for specified reduction identifier.
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// \brief Gets the nested name specifier.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
typedef MutableArrayRef<Expr *>::iterator helper_expr_iterator;
typedef ArrayRef<const Expr *>::iterator helper_expr_const_iterator;
typedef llvm::iterator_range<helper_expr_iterator> helper_expr_range;
typedef llvm::iterator_range<helper_expr_const_iterator>
helper_expr_const_range;
helper_expr_const_range lhs_exprs() const {
return helper_expr_const_range(getLHSExprs().begin(), getLHSExprs().end());
}
helper_expr_range lhs_exprs() {
return helper_expr_range(getLHSExprs().begin(), getLHSExprs().end());
}
helper_expr_const_range rhs_exprs() const {
return helper_expr_const_range(getRHSExprs().begin(), getRHSExprs().end());
}
helper_expr_range rhs_exprs() {
return helper_expr_range(getRHSExprs().begin(), getRHSExprs().end());
}
helper_expr_const_range reduction_ops() const {
return helper_expr_const_range(getReductionOps().begin(),
getReductionOps().end());
}
helper_expr_range reduction_ops() {
return helper_expr_range(getReductionOps().begin(),
getReductionOps().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_reduction;
}
};
/// \brief This represents clause 'linear' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp simd linear(a,b : 2)
/// \endcode
/// In this example directive '#pragma omp simd' has clause 'linear'
/// with variables 'a', 'b' and linear step '2'.
///
class OMPLinearClause : public OMPVarListClause<OMPLinearClause> {
friend class OMPClauseReader;
/// \brief Location of ':'.
SourceLocation ColonLoc;
/// \brief Sets the linear step for clause.
void setStep(Expr *Step) { *(getFinals().end()) = Step; }
/// \brief Sets the expression to calculate linear step for clause.
void setCalcStep(Expr *CalcStep) { *(getFinals().end() + 1) = CalcStep; }
/// \brief Build 'linear' clause with given number of variables \a NumVars.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param ColonLoc Location of ':'.
/// \param EndLoc Ending location of the clause.
/// \param NumVars Number of variables.
///
OMPLinearClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
unsigned NumVars)
: OMPVarListClause<OMPLinearClause>(OMPC_linear, StartLoc, LParenLoc,
EndLoc, NumVars),
ColonLoc(ColonLoc) {}
/// \brief Build an empty clause.
///
/// \param NumVars Number of variables.
///
explicit OMPLinearClause(unsigned NumVars)
: OMPVarListClause<OMPLinearClause>(OMPC_linear, SourceLocation(),
SourceLocation(), SourceLocation(),
NumVars),
ColonLoc(SourceLocation()) {}
/// \brief Gets the list of initial values for linear variables.
///
/// There are NumVars expressions with initial values allocated after the
/// varlist, they are followed by NumVars update expressions (used to update
/// the linear variable's value on current iteration) and they are followed by
/// NumVars final expressions (used to calculate the linear variable's
/// value after the loop body). After these lists, there are 2 helper
/// expressions - linear step and a helper to calculate it before the
/// loop body (used when the linear step is not constant):
///
/// { Vars[] /* in OMPVarListClause */; Inits[]; Updates[]; Finals[];
/// Step; CalcStep; }
///
MutableArrayRef<Expr *> getInits() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getInits() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Sets the list of update expressions for linear variables.
MutableArrayRef<Expr *> getUpdates() {
return MutableArrayRef<Expr *>(getInits().end(), varlist_size());
}
ArrayRef<const Expr *> getUpdates() const {
return llvm::makeArrayRef(getInits().end(), varlist_size());
}
/// \brief Sets the list of final update expressions for linear variables.
MutableArrayRef<Expr *> getFinals() {
return MutableArrayRef<Expr *>(getUpdates().end(), varlist_size());
}
ArrayRef<const Expr *> getFinals() const {
return llvm::makeArrayRef(getUpdates().end(), varlist_size());
}
/// \brief Sets the list of the initial values for linear variables.
/// \param IL List of expressions.
void setInits(ArrayRef<Expr *> IL);
public:
/// \brief Creates clause with a list of variables \a VL and a linear step
/// \a Step.
///
/// \param C AST Context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param ColonLoc Location of ':'.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param IL List of initial values for the variables.
/// \param Step Linear step.
/// \param CalcStep Calculation of the linear step.
static OMPLinearClause *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
ArrayRef<Expr *> VL, ArrayRef<Expr *> IL,
Expr *Step, Expr *CalcStep);
/// \brief Creates an empty clause with the place for \a NumVars variables.
///
/// \param C AST context.
/// \param NumVars Number of variables.
///
static OMPLinearClause *CreateEmpty(const ASTContext &C, unsigned NumVars);
/// \brief Sets the location of ':'.
void setColonLoc(SourceLocation Loc) { ColonLoc = Loc; }
/// \brief Returns the location of '('.
SourceLocation getColonLoc() const { return ColonLoc; }
/// \brief Returns linear step.
Expr *getStep() { return *(getFinals().end()); }
/// \brief Returns linear step.
const Expr *getStep() const { return *(getFinals().end()); }
/// \brief Returns expression to calculate linear step.
Expr *getCalcStep() { return *(getFinals().end() + 1); }
/// \brief Returns expression to calculate linear step.
const Expr *getCalcStep() const { return *(getFinals().end() + 1); }
/// \brief Sets the list of update expressions for linear variables.
/// \param UL List of expressions.
void setUpdates(ArrayRef<Expr *> UL);
/// \brief Sets the list of final update expressions for linear variables.
/// \param FL List of expressions.
void setFinals(ArrayRef<Expr *> FL);
typedef MutableArrayRef<Expr *>::iterator inits_iterator;
typedef ArrayRef<const Expr *>::iterator inits_const_iterator;
typedef llvm::iterator_range<inits_iterator> inits_range;
typedef llvm::iterator_range<inits_const_iterator> inits_const_range;
inits_range inits() {
return inits_range(getInits().begin(), getInits().end());
}
inits_const_range inits() const {
return inits_const_range(getInits().begin(), getInits().end());
}
typedef MutableArrayRef<Expr *>::iterator updates_iterator;
typedef ArrayRef<const Expr *>::iterator updates_const_iterator;
typedef llvm::iterator_range<updates_iterator> updates_range;
typedef llvm::iterator_range<updates_const_iterator> updates_const_range;
updates_range updates() {
return updates_range(getUpdates().begin(), getUpdates().end());
}
updates_const_range updates() const {
return updates_const_range(getUpdates().begin(), getUpdates().end());
}
typedef MutableArrayRef<Expr *>::iterator finals_iterator;
typedef ArrayRef<const Expr *>::iterator finals_const_iterator;
typedef llvm::iterator_range<finals_iterator> finals_range;
typedef llvm::iterator_range<finals_const_iterator> finals_const_range;
finals_range finals() {
return finals_range(getFinals().begin(), getFinals().end());
}
finals_const_range finals() const {
return finals_const_range(getFinals().begin(), getFinals().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_linear;
}
};
/// \brief This represents clause 'aligned' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp simd aligned(a,b : 8)
/// \endcode
/// In this example directive '#pragma omp simd' has clause 'aligned'
/// with variables 'a', 'b' and alignment '8'.
///
class OMPAlignedClause : public OMPVarListClause<OMPAlignedClause> {
friend class OMPClauseReader;
/// \brief Location of ':'.
SourceLocation ColonLoc;
/// \brief Sets the alignment for clause.
void setAlignment(Expr *A) { *varlist_end() = A; }
/// \brief Build 'aligned' clause with given number of variables \a NumVars.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param ColonLoc Location of ':'.
/// \param EndLoc Ending location of the clause.
/// \param NumVars Number of variables.
///
OMPAlignedClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
unsigned NumVars)
: OMPVarListClause<OMPAlignedClause>(OMPC_aligned, StartLoc, LParenLoc,
EndLoc, NumVars),
ColonLoc(ColonLoc) {}
/// \brief Build an empty clause.
///
/// \param NumVars Number of variables.
///
explicit OMPAlignedClause(unsigned NumVars)
: OMPVarListClause<OMPAlignedClause>(OMPC_aligned, SourceLocation(),
SourceLocation(), SourceLocation(),
NumVars),
ColonLoc(SourceLocation()) {}
public:
/// \brief Creates clause with a list of variables \a VL and alignment \a A.
///
/// \param C AST Context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param ColonLoc Location of ':'.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param A Alignment.
static OMPAlignedClause *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL,
Expr *A);
/// \brief Creates an empty clause with the place for \a NumVars variables.
///
/// \param C AST context.
/// \param NumVars Number of variables.
///
static OMPAlignedClause *CreateEmpty(const ASTContext &C, unsigned NumVars);
/// \brief Sets the location of ':'.
void setColonLoc(SourceLocation Loc) { ColonLoc = Loc; }
/// \brief Returns the location of ':'.
SourceLocation getColonLoc() const { return ColonLoc; }
/// \brief Returns alignment.
Expr *getAlignment() { return *varlist_end(); }
/// \brief Returns alignment.
const Expr *getAlignment() const { return *varlist_end(); }
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_aligned;
}
};
/// \brief This represents clause 'copyin' in the '#pragma omp ...' directives.
///
/// \code
/// #pragma omp parallel copyin(a,b)
/// \endcode
/// In this example directive '#pragma omp parallel' has clause 'copyin'
/// with the variables 'a' and 'b'.
///
class OMPCopyinClause : public OMPVarListClause<OMPCopyinClause> {
// Class has 3 additional tail allocated arrays:
// 1. List of helper expressions for proper generation of assignment operation
// required for copyin clause. This list represents sources.
// 2. List of helper expressions for proper generation of assignment operation
// required for copyin clause. This list represents destinations.
// 3. List of helper expressions that represents assignment operation:
// \code
// DstExprs = SrcExprs;
// \endcode
// Required for proper codegen of propagation of master's thread values of
// threadprivate variables to local instances of that variables in other
// implicit threads.
friend class OMPClauseReader;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPCopyinClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPCopyinClause>(OMPC_copyin, StartLoc, LParenLoc,
EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPCopyinClause(unsigned N)
: OMPVarListClause<OMPCopyinClause>(OMPC_copyin, SourceLocation(),
SourceLocation(), SourceLocation(),
N) {}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent source expression in the final
/// assignment statement performed by the copyin clause.
void setSourceExprs(ArrayRef<Expr *> SrcExprs);
/// \brief Get the list of helper source expressions.
MutableArrayRef<Expr *> getSourceExprs() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getSourceExprs() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent destination expression in the final
/// assignment statement performed by the copyin clause.
void setDestinationExprs(ArrayRef<Expr *> DstExprs);
/// \brief Get the list of helper destination expressions.
MutableArrayRef<Expr *> getDestinationExprs() {
return MutableArrayRef<Expr *>(getSourceExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getDestinationExprs() const {
return llvm::makeArrayRef(getSourceExprs().end(), varlist_size());
}
/// \brief Set list of helper assignment expressions, required for proper
/// codegen of the clause. These expressions are assignment expressions that
/// assign source helper expressions to destination helper expressions
/// correspondingly.
void setAssignmentOps(ArrayRef<Expr *> AssignmentOps);
/// \brief Get the list of helper assignment expressions.
MutableArrayRef<Expr *> getAssignmentOps() {
return MutableArrayRef<Expr *>(getDestinationExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getAssignmentOps() const {
return llvm::makeArrayRef(getDestinationExprs().end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param SrcExprs List of helper expressions for proper generation of
/// assignment operation required for copyin clause. This list represents
/// sources.
/// \param DstExprs List of helper expressions for proper generation of
/// assignment operation required for copyin clause. This list represents
/// destinations.
/// \param AssignmentOps List of helper expressions that represents assignment
/// operation:
/// \code
/// DstExprs = SrcExprs;
/// \endcode
/// Required for proper codegen of propagation of master's thread values of
/// threadprivate variables to local instances of that variables in other
/// implicit threads.
///
static OMPCopyinClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps);
/// \brief Creates an empty clause with \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPCopyinClause *CreateEmpty(const ASTContext &C, unsigned N);
typedef MutableArrayRef<Expr *>::iterator helper_expr_iterator;
typedef ArrayRef<const Expr *>::iterator helper_expr_const_iterator;
typedef llvm::iterator_range<helper_expr_iterator> helper_expr_range;
typedef llvm::iterator_range<helper_expr_const_iterator>
helper_expr_const_range;
helper_expr_const_range source_exprs() const {
return helper_expr_const_range(getSourceExprs().begin(),
getSourceExprs().end());
}
helper_expr_range source_exprs() {
return helper_expr_range(getSourceExprs().begin(), getSourceExprs().end());
}
helper_expr_const_range destination_exprs() const {
return helper_expr_const_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_range destination_exprs() {
return helper_expr_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_const_range assignment_ops() const {
return helper_expr_const_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
helper_expr_range assignment_ops() {
return helper_expr_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_copyin;
}
};
/// \brief This represents clause 'copyprivate' in the '#pragma omp ...'
/// directives.
///
/// \code
/// #pragma omp single copyprivate(a,b)
/// \endcode
/// In this example directive '#pragma omp single' has clause 'copyprivate'
/// with the variables 'a' and 'b'.
///
class OMPCopyprivateClause : public OMPVarListClause<OMPCopyprivateClause> {
friend class OMPClauseReader;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPCopyprivateClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPCopyprivateClause>(OMPC_copyprivate, StartLoc,
LParenLoc, EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPCopyprivateClause(unsigned N)
: OMPVarListClause<OMPCopyprivateClause>(
OMPC_copyprivate, SourceLocation(), SourceLocation(),
SourceLocation(), N) {}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent source expression in the final
/// assignment statement performed by the copyprivate clause.
void setSourceExprs(ArrayRef<Expr *> SrcExprs);
/// \brief Get the list of helper source expressions.
MutableArrayRef<Expr *> getSourceExprs() {
return MutableArrayRef<Expr *>(varlist_end(), varlist_size());
}
ArrayRef<const Expr *> getSourceExprs() const {
return llvm::makeArrayRef(varlist_end(), varlist_size());
}
/// \brief Set list of helper expressions, required for proper codegen of the
/// clause. These expressions represent destination expression in the final
/// assignment statement performed by the copyprivate clause.
void setDestinationExprs(ArrayRef<Expr *> DstExprs);
/// \brief Get the list of helper destination expressions.
MutableArrayRef<Expr *> getDestinationExprs() {
return MutableArrayRef<Expr *>(getSourceExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getDestinationExprs() const {
return llvm::makeArrayRef(getSourceExprs().end(), varlist_size());
}
/// \brief Set list of helper assignment expressions, required for proper
/// codegen of the clause. These expressions are assignment expressions that
/// assign source helper expressions to destination helper expressions
/// correspondingly.
void setAssignmentOps(ArrayRef<Expr *> AssignmentOps);
/// \brief Get the list of helper assignment expressions.
MutableArrayRef<Expr *> getAssignmentOps() {
return MutableArrayRef<Expr *>(getDestinationExprs().end(), varlist_size());
}
ArrayRef<const Expr *> getAssignmentOps() const {
return llvm::makeArrayRef(getDestinationExprs().end(), varlist_size());
}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
/// \param SrcExprs List of helper expressions for proper generation of
/// assignment operation required for copyprivate clause. This list represents
/// sources.
/// \param DstExprs List of helper expressions for proper generation of
/// assignment operation required for copyprivate clause. This list represents
/// destinations.
/// \param AssignmentOps List of helper expressions that represents assignment
/// operation:
/// \code
/// DstExprs = SrcExprs;
/// \endcode
/// Required for proper codegen of final assignment performed by the
/// copyprivate clause.
///
static OMPCopyprivateClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps);
/// \brief Creates an empty clause with \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPCopyprivateClause *CreateEmpty(const ASTContext &C, unsigned N);
typedef MutableArrayRef<Expr *>::iterator helper_expr_iterator;
typedef ArrayRef<const Expr *>::iterator helper_expr_const_iterator;
typedef llvm::iterator_range<helper_expr_iterator> helper_expr_range;
typedef llvm::iterator_range<helper_expr_const_iterator>
helper_expr_const_range;
helper_expr_const_range source_exprs() const {
return helper_expr_const_range(getSourceExprs().begin(),
getSourceExprs().end());
}
helper_expr_range source_exprs() {
return helper_expr_range(getSourceExprs().begin(), getSourceExprs().end());
}
helper_expr_const_range destination_exprs() const {
return helper_expr_const_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_range destination_exprs() {
return helper_expr_range(getDestinationExprs().begin(),
getDestinationExprs().end());
}
helper_expr_const_range assignment_ops() const {
return helper_expr_const_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
helper_expr_range assignment_ops() {
return helper_expr_range(getAssignmentOps().begin(),
getAssignmentOps().end());
}
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_copyprivate;
}
};
/// \brief This represents implicit clause 'flush' for the '#pragma omp flush'
/// directive.
/// This clause does not exist by itself, it can be only as a part of 'omp
/// flush' directive. This clause is introduced to keep the original structure
/// of \a OMPExecutableDirective class and its derivatives and to use the
/// existing infrastructure of clauses with the list of variables.
///
/// \code
/// #pragma omp flush(a,b)
/// \endcode
/// In this example directive '#pragma omp flush' has implicit clause 'flush'
/// with the variables 'a' and 'b'.
///
class OMPFlushClause : public OMPVarListClause<OMPFlushClause> {
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPFlushClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPFlushClause>(OMPC_flush, StartLoc, LParenLoc,
EndLoc, N) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPFlushClause(unsigned N)
: OMPVarListClause<OMPFlushClause>(OMPC_flush, SourceLocation(),
SourceLocation(), SourceLocation(),
N) {}
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param VL List of references to the variables.
///
static OMPFlushClause *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc,
ArrayRef<Expr *> VL);
/// \brief Creates an empty clause with \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPFlushClause *CreateEmpty(const ASTContext &C, unsigned N);
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_flush;
}
};
/// \brief This represents implicit clause 'depend' for the '#pragma omp task'
/// directive.
///
/// \code
/// #pragma omp task depend(in:a,b)
/// \endcode
/// In this example directive '#pragma omp task' with clause 'depend' with the
/// variables 'a' and 'b' with dependency 'in'.
///
class OMPDependClause : public OMPVarListClause<OMPDependClause> {
friend class OMPClauseReader;
/// \brief Dependency type (one of in, out, inout).
OpenMPDependClauseKind DepKind;
/// \brief Dependency type location.
SourceLocation DepLoc;
/// \brief Colon location.
SourceLocation ColonLoc;
/// \brief Build clause with number of variables \a N.
///
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param N Number of the variables in the clause.
///
OMPDependClause(SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, unsigned N)
: OMPVarListClause<OMPDependClause>(OMPC_depend, StartLoc, LParenLoc,
EndLoc, N),
DepKind(OMPC_DEPEND_unknown) {}
/// \brief Build an empty clause.
///
/// \param N Number of variables.
///
explicit OMPDependClause(unsigned N)
: OMPVarListClause<OMPDependClause>(OMPC_depend, SourceLocation(),
SourceLocation(), SourceLocation(),
N),
DepKind(OMPC_DEPEND_unknown) {}
/// \brief Set dependency kind.
void setDependencyKind(OpenMPDependClauseKind K) { DepKind = K; }
/// \brief Set dependency kind and its location.
void setDependencyLoc(SourceLocation Loc) { DepLoc = Loc; }
/// \brief Set colon location.
void setColonLoc(SourceLocation Loc) { ColonLoc = Loc; }
public:
/// \brief Creates clause with a list of variables \a VL.
///
/// \param C AST context.
/// \param StartLoc Starting location of the clause.
/// \param LParenLoc Location of '('.
/// \param EndLoc Ending location of the clause.
/// \param DepKind Dependency type.
/// \param DepLoc Location of the dependency type.
/// \param ColonLoc Colon location.
/// \param VL List of references to the variables.
///
static OMPDependClause *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, OpenMPDependClauseKind DepKind,
SourceLocation DepLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VL);
/// \brief Creates an empty clause with \a N variables.
///
/// \param C AST context.
/// \param N The number of variables.
///
static OMPDependClause *CreateEmpty(const ASTContext &C, unsigned N);
/// \brief Get dependency type.
OpenMPDependClauseKind getDependencyKind() const { return DepKind; }
/// \brief Get dependency type location.
SourceLocation getDependencyLoc() const { return DepLoc; }
/// \brief Get colon location.
SourceLocation getColonLoc() const { return ColonLoc; }
StmtRange children() {
return StmtRange(reinterpret_cast<Stmt **>(varlist_begin()),
reinterpret_cast<Stmt **>(varlist_end()));
}
static bool classof(const OMPClause *T) {
return T->getClauseKind() == OMPC_depend;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/StmtVisitor.h | //===--- StmtVisitor.h - Visitor for Stmt subclasses ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the StmtVisitor and ConstStmtVisitor interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMTVISITOR_H
#define LLVM_CLANG_AST_STMTVISITOR_H
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
namespace clang {
template <typename T> struct make_ptr { typedef T *type; };
template <typename T> struct make_const_ptr { typedef const T *type; };
/// StmtVisitorBase - This class implements a simple visitor for Stmt
/// subclasses. Since Expr derives from Stmt, this also includes support for
/// visiting Exprs.
template<template <typename> class Ptr, typename ImplClass, typename RetTy=void>
class StmtVisitorBase {
public:
#define PTR(CLASS) typename Ptr<CLASS>::type
#define DISPATCH(NAME, CLASS) \
return static_cast<ImplClass*>(this)->Visit ## NAME(static_cast<PTR(CLASS)>(S))
RetTy Visit(PTR(Stmt) S) {
// If we have a binary expr, dispatch to the subcode of the binop. A smart
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
// below.
if (PTR(BinaryOperator) BinOp = dyn_cast<BinaryOperator>(S)) {
switch (BinOp->getOpcode()) {
case BO_PtrMemD: DISPATCH(BinPtrMemD, BinaryOperator);
case BO_PtrMemI: DISPATCH(BinPtrMemI, BinaryOperator);
case BO_Mul: DISPATCH(BinMul, BinaryOperator);
case BO_Div: DISPATCH(BinDiv, BinaryOperator);
case BO_Rem: DISPATCH(BinRem, BinaryOperator);
case BO_Add: DISPATCH(BinAdd, BinaryOperator);
case BO_Sub: DISPATCH(BinSub, BinaryOperator);
case BO_Shl: DISPATCH(BinShl, BinaryOperator);
case BO_Shr: DISPATCH(BinShr, BinaryOperator);
case BO_LT: DISPATCH(BinLT, BinaryOperator);
case BO_GT: DISPATCH(BinGT, BinaryOperator);
case BO_LE: DISPATCH(BinLE, BinaryOperator);
case BO_GE: DISPATCH(BinGE, BinaryOperator);
case BO_EQ: DISPATCH(BinEQ, BinaryOperator);
case BO_NE: DISPATCH(BinNE, BinaryOperator);
case BO_And: DISPATCH(BinAnd, BinaryOperator);
case BO_Xor: DISPATCH(BinXor, BinaryOperator);
case BO_Or : DISPATCH(BinOr, BinaryOperator);
case BO_LAnd: DISPATCH(BinLAnd, BinaryOperator);
case BO_LOr : DISPATCH(BinLOr, BinaryOperator);
case BO_Assign: DISPATCH(BinAssign, BinaryOperator);
case BO_MulAssign: DISPATCH(BinMulAssign, CompoundAssignOperator);
case BO_DivAssign: DISPATCH(BinDivAssign, CompoundAssignOperator);
case BO_RemAssign: DISPATCH(BinRemAssign, CompoundAssignOperator);
case BO_AddAssign: DISPATCH(BinAddAssign, CompoundAssignOperator);
case BO_SubAssign: DISPATCH(BinSubAssign, CompoundAssignOperator);
case BO_ShlAssign: DISPATCH(BinShlAssign, CompoundAssignOperator);
case BO_ShrAssign: DISPATCH(BinShrAssign, CompoundAssignOperator);
case BO_AndAssign: DISPATCH(BinAndAssign, CompoundAssignOperator);
case BO_OrAssign: DISPATCH(BinOrAssign, CompoundAssignOperator);
case BO_XorAssign: DISPATCH(BinXorAssign, CompoundAssignOperator);
case BO_Comma: DISPATCH(BinComma, BinaryOperator);
}
} else if (PTR(UnaryOperator) UnOp = dyn_cast<UnaryOperator>(S)) {
switch (UnOp->getOpcode()) {
case UO_PostInc: DISPATCH(UnaryPostInc, UnaryOperator);
case UO_PostDec: DISPATCH(UnaryPostDec, UnaryOperator);
case UO_PreInc: DISPATCH(UnaryPreInc, UnaryOperator);
case UO_PreDec: DISPATCH(UnaryPreDec, UnaryOperator);
case UO_AddrOf: DISPATCH(UnaryAddrOf, UnaryOperator);
case UO_Deref: DISPATCH(UnaryDeref, UnaryOperator);
case UO_Plus: DISPATCH(UnaryPlus, UnaryOperator);
case UO_Minus: DISPATCH(UnaryMinus, UnaryOperator);
case UO_Not: DISPATCH(UnaryNot, UnaryOperator);
case UO_LNot: DISPATCH(UnaryLNot, UnaryOperator);
case UO_Real: DISPATCH(UnaryReal, UnaryOperator);
case UO_Imag: DISPATCH(UnaryImag, UnaryOperator);
case UO_Extension: DISPATCH(UnaryExtension, UnaryOperator);
}
}
// Top switch stmt: dispatch to VisitFooStmt for each FooStmt.
switch (S->getStmtClass()) {
default: llvm_unreachable("Unknown stmt kind!");
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS ## Class: DISPATCH(CLASS, CLASS);
#include "clang/AST/StmtNodes.inc"
}
}
// If the implementation chooses not to implement a certain visit method, fall
// back on VisitExpr or whatever else is the superclass.
#define STMT(CLASS, PARENT) \
RetTy Visit ## CLASS(PTR(CLASS) S) { DISPATCH(PARENT, PARENT); }
#include "clang/AST/StmtNodes.inc"
// If the implementation doesn't implement binary operator methods, fall back
// on VisitBinaryOperator.
#define BINOP_FALLBACK(NAME) \
RetTy VisitBin ## NAME(PTR(BinaryOperator) S) { \
DISPATCH(BinaryOperator, BinaryOperator); \
}
BINOP_FALLBACK(PtrMemD) BINOP_FALLBACK(PtrMemI)
BINOP_FALLBACK(Mul) BINOP_FALLBACK(Div) BINOP_FALLBACK(Rem)
BINOP_FALLBACK(Add) BINOP_FALLBACK(Sub) BINOP_FALLBACK(Shl)
BINOP_FALLBACK(Shr)
BINOP_FALLBACK(LT) BINOP_FALLBACK(GT) BINOP_FALLBACK(LE)
BINOP_FALLBACK(GE) BINOP_FALLBACK(EQ) BINOP_FALLBACK(NE)
BINOP_FALLBACK(And) BINOP_FALLBACK(Xor) BINOP_FALLBACK(Or)
BINOP_FALLBACK(LAnd) BINOP_FALLBACK(LOr)
BINOP_FALLBACK(Assign)
BINOP_FALLBACK(Comma)
#undef BINOP_FALLBACK
// If the implementation doesn't implement compound assignment operator
// methods, fall back on VisitCompoundAssignOperator.
#define CAO_FALLBACK(NAME) \
RetTy VisitBin ## NAME(PTR(CompoundAssignOperator) S) { \
DISPATCH(CompoundAssignOperator, CompoundAssignOperator); \
}
CAO_FALLBACK(MulAssign) CAO_FALLBACK(DivAssign) CAO_FALLBACK(RemAssign)
CAO_FALLBACK(AddAssign) CAO_FALLBACK(SubAssign) CAO_FALLBACK(ShlAssign)
CAO_FALLBACK(ShrAssign) CAO_FALLBACK(AndAssign) CAO_FALLBACK(OrAssign)
CAO_FALLBACK(XorAssign)
#undef CAO_FALLBACK
// If the implementation doesn't implement unary operator methods, fall back
// on VisitUnaryOperator.
#define UNARYOP_FALLBACK(NAME) \
RetTy VisitUnary ## NAME(PTR(UnaryOperator) S) { \
DISPATCH(UnaryOperator, UnaryOperator); \
}
UNARYOP_FALLBACK(PostInc) UNARYOP_FALLBACK(PostDec)
UNARYOP_FALLBACK(PreInc) UNARYOP_FALLBACK(PreDec)
UNARYOP_FALLBACK(AddrOf) UNARYOP_FALLBACK(Deref)
UNARYOP_FALLBACK(Plus) UNARYOP_FALLBACK(Minus)
UNARYOP_FALLBACK(Not) UNARYOP_FALLBACK(LNot)
UNARYOP_FALLBACK(Real) UNARYOP_FALLBACK(Imag)
UNARYOP_FALLBACK(Extension)
#undef UNARYOP_FALLBACK
// Base case, ignore it. :)
RetTy VisitStmt(PTR(Stmt) Node) { return RetTy(); }
#undef PTR
#undef DISPATCH
};
/// StmtVisitor - This class implements a simple visitor for Stmt subclasses.
/// Since Expr derives from Stmt, this also includes support for visiting Exprs.
///
/// This class does not preserve constness of Stmt pointers (see also
/// ConstStmtVisitor).
template<typename ImplClass, typename RetTy=void>
class StmtVisitor
: public StmtVisitorBase<make_ptr, ImplClass, RetTy> {};
/// ConstStmtVisitor - This class implements a simple visitor for Stmt
/// subclasses. Since Expr derives from Stmt, this also includes support for
/// visiting Exprs.
///
/// This class preserves constness of Stmt pointers (see also StmtVisitor).
template<typename ImplClass, typename RetTy=void>
class ConstStmtVisitor
: public StmtVisitorBase<make_const_ptr, ImplClass, RetTy> {};
/// \brief This class implements a simple visitor for OMPClause
/// subclasses.
template<class ImplClass, template <typename> class Ptr, typename RetTy>
class OMPClauseVisitorBase {
public:
#define PTR(CLASS) typename Ptr<CLASS>::type
#define DISPATCH(CLASS) \
return static_cast<ImplClass*>(this)->Visit##CLASS(static_cast<PTR(CLASS)>(S))
#define OPENMP_CLAUSE(Name, Class) \
RetTy Visit ## Class (PTR(Class) S) { DISPATCH(Class); }
#include "clang/Basic/OpenMPKinds.def"
RetTy Visit(PTR(OMPClause) S) {
// Top switch clause: visit each OMPClause.
switch (S->getClauseKind()) {
default: llvm_unreachable("Unknown clause kind!");
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_ ## Name : return Visit ## Class(static_cast<PTR(Class)>(S));
#include "clang/Basic/OpenMPKinds.def"
}
}
// Base case, ignore it. :)
RetTy VisitOMPClause(PTR(OMPClause) Node) { return RetTy(); }
#undef PTR
#undef DISPATCH
};
template<class ImplClass, typename RetTy = void>
class OMPClauseVisitor :
public OMPClauseVisitorBase <ImplClass, make_ptr, RetTy> {};
template<class ImplClass, typename RetTy = void>
class ConstOMPClauseVisitor :
public OMPClauseVisitorBase <ImplClass, make_const_ptr, RetTy> {};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/CommentCommandTraits.h | //===--- CommentCommandTraits.h - Comment command properties ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the class that provides information about comment
// commands.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_COMMENTCOMMANDTRAITS_H
#define LLVM_CLANG_AST_COMMENTCOMMANDTRAITS_H
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
namespace comments {
/// \brief Information about a single command.
///
/// When reordering, adding or removing members please update the corresponding
/// TableGen backend.
struct CommandInfo {
unsigned getID() const {
return ID;
}
const char *Name;
/// Name of the command that ends the verbatim block.
const char *EndCommandName;
/// DRY definition of the number of bits used for a command ID.
enum { NumCommandIDBits = 20 };
/// The ID of the command.
unsigned ID : NumCommandIDBits;
/// Number of word-like arguments for a given block command, except for
/// \\param and \\tparam commands -- these have special argument parsers.
unsigned NumArgs : 4;
/// True if this command is a inline command (of any kind).
unsigned IsInlineCommand : 1;
/// True if this command is a block command (of any kind).
unsigned IsBlockCommand : 1;
/// True if this command is introducing a brief documentation
/// paragraph (\\brief or an alias).
unsigned IsBriefCommand : 1;
/// True if this command is \\returns or an alias.
unsigned IsReturnsCommand : 1;
/// True if this command is introducing documentation for a function
/// parameter (\\param or an alias).
unsigned IsParamCommand : 1;
/// True if this command is introducing documentation for
/// a template parameter (\\tparam or an alias).
unsigned IsTParamCommand : 1;
/// True if this command is \\throws or an alias.
unsigned IsThrowsCommand : 1;
/// True if this command is \\deprecated or an alias.
unsigned IsDeprecatedCommand : 1;
/// \brief True if this is a \\headerfile-like command.
unsigned IsHeaderfileCommand : 1;
/// True if we don't want to warn about this command being passed an empty
/// paragraph. Meaningful only for block commands.
unsigned IsEmptyParagraphAllowed : 1;
/// \brief True if this command is a verbatim-like block command.
///
/// A verbatim-like block command eats every character (except line starting
/// decorations) until matching end command is seen or comment end is hit.
unsigned IsVerbatimBlockCommand : 1;
/// \brief True if this command is an end command for a verbatim-like block.
unsigned IsVerbatimBlockEndCommand : 1;
/// \brief True if this command is a verbatim line command.
///
/// A verbatim-like line command eats everything until a newline is seen or
/// comment end is hit.
unsigned IsVerbatimLineCommand : 1;
/// \brief True if this command contains a declaration for the entity being
/// documented.
///
/// For example:
/// \code
/// \fn void f(int a);
/// \endcode
unsigned IsDeclarationCommand : 1;
/// \brief True if verbatim-like line command is a function declaration.
unsigned IsFunctionDeclarationCommand : 1;
/// \brief True if block command is further describing a container API; such
/// as \@coclass, \@classdesign, etc.
unsigned IsRecordLikeDetailCommand : 1;
/// \brief True if block command is a container API; such as \@interface.
unsigned IsRecordLikeDeclarationCommand : 1;
/// \brief True if this command is unknown. This \c CommandInfo object was
/// created during parsing.
unsigned IsUnknownCommand : 1;
};
/// This class provides information about commands that can be used
/// in comments.
class CommandTraits {
public:
enum KnownCommandIDs {
#define COMMENT_COMMAND(NAME) KCI_##NAME,
#include "clang/AST/CommentCommandList.inc"
#undef COMMENT_COMMAND
KCI_Last
};
CommandTraits(llvm::BumpPtrAllocator &Allocator,
const CommentOptions &CommentOptions);
void registerCommentOptions(const CommentOptions &CommentOptions);
/// \returns a CommandInfo object for a given command name or
/// NULL if no CommandInfo object exists for this command.
const CommandInfo *getCommandInfoOrNULL(StringRef Name) const;
const CommandInfo *getCommandInfo(StringRef Name) const {
if (const CommandInfo *Info = getCommandInfoOrNULL(Name))
return Info;
llvm_unreachable("the command should be known");
}
const CommandInfo *getTypoCorrectCommandInfo(StringRef Typo) const;
const CommandInfo *getCommandInfo(unsigned CommandID) const;
const CommandInfo *registerUnknownCommand(StringRef CommandName);
const CommandInfo *registerBlockCommand(StringRef CommandName);
/// \returns a CommandInfo object for a given command name or
/// NULL if \c Name is not a builtin command.
static const CommandInfo *getBuiltinCommandInfo(StringRef Name);
/// \returns a CommandInfo object for a given command ID or
/// NULL if \c CommandID is not a builtin command.
static const CommandInfo *getBuiltinCommandInfo(unsigned CommandID);
private:
CommandTraits(const CommandTraits &) = delete;
void operator=(const CommandTraits &) = delete;
const CommandInfo *getRegisteredCommandInfo(StringRef Name) const;
const CommandInfo *getRegisteredCommandInfo(unsigned CommandID) const;
CommandInfo *createCommandInfoWithName(StringRef CommandName);
unsigned NextID;
/// Allocator for CommandInfo objects.
llvm::BumpPtrAllocator &Allocator;
SmallVector<CommandInfo *, 4> RegisteredCommands;
};
} // end namespace comments
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/Mangle.h | //===--- Mangle.h - Mangle C++ Names ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines the C++ name mangling interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_MANGLE_H
#define LLVM_CLANG_AST_MANGLE_H
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
namespace clang {
class ASTContext;
class BlockDecl;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class FunctionDecl;
class NamedDecl;
class ObjCMethodDecl;
class StringLiteral;
struct ThisAdjustment;
struct ThunkInfo;
class VarDecl;
/// MangleContext - Context for tracking state which persists across multiple
/// calls to the C++ name mangler.
class MangleContext {
public:
enum ManglerKind {
MK_Itanium,
MK_Microsoft
};
private:
virtual void anchor();
ASTContext &Context;
DiagnosticsEngine &Diags;
const ManglerKind Kind;
llvm::DenseMap<const BlockDecl*, unsigned> GlobalBlockIds;
llvm::DenseMap<const BlockDecl*, unsigned> LocalBlockIds;
llvm::DenseMap<const TagDecl*, uint64_t> AnonStructIds;
public:
ManglerKind getKind() const { return Kind; }
explicit MangleContext(ASTContext &Context,
DiagnosticsEngine &Diags,
ManglerKind Kind)
: Context(Context), Diags(Diags), Kind(Kind) {}
virtual ~MangleContext() { }
ASTContext &getASTContext() const { return Context; }
DiagnosticsEngine &getDiags() const { return Diags; }
virtual void startNewFunction() { LocalBlockIds.clear(); }
unsigned getBlockId(const BlockDecl *BD, bool Local) {
llvm::DenseMap<const BlockDecl *, unsigned> &BlockIds
= Local? LocalBlockIds : GlobalBlockIds;
std::pair<llvm::DenseMap<const BlockDecl *, unsigned>::iterator, bool>
Result = BlockIds.insert(std::make_pair(BD, BlockIds.size()));
return Result.first->second;
}
uint64_t getAnonymousStructId(const TagDecl *TD) {
std::pair<llvm::DenseMap<const TagDecl *, uint64_t>::iterator, bool>
Result = AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
return Result.first->second;
}
/// @name Mangler Entry Points
/// @{
bool shouldMangleDeclName(const NamedDecl *D);
virtual bool shouldMangleCXXName(const NamedDecl *D) = 0;
virtual bool shouldMangleStringLiteral(const StringLiteral *SL) = 0;
// FIXME: consider replacing raw_ostream & with something like SmallString &.
void mangleName(const NamedDecl *D, raw_ostream &);
virtual void mangleCXXName(const NamedDecl *D, raw_ostream &) = 0;
virtual void mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &) = 0;
virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &) = 0;
virtual void mangleReferenceTemporary(const VarDecl *D,
unsigned ManglingNumber,
raw_ostream &) = 0;
virtual void mangleCXXRTTI(QualType T, raw_ostream &) = 0;
virtual void mangleCXXRTTIName(QualType T, raw_ostream &) = 0;
virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &) = 0;
virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &) = 0;
virtual void mangleStringLiteral(const StringLiteral *SL, raw_ostream &) = 0;
void mangleGlobalBlock(const BlockDecl *BD,
const NamedDecl *ID,
raw_ostream &Out);
void mangleCtorBlock(const CXXConstructorDecl *CD, CXXCtorType CT,
const BlockDecl *BD, raw_ostream &Out);
void mangleDtorBlock(const CXXDestructorDecl *CD, CXXDtorType DT,
const BlockDecl *BD, raw_ostream &Out);
void mangleBlock(const DeclContext *DC, const BlockDecl *BD,
raw_ostream &Out);
void mangleObjCMethodName(const ObjCMethodDecl *MD, raw_ostream &);
virtual void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) = 0;
virtual void mangleDynamicInitializer(const VarDecl *D, raw_ostream &) = 0;
virtual void mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &) = 0;
virtual void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
raw_ostream &Out) = 0;
virtual void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
raw_ostream &Out) = 0;
/// Generates a unique string for an externally visible type for use with TBAA
/// or type uniquing.
/// TODO: Extend this to internal types by generating names that are unique
/// across translation units so it can be used with LTO.
virtual void mangleTypeName(QualType T, raw_ostream &) = 0;
virtual void mangleCXXVTableBitSet(const CXXRecordDecl *RD,
raw_ostream &) = 0;
/// @}
};
class ItaniumMangleContext : public MangleContext {
public:
explicit ItaniumMangleContext(ASTContext &C, DiagnosticsEngine &D)
: MangleContext(C, D, MK_Itanium) {}
virtual void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) = 0;
virtual void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) = 0;
virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type,
raw_ostream &) = 0;
virtual void mangleItaniumThreadLocalInit(const VarDecl *D,
raw_ostream &) = 0;
virtual void mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &) = 0;
virtual void mangleCXXCtorComdat(const CXXConstructorDecl *D,
raw_ostream &) = 0;
virtual void mangleCXXDtorComdat(const CXXDestructorDecl *D,
raw_ostream &) = 0;
static bool classof(const MangleContext *C) {
return C->getKind() == MK_Itanium;
}
static ItaniumMangleContext *create(ASTContext &Context,
DiagnosticsEngine &Diags);
};
class MicrosoftMangleContext : public MangleContext {
public:
explicit MicrosoftMangleContext(ASTContext &C, DiagnosticsEngine &D)
: MangleContext(C, D, MK_Microsoft) {}
/// \brief Mangle vftable symbols. Only a subset of the bases along the path
/// to the vftable are included in the name. It's up to the caller to pick
/// them correctly.
virtual void mangleCXXVFTable(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) = 0;
/// \brief Mangle vbtable symbols. Only a subset of the bases along the path
/// to the vbtable are included in the name. It's up to the caller to pick
/// them correctly.
virtual void mangleCXXVBTable(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) = 0;
virtual void mangleThreadSafeStaticGuardVariable(const VarDecl *VD,
unsigned GuardNum,
raw_ostream &Out) = 0;
virtual void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
raw_ostream &) = 0;
virtual void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
const CXXRecordDecl *DstRD,
raw_ostream &Out) = 0;
virtual void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
uint32_t NumEntries, raw_ostream &Out) = 0;
virtual void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
raw_ostream &Out) = 0;
virtual void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
CXXCtorType CT, uint32_t Size,
uint32_t NVOffset, int32_t VBPtrOffset,
uint32_t VBIndex, raw_ostream &Out) = 0;
virtual void mangleCXXCatchHandlerType(QualType T, uint32_t Flags,
raw_ostream &Out) = 0;
virtual void mangleCXXRTTIBaseClassDescriptor(
const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) = 0;
virtual void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
raw_ostream &Out) = 0;
virtual void
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
raw_ostream &Out) = 0;
virtual void
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) = 0;
static bool classof(const MangleContext *C) {
return C->getKind() == MK_Microsoft;
}
static MicrosoftMangleContext *create(ASTContext &Context,
DiagnosticsEngine &Diags);
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclLookups.h | //===-- DeclLookups.h - Low-level interface to all names in a DC-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines DeclContext::all_lookups_iterator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLLOOKUPS_H
#define LLVM_CLANG_AST_DECLLOOKUPS_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclarationName.h"
namespace clang {
/// all_lookups_iterator - An iterator that provides a view over the results
/// of looking up every possible name.
class DeclContext::all_lookups_iterator {
StoredDeclsMap::iterator It, End;
public:
typedef lookup_result value_type;
typedef lookup_result reference;
typedef lookup_result pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
all_lookups_iterator() {}
all_lookups_iterator(StoredDeclsMap::iterator It,
StoredDeclsMap::iterator End)
: It(It), End(End) {}
DeclarationName getLookupName() const { return It->first; }
reference operator*() const { return It->second.getLookupResult(); }
pointer operator->() const { return It->second.getLookupResult(); }
all_lookups_iterator& operator++() {
// Filter out using directives. They don't belong as results from name
// lookup anyways, except as an implementation detail. Users of the API
// should not expect to get them (or worse, rely on it).
do {
++It;
} while (It != End &&
It->first == DeclarationName::getUsingDirectiveName());
return *this;
}
all_lookups_iterator operator++(int) {
all_lookups_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(all_lookups_iterator x, all_lookups_iterator y) {
return x.It == y.It;
}
friend bool operator!=(all_lookups_iterator x, all_lookups_iterator y) {
return x.It != y.It;
}
};
inline DeclContext::lookups_range DeclContext::lookups() const {
DeclContext *Primary = const_cast<DeclContext*>(this)->getPrimaryContext();
if (Primary->hasExternalVisibleStorage())
getParentASTContext().getExternalSource()->completeVisibleDeclsMap(Primary);
if (StoredDeclsMap *Map = Primary->buildLookup())
return lookups_range(all_lookups_iterator(Map->begin(), Map->end()),
all_lookups_iterator(Map->end(), Map->end()));
// Synthesize an empty range. This requires that two default constructed
// versions of these iterators form a valid empty range.
return lookups_range(all_lookups_iterator(), all_lookups_iterator());
}
inline DeclContext::all_lookups_iterator DeclContext::lookups_begin() const {
return lookups().begin();
}
inline DeclContext::all_lookups_iterator DeclContext::lookups_end() const {
return lookups().end();
}
inline DeclContext::lookups_range DeclContext::noload_lookups() const {
DeclContext *Primary = const_cast<DeclContext*>(this)->getPrimaryContext();
if (StoredDeclsMap *Map = Primary->getLookupPtr())
return lookups_range(all_lookups_iterator(Map->begin(), Map->end()),
all_lookups_iterator(Map->end(), Map->end()));
// Synthesize an empty range. This requires that two default constructed
// versions of these iterators form a valid empty range.
return lookups_range(all_lookups_iterator(), all_lookups_iterator());
}
inline
DeclContext::all_lookups_iterator DeclContext::noload_lookups_begin() const {
return noload_lookups().begin();
}
inline
DeclContext::all_lookups_iterator DeclContext::noload_lookups_end() const {
return noload_lookups().end();
}
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclOpenMP.h | //===- DeclOpenMP.h - Classes for representing OpenMP directives -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file defines OpenMP nodes for declarative directives.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLOPENMP_H
#define LLVM_CLANG_AST_DECLOPENMP_H
#include "clang/AST/DeclBase.h"
#include "llvm/ADT/ArrayRef.h"
namespace clang {
class Expr;
/// \brief This represents '#pragma omp threadprivate ...' directive.
/// For example, in the following, both 'a' and 'A::b' are threadprivate:
///
/// \code
/// int a;
/// #pragma omp threadprivate(a)
/// struct A {
/// static int b;
/// #pragma omp threadprivate(b)
/// };
/// \endcode
///
class OMPThreadPrivateDecl : public Decl {
friend class ASTDeclReader;
unsigned NumVars;
virtual void anchor();
OMPThreadPrivateDecl(Kind DK, DeclContext *DC, SourceLocation L) :
Decl(DK, DC, L), NumVars(0) { }
ArrayRef<const Expr *> getVars() const {
return llvm::makeArrayRef(reinterpret_cast<const Expr * const *>(this + 1),
NumVars);
}
MutableArrayRef<Expr *> getVars() {
return MutableArrayRef<Expr *>(
reinterpret_cast<Expr **>(this + 1),
NumVars);
}
void setVars(ArrayRef<Expr *> VL);
public:
static OMPThreadPrivateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
ArrayRef<Expr *> VL);
static OMPThreadPrivateDecl *CreateDeserialized(ASTContext &C,
unsigned ID, unsigned N);
typedef MutableArrayRef<Expr *>::iterator varlist_iterator;
typedef ArrayRef<const Expr *>::iterator varlist_const_iterator;
typedef llvm::iterator_range<varlist_iterator> varlist_range;
typedef llvm::iterator_range<varlist_const_iterator> varlist_const_range;
unsigned varlist_size() const { return NumVars; }
bool varlist_empty() const { return NumVars == 0; }
varlist_range varlists() {
return varlist_range(varlist_begin(), varlist_end());
}
varlist_const_range varlists() const {
return varlist_const_range(varlist_begin(), varlist_end());
}
varlist_iterator varlist_begin() { return getVars().begin(); }
varlist_iterator varlist_end() { return getVars().end(); }
varlist_const_iterator varlist_begin() const { return getVars().begin(); }
varlist_const_iterator varlist_end() const { return getVars().end(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == OMPThreadPrivate; }
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclObjC.h | //===--- DeclObjC.h - Classes for representing declarations -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DeclObjC interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLOBJC_H
#define LLVM_CLANG_AST_DECLOBJC_H
#include "clang/AST/Decl.h"
#include "clang/AST/SelectorLocationsKind.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class Expr;
class Stmt;
class FunctionDecl;
class RecordDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCProtocolDecl;
class ObjCCategoryDecl;
class ObjCPropertyDecl;
class ObjCPropertyImplDecl;
class CXXCtorInitializer;
class ObjCListBase {
ObjCListBase(const ObjCListBase &) = delete;
void operator=(const ObjCListBase &) = delete;
protected:
/// List is an array of pointers to objects that are not owned by this object.
void **List;
unsigned NumElts;
public:
ObjCListBase() : List(nullptr), NumElts(0) {}
unsigned size() const { return NumElts; }
bool empty() const { return NumElts == 0; }
protected:
void set(void *const* InList, unsigned Elts, ASTContext &Ctx);
};
/// ObjCList - This is a simple template class used to hold various lists of
/// decls etc, which is heavily used by the ObjC front-end. This only use case
/// this supports is setting the list all at once and then reading elements out
/// of it.
template <typename T>
class ObjCList : public ObjCListBase {
public:
void set(T* const* InList, unsigned Elts, ASTContext &Ctx) {
ObjCListBase::set(reinterpret_cast<void*const*>(InList), Elts, Ctx);
}
typedef T* const * iterator;
iterator begin() const { return (iterator)List; }
iterator end() const { return (iterator)List+NumElts; }
T* operator[](unsigned Idx) const {
assert(Idx < NumElts && "Invalid access");
return (T*)List[Idx];
}
};
/// \brief A list of Objective-C protocols, along with the source
/// locations at which they were referenced.
class ObjCProtocolList : public ObjCList<ObjCProtocolDecl> {
SourceLocation *Locations;
using ObjCList<ObjCProtocolDecl>::set;
public:
ObjCProtocolList() : ObjCList<ObjCProtocolDecl>(), Locations(nullptr) { }
typedef const SourceLocation *loc_iterator;
loc_iterator loc_begin() const { return Locations; }
loc_iterator loc_end() const { return Locations + size(); }
void set(ObjCProtocolDecl* const* InList, unsigned Elts,
const SourceLocation *Locs, ASTContext &Ctx);
};
/// ObjCMethodDecl - Represents an instance or class method declaration.
/// ObjC methods can be declared within 4 contexts: class interfaces,
/// categories, protocols, and class implementations. While C++ member
/// functions leverage C syntax, Objective-C method syntax is modeled after
/// Smalltalk (using colons to specify argument types/expressions).
/// Here are some brief examples:
///
/// Setter/getter instance methods:
/// - (void)setMenu:(NSMenu *)menu;
/// - (NSMenu *)menu;
///
/// Instance method that takes 2 NSView arguments:
/// - (void)replaceSubview:(NSView *)oldView with:(NSView *)newView;
///
/// Getter class method:
/// + (NSMenu *)defaultMenu;
///
/// A selector represents a unique name for a method. The selector names for
/// the above methods are setMenu:, menu, replaceSubview:with:, and defaultMenu.
///
class ObjCMethodDecl : public NamedDecl, public DeclContext {
public:
enum ImplementationControl { None, Required, Optional };
private:
// The conventional meaning of this method; an ObjCMethodFamily.
// This is not serialized; instead, it is computed on demand and
// cached.
mutable unsigned Family : ObjCMethodFamilyBitWidth;
/// instance (true) or class (false) method.
unsigned IsInstance : 1;
unsigned IsVariadic : 1;
/// True if this method is the getter or setter for an explicit property.
unsigned IsPropertyAccessor : 1;
// Method has a definition.
unsigned IsDefined : 1;
/// \brief Method redeclaration in the same interface.
unsigned IsRedeclaration : 1;
/// \brief Is redeclared in the same interface.
mutable unsigned HasRedeclaration : 1;
// NOTE: VC++ treats enums as signed, avoid using ImplementationControl enum
/// \@required/\@optional
unsigned DeclImplementation : 2;
// NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
/// in, inout, etc.
unsigned objcDeclQualifier : 7;
/// \brief Indicates whether this method has a related result type.
unsigned RelatedResultType : 1;
/// \brief Whether the locations of the selector identifiers are in a
/// "standard" position, a enum SelectorLocationsKind.
unsigned SelLocsKind : 2;
/// \brief Whether this method overrides any other in the class hierarchy.
///
/// A method is said to override any method in the class's
/// base classes, its protocols, or its categories' protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
unsigned IsOverriding : 1;
/// \brief Indicates if the method was a definition but its body was skipped.
unsigned HasSkippedBody : 1;
// Return type of this method.
QualType MethodDeclType;
// Type source information for the return type.
TypeSourceInfo *ReturnTInfo;
/// \brief Array of ParmVarDecls for the formal parameters of this method
/// and optionally followed by selector locations.
void *ParamsAndSelLocs;
unsigned NumParams;
/// List of attributes for this method declaration.
SourceLocation DeclEndLoc; // the location of the ';' or '{'.
// The following are only used for method definitions, null otherwise.
LazyDeclStmtPtr Body;
/// SelfDecl - Decl for the implicit self parameter. This is lazily
/// constructed by createImplicitParams.
ImplicitParamDecl *SelfDecl;
/// CmdDecl - Decl for the implicit _cmd parameter. This is lazily
/// constructed by createImplicitParams.
ImplicitParamDecl *CmdDecl;
SelectorLocationsKind getSelLocsKind() const {
return (SelectorLocationsKind)SelLocsKind;
}
bool hasStandardSelLocs() const {
return getSelLocsKind() != SelLoc_NonStandard;
}
/// \brief Get a pointer to the stored selector identifiers locations array.
/// No locations will be stored if HasStandardSelLocs is true.
SourceLocation *getStoredSelLocs() {
return reinterpret_cast<SourceLocation*>(getParams() + NumParams);
}
const SourceLocation *getStoredSelLocs() const {
return reinterpret_cast<const SourceLocation*>(getParams() + NumParams);
}
/// \brief Get a pointer to the stored selector identifiers locations array.
/// No locations will be stored if HasStandardSelLocs is true.
ParmVarDecl **getParams() {
return reinterpret_cast<ParmVarDecl **>(ParamsAndSelLocs);
}
const ParmVarDecl *const *getParams() const {
return reinterpret_cast<const ParmVarDecl *const *>(ParamsAndSelLocs);
}
/// \brief Get the number of stored selector identifiers locations.
/// No locations will be stored if HasStandardSelLocs is true.
unsigned getNumStoredSelLocs() const {
if (hasStandardSelLocs())
return 0;
return getNumSelectorLocs();
}
void setParamsAndSelLocs(ASTContext &C,
ArrayRef<ParmVarDecl*> Params,
ArrayRef<SourceLocation> SelLocs);
ObjCMethodDecl(SourceLocation beginLoc, SourceLocation endLoc,
Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
DeclContext *contextDecl, bool isInstance = true,
bool isVariadic = false, bool isPropertyAccessor = false,
bool isImplicitlyDeclared = false, bool isDefined = false,
ImplementationControl impControl = None,
bool HasRelatedResultType = false)
: NamedDecl(ObjCMethod, contextDecl, beginLoc, SelInfo),
DeclContext(ObjCMethod), Family(InvalidObjCMethodFamily),
IsInstance(isInstance), IsVariadic(isVariadic),
IsPropertyAccessor(isPropertyAccessor), IsDefined(isDefined),
IsRedeclaration(0), HasRedeclaration(0), DeclImplementation(impControl),
objcDeclQualifier(OBJC_TQ_None),
RelatedResultType(HasRelatedResultType),
SelLocsKind(SelLoc_StandardNoSpace), IsOverriding(0), HasSkippedBody(0),
MethodDeclType(T), ReturnTInfo(ReturnTInfo), ParamsAndSelLocs(nullptr),
NumParams(0), DeclEndLoc(endLoc), Body(), SelfDecl(nullptr),
CmdDecl(nullptr) {
setImplicit(isImplicitlyDeclared);
}
/// \brief A definition will return its interface declaration.
/// An interface declaration will return its definition.
/// Otherwise it will return itself.
ObjCMethodDecl *getNextRedeclarationImpl() override;
public:
static ObjCMethodDecl *
Create(ASTContext &C, SourceLocation beginLoc, SourceLocation endLoc,
Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
DeclContext *contextDecl, bool isInstance = true,
bool isVariadic = false, bool isPropertyAccessor = false,
bool isImplicitlyDeclared = false, bool isDefined = false,
ImplementationControl impControl = None,
bool HasRelatedResultType = false);
static ObjCMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ObjCMethodDecl *getCanonicalDecl() override;
const ObjCMethodDecl *getCanonicalDecl() const {
return const_cast<ObjCMethodDecl*>(this)->getCanonicalDecl();
}
ObjCDeclQualifier getObjCDeclQualifier() const {
return ObjCDeclQualifier(objcDeclQualifier);
}
void setObjCDeclQualifier(ObjCDeclQualifier QV) { objcDeclQualifier = QV; }
/// \brief Determine whether this method has a result type that is related
/// to the message receiver's type.
bool hasRelatedResultType() const { return RelatedResultType; }
/// \brief Note whether this method has a related result type.
void SetRelatedResultType(bool RRT = true) { RelatedResultType = RRT; }
/// \brief True if this is a method redeclaration in the same interface.
bool isRedeclaration() const { return IsRedeclaration; }
void setAsRedeclaration(const ObjCMethodDecl *PrevMethod);
/// \brief Returns the location where the declarator ends. It will be
/// the location of ';' for a method declaration and the location of '{'
/// for a method definition.
SourceLocation getDeclaratorEndLoc() const { return DeclEndLoc; }
// Location information, modeled after the Stmt API.
SourceLocation getLocStart() const LLVM_READONLY { return getLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY;
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getLocEnd());
}
SourceLocation getSelectorStartLoc() const {
if (isImplicit())
return getLocStart();
return getSelectorLoc(0);
}
SourceLocation getSelectorLoc(unsigned Index) const {
assert(Index < getNumSelectorLocs() && "Index out of range!");
if (hasStandardSelLocs())
return getStandardSelectorLoc(Index, getSelector(),
getSelLocsKind() == SelLoc_StandardWithSpace,
parameters(),
DeclEndLoc);
return getStoredSelLocs()[Index];
}
void getSelectorLocs(SmallVectorImpl<SourceLocation> &SelLocs) const;
unsigned getNumSelectorLocs() const {
if (isImplicit())
return 0;
Selector Sel = getSelector();
if (Sel.isUnarySelector())
return 1;
return Sel.getNumArgs();
}
ObjCInterfaceDecl *getClassInterface();
const ObjCInterfaceDecl *getClassInterface() const {
return const_cast<ObjCMethodDecl*>(this)->getClassInterface();
}
Selector getSelector() const { return getDeclName().getObjCSelector(); }
QualType getReturnType() const { return MethodDeclType; }
void setReturnType(QualType T) { MethodDeclType = T; }
SourceRange getReturnTypeSourceRange() const;
/// \brief Determine the type of an expression that sends a message to this
/// function. This replaces the type parameters with the types they would
/// get if the receiver was parameterless (e.g. it may replace the type
/// parameter with 'id').
QualType getSendResultType() const;
/// Determine the type of an expression that sends a message to this
/// function with the given receiver type.
QualType getSendResultType(QualType receiverType) const;
TypeSourceInfo *getReturnTypeSourceInfo() const { return ReturnTInfo; }
void setReturnTypeSourceInfo(TypeSourceInfo *TInfo) { ReturnTInfo = TInfo; }
// Iterator access to formal parameters.
unsigned param_size() const { return NumParams; }
typedef const ParmVarDecl *const *param_const_iterator;
typedef ParmVarDecl *const *param_iterator;
typedef llvm::iterator_range<param_iterator> param_range;
typedef llvm::iterator_range<param_const_iterator> param_const_range;
param_range params() { return param_range(param_begin(), param_end()); }
param_const_range params() const {
return param_const_range(param_begin(), param_end());
}
param_const_iterator param_begin() const {
return param_const_iterator(getParams());
}
param_const_iterator param_end() const {
return param_const_iterator(getParams() + NumParams);
}
param_iterator param_begin() { return param_iterator(getParams()); }
param_iterator param_end() { return param_iterator(getParams() + NumParams); }
// This method returns and of the parameters which are part of the selector
// name mangling requirements.
param_const_iterator sel_param_end() const {
return param_begin() + getSelector().getNumArgs();
}
// ArrayRef access to formal parameters. This should eventually
// replace the iterator interface above.
ArrayRef<ParmVarDecl*> parameters() const {
return llvm::makeArrayRef(const_cast<ParmVarDecl**>(getParams()),
NumParams);
}
/// \brief Sets the method's parameters and selector source locations.
/// If the method is implicit (not coming from source) \p SelLocs is
/// ignored.
void setMethodParams(ASTContext &C,
ArrayRef<ParmVarDecl*> Params,
ArrayRef<SourceLocation> SelLocs = llvm::None);
// Iterator access to parameter types.
struct GetTypeFn {
QualType operator()(const ParmVarDecl *PD) const { return PD->getType(); }
};
typedef llvm::mapped_iterator<param_const_iterator, GetTypeFn>
param_type_iterator;
param_type_iterator param_type_begin() const {
return llvm::map_iterator(param_begin(), GetTypeFn());
}
param_type_iterator param_type_end() const {
return llvm::map_iterator(param_end(), GetTypeFn());
}
/// createImplicitParams - Used to lazily create the self and cmd
/// implict parameters. This must be called prior to using getSelfDecl()
/// or getCmdDecl(). The call is ignored if the implicit paramters
/// have already been created.
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID);
/// \return the type for \c self and set \arg selfIsPseudoStrong and
/// \arg selfIsConsumed accordingly.
QualType getSelfType(ASTContext &Context, const ObjCInterfaceDecl *OID,
bool &selfIsPseudoStrong, bool &selfIsConsumed);
ImplicitParamDecl * getSelfDecl() const { return SelfDecl; }
void setSelfDecl(ImplicitParamDecl *SD) { SelfDecl = SD; }
ImplicitParamDecl * getCmdDecl() const { return CmdDecl; }
void setCmdDecl(ImplicitParamDecl *CD) { CmdDecl = CD; }
/// Determines the family of this method.
ObjCMethodFamily getMethodFamily() const;
bool isInstanceMethod() const { return IsInstance; }
void setInstanceMethod(bool isInst) { IsInstance = isInst; }
bool isVariadic() const { return IsVariadic; }
void setVariadic(bool isVar) { IsVariadic = isVar; }
bool isClassMethod() const { return !IsInstance; }
bool isPropertyAccessor() const { return IsPropertyAccessor; }
void setPropertyAccessor(bool isAccessor) { IsPropertyAccessor = isAccessor; }
bool isDefined() const { return IsDefined; }
void setDefined(bool isDefined) { IsDefined = isDefined; }
/// \brief Whether this method overrides any other in the class hierarchy.
///
/// A method is said to override any method in the class's
/// base classes, its protocols, or its categories' protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
bool isOverriding() const { return IsOverriding; }
void setOverriding(bool isOverriding) { IsOverriding = isOverriding; }
/// \brief Return overridden methods for the given \p Method.
///
/// An ObjC method is considered to override any method in the class's
/// base classes (and base's categories), its protocols, or its categories'
/// protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
void getOverriddenMethods(
SmallVectorImpl<const ObjCMethodDecl *> &Overridden) const;
/// \brief True if the method was a definition but its body was skipped.
bool hasSkippedBody() const { return HasSkippedBody; }
void setHasSkippedBody(bool Skipped = true) { HasSkippedBody = Skipped; }
/// \brief Returns the property associated with this method's selector.
///
/// Note that even if this particular method is not marked as a property
/// accessor, it is still possible for it to match a property declared in a
/// superclass. Pass \c false if you only want to check the current class.
const ObjCPropertyDecl *findPropertyDecl(bool CheckOverrides = true) const;
// Related to protocols declared in \@protocol
void setDeclImplementation(ImplementationControl ic) {
DeclImplementation = ic;
}
ImplementationControl getImplementationControl() const {
return ImplementationControl(DeclImplementation);
}
/// Returns true if this specific method declaration is marked with the
/// designated initializer attribute.
bool isThisDeclarationADesignatedInitializer() const;
/// Returns true if the method selector resolves to a designated initializer
/// in the class's interface.
///
/// \param InitMethod if non-null and the function returns true, it receives
/// the method declaration that was marked with the designated initializer
/// attribute.
bool isDesignatedInitializerForTheInterface(
const ObjCMethodDecl **InitMethod = nullptr) const;
/// \brief Determine whether this method has a body.
bool hasBody() const override { return Body.isValid(); }
/// \brief Retrieve the body of this method, if it has one.
Stmt *getBody() const override;
void setLazyBody(uint64_t Offset) { Body = Offset; }
CompoundStmt *getCompoundBody() { return (CompoundStmt*)getBody(); }
void setBody(Stmt *B) { Body = B; }
/// \brief Returns whether this specific method is a definition.
bool isThisDeclarationADefinition() const { return hasBody(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCMethod; }
static DeclContext *castToDeclContext(const ObjCMethodDecl *D) {
return static_cast<DeclContext *>(const_cast<ObjCMethodDecl*>(D));
}
static ObjCMethodDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ObjCMethodDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// Describes the variance of a given generic parameter.
enum class ObjCTypeParamVariance : uint8_t {
/// The parameter is invariant: must match exactly.
Invariant,
/// The parameter is covariant, e.g., X<T> is a subtype of X<U> when
/// the type parameter is covariant and T is a subtype of U.
Covariant,
/// The parameter is contravariant, e.g., X<T> is a subtype of X<U>
/// when the type parameter is covariant and U is a subtype of T.
Contravariant,
};
/// Represents the declaration of an Objective-C type parameter.
///
/// \code
/// @interface NSDictionary<Key : id<NSCopying>, Value>
/// @end
/// \endcode
///
/// In the example above, both \c Key and \c Value are represented by
/// \c ObjCTypeParamDecl. \c Key has an explicit bound of \c id<NSCopying>,
/// while \c Value gets an implicit bound of \c id.
///
/// Objective-C type parameters are typedef-names in the grammar,
class ObjCTypeParamDecl : public TypedefNameDecl {
void anchor() override;
/// Index of this type parameter in the type parameter list.
unsigned Index : 14;
/// The variance of the type parameter.
unsigned Variance : 2;
/// The location of the variance, if any.
SourceLocation VarianceLoc;
/// The location of the ':', which will be valid when the bound was
/// explicitly specified.
SourceLocation ColonLoc;
ObjCTypeParamDecl(ASTContext &ctx, DeclContext *dc,
ObjCTypeParamVariance variance, SourceLocation varianceLoc,
unsigned index,
SourceLocation nameLoc, IdentifierInfo *name,
SourceLocation colonLoc, TypeSourceInfo *boundInfo)
: TypedefNameDecl(ObjCTypeParam, ctx, dc, nameLoc, nameLoc, name,
boundInfo),
Index(index), Variance(static_cast<unsigned>(variance)),
VarianceLoc(varianceLoc), ColonLoc(colonLoc) { }
public:
static ObjCTypeParamDecl *Create(ASTContext &ctx, DeclContext *dc,
ObjCTypeParamVariance variance,
SourceLocation varianceLoc,
unsigned index,
SourceLocation nameLoc,
IdentifierInfo *name,
SourceLocation colonLoc,
TypeSourceInfo *boundInfo);
static ObjCTypeParamDecl *CreateDeserialized(ASTContext &ctx, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Determine the variance of this type parameter.
ObjCTypeParamVariance getVariance() const {
return static_cast<ObjCTypeParamVariance>(Variance);
}
/// Set the variance of this type parameter.
void setVariance(ObjCTypeParamVariance variance) {
Variance = static_cast<unsigned>(variance);
}
/// Retrieve the location of the variance keyword.
SourceLocation getVarianceLoc() const { return VarianceLoc; }
/// Retrieve the index into its type parameter list.
unsigned getIndex() const { return Index; }
/// Whether this type parameter has an explicitly-written type bound, e.g.,
/// "T : NSView".
bool hasExplicitBound() const { return ColonLoc.isValid(); }
/// Retrieve the location of the ':' separating the type parameter name
/// from the explicitly-specified bound.
SourceLocation getColonLoc() const { return ColonLoc; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCTypeParam; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// Stores a list of Objective-C type parameters for a parameterized class
/// or a category/extension thereof.
///
/// \code
/// @interface NSArray<T> // stores the <T>
/// @end
/// \endcode
class ObjCTypeParamList {
/// Stores the components of a SourceRange as a POD.
struct PODSourceRange {
unsigned Begin;
unsigned End;
};
union {
/// Location of the left and right angle brackets.
PODSourceRange Brackets;
// Used only for alignment.
ObjCTypeParamDecl *AlignmentHack;
};
/// The number of parameters in the list, which are tail-allocated.
unsigned NumParams;
ObjCTypeParamList(SourceLocation lAngleLoc,
ArrayRef<ObjCTypeParamDecl *> typeParams,
SourceLocation rAngleLoc);
public:
/// Create a new Objective-C type parameter list.
static ObjCTypeParamList *create(ASTContext &ctx,
SourceLocation lAngleLoc,
ArrayRef<ObjCTypeParamDecl *> typeParams,
SourceLocation rAngleLoc);
/// Iterate through the type parameters in the list.
typedef ObjCTypeParamDecl **iterator;
iterator begin() { return reinterpret_cast<ObjCTypeParamDecl **>(this + 1); }
iterator end() { return begin() + size(); }
/// Determine the number of type parameters in this list.
unsigned size() const { return NumParams; }
// Iterate through the type parameters in the list.
typedef ObjCTypeParamDecl * const *const_iterator;
const_iterator begin() const {
return reinterpret_cast<ObjCTypeParamDecl * const *>(this + 1);
}
const_iterator end() const {
return begin() + size();
}
ObjCTypeParamDecl *front() const {
assert(size() > 0 && "empty Objective-C type parameter list");
return *begin();
}
ObjCTypeParamDecl *back() const {
assert(size() > 0 && "empty Objective-C type parameter list");
return *(end() - 1);
}
SourceLocation getLAngleLoc() const {
return SourceLocation::getFromRawEncoding(Brackets.Begin);
}
SourceLocation getRAngleLoc() const {
return SourceLocation::getFromRawEncoding(Brackets.End);
}
SourceRange getSourceRange() const {
return SourceRange(getLAngleLoc(), getRAngleLoc());
}
/// Gather the default set of type arguments to be substituted for
/// these type parameters when dealing with an unspecialized type.
void gatherDefaultTypeArgs(SmallVectorImpl<QualType> &typeArgs) const;
};
/// ObjCContainerDecl - Represents a container for method declarations.
/// Current sub-classes are ObjCInterfaceDecl, ObjCCategoryDecl,
/// ObjCProtocolDecl, and ObjCImplDecl.
///
class ObjCContainerDecl : public NamedDecl, public DeclContext {
void anchor() override;
SourceLocation AtStart;
// These two locations in the range mark the end of the method container.
// The first points to the '@' token, and the second to the 'end' token.
SourceRange AtEnd;
public:
ObjCContainerDecl(Kind DK, DeclContext *DC,
IdentifierInfo *Id, SourceLocation nameLoc,
SourceLocation atStartLoc)
: NamedDecl(DK, DC, nameLoc, Id), DeclContext(DK), AtStart(atStartLoc) {}
// Iterator access to properties.
typedef specific_decl_iterator<ObjCPropertyDecl> prop_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCPropertyDecl>>
prop_range;
prop_range properties() const { return prop_range(prop_begin(), prop_end()); }
prop_iterator prop_begin() const {
return prop_iterator(decls_begin());
}
prop_iterator prop_end() const {
return prop_iterator(decls_end());
}
// Iterator access to instance/class methods.
typedef specific_decl_iterator<ObjCMethodDecl> method_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCMethodDecl>>
method_range;
method_range methods() const {
return method_range(meth_begin(), meth_end());
}
method_iterator meth_begin() const {
return method_iterator(decls_begin());
}
method_iterator meth_end() const {
return method_iterator(decls_end());
}
typedef filtered_decl_iterator<ObjCMethodDecl,
&ObjCMethodDecl::isInstanceMethod>
instmeth_iterator;
typedef llvm::iterator_range<instmeth_iterator> instmeth_range;
instmeth_range instance_methods() const {
return instmeth_range(instmeth_begin(), instmeth_end());
}
instmeth_iterator instmeth_begin() const {
return instmeth_iterator(decls_begin());
}
instmeth_iterator instmeth_end() const {
return instmeth_iterator(decls_end());
}
typedef filtered_decl_iterator<ObjCMethodDecl,
&ObjCMethodDecl::isClassMethod>
classmeth_iterator;
typedef llvm::iterator_range<classmeth_iterator> classmeth_range;
classmeth_range class_methods() const {
return classmeth_range(classmeth_begin(), classmeth_end());
}
classmeth_iterator classmeth_begin() const {
return classmeth_iterator(decls_begin());
}
classmeth_iterator classmeth_end() const {
return classmeth_iterator(decls_end());
}
// Get the local instance/class method declared in this interface.
ObjCMethodDecl *getMethod(Selector Sel, bool isInstance,
bool AllowHidden = false) const;
ObjCMethodDecl *getInstanceMethod(Selector Sel,
bool AllowHidden = false) const {
return getMethod(Sel, true/*isInstance*/, AllowHidden);
}
ObjCMethodDecl *getClassMethod(Selector Sel, bool AllowHidden = false) const {
return getMethod(Sel, false/*isInstance*/, AllowHidden);
}
bool HasUserDeclaredSetterMethod(const ObjCPropertyDecl *P) const;
ObjCIvarDecl *getIvarDecl(IdentifierInfo *Id) const;
ObjCPropertyDecl *
FindPropertyDeclaration(const IdentifierInfo *PropertyId) const;
typedef llvm::DenseMap<IdentifierInfo*, ObjCPropertyDecl*> PropertyMap;
typedef llvm::DenseMap<const ObjCProtocolDecl *, ObjCPropertyDecl*>
ProtocolPropertyMap;
typedef llvm::SmallVector<ObjCPropertyDecl*, 8> PropertyDeclOrder;
/// This routine collects list of properties to be implemented in the class.
/// This includes, class's and its conforming protocols' properties.
/// Note, the superclass's properties are not included in the list.
virtual void collectPropertiesToImplement(PropertyMap &PM,
PropertyDeclOrder &PO) const {}
SourceLocation getAtStartLoc() const { return AtStart; }
void setAtStartLoc(SourceLocation Loc) { AtStart = Loc; }
// Marks the end of the container.
SourceRange getAtEndRange() const {
return AtEnd;
}
void setAtEndRange(SourceRange atEnd) {
AtEnd = atEnd;
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(AtStart, getAtEndRange().getEnd());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstObjCContainer &&
K <= lastObjCContainer;
}
static DeclContext *castToDeclContext(const ObjCContainerDecl *D) {
return static_cast<DeclContext *>(const_cast<ObjCContainerDecl*>(D));
}
static ObjCContainerDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ObjCContainerDecl *>(const_cast<DeclContext*>(DC));
}
};
/// \brief Represents an ObjC class declaration.
///
/// For example:
///
/// \code
/// // MostPrimitive declares no super class (not particularly useful).
/// \@interface MostPrimitive
/// // no instance variables or methods.
/// \@end
///
/// // NSResponder inherits from NSObject & implements NSCoding (a protocol).
/// \@interface NSResponder : NSObject \<NSCoding>
/// { // instance variables are represented by ObjCIvarDecl.
/// id nextResponder; // nextResponder instance variable.
/// }
/// - (NSResponder *)nextResponder; // return a pointer to NSResponder.
/// - (void)mouseMoved:(NSEvent *)theEvent; // return void, takes a pointer
/// \@end // to an NSEvent.
/// \endcode
///
/// Unlike C/C++, forward class declarations are accomplished with \@class.
/// Unlike C/C++, \@class allows for a list of classes to be forward declared.
/// Unlike C++, ObjC is a single-rooted class model. In Cocoa, classes
/// typically inherit from NSObject (an exception is NSProxy).
///
class ObjCInterfaceDecl : public ObjCContainerDecl
, public Redeclarable<ObjCInterfaceDecl> {
void anchor() override;
/// TypeForDecl - This indicates the Type object that represents this
/// TypeDecl. It is a cache maintained by ASTContext::getObjCInterfaceType
mutable const Type *TypeForDecl;
friend class ASTContext;
struct DefinitionData {
/// \brief The definition of this class, for quick access from any
/// declaration.
ObjCInterfaceDecl *Definition;
/// When non-null, this is always an ObjCObjectType.
TypeSourceInfo *SuperClassTInfo;
/// Protocols referenced in the \@interface declaration
ObjCProtocolList ReferencedProtocols;
/// Protocols reference in both the \@interface and class extensions.
ObjCList<ObjCProtocolDecl> AllReferencedProtocols;
/// \brief List of categories and class extensions defined for this class.
///
/// Categories are stored as a linked list in the AST, since the categories
/// and class extensions come long after the initial interface declaration,
/// and we avoid dynamically-resized arrays in the AST wherever possible.
ObjCCategoryDecl *CategoryList;
/// IvarList - List of all ivars defined by this class; including class
/// extensions and implementation. This list is built lazily.
ObjCIvarDecl *IvarList;
/// \brief Indicates that the contents of this Objective-C class will be
/// completed by the external AST source when required.
mutable bool ExternallyCompleted : 1;
/// \brief Indicates that the ivar cache does not yet include ivars
/// declared in the implementation.
mutable bool IvarListMissingImplementation : 1;
/// Indicates that this interface decl contains at least one initializer
/// marked with the 'objc_designated_initializer' attribute.
bool HasDesignatedInitializers : 1;
enum InheritedDesignatedInitializersState {
/// We didn't calculate whether the designated initializers should be
/// inherited or not.
IDI_Unknown = 0,
/// Designated initializers are inherited for the super class.
IDI_Inherited = 1,
/// The class does not inherit designated initializers.
IDI_NotInherited = 2
};
/// One of the \c InheritedDesignatedInitializersState enumeratos.
mutable unsigned InheritedDesignatedInitializers : 2;
/// \brief The location of the last location in this declaration, before
/// the properties/methods. For example, this will be the '>', '}', or
/// identifier,
SourceLocation EndLoc;
DefinitionData() : Definition(), SuperClassTInfo(), CategoryList(), IvarList(),
ExternallyCompleted(),
IvarListMissingImplementation(true),
HasDesignatedInitializers(),
InheritedDesignatedInitializers(IDI_Unknown) { }
};
ObjCInterfaceDecl(const ASTContext &C, DeclContext *DC, SourceLocation AtLoc,
IdentifierInfo *Id, ObjCTypeParamList *typeParamList,
SourceLocation CLoc, ObjCInterfaceDecl *PrevDecl,
bool IsInternal);
void LoadExternalDefinition() const;
/// The type parameters associated with this class, if any.
ObjCTypeParamList *TypeParamList;
/// \brief Contains a pointer to the data associated with this class,
/// which will be NULL if this class has not yet been defined.
///
/// The bit indicates when we don't need to check for out-of-date
/// declarations. It will be set unless modules are enabled.
llvm::PointerIntPair<DefinitionData *, 1, bool> Data;
DefinitionData &data() const {
assert(Data.getPointer() && "Declaration has no definition!");
return *Data.getPointer();
}
/// \brief Allocate the definition data for this class.
void allocateDefinitionData();
typedef Redeclarable<ObjCInterfaceDecl> redeclarable_base;
ObjCInterfaceDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
ObjCInterfaceDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
ObjCInterfaceDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
static ObjCInterfaceDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation atLoc,
IdentifierInfo *Id,
ObjCTypeParamList *typeParamList,
ObjCInterfaceDecl *PrevDecl,
SourceLocation ClassLoc = SourceLocation(),
bool isInternal = false);
static ObjCInterfaceDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
/// Retrieve the type parameters of this class.
///
/// This function looks for a type parameter list for the given
/// class; if the class has been declared (with \c \@class) but not
/// defined (with \c \@interface), it will search for a declaration that
/// has type parameters, skipping any declarations that do not.
ObjCTypeParamList *getTypeParamList() const;
/// Set the type parameters of this class.
///
/// This function is used by the AST importer, which must import the type
/// parameters after creating their DeclContext to avoid loops.
void setTypeParamList(ObjCTypeParamList *TPL);
/// Retrieve the type parameters written on this particular declaration of
/// the class.
ObjCTypeParamList *getTypeParamListAsWritten() const {
return TypeParamList;
}
SourceRange getSourceRange() const override LLVM_READONLY {
if (isThisDeclarationADefinition())
return ObjCContainerDecl::getSourceRange();
return SourceRange(getAtStartLoc(), getLocation());
}
/// \brief Indicate that this Objective-C class is complete, but that
/// the external AST source will be responsible for filling in its contents
/// when a complete class is required.
void setExternallyCompleted();
/// Indicate that this interface decl contains at least one initializer
/// marked with the 'objc_designated_initializer' attribute.
void setHasDesignatedInitializers();
/// Returns true if this interface decl contains at least one initializer
/// marked with the 'objc_designated_initializer' attribute.
bool hasDesignatedInitializers() const;
/// Returns true if this interface decl declares a designated initializer
/// or it inherites one from its super class.
bool declaresOrInheritsDesignatedInitializers() const {
return hasDesignatedInitializers() || inheritsDesignatedInitializers();
}
const ObjCProtocolList &getReferencedProtocols() const {
assert(hasDefinition() && "Caller did not check for forward reference!");
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().ReferencedProtocols;
}
ObjCImplementationDecl *getImplementation() const;
void setImplementation(ObjCImplementationDecl *ImplD);
ObjCCategoryDecl *FindCategoryDeclaration(IdentifierInfo *CategoryId) const;
// Get the local instance/class method declared in a category.
ObjCMethodDecl *getCategoryInstanceMethod(Selector Sel) const;
ObjCMethodDecl *getCategoryClassMethod(Selector Sel) const;
ObjCMethodDecl *getCategoryMethod(Selector Sel, bool isInstance) const {
return isInstance ? getCategoryInstanceMethod(Sel)
: getCategoryClassMethod(Sel);
}
typedef ObjCProtocolList::iterator protocol_iterator;
typedef llvm::iterator_range<protocol_iterator> protocol_range;
protocol_range protocols() const {
return protocol_range(protocol_begin(), protocol_end());
}
protocol_iterator protocol_begin() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return protocol_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().ReferencedProtocols.begin();
}
protocol_iterator protocol_end() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return protocol_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().ReferencedProtocols.end();
}
typedef ObjCProtocolList::loc_iterator protocol_loc_iterator;
typedef llvm::iterator_range<protocol_loc_iterator> protocol_loc_range;
protocol_loc_range protocol_locs() const {
return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
}
protocol_loc_iterator protocol_loc_begin() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return protocol_loc_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().ReferencedProtocols.loc_begin();
}
protocol_loc_iterator protocol_loc_end() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return protocol_loc_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().ReferencedProtocols.loc_end();
}
typedef ObjCList<ObjCProtocolDecl>::iterator all_protocol_iterator;
typedef llvm::iterator_range<all_protocol_iterator> all_protocol_range;
all_protocol_range all_referenced_protocols() const {
return all_protocol_range(all_referenced_protocol_begin(),
all_referenced_protocol_end());
}
all_protocol_iterator all_referenced_protocol_begin() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return all_protocol_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().AllReferencedProtocols.empty()
? protocol_begin()
: data().AllReferencedProtocols.begin();
}
all_protocol_iterator all_referenced_protocol_end() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return all_protocol_iterator();
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().AllReferencedProtocols.empty()
? protocol_end()
: data().AllReferencedProtocols.end();
}
typedef specific_decl_iterator<ObjCIvarDecl> ivar_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>> ivar_range;
ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
ivar_iterator ivar_begin() const {
if (const ObjCInterfaceDecl *Def = getDefinition())
return ivar_iterator(Def->decls_begin());
// FIXME: Should make sure no callers ever do this.
return ivar_iterator();
}
ivar_iterator ivar_end() const {
if (const ObjCInterfaceDecl *Def = getDefinition())
return ivar_iterator(Def->decls_end());
// FIXME: Should make sure no callers ever do this.
return ivar_iterator();
}
unsigned ivar_size() const {
return std::distance(ivar_begin(), ivar_end());
}
bool ivar_empty() const { return ivar_begin() == ivar_end(); }
ObjCIvarDecl *all_declared_ivar_begin();
const ObjCIvarDecl *all_declared_ivar_begin() const {
// Even though this modifies IvarList, it's conceptually const:
// the ivar chain is essentially a cached property of ObjCInterfaceDecl.
return const_cast<ObjCInterfaceDecl *>(this)->all_declared_ivar_begin();
}
void setIvarList(ObjCIvarDecl *ivar) { data().IvarList = ivar; }
/// setProtocolList - Set the list of protocols that this interface
/// implements.
void setProtocolList(ObjCProtocolDecl *const* List, unsigned Num,
const SourceLocation *Locs, ASTContext &C) {
data().ReferencedProtocols.set(List, Num, Locs, C);
}
/// mergeClassExtensionProtocolList - Merge class extension's protocol list
/// into the protocol list for this class.
void mergeClassExtensionProtocolList(ObjCProtocolDecl *const* List,
unsigned Num,
ASTContext &C);
/// Produce a name to be used for class's metadata. It comes either via
/// objc_runtime_name attribute or class name.
StringRef getObjCRuntimeNameAsString() const;
/// Returns the designated initializers for the interface.
///
/// If this declaration does not have methods marked as designated
/// initializers then the interface inherits the designated initializers of
/// its super class.
void getDesignatedInitializers(
llvm::SmallVectorImpl<const ObjCMethodDecl *> &Methods) const;
/// Returns true if the given selector is a designated initializer for the
/// interface.
///
/// If this declaration does not have methods marked as designated
/// initializers then the interface inherits the designated initializers of
/// its super class.
///
/// \param InitMethod if non-null and the function returns true, it receives
/// the method that was marked as a designated initializer.
bool
isDesignatedInitializer(Selector Sel,
const ObjCMethodDecl **InitMethod = nullptr) const;
/// \brief Determine whether this particular declaration of this class is
/// actually also a definition.
bool isThisDeclarationADefinition() const {
return getDefinition() == this;
}
/// \brief Determine whether this class has been defined.
bool hasDefinition() const {
// If the name of this class is out-of-date, bring it up-to-date, which
// might bring in a definition.
// Note: a null value indicates that we don't have a definition and that
// modules are enabled.
if (!Data.getOpaqueValue()) {
if (IdentifierInfo *II = getIdentifier()) {
if (II->isOutOfDate()) {
updateOutOfDate(*II);
}
}
}
return Data.getPointer();
}
/// \brief Retrieve the definition of this class, or NULL if this class
/// has been forward-declared (with \@class) but not yet defined (with
/// \@interface).
ObjCInterfaceDecl *getDefinition() {
return hasDefinition()? Data.getPointer()->Definition : nullptr;
}
/// \brief Retrieve the definition of this class, or NULL if this class
/// has been forward-declared (with \@class) but not yet defined (with
/// \@interface).
const ObjCInterfaceDecl *getDefinition() const {
return hasDefinition()? Data.getPointer()->Definition : nullptr;
}
/// \brief Starts the definition of this Objective-C class, taking it from
/// a forward declaration (\@class) to a definition (\@interface).
void startDefinition();
/// Retrieve the superclass type.
const ObjCObjectType *getSuperClassType() const {
if (TypeSourceInfo *TInfo = getSuperClassTInfo())
return TInfo->getType()->castAs<ObjCObjectType>();
return nullptr;
}
// Retrieve the type source information for the superclass.
TypeSourceInfo *getSuperClassTInfo() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return nullptr;
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().SuperClassTInfo;
}
// Retrieve the declaration for the superclass of this class, which
// does not include any type arguments that apply to the superclass.
ObjCInterfaceDecl *getSuperClass() const;
void setSuperClass(TypeSourceInfo *superClass) {
data().SuperClassTInfo = superClass;
}
/// \brief Iterator that walks over the list of categories, filtering out
/// those that do not meet specific criteria.
///
/// This class template is used for the various permutations of category
/// and extension iterators.
template<bool (*Filter)(ObjCCategoryDecl *)>
class filtered_category_iterator {
ObjCCategoryDecl *Current;
void findAcceptableCategory();
public:
typedef ObjCCategoryDecl * value_type;
typedef value_type reference;
typedef value_type pointer;
typedef std::ptrdiff_t difference_type;
typedef std::input_iterator_tag iterator_category;
filtered_category_iterator() : Current(nullptr) { }
explicit filtered_category_iterator(ObjCCategoryDecl *Current)
: Current(Current)
{
findAcceptableCategory();
}
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
filtered_category_iterator &operator++();
filtered_category_iterator operator++(int) {
filtered_category_iterator Tmp = *this;
++(*this);
return Tmp;
}
friend bool operator==(filtered_category_iterator X,
filtered_category_iterator Y) {
return X.Current == Y.Current;
}
friend bool operator!=(filtered_category_iterator X,
filtered_category_iterator Y) {
return X.Current != Y.Current;
}
};
private:
/// \brief Test whether the given category is visible.
///
/// Used in the \c visible_categories_iterator.
static bool isVisibleCategory(ObjCCategoryDecl *Cat);
public:
/// \brief Iterator that walks over the list of categories and extensions
/// that are visible, i.e., not hidden in a non-imported submodule.
typedef filtered_category_iterator<isVisibleCategory>
visible_categories_iterator;
typedef llvm::iterator_range<visible_categories_iterator>
visible_categories_range;
visible_categories_range visible_categories() const {
return visible_categories_range(visible_categories_begin(),
visible_categories_end());
}
/// \brief Retrieve an iterator to the beginning of the visible-categories
/// list.
visible_categories_iterator visible_categories_begin() const {
return visible_categories_iterator(getCategoryListRaw());
}
/// \brief Retrieve an iterator to the end of the visible-categories list.
visible_categories_iterator visible_categories_end() const {
return visible_categories_iterator();
}
/// \brief Determine whether the visible-categories list is empty.
bool visible_categories_empty() const {
return visible_categories_begin() == visible_categories_end();
}
private:
/// \brief Test whether the given category... is a category.
///
/// Used in the \c known_categories_iterator.
static bool isKnownCategory(ObjCCategoryDecl *) { return true; }
public:
/// \brief Iterator that walks over all of the known categories and
/// extensions, including those that are hidden.
typedef filtered_category_iterator<isKnownCategory> known_categories_iterator;
typedef llvm::iterator_range<known_categories_iterator>
known_categories_range;
known_categories_range known_categories() const {
return known_categories_range(known_categories_begin(),
known_categories_end());
}
/// \brief Retrieve an iterator to the beginning of the known-categories
/// list.
known_categories_iterator known_categories_begin() const {
return known_categories_iterator(getCategoryListRaw());
}
/// \brief Retrieve an iterator to the end of the known-categories list.
known_categories_iterator known_categories_end() const {
return known_categories_iterator();
}
/// \brief Determine whether the known-categories list is empty.
bool known_categories_empty() const {
return known_categories_begin() == known_categories_end();
}
private:
/// \brief Test whether the given category is a visible extension.
///
/// Used in the \c visible_extensions_iterator.
static bool isVisibleExtension(ObjCCategoryDecl *Cat);
public:
/// \brief Iterator that walks over all of the visible extensions, skipping
/// any that are known but hidden.
typedef filtered_category_iterator<isVisibleExtension>
visible_extensions_iterator;
typedef llvm::iterator_range<visible_extensions_iterator>
visible_extensions_range;
visible_extensions_range visible_extensions() const {
return visible_extensions_range(visible_extensions_begin(),
visible_extensions_end());
}
/// \brief Retrieve an iterator to the beginning of the visible-extensions
/// list.
visible_extensions_iterator visible_extensions_begin() const {
return visible_extensions_iterator(getCategoryListRaw());
}
/// \brief Retrieve an iterator to the end of the visible-extensions list.
visible_extensions_iterator visible_extensions_end() const {
return visible_extensions_iterator();
}
/// \brief Determine whether the visible-extensions list is empty.
bool visible_extensions_empty() const {
return visible_extensions_begin() == visible_extensions_end();
}
private:
/// \brief Test whether the given category is an extension.
///
/// Used in the \c known_extensions_iterator.
static bool isKnownExtension(ObjCCategoryDecl *Cat);
public:
/// \brief Iterator that walks over all of the known extensions.
typedef filtered_category_iterator<isKnownExtension>
known_extensions_iterator;
typedef llvm::iterator_range<known_extensions_iterator>
known_extensions_range;
known_extensions_range known_extensions() const {
return known_extensions_range(known_extensions_begin(),
known_extensions_end());
}
/// \brief Retrieve an iterator to the beginning of the known-extensions
/// list.
known_extensions_iterator known_extensions_begin() const {
return known_extensions_iterator(getCategoryListRaw());
}
/// \brief Retrieve an iterator to the end of the known-extensions list.
known_extensions_iterator known_extensions_end() const {
return known_extensions_iterator();
}
/// \brief Determine whether the known-extensions list is empty.
bool known_extensions_empty() const {
return known_extensions_begin() == known_extensions_end();
}
/// \brief Retrieve the raw pointer to the start of the category/extension
/// list.
ObjCCategoryDecl* getCategoryListRaw() const {
// FIXME: Should make sure no callers ever do this.
if (!hasDefinition())
return nullptr;
if (data().ExternallyCompleted)
LoadExternalDefinition();
return data().CategoryList;
}
/// \brief Set the raw pointer to the start of the category/extension
/// list.
void setCategoryListRaw(ObjCCategoryDecl *category) {
data().CategoryList = category;
}
ObjCPropertyDecl
*FindPropertyVisibleInPrimaryClass(IdentifierInfo *PropertyId) const;
void collectPropertiesToImplement(PropertyMap &PM,
PropertyDeclOrder &PO) const override;
/// isSuperClassOf - Return true if this class is the specified class or is a
/// super class of the specified interface class.
bool isSuperClassOf(const ObjCInterfaceDecl *I) const {
// If RHS is derived from LHS it is OK; else it is not OK.
while (I != nullptr) {
if (declaresSameEntity(this, I))
return true;
I = I->getSuperClass();
}
return false;
}
/// isArcWeakrefUnavailable - Checks for a class or one of its super classes
/// to be incompatible with __weak references. Returns true if it is.
bool isArcWeakrefUnavailable() const;
/// isObjCRequiresPropertyDefs - Checks that a class or one of its super
/// classes must not be auto-synthesized. Returns class decl. if it must not
/// be; 0, otherwise.
const ObjCInterfaceDecl *isObjCRequiresPropertyDefs() const;
ObjCIvarDecl *lookupInstanceVariable(IdentifierInfo *IVarName,
ObjCInterfaceDecl *&ClassDeclared);
ObjCIvarDecl *lookupInstanceVariable(IdentifierInfo *IVarName) {
ObjCInterfaceDecl *ClassDeclared;
return lookupInstanceVariable(IVarName, ClassDeclared);
}
ObjCProtocolDecl *lookupNestedProtocol(IdentifierInfo *Name);
// Lookup a method. First, we search locally. If a method isn't
// found, we search referenced protocols and class categories.
ObjCMethodDecl *lookupMethod(Selector Sel, bool isInstance,
bool shallowCategoryLookup = false,
bool followSuper = true,
const ObjCCategoryDecl *C = nullptr) const;
/// Lookup an instance method for a given selector.
ObjCMethodDecl *lookupInstanceMethod(Selector Sel) const {
return lookupMethod(Sel, true/*isInstance*/);
}
/// Lookup a class method for a given selector.
ObjCMethodDecl *lookupClassMethod(Selector Sel) const {
return lookupMethod(Sel, false/*isInstance*/);
}
ObjCInterfaceDecl *lookupInheritedClass(const IdentifierInfo *ICName);
/// \brief Lookup a method in the classes implementation hierarchy.
ObjCMethodDecl *lookupPrivateMethod(const Selector &Sel,
bool Instance=true) const;
ObjCMethodDecl *lookupPrivateClassMethod(const Selector &Sel) {
return lookupPrivateMethod(Sel, false);
}
/// \brief Lookup a setter or getter in the class hierarchy,
/// including in all categories except for category passed
/// as argument.
ObjCMethodDecl *lookupPropertyAccessor(const Selector Sel,
const ObjCCategoryDecl *Cat) const {
return lookupMethod(Sel, true/*isInstance*/,
false/*shallowCategoryLookup*/,
true /* followsSuper */,
Cat);
}
SourceLocation getEndOfDefinitionLoc() const {
if (!hasDefinition())
return getLocation();
return data().EndLoc;
}
void setEndOfDefinitionLoc(SourceLocation LE) { data().EndLoc = LE; }
/// Retrieve the starting location of the superclass.
SourceLocation getSuperClassLoc() const;
/// isImplicitInterfaceDecl - check that this is an implicitly declared
/// ObjCInterfaceDecl node. This is for legacy objective-c \@implementation
/// declaration without an \@interface declaration.
bool isImplicitInterfaceDecl() const {
return hasDefinition() ? data().Definition->isImplicit() : isImplicit();
}
/// ClassImplementsProtocol - Checks that 'lProto' protocol
/// has been implemented in IDecl class, its super class or categories (if
/// lookupCategory is true).
bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
bool lookupCategory,
bool RHSIsQualifiedID = false);
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
/// Retrieves the canonical declaration of this Objective-C class.
ObjCInterfaceDecl *getCanonicalDecl() override { return getFirstDecl(); }
const ObjCInterfaceDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Low-level accessor
const Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(const Type *TD) const { TypeForDecl = TD; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCInterface; }
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTDeclWriter;
private:
const ObjCInterfaceDecl *findInterfaceWithDesignatedInitializers() const;
bool inheritsDesignatedInitializers() const;
};
/// ObjCIvarDecl - Represents an ObjC instance variable. In general, ObjC
/// instance variables are identical to C. The only exception is Objective-C
/// supports C++ style access control. For example:
///
/// \@interface IvarExample : NSObject
/// {
/// id defaultToProtected;
/// \@public:
/// id canBePublic; // same as C++.
/// \@protected:
/// id canBeProtected; // same as C++.
/// \@package:
/// id canBePackage; // framework visibility (not available in C++).
/// }
///
class ObjCIvarDecl : public FieldDecl {
void anchor() override;
public:
enum AccessControl {
None, Private, Protected, Public, Package
};
private:
ObjCIvarDecl(ObjCContainerDecl *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, AccessControl ac, Expr *BW,
bool synthesized)
: FieldDecl(ObjCIvar, DC, StartLoc, IdLoc, Id, T, TInfo, BW,
/*Mutable=*/false, /*HasInit=*/ICIS_NoInit),
NextIvar(nullptr), DeclAccess(ac), Synthesized(synthesized) {}
public:
static ObjCIvarDecl *Create(ASTContext &C, ObjCContainerDecl *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo,
AccessControl ac, Expr *BW = nullptr,
bool synthesized=false);
static ObjCIvarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// \brief Return the class interface that this ivar is logically contained
/// in; this is either the interface where the ivar was declared, or the
/// interface the ivar is conceptually a part of in the case of synthesized
/// ivars.
const ObjCInterfaceDecl *getContainingInterface() const;
ObjCIvarDecl *getNextIvar() { return NextIvar; }
const ObjCIvarDecl *getNextIvar() const { return NextIvar; }
void setNextIvar(ObjCIvarDecl *ivar) { NextIvar = ivar; }
void setAccessControl(AccessControl ac) { DeclAccess = ac; }
AccessControl getAccessControl() const { return AccessControl(DeclAccess); }
AccessControl getCanonicalAccessControl() const {
return DeclAccess == None ? Protected : AccessControl(DeclAccess);
}
void setSynthesize(bool synth) { Synthesized = synth; }
bool getSynthesize() const { return Synthesized; }
/// Retrieve the type of this instance variable when viewed as a member of a
/// specific object type.
QualType getUsageType(QualType objectType) const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCIvar; }
private:
/// NextIvar - Next Ivar in the list of ivars declared in class; class's
/// extensions and class's implementation
ObjCIvarDecl *NextIvar;
// NOTE: VC++ treats enums as signed, avoid using the AccessControl enum
unsigned DeclAccess : 3;
unsigned Synthesized : 1;
};
/// \brief Represents a field declaration created by an \@defs(...).
class ObjCAtDefsFieldDecl : public FieldDecl {
void anchor() override;
ObjCAtDefsFieldDecl(DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, Expr *BW)
: FieldDecl(ObjCAtDefsField, DC, StartLoc, IdLoc, Id, T,
/*TInfo=*/nullptr, // FIXME: Do ObjCAtDefs have declarators ?
BW, /*Mutable=*/false, /*HasInit=*/ICIS_NoInit) {}
public:
static ObjCAtDefsFieldDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, Expr *BW);
static ObjCAtDefsFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCAtDefsField; }
};
/// \brief Represents an Objective-C protocol declaration.
///
/// Objective-C protocols declare a pure abstract type (i.e., no instance
/// variables are permitted). Protocols originally drew inspiration from
/// C++ pure virtual functions (a C++ feature with nice semantics and lousy
/// syntax:-). Here is an example:
///
/// \code
/// \@protocol NSDraggingInfo <refproto1, refproto2>
/// - (NSWindow *)draggingDestinationWindow;
/// - (NSImage *)draggedImage;
/// \@end
/// \endcode
///
/// This says that NSDraggingInfo requires two methods and requires everything
/// that the two "referenced protocols" 'refproto1' and 'refproto2' require as
/// well.
///
/// \code
/// \@interface ImplementsNSDraggingInfo : NSObject \<NSDraggingInfo>
/// \@end
/// \endcode
///
/// ObjC protocols inspired Java interfaces. Unlike Java, ObjC classes and
/// protocols are in distinct namespaces. For example, Cocoa defines both
/// an NSObject protocol and class (which isn't allowed in Java). As a result,
/// protocols are referenced using angle brackets as follows:
///
/// id \<NSDraggingInfo> anyObjectThatImplementsNSDraggingInfo;
///
class ObjCProtocolDecl : public ObjCContainerDecl,
public Redeclarable<ObjCProtocolDecl> {
void anchor() override;
struct DefinitionData {
// \brief The declaration that defines this protocol.
ObjCProtocolDecl *Definition;
/// \brief Referenced protocols
ObjCProtocolList ReferencedProtocols;
};
/// \brief Contains a pointer to the data associated with this class,
/// which will be NULL if this class has not yet been defined.
///
/// The bit indicates when we don't need to check for out-of-date
/// declarations. It will be set unless modules are enabled.
llvm::PointerIntPair<DefinitionData *, 1, bool> Data;
DefinitionData &data() const {
assert(Data.getPointer() && "Objective-C protocol has no definition!");
return *Data.getPointer();
}
ObjCProtocolDecl(ASTContext &C, DeclContext *DC, IdentifierInfo *Id,
SourceLocation nameLoc, SourceLocation atStartLoc,
ObjCProtocolDecl *PrevDecl);
void allocateDefinitionData();
typedef Redeclarable<ObjCProtocolDecl> redeclarable_base;
ObjCProtocolDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
ObjCProtocolDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
ObjCProtocolDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
static ObjCProtocolDecl *Create(ASTContext &C, DeclContext *DC,
IdentifierInfo *Id,
SourceLocation nameLoc,
SourceLocation atStartLoc,
ObjCProtocolDecl *PrevDecl);
static ObjCProtocolDecl *CreateDeserialized(ASTContext &C, unsigned ID);
const ObjCProtocolList &getReferencedProtocols() const {
assert(hasDefinition() && "No definition available!");
return data().ReferencedProtocols;
}
typedef ObjCProtocolList::iterator protocol_iterator;
typedef llvm::iterator_range<protocol_iterator> protocol_range;
protocol_range protocols() const {
return protocol_range(protocol_begin(), protocol_end());
}
protocol_iterator protocol_begin() const {
if (!hasDefinition())
return protocol_iterator();
return data().ReferencedProtocols.begin();
}
protocol_iterator protocol_end() const {
if (!hasDefinition())
return protocol_iterator();
return data().ReferencedProtocols.end();
}
typedef ObjCProtocolList::loc_iterator protocol_loc_iterator;
typedef llvm::iterator_range<protocol_loc_iterator> protocol_loc_range;
protocol_loc_range protocol_locs() const {
return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
}
protocol_loc_iterator protocol_loc_begin() const {
if (!hasDefinition())
return protocol_loc_iterator();
return data().ReferencedProtocols.loc_begin();
}
protocol_loc_iterator protocol_loc_end() const {
if (!hasDefinition())
return protocol_loc_iterator();
return data().ReferencedProtocols.loc_end();
}
unsigned protocol_size() const {
if (!hasDefinition())
return 0;
return data().ReferencedProtocols.size();
}
/// setProtocolList - Set the list of protocols that this interface
/// implements.
void setProtocolList(ObjCProtocolDecl *const*List, unsigned Num,
const SourceLocation *Locs, ASTContext &C) {
assert(hasDefinition() && "Protocol is not defined");
data().ReferencedProtocols.set(List, Num, Locs, C);
}
ObjCProtocolDecl *lookupProtocolNamed(IdentifierInfo *PName);
// Lookup a method. First, we search locally. If a method isn't
// found, we search referenced protocols and class categories.
ObjCMethodDecl *lookupMethod(Selector Sel, bool isInstance) const;
ObjCMethodDecl *lookupInstanceMethod(Selector Sel) const {
return lookupMethod(Sel, true/*isInstance*/);
}
ObjCMethodDecl *lookupClassMethod(Selector Sel) const {
return lookupMethod(Sel, false/*isInstance*/);
}
/// \brief Determine whether this protocol has a definition.
bool hasDefinition() const {
// If the name of this protocol is out-of-date, bring it up-to-date, which
// might bring in a definition.
// Note: a null value indicates that we don't have a definition and that
// modules are enabled.
if (!Data.getOpaqueValue()) {
if (IdentifierInfo *II = getIdentifier()) {
if (II->isOutOfDate()) {
updateOutOfDate(*II);
}
}
}
return Data.getPointer();
}
/// \brief Retrieve the definition of this protocol, if any.
ObjCProtocolDecl *getDefinition() {
return hasDefinition()? Data.getPointer()->Definition : nullptr;
}
/// \brief Retrieve the definition of this protocol, if any.
const ObjCProtocolDecl *getDefinition() const {
return hasDefinition()? Data.getPointer()->Definition : nullptr;
}
/// \brief Determine whether this particular declaration is also the
/// definition.
bool isThisDeclarationADefinition() const {
return getDefinition() == this;
}
/// \brief Starts the definition of this Objective-C protocol.
void startDefinition();
/// Produce a name to be used for protocol's metadata. It comes either via
/// objc_runtime_name attribute or protocol name.
StringRef getObjCRuntimeNameAsString() const;
SourceRange getSourceRange() const override LLVM_READONLY {
if (isThisDeclarationADefinition())
return ObjCContainerDecl::getSourceRange();
return SourceRange(getAtStartLoc(), getLocation());
}
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
/// Retrieves the canonical declaration of this Objective-C protocol.
ObjCProtocolDecl *getCanonicalDecl() override { return getFirstDecl(); }
const ObjCProtocolDecl *getCanonicalDecl() const { return getFirstDecl(); }
void collectPropertiesToImplement(PropertyMap &PM,
PropertyDeclOrder &PO) const override;
void collectInheritedProtocolProperties(const ObjCPropertyDecl *Property,
ProtocolPropertyMap &PM) const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCProtocol; }
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// ObjCCategoryDecl - Represents a category declaration. A category allows
/// you to add methods to an existing class (without subclassing or modifying
/// the original class interface or implementation:-). Categories don't allow
/// you to add instance data. The following example adds "myMethod" to all
/// NSView's within a process:
///
/// \@interface NSView (MyViewMethods)
/// - myMethod;
/// \@end
///
/// Categories also allow you to split the implementation of a class across
/// several files (a feature more naturally supported in C++).
///
/// Categories were originally inspired by dynamic languages such as Common
/// Lisp and Smalltalk. More traditional class-based languages (C++, Java)
/// don't support this level of dynamism, which is both powerful and dangerous.
///
class ObjCCategoryDecl : public ObjCContainerDecl {
void anchor() override;
/// Interface belonging to this category
ObjCInterfaceDecl *ClassInterface;
/// The type parameters associated with this category, if any.
ObjCTypeParamList *TypeParamList;
/// referenced protocols in this category.
ObjCProtocolList ReferencedProtocols;
/// Next category belonging to this class.
/// FIXME: this should not be a singly-linked list. Move storage elsewhere.
ObjCCategoryDecl *NextClassCategory;
/// \brief The location of the category name in this declaration.
SourceLocation CategoryNameLoc;
/// class extension may have private ivars.
SourceLocation IvarLBraceLoc;
SourceLocation IvarRBraceLoc;
ObjCCategoryDecl(DeclContext *DC, SourceLocation AtLoc,
SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc,
IdentifierInfo *Id, ObjCInterfaceDecl *IDecl,
ObjCTypeParamList *typeParamList,
SourceLocation IvarLBraceLoc=SourceLocation(),
SourceLocation IvarRBraceLoc=SourceLocation());
public:
static ObjCCategoryDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation AtLoc,
SourceLocation ClassNameLoc,
SourceLocation CategoryNameLoc,
IdentifierInfo *Id,
ObjCInterfaceDecl *IDecl,
ObjCTypeParamList *typeParamList,
SourceLocation IvarLBraceLoc=SourceLocation(),
SourceLocation IvarRBraceLoc=SourceLocation());
static ObjCCategoryDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ObjCInterfaceDecl *getClassInterface() { return ClassInterface; }
const ObjCInterfaceDecl *getClassInterface() const { return ClassInterface; }
/// Retrieve the type parameter list associated with this category or
/// extension.
ObjCTypeParamList *getTypeParamList() const { return TypeParamList; }
/// Set the type parameters of this category.
///
/// This function is used by the AST importer, which must import the type
/// parameters after creating their DeclContext to avoid loops.
void setTypeParamList(ObjCTypeParamList *TPL);
ObjCCategoryImplDecl *getImplementation() const;
void setImplementation(ObjCCategoryImplDecl *ImplD);
/// setProtocolList - Set the list of protocols that this interface
/// implements.
void setProtocolList(ObjCProtocolDecl *const*List, unsigned Num,
const SourceLocation *Locs, ASTContext &C) {
ReferencedProtocols.set(List, Num, Locs, C);
}
const ObjCProtocolList &getReferencedProtocols() const {
return ReferencedProtocols;
}
typedef ObjCProtocolList::iterator protocol_iterator;
typedef llvm::iterator_range<protocol_iterator> protocol_range;
protocol_range protocols() const {
return protocol_range(protocol_begin(), protocol_end());
}
protocol_iterator protocol_begin() const {
return ReferencedProtocols.begin();
}
protocol_iterator protocol_end() const { return ReferencedProtocols.end(); }
unsigned protocol_size() const { return ReferencedProtocols.size(); }
typedef ObjCProtocolList::loc_iterator protocol_loc_iterator;
typedef llvm::iterator_range<protocol_loc_iterator> protocol_loc_range;
protocol_loc_range protocol_locs() const {
return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
}
protocol_loc_iterator protocol_loc_begin() const {
return ReferencedProtocols.loc_begin();
}
protocol_loc_iterator protocol_loc_end() const {
return ReferencedProtocols.loc_end();
}
ObjCCategoryDecl *getNextClassCategory() const { return NextClassCategory; }
/// \brief Retrieve the pointer to the next stored category (or extension),
/// which may be hidden.
ObjCCategoryDecl *getNextClassCategoryRaw() const {
return NextClassCategory;
}
bool IsClassExtension() const { return getIdentifier() == nullptr; }
typedef specific_decl_iterator<ObjCIvarDecl> ivar_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>> ivar_range;
ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
ivar_iterator ivar_begin() const {
return ivar_iterator(decls_begin());
}
ivar_iterator ivar_end() const {
return ivar_iterator(decls_end());
}
unsigned ivar_size() const {
return std::distance(ivar_begin(), ivar_end());
}
bool ivar_empty() const {
return ivar_begin() == ivar_end();
}
SourceLocation getCategoryNameLoc() const { return CategoryNameLoc; }
void setCategoryNameLoc(SourceLocation Loc) { CategoryNameLoc = Loc; }
void setIvarLBraceLoc(SourceLocation Loc) { IvarLBraceLoc = Loc; }
SourceLocation getIvarLBraceLoc() const { return IvarLBraceLoc; }
void setIvarRBraceLoc(SourceLocation Loc) { IvarRBraceLoc = Loc; }
SourceLocation getIvarRBraceLoc() const { return IvarRBraceLoc; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCCategory; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
class ObjCImplDecl : public ObjCContainerDecl {
void anchor() override;
/// Class interface for this class/category implementation
ObjCInterfaceDecl *ClassInterface;
protected:
ObjCImplDecl(Kind DK, DeclContext *DC,
ObjCInterfaceDecl *classInterface,
SourceLocation nameLoc, SourceLocation atStartLoc)
: ObjCContainerDecl(DK, DC,
classInterface? classInterface->getIdentifier()
: nullptr,
nameLoc, atStartLoc),
ClassInterface(classInterface) {}
public:
const ObjCInterfaceDecl *getClassInterface() const { return ClassInterface; }
ObjCInterfaceDecl *getClassInterface() { return ClassInterface; }
void setClassInterface(ObjCInterfaceDecl *IFace);
void addInstanceMethod(ObjCMethodDecl *method) {
// FIXME: Context should be set correctly before we get here.
method->setLexicalDeclContext(this);
addDecl(method);
}
void addClassMethod(ObjCMethodDecl *method) {
// FIXME: Context should be set correctly before we get here.
method->setLexicalDeclContext(this);
addDecl(method);
}
void addPropertyImplementation(ObjCPropertyImplDecl *property);
ObjCPropertyImplDecl *FindPropertyImplDecl(IdentifierInfo *propertyId) const;
ObjCPropertyImplDecl *FindPropertyImplIvarDecl(IdentifierInfo *ivarId) const;
// Iterator access to properties.
typedef specific_decl_iterator<ObjCPropertyImplDecl> propimpl_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCPropertyImplDecl>>
propimpl_range;
propimpl_range property_impls() const {
return propimpl_range(propimpl_begin(), propimpl_end());
}
propimpl_iterator propimpl_begin() const {
return propimpl_iterator(decls_begin());
}
propimpl_iterator propimpl_end() const {
return propimpl_iterator(decls_end());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstObjCImpl && K <= lastObjCImpl;
}
};
/// ObjCCategoryImplDecl - An object of this class encapsulates a category
/// \@implementation declaration. If a category class has declaration of a
/// property, its implementation must be specified in the category's
/// \@implementation declaration. Example:
/// \@interface I \@end
/// \@interface I(CATEGORY)
/// \@property int p1, d1;
/// \@end
/// \@implementation I(CATEGORY)
/// \@dynamic p1,d1;
/// \@end
///
/// ObjCCategoryImplDecl
class ObjCCategoryImplDecl : public ObjCImplDecl {
void anchor() override;
// Category name
IdentifierInfo *Id;
// Category name location
SourceLocation CategoryNameLoc;
ObjCCategoryImplDecl(DeclContext *DC, IdentifierInfo *Id,
ObjCInterfaceDecl *classInterface,
SourceLocation nameLoc, SourceLocation atStartLoc,
SourceLocation CategoryNameLoc)
: ObjCImplDecl(ObjCCategoryImpl, DC, classInterface, nameLoc, atStartLoc),
Id(Id), CategoryNameLoc(CategoryNameLoc) {}
public:
static ObjCCategoryImplDecl *Create(ASTContext &C, DeclContext *DC,
IdentifierInfo *Id,
ObjCInterfaceDecl *classInterface,
SourceLocation nameLoc,
SourceLocation atStartLoc,
SourceLocation CategoryNameLoc);
static ObjCCategoryImplDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// getIdentifier - Get the identifier that names the category
/// interface associated with this implementation.
/// FIXME: This is a bad API, we are hiding NamedDecl::getIdentifier()
/// with a different meaning. For example:
/// ((NamedDecl *)SomeCategoryImplDecl)->getIdentifier()
/// returns the class interface name, whereas
/// ((ObjCCategoryImplDecl *)SomeCategoryImplDecl)->getIdentifier()
/// returns the category name.
IdentifierInfo *getIdentifier() const {
return Id;
}
void setIdentifier(IdentifierInfo *II) { Id = II; }
ObjCCategoryDecl *getCategoryDecl() const;
SourceLocation getCategoryNameLoc() const { return CategoryNameLoc; }
/// getName - Get the name of identifier for the class interface associated
/// with this implementation as a StringRef.
//
// FIXME: This is a bad API, we are hiding NamedDecl::getName with a different
// meaning.
StringRef getName() const { return Id ? Id->getName() : StringRef(); }
/// @brief Get the name of the class associated with this interface.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const {
return getName();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCCategoryImpl;}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
raw_ostream &operator<<(raw_ostream &OS, const ObjCCategoryImplDecl &CID);
/// ObjCImplementationDecl - Represents a class definition - this is where
/// method definitions are specified. For example:
///
/// @code
/// \@implementation MyClass
/// - (void)myMethod { /* do something */ }
/// \@end
/// @endcode
///
/// In a non-fragile runtime, instance variables can appear in the class
/// interface, class extensions (nameless categories), and in the implementation
/// itself, as well as being synthesized as backing storage for properties.
///
/// In a fragile runtime, instance variables are specified in the class
/// interface, \em not in the implementation. Nevertheless (for legacy reasons),
/// we allow instance variables to be specified in the implementation. When
/// specified, they need to be \em identical to the interface.
class ObjCImplementationDecl : public ObjCImplDecl {
void anchor() override;
/// Implementation Class's super class.
ObjCInterfaceDecl *SuperClass;
SourceLocation SuperLoc;
/// \@implementation may have private ivars.
SourceLocation IvarLBraceLoc;
SourceLocation IvarRBraceLoc;
/// Support for ivar initialization.
/// \brief The arguments used to initialize the ivars
LazyCXXCtorInitializersPtr IvarInitializers;
unsigned NumIvarInitializers;
/// Do the ivars of this class require initialization other than
/// zero-initialization?
bool HasNonZeroConstructors : 1;
/// Do the ivars of this class require non-trivial destruction?
bool HasDestructors : 1;
ObjCImplementationDecl(DeclContext *DC,
ObjCInterfaceDecl *classInterface,
ObjCInterfaceDecl *superDecl,
SourceLocation nameLoc, SourceLocation atStartLoc,
SourceLocation superLoc = SourceLocation(),
SourceLocation IvarLBraceLoc=SourceLocation(),
SourceLocation IvarRBraceLoc=SourceLocation())
: ObjCImplDecl(ObjCImplementation, DC, classInterface, nameLoc, atStartLoc),
SuperClass(superDecl), SuperLoc(superLoc), IvarLBraceLoc(IvarLBraceLoc),
IvarRBraceLoc(IvarRBraceLoc),
IvarInitializers(nullptr), NumIvarInitializers(0),
HasNonZeroConstructors(false), HasDestructors(false) {}
public:
static ObjCImplementationDecl *Create(ASTContext &C, DeclContext *DC,
ObjCInterfaceDecl *classInterface,
ObjCInterfaceDecl *superDecl,
SourceLocation nameLoc,
SourceLocation atStartLoc,
SourceLocation superLoc = SourceLocation(),
SourceLocation IvarLBraceLoc=SourceLocation(),
SourceLocation IvarRBraceLoc=SourceLocation());
static ObjCImplementationDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// init_iterator - Iterates through the ivar initializer list.
typedef CXXCtorInitializer **init_iterator;
/// init_const_iterator - Iterates through the ivar initializer list.
typedef CXXCtorInitializer * const * init_const_iterator;
typedef llvm::iterator_range<init_iterator> init_range;
typedef llvm::iterator_range<init_const_iterator> init_const_range;
init_range inits() { return init_range(init_begin(), init_end()); }
init_const_range inits() const {
return init_const_range(init_begin(), init_end());
}
/// init_begin() - Retrieve an iterator to the first initializer.
init_iterator init_begin() {
const auto *ConstThis = this;
return const_cast<init_iterator>(ConstThis->init_begin());
}
/// begin() - Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const;
/// init_end() - Retrieve an iterator past the last initializer.
init_iterator init_end() {
return init_begin() + NumIvarInitializers;
}
/// end() - Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return init_begin() + NumIvarInitializers;
}
/// getNumArgs - Number of ivars which must be initialized.
unsigned getNumIvarInitializers() const {
return NumIvarInitializers;
}
void setNumIvarInitializers(unsigned numNumIvarInitializers) {
NumIvarInitializers = numNumIvarInitializers;
}
void setIvarInitializers(ASTContext &C,
CXXCtorInitializer ** initializers,
unsigned numInitializers);
/// Do any of the ivars of this class (not counting its base classes)
/// require construction other than zero-initialization?
bool hasNonZeroConstructors() const { return HasNonZeroConstructors; }
void setHasNonZeroConstructors(bool val) { HasNonZeroConstructors = val; }
/// Do any of the ivars of this class (not counting its base classes)
/// require non-trivial destruction?
bool hasDestructors() const { return HasDestructors; }
void setHasDestructors(bool val) { HasDestructors = val; }
/// getIdentifier - Get the identifier that names the class
/// interface associated with this implementation.
IdentifierInfo *getIdentifier() const {
return getClassInterface()->getIdentifier();
}
/// getName - Get the name of identifier for the class interface associated
/// with this implementation as a StringRef.
//
// FIXME: This is a bad API, we are hiding NamedDecl::getName with a different
// meaning.
StringRef getName() const {
assert(getIdentifier() && "Name is not a simple identifier");
return getIdentifier()->getName();
}
/// @brief Get the name of the class associated with this interface.
//
// FIXME: Move to StringRef API.
std::string getNameAsString() const {
return getName();
}
/// Produce a name to be used for class's metadata. It comes either via
/// class's objc_runtime_name attribute or class name.
StringRef getObjCRuntimeNameAsString() const;
const ObjCInterfaceDecl *getSuperClass() const { return SuperClass; }
ObjCInterfaceDecl *getSuperClass() { return SuperClass; }
SourceLocation getSuperClassLoc() const { return SuperLoc; }
void setSuperClass(ObjCInterfaceDecl * superCls) { SuperClass = superCls; }
void setIvarLBraceLoc(SourceLocation Loc) { IvarLBraceLoc = Loc; }
SourceLocation getIvarLBraceLoc() const { return IvarLBraceLoc; }
void setIvarRBraceLoc(SourceLocation Loc) { IvarRBraceLoc = Loc; }
SourceLocation getIvarRBraceLoc() const { return IvarRBraceLoc; }
typedef specific_decl_iterator<ObjCIvarDecl> ivar_iterator;
typedef llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>> ivar_range;
ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
ivar_iterator ivar_begin() const {
return ivar_iterator(decls_begin());
}
ivar_iterator ivar_end() const {
return ivar_iterator(decls_end());
}
unsigned ivar_size() const {
return std::distance(ivar_begin(), ivar_end());
}
bool ivar_empty() const {
return ivar_begin() == ivar_end();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCImplementation; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
raw_ostream &operator<<(raw_ostream &OS, const ObjCImplementationDecl &ID);
/// ObjCCompatibleAliasDecl - Represents alias of a class. This alias is
/// declared as \@compatibility_alias alias class.
class ObjCCompatibleAliasDecl : public NamedDecl {
void anchor() override;
/// Class that this is an alias of.
ObjCInterfaceDecl *AliasedClass;
ObjCCompatibleAliasDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
ObjCInterfaceDecl* aliasedClass)
: NamedDecl(ObjCCompatibleAlias, DC, L, Id), AliasedClass(aliasedClass) {}
public:
static ObjCCompatibleAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
ObjCInterfaceDecl* aliasedClass);
static ObjCCompatibleAliasDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
const ObjCInterfaceDecl *getClassInterface() const { return AliasedClass; }
ObjCInterfaceDecl *getClassInterface() { return AliasedClass; }
void setClassInterface(ObjCInterfaceDecl *D) { AliasedClass = D; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCCompatibleAlias; }
};
/// \brief Represents one property declaration in an Objective-C interface.
///
/// For example:
/// \code{.mm}
/// \@property (assign, readwrite) int MyProperty;
/// \endcode
class ObjCPropertyDecl : public NamedDecl {
void anchor() override;
public:
enum PropertyAttributeKind {
OBJC_PR_noattr = 0x00,
OBJC_PR_readonly = 0x01,
OBJC_PR_getter = 0x02,
OBJC_PR_assign = 0x04,
OBJC_PR_readwrite = 0x08,
OBJC_PR_retain = 0x10,
OBJC_PR_copy = 0x20,
OBJC_PR_nonatomic = 0x40,
OBJC_PR_setter = 0x80,
OBJC_PR_atomic = 0x100,
OBJC_PR_weak = 0x200,
OBJC_PR_strong = 0x400,
OBJC_PR_unsafe_unretained = 0x800,
/// Indicates that the nullability of the type was spelled with a
/// property attribute rather than a type qualifier.
OBJC_PR_nullability = 0x1000,
OBJC_PR_null_resettable = 0x2000
// Adding a property should change NumPropertyAttrsBits
};
enum {
/// \brief Number of bits fitting all the property attributes.
NumPropertyAttrsBits = 14
};
enum SetterKind { Assign, Retain, Copy, Weak };
enum PropertyControl { None, Required, Optional };
private:
SourceLocation AtLoc; // location of \@property
SourceLocation LParenLoc; // location of '(' starting attribute list or null.
QualType DeclType;
TypeSourceInfo *DeclTypeSourceInfo;
unsigned PropertyAttributes : NumPropertyAttrsBits;
unsigned PropertyAttributesAsWritten : NumPropertyAttrsBits;
// \@required/\@optional
unsigned PropertyImplementation : 2;
Selector GetterName; // getter name of NULL if no getter
Selector SetterName; // setter name of NULL if no setter
ObjCMethodDecl *GetterMethodDecl; // Declaration of getter instance method
ObjCMethodDecl *SetterMethodDecl; // Declaration of setter instance method
ObjCIvarDecl *PropertyIvarDecl; // Synthesize ivar for this property
ObjCPropertyDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
SourceLocation AtLocation, SourceLocation LParenLocation,
QualType T, TypeSourceInfo *TSI,
PropertyControl propControl)
: NamedDecl(ObjCProperty, DC, L, Id), AtLoc(AtLocation),
LParenLoc(LParenLocation), DeclType(T), DeclTypeSourceInfo(TSI),
PropertyAttributes(OBJC_PR_noattr),
PropertyAttributesAsWritten(OBJC_PR_noattr),
PropertyImplementation(propControl),
GetterName(Selector()),
SetterName(Selector()),
GetterMethodDecl(nullptr), SetterMethodDecl(nullptr),
PropertyIvarDecl(nullptr) {}
public:
static ObjCPropertyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
IdentifierInfo *Id, SourceLocation AtLocation,
SourceLocation LParenLocation,
QualType T,
TypeSourceInfo *TSI,
PropertyControl propControl = None);
static ObjCPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getAtLoc() const { return AtLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const { return DeclTypeSourceInfo; }
QualType getType() const { return DeclType; }
void setType(QualType T, TypeSourceInfo *TSI) {
DeclType = T;
DeclTypeSourceInfo = TSI;
}
/// Retrieve the type when this property is used with a specific base object
/// type.
QualType getUsageType(QualType objectType) const;
PropertyAttributeKind getPropertyAttributes() const {
return PropertyAttributeKind(PropertyAttributes);
}
void setPropertyAttributes(PropertyAttributeKind PRVal) {
PropertyAttributes |= PRVal;
}
PropertyAttributeKind getPropertyAttributesAsWritten() const {
return PropertyAttributeKind(PropertyAttributesAsWritten);
}
bool hasWrittenStorageAttribute() const {
return PropertyAttributesAsWritten & (OBJC_PR_assign | OBJC_PR_copy |
OBJC_PR_unsafe_unretained | OBJC_PR_retain | OBJC_PR_strong |
OBJC_PR_weak);
}
void setPropertyAttributesAsWritten(PropertyAttributeKind PRVal) {
PropertyAttributesAsWritten = PRVal;
}
void makeitReadWriteAttribute() {
PropertyAttributes &= ~OBJC_PR_readonly;
PropertyAttributes |= OBJC_PR_readwrite;
}
// Helper methods for accessing attributes.
/// isReadOnly - Return true iff the property has a setter.
bool isReadOnly() const {
return (PropertyAttributes & OBJC_PR_readonly);
}
/// isAtomic - Return true if the property is atomic.
bool isAtomic() const {
return (PropertyAttributes & OBJC_PR_atomic);
}
/// isRetaining - Return true if the property retains its value.
bool isRetaining() const {
return (PropertyAttributes &
(OBJC_PR_retain | OBJC_PR_strong | OBJC_PR_copy));
}
/// getSetterKind - Return the method used for doing assignment in
/// the property setter. This is only valid if the property has been
/// defined to have a setter.
SetterKind getSetterKind() const {
if (PropertyAttributes & OBJC_PR_strong)
return getType()->isBlockPointerType() ? Copy : Retain;
if (PropertyAttributes & OBJC_PR_retain)
return Retain;
if (PropertyAttributes & OBJC_PR_copy)
return Copy;
if (PropertyAttributes & OBJC_PR_weak)
return Weak;
return Assign;
}
Selector getGetterName() const { return GetterName; }
void setGetterName(Selector Sel) { GetterName = Sel; }
Selector getSetterName() const { return SetterName; }
void setSetterName(Selector Sel) { SetterName = Sel; }
ObjCMethodDecl *getGetterMethodDecl() const { return GetterMethodDecl; }
void setGetterMethodDecl(ObjCMethodDecl *gDecl) { GetterMethodDecl = gDecl; }
ObjCMethodDecl *getSetterMethodDecl() const { return SetterMethodDecl; }
void setSetterMethodDecl(ObjCMethodDecl *gDecl) { SetterMethodDecl = gDecl; }
// Related to \@optional/\@required declared in \@protocol
void setPropertyImplementation(PropertyControl pc) {
PropertyImplementation = pc;
}
PropertyControl getPropertyImplementation() const {
return PropertyControl(PropertyImplementation);
}
void setPropertyIvarDecl(ObjCIvarDecl *Ivar) {
PropertyIvarDecl = Ivar;
}
ObjCIvarDecl *getPropertyIvarDecl() const {
return PropertyIvarDecl;
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(AtLoc, getLocation());
}
/// Get the default name of the synthesized ivar.
IdentifierInfo *getDefaultSynthIvarName(ASTContext &Ctx) const;
/// Lookup a property by name in the specified DeclContext.
static ObjCPropertyDecl *findPropertyDecl(const DeclContext *DC,
const IdentifierInfo *propertyID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ObjCProperty; }
};
/// ObjCPropertyImplDecl - Represents implementation declaration of a property
/// in a class or category implementation block. For example:
/// \@synthesize prop1 = ivar1;
///
class ObjCPropertyImplDecl : public Decl {
public:
enum Kind {
Synthesize,
Dynamic
};
private:
SourceLocation AtLoc; // location of \@synthesize or \@dynamic
/// \brief For \@synthesize, the location of the ivar, if it was written in
/// the source code.
///
/// \code
/// \@synthesize int a = b
/// \endcode
SourceLocation IvarLoc;
/// Property declaration being implemented
ObjCPropertyDecl *PropertyDecl;
/// Null for \@dynamic. Required for \@synthesize.
ObjCIvarDecl *PropertyIvarDecl;
/// Null for \@dynamic. Non-null if property must be copy-constructed in
/// getter.
Expr *GetterCXXConstructor;
/// Null for \@dynamic. Non-null if property has assignment operator to call
/// in Setter synthesis.
Expr *SetterCXXAssignment;
ObjCPropertyImplDecl(DeclContext *DC, SourceLocation atLoc, SourceLocation L,
ObjCPropertyDecl *property,
Kind PK,
ObjCIvarDecl *ivarDecl,
SourceLocation ivarLoc)
: Decl(ObjCPropertyImpl, DC, L), AtLoc(atLoc),
IvarLoc(ivarLoc), PropertyDecl(property), PropertyIvarDecl(ivarDecl),
GetterCXXConstructor(nullptr), SetterCXXAssignment(nullptr) {
assert (PK == Dynamic || PropertyIvarDecl);
}
public:
static ObjCPropertyImplDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation atLoc, SourceLocation L,
ObjCPropertyDecl *property,
Kind PK,
ObjCIvarDecl *ivarDecl,
SourceLocation ivarLoc);
static ObjCPropertyImplDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
void setAtLoc(SourceLocation Loc) { AtLoc = Loc; }
ObjCPropertyDecl *getPropertyDecl() const {
return PropertyDecl;
}
void setPropertyDecl(ObjCPropertyDecl *Prop) { PropertyDecl = Prop; }
Kind getPropertyImplementation() const {
return PropertyIvarDecl ? Synthesize : Dynamic;
}
ObjCIvarDecl *getPropertyIvarDecl() const {
return PropertyIvarDecl;
}
SourceLocation getPropertyIvarDeclLoc() const { return IvarLoc; }
void setPropertyIvarDecl(ObjCIvarDecl *Ivar,
SourceLocation IvarLoc) {
PropertyIvarDecl = Ivar;
this->IvarLoc = IvarLoc;
}
/// \brief For \@synthesize, returns true if an ivar name was explicitly
/// specified.
///
/// \code
/// \@synthesize int a = b; // true
/// \@synthesize int a; // false
/// \endcode
bool isIvarNameSpecified() const {
return IvarLoc.isValid() && IvarLoc != getLocation();
}
Expr *getGetterCXXConstructor() const {
return GetterCXXConstructor;
}
void setGetterCXXConstructor(Expr *getterCXXConstructor) {
GetterCXXConstructor = getterCXXConstructor;
}
Expr *getSetterCXXAssignment() const {
return SetterCXXAssignment;
}
void setSetterCXXAssignment(Expr *setterCXXAssignment) {
SetterCXXAssignment = setterCXXAssignment;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Decl::Kind K) { return K == ObjCPropertyImpl; }
friend class ASTDeclReader;
};
template<bool (*Filter)(ObjCCategoryDecl *)>
void
ObjCInterfaceDecl::filtered_category_iterator<Filter>::
findAcceptableCategory() {
while (Current && !Filter(Current))
Current = Current->getNextClassCategoryRaw();
}
template<bool (*Filter)(ObjCCategoryDecl *)>
inline ObjCInterfaceDecl::filtered_category_iterator<Filter> &
ObjCInterfaceDecl::filtered_category_iterator<Filter>::operator++() {
Current = Current->getNextClassCategoryRaw();
findAcceptableCategory();
return *this;
}
inline bool ObjCInterfaceDecl::isVisibleCategory(ObjCCategoryDecl *Cat) {
return !Cat->isHidden();
}
inline bool ObjCInterfaceDecl::isVisibleExtension(ObjCCategoryDecl *Cat) {
return Cat->IsClassExtension() && !Cat->isHidden();
}
inline bool ObjCInterfaceDecl::isKnownExtension(ObjCCategoryDecl *Cat) {
return Cat->IsClassExtension();
}
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/RecordLayout.h | //===--- RecordLayout.h - Layout information for a struct/union -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RecordLayout interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_RECORDLAYOUT_H
#define LLVM_CLANG_AST_RECORDLAYOUT_H
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "llvm/ADT/DenseMap.h"
namespace clang {
class ASTContext;
class FieldDecl;
class RecordDecl;
class CXXRecordDecl;
/// ASTRecordLayout -
/// This class contains layout information for one RecordDecl,
/// which is a struct/union/class. The decl represented must be a definition,
/// not a forward declaration.
/// This class is also used to contain layout information for one
/// ObjCInterfaceDecl. FIXME - Find appropriate name.
/// These objects are managed by ASTContext.
class ASTRecordLayout {
public:
struct VBaseInfo {
/// The offset to this virtual base in the complete-object layout
/// of this class.
CharUnits VBaseOffset;
private:
/// Whether this virtual base requires a vtordisp field in the
/// Microsoft ABI. These fields are required for certain operations
/// in constructors and destructors.
bool HasVtorDisp;
public:
bool hasVtorDisp() const { return HasVtorDisp; }
VBaseInfo() : HasVtorDisp(false) {}
VBaseInfo(CharUnits VBaseOffset, bool hasVtorDisp) :
VBaseOffset(VBaseOffset), HasVtorDisp(hasVtorDisp) {}
};
typedef llvm::DenseMap<const CXXRecordDecl *, VBaseInfo>
VBaseOffsetsMapTy;
private:
/// Size - Size of record in characters.
CharUnits Size;
/// DataSize - Size of record in characters without tail padding.
CharUnits DataSize;
// Alignment - Alignment of record in characters.
CharUnits Alignment;
/// RequiredAlignment - The required alignment of the object. In the MS-ABI
/// the __declspec(align()) trumps #pramga pack and must always be obeyed.
CharUnits RequiredAlignment;
/// FieldOffsets - Array of field offsets in bits.
uint64_t *FieldOffsets;
// FieldCount - Number of fields.
unsigned FieldCount;
/// CXXRecordLayoutInfo - Contains C++ specific layout information.
struct CXXRecordLayoutInfo {
/// NonVirtualSize - The non-virtual size (in chars) of an object, which is
/// the size of the object without virtual bases.
CharUnits NonVirtualSize;
/// NonVirtualAlignment - The non-virtual alignment (in chars) of an object,
/// which is the alignment of the object without virtual bases.
CharUnits NonVirtualAlignment;
/// SizeOfLargestEmptySubobject - The size of the largest empty subobject
/// (either a base or a member). Will be zero if the class doesn't contain
/// any empty subobjects.
CharUnits SizeOfLargestEmptySubobject;
/// VBPtrOffset - Virtual base table offset (Microsoft-only).
CharUnits VBPtrOffset;
/// HasOwnVFPtr - Does this class provide a virtual function table
/// (vtable in Itanium, vftbl in Microsoft) that is independent from
/// its base classes?
bool HasOwnVFPtr : 1;
/// HasVFPtr - Does this class have a vftable that could be extended by
/// a derived class. The class may have inherited this pointer from
/// a primary base class.
bool HasExtendableVFPtr : 1;
/// HasZeroSizedSubObject - True if this class contains a zero sized member
/// or base or a base with a zero sized member or base. Only used for
/// MS-ABI.
bool HasZeroSizedSubObject : 1;
/// \brief True if this class is zero sized or first base is zero sized or
/// has this property. Only used for MS-ABI.
bool LeadsWithZeroSizedBase : 1;
/// PrimaryBase - The primary base info for this record.
llvm::PointerIntPair<const CXXRecordDecl *, 1, bool> PrimaryBase;
/// BaseSharingVBPtr - The base we share vbptr with.
const CXXRecordDecl *BaseSharingVBPtr;
/// FIXME: This should really use a SmallPtrMap, once we have one in LLVM :)
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
/// BaseOffsets - Contains a map from base classes to their offset.
BaseOffsetsMapTy BaseOffsets;
/// VBaseOffsets - Contains a map from vbase classes to their offset.
VBaseOffsetsMapTy VBaseOffsets;
};
/// CXXInfo - If the record layout is for a C++ record, this will have
/// C++ specific information about the record.
CXXRecordLayoutInfo *CXXInfo;
friend class ASTContext;
ASTRecordLayout(const ASTContext &Ctx, CharUnits size, CharUnits alignment,
CharUnits requiredAlignment,
CharUnits datasize, const uint64_t *fieldoffsets,
unsigned fieldcount);
// Constructor for C++ records.
typedef CXXRecordLayoutInfo::BaseOffsetsMapTy BaseOffsetsMapTy;
ASTRecordLayout(const ASTContext &Ctx,
CharUnits size, CharUnits alignment,
CharUnits requiredAlignment,
bool hasOwnVFPtr, bool hasExtendableVFPtr,
CharUnits vbptroffset,
CharUnits datasize,
const uint64_t *fieldoffsets, unsigned fieldcount,
CharUnits nonvirtualsize, CharUnits nonvirtualalignment,
CharUnits SizeOfLargestEmptySubobject,
const CXXRecordDecl *PrimaryBase,
bool IsPrimaryBaseVirtual,
const CXXRecordDecl *BaseSharingVBPtr,
bool HasZeroSizedSubObject,
bool LeadsWithZeroSizedBase,
const BaseOffsetsMapTy& BaseOffsets,
const VBaseOffsetsMapTy& VBaseOffsets);
~ASTRecordLayout() = default;
void Destroy(ASTContext &Ctx);
ASTRecordLayout(const ASTRecordLayout &) = delete;
void operator=(const ASTRecordLayout &) = delete;
public:
/// getAlignment - Get the record alignment in characters.
CharUnits getAlignment() const { return Alignment; }
/// getSize - Get the record size in characters.
CharUnits getSize() const { return Size; }
/// getFieldCount - Get the number of fields in the layout.
unsigned getFieldCount() const { return FieldCount; }
/// getFieldOffset - Get the offset of the given field index, in
/// bits.
uint64_t getFieldOffset(unsigned FieldNo) const {
assert (FieldNo < FieldCount && "Invalid Field No");
return FieldOffsets[FieldNo];
}
/// getDataSize() - Get the record data size, which is the record size
/// without tail padding, in characters.
CharUnits getDataSize() const {
return DataSize;
}
/// getNonVirtualSize - Get the non-virtual size (in chars) of an object,
/// which is the size of the object without virtual bases.
CharUnits getNonVirtualSize() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->NonVirtualSize;
}
/// getNonVirtualSize - Get the non-virtual alignment (in chars) of an object,
/// which is the alignment of the object without virtual bases.
CharUnits getNonVirtualAlignment() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->NonVirtualAlignment;
}
/// getPrimaryBase - Get the primary base for this record.
const CXXRecordDecl *getPrimaryBase() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->PrimaryBase.getPointer();
}
/// isPrimaryBaseVirtual - Get whether the primary base for this record
/// is virtual or not.
bool isPrimaryBaseVirtual() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->PrimaryBase.getInt();
}
/// getBaseClassOffset - Get the offset, in chars, for the given base class.
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
assert(CXXInfo->BaseOffsets.count(Base) && "Did not find base!");
return CXXInfo->BaseOffsets[Base];
}
/// getVBaseClassOffset - Get the offset, in chars, for the given base class.
CharUnits getVBaseClassOffset(const CXXRecordDecl *VBase) const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
assert(CXXInfo->VBaseOffsets.count(VBase) && "Did not find base!");
return CXXInfo->VBaseOffsets[VBase].VBaseOffset;
}
CharUnits getSizeOfLargestEmptySubobject() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->SizeOfLargestEmptySubobject;
}
/// hasOwnVFPtr - Does this class provide its own virtual-function
/// table pointer, rather than inheriting one from a primary base
/// class? If so, it is at offset zero.
///
/// This implies that the ABI has no primary base class, meaning
/// that it has no base classes that are suitable under the conditions
/// of the ABI.
bool hasOwnVFPtr() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->HasOwnVFPtr;
}
/// hasVFPtr - Does this class have a virtual function table pointer
/// that can be extended by a derived class? This is synonymous with
/// this class having a VFPtr at offset zero.
bool hasExtendableVFPtr() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->HasExtendableVFPtr;
}
/// hasOwnVBPtr - Does this class provide its own virtual-base
/// table pointer, rather than inheriting one from a primary base
/// class?
///
/// This implies that the ABI has no primary base class, meaning
/// that it has no base classes that are suitable under the conditions
/// of the ABI.
bool hasOwnVBPtr() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return hasVBPtr() && !CXXInfo->BaseSharingVBPtr;
}
/// hasVBPtr - Does this class have a virtual function table pointer.
bool hasVBPtr() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return !CXXInfo->VBPtrOffset.isNegative();
}
CharUnits getRequiredAlignment() const {
return RequiredAlignment;
}
bool hasZeroSizedSubObject() const {
return CXXInfo && CXXInfo->HasZeroSizedSubObject;
}
bool leadsWithZeroSizedBase() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->LeadsWithZeroSizedBase;
}
/// getVBPtrOffset - Get the offset for virtual base table pointer.
/// This is only meaningful with the Microsoft ABI.
CharUnits getVBPtrOffset() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->VBPtrOffset;
}
const CXXRecordDecl *getBaseSharingVBPtr() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->BaseSharingVBPtr;
}
const VBaseOffsetsMapTy &getVBaseOffsetsMap() const {
assert(CXXInfo && "Record layout does not have C++ specific info!");
return CXXInfo->VBaseOffsets;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/LambdaCapture.h | //===--- LambdaCapture.h - Types for C++ Lambda Captures --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the LambdaCapture class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_LAMBDACAPTURE_H
#define LLVM_CLANG_AST_LAMBDACAPTURE_H
#include "clang/AST/Decl.h"
#include "clang/Basic/Lambda.h"
#include "llvm/ADT/PointerIntPair.h"
namespace clang {
/// \brief Describes the capture of a variable or of \c this, or of a
/// C++1y init-capture.
class LambdaCapture {
enum {
/// \brief Flag used by the Capture class to indicate that the given
/// capture was implicit.
Capture_Implicit = 0x01,
/// \brief Flag used by the Capture class to indicate that the
/// given capture was by-copy.
///
/// This includes the case of a non-reference init-capture.
Capture_ByCopy = 0x02
};
llvm::PointerIntPair<Decl *, 2> DeclAndBits;
SourceLocation Loc;
SourceLocation EllipsisLoc;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
/// \brief Create a new capture of a variable or of \c this.
///
/// \param Loc The source location associated with this capture.
///
/// \param Kind The kind of capture (this, byref, bycopy), which must
/// not be init-capture.
///
/// \param Implicit Whether the capture was implicit or explicit.
///
/// \param Var The local variable being captured, or null if capturing
/// \c this.
///
/// \param EllipsisLoc The location of the ellipsis (...) for a
/// capture that is a pack expansion, or an invalid source
/// location to indicate that this is not a pack expansion.
LambdaCapture(SourceLocation Loc, bool Implicit, LambdaCaptureKind Kind,
VarDecl *Var = nullptr,
SourceLocation EllipsisLoc = SourceLocation());
/// \brief Determine the kind of capture.
LambdaCaptureKind getCaptureKind() const;
/// \brief Determine whether this capture handles the C++ \c this
/// pointer.
bool capturesThis() const {
return (DeclAndBits.getPointer() == nullptr) &&
!(DeclAndBits.getInt() & Capture_ByCopy);
}
/// \brief Determine whether this capture handles a variable.
bool capturesVariable() const {
return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
}
/// \brief Determine whether this captures a variable length array bound
/// expression.
bool capturesVLAType() const {
return (DeclAndBits.getPointer() == nullptr) &&
(DeclAndBits.getInt() & Capture_ByCopy);
}
/// \brief Retrieve the declaration of the local variable being
/// captured.
///
/// This operation is only valid if this capture is a variable capture
/// (other than a capture of \c this).
VarDecl *getCapturedVar() const {
assert(capturesVariable() && "No variable available for 'this' capture");
return cast<VarDecl>(DeclAndBits.getPointer());
}
/// \brief Determine whether this was an implicit capture (not
/// written between the square brackets introducing the lambda).
bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
/// \brief Determine whether this was an explicit capture (written
/// between the square brackets introducing the lambda).
bool isExplicit() const { return !isImplicit(); }
/// \brief Retrieve the source location of the capture.
///
/// For an explicit capture, this returns the location of the
/// explicit capture in the source. For an implicit capture, this
/// returns the location at which the variable or \c this was first
/// used.
SourceLocation getLocation() const { return Loc; }
/// \brief Determine whether this capture is a pack expansion,
/// which captures a function parameter pack.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// \brief Retrieve the location of the ellipsis for a capture
/// that is a pack expansion.
SourceLocation getEllipsisLoc() const {
assert(isPackExpansion() && "No ellipsis location for a non-expansion");
return EllipsisLoc;
}
};
} // end namespace clang
#endif // LLVM_CLANG_AST_LAMBDACAPTURE_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ExprCXX.h | //===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXTemporary;
class MSPropertyDecl;
class TemplateArgumentListInfo;
class UuidAttr;
//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//
/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
/// \brief The overloaded operator.
OverloadedOperatorKind Operator;
SourceRange Range;
// Record the FP_CONTRACT state that applies to this operator call. Only
// meaningful for floating point types. For other types this value can be
// set to false.
unsigned FPContractable : 1;
SourceRange getSourceRangeImpl() const LLVM_READONLY;
public:
CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
SourceLocation operatorloc, bool fpContractable)
: CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
operatorloc),
Operator(Op), FPContractable(fpContractable) {
Range = getSourceRangeImpl();
}
explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
CallExpr(C, CXXOperatorCallExprClass, Empty) { }
/// \brief Returns the kind of overloaded operator that this
/// expression refers to.
OverloadedOperatorKind getOperator() const { return Operator; }
/// \brief Returns the location of the operator symbol in the expression.
///
/// When \c getOperator()==OO_Call, this is the location of the right
/// parentheses; when \c getOperator()==OO_Subscript, this is the location
/// of the right bracket.
SourceLocation getOperatorLoc() const { return getRParenLoc(); }
SourceLocation getExprLoc() const LLVM_READONLY {
return (Operator < OO_Plus || Operator >= OO_Arrow ||
Operator == OO_PlusPlus || Operator == OO_MinusMinus)
? getLocStart()
: getOperatorLoc();
}
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const { return Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXOperatorCallExprClass;
}
// Set the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
void setFPContractable(bool FPC) { FPContractable = FPC; }
// Get the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
bool isFPContractable() const { return FPContractable; }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
QualType t, ExprValueKind VK, SourceLocation RP)
: CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
: CallExpr(C, CXXMemberCallExprClass, Empty) { }
/// \brief Retrieves the implicit object argument for the member call.
///
/// For example, in "x.f(5)", this returns the sub-expression "x".
Expr *getImplicitObjectArgument() const;
/// \brief Retrieves the declaration of the called method.
CXXMethodDecl *getMethodDecl() const;
/// \brief Retrieves the CXXRecordDecl for the underlying type of
/// the implicit object argument.
///
/// Note that this is may not be the same declaration as that of the class
/// context of the CXXMethodDecl which this function is calling.
/// FIXME: Returns 0 for member pointer call exprs.
CXXRecordDecl *getRecordDecl() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXMemberCallExprClass;
}
};
/// \brief Represents a call to a CUDA kernel function.
class CUDAKernelCallExpr : public CallExpr {
private:
enum { CONFIG, END_PREARG };
public:
CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
SourceLocation RP)
: CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
setConfig(Config);
}
CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
: CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
const CallExpr *getConfig() const {
return cast_or_null<CallExpr>(getPreArg(CONFIG));
}
CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CUDAKernelCallExprClass;
}
};
/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
SourceLocation Loc; // the location of the casting op
SourceLocation RParenLoc; // the location of the right parenthesis
SourceRange AngleBrackets; // range for '<' '>'
protected:
CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc,
SourceRange AngleBrackets)
: ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(SC, Shell, PathSize) { }
friend class ASTStmtReader;
public:
const char *getCastName() const;
/// \brief Retrieve the location of the cast operator keyword, e.g.,
/// \c static_cast.
SourceLocation getOperatorLoc() const { return Loc; }
/// \brief Retrieve the location of the closing parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
static bool classof(const Stmt *T) {
switch (T->getStmtClass()) {
case CXXStaticCastExprClass:
case CXXDynamicCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
return true;
default:
return false;
}
}
};
/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// \c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
unsigned pathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation RParenLoc,
SourceRange AngleBrackets)
: CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
: CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
public:
static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *Path,
TypeSourceInfo *Written, SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets);
static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXStaticCastExprClass;
}
};
/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
///
/// This expression node represents a dynamic cast, e.g.,
/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
/// check to determine how to perform the type conversion.
class CXXDynamicCastExpr : public CXXNamedCastExpr {
CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation RParenLoc,
SourceRange AngleBrackets)
: CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
: CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
public:
static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, CastKind Kind, Expr *Op,
const CXXCastPath *Path,
TypeSourceInfo *Written, SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets);
static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
unsigned pathSize);
bool isAlwaysNull() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDynamicCastExprClass;
}
};
/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
///
/// A reinterpret_cast provides a differently-typed view of a value but
/// (in Clang, as in most C++ implementations) performs no actual work at
/// run time.
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
Expr *op, unsigned pathSize,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc,
SourceRange AngleBrackets)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
public:
static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, CastKind Kind,
Expr *Op, const CXXCastPath *Path,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets);
static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
unsigned pathSize);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXReinterpretCastExprClass;
}
};
/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
///
/// This expression node represents a const cast, e.g.,
/// \c const_cast<char*>(PtrToConstChar).
///
/// A const_cast can remove type qualifiers but does not change the underlying
/// value.
class CXXConstCastExpr : public CXXNamedCastExpr {
CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc, SourceRange AngleBrackets)
: CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
0, writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXConstCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
public:
static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, Expr *Op,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets);
static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstCastExprClass;
}
};
/// \brief A call to a literal operator (C++11 [over.literal])
/// written as a user-defined literal (C++11 [lit.ext]).
///
/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
/// is semantically equivalent to a normal call, this AST node provides better
/// information about the syntactic representation of the literal.
///
/// Since literal operators are never found by ADL and can only be declared at
/// namespace scope, a user-defined literal is never dependent.
class UserDefinedLiteral : public CallExpr {
/// \brief The location of a ud-suffix within the literal.
SourceLocation UDSuffixLoc;
public:
UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
SourceLocation SuffixLoc)
: CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
UDSuffixLoc(SuffixLoc) {}
explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
: CallExpr(C, UserDefinedLiteralClass, Empty) {}
/// The kind of literal operator which is invoked.
enum LiteralOperatorKind {
LOK_Raw, ///< Raw form: operator "" X (const char *)
LOK_Template, ///< Raw form: operator "" X<cs...> ()
LOK_Integer, ///< operator "" X (unsigned long long)
LOK_Floating, ///< operator "" X (long double)
LOK_String, ///< operator "" X (const CharT *, size_t)
LOK_Character ///< operator "" X (CharT)
};
/// \brief Returns the kind of literal operator invocation
/// which this expression represents.
LiteralOperatorKind getLiteralOperatorKind() const;
/// \brief If this is not a raw user-defined literal, get the
/// underlying cooked literal (representing the literal with the suffix
/// removed).
Expr *getCookedLiteral();
const Expr *getCookedLiteral() const {
return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
}
SourceLocation getLocStart() const {
if (getLiteralOperatorKind() == LOK_Template)
return getRParenLoc();
return getArg(0)->getLocStart();
}
SourceLocation getLocEnd() const { return getRParenLoc(); }
/// \brief Returns the location of a ud-suffix in the expression.
///
/// For a string literal, there may be multiple identical suffixes. This
/// returns the first.
SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
/// \brief Returns the ud-suffix specified for this literal.
const IdentifierInfo *getUDSuffix() const;
static bool classof(const Stmt *S) {
return S->getStmtClass() == UserDefinedLiteralClass;
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
///
class CXXBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Value(val), Loc(l) {}
explicit CXXBoolLiteralExpr(EmptyShell Empty)
: Expr(CXXBoolLiteralExprClass, Empty) { }
bool getValue() const { return Value; }
void setValue(bool V) { Value = V; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBoolLiteralExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief The null pointer literal (C++11 [lex.nullptr])
///
/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
class CXXNullPtrLiteralExpr : public Expr {
SourceLocation Loc;
public:
CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Loc(l) {}
explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
: Expr(CXXNullPtrLiteralExprClass, Empty) { }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNullPtrLiteralExprClass;
}
child_range children() { return child_range(); }
};
/// \brief Implicit construction of a std::initializer_list<T> object from an
/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
class CXXStdInitializerListExpr : public Expr {
Stmt *SubExpr;
CXXStdInitializerListExpr(EmptyShell Empty)
: Expr(CXXStdInitializerListExprClass, Empty), SubExpr(nullptr) {}
public:
CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
: Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
Ty->isDependentType(), SubExpr->isValueDependent(),
SubExpr->isInstantiationDependent(),
SubExpr->containsUnexpandedParameterPack()),
SubExpr(SubExpr) {}
Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
SourceLocation getLocStart() const LLVM_READONLY {
return SubExpr->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return SubExpr->getLocEnd();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SubExpr->getSourceRange();
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == CXXStdInitializerListExprClass;
}
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
friend class ASTReader;
friend class ASTStmtReader;
};
/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
/// the \c type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like \c typeid(int) or \c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
SourceRange Range;
public:
CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
Operand->getType()->isDependentType(),
Operand->getType()->isInstantiationDependentType(),
Operand->getType()->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
Operand->isTypeDependent() || Operand->isValueDependent(),
Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXTypeidExpr(EmptyShell Empty, bool isExpr)
: Expr(CXXTypeidExprClass, Empty) {
if (isExpr)
Operand = (Expr*)nullptr;
else
Operand = (TypeSourceInfo*)nullptr;
}
/// Determine whether this typeid has a type operand which is potentially
/// evaluated, per C++11 [expr.typeid]p3.
bool isPotentiallyEvaluated() const;
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// \brief Retrieves the type operand of this typeid() expression after
/// various required adjustments (removing reference types, cv-qualifiers).
QualType getTypeOperand(ASTContext &Context) const;
/// \brief Retrieve source information for the type operand.
TypeSourceInfo *getTypeOperandSourceInfo() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return Operand.get<TypeSourceInfo *>();
}
void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
Operand = TSI;
}
Expr *getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
return static_cast<Expr*>(Operand.get<Stmt *>());
}
void setExprOperand(Expr *E) {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
Operand = E;
}
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTypeidExprClass;
}
// Iterators
child_range children() {
if (isTypeOperand()) return child_range();
Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
return child_range(begin, begin + 1);
}
};
/// \brief A member reference to an MSPropertyDecl.
///
/// This expression always has pseudo-object type, and therefore it is
/// typically not encountered in a fully-typechecked expression except
/// within the syntactic form of a PseudoObjectExpr.
class MSPropertyRefExpr : public Expr {
Expr *BaseExpr;
MSPropertyDecl *TheDecl;
SourceLocation MemberLoc;
bool IsArrow;
NestedNameSpecifierLoc QualifierLoc;
public:
MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
QualType ty, ExprValueKind VK,
NestedNameSpecifierLoc qualifierLoc,
SourceLocation nameLoc)
: Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
/*type-dependent*/ false, baseExpr->isValueDependent(),
baseExpr->isInstantiationDependent(),
baseExpr->containsUnexpandedParameterPack()),
BaseExpr(baseExpr), TheDecl(decl),
MemberLoc(nameLoc), IsArrow(isArrow),
QualifierLoc(qualifierLoc) {}
MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocStart(), getLocEnd());
}
bool isImplicitAccess() const {
return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
}
SourceLocation getLocStart() const {
if (!isImplicitAccess())
return BaseExpr->getLocStart();
else if (QualifierLoc)
return QualifierLoc.getBeginLoc();
else
return MemberLoc;
}
SourceLocation getLocEnd() const { return getMemberLoc(); }
child_range children() {
return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MSPropertyRefExprClass;
}
Expr *getBaseExpr() const { return BaseExpr; }
MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
bool isArrow() const { return IsArrow; }
SourceLocation getMemberLoc() const { return MemberLoc; }
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
friend class ASTStmtReader;
};
/// A Microsoft C++ @c __uuidof expression, which gets
/// the _GUID that corresponds to the supplied type or expression.
///
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
class CXXUuidofExpr : public Expr {
private:
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
SourceRange Range;
public:
CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
false, Operand->getType()->isDependentType(),
Operand->getType()->isInstantiationDependentType(),
Operand->getType()->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
false, Operand->isTypeDependent(),
Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXUuidofExpr(EmptyShell Empty, bool isExpr)
: Expr(CXXUuidofExprClass, Empty) {
if (isExpr)
Operand = (Expr*)nullptr;
else
Operand = (TypeSourceInfo*)nullptr;
}
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// \brief Retrieves the type operand of this __uuidof() expression after
/// various required adjustments (removing reference types, cv-qualifiers).
QualType getTypeOperand(ASTContext &Context) const;
/// \brief Retrieve source information for the type operand.
TypeSourceInfo *getTypeOperandSourceInfo() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
return Operand.get<TypeSourceInfo *>();
}
void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
Operand = TSI;
}
Expr *getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
return static_cast<Expr*>(Operand.get<Stmt *>());
}
void setExprOperand(Expr *E) {
assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
Operand = E;
}
StringRef getUuidAsStringRef(ASTContext &Context) const;
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXUuidofExprClass;
}
/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
/// a single GUID.
static const UuidAttr *GetUuidAttrOfType(QualType QT,
bool *HasMultipleGUIDsPtr = nullptr);
// Iterators
child_range children() {
if (isTypeOperand()) return child_range();
Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
return child_range(begin, begin + 1);
}
};
/// \brief Represents the \c this expression in C++.
///
/// This is a pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// \code
/// class Foo {
/// public:
/// void bar();
/// void test() { this->bar(); }
/// };
/// \endcode
class CXXThisExpr : public Expr {
SourceLocation Loc;
bool Implicit : 1;
public:
CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
: Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
// 'this' is type-dependent if the class type of the enclosing
// member function is dependent (C++ [temp.dep.expr]p2)
Type->isDependentType(), Type->isDependentType(),
Type->isInstantiationDependentType(),
/*ContainsUnexpandedParameterPack=*/false),
Loc(L), Implicit(isImplicit) { }
CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
bool isImplicit() const { return Implicit; }
void setImplicit(bool I) { Implicit = I; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThisExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief A C++ throw-expression (C++ [except.throw]).
///
/// This handles 'throw' (for re-throwing the current exception) and
/// 'throw' assignment-expression. When assignment-expression isn't
/// present, Op will be null.
class CXXThrowExpr : public Expr {
Stmt *Op;
SourceLocation ThrowLoc;
/// \brief Whether the thrown variable (if any) is in scope.
unsigned IsThrownVariableInScope : 1;
friend class ASTStmtReader;
public:
// \p Ty is the void type which is used as the result type of the
// expression. The \p l is the location of the throw keyword. \p expr
// can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
bool IsThrownVariableInScope) :
Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
expr && expr->isInstantiationDependent(),
expr && expr->containsUnexpandedParameterPack()),
Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
SourceLocation getThrowLoc() const { return ThrowLoc; }
/// \brief Determines whether the variable thrown by this expression (if any!)
/// is within the innermost try block.
///
/// This information is required to determine whether the NRVO can apply to
/// this variable.
bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
if (!getSubExpr())
return ThrowLoc;
return getSubExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThrowExprClass;
}
// Iterators
child_range children() {
return child_range(&Op, Op ? &Op+1 : &Op);
}
};
/// \brief A default argument (C++ [dcl.fct.default]).
///
/// This wraps up a function call argument that was created from the
/// corresponding parameter's default argument, when the call did not
/// explicitly supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
/// \brief The parameter whose default is being used.
///
/// When the bit is set, the subexpression is stored after the
/// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
/// actual default expression is the subexpression.
llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
/// \brief The location where the default argument expression was used.
SourceLocation Loc;
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
: Expr(SC,
param->hasUnparsedDefaultArg()
? param->getType().getNonReferenceType()
: param->getDefaultArg()->getType(),
param->getDefaultArg()->getValueKind(),
param->getDefaultArg()->getObjectKind(), false, false, false, false),
Param(param, false), Loc(Loc) { }
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
Expr *SubExpr)
: Expr(SC, SubExpr->getType(),
SubExpr->getValueKind(), SubExpr->getObjectKind(),
false, false, false, false),
Param(param, true), Loc(Loc) {
*reinterpret_cast<Expr **>(this + 1) = SubExpr;
}
public:
CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
// \p Param is the parameter whose default argument is used by this
// expression.
static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param) {
return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
}
// \p Param is the parameter whose default argument is used by this
// expression, and \p SubExpr is the expression that will actually be used.
static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param, Expr *SubExpr);
// Retrieve the parameter that the argument was created from.
const ParmVarDecl *getParam() const { return Param.getPointer(); }
ParmVarDecl *getParam() { return Param.getPointer(); }
// Retrieve the actual argument to the function call.
const Expr *getExpr() const {
if (Param.getInt())
return *reinterpret_cast<Expr const * const*> (this + 1);
return getParam()->getDefaultArg();
}
Expr *getExpr() {
if (Param.getInt())
return *reinterpret_cast<Expr **> (this + 1);
return getParam()->getDefaultArg();
}
/// \brief Retrieve the location where this default argument was actually
/// used.
SourceLocation getUsedLocation() const { return Loc; }
/// Default argument expressions have no representation in the
/// source, so they have an empty source range.
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDefaultArgExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief A use of a default initializer in a constructor or in aggregate
/// initialization.
///
/// This wraps a use of a C++ default initializer (technically,
/// a brace-or-equal-initializer for a non-static data member) when it
/// is implicitly used in a mem-initializer-list in a constructor
/// (C++11 [class.base.init]p8) or in aggregate initialization
/// (C++1y [dcl.init.aggr]p7).
class CXXDefaultInitExpr : public Expr {
/// \brief The field whose default is being used.
FieldDecl *Field;
/// \brief The location where the default initializer expression was used.
SourceLocation Loc;
CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
QualType T);
CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
public:
/// \p Field is the non-static data member whose default initializer is used
/// by this expression.
static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
FieldDecl *Field) {
return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
}
/// \brief Get the field whose initializer will be used.
FieldDecl *getField() { return Field; }
const FieldDecl *getField() const { return Field; }
/// \brief Get the initialization expression that will be used.
const Expr *getExpr() const {
assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
return Field->getInClassInitializer();
}
Expr *getExpr() {
assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
return Field->getInClassInitializer();
}
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDefaultInitExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTReader;
friend class ASTStmtReader;
};
/// \brief Represents a C++ temporary.
class CXXTemporary {
/// \brief The destructor that needs to be called.
const CXXDestructorDecl *Destructor;
explicit CXXTemporary(const CXXDestructorDecl *destructor)
: Destructor(destructor) { }
public:
static CXXTemporary *Create(const ASTContext &C,
const CXXDestructorDecl *Destructor);
const CXXDestructorDecl *getDestructor() const { return Destructor; }
void setDestructor(const CXXDestructorDecl *Dtor) {
Destructor = Dtor;
}
};
/// \brief Represents binding an expression to a temporary.
///
/// This ensures the destructor is called for the temporary. It should only be
/// needed for non-POD, non-trivially destructable class types. For example:
///
/// \code
/// struct S {
/// S() { } // User defined constructor makes S non-POD.
/// ~S() { } // User defined destructor makes it non-trivial.
/// };
/// void test() {
/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
/// }
/// \endcode
class CXXBindTemporaryExpr : public Expr {
CXXTemporary *Temp;
Stmt *SubExpr;
CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
: Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
SubExpr->isValueDependent(),
SubExpr->isInstantiationDependent(),
SubExpr->containsUnexpandedParameterPack()),
Temp(temp), SubExpr(SubExpr) { }
public:
CXXBindTemporaryExpr(EmptyShell Empty)
: Expr(CXXBindTemporaryExprClass, Empty), Temp(nullptr), SubExpr(nullptr) {}
static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
Expr* SubExpr);
CXXTemporary *getTemporary() { return Temp; }
const CXXTemporary *getTemporary() const { return Temp; }
void setTemporary(CXXTemporary *T) { Temp = T; }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
void setSubExpr(Expr *E) { SubExpr = E; }
SourceLocation getLocStart() const LLVM_READONLY {
return SubExpr->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBindTemporaryExprClass;
}
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};
/// \brief Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
public:
enum ConstructionKind {
CK_Complete,
CK_NonVirtualBase,
CK_VirtualBase,
CK_Delegating
};
private:
CXXConstructorDecl *Constructor;
SourceLocation Loc;
SourceRange ParenOrBraceRange;
unsigned NumArgs : 16;
bool Elidable : 1;
bool HadMultipleCandidates : 1;
bool ListInitialization : 1;
bool StdInitListInitialization : 1;
bool ZeroInitialization : 1;
unsigned ConstructKind : 2;
Stmt **Args;
protected:
CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
SourceLocation Loc,
CXXConstructorDecl *d, bool elidable,
ArrayRef<Expr *> Args,
bool HadMultipleCandidates,
bool ListInitialization,
bool StdInitListInitialization,
bool ZeroInitialization,
ConstructionKind ConstructKind,
SourceRange ParenOrBraceRange);
/// \brief Construct an empty C++ construction expression.
CXXConstructExpr(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), Constructor(nullptr), NumArgs(0), Elidable(false),
HadMultipleCandidates(false), ListInitialization(false),
ZeroInitialization(false), ConstructKind(0), Args(nullptr)
{ }
public:
/// \brief Construct an empty C++ construction expression.
explicit CXXConstructExpr(EmptyShell Empty)
: Expr(CXXConstructExprClass, Empty), Constructor(nullptr),
NumArgs(0), Elidable(false), HadMultipleCandidates(false),
ListInitialization(false), ZeroInitialization(false),
ConstructKind(0), Args(nullptr)
{ }
static CXXConstructExpr *Create(const ASTContext &C, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool Elidable,
ArrayRef<Expr *> Args,
bool HadMultipleCandidates,
bool ListInitialization,
bool StdInitListInitialization,
bool ZeroInitialization,
ConstructionKind ConstructKind,
SourceRange ParenOrBraceRange);
CXXConstructorDecl *getConstructor() const { return Constructor; }
void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Loc) { this->Loc = Loc; }
/// \brief Whether this construction is elidable.
bool isElidable() const { return Elidable; }
void setElidable(bool E) { Elidable = E; }
/// \brief Whether the referred constructor was resolved from
/// an overloaded set having size greater than 1.
bool hadMultipleCandidates() const { return HadMultipleCandidates; }
void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
/// \brief Whether this constructor call was written as list-initialization.
bool isListInitialization() const { return ListInitialization; }
void setListInitialization(bool V) { ListInitialization = V; }
/// \brief Whether this constructor call was written as list-initialization,
/// but was interpreted as forming a std::initializer_list<T> from the list
/// and passing that as a single constructor argument.
/// See C++11 [over.match.list]p1 bullet 1.
bool isStdInitListInitialization() const { return StdInitListInitialization; }
void setStdInitListInitialization(bool V) { StdInitListInitialization = V; }
/// \brief Whether this construction first requires
/// zero-initialization before the initializer is called.
bool requiresZeroInitialization() const { return ZeroInitialization; }
void setRequiresZeroInitialization(bool ZeroInit) {
ZeroInitialization = ZeroInit;
}
/// \brief Determine whether this constructor is actually constructing
/// a base class (rather than a complete object).
ConstructionKind getConstructionKind() const {
return (ConstructionKind)ConstructKind;
}
void setConstructionKind(ConstructionKind CK) {
ConstructKind = CK;
}
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
typedef llvm::iterator_range<arg_iterator> arg_range;
typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
arg_const_range arguments() const {
return arg_const_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() { return Args; }
arg_iterator arg_end() { return Args + NumArgs; }
const_arg_iterator arg_begin() const { return Args; }
const_arg_iterator arg_end() const { return Args + NumArgs; }
Expr **getArgs() { return reinterpret_cast<Expr **>(Args); }
const Expr *const *getArgs() const {
return const_cast<CXXConstructExpr *>(this)->getArgs();
}
unsigned getNumArgs() const { return NumArgs; }
/// \brief Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
/// \brief Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
Args[Arg] = ArgExpr;
}
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstructExprClass ||
T->getStmtClass() == CXXTemporaryObjectExprClass;
}
// Iterators
child_range children() {
return child_range(&Args[0], &Args[0]+NumArgs);
}
friend class ASTStmtReader;
};
/// \brief Represents an explicit C++ type conversion that uses "functional"
/// notation (C++ [expr.type.conv]).
///
/// Example:
/// \code
/// x = int(0.5);
/// \endcode
class CXXFunctionalCastExpr : public ExplicitCastExpr {
SourceLocation LParenLoc;
SourceLocation RParenLoc;
CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
TypeSourceInfo *writtenTy,
CastKind kind, Expr *castExpr, unsigned pathSize,
SourceLocation lParenLoc, SourceLocation rParenLoc)
: ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
castExpr, pathSize, writtenTy),
LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
public:
static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
TypeSourceInfo *Written,
CastKind Kind, Expr *Op,
const CXXCastPath *Path,
SourceLocation LPLoc,
SourceLocation RPLoc);
static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXFunctionalCastExprClass;
}
};
/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. With N == 1 arguments the
/// functional cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// \code
/// struct X { X(int, float); }
///
/// X create_X() {
/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// \endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
TypeSourceInfo *Type;
public:
CXXTemporaryObjectExpr(const ASTContext &C, CXXConstructorDecl *Cons,
TypeSourceInfo *Type,
ArrayRef<Expr *> Args,
SourceRange ParenOrBraceRange,
bool HadMultipleCandidates,
bool ListInitialization,
bool StdInitListInitialization,
bool ZeroInitialization);
explicit CXXTemporaryObjectExpr(EmptyShell Empty)
: CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
TypeSourceInfo *getTypeSourceInfo() const { return Type; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTemporaryObjectExprClass;
}
friend class ASTStmtReader;
};
/// \brief A C++ lambda expression, which produces a function object
/// (of unspecified type) that can be invoked later.
///
/// Example:
/// \code
/// void low_pass_filter(std::vector<double> &values, double cutoff) {
/// values.erase(std::remove_if(values.begin(), values.end(),
/// [=](double value) { return value > cutoff; });
/// }
/// \endcode
///
/// C++11 lambda expressions can capture local variables, either by copying
/// the values of those local variables at the time the function
/// object is constructed (not when it is called!) or by holding a
/// reference to the local variable. These captures can occur either
/// implicitly or can be written explicitly between the square
/// brackets ([...]) that start the lambda expression.
///
/// C++1y introduces a new form of "capture" called an init-capture that
/// includes an initializing expression (rather than capturing a variable),
/// and which can never occur implicitly.
class LambdaExpr : public Expr {
/// \brief The source range that covers the lambda introducer ([...]).
SourceRange IntroducerRange;
/// \brief The source location of this lambda's capture-default ('=' or '&').
SourceLocation CaptureDefaultLoc;
/// \brief The number of captures.
unsigned NumCaptures : 16;
/// \brief The default capture kind, which is a value of type
/// LambdaCaptureDefault.
unsigned CaptureDefault : 2;
/// \brief Whether this lambda had an explicit parameter list vs. an
/// implicit (and empty) parameter list.
unsigned ExplicitParams : 1;
/// \brief Whether this lambda had the result type explicitly specified.
unsigned ExplicitResultType : 1;
/// \brief Whether there are any array index variables stored at the end of
/// this lambda expression.
unsigned HasArrayIndexVars : 1;
/// \brief The location of the closing brace ('}') that completes
/// the lambda.
///
/// The location of the brace is also available by looking up the
/// function call operator in the lambda class. However, it is
/// stored here to improve the performance of getSourceRange(), and
/// to avoid having to deserialize the function call operator from a
/// module file just to determine the source range.
SourceLocation ClosingBrace;
// Note: The capture initializers are stored directly after the lambda
// expression, along with the index variables used to initialize by-copy
// array captures.
typedef LambdaCapture Capture;
/// \brief Construct a lambda expression.
LambdaExpr(QualType T, SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
ArrayRef<Capture> Captures,
bool ExplicitParams,
bool ExplicitResultType,
ArrayRef<Expr *> CaptureInits,
ArrayRef<VarDecl *> ArrayIndexVars,
ArrayRef<unsigned> ArrayIndexStarts,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack);
/// \brief Construct an empty lambda expression.
LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
: Expr(LambdaExprClass, Empty),
NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
ExplicitResultType(false), HasArrayIndexVars(true) {
getStoredStmts()[NumCaptures] = nullptr;
}
Stmt **getStoredStmts() const {
return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
}
/// \brief Retrieve the mapping from captures to the first array index
/// variable.
unsigned *getArrayIndexStarts() const {
return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
}
/// \brief Retrieve the complete set of array-index variables.
VarDecl **getArrayIndexVars() const {
unsigned ArrayIndexSize = llvm::RoundUpToAlignment(
sizeof(unsigned) * (NumCaptures + 1), llvm::alignOf<VarDecl *>());
return reinterpret_cast<VarDecl **>(
reinterpret_cast<char *>(getArrayIndexStarts()) + ArrayIndexSize);
}
public:
/// \brief Construct a new lambda expression.
static LambdaExpr *Create(const ASTContext &C,
CXXRecordDecl *Class,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
ArrayRef<Capture> Captures,
bool ExplicitParams,
bool ExplicitResultType,
ArrayRef<Expr *> CaptureInits,
ArrayRef<VarDecl *> ArrayIndexVars,
ArrayRef<unsigned> ArrayIndexStarts,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack);
/// \brief Construct a new lambda expression that will be deserialized from
/// an external source.
static LambdaExpr *CreateDeserialized(const ASTContext &C,
unsigned NumCaptures,
unsigned NumArrayIndexVars);
/// \brief Determine the default capture kind for this lambda.
LambdaCaptureDefault getCaptureDefault() const {
return static_cast<LambdaCaptureDefault>(CaptureDefault);
}
/// \brief Retrieve the location of this lambda's capture-default, if any.
SourceLocation getCaptureDefaultLoc() const {
return CaptureDefaultLoc;
}
/// \brief Determine whether one of this lambda's captures is an init-capture.
bool isInitCapture(const LambdaCapture *Capture) const;
/// \brief An iterator that walks over the captures of the lambda,
/// both implicit and explicit.
typedef const Capture *capture_iterator;
/// \brief An iterator over a range of lambda captures.
typedef llvm::iterator_range<capture_iterator> capture_range;
/// \brief Retrieve this lambda's captures.
capture_range captures() const;
/// \brief Retrieve an iterator pointing to the first lambda capture.
capture_iterator capture_begin() const;
/// \brief Retrieve an iterator pointing past the end of the
/// sequence of lambda captures.
capture_iterator capture_end() const;
/// \brief Determine the number of captures in this lambda.
unsigned capture_size() const { return NumCaptures; }
/// \brief Retrieve this lambda's explicit captures.
capture_range explicit_captures() const;
/// \brief Retrieve an iterator pointing to the first explicit
/// lambda capture.
capture_iterator explicit_capture_begin() const;
/// \brief Retrieve an iterator pointing past the end of the sequence of
/// explicit lambda captures.
capture_iterator explicit_capture_end() const;
/// \brief Retrieve this lambda's implicit captures.
capture_range implicit_captures() const;
/// \brief Retrieve an iterator pointing to the first implicit
/// lambda capture.
capture_iterator implicit_capture_begin() const;
/// \brief Retrieve an iterator pointing past the end of the sequence of
/// implicit lambda captures.
capture_iterator implicit_capture_end() const;
/// \brief Iterator that walks over the capture initialization
/// arguments.
typedef Expr **capture_init_iterator;
/// \brief Retrieve the initialization expressions for this lambda's captures.
llvm::iterator_range<capture_init_iterator> capture_inits() const {
return llvm::iterator_range<capture_init_iterator>(capture_init_begin(),
capture_init_end());
}
/// \brief Retrieve the first initialization argument for this
/// lambda expression (which initializes the first capture field).
capture_init_iterator capture_init_begin() const {
return reinterpret_cast<Expr **>(getStoredStmts());
}
/// \brief Retrieve the iterator pointing one past the last
/// initialization argument for this lambda expression.
capture_init_iterator capture_init_end() const {
return capture_init_begin() + NumCaptures;
}
/// \brief Retrieve the set of index variables used in the capture
/// initializer of an array captured by copy.
///
/// \param Iter The iterator that points at the capture initializer for
/// which we are extracting the corresponding index variables.
ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
/// \brief Retrieve the source range covering the lambda introducer,
/// which contains the explicit capture list surrounded by square
/// brackets ([...]).
SourceRange getIntroducerRange() const { return IntroducerRange; }
/// \brief Retrieve the class that corresponds to the lambda.
///
/// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
/// captures in its fields and provides the various operations permitted
/// on a lambda (copying, calling).
CXXRecordDecl *getLambdaClass() const;
/// \brief Retrieve the function call operator associated with this
/// lambda expression.
CXXMethodDecl *getCallOperator() const;
/// \brief If this is a generic lambda expression, retrieve the template
/// parameter list associated with it, or else return null.
TemplateParameterList *getTemplateParameterList() const;
/// \brief Whether this is a generic lambda.
bool isGenericLambda() const { return getTemplateParameterList(); }
/// \brief Retrieve the body of the lambda.
CompoundStmt *getBody() const;
/// \brief Determine whether the lambda is mutable, meaning that any
/// captures values can be modified.
bool isMutable() const;
/// \brief Determine whether this lambda has an explicit parameter
/// list vs. an implicit (empty) parameter list.
bool hasExplicitParameters() const { return ExplicitParams; }
/// \brief Whether this lambda had its result type explicitly specified.
bool hasExplicitResultType() const { return ExplicitResultType; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == LambdaExprClass;
}
SourceLocation getLocStart() const LLVM_READONLY {
return IntroducerRange.getBegin();
}
SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
child_range children() {
return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// An expression "T()" which creates a value-initialized rvalue of type
/// T, which is a non-class type. See (C++98 [5.2.3p2]).
class CXXScalarValueInitExpr : public Expr {
SourceLocation RParenLoc;
TypeSourceInfo *TypeInfo;
friend class ASTStmtReader;
public:
/// \brief Create an explicitly-written scalar-value initialization
/// expression.
CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
SourceLocation rParenLoc)
: Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
false, false, Type->isInstantiationDependentType(),
Type->containsUnexpandedParameterPack()),
RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
explicit CXXScalarValueInitExpr(EmptyShell Shell)
: Expr(CXXScalarValueInitExprClass, Shell) { }
TypeSourceInfo *getTypeSourceInfo() const {
return TypeInfo;
}
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXScalarValueInitExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief Represents a new-expression for memory allocation and constructor
/// calls, e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
/// Contains an optional array size expression, an optional initialization
/// expression, and any number of optional placement arguments, in that order.
Stmt **SubExprs;
/// \brief Points to the allocation function used.
FunctionDecl *OperatorNew;
/// \brief Points to the deallocation function used in case of error. May be
/// null.
FunctionDecl *OperatorDelete;
/// \brief The allocated type-source information, as written in the source.
TypeSourceInfo *AllocatedTypeInfo;
/// \brief If the allocated type was expressed as a parenthesized type-id,
/// the source range covering the parenthesized type-id.
SourceRange TypeIdParens;
/// \brief Range of the entire new expression.
SourceRange Range;
/// \brief Source-range of a paren-delimited initializer.
SourceRange DirectInitRange;
/// Was the usage ::new, i.e. is the global new to be used?
bool GlobalNew : 1;
/// Do we allocate an array? If so, the first SubExpr is the size expression.
bool Array : 1;
/// If this is an array allocation, does the usual deallocation
/// function for the allocated type want to know the allocated size?
bool UsualArrayDeleteWantsSize : 1;
/// The number of placement new arguments.
unsigned NumPlacementArgs : 13;
/// What kind of initializer do we have? Could be none, parens, or braces.
/// In storage, we distinguish between "none, and no initializer expr", and
/// "none, but an implicit initializer expr".
unsigned StoredInitializationStyle : 2;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
enum InitializationStyle {
NoInit, ///< New-expression has no initializer as written.
CallInit, ///< New-expression has a C++98 paren-delimited initializer.
ListInit ///< New-expression has a C++11 list-initializer.
};
CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
ArrayRef<Expr*> placementArgs,
SourceRange typeIdParens, Expr *arraySize,
InitializationStyle initializationStyle, Expr *initializer,
QualType ty, TypeSourceInfo *AllocatedTypeInfo,
SourceRange Range, SourceRange directInitRange);
explicit CXXNewExpr(EmptyShell Shell)
: Expr(CXXNewExprClass, Shell), SubExprs(nullptr) { }
void AllocateArgsArray(const ASTContext &C, bool isArray,
unsigned numPlaceArgs, bool hasInitializer);
QualType getAllocatedType() const {
assert(getType()->isPointerType());
return getType()->getAs<PointerType>()->getPointeeType();
}
TypeSourceInfo *getAllocatedTypeSourceInfo() const {
return AllocatedTypeInfo;
}
/// \brief True if the allocation result needs to be null-checked.
///
/// C++11 [expr.new]p13:
/// If the allocation function returns null, initialization shall
/// not be done, the deallocation function shall not be called,
/// and the value of the new-expression shall be null.
///
/// C++ DR1748:
/// If the allocation function is a reserved placement allocation
/// function that returns null, the behavior is undefined.
///
/// An allocation function is not allowed to return null unless it
/// has a non-throwing exception-specification. The '03 rule is
/// identical except that the definition of a non-throwing
/// exception specification is just "is it throw()?".
bool shouldNullCheckAllocation(const ASTContext &Ctx) const;
FunctionDecl *getOperatorNew() const { return OperatorNew; }
void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
bool isArray() const { return Array; }
Expr *getArraySize() {
return Array ? cast<Expr>(SubExprs[0]) : nullptr;
}
const Expr *getArraySize() const {
return Array ? cast<Expr>(SubExprs[0]) : nullptr;
}
unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
Expr **getPlacementArgs() {
return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
}
Expr *getPlacementArg(unsigned i) {
assert(i < NumPlacementArgs && "Index out of range");
return getPlacementArgs()[i];
}
const Expr *getPlacementArg(unsigned i) const {
assert(i < NumPlacementArgs && "Index out of range");
return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
}
bool isParenTypeId() const { return TypeIdParens.isValid(); }
SourceRange getTypeIdParens() const { return TypeIdParens; }
bool isGlobalNew() const { return GlobalNew; }
/// \brief Whether this new-expression has any initializer at all.
bool hasInitializer() const { return StoredInitializationStyle > 0; }
/// \brief The kind of initializer this new-expression has.
InitializationStyle getInitializationStyle() const {
if (StoredInitializationStyle == 0)
return NoInit;
return static_cast<InitializationStyle>(StoredInitializationStyle-1);
}
/// \brief The initializer of this new-expression.
Expr *getInitializer() {
return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
}
const Expr *getInitializer() const {
return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
}
/// \brief Returns the CXXConstructExpr from this new-expression, or null.
const CXXConstructExpr* getConstructExpr() const {
return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
}
/// Answers whether the usual array deallocation function for the
/// allocated type expects the size of the allocation as a
/// parameter.
bool doesUsualArrayDeleteWantSize() const {
return UsualArrayDeleteWantsSize;
}
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator placement_arg_begin() {
return SubExprs + Array + hasInitializer();
}
arg_iterator placement_arg_end() {
return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
}
const_arg_iterator placement_arg_begin() const {
return SubExprs + Array + hasInitializer();
}
const_arg_iterator placement_arg_end() const {
return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
}
typedef Stmt **raw_arg_iterator;
raw_arg_iterator raw_arg_begin() { return SubExprs; }
raw_arg_iterator raw_arg_end() {
return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
}
const_arg_iterator raw_arg_begin() const { return SubExprs; }
const_arg_iterator raw_arg_end() const {
return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
}
SourceLocation getStartLoc() const { return Range.getBegin(); }
SourceLocation getEndLoc() const { return Range.getEnd(); }
SourceRange getDirectInitRange() const { return DirectInitRange; }
SourceRange getSourceRange() const LLVM_READONLY {
return Range;
}
SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNewExprClass;
}
// Iterators
child_range children() {
return child_range(raw_arg_begin(), raw_arg_end());
}
};
/// \brief Represents a \c delete expression for memory deallocation and
/// destructor calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
/// Points to the operator delete overload that is used. Could be a member.
FunctionDecl *OperatorDelete;
/// The pointer expression to be deleted.
Stmt *Argument;
/// Location of the expression.
SourceLocation Loc;
/// Is this a forced global delete, i.e. "::delete"?
bool GlobalDelete : 1;
/// Is this the array form of delete, i.e. "delete[]"?
bool ArrayForm : 1;
/// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
/// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
/// will be true).
bool ArrayFormAsWritten : 1;
/// Does the usual deallocation function for the element type require
/// a size_t argument?
bool UsualArrayDeleteWantsSize : 1;
public:
CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
: Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
arg->isInstantiationDependent(),
arg->containsUnexpandedParameterPack()),
OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
GlobalDelete(globalDelete),
ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
explicit CXXDeleteExpr(EmptyShell Shell)
: Expr(CXXDeleteExprClass, Shell), OperatorDelete(nullptr),
Argument(nullptr) {}
bool isGlobalDelete() const { return GlobalDelete; }
bool isArrayForm() const { return ArrayForm; }
bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
/// Answers whether the usual array deallocation function for the
/// allocated type expects the size of the allocation as a
/// parameter. This can be true even if the actual deallocation
/// function that we're using doesn't want a size.
bool doesUsualArrayDeleteWantSize() const {
return UsualArrayDeleteWantsSize;
}
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
Expr *getArgument() { return cast<Expr>(Argument); }
const Expr *getArgument() const { return cast<Expr>(Argument); }
/// \brief Retrieve the type being destroyed.
///
/// If the type being destroyed is a dependent type which may or may not
/// be a pointer, return an invalid type.
QualType getDestroyedType() const;
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDeleteExprClass;
}
// Iterators
child_range children() { return child_range(&Argument, &Argument+1); }
friend class ASTStmtReader;
};
/// \brief Stores the type being destroyed by a pseudo-destructor expression.
class PseudoDestructorTypeStorage {
/// \brief Either the type source information or the name of the type, if
/// it couldn't be resolved due to type-dependence.
llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
/// \brief The starting source location of the pseudo-destructor type.
SourceLocation Location;
public:
PseudoDestructorTypeStorage() { }
PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
: Type(II), Location(Loc) { }
PseudoDestructorTypeStorage(TypeSourceInfo *Info);
TypeSourceInfo *getTypeSourceInfo() const {
return Type.dyn_cast<TypeSourceInfo *>();
}
IdentifierInfo *getIdentifier() const {
return Type.dyn_cast<IdentifierInfo *>();
}
SourceLocation getLocation() const { return Location; }
};
/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
/// p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
///
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
/// ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
/// \brief The base expression (that is being destroyed).
Stmt *Base;
/// \brief Whether the operator was an arrow ('->'); otherwise, it was a
/// period ('.').
bool IsArrow : 1;
/// \brief The location of the '.' or '->' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that follows the operator, if present.
NestedNameSpecifierLoc QualifierLoc;
/// \brief The type that precedes the '::' in a qualified pseudo-destructor
/// expression.
TypeSourceInfo *ScopeType;
/// \brief The location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation ColonColonLoc;
/// \brief The location of the '~'.
SourceLocation TildeLoc;
/// \brief The type being destroyed, or its name if we were unable to
/// resolve the name.
PseudoDestructorTypeStorage DestroyedType;
friend class ASTStmtReader;
public:
CXXPseudoDestructorExpr(const ASTContext &Context,
Expr *Base, bool isArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
TypeSourceInfo *ScopeType,
SourceLocation ColonColonLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType);
explicit CXXPseudoDestructorExpr(EmptyShell Shell)
: Expr(CXXPseudoDestructorExprClass, Shell),
Base(nullptr), IsArrow(false), QualifierLoc(), ScopeType(nullptr) { }
Expr *getBase() const { return cast<Expr>(Base); }
/// \brief Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
/// \brief Retrieves the nested-name-specifier that qualifies the type name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// null.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Determine whether this pseudo-destructor expression was written
/// using an '->' (otherwise, it used a '.').
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '.' or '->' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the scope type in a qualified pseudo-destructor
/// expression.
///
/// Pseudo-destructor expressions can have extra qualification within them
/// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
/// Here, if the object type of the expression is (or may be) a scalar type,
/// \p T may also be a scalar type and, therefore, cannot be part of a
/// nested-name-specifier. It is stored as the "scope type" of the pseudo-
/// destructor expression.
TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
/// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation getColonColonLoc() const { return ColonColonLoc; }
/// \brief Retrieve the location of the '~'.
SourceLocation getTildeLoc() const { return TildeLoc; }
/// \brief Retrieve the source location information for the type
/// being destroyed.
///
/// This type-source information is available for non-dependent
/// pseudo-destructor expressions and some dependent pseudo-destructor
/// expressions. Returns null if we only have the identifier for a
/// dependent pseudo-destructor expression.
TypeSourceInfo *getDestroyedTypeInfo() const {
return DestroyedType.getTypeSourceInfo();
}
/// \brief In a dependent pseudo-destructor expression for which we do not
/// have full type information on the destroyed type, provides the name
/// of the destroyed type.
IdentifierInfo *getDestroyedTypeIdentifier() const {
return DestroyedType.getIdentifier();
}
/// \brief Retrieve the type being destroyed.
QualType getDestroyedType() const;
/// \brief Retrieve the starting location of the type being destroyed.
SourceLocation getDestroyedTypeLoc() const {
return DestroyedType.getLocation();
}
/// \brief Set the name of destroyed type for a dependent pseudo-destructor
/// expression.
void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
DestroyedType = PseudoDestructorTypeStorage(II, Loc);
}
/// \brief Set the destroyed type.
void setDestroyedType(TypeSourceInfo *Info) {
DestroyedType = PseudoDestructorTypeStorage(Info);
}
SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
SourceLocation getLocEnd() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXPseudoDestructorExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base + 1); }
};
/// \brief A type trait used in the implementation of various C++11 and
/// Library TR1 trait templates.
///
/// \code
/// __is_pod(int) == true
/// __is_enum(std::string) == false
/// __is_trivially_constructible(vector<int>, int*, int*)
/// \endcode
class TypeTraitExpr : public Expr {
/// \brief The location of the type trait keyword.
SourceLocation Loc;
/// \brief The location of the closing parenthesis.
SourceLocation RParenLoc;
// Note: The TypeSourceInfos for the arguments are allocated after the
// TypeTraitExpr.
TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc,
bool Value);
TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
/// \brief Retrieve the argument types.
TypeSourceInfo **getTypeSourceInfos() {
return reinterpret_cast<TypeSourceInfo **>(this+1);
}
/// \brief Retrieve the argument types.
TypeSourceInfo * const *getTypeSourceInfos() const {
return reinterpret_cast<TypeSourceInfo * const*>(this+1);
}
public:
/// \brief Create a new type trait expression.
static TypeTraitExpr *Create(const ASTContext &C, QualType T,
SourceLocation Loc, TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc,
bool Value);
static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
unsigned NumArgs);
/// \brief Determine which type trait this expression uses.
TypeTrait getTrait() const {
return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
}
bool getValue() const {
assert(!isValueDependent());
return TypeTraitExprBits.Value;
}
/// \brief Determine the number of arguments to this type trait.
unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
/// \brief Retrieve the Ith argument.
TypeSourceInfo *getArg(unsigned I) const {
assert(I < getNumArgs() && "Argument out-of-range");
return getArgs()[I];
}
/// \brief Retrieve the argument types.
ArrayRef<TypeSourceInfo *> getArgs() const {
return llvm::makeArrayRef(getTypeSourceInfos(), getNumArgs());
}
typedef TypeSourceInfo **arg_iterator;
arg_iterator arg_begin() {
return getTypeSourceInfos();
}
arg_iterator arg_end() {
return getTypeSourceInfos() + getNumArgs();
}
typedef TypeSourceInfo const * const *arg_const_iterator;
arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
arg_const_iterator arg_end() const {
return getTypeSourceInfos() + getNumArgs();
}
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypeTraitExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief An Embarcadero array type trait, as used in the implementation of
/// __array_rank and __array_extent.
///
/// Example:
/// \code
/// __array_rank(int[10][20]) == 2
/// __array_extent(int, 1) == 20
/// \endcode
class ArrayTypeTraitExpr : public Expr {
virtual void anchor();
/// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
unsigned ATT : 2;
/// \brief The value of the type trait. Unspecified if dependent.
uint64_t Value;
/// \brief The array dimension being queried, or -1 if not used.
Expr *Dimension;
/// \brief The location of the type trait keyword.
SourceLocation Loc;
/// \brief The location of the closing paren.
SourceLocation RParen;
/// \brief The type being queried.
TypeSourceInfo *QueriedType;
public:
ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
TypeSourceInfo *queried, uint64_t value,
Expr *dimension, SourceLocation rparen, QualType ty)
: Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
false, queried->getType()->isDependentType(),
(queried->getType()->isInstantiationDependentType() ||
(dimension && dimension->isInstantiationDependent())),
queried->getType()->containsUnexpandedParameterPack()),
ATT(att), Value(value), Dimension(dimension),
Loc(loc), RParen(rparen), QueriedType(queried) { }
explicit ArrayTypeTraitExpr(EmptyShell Empty)
: Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
QueriedType() { }
virtual ~ArrayTypeTraitExpr() { }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
QualType getQueriedType() const { return QueriedType->getType(); }
TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
Expr *getDimensionExpression() const { return Dimension; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArrayTypeTraitExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// \brief An expression trait intrinsic.
///
/// Example:
/// \code
/// __is_lvalue_expr(std::cout) == true
/// __is_lvalue_expr(1) == false
/// \endcode
class ExpressionTraitExpr : public Expr {
/// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
unsigned ET : 31;
/// \brief The value of the type trait. Unspecified if dependent.
bool Value : 1;
/// \brief The location of the type trait keyword.
SourceLocation Loc;
/// \brief The location of the closing paren.
SourceLocation RParen;
/// \brief The expression being queried.
Expr* QueriedExpression;
public:
ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
Expr *queried, bool value,
SourceLocation rparen, QualType resultType)
: Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
false, // Not type-dependent
// Value-dependent if the argument is type-dependent.
queried->isTypeDependent(),
queried->isInstantiationDependent(),
queried->containsUnexpandedParameterPack()),
ET(et), Value(value), Loc(loc), RParen(rparen),
QueriedExpression(queried) { }
explicit ExpressionTraitExpr(EmptyShell Empty)
: Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
QueriedExpression() { }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
Expr *getQueriedExpression() const { return QueriedExpression; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExpressionTraitExprClass;
}
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// \brief A reference to an overloaded function set, either an
/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
class OverloadExpr : public Expr {
/// \brief The common name of these declarations.
DeclarationNameInfo NameInfo;
/// \brief The nested-name-specifier that qualifies the name, if any.
NestedNameSpecifierLoc QualifierLoc;
/// The results. These are undesugared, which is to say, they may
/// include UsingShadowDecls. Access is relative to the naming
/// class.
// FIXME: Allocate this data after the OverloadExpr subclass.
DeclAccessPair *Results;
unsigned NumResults;
protected:
/// \brief Whether the name includes info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
}
OverloadExpr(StmtClass K, const ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
bool KnownDependent,
bool KnownInstantiationDependent,
bool KnownContainsUnexpandedParameterPack);
OverloadExpr(StmtClass K, EmptyShell Empty)
: Expr(K, Empty), QualifierLoc(), Results(nullptr), NumResults(0),
HasTemplateKWAndArgsInfo(false) { }
void initializeResults(const ASTContext &C,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
public:
struct FindResult {
OverloadExpr *Expression;
bool IsAddressOfOperand;
bool HasFormOfMemberPointer;
};
/// \brief Finds the overloaded expression in the given expression \p E of
/// OverloadTy.
///
/// \return the expression (which must be there) and true if it has
/// the particular form of a member pointer expression
static FindResult find(Expr *E) {
assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
FindResult Result;
E = E->IgnoreParens();
if (isa<UnaryOperator>(E)) {
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
E = cast<UnaryOperator>(E)->getSubExpr();
OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
Result.IsAddressOfOperand = true;
Result.Expression = Ovl;
} else {
Result.HasFormOfMemberPointer = false;
Result.IsAddressOfOperand = false;
Result.Expression = cast<OverloadExpr>(E);
}
return Result;
}
/// \brief Gets the naming class of this lookup, if any.
CXXRecordDecl *getNamingClass() const;
typedef UnresolvedSetImpl::iterator decls_iterator;
decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
decls_iterator decls_end() const {
return UnresolvedSetIterator(Results + NumResults);
}
llvm::iterator_range<decls_iterator> decls() const {
return llvm::iterator_range<decls_iterator>(decls_begin(), decls_end());
}
/// \brief Gets the number of declarations in the unresolved set.
unsigned getNumDecls() const { return NumResults; }
/// \brief Gets the full name info.
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// \brief Gets the name looked up.
DeclarationName getName() const { return NameInfo.getName(); }
/// \brief Gets the location of the name.
SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
/// \brief Fetches the nested-name qualifier, if one was given.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Fetches the nested-name qualifier with source-location
/// information, if one was given.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// \brief Determines whether the name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// \brief Determines whether this expression had explicit template arguments.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *getTemplateKWAndArgsInfo();
}
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Copies the template arguments into the given structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieves the optional explicit template arguments.
///
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return nullptr;
return &getExplicitTemplateArgs();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass ||
T->getStmtClass() == UnresolvedMemberExprClass;
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration.
///
/// This arises in several ways:
/// * we might be waiting for argument-dependent lookup;
/// * the name might resolve to an overloaded function;
/// and eventually:
/// * the lookup might have included a function template.
///
/// These never include UnresolvedUsingValueDecls, which are always class
/// members and therefore appear only in UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr : public OverloadExpr {
/// True if these lookup results should be extended by
/// argument-dependent lookup if this is the operand of a function
/// call.
bool RequiresADL;
/// True if these lookup results are overloaded. This is pretty
/// trivially rederivable if we urgently need to kill this field.
bool Overloaded;
/// The naming class (C++ [class.access.base]p5) of the lookup, if
/// any. This can generally be recalculated from the context chain,
/// but that can be fairly expensive for unqualified lookups. If we
/// want to improve memory use here, this could go in a union
/// against the qualified-lookup bits.
CXXRecordDecl *NamingClass;
UnresolvedLookupExpr(const ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool RequiresADL, bool Overloaded,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End)
: OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
NameInfo, TemplateArgs, Begin, End, false, false, false),
RequiresADL(RequiresADL),
Overloaded(Overloaded), NamingClass(NamingClass)
{}
UnresolvedLookupExpr(EmptyShell Empty)
: OverloadExpr(UnresolvedLookupExprClass, Empty),
RequiresADL(false), Overloaded(false), NamingClass(nullptr)
{}
friend class ASTStmtReader;
public:
static UnresolvedLookupExpr *Create(const ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool ADL, bool Overloaded,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
SourceLocation(), NameInfo,
ADL, Overloaded, nullptr, Begin, End);
}
static UnresolvedLookupExpr *Create(const ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool ADL,
const TemplateArgumentListInfo *Args,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// True if this declaration should be extended by
/// argument-dependent lookup.
bool requiresADL() const { return RequiresADL; }
/// True if this lookup is overloaded.
bool isOverloaded() const { return Overloaded; }
/// Gets the 'naming class' (in the sense of C++0x
/// [class.access.base]p5) of the lookup. This is the scope
/// that was looked in to find these results.
CXXRecordDecl *getNamingClass() const { return NamingClass; }
SourceLocation getLocStart() const LLVM_READONLY {
if (NestedNameSpecifierLoc l = getQualifierLoc())
return l.getBeginLoc();
return getNameInfo().getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getNameInfo().getLocEnd();
}
child_range children() { return child_range(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass;
}
};
/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from one instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr : public Expr {
/// \brief The nested-name-specifier that qualifies this unresolved
/// declaration name.
NestedNameSpecifierLoc QualifierLoc;
/// \brief The name of the entity we will be referencing.
DeclarationNameInfo NameInfo;
/// \brief Whether the name includes info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return nullptr;
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<DependentScopeDeclRefExpr*>(this)
->getTemplateKWAndArgsInfo();
}
DependentScopeDeclRefExpr(QualType T,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args);
public:
static DependentScopeDeclRefExpr *Create(const ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief Retrieve the name that this expression refers to.
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// \brief Retrieve the name that this expression refers to.
DeclarationName getDeclName() const { return NameInfo.getName(); }
/// \brief Retrieve the location of the name within the expression.
///
/// For example, in "X<T>::value" this is the location of "value".
SourceLocation getLocation() const { return NameInfo.getLoc(); }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name, with source location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies this
/// declaration.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this lookup had explicit template arguments.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
}
/// Gets a reference to the explicit template argument list.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
}
/// \brief Retrieves the optional explicit template arguments.
///
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return nullptr;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// Note: getLocStart() is the start of the whole DependentScopeDeclRefExpr,
/// and differs from getLocation().getStart().
SourceLocation getLocStart() const LLVM_READONLY {
return QualifierLoc.getBeginLoc();
}
SourceLocation getLocEnd() const LLVM_READONLY {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getLocation();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DependentScopeDeclRefExprClass;
}
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents an expression -- generally a full-expression -- that
/// introduces cleanups to be run at the end of the sub-expression's
/// evaluation. The most common source of expression-introduced
/// cleanups is temporary objects in C++, but several other kinds of
/// expressions can create cleanups, including basically every
/// call in ARC that returns an Objective-C pointer.
///
/// This expression also tracks whether the sub-expression contains a
/// potentially-evaluated block literal. The lifetime of a block
/// literal is the extent of the enclosing scope.
class ExprWithCleanups : public Expr {
public:
/// The type of objects that are kept in the cleanup.
/// It's useful to remember the set of blocks; we could also
/// remember the set of temporaries, but there's currently
/// no need.
typedef BlockDecl *CleanupObject;
private:
Stmt *SubExpr;
ExprWithCleanups(EmptyShell, unsigned NumObjects);
ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
CleanupObject *getObjectsBuffer() {
return reinterpret_cast<CleanupObject*>(this + 1);
}
const CleanupObject *getObjectsBuffer() const {
return reinterpret_cast<const CleanupObject*>(this + 1);
}
friend class ASTStmtReader;
public:
static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
unsigned numObjects);
static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
ArrayRef<CleanupObject> objects);
ArrayRef<CleanupObject> getObjects() const {
return llvm::makeArrayRef(getObjectsBuffer(), getNumObjects());
}
unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
CleanupObject getObject(unsigned i) const {
assert(i < getNumObjects() && "Index out of range");
return getObjects()[i];
}
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
/// As with any mutator of the AST, be very careful
/// when modifying an existing AST to preserve its invariants.
void setSubExpr(Expr *E) { SubExpr = E; }
SourceLocation getLocStart() const LLVM_READONLY {
return SubExpr->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExprWithCleanupsClass;
}
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};
/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
/// template<typename T, typename A1>
/// inline T make_a(const A1& a1) {
/// return T(a1);
/// }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr : public Expr {
/// \brief The type being constructed.
TypeSourceInfo *Type;
/// \brief The location of the left parentheses ('(').
SourceLocation LParenLoc;
/// \brief The location of the right parentheses (')').
SourceLocation RParenLoc;
/// \brief The number of arguments used to construct the type.
unsigned NumArgs;
CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
ArrayRef<Expr*> Args,
SourceLocation RParenLoc);
CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
: Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
friend class ASTStmtReader;
public:
static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
TypeSourceInfo *Type,
SourceLocation LParenLoc,
ArrayRef<Expr*> Args,
SourceLocation RParenLoc);
static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
unsigned NumArgs);
/// \brief Retrieve the type that is being constructed, as specified
/// in the source code.
QualType getTypeAsWritten() const { return Type->getType(); }
/// \brief Retrieve the type source information for the type being
/// constructed.
TypeSourceInfo *getTypeSourceInfo() const { return Type; }
/// \brief Retrieve the location of the left parentheses ('(') that
/// precedes the argument list.
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
/// \brief Retrieve the location of the right parentheses (')') that
/// follows the argument list.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
/// \brief Retrieve the number of arguments.
unsigned arg_size() const { return NumArgs; }
typedef Expr** arg_iterator;
arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_iterator arg_end() { return arg_begin() + NumArgs; }
typedef const Expr* const * const_arg_iterator;
const_arg_iterator arg_begin() const {
return reinterpret_cast<const Expr* const *>(this + 1);
}
const_arg_iterator arg_end() const {
return arg_begin() + NumArgs;
}
Expr *getArg(unsigned I) {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
const Expr *getArg(unsigned I) const {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
void setArg(unsigned I, Expr *E) {
assert(I < NumArgs && "Argument index out-of-range");
*(arg_begin() + I) = E;
}
SourceLocation getLocStart() const LLVM_READONLY;
SourceLocation getLocEnd() const LLVM_READONLY {
if (!RParenLoc.isValid() && NumArgs > 0)
return getArg(NumArgs - 1)->getLocEnd();
return RParenLoc;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXUnresolvedConstructExprClass;
}
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt**>(this+1);
return child_range(begin, begin + NumArgs);
}
};
/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses. It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr : public Expr {
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f. Can be null in implicit accesses.
Stmt *Base;
/// \brief The type of the base expression. Never null, even for
/// implicit accesses.
QualType BaseType;
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether this member expression has info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo : 1;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that precedes the member name, if any.
NestedNameSpecifierLoc QualifierLoc;
/// \brief In a qualified member access expression such as t->Base::f, this
/// member stores the resolves of name lookup in the context of the member
/// access expression, to be used at instantiation time.
///
/// FIXME: This member, along with the QualifierLoc, could
/// be stuck into a structure that is optionally allocated at the end of
/// the CXXDependentScopeMemberExpr, to save space in the common case.
NamedDecl *FirstQualifierFoundInScope;
/// \brief The member to which this member expression refers, which
/// can be name, overloaded operator, or destructor.
///
/// FIXME: could also be a template-id
DeclarationNameInfo MemberNameInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return nullptr;
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<CXXDependentScopeMemberExpr*>(this)
->getTemplateKWAndArgsInfo();
}
CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs);
public:
CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo);
static CXXDependentScopeMemberExpr *
Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs);
static CXXDependentScopeMemberExpr *
CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief True if this is an implicit access, i.e. one in which the
/// member being accessed was not written in the source. The source
/// location of the operator is invalid in this case.
bool isImplicitAccess() const;
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the member
/// name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Retrieve the nested-name-specifier that qualifies the member
/// name, with source location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the first part of the nested-name-specifier that was
/// found in the scope of the member access expression when the member access
/// was initially parsed.
///
/// This function only returns a useful result when member access expression
/// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
/// returned by this function describes what was found by unqualified name
/// lookup for the identifier "Base" within the scope of the member access
/// expression itself. At template instantiation time, this information is
/// combined with the results of name lookup into the type of the object
/// expression itself (the class type of x).
NamedDecl *getFirstQualifierFoundInScope() const {
return FirstQualifierFoundInScope;
}
/// \brief Retrieve the name of the member that this expression
/// refers to.
const DeclarationNameInfo &getMemberNameInfo() const {
return MemberNameInfo;
}
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMember() const { return MemberNameInfo.getName(); }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
/// \brief Retrieve the location of the template keyword preceding the
/// member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// \brief Determines whether this member expression actually had a C++
/// template argument list explicitly specified, e.g., x.f<int>.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<CXXDependentScopeMemberExpr *>(this)
->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
///
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return nullptr;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Initializes the template arguments using the given structure.
void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
getExplicitTemplateArgs().initializeFrom(List);
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
SourceLocation getLocStart() const LLVM_READONLY {
if (!isImplicitAccess())
return Base->getLocStart();
if (getQualifier())
return getQualifierLoc().getBeginLoc();
return MemberNameInfo.getBeginLoc();
}
SourceLocation getLocEnd() const LLVM_READONLY {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return MemberNameInfo.getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDependentScopeMemberExprClass;
}
// Iterators
child_range children() {
if (isImplicitAccess()) return child_range();
return child_range(&Base, &Base + 1);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
/// \code
/// struct A {
/// int a, b;
/// int explicitAccess() { return this->a + this->A::b; }
/// int implicitAccess() { return a + A::b; }
/// };
/// \endcode
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr : public OverloadExpr {
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether the lookup results contain an unresolved using
/// declaration.
bool HasUnresolvedUsing : 1;
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f.
///
/// This can be null if this is an 'unbased' member expression.
Stmt *Base;
/// \brief The type of the base expression; never null.
QualType BaseType;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
UnresolvedMemberExpr(EmptyShell Empty)
: OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
HasUnresolvedUsing(false), Base(nullptr) { }
friend class ASTStmtReader;
public:
static UnresolvedMemberExpr *
Create(const ASTContext &C, bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
static UnresolvedMemberExpr *
CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief True if this is an implicit access, i.e., one in which the
/// member being accessed was not written in the source.
///
/// The source location of the operator is invalid in this case.
bool isImplicitAccess() const;
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
const Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether the lookup results contain an unresolved using
/// declaration.
bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the naming class of this lookup.
CXXRecordDecl *getNamingClass() const;
/// \brief Retrieve the full name info for the member that this expression
/// refers to.
const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMemberName() const { return getName(); }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return getNameLoc(); }
// \brief Return the preferred location (the member name) for the arrow when
// diagnosing a problem with this expression.
SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
SourceLocation getLocStart() const LLVM_READONLY {
if (!isImplicitAccess())
return Base->getLocStart();
if (NestedNameSpecifierLoc l = getQualifierLoc())
return l.getBeginLoc();
return getMemberNameInfo().getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getMemberNameInfo().getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedMemberExprClass;
}
// Iterators
child_range children() {
if (isImplicitAccess()) return child_range();
return child_range(&Base, &Base + 1);
}
};
/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
///
/// The noexcept expression tests whether a given expression might throw. Its
/// result is a boolean constant.
class CXXNoexceptExpr : public Expr {
bool Value : 1;
Stmt *Operand;
SourceRange Range;
friend class ASTStmtReader;
public:
CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
SourceLocation Keyword, SourceLocation RParen)
: Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
/*TypeDependent*/false,
/*ValueDependent*/Val == CT_Dependent,
Val == CT_Dependent || Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
{ }
CXXNoexceptExpr(EmptyShell Empty)
: Expr(CXXNoexceptExprClass, Empty)
{ }
Expr *getOperand() const { return static_cast<Expr*>(Operand); }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNoexceptExprClass;
}
// Iterators
child_range children() { return child_range(&Operand, &Operand + 1); }
};
/// \brief Represents a C++11 pack expansion that produces a sequence of
/// expressions.
///
/// A pack expansion expression contains a pattern (which itself is an
/// expression) followed by an ellipsis. For example:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(F f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// Here, the argument to the function object \c f is a pack expansion whose
/// pattern is \c static_cast<Types&&>(args). When the \c forward function
/// template is instantiated, the pack expansion will instantiate to zero or
/// or more function arguments to the function object \c f.
class PackExpansionExpr : public Expr {
SourceLocation EllipsisLoc;
/// \brief The number of expansions that will be produced by this pack
/// expansion expression, if known.
///
/// When zero, the number of expansions is not known. Otherwise, this value
/// is the number of expansions + 1.
unsigned NumExpansions;
Stmt *Pattern;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions)
: Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
Pattern->getObjectKind(), /*TypeDependent=*/true,
/*ValueDependent=*/true, /*InstantiationDependent=*/true,
/*ContainsUnexpandedParameterPack=*/false),
EllipsisLoc(EllipsisLoc),
NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
Pattern(Pattern) { }
PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
/// \brief Retrieve the pattern of the pack expansion.
Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
/// \brief Retrieve the pattern of the pack expansion.
const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
/// \brief Retrieve the location of the ellipsis that describes this pack
/// expansion.
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// \brief Determine the number of expansions that will be produced when
/// this pack expansion is instantiated, if already known.
Optional<unsigned> getNumExpansions() const {
if (NumExpansions)
return NumExpansions - 1;
return None;
}
SourceLocation getLocStart() const LLVM_READONLY {
return Pattern->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PackExpansionExprClass;
}
// Iterators
child_range children() {
return child_range(&Pattern, &Pattern + 1);
}
};
inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return nullptr;
if (isa<UnresolvedLookupExpr>(this))
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
(cast<UnresolvedLookupExpr>(this) + 1);
else
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
(cast<UnresolvedMemberExpr>(this) + 1);
}
/// \brief Represents an expression that computes the length of a parameter
/// pack.
///
/// \code
/// template<typename ...Types>
/// struct count {
/// static const unsigned value = sizeof...(Types);
/// };
/// \endcode
class SizeOfPackExpr : public Expr {
/// \brief The location of the \c sizeof keyword.
SourceLocation OperatorLoc;
/// \brief The location of the name of the parameter pack.
SourceLocation PackLoc;
/// \brief The location of the closing parenthesis.
SourceLocation RParenLoc;
/// \brief The length of the parameter pack, if known.
///
/// When this expression is value-dependent, the length of the parameter pack
/// is unknown. When this expression is not value-dependent, the length is
/// known.
unsigned Length;
/// \brief The parameter pack itself.
NamedDecl *Pack;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
/// \brief Create a value-dependent expression that computes the length of
/// the given parameter pack.
SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc, SourceLocation RParenLoc)
: Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false, /*ValueDependent=*/true,
/*InstantiationDependent=*/true,
/*ContainsUnexpandedParameterPack=*/false),
OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
Length(0), Pack(Pack) { }
/// \brief Create an expression that computes the length of
/// the given parameter pack, which is already known.
SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc, SourceLocation RParenLoc,
unsigned Length)
: Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false, /*ValueDependent=*/false,
/*InstantiationDependent=*/false,
/*ContainsUnexpandedParameterPack=*/false),
OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
Length(Length), Pack(Pack) { }
/// \brief Create an empty expression.
SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
/// \brief Determine the location of the 'sizeof' keyword.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Determine the location of the parameter pack.
SourceLocation getPackLoc() const { return PackLoc; }
/// \brief Determine the location of the right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
/// \brief Retrieve the parameter pack.
NamedDecl *getPack() const { return Pack; }
/// \brief Retrieve the length of the parameter pack.
///
/// This routine may only be invoked when the expression is not
/// value-dependent.
unsigned getPackLength() const {
assert(!isValueDependent() &&
"Cannot get the length of a value-dependent pack size expression");
return Length;
}
SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SizeOfPackExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief Represents a reference to a non-type template parameter
/// that has been substituted with a template argument.
class SubstNonTypeTemplateParmExpr : public Expr {
/// \brief The replaced parameter.
NonTypeTemplateParmDecl *Param;
/// \brief The replacement expression.
Stmt *Replacement;
/// \brief The location of the non-type template parameter reference.
SourceLocation NameLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
: Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
public:
SubstNonTypeTemplateParmExpr(QualType type,
ExprValueKind valueKind,
SourceLocation loc,
NonTypeTemplateParmDecl *param,
Expr *replacement)
: Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
replacement->isTypeDependent(), replacement->isValueDependent(),
replacement->isInstantiationDependent(),
replacement->containsUnexpandedParameterPack()),
Param(param), Replacement(replacement), NameLoc(loc) {}
SourceLocation getNameLoc() const { return NameLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
Expr *getReplacement() const { return cast<Expr>(Replacement); }
NonTypeTemplateParmDecl *getParameter() const { return Param; }
static bool classof(const Stmt *s) {
return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
}
// Iterators
child_range children() { return child_range(&Replacement, &Replacement+1); }
};
/// \brief Represents a reference to a non-type template parameter pack that
/// has been substituted with a non-template argument pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this node is used to represent a non-type template
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the appropriate underlying
/// expression at the current pack substitution index.
class SubstNonTypeTemplateParmPackExpr : public Expr {
/// \brief The non-type template parameter pack itself.
NonTypeTemplateParmDecl *Param;
/// \brief A pointer to the set of template arguments that this
/// parameter pack is instantiated with.
const TemplateArgument *Arguments;
/// \brief The number of template arguments in \c Arguments.
unsigned NumArguments;
/// \brief The location of the non-type template parameter pack reference.
SourceLocation NameLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
: Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
public:
SubstNonTypeTemplateParmPackExpr(QualType T,
NonTypeTemplateParmDecl *Param,
SourceLocation NameLoc,
const TemplateArgument &ArgPack);
/// \brief Retrieve the non-type template parameter pack being substituted.
NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
/// \brief Retrieve the location of the parameter pack name.
SourceLocation getParameterPackLocation() const { return NameLoc; }
/// \brief Retrieve the template argument pack containing the substituted
/// template arguments.
TemplateArgument getArgumentPack() const;
SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief Represents a reference to a function parameter pack that has been
/// substituted but not yet expanded.
///
/// When a pack expansion contains multiple parameter packs at different levels,
/// this node is used to represent a function parameter pack at an outer level
/// which we have already substituted to refer to expanded parameters, but where
/// the containing pack expansion cannot yet be expanded.
///
/// \code
/// template<typename...Ts> struct S {
/// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
/// };
/// template struct S<int, int>;
/// \endcode
class FunctionParmPackExpr : public Expr {
/// \brief The function parameter pack which was referenced.
ParmVarDecl *ParamPack;
/// \brief The location of the function parameter pack reference.
SourceLocation NameLoc;
/// \brief The number of expansions of this pack.
unsigned NumParameters;
FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
SourceLocation NameLoc, unsigned NumParams,
Decl * const *Params);
friend class ASTReader;
friend class ASTStmtReader;
public:
static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
ParmVarDecl *ParamPack,
SourceLocation NameLoc,
ArrayRef<Decl *> Params);
static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
unsigned NumParams);
/// \brief Get the parameter pack which this expression refers to.
ParmVarDecl *getParameterPack() const { return ParamPack; }
/// \brief Get the location of the parameter pack.
SourceLocation getParameterPackLocation() const { return NameLoc; }
/// \brief Iterators over the parameters which the parameter pack expanded
/// into.
typedef ParmVarDecl * const *iterator;
iterator begin() const { return reinterpret_cast<iterator>(this+1); }
iterator end() const { return begin() + NumParameters; }
/// \brief Get the number of parameters in this parameter pack.
unsigned getNumExpansions() const { return NumParameters; }
/// \brief Get an expansion of the parameter pack by index.
ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FunctionParmPackExprClass;
}
child_range children() { return child_range(); }
};
/// \brief Represents a prvalue temporary that is written into memory so that
/// a reference can bind to it.
///
/// Prvalue expressions are materialized when they need to have an address
/// in memory for a reference to bind to. This happens when binding a
/// reference to the result of a conversion, e.g.,
///
/// \code
/// const int &r = 1.0;
/// \endcode
///
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
/// (either an lvalue or an xvalue, depending on the kind of reference binding
/// to it), maintaining the invariant that references always bind to glvalues.
///
/// Reference binding and copy-elision can both extend the lifetime of a
/// temporary. When either happens, the expression will also track the
/// declaration which is responsible for the lifetime extension.
class MaterializeTemporaryExpr : public Expr {
private:
struct ExtraState {
/// \brief The temporary-generating expression whose value will be
/// materialized.
Stmt *Temporary;
/// \brief The declaration which lifetime-extended this reference, if any.
/// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
const ValueDecl *ExtendingDecl;
unsigned ManglingNumber;
};
llvm::PointerUnion<Stmt *, ExtraState *> State;
friend class ASTStmtReader;
friend class ASTStmtWriter;
void initializeExtraState(const ValueDecl *ExtendedBy,
unsigned ManglingNumber);
public:
MaterializeTemporaryExpr(QualType T, Expr *Temporary,
bool BoundToLvalueReference)
: Expr(MaterializeTemporaryExprClass, T,
BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
Temporary->isTypeDependent(), Temporary->isValueDependent(),
Temporary->isInstantiationDependent(),
Temporary->containsUnexpandedParameterPack()),
State(Temporary) {}
MaterializeTemporaryExpr(EmptyShell Empty)
: Expr(MaterializeTemporaryExprClass, Empty) { }
Stmt *getTemporary() const {
return State.is<Stmt *>() ? State.get<Stmt *>()
: State.get<ExtraState *>()->Temporary;
}
/// \brief Retrieve the temporary-generating subexpression whose value will
/// be materialized into a glvalue.
Expr *GetTemporaryExpr() const { return static_cast<Expr *>(getTemporary()); }
/// \brief Retrieve the storage duration for the materialized temporary.
StorageDuration getStorageDuration() const {
const ValueDecl *ExtendingDecl = getExtendingDecl();
if (!ExtendingDecl)
return SD_FullExpression;
// FIXME: This is not necessarily correct for a temporary materialized
// within a default initializer.
if (isa<FieldDecl>(ExtendingDecl))
return SD_Automatic;
return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
}
/// \brief Get the declaration which triggered the lifetime-extension of this
/// temporary, if any.
const ValueDecl *getExtendingDecl() const {
return State.is<Stmt *>() ? nullptr
: State.get<ExtraState *>()->ExtendingDecl;
}
void setExtendingDecl(const ValueDecl *ExtendedBy, unsigned ManglingNumber);
unsigned getManglingNumber() const {
return State.is<Stmt *>() ? 0 : State.get<ExtraState *>()->ManglingNumber;
}
/// \brief Determine whether this materialized temporary is bound to an
/// lvalue reference; otherwise, it's bound to an rvalue reference.
bool isBoundToLvalueReference() const {
return getValueKind() == VK_LValue;
}
SourceLocation getLocStart() const LLVM_READONLY {
return getTemporary()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getTemporary()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MaterializeTemporaryExprClass;
}
// Iterators
child_range children() {
if (State.is<Stmt *>())
return child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1);
auto ES = State.get<ExtraState *>();
return child_range(&ES->Temporary, &ES->Temporary + 1);
}
};
/// \brief Represents a folding of a pack over an operator.
///
/// This expression is always dependent and represents a pack expansion of the
/// forms:
///
/// ( expr op ... )
/// ( ... op expr )
/// ( expr op ... op expr )
class CXXFoldExpr : public Expr {
SourceLocation LParenLoc;
SourceLocation EllipsisLoc;
SourceLocation RParenLoc;
Stmt *SubExprs[2];
BinaryOperatorKind Opcode;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
CXXFoldExpr(QualType T, SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Opcode, SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc)
: Expr(CXXFoldExprClass, T, VK_RValue, OK_Ordinary,
/*Dependent*/ true, true, true,
/*ContainsUnexpandedParameterPack*/ false),
LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
Opcode(Opcode) {
SubExprs[0] = LHS;
SubExprs[1] = RHS;
}
CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
Expr *getLHS() const { return static_cast<Expr*>(SubExprs[0]); }
Expr *getRHS() const { return static_cast<Expr*>(SubExprs[1]); }
/// Does this produce a right-associated sequence of operators?
bool isRightFold() const {
return getLHS() && getLHS()->containsUnexpandedParameterPack();
}
/// Does this produce a left-associated sequence of operators?
bool isLeftFold() const { return !isRightFold(); }
/// Get the pattern, that is, the operand that contains an unexpanded pack.
Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
/// Get the operand that doesn't contain a pack, for a binary fold.
Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
BinaryOperatorKind getOperator() const { return Opcode; }
SourceLocation getLocStart() const LLVM_READONLY {
return LParenLoc;
}
SourceLocation getLocEnd() const LLVM_READONLY {
return RParenLoc;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXFoldExprClass;
}
// Iterators
child_range children() { return child_range(SubExprs, SubExprs + 2); }
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/MangleNumberingContext.h | //=== MangleNumberingContext.h - Context for mangling numbers ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LambdaBlockMangleContext interface, which keeps track
// of the Itanium C++ ABI mangling numbers for lambda expressions and block
// literals.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_MANGLENUMBERINGCONTEXT_H
#define LLVM_CLANG_AST_MANGLENUMBERINGCONTEXT_H
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
namespace clang {
class BlockDecl;
class CXXMethodDecl;
class IdentifierInfo;
class TagDecl;
class Type;
class VarDecl;
/// \brief Keeps track of the mangled names of lambda expressions and block
/// literals within a particular context.
class MangleNumberingContext : public RefCountedBase<MangleNumberingContext> {
public:
virtual ~MangleNumberingContext() {}
/// \brief Retrieve the mangling number of a new lambda expression with the
/// given call operator within this context.
virtual unsigned getManglingNumber(const CXXMethodDecl *CallOperator) = 0;
/// \brief Retrieve the mangling number of a new block literal within this
/// context.
virtual unsigned getManglingNumber(const BlockDecl *BD) = 0;
/// Static locals are numbered by source order.
virtual unsigned getStaticLocalNumber(const VarDecl *VD) = 0;
/// \brief Retrieve the mangling number of a static local variable within
/// this context.
virtual unsigned getManglingNumber(const VarDecl *VD,
unsigned MSLocalManglingNumber) = 0;
/// \brief Retrieve the mangling number of a static local variable within
/// this context.
virtual unsigned getManglingNumber(const TagDecl *TD,
unsigned MSLocalManglingNumber) = 0;
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclBase.h | //===-- DeclBase.h - Base Classes for representing declarations -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl and DeclContext interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLBASE_H
#define LLVM_CLANG_AST_DECLBASE_H
#include "clang/AST/AttrIterator.h"
#include "clang/AST/DeclarationName.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PrettyStackTrace.h"
namespace clang {
class ASTMutationListener;
class BlockDecl;
class CXXRecordDecl;
class CompoundStmt;
class DeclContext;
class DeclarationName;
class DependentDiagnostic;
class EnumDecl;
class FunctionDecl;
class FunctionType;
enum Linkage : unsigned char;
class LinkageComputer;
class LinkageSpecDecl;
class Module;
class NamedDecl;
class NamespaceDecl;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCProtocolDecl;
struct PrintingPolicy;
class RecordDecl;
class Stmt;
class StoredDeclsMap;
class TranslationUnitDecl;
class UsingDirectiveDecl;
}
namespace clang {
/// \brief Captures the result of checking the availability of a
/// declaration.
enum AvailabilityResult {
AR_Available = 0,
AR_NotYetIntroduced,
AR_Deprecated,
AR_Unavailable
};
/// Decl - This represents one declaration (or definition), e.g. a variable,
/// typedef, function, struct, etc.
///
class Decl {
public:
/// \brief Lists the kind of concrete classes of Decl.
enum Kind {
#define DECL(DERIVED, BASE) DERIVED,
#define ABSTRACT_DECL(DECL)
#define DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END,
#define LAST_DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END
#include "clang/AST/DeclNodes.inc"
};
/// \brief A placeholder type used to construct an empty shell of a
/// decl-derived type that will be filled in later (e.g., by some
/// deserialization method).
struct EmptyShell { };
/// IdentifierNamespace - The different namespaces in which
/// declarations may appear. According to C99 6.2.3, there are
/// four namespaces, labels, tags, members and ordinary
/// identifiers. C++ describes lookup completely differently:
/// certain lookups merely "ignore" certain kinds of declarations,
/// usually based on whether the declaration is of a type, etc.
///
/// These are meant as bitmasks, so that searches in
/// C++ can look into the "tag" namespace during ordinary lookup.
///
/// Decl currently provides 15 bits of IDNS bits.
enum IdentifierNamespace {
/// Labels, declared with 'x:' and referenced with 'goto x'.
IDNS_Label = 0x0001,
/// Tags, declared with 'struct foo;' and referenced with
/// 'struct foo'. All tags are also types. This is what
/// elaborated-type-specifiers look for in C.
IDNS_Tag = 0x0002,
/// Types, declared with 'struct foo', typedefs, etc.
/// This is what elaborated-type-specifiers look for in C++,
/// but note that it's ill-formed to find a non-tag.
IDNS_Type = 0x0004,
/// Members, declared with object declarations within tag
/// definitions. In C, these can only be found by "qualified"
/// lookup in member expressions. In C++, they're found by
/// normal lookup.
IDNS_Member = 0x0008,
/// Namespaces, declared with 'namespace foo {}'.
/// Lookup for nested-name-specifiers find these.
IDNS_Namespace = 0x0010,
/// Ordinary names. In C, everything that's not a label, tag,
/// or member ends up here.
IDNS_Ordinary = 0x0020,
/// Objective C \@protocol.
IDNS_ObjCProtocol = 0x0040,
/// This declaration is a friend function. A friend function
/// declaration is always in this namespace but may also be in
/// IDNS_Ordinary if it was previously declared.
IDNS_OrdinaryFriend = 0x0080,
/// This declaration is a friend class. A friend class
/// declaration is always in this namespace but may also be in
/// IDNS_Tag|IDNS_Type if it was previously declared.
IDNS_TagFriend = 0x0100,
/// This declaration is a using declaration. A using declaration
/// *introduces* a number of other declarations into the current
/// scope, and those declarations use the IDNS of their targets,
/// but the actual using declarations go in this namespace.
IDNS_Using = 0x0200,
/// This declaration is a C++ operator declared in a non-class
/// context. All such operators are also in IDNS_Ordinary.
/// C++ lexical operator lookup looks for these.
IDNS_NonMemberOperator = 0x0400,
/// This declaration is a function-local extern declaration of a
/// variable or function. This may also be IDNS_Ordinary if it
/// has been declared outside any function.
IDNS_LocalExtern = 0x0800
};
/// ObjCDeclQualifier - 'Qualifiers' written next to the return and
/// parameter types in method declarations. Other than remembering
/// them and mangling them into the method's signature string, these
/// are ignored by the compiler; they are consumed by certain
/// remote-messaging frameworks.
///
/// in, inout, and out are mutually exclusive and apply only to
/// method parameters. bycopy and byref are mutually exclusive and
/// apply only to method parameters (?). oneway applies only to
/// results. All of these expect their corresponding parameter to
/// have a particular type. None of this is currently enforced by
/// clang.
///
/// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
enum ObjCDeclQualifier {
OBJC_TQ_None = 0x0,
OBJC_TQ_In = 0x1,
OBJC_TQ_Inout = 0x2,
OBJC_TQ_Out = 0x4,
OBJC_TQ_Bycopy = 0x8,
OBJC_TQ_Byref = 0x10,
OBJC_TQ_Oneway = 0x20,
/// The nullability qualifier is set when the nullability of the
/// result or parameter was expressed via a context-sensitive
/// keyword.
OBJC_TQ_CSNullability = 0x40
};
protected:
// Enumeration values used in the bits stored in NextInContextAndBits.
enum {
/// \brief Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
TopLevelDeclInObjCContainerFlag = 0x01,
/// \brief Whether this declaration is private to the module in which it was
/// defined.
ModulePrivateFlag = 0x02
};
/// \brief The next declaration within the same lexical
/// DeclContext. These pointers form the linked list that is
/// traversed via DeclContext's decls_begin()/decls_end().
///
/// The extra two bits are used for the TopLevelDeclInObjCContainer and
/// ModulePrivate bits.
llvm::PointerIntPair<Decl *, 2, unsigned> NextInContextAndBits;
private:
friend class DeclContext;
struct MultipleDC {
DeclContext *SemanticDC;
DeclContext *LexicalDC;
};
/// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
/// For declarations that don't contain C++ scope specifiers, it contains
/// the DeclContext where the Decl was declared.
/// For declarations with C++ scope specifiers, it contains a MultipleDC*
/// with the context where it semantically belongs (SemanticDC) and the
/// context where it was lexically declared (LexicalDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
inline bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
inline bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
inline MultipleDC *getMultipleDC() const {
return DeclCtx.get<MultipleDC*>();
}
inline DeclContext *getSemanticDC() const {
return DeclCtx.get<DeclContext*>();
}
/// Loc - The location of this decl.
SourceLocation Loc;
/// DeclKind - This indicates which class this is.
unsigned DeclKind : 8;
/// InvalidDecl - This indicates a semantic error occurred.
unsigned InvalidDecl : 1;
/// HasAttrs - This indicates whether the decl has attributes or not.
unsigned HasAttrs : 1;
/// Implicit - Whether this declaration was implicitly generated by
/// the implementation rather than explicitly written by the user.
unsigned Implicit : 1;
/// \brief Whether this declaration was "used", meaning that a definition is
/// required.
unsigned Used : 1;
/// \brief Whether this declaration was "referenced".
/// The difference with 'Used' is whether the reference appears in a
/// evaluated context or not, e.g. functions used in uninstantiated templates
/// are regarded as "referenced" but not "used".
unsigned Referenced : 1;
/// \brief Whether statistic collection is enabled.
static bool StatisticsEnabled;
protected:
/// Access - Used by C++ decls for the access specifier.
// NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
unsigned Access : 2;
friend class CXXClassMemberWrapper;
/// \brief Whether this declaration was loaded from an AST file.
unsigned FromASTFile : 1;
/// \brief Whether this declaration is hidden from normal name lookup, e.g.,
/// because it is was loaded from an AST file is either module-private or
/// because its submodule has not been made visible.
unsigned Hidden : 1;
/// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
unsigned IdentifierNamespace : 12;
/// \brief If 0, we have not computed the linkage of this declaration.
/// Otherwise, it is the linkage + 1.
mutable unsigned CacheValidAndLinkage : 3;
friend class ASTDeclWriter;
friend class ASTDeclReader;
friend class ASTReader;
friend class LinkageComputer;
template<typename decl_type> friend class Redeclarable;
/// \brief Allocate memory for a deserialized declaration.
///
/// This routine must be used to allocate memory for any declaration that is
/// deserialized from a module file.
///
/// \param Size The size of the allocated object.
/// \param Ctx The context in which we will allocate memory.
/// \param ID The global ID of the deserialized declaration.
/// \param Extra The amount of extra space to allocate after the object.
void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
std::size_t Extra = 0);
/// \brief Allocate memory for a non-deserialized declaration.
void *operator new(std::size_t Size, const ASTContext &Ctx,
DeclContext *Parent, std::size_t Extra = 0);
private:
bool AccessDeclContextSanity() const;
protected:
Decl(Kind DK, DeclContext *DC, SourceLocation L)
: NextInContextAndBits(), DeclCtx(DC),
Loc(L), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false), Used(false), Referenced(false),
Access(AS_none), FromASTFile(0), Hidden(DC && cast<Decl>(DC)->Hidden),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0)
{
if (StatisticsEnabled) add(DK);
}
Decl(Kind DK, EmptyShell Empty)
: NextInContextAndBits(), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false), Used(false), Referenced(false),
Access(AS_none), FromASTFile(0), Hidden(0),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0)
{
if (StatisticsEnabled) add(DK);
}
virtual ~Decl();
/// \brief Update a potentially out-of-date declaration.
void updateOutOfDate(IdentifierInfo &II) const;
Linkage getCachedLinkage() const {
return Linkage(CacheValidAndLinkage - 1);
}
void setCachedLinkage(Linkage L) const {
CacheValidAndLinkage = L + 1;
}
bool hasCachedLinkage() const {
return CacheValidAndLinkage;
}
public:
/// \brief Source range that this declaration covers.
virtual SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocation(), getLocation());
}
SourceLocation getLocStart() const LLVM_READONLY {
return getSourceRange().getBegin();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getSourceRange().getEnd();
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
Kind getKind() const { return static_cast<Kind>(DeclKind); }
const char *getDeclKindName() const;
Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
DeclContext *getDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->SemanticDC;
}
const DeclContext *getDeclContext() const {
return const_cast<Decl*>(this)->getDeclContext();
}
/// Find the innermost non-closure ancestor of this declaration,
/// walking up through blocks, lambdas, etc. If that ancestor is
/// not a code context (!isFunctionOrMethod()), returns null.
///
/// A declaration may be its own non-closure context.
Decl *getNonClosureContext();
const Decl *getNonClosureContext() const {
return const_cast<Decl*>(this)->getNonClosureContext();
}
TranslationUnitDecl *getTranslationUnitDecl();
const TranslationUnitDecl *getTranslationUnitDecl() const {
return const_cast<Decl*>(this)->getTranslationUnitDecl();
}
bool isInAnonymousNamespace() const;
bool isInStdNamespace() const;
ASTContext &getASTContext() const LLVM_READONLY;
void setAccess(AccessSpecifier AS) {
Access = AS;
assert(AccessDeclContextSanity());
}
AccessSpecifier getAccess() const {
assert(AccessDeclContextSanity());
return AccessSpecifier(Access);
}
/// \brief Retrieve the access specifier for this declaration, even though
/// it may not yet have been properly set.
AccessSpecifier getAccessUnsafe() const {
return AccessSpecifier(Access);
}
bool hasAttrs() const { return HasAttrs; }
void setAttrs(const AttrVec& Attrs) {
return setAttrsImpl(Attrs, getASTContext());
}
AttrVec &getAttrs() {
return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
}
const AttrVec &getAttrs() const;
void dropAttrs();
void addAttr(Attr *A) {
if (hasAttrs())
getAttrs().push_back(A);
else
setAttrs(AttrVec(1, A));
}
typedef AttrVec::const_iterator attr_iterator;
typedef llvm::iterator_range<attr_iterator> attr_range;
attr_range attrs() const {
return attr_range(attr_begin(), attr_end());
}
attr_iterator attr_begin() const {
return hasAttrs() ? getAttrs().begin() : nullptr;
}
attr_iterator attr_end() const {
return hasAttrs() ? getAttrs().end() : nullptr;
}
template <typename T>
void dropAttr() {
if (!HasAttrs) return;
AttrVec &Vec = getAttrs();
Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa<T, Attr*>), Vec.end());
if (Vec.empty())
HasAttrs = false;
}
template <typename T>
llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
return llvm::iterator_range<specific_attr_iterator<T>>(
specific_attr_begin<T>(), specific_attr_end<T>());
}
template <typename T>
specific_attr_iterator<T> specific_attr_begin() const {
return specific_attr_iterator<T>(attr_begin());
}
template <typename T>
specific_attr_iterator<T> specific_attr_end() const {
return specific_attr_iterator<T>(attr_end());
}
template<typename T> T *getAttr() const {
return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
}
template<typename T> bool hasAttr() const {
return hasAttrs() && hasSpecificAttr<T>(getAttrs());
}
/// getMaxAlignment - return the maximum alignment specified by attributes
/// on this decl, 0 if there are none.
unsigned getMaxAlignment() const;
/// setInvalidDecl - Indicates the Decl had a semantic error. This
/// allows for graceful error recovery.
void setInvalidDecl(bool Invalid = true);
bool isInvalidDecl() const { return (bool) InvalidDecl; }
/// isImplicit - Indicates whether the declaration was implicitly
/// generated by the implementation. If false, this declaration
/// was written explicitly in the source code.
bool isImplicit() const { return Implicit; }
void setImplicit(bool I = true) { Implicit = I; }
/// \brief Whether this declaration was used, meaning that a definition
/// is required.
///
/// \param CheckUsedAttr When true, also consider the "used" attribute
/// (in addition to the "used" bit set by \c setUsed()) when determining
/// whether the function is used.
bool isUsed(bool CheckUsedAttr = true) const;
/// \brief Set whether the declaration is used, in the sense of odr-use.
///
/// This should only be used immediately after creating a declaration.
void setIsUsed() { Used = true; }
/// \brief Mark the declaration used, in the sense of odr-use.
///
/// This notifies any mutation listeners in addition to setting a bit
/// indicating the declaration is used.
void markUsed(ASTContext &C);
/// \brief Whether any declaration of this entity was referenced.
bool isReferenced() const;
/// \brief Whether this declaration was referenced. This should not be relied
/// upon for anything other than debugging.
bool isThisDeclarationReferenced() const { return Referenced; }
void setReferenced(bool R = true) { Referenced = R; }
/// \brief Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
bool isTopLevelDeclInObjCContainer() const {
return NextInContextAndBits.getInt() & TopLevelDeclInObjCContainerFlag;
}
void setTopLevelDeclInObjCContainer(bool V = true) {
unsigned Bits = NextInContextAndBits.getInt();
if (V)
Bits |= TopLevelDeclInObjCContainerFlag;
else
Bits &= ~TopLevelDeclInObjCContainerFlag;
NextInContextAndBits.setInt(Bits);
}
/// \brief Whether this declaration was marked as being private to the
/// module in which it was defined.
bool isModulePrivate() const {
return NextInContextAndBits.getInt() & ModulePrivateFlag;
}
protected:
/// \brief Specify whether this declaration was marked as being private
/// to the module in which it was defined.
void setModulePrivate(bool MP = true) {
unsigned Bits = NextInContextAndBits.getInt();
if (MP)
Bits |= ModulePrivateFlag;
else
Bits &= ~ModulePrivateFlag;
NextInContextAndBits.setInt(Bits);
}
/// \brief Set the owning module ID.
void setOwningModuleID(unsigned ID) {
assert(isFromASTFile() && "Only works on a deserialized declaration");
*((unsigned*)this - 2) = ID;
}
public:
/// \brief Determine the availability of the given declaration.
///
/// This routine will determine the most restrictive availability of
/// the given declaration (e.g., preferring 'unavailable' to
/// 'deprecated').
///
/// \param Message If non-NULL and the result is not \c
/// AR_Available, will be set to a (possibly empty) message
/// describing why the declaration has not been introduced, is
/// deprecated, or is unavailable.
AvailabilityResult getAvailability(std::string *Message = nullptr) const;
/// \brief Determine whether this declaration is marked 'deprecated'.
///
/// \param Message If non-NULL and the declaration is deprecated,
/// this will be set to the message describing why the declaration
/// was deprecated (which may be empty).
bool isDeprecated(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Deprecated;
}
/// \brief Determine whether this declaration is marked 'unavailable'.
///
/// \param Message If non-NULL and the declaration is unavailable,
/// this will be set to the message describing why the declaration
/// was made unavailable (which may be empty).
bool isUnavailable(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Unavailable;
}
/// \brief Determine whether this is a weak-imported symbol.
///
/// Weak-imported symbols are typically marked with the
/// 'weak_import' attribute, but may also be marked with an
/// 'availability' attribute where we're targing a platform prior to
/// the introduction of this feature.
bool isWeakImported() const;
/// \brief Determines whether this symbol can be weak-imported,
/// e.g., whether it would be well-formed to add the weak_import
/// attribute.
///
/// \param IsDefinition Set to \c true to indicate that this
/// declaration cannot be weak-imported because it has a definition.
bool canBeWeakImported(bool &IsDefinition) const;
/// \brief Determine whether this declaration came from an AST file (such as
/// a precompiled header or module) rather than having been parsed.
bool isFromASTFile() const { return FromASTFile; }
/// \brief Retrieve the global declaration ID associated with this
/// declaration, which specifies where in the
unsigned getGlobalID() const {
if (isFromASTFile())
return *((const unsigned*)this - 1);
return 0;
}
/// \brief Retrieve the global ID of the module that owns this particular
/// declaration.
unsigned getOwningModuleID() const {
if (isFromASTFile())
return *((const unsigned*)this - 2);
return 0;
}
private:
Module *getOwningModuleSlow() const;
protected:
bool hasLocalOwningModuleStorage() const;
public:
/// \brief Get the imported owning module, if this decl is from an imported
/// (non-local) module.
Module *getImportedOwningModule() const {
if (!isFromASTFile())
return nullptr;
return getOwningModuleSlow();
}
/// \brief Get the local owning module, if known. Returns nullptr if owner is
/// not yet known or declaration is not from a module.
Module *getLocalOwningModule() const {
if (isFromASTFile() || !Hidden)
return nullptr;
return reinterpret_cast<Module *const *>(this)[-1];
}
void setLocalOwningModule(Module *M) {
assert(!isFromASTFile() && Hidden && hasLocalOwningModuleStorage() &&
"should not have a cached owning module");
reinterpret_cast<Module **>(this)[-1] = M;
}
unsigned getIdentifierNamespace() const {
return IdentifierNamespace;
}
bool isInIdentifierNamespace(unsigned NS) const {
return getIdentifierNamespace() & NS;
}
static unsigned getIdentifierNamespaceForKind(Kind DK);
bool hasTagIdentifierNamespace() const {
return isTagIdentifierNamespace(getIdentifierNamespace());
}
static bool isTagIdentifierNamespace(unsigned NS) {
// TagDecls have Tag and Type set and may also have TagFriend.
return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
}
/// getLexicalDeclContext - The declaration context where this Decl was
/// lexically declared (LexicalDC). May be different from
/// getDeclContext() (SemanticDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
DeclContext *getLexicalDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->LexicalDC;
}
const DeclContext *getLexicalDeclContext() const {
return const_cast<Decl*>(this)->getLexicalDeclContext();
}
/// Determine whether this declaration is declared out of line (outside its
/// semantic context).
virtual bool isOutOfLine() const;
/// setDeclContext - Set both the semantic and lexical DeclContext
/// to DC.
void setDeclContext(DeclContext *DC);
void setLexicalDeclContext(DeclContext *DC);
/// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
/// scoped decl is defined outside the current function or method. This is
/// roughly global variables and functions, but also handles enums (which
/// could be defined inside or outside a function etc).
bool isDefinedOutsideFunctionOrMethod() const {
return getParentFunctionOrMethod() == nullptr;
}
/// HLSL Change Begin - back port from llvm-project/73c6a2448f24 &
/// f721e0582b15. Determine whether a substitution into this declaration would
/// occur as part of a substitution into a dependent local scope. Such a
/// substitution transitively substitutes into all constructs nested within
/// this declaration.
///
/// This recognizes non-defining declarations as well as members of local
/// classes and lambdas:
/// \code
/// template<typename T> void foo() { void bar(); }
/// template<typename T> void foo2() { class ABC { void bar(); }; }
/// template<typename T> inline int x = [](){ return 0; }();
/// \endcode
bool isInLocalScopeForInstantiation() const;
/// HLSL Change End - back port from llvm-project/73c6a2448f24 & f721e0582b15.
/// \brief If this decl is defined inside a function/method/block it returns
/// the corresponding DeclContext, otherwise it returns null.
const DeclContext *getParentFunctionOrMethod() const;
DeclContext *getParentFunctionOrMethod() {
return const_cast<DeclContext*>(
const_cast<const Decl*>(this)->getParentFunctionOrMethod());
}
/// \brief Retrieves the "canonical" declaration of the given declaration.
virtual Decl *getCanonicalDecl() { return this; }
const Decl *getCanonicalDecl() const {
return const_cast<Decl*>(this)->getCanonicalDecl();
}
/// \brief Whether this particular Decl is a canonical one.
bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
protected:
/// \brief Returns the next redeclaration or itself if this is the only decl.
///
/// Decl subclasses that can be redeclared should override this method so that
/// Decl::redecl_iterator can iterate over them.
virtual Decl *getNextRedeclarationImpl() { return this; }
/// \brief Implementation of getPreviousDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getPreviousDeclImpl() { return nullptr; }
/// \brief Implementation of getMostRecentDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getMostRecentDeclImpl() { return this; }
public:
/// \brief Iterates through all the redeclarations of the same decl.
class redecl_iterator {
/// Current - The current declaration.
Decl *Current;
Decl *Starter;
public:
typedef Decl *value_type;
typedef const value_type &reference;
typedef const value_type *pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
redecl_iterator() : Current(nullptr) { }
explicit redecl_iterator(Decl *C) : Current(C), Starter(C) { }
reference operator*() const { return Current; }
value_type operator->() const { return Current; }
redecl_iterator& operator++() {
assert(Current && "Advancing while iterator has reached end");
// Get either previous decl or latest decl.
Decl *Next = Current->getNextRedeclarationImpl();
assert(Next && "Should return next redeclaration or itself, never null!");
Current = (Next != Starter) ? Next : nullptr;
return *this;
}
redecl_iterator operator++(int) {
redecl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(redecl_iterator x, redecl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(redecl_iterator x, redecl_iterator y) {
return x.Current != y.Current;
}
};
typedef llvm::iterator_range<redecl_iterator> redecl_range;
/// \brief Returns an iterator range for all the redeclarations of the same
/// decl. It will iterate at least once (when this decl is the only one).
redecl_range redecls() const {
return redecl_range(redecls_begin(), redecls_end());
}
redecl_iterator redecls_begin() const {
return redecl_iterator(const_cast<Decl *>(this));
}
redecl_iterator redecls_end() const { return redecl_iterator(); }
/// \brief Retrieve the previous declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
const Decl *getPreviousDecl() const {
return const_cast<Decl *>(this)->getPreviousDeclImpl();
}
/// \brief True if this is the first declaration in its redeclaration chain.
bool isFirstDecl() const {
return getPreviousDecl() == nullptr;
}
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
const Decl *getMostRecentDecl() const {
return const_cast<Decl *>(this)->getMostRecentDeclImpl();
}
/// getBody - If this Decl represents a declaration for a body of code,
/// such as a function or method definition, this method returns the
/// top-level Stmt* of that body. Otherwise this method returns null.
virtual Stmt* getBody() const { return nullptr; }
/// \brief Returns true if this \c Decl represents a declaration for a body of
/// code, such as a function or method definition.
/// Note that \c hasBody can also return true if any redeclaration of this
/// \c Decl represents a declaration for a body of code.
virtual bool hasBody() const { return getBody() != nullptr; }
/// getBodyRBrace - Gets the right brace of the body, if a body exists.
/// This works whether the body is a CompoundStmt or a CXXTryStmt.
SourceLocation getBodyRBrace() const;
// global temp stats (until we have a per-module visitor)
static void add(Kind k);
static void EnableStatistics();
static void PrintStats();
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter.
bool isTemplateParameter() const;
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter pack.
bool isTemplateParameterPack() const;
/// \brief Whether this declaration is a parameter pack.
bool isParameterPack() const;
/// \brief returns true if this declaration is a template
bool isTemplateDecl() const;
/// \brief Whether this declaration is a function or function template.
bool isFunctionOrFunctionTemplate() const {
return (DeclKind >= Decl::firstFunction &&
DeclKind <= Decl::lastFunction) ||
DeclKind == FunctionTemplate;
}
/// \brief Returns the function itself, or the templated function if this is a
/// function template.
FunctionDecl *getAsFunction() LLVM_READONLY;
const FunctionDecl *getAsFunction() const {
return const_cast<Decl *>(this)->getAsFunction();
}
/// \brief Changes the namespace of this declaration to reflect that it's
/// a function-local extern declaration.
///
/// These declarations appear in the lexical context of the extern
/// declaration, but in the semantic context of the enclosing namespace
/// scope.
void setLocalExternDecl() {
assert((IdentifierNamespace == IDNS_Ordinary ||
IdentifierNamespace == IDNS_OrdinaryFriend) &&
"namespace is not ordinary");
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~IDNS_Ordinary;
IdentifierNamespace |= IDNS_LocalExtern;
if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
IdentifierNamespace |= IDNS_Ordinary;
}
/// \brief Determine whether this is a block-scope declaration with linkage.
/// This will either be a local variable declaration declared 'extern', or a
/// local function declaration.
bool isLocalExternDecl() {
return IdentifierNamespace & IDNS_LocalExtern;
}
/// \brief Changes the namespace of this declaration to reflect that it's
/// the object of a friend declaration.
///
/// These declarations appear in the lexical context of the friending
/// class, but in the semantic context of the actual entity. This property
/// applies only to a specific decl object; other redeclarations of the
/// same entity may not (and probably don't) share this property.
void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
unsigned OldNS = IdentifierNamespace;
assert((OldNS & (IDNS_Tag | IDNS_Ordinary |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern)) &&
"namespace includes neither ordinary nor tag");
assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern)) &&
"namespace includes other than ordinary or tag");
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
IdentifierNamespace |= IDNS_TagFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
IdentifierNamespace |= IDNS_Tag | IDNS_Type;
}
if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend | IDNS_LocalExtern)) {
IdentifierNamespace |= IDNS_OrdinaryFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
IdentifierNamespace |= IDNS_Ordinary;
}
}
enum FriendObjectKind {
FOK_None, ///< Not a friend object.
FOK_Declared, ///< A friend of a previously-declared entity.
FOK_Undeclared ///< A friend of a previously-undeclared entity.
};
/// \brief Determines whether this declaration is the object of a
/// friend declaration and, if so, what kind.
///
/// There is currently no direct way to find the associated FriendDecl.
FriendObjectKind getFriendObjectKind() const {
unsigned mask =
(IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
if (!mask) return FOK_None;
return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
: FOK_Undeclared);
}
/// Specifies that this declaration is a C++ overloaded non-member.
void setNonMemberOperator() {
assert(getKind() == Function || getKind() == FunctionTemplate);
assert((IdentifierNamespace & IDNS_Ordinary) &&
"visible non-member operators should be in ordinary namespace");
IdentifierNamespace |= IDNS_NonMemberOperator;
}
static bool classofKind(Kind K) { return true; }
static DeclContext *castToDeclContext(const Decl *);
static Decl *castFromDeclContext(const DeclContext *);
void print(raw_ostream &Out, unsigned Indentation = 0,
bool PrintInstantiation = false) const;
void print(raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0, bool PrintInstantiation = false) const;
static void printGroup(Decl** Begin, unsigned NumDecls,
raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0);
// Debuggers don't usually respect default arguments.
void dump() const;
// Same as dump(), but forces color printing.
void dumpColor() const;
void dump(raw_ostream &Out) const;
/// \brief Looks through the Decl's underlying type to extract a FunctionType
/// when possible. Will return null if the type underlying the Decl does not
/// have a FunctionType.
const FunctionType *getFunctionType(bool BlocksToo = true) const;
private:
void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
ASTContext &Ctx);
protected:
ASTMutationListener *getASTMutationListener() const;
};
/// \brief Determine whether two declarations declare the same entity.
inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
if (!D1 || !D2)
return false;
if (D1 == D2)
return true;
return D1->getCanonicalDecl() == D2->getCanonicalDecl();
}
/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
/// doing something to a specific decl.
class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
const Decl *TheDecl;
SourceLocation Loc;
SourceManager &SM;
const char *Message;
public:
PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
SourceManager &sm, const char *Msg)
: TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
void print(raw_ostream &OS) const override;
};
/// \brief The results of name lookup within a DeclContext. This is either a
/// single result (with no stable storage) or a collection of results (with
/// stable storage provided by the lookup table).
class DeclContextLookupResult {
typedef ArrayRef<NamedDecl *> ResultTy;
ResultTy Result;
// If there is only one lookup result, it would be invalidated by
// reallocations of the name table, so store it separately.
NamedDecl *Single;
static NamedDecl *const SingleElementDummyList;
public:
DeclContextLookupResult() : Result(), Single() {}
DeclContextLookupResult(ArrayRef<NamedDecl *> Result)
: Result(Result), Single() {}
DeclContextLookupResult(NamedDecl *Single)
: Result(SingleElementDummyList), Single(Single) {}
class iterator;
typedef llvm::iterator_adaptor_base<iterator, ResultTy::iterator,
std::random_access_iterator_tag,
NamedDecl *const> IteratorBase;
class iterator : public IteratorBase {
value_type SingleElement;
public:
iterator() : IteratorBase(), SingleElement() {}
explicit iterator(pointer Pos, value_type Single = nullptr)
: IteratorBase(Pos), SingleElement(Single) {}
reference operator*() const {
return SingleElement ? SingleElement : IteratorBase::operator*();
}
};
typedef iterator const_iterator;
typedef iterator::pointer pointer;
typedef iterator::reference reference;
iterator begin() const { return iterator(Result.begin(), Single); }
iterator end() const { return iterator(Result.end(), Single); }
bool empty() const { return Result.empty(); }
pointer data() const { return Single ? &Single : Result.data(); }
size_t size() const { return Single ? 1 : Result.size(); }
reference front() const { return Single ? Single : Result.front(); }
reference back() const { return Single ? Single : Result.back(); }
reference operator[](size_t N) const { return Single ? Single : Result[N]; }
// FIXME: Remove this from the interface
DeclContextLookupResult slice(size_t N) const {
DeclContextLookupResult Sliced = Result.slice(N);
Sliced.Single = Single;
return Sliced;
}
};
/// DeclContext - This is used only as base class of specific decl types that
/// can act as declaration contexts. These decls are (only the top classes
/// that directly derive from DeclContext are mentioned, not their subclasses):
///
/// TranslationUnitDecl
/// NamespaceDecl
/// FunctionDecl
/// TagDecl
/// ObjCMethodDecl
/// ObjCContainerDecl
/// LinkageSpecDecl
/// BlockDecl
///
class DeclContext {
/// DeclKind - This indicates which class this is.
unsigned DeclKind : 8;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are lexically
/// part of this context.
mutable bool ExternalLexicalStorage : 1;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are visible
/// in this context.
mutable bool ExternalVisibleStorage : 1;
/// \brief Whether this declaration context has had external visible
/// storage added since the last lookup. In this case, \c LookupPtr's
/// invariant may not hold and needs to be fixed before we perform
/// another lookup.
mutable bool NeedToReconcileExternalVisibleStorage : 1;
/// \brief If \c true, this context may have local lexical declarations
/// that are missing from the lookup table.
mutable bool HasLazyLocalLexicalLookups : 1;
/// \brief If \c true, the external source may have lexical declarations
/// that are missing from the lookup table.
mutable bool HasLazyExternalLexicalLookups : 1;
/// \brief Pointer to the data structure used to lookup declarations
/// within this context (or a DependentStoredDeclsMap if this is a
/// dependent context). We maintain the invariant that, if the map
/// contains an entry for a DeclarationName (and we haven't lazily
/// omitted anything), then it contains all relevant entries for that
/// name (modulo the hasExternalDecls() flag).
mutable StoredDeclsMap *LookupPtr;
protected:
/// FirstDecl - The first declaration stored within this declaration
/// context.
mutable Decl *FirstDecl;
/// LastDecl - The last declaration stored within this declaration
/// context. FIXME: We could probably cache this value somewhere
/// outside of the DeclContext, to reduce the size of DeclContext by
/// another pointer.
mutable Decl *LastDecl;
friend class ExternalASTSource;
friend class ASTDeclReader;
friend class ASTWriter;
/// \brief Build up a chain of declarations.
///
/// \returns the first/last pair of declarations.
static std::pair<Decl *, Decl *>
BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
DeclContext(Decl::Kind K)
: DeclKind(K), ExternalLexicalStorage(false),
ExternalVisibleStorage(false),
NeedToReconcileExternalVisibleStorage(false),
HasLazyLocalLexicalLookups(false), HasLazyExternalLexicalLookups(false),
LookupPtr(nullptr), FirstDecl(nullptr), LastDecl(nullptr) {}
public:
~DeclContext();
Decl::Kind getDeclKind() const {
return static_cast<Decl::Kind>(DeclKind);
}
const char *getDeclKindName() const;
/// getParent - Returns the containing DeclContext.
DeclContext *getParent() {
return cast<Decl>(this)->getDeclContext();
}
const DeclContext *getParent() const {
return const_cast<DeclContext*>(this)->getParent();
}
/// getLexicalParent - Returns the containing lexical DeclContext. May be
/// different from getParent, e.g.:
///
/// namespace A {
/// struct S;
/// }
/// struct A::S {}; // getParent() == namespace 'A'
/// // getLexicalParent() == translation unit
///
DeclContext *getLexicalParent() {
return cast<Decl>(this)->getLexicalDeclContext();
}
const DeclContext *getLexicalParent() const {
return const_cast<DeclContext*>(this)->getLexicalParent();
}
DeclContext *getLookupParent();
const DeclContext *getLookupParent() const {
return const_cast<DeclContext*>(this)->getLookupParent();
}
ASTContext &getParentASTContext() const {
return cast<Decl>(this)->getASTContext();
}
bool isClosure() const {
return DeclKind == Decl::Block;
}
bool isObjCContainer() const {
switch (DeclKind) {
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
return true;
}
return false;
}
bool isFunctionOrMethod() const {
switch (DeclKind) {
case Decl::Block:
case Decl::Captured:
case Decl::ObjCMethod:
return true;
default:
return DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction;
}
}
/// \brief Test whether the context supports looking up names.
bool isLookupContext() const {
return !isFunctionOrMethod() && DeclKind != Decl::LinkageSpec;
}
bool isFileContext() const {
return DeclKind == Decl::TranslationUnit || DeclKind == Decl::Namespace;
}
bool isTranslationUnit() const {
return DeclKind == Decl::TranslationUnit;
}
bool isRecord() const {
return DeclKind >= Decl::firstRecord && DeclKind <= Decl::lastRecord;
}
bool isNamespace() const {
return DeclKind == Decl::Namespace;
}
bool isStdNamespace() const;
bool isInlineNamespace() const;
/// \brief Determines whether this context is dependent on a
/// template parameter.
bool isDependentContext() const;
/// isTransparentContext - Determines whether this context is a
/// "transparent" context, meaning that the members declared in this
/// context are semantically declared in the nearest enclosing
/// non-transparent (opaque) context but are lexically declared in
/// this context. For example, consider the enumerators of an
/// enumeration type:
/// @code
/// enum E {
/// Val1
/// };
/// @endcode
/// Here, E is a transparent context, so its enumerator (Val1) will
/// appear (semantically) that it is in the same context of E.
/// Examples of transparent contexts include: enumerations (except for
/// C++0x scoped enums), and C++ linkage specifications.
bool isTransparentContext() const;
/// \brief Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C linkage.
bool isExternCContext() const;
/// \brief Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C++ linkage.
bool isExternCXXContext() const;
/// \brief Determine whether this declaration context is equivalent
/// to the declaration context DC.
bool Equals(const DeclContext *DC) const {
return DC && this->getPrimaryContext() == DC->getPrimaryContext();
}
/// \brief Determine whether this declaration context encloses the
/// declaration context DC.
bool Encloses(const DeclContext *DC) const;
/// \brief Find the nearest non-closure ancestor of this context,
/// i.e. the innermost semantic parent of this context which is not
/// a closure. A context may be its own non-closure ancestor.
Decl *getNonClosureAncestor();
const Decl *getNonClosureAncestor() const {
return const_cast<DeclContext*>(this)->getNonClosureAncestor();
}
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
/// a different set of declarations. This routine returns the
/// "primary" DeclContext structure, which will contain the
/// information needed to perform name lookup into this context.
DeclContext *getPrimaryContext();
const DeclContext *getPrimaryContext() const {
return const_cast<DeclContext*>(this)->getPrimaryContext();
}
/// getRedeclContext - Retrieve the context in which an entity conflicts with
/// other entities of the same name, or where it is a redeclaration if the
/// two entities are compatible. This skips through transparent contexts.
DeclContext *getRedeclContext();
const DeclContext *getRedeclContext() const {
return const_cast<DeclContext *>(this)->getRedeclContext();
}
/// \brief Retrieve the nearest enclosing namespace context.
DeclContext *getEnclosingNamespaceContext();
const DeclContext *getEnclosingNamespaceContext() const {
return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
}
/// \brief Retrieve the outermost lexically enclosing record context.
RecordDecl *getOuterLexicalRecordContext();
const RecordDecl *getOuterLexicalRecordContext() const {
return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
}
/// \brief Test if this context is part of the enclosing namespace set of
/// the context NS, as defined in C++0x [namespace.def]p9. If either context
/// isn't a namespace, this is equivalent to Equals().
///
/// The enclosing namespace set of a namespace is the namespace and, if it is
/// inline, its enclosing namespace, recursively.
bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
/// \brief Collects all of the declaration contexts that are semantically
/// connected to this declaration context.
///
/// For declaration contexts that have multiple semantically connected but
/// syntactically distinct contexts, such as C++ namespaces, this routine
/// retrieves the complete set of such declaration contexts in source order.
/// For example, given:
///
/// \code
/// namespace N {
/// int x;
/// }
/// namespace N {
/// int y;
/// }
/// \endcode
///
/// The \c Contexts parameter will contain both definitions of N.
///
/// \param Contexts Will be cleared and set to the set of declaration
/// contexts that are semanticaly connected to this declaration context,
/// in source order, including this context (which may be the only result,
/// for non-namespace contexts).
void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
/// decl_iterator - Iterates through the declarations stored
/// within this context.
class decl_iterator {
/// Current - The current declaration.
Decl *Current;
public:
typedef Decl *value_type;
typedef const value_type &reference;
typedef const value_type *pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
decl_iterator() : Current(nullptr) { }
explicit decl_iterator(Decl *C) : Current(C) { }
reference operator*() const { return Current; }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return Current; }
decl_iterator& operator++() {
Current = Current->getNextDeclInContext();
return *this;
}
decl_iterator operator++(int) {
decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(decl_iterator x, decl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(decl_iterator x, decl_iterator y) {
return x.Current != y.Current;
}
};
typedef llvm::iterator_range<decl_iterator> decl_range;
/// decls_begin/decls_end - Iterate over the declarations stored in
/// this context.
decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
decl_iterator decls_begin() const;
decl_iterator decls_end() const { return decl_iterator(); }
bool decls_empty() const;
/// noload_decls_begin/end - Iterate over the declarations stored in this
/// context that are currently loaded; don't attempt to retrieve anything
/// from an external source.
decl_range noload_decls() const {
return decl_range(noload_decls_begin(), noload_decls_end());
}
decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
decl_iterator noload_decls_end() const { return decl_iterator(); }
/// specific_decl_iterator - Iterates over a subrange of
/// declarations stored in a DeclContext, providing only those that
/// are of type SpecificDecl (or a class derived from it). This
/// iterator is used, for example, to provide iteration over just
/// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
template<typename SpecificDecl>
class specific_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current && !isa<SpecificDecl>(*Current))
++Current;
}
public:
typedef SpecificDecl *value_type;
// TODO: Add reference and pointer typedefs (with some appropriate proxy
// type) if we ever have a need for them.
typedef void reference;
typedef void pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
specific_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return **this; }
specific_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
specific_decl_iterator operator++(int) {
specific_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// \brief Iterates over a filtered subrange of declarations stored
/// in a DeclContext.
///
/// This iterator visits only those declarations that are of type
/// SpecificDecl (or a class derived from it) and that meet some
/// additional run-time criteria. This iterator is used, for
/// example, to provide access to the instance methods within an
/// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
/// Acceptable = ObjCMethodDecl::isInstanceMethod).
template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
class filtered_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current &&
(!isa<SpecificDecl>(*Current) ||
(Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
++Current;
}
public:
typedef SpecificDecl *value_type;
// TODO: Add reference and pointer typedefs (with some appropriate proxy
// type) if we ever have a need for them.
typedef void reference;
typedef void pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
filtered_decl_iterator() : Current() { }
/// filtered_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
value_type operator->() const { return cast<SpecificDecl>(*Current); }
filtered_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
filtered_decl_iterator operator++(int) {
filtered_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// @brief Add the declaration D into this context.
///
/// This routine should be invoked when the declaration D has first
/// been declared, to place D into the context where it was
/// (lexically) defined. Every declaration must be added to one
/// (and only one!) context, where it can be visited via
/// [decls_begin(), decls_end()). Once a declaration has been added
/// to its lexical context, the corresponding DeclContext owns the
/// declaration.
///
/// If D is also a NamedDecl, it will be made visible within its
/// semantic context via makeDeclVisibleInContext.
void addDecl(Decl *D);
/// @brief Add the declaration D into this context, but suppress
/// searches for external declarations with the same name.
///
/// Although analogous in function to addDecl, this removes an
/// important check. This is only useful if the Decl is being
/// added in response to an external search; in all other cases,
/// addDecl() is the right function to use.
/// See the ASTImporter for use cases.
void addDeclInternal(Decl *D);
/// @brief Add the declaration D to this context without modifying
/// any lookup tables.
///
/// This is useful for some operations in dependent contexts where
/// the semantic context might not be dependent; this basically
/// only happens with friends.
void addHiddenDecl(Decl *D);
/// @brief Removes a declaration from this context.
void removeDecl(Decl *D);
/// @brief Checks whether a declaration is in this context.
bool containsDecl(Decl *D) const;
typedef DeclContextLookupResult lookup_result;
typedef lookup_result::iterator lookup_iterator;
/// lookup - Find the declarations (if any) with the given Name in
/// this context. Returns a range of iterators that contains all of
/// the declarations with this name, with object, function, member,
/// and enumerator names preceding any tag name. Note that this
/// routine will not look into parent contexts.
lookup_result lookup(DeclarationName Name) const;
/// \brief Find the declarations with the given name that are visible
/// within this context; don't attempt to retrieve anything from an
/// external source.
lookup_result noload_lookup(DeclarationName Name);
/// \brief A simplistic name lookup mechanism that performs name lookup
/// into this declaration context without consulting the external source.
///
/// This function should almost never be used, because it subverts the
/// usual relationship between a DeclContext and the external source.
/// See the ASTImporter for the (few, but important) use cases.
///
/// FIXME: This is very inefficient; replace uses of it with uses of
/// noload_lookup.
void localUncachedLookup(DeclarationName Name,
SmallVectorImpl<NamedDecl *> &Results);
/// @brief Makes a declaration visible within this context.
///
/// This routine makes the declaration D visible to name lookup
/// within this context and, if this is a transparent context,
/// within its parent contexts up to the first enclosing
/// non-transparent context. Making a declaration visible within a
/// context does not transfer ownership of a declaration, and a
/// declaration can be visible in many contexts that aren't its
/// lexical context.
///
/// If D is a redeclaration of an existing declaration that is
/// visible from this context, as determined by
/// NamedDecl::declarationReplaces, the previous declaration will be
/// replaced with D.
void makeDeclVisibleInContext(NamedDecl *D);
/// all_lookups_iterator - An iterator that provides a view over the results
/// of looking up every possible name.
class all_lookups_iterator;
typedef llvm::iterator_range<all_lookups_iterator> lookups_range;
lookups_range lookups() const;
lookups_range noload_lookups() const;
/// \brief Iterators over all possible lookups within this context.
all_lookups_iterator lookups_begin() const;
all_lookups_iterator lookups_end() const;
/// \brief Iterators over all possible lookups within this context that are
/// currently loaded; don't attempt to retrieve anything from an external
/// source.
all_lookups_iterator noload_lookups_begin() const;
all_lookups_iterator noload_lookups_end() const;
struct udir_iterator;
typedef llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
std::random_access_iterator_tag,
UsingDirectiveDecl *> udir_iterator_base;
struct udir_iterator : udir_iterator_base {
udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
UsingDirectiveDecl *operator*() const;
};
typedef llvm::iterator_range<udir_iterator> udir_range;
udir_range using_directives() const;
// These are all defined in DependentDiagnostic.h.
class ddiag_iterator;
typedef llvm::iterator_range<DeclContext::ddiag_iterator> ddiag_range;
inline ddiag_range ddiags() const;
// Low-level accessors
/// \brief Mark that there are external lexical declarations that we need
/// to include in our lookup table (and that are not available as external
/// visible lookups). These extra lookup results will be found by walking
/// the lexical declarations of this context. This should be used only if
/// setHasExternalLexicalStorage() has been called on any decl context for
/// which this is the primary context.
void setMustBuildLookupTable() {
assert(this == getPrimaryContext() &&
"should only be called on primary context");
HasLazyExternalLexicalLookups = true;
}
/// \brief Retrieve the internal representation of the lookup structure.
/// This may omit some names if we are lazily building the structure.
StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
/// \brief Ensure the lookup structure is fully-built and return it.
StoredDeclsMap *buildLookup();
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are lexically in this context.
bool hasExternalLexicalStorage() const { return ExternalLexicalStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations lexically in this context.
void setHasExternalLexicalStorage(bool ES = true) {
ExternalLexicalStorage = ES;
}
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are visible in this context.
bool hasExternalVisibleStorage() const { return ExternalVisibleStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations visible in this context.
void setHasExternalVisibleStorage(bool ES = true) {
ExternalVisibleStorage = ES;
if (ES && LookupPtr)
NeedToReconcileExternalVisibleStorage = true;
}
/// \brief Determine whether the given declaration is stored in the list of
/// declarations lexically within this context.
bool isDeclInLexicalTraversal(const Decl *D) const {
return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
D == LastDecl);
}
static bool classof(const Decl *D);
static bool classof(const DeclContext *D) { return true; }
void dumpDeclContext() const;
void dumpLookups() const;
void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false) const;
private:
void reconcileExternalVisibleStorage() const;
bool LoadLexicalDeclsFromExternalStorage() const;
/// @brief Makes a declaration visible within this context, but
/// suppresses searches for external declarations with the same
/// name.
///
/// Analogous to makeDeclVisibleInContext, but for the exclusive
/// use of addDeclInternal().
void makeDeclVisibleInContextInternal(NamedDecl *D);
friend class DependentDiagnostic;
StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
void buildLookupImpl(DeclContext *DCtx, bool Internal);
void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
bool Rediscoverable);
void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
};
inline bool Decl::isTemplateParameter() const {
return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
getKind() == TemplateTemplateParm;
}
// Specialization selected when ToTy is not a known subclass of DeclContext.
template <class ToTy,
bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
struct cast_convert_decl_context {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
}
};
// Specialization selected when ToTy is a known subclass of DeclContext.
template <class ToTy>
struct cast_convert_decl_context<ToTy, true> {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Val);
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Val);
}
};
} // end clang.
namespace llvm {
/// isa<T>(DeclContext*)
template <typename To>
struct isa_impl<To, ::clang::DeclContext> {
static bool doit(const ::clang::DeclContext &Val) {
return To::classofKind(Val.getDeclKind());
}
};
/// cast<T>(DeclContext*)
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static const ToTy &doit(const ::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
static ToTy &doit(::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext*, const ::clang::DeclContext*> {
static const ToTy *doit(const ::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
static ToTy *doit(::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
/// Implement cast_convert_val for Decl -> DeclContext conversions.
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
static ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
static ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
static const ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
static const ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/HlslBuiltinTypeDeclBuilder.h | ///////////////////////////////////////////////////////////////////////////////
// //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
///////////////////////////////////////////////////////////////////////////////
#ifndef LLVM_CLANG_AST_HLSLBUILTINTYPEDECLBUILDER_H
#define LLVM_CLANG_AST_HLSLBUILTINTYPEDECLBUILDER_H
#include "clang/AST/Decl.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
namespace clang {
class ASTContext;
class DeclContext;
class CXXRecordDecl;
class ClassTemplateDecl;
class NamedDecl;
} // namespace clang
namespace hlsl {
// Helper to declare a builtin HLSL type in the clang AST with minimal
// boilerplate.
class BuiltinTypeDeclBuilder final {
public:
BuiltinTypeDeclBuilder(
clang::DeclContext *declContext, llvm::StringRef name,
clang::TagDecl::TagKind tagKind = clang::TagDecl::TagKind::TTK_Class);
clang::TemplateTypeParmDecl *
addTypeTemplateParam(llvm::StringRef name,
clang::TypeSourceInfo *defaultValue = nullptr,
bool parameterPack = false);
clang::TemplateTypeParmDecl *
addTypeTemplateParam(llvm::StringRef name, clang::QualType defaultValue);
clang::NonTypeTemplateParmDecl *
addIntegerTemplateParam(llvm::StringRef name, clang::QualType type,
llvm::Optional<int64_t> defaultValue = llvm::None);
void startDefinition();
clang::FieldDecl *
addField(llvm::StringRef name, clang::QualType type,
clang::AccessSpecifier access = clang::AccessSpecifier::AS_private);
clang::CXXRecordDecl *completeDefinition();
clang::CXXRecordDecl *getRecordDecl() const { return m_recordDecl; }
clang::ClassTemplateDecl *getTemplateDecl() const;
private:
clang::CXXRecordDecl *m_recordDecl = nullptr;
clang::ClassTemplateDecl *m_templateDecl = nullptr;
llvm::SmallVector<clang::NamedDecl *, 2> m_templateParams;
};
} // namespace hlsl
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/DeclTemplate.h | //===-- DeclTemplate.h - Classes for representing C++ templates -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the C++ template declaration subclasses.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLTEMPLATE_H
#define LLVM_CLANG_AST_DECLTEMPLATE_H
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/TemplateBase.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/Compiler.h"
#include <limits>
namespace clang {
class TemplateParameterList;
class TemplateDecl;
class RedeclarableTemplateDecl;
class FunctionTemplateDecl;
class ClassTemplateDecl;
class ClassTemplatePartialSpecializationDecl;
class TemplateTypeParmDecl;
class NonTypeTemplateParmDecl;
class TemplateTemplateParmDecl;
class TypeAliasTemplateDecl;
class VarTemplateDecl;
class VarTemplatePartialSpecializationDecl;
/// \brief Stores a template parameter of any kind.
typedef llvm::PointerUnion3<TemplateTypeParmDecl*, NonTypeTemplateParmDecl*,
TemplateTemplateParmDecl*> TemplateParameter;
/// \brief Stores a list of template parameters for a TemplateDecl and its
/// derived classes.
class TemplateParameterList {
/// The location of the 'template' keyword.
SourceLocation TemplateLoc;
/// The locations of the '<' and '>' angle brackets.
SourceLocation LAngleLoc, RAngleLoc;
/// The number of template parameters in this template
/// parameter list.
unsigned NumParams : 31;
/// Whether this template parameter list contains an unexpanded parameter
/// pack.
unsigned ContainsUnexpandedParameterPack : 1;
protected:
TemplateParameterList(SourceLocation TemplateLoc, SourceLocation LAngleLoc,
NamedDecl **Params, unsigned NumParams,
SourceLocation RAngleLoc);
public:
static TemplateParameterList *Create(const ASTContext &C,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
NamedDecl **Params,
unsigned NumParams,
SourceLocation RAngleLoc);
/// \brief Iterates through the template parameters in this list.
typedef NamedDecl** iterator;
/// \brief Iterates through the template parameters in this list.
typedef NamedDecl* const* const_iterator;
iterator begin() { return reinterpret_cast<NamedDecl **>(this + 1); }
const_iterator begin() const {
return reinterpret_cast<NamedDecl * const *>(this + 1);
}
iterator end() { return begin() + NumParams; }
const_iterator end() const { return begin() + NumParams; }
unsigned size() const { return NumParams; }
ArrayRef<NamedDecl*> asArray() {
return llvm::makeArrayRef(begin(), end());
}
ArrayRef<const NamedDecl*> asArray() const {
return llvm::makeArrayRef(begin(), size());
}
NamedDecl* getParam(unsigned Idx) {
assert(Idx < size() && "Template parameter index out-of-range");
return begin()[Idx];
}
const NamedDecl* getParam(unsigned Idx) const {
assert(Idx < size() && "Template parameter index out-of-range");
return begin()[Idx];
}
/// \brief Returns the minimum number of arguments needed to form a
/// template specialization.
///
/// This may be fewer than the number of template parameters, if some of
/// the parameters have default arguments or if there is a parameter pack.
unsigned getMinRequiredArguments() const;
/// \brief Get the depth of this template parameter list in the set of
/// template parameter lists.
///
/// The first template parameter list in a declaration will have depth 0,
/// the second template parameter list will have depth 1, etc.
unsigned getDepth() const;
/// \brief Determine whether this template parameter list contains an
/// unexpanded parameter pack.
bool containsUnexpandedParameterPack() const {
return ContainsUnexpandedParameterPack;
}
SourceLocation getTemplateLoc() const { return TemplateLoc; }
SourceLocation getLAngleLoc() const { return LAngleLoc; }
SourceLocation getRAngleLoc() const { return RAngleLoc; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(TemplateLoc, RAngleLoc);
}
};
/// \brief Stores a list of template parameters for a TemplateDecl and its
/// derived classes. Suitable for creating on the stack.
template<size_t N>
class FixedSizeTemplateParameterList : public TemplateParameterList {
NamedDecl *Params[N];
public:
FixedSizeTemplateParameterList(SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
NamedDecl **Params, SourceLocation RAngleLoc) :
TemplateParameterList(TemplateLoc, LAngleLoc, Params, N, RAngleLoc) {
}
};
/// \brief A template argument list.
class TemplateArgumentList {
/// \brief The template argument list.
///
/// The integer value will be non-zero to indicate that this
/// template argument list does own the pointer.
llvm::PointerIntPair<const TemplateArgument *, 1> Arguments;
/// \brief The number of template arguments in this template
/// argument list.
unsigned NumArguments;
TemplateArgumentList(const TemplateArgumentList &Other) = delete;
void operator=(const TemplateArgumentList &Other) = delete;
TemplateArgumentList(const TemplateArgument *Args, unsigned NumArgs,
bool Owned)
: Arguments(Args, Owned), NumArguments(NumArgs) { }
public:
/// \brief Type used to indicate that the template argument list itself is a
/// stack object. It does not own its template arguments.
enum OnStackType { OnStack };
/// \brief Create a new template argument list that copies the given set of
/// template arguments.
static TemplateArgumentList *CreateCopy(ASTContext &Context,
const TemplateArgument *Args,
unsigned NumArgs);
/// \brief Construct a new, temporary template argument list on the stack.
///
/// The template argument list does not own the template arguments
/// provided.
explicit TemplateArgumentList(OnStackType,
const TemplateArgument *Args, unsigned NumArgs)
: Arguments(Args, false), NumArguments(NumArgs) { }
/// \brief Produces a shallow copy of the given template argument list.
///
/// This operation assumes that the input argument list outlives it.
/// This takes the list as a pointer to avoid looking like a copy
/// constructor, since this really really isn't safe to use that
/// way.
explicit TemplateArgumentList(const TemplateArgumentList *Other)
: Arguments(Other->data(), false), NumArguments(Other->size()) { }
/// \brief Retrieve the template argument at a given index.
const TemplateArgument &get(unsigned Idx) const {
assert(Idx < NumArguments && "Invalid template argument index");
return data()[Idx];
}
/// \brief Retrieve the template argument at a given index.
const TemplateArgument &operator[](unsigned Idx) const { return get(Idx); }
/// \brief Produce this as an array ref.
ArrayRef<TemplateArgument> asArray() const {
return llvm::makeArrayRef(data(), size());
}
/// \brief Retrieve the number of template arguments in this
/// template argument list.
unsigned size() const { return NumArguments; }
/// \brief Retrieve a pointer to the template argument list.
const TemplateArgument *data() const {
return Arguments.getPointer();
}
};
void *allocateDefaultArgStorageChain(const ASTContext &C);
/// Storage for a default argument. This is conceptually either empty, or an
/// argument value, or a pointer to a previous declaration that had a default
/// argument.
///
/// However, this is complicated by modules: while we require all the default
/// arguments for a template to be equivalent, there may be more than one, and
/// we need to track all the originating parameters to determine if the default
/// argument is visible.
template<typename ParmDecl, typename ArgType>
class DefaultArgStorage {
/// Storage for both the value *and* another parameter from which we inherit
/// the default argument. This is used when multiple default arguments for a
/// parameter are merged together from different modules.
struct Chain {
ParmDecl *PrevDeclWithDefaultArg;
ArgType Value;
};
static_assert(sizeof(Chain) == sizeof(void *) * 2,
"non-pointer argument type?");
llvm::PointerUnion3<ArgType, ParmDecl*, Chain*> ValueOrInherited;
static ParmDecl *getParmOwningDefaultArg(ParmDecl *Parm) {
const DefaultArgStorage &Storage = Parm->getDefaultArgStorage();
if (auto *Prev = Storage.ValueOrInherited.template dyn_cast<ParmDecl*>())
Parm = Prev;
assert(!Parm->getDefaultArgStorage()
.ValueOrInherited.template is<ParmDecl *>() &&
"should only be one level of indirection");
return Parm;
}
public:
DefaultArgStorage() : ValueOrInherited(ArgType()) {}
/// Determine whether there is a default argument for this parameter.
bool isSet() const { return !ValueOrInherited.isNull(); }
/// Determine whether the default argument for this parameter was inherited
/// from a previous declaration of the same entity.
bool isInherited() const { return ValueOrInherited.template is<ParmDecl*>(); }
/// Get the default argument's value. This does not consider whether the
/// default argument is visible.
ArgType get() const {
const DefaultArgStorage *Storage = this;
if (auto *Prev = ValueOrInherited.template dyn_cast<ParmDecl*>())
Storage = &Prev->getDefaultArgStorage();
if (auto *C = Storage->ValueOrInherited.template dyn_cast<Chain*>())
return C->Value;
return Storage->ValueOrInherited.template get<ArgType>();
}
/// Get the parameter from which we inherit the default argument, if any.
/// This is the parameter on which the default argument was actually written.
const ParmDecl *getInheritedFrom() const {
if (auto *D = ValueOrInherited.template dyn_cast<ParmDecl*>())
return D;
if (auto *C = ValueOrInherited.template dyn_cast<Chain*>())
return C->PrevDeclWithDefaultArg;
return nullptr;
}
/// Set the default argument.
void set(ArgType Arg) {
assert(!isSet() && "default argument already set");
ValueOrInherited = Arg;
}
/// Set that the default argument was inherited from another parameter.
void setInherited(const ASTContext &C, ParmDecl *InheritedFrom) {
assert(!isInherited() && "default argument already inherited");
InheritedFrom = getParmOwningDefaultArg(InheritedFrom);
if (!isSet())
ValueOrInherited = InheritedFrom;
else
ValueOrInherited = new (allocateDefaultArgStorageChain(C))
Chain{InheritedFrom, ValueOrInherited.template get<ArgType>()};
}
/// Remove the default argument, even if it was inherited.
void clear() {
ValueOrInherited = ArgType();
}
};
//===----------------------------------------------------------------------===//
// Kinds of Templates
//===----------------------------------------------------------------------===//
/// \brief The base class of all kinds of template declarations (e.g.,
/// class, function, etc.).
///
/// The TemplateDecl class stores the list of template parameters and a
/// reference to the templated scoped declaration: the underlying AST node.
class TemplateDecl : public NamedDecl {
void anchor() override;
protected:
// This is probably never used.
TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName Name)
: NamedDecl(DK, DC, L, Name), TemplatedDecl(nullptr),
TemplateParams(nullptr) {}
// Construct a template decl with the given name and parameters.
// Used when there is not templated element (tt-params).
TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params)
: NamedDecl(DK, DC, L, Name), TemplatedDecl(nullptr),
TemplateParams(Params) {}
// Construct a template decl with name, parameters, and templated element.
TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: NamedDecl(DK, DC, L, Name), TemplatedDecl(Decl),
TemplateParams(Params) { }
public:
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
/// Get the underlying, templated declaration.
NamedDecl *getTemplatedDecl() const { return TemplatedDecl; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstTemplate && K <= lastTemplate;
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(TemplateParams->getTemplateLoc(),
TemplatedDecl->getSourceRange().getEnd());
}
protected:
NamedDecl *TemplatedDecl;
TemplateParameterList* TemplateParams;
public:
/// \brief Initialize the underlying templated declaration and
/// template parameters.
void init(NamedDecl *templatedDecl, TemplateParameterList* templateParams) {
assert(!TemplatedDecl && "TemplatedDecl already set!");
assert(!TemplateParams && "TemplateParams already set!");
TemplatedDecl = templatedDecl;
TemplateParams = templateParams;
}
};
/// \brief Provides information about a function template specialization,
/// which is a FunctionDecl that has been explicitly specialization or
/// instantiated from a function template.
class FunctionTemplateSpecializationInfo : public llvm::FoldingSetNode {
FunctionTemplateSpecializationInfo(FunctionDecl *FD,
FunctionTemplateDecl *Template,
TemplateSpecializationKind TSK,
const TemplateArgumentList *TemplateArgs,
const ASTTemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation POI)
: Function(FD),
Template(Template, TSK - 1),
TemplateArguments(TemplateArgs),
TemplateArgumentsAsWritten(TemplateArgsAsWritten),
PointOfInstantiation(POI) { }
public:
static FunctionTemplateSpecializationInfo *
Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template,
TemplateSpecializationKind TSK,
const TemplateArgumentList *TemplateArgs,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation POI);
/// \brief The function template specialization that this structure
/// describes.
FunctionDecl *Function;
/// \brief The function template from which this function template
/// specialization was generated.
///
/// The two bits contain the top 4 values of TemplateSpecializationKind.
llvm::PointerIntPair<FunctionTemplateDecl *, 2> Template;
/// \brief The template arguments used to produce the function template
/// specialization from the function template.
const TemplateArgumentList *TemplateArguments;
/// \brief The template arguments as written in the sources, if provided.
const ASTTemplateArgumentListInfo *TemplateArgumentsAsWritten;
/// \brief The point at which this function template specialization was
/// first instantiated.
SourceLocation PointOfInstantiation;
/// \brief Retrieve the template from which this function was specialized.
FunctionTemplateDecl *getTemplate() const { return Template.getPointer(); }
/// \brief Determine what kind of template specialization this is.
TemplateSpecializationKind getTemplateSpecializationKind() const {
return (TemplateSpecializationKind)(Template.getInt() + 1);
}
bool isExplicitSpecialization() const {
return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
}
/// \brief True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
switch (getTemplateSpecializationKind()) {
case TSK_ExplicitSpecialization:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
return false;
}
llvm_unreachable("bad template specialization kind");
}
/// \brief Set the template specialization kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
assert(TSK != TSK_Undeclared &&
"Cannot encode TSK_Undeclared for a function template specialization");
Template.setInt(TSK - 1);
}
/// \brief Retrieve the first point of instantiation of this function
/// template specialization.
///
/// The point of instantiation may be an invalid source location if this
/// function has yet to be instantiated.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
/// \brief Set the (first) point of instantiation of this function template
/// specialization.
void setPointOfInstantiation(SourceLocation POI) {
PointOfInstantiation = POI;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, TemplateArguments->asArray(),
Function->getASTContext());
}
static void
Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (unsigned Arg = 0; Arg != TemplateArgs.size(); ++Arg)
TemplateArgs[Arg].Profile(ID, Context);
}
};
/// \brief Provides information a specialization of a member of a class
/// template, which may be a member function, static data member,
/// member class or member enumeration.
class MemberSpecializationInfo {
// The member declaration from which this member was instantiated, and the
// manner in which the instantiation occurred (in the lower two bits).
llvm::PointerIntPair<NamedDecl *, 2> MemberAndTSK;
// The point at which this member was first instantiated.
SourceLocation PointOfInstantiation;
public:
explicit
MemberSpecializationInfo(NamedDecl *IF, TemplateSpecializationKind TSK,
SourceLocation POI = SourceLocation())
: MemberAndTSK(IF, TSK - 1), PointOfInstantiation(POI) {
assert(TSK != TSK_Undeclared &&
"Cannot encode undeclared template specializations for members");
}
/// \brief Retrieve the member declaration from which this member was
/// instantiated.
NamedDecl *getInstantiatedFrom() const { return MemberAndTSK.getPointer(); }
/// \brief Determine what kind of template specialization this is.
TemplateSpecializationKind getTemplateSpecializationKind() const {
return (TemplateSpecializationKind)(MemberAndTSK.getInt() + 1);
}
bool isExplicitSpecialization() const {
return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
}
/// \brief Set the template specialization kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
assert(TSK != TSK_Undeclared &&
"Cannot encode undeclared template specializations for members");
MemberAndTSK.setInt(TSK - 1);
}
/// \brief Retrieve the first point of instantiation of this member.
/// If the point of instantiation is an invalid location, then this member
/// has not yet been instantiated.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
/// \brief Set the first point of instantiation.
void setPointOfInstantiation(SourceLocation POI) {
PointOfInstantiation = POI;
}
};
/// \brief Provides information about a dependent function-template
/// specialization declaration.
///
/// Since explicit function template specialization and instantiation
/// declarations can only appear in namespace scope, and you can only
/// specialize a member of a fully-specialized class, the only way to
/// get one of these is in a friend declaration like the following:
///
/// \code
/// template \<class T> void foo(T);
/// template \<class T> class A {
/// friend void foo<>(T);
/// };
/// \endcode
class DependentFunctionTemplateSpecializationInfo {
struct CA {
/// The number of potential template candidates.
unsigned NumTemplates;
/// The number of template arguments.
unsigned NumArgs;
};
union {
// Force sizeof to be a multiple of sizeof(void*) so that the
// trailing data is aligned.
void *Aligner;
struct CA d;
};
/// The locations of the left and right angle brackets.
SourceRange AngleLocs;
FunctionTemplateDecl * const *getTemplates() const {
return reinterpret_cast<FunctionTemplateDecl*const*>(this+1);
}
public:
DependentFunctionTemplateSpecializationInfo(
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
/// \brief Returns the number of function templates that this might
/// be a specialization of.
unsigned getNumTemplates() const {
return d.NumTemplates;
}
/// \brief Returns the i'th template candidate.
FunctionTemplateDecl *getTemplate(unsigned I) const {
assert(I < getNumTemplates() && "template index out of range");
return getTemplates()[I];
}
/// \brief Returns the explicit template arguments that were given.
const TemplateArgumentLoc *getTemplateArgs() const {
return reinterpret_cast<const TemplateArgumentLoc*>(
&getTemplates()[getNumTemplates()]);
}
/// \brief Returns the number of explicit template arguments that were given.
unsigned getNumTemplateArgs() const {
return d.NumArgs;
}
/// \brief Returns the nth template argument.
const TemplateArgumentLoc &getTemplateArg(unsigned I) const {
assert(I < getNumTemplateArgs() && "template arg index out of range");
return getTemplateArgs()[I];
}
SourceLocation getLAngleLoc() const {
return AngleLocs.getBegin();
}
SourceLocation getRAngleLoc() const {
return AngleLocs.getEnd();
}
};
/// Declaration of a redeclarable template.
class RedeclarableTemplateDecl : public TemplateDecl,
public Redeclarable<RedeclarableTemplateDecl>
{
typedef Redeclarable<RedeclarableTemplateDecl> redeclarable_base;
RedeclarableTemplateDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
RedeclarableTemplateDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
RedeclarableTemplateDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
protected:
template <typename EntryType> struct SpecEntryTraits {
typedef EntryType DeclType;
static DeclType *getDecl(EntryType *D) {
return D;
}
static ArrayRef<TemplateArgument> getTemplateArgs(EntryType *D) {
return D->getTemplateArgs().asArray();
}
};
template <typename EntryType, typename SETraits = SpecEntryTraits<EntryType>,
typename DeclType = typename SETraits::DeclType>
struct SpecIterator
: llvm::iterator_adaptor_base<
SpecIterator<EntryType, SETraits, DeclType>,
typename llvm::FoldingSetVector<EntryType>::iterator,
typename std::iterator_traits<typename llvm::FoldingSetVector<
EntryType>::iterator>::iterator_category,
DeclType *, ptrdiff_t, DeclType *, DeclType *> {
SpecIterator() {}
explicit SpecIterator(
typename llvm::FoldingSetVector<EntryType>::iterator SetIter)
: SpecIterator::iterator_adaptor_base(std::move(SetIter)) {}
DeclType *operator*() const {
return SETraits::getDecl(&*this->I)->getMostRecentDecl();
}
DeclType *operator->() const { return **this; }
};
template <typename EntryType>
static SpecIterator<EntryType>
makeSpecIterator(llvm::FoldingSetVector<EntryType> &Specs, bool isEnd) {
return SpecIterator<EntryType>(isEnd ? Specs.end() : Specs.begin());
}
template <class EntryType> typename SpecEntryTraits<EntryType>::DeclType*
findSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
ArrayRef<TemplateArgument> Args, void *&InsertPos);
template <class Derived, class EntryType>
void addSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
EntryType *Entry, void *InsertPos);
struct CommonBase {
CommonBase() : InstantiatedFromMember(nullptr, false) { }
/// \brief The template from which this was most
/// directly instantiated (or null).
///
/// The boolean value indicates whether this template
/// was explicitly specialized.
llvm::PointerIntPair<RedeclarableTemplateDecl*, 1, bool>
InstantiatedFromMember;
};
/// \brief Pointer to the common data shared by all declarations of this
/// template.
mutable CommonBase *Common;
/// \brief Retrieves the "common" pointer shared by all (re-)declarations of
/// the same template. Calling this routine may implicitly allocate memory
/// for the common pointer.
CommonBase *getCommonPtr() const;
virtual CommonBase *newCommon(ASTContext &C) const = 0;
// Construct a template decl with name, parameters, and templated element.
RedeclarableTemplateDecl(Kind DK, ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params, NamedDecl *Decl)
: TemplateDecl(DK, DC, L, Name, Params, Decl), redeclarable_base(C),
Common() {}
public:
template <class decl_type> friend class RedeclarableTemplate;
/// \brief Retrieves the canonical declaration of this template.
RedeclarableTemplateDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const RedeclarableTemplateDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// \brief Determines whether this template was a specialization of a
/// member template.
///
/// In the following example, the function template \c X<int>::f and the
/// member template \c X<int>::Inner are member specializations.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> void f(T, U);
/// template<typename U> struct Inner;
/// };
///
/// template<> template<typename T>
/// void X<int>::f(int, T);
/// template<> template<typename T>
/// struct X<int>::Inner { /* ... */ };
/// \endcode
bool isMemberSpecialization() const {
return getCommonPtr()->InstantiatedFromMember.getInt();
}
/// \brief Note that this member template is a specialization.
void setMemberSpecialization() {
assert(getCommonPtr()->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
getCommonPtr()->InstantiatedFromMember.setInt(true);
}
/// \brief Retrieve the member template from which this template was
/// instantiated, or NULL if this template was not instantiated from a
/// member template.
///
/// A template is instantiated from a member template when the member
/// template itself is part of a class template (or member thereof). For
/// example, given
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> void f(T, U);
/// };
///
/// void test(X<int> x) {
/// x.f(1, 'a');
/// };
/// \endcode
///
/// \c X<int>::f is a FunctionTemplateDecl that describes the function
/// template
///
/// \code
/// template<typename U> void X<int>::f(int, U);
/// \endcode
///
/// which was itself created during the instantiation of \c X<int>. Calling
/// getInstantiatedFromMemberTemplate() on this FunctionTemplateDecl will
/// retrieve the FunctionTemplateDecl for the original template \c f within
/// the class template \c X<T>, i.e.,
///
/// \code
/// template<typename T>
/// template<typename U>
/// void X<T>::f(T, U);
/// \endcode
RedeclarableTemplateDecl *getInstantiatedFromMemberTemplate() const {
return getCommonPtr()->InstantiatedFromMember.getPointer();
}
void setInstantiatedFromMemberTemplate(RedeclarableTemplateDecl *TD) {
assert(!getCommonPtr()->InstantiatedFromMember.getPointer());
getCommonPtr()->InstantiatedFromMember.setPointer(TD);
}
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstRedeclarableTemplate && K <= lastRedeclarableTemplate;
}
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
template <> struct RedeclarableTemplateDecl::
SpecEntryTraits<FunctionTemplateSpecializationInfo> {
typedef FunctionDecl DeclType;
static DeclType *getDecl(FunctionTemplateSpecializationInfo *I) {
return I->Function;
}
static ArrayRef<TemplateArgument>
getTemplateArgs(FunctionTemplateSpecializationInfo *I) {
return I->TemplateArguments->asArray();
}
};
/// Declaration of a template function.
class FunctionTemplateDecl : public RedeclarableTemplateDecl {
static void DeallocateCommon(void *Ptr);
protected:
/// \brief Data that is common to all of the declarations of a given
/// function template.
struct Common : CommonBase {
Common() : InjectedArgs(), LazySpecializations() { }
/// \brief The function template specializations for this function
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> Specializations;
/// \brief The set of "injected" template arguments used within this
/// function template.
///
/// This pointer refers to the template arguments (there are as
/// many template arguments as template parameaters) for the function
/// template, and is allocated lazily, since most function templates do not
/// require the use of this information.
TemplateArgument *InjectedArgs;
/// \brief If non-null, points to an array of specializations known only
/// by their external declaration IDs.
///
/// The first value in the array is the number of of specializations
/// that follow.
uint32_t *LazySpecializations;
};
FunctionTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(FunctionTemplate, C, DC, L, Name, Params,
Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
friend class FunctionDecl;
/// \brief Retrieve the set of function template specializations of this
/// function template.
llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> &
getSpecializations() const;
/// \brief Add a specialization of this function template.
///
/// \param InsertPos Insert position in the FoldingSetVector, must have been
/// retrieved by an earlier call to findSpecialization().
void addSpecialization(FunctionTemplateSpecializationInfo* Info,
void *InsertPos);
public:
/// \brief Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// Get the underlying function declaration of the template.
FunctionDecl *getTemplatedDecl() const {
return static_cast<FunctionDecl*>(TemplatedDecl);
}
/// Returns whether this template declaration defines the primary
/// pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
/// \brief Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
FunctionDecl *findSpecialization(ArrayRef<TemplateArgument> Args,
void *&InsertPos);
FunctionTemplateDecl *getCanonicalDecl() override {
return cast<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const FunctionTemplateDecl *getCanonicalDecl() const {
return cast<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// \brief Retrieve the previous declaration of this function template, or
/// NULL if no such declaration exists.
FunctionTemplateDecl *getPreviousDecl() {
return cast_or_null<FunctionTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
/// \brief Retrieve the previous declaration of this function template, or
/// NULL if no such declaration exists.
const FunctionTemplateDecl *getPreviousDecl() const {
return cast_or_null<FunctionTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
FunctionTemplateDecl *getMostRecentDecl() {
return cast<FunctionTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)
->getMostRecentDecl());
}
const FunctionTemplateDecl *getMostRecentDecl() const {
return const_cast<FunctionTemplateDecl*>(this)->getMostRecentDecl();
}
FunctionTemplateDecl *getInstantiatedFromMemberTemplate() {
return cast_or_null<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
typedef SpecIterator<FunctionTemplateSpecializationInfo> spec_iterator;
typedef llvm::iterator_range<spec_iterator> spec_range;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
/// \brief Retrieve the "injected" template arguments that correspond to the
/// template parameters of this function template.
///
/// Although the C++ standard has no notion of the "injected" template
/// arguments for a function template, the notion is convenient when
/// we need to perform substitutions inside the definition of a function
/// template.
ArrayRef<TemplateArgument> getInjectedTemplateArgs();
/// \brief Create a function template node.
static FunctionTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl);
/// \brief Create an empty function template node.
static FunctionTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == FunctionTemplate; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
//===----------------------------------------------------------------------===//
// Kinds of Template Parameters
// //
///////////////////////////////////////////////////////////////////////////////
/// \brief Defines the position of a template parameter within a template
/// parameter list.
///
/// Because template parameter can be listed
/// sequentially for out-of-line template members, each template parameter is
/// given a Depth - the nesting of template parameter scopes - and a Position -
/// the occurrence within the parameter list.
/// This class is inheritedly privately by different kinds of template
/// parameters and is not part of the Decl hierarchy. Just a facility.
class TemplateParmPosition {
TemplateParmPosition() = delete;
protected:
TemplateParmPosition(unsigned D, unsigned P)
: Depth(D), Position(P)
{ }
// FIXME: These probably don't need to be ints. int:5 for depth, int:8 for
// position? Maybe?
unsigned Depth;
unsigned Position;
public:
/// Get the nesting depth of the template parameter.
unsigned getDepth() const { return Depth; }
void setDepth(unsigned D) { Depth = D; }
/// Get the position of the template parameter within its parameter list.
unsigned getPosition() const { return Position; }
void setPosition(unsigned P) { Position = P; }
/// Get the index of the template parameter within its parameter list.
unsigned getIndex() const { return Position; }
};
/// \brief Declaration of a template type parameter.
///
/// For example, "T" in
/// \code
/// template<typename T> class vector;
/// \endcode
class TemplateTypeParmDecl : public TypeDecl {
/// \brief Whether this template type parameter was declaration with
/// the 'typename' keyword.
///
/// If false, it was declared with the 'class' keyword.
bool Typename : 1;
/// \brief The default template argument, if any.
typedef DefaultArgStorage<TemplateTypeParmDecl, TypeSourceInfo *>
DefArgStorage;
DefArgStorage DefaultArgument;
TemplateTypeParmDecl(DeclContext *DC, SourceLocation KeyLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
bool Typename)
: TypeDecl(TemplateTypeParm, DC, IdLoc, Id, KeyLoc), Typename(Typename),
DefaultArgument() { }
/// Sema creates these on the stack during auto type deduction.
friend class Sema;
public:
static TemplateTypeParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation KeyLoc,
SourceLocation NameLoc,
unsigned D, unsigned P,
IdentifierInfo *Id, bool Typename,
bool ParameterPack);
static TemplateTypeParmDecl *CreateDeserialized(const ASTContext &C,
unsigned ID);
/// \brief Whether this template type parameter was declared with
/// the 'typename' keyword.
///
/// If not, it was declared with the 'class' keyword.
bool wasDeclaredWithTypename() const { return Typename; }
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// \brief Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// \brief Retrieve the default argument, if any.
QualType getDefaultArgument() const {
return DefaultArgument.get()->getType();
}
/// \brief Retrieves the default argument's source information, if any.
TypeSourceInfo *getDefaultArgumentInfo() const {
return DefaultArgument.get();
}
/// \brief Retrieves the location of the default argument declaration.
SourceLocation getDefaultArgumentLoc() const;
/// \brief Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// \brief Set the default argument for this template parameter.
void setDefaultArgument(TypeSourceInfo *DefArg) {
DefaultArgument.set(DefArg);
}
/// \brief Set that this default argument was inherited from another
/// parameter.
void setInheritedDefaultArgument(const ASTContext &C,
TemplateTypeParmDecl *Prev) {
DefaultArgument.setInherited(C, Prev);
}
/// \brief Removes the default argument of this template parameter.
void removeDefaultArgument() {
DefaultArgument.clear();
}
/// \brief Set whether this template type parameter was declared with
/// the 'typename' or 'class' keyword.
void setDeclaredWithTypename(bool withTypename) { Typename = withTypename; }
/// \brief Retrieve the depth of the template parameter.
unsigned getDepth() const;
/// \brief Retrieve the index of the template parameter.
unsigned getIndex() const;
/// \brief Returns whether this is a parameter pack.
bool isParameterPack() const;
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TemplateTypeParm; }
};
/// NonTypeTemplateParmDecl - Declares a non-type template parameter,
/// e.g., "Size" in
/// @code
/// template<int Size> class array { };
/// @endcode
class NonTypeTemplateParmDecl
: public DeclaratorDecl, protected TemplateParmPosition {
/// \brief The default template argument, if any, and whether or not
/// it was inherited.
typedef DefaultArgStorage<NonTypeTemplateParmDecl, Expr*> DefArgStorage;
DefArgStorage DefaultArgument;
// FIXME: Collapse this into TemplateParamPosition; or, just move depth/index
// down here to save memory.
/// \brief Whether this non-type template parameter is a parameter pack.
bool ParameterPack;
/// \brief Whether this non-type template parameter is an "expanded"
/// parameter pack, meaning that its type is a pack expansion and we
/// already know the set of types that expansion expands to.
bool ExpandedParameterPack;
/// \brief The number of types in an expanded parameter pack.
unsigned NumExpandedTypes;
NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P,
IdentifierInfo *Id, QualType T,
bool ParameterPack, TypeSourceInfo *TInfo)
: DeclaratorDecl(NonTypeTemplateParm, DC, IdLoc, Id, T, TInfo, StartLoc),
TemplateParmPosition(D, P), ParameterPack(ParameterPack),
ExpandedParameterPack(false), NumExpandedTypes(0)
{ }
NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo,
const QualType *ExpandedTypes,
unsigned NumExpandedTypes,
TypeSourceInfo **ExpandedTInfos);
friend class ASTDeclReader;
public:
static NonTypeTemplateParmDecl *
Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
QualType T, bool ParameterPack, TypeSourceInfo *TInfo);
static NonTypeTemplateParmDecl *
Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
const QualType *ExpandedTypes, unsigned NumExpandedTypes,
TypeSourceInfo **ExpandedTInfos);
static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID,
unsigned NumExpandedTypes);
using TemplateParmPosition::getDepth;
using TemplateParmPosition::setDepth;
using TemplateParmPosition::getPosition;
using TemplateParmPosition::setPosition;
using TemplateParmPosition::getIndex;
SourceRange getSourceRange() const override LLVM_READONLY;
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// \brief Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// \brief Retrieve the default argument, if any.
Expr *getDefaultArgument() const { return DefaultArgument.get(); }
/// \brief Retrieve the location of the default argument, if any.
SourceLocation getDefaultArgumentLoc() const;
/// \brief Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// \brief Set the default argument for this template parameter, and
/// whether that default argument was inherited from another
/// declaration.
void setDefaultArgument(Expr *DefArg) { DefaultArgument.set(DefArg); }
void setInheritedDefaultArgument(const ASTContext &C,
NonTypeTemplateParmDecl *Parm) {
DefaultArgument.setInherited(C, Parm);
}
/// \brief Removes the default argument of this template parameter.
void removeDefaultArgument() { DefaultArgument.clear(); }
/// \brief Whether this parameter is a non-type template parameter pack.
///
/// If the parameter is a parameter pack, the type may be a
/// \c PackExpansionType. In the following example, the \c Dims parameter
/// is a parameter pack (whose type is 'unsigned').
///
/// \code
/// template<typename T, unsigned ...Dims> struct multi_array;
/// \endcode
bool isParameterPack() const { return ParameterPack; }
/// \brief Whether this parameter pack is a pack expansion.
///
/// A non-type template parameter pack is a pack expansion if its type
/// contains an unexpanded parameter pack. In this case, we will have
/// built a PackExpansionType wrapping the type.
bool isPackExpansion() const {
return ParameterPack && getType()->getAs<PackExpansionType>();
}
/// \brief Whether this parameter is a non-type template parameter pack
/// that has a known list of different types at different positions.
///
/// A parameter pack is an expanded parameter pack when the original
/// parameter pack's type was itself a pack expansion, and that expansion
/// has already been expanded. For example, given:
///
/// \code
/// template<typename ...Types>
/// struct X {
/// template<Types ...Values>
/// struct Y { /* ... */ };
/// };
/// \endcode
///
/// The parameter pack \c Values has a \c PackExpansionType as its type,
/// which expands \c Types. When \c Types is supplied with template arguments
/// by instantiating \c X, the instantiation of \c Values becomes an
/// expanded parameter pack. For example, instantiating
/// \c X<int, unsigned int> results in \c Values being an expanded parameter
/// pack with expansion types \c int and \c unsigned int.
///
/// The \c getExpansionType() and \c getExpansionTypeSourceInfo() functions
/// return the expansion types.
bool isExpandedParameterPack() const { return ExpandedParameterPack; }
/// \brief Retrieves the number of expansion types in an expanded parameter
/// pack.
unsigned getNumExpansionTypes() const {
assert(ExpandedParameterPack && "Not an expansion parameter pack");
return NumExpandedTypes;
}
/// \brief Retrieve a particular expansion type within an expanded parameter
/// pack.
QualType getExpansionType(unsigned I) const {
assert(I < NumExpandedTypes && "Out-of-range expansion type index");
void * const *TypesAndInfos = reinterpret_cast<void * const*>(this + 1);
return QualType::getFromOpaquePtr(TypesAndInfos[2*I]);
}
/// \brief Retrieve a particular expansion type source info within an
/// expanded parameter pack.
TypeSourceInfo *getExpansionTypeSourceInfo(unsigned I) const {
assert(I < NumExpandedTypes && "Out-of-range expansion type index");
void * const *TypesAndInfos = reinterpret_cast<void * const*>(this + 1);
return static_cast<TypeSourceInfo *>(TypesAndInfos[2*I+1]);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NonTypeTemplateParm; }
};
/// TemplateTemplateParmDecl - Declares a template template parameter,
/// e.g., "T" in
/// @code
/// template <template <typename> class T> class container { };
/// @endcode
/// A template template parameter is a TemplateDecl because it defines the
/// name of a template and the template parameters allowable for substitution.
class TemplateTemplateParmDecl : public TemplateDecl,
protected TemplateParmPosition
{
void anchor() override;
/// \brief The default template argument, if any.
typedef DefaultArgStorage<TemplateTemplateParmDecl, TemplateArgumentLoc *>
DefArgStorage;
DefArgStorage DefaultArgument;
/// \brief Whether this parameter is a parameter pack.
bool ParameterPack;
/// \brief Whether this template template parameter is an "expanded"
/// parameter pack, meaning that it is a pack expansion and we
/// already know the set of template parameters that expansion expands to.
bool ExpandedParameterPack;
/// \brief The number of parameters in an expanded parameter pack.
unsigned NumExpandedParams;
TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
unsigned D, unsigned P, bool ParameterPack,
IdentifierInfo *Id, TemplateParameterList *Params)
: TemplateDecl(TemplateTemplateParm, DC, L, Id, Params),
TemplateParmPosition(D, P), ParameterPack(ParameterPack),
ExpandedParameterPack(false), NumExpandedParams(0)
{ }
TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
unsigned D, unsigned P,
IdentifierInfo *Id, TemplateParameterList *Params,
unsigned NumExpansions,
TemplateParameterList * const *Expansions);
public:
static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation L, unsigned D,
unsigned P, bool ParameterPack,
IdentifierInfo *Id,
TemplateParameterList *Params);
static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation L, unsigned D,
unsigned P,
IdentifierInfo *Id,
TemplateParameterList *Params,
ArrayRef<TemplateParameterList *> Expansions);
static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID,
unsigned NumExpansions);
using TemplateParmPosition::getDepth;
using TemplateParmPosition::getPosition;
using TemplateParmPosition::getIndex;
/// \brief Whether this template template parameter is a template
/// parameter pack.
///
/// \code
/// template<template <class T> ...MetaFunctions> struct Apply;
/// \endcode
bool isParameterPack() const { return ParameterPack; }
/// \brief Whether this parameter pack is a pack expansion.
///
/// A template template parameter pack is a pack expansion if its template
/// parameter list contains an unexpanded parameter pack.
bool isPackExpansion() const {
return ParameterPack &&
getTemplateParameters()->containsUnexpandedParameterPack();
}
/// \brief Whether this parameter is a template template parameter pack that
/// has a known list of different template parameter lists at different
/// positions.
///
/// A parameter pack is an expanded parameter pack when the original parameter
/// pack's template parameter list was itself a pack expansion, and that
/// expansion has already been expanded. For exampe, given:
///
/// \code
/// template<typename...Types> struct Outer {
/// template<template<Types> class...Templates> struct Inner;
/// };
/// \endcode
///
/// The parameter pack \c Templates is a pack expansion, which expands the
/// pack \c Types. When \c Types is supplied with template arguments by
/// instantiating \c Outer, the instantiation of \c Templates is an expanded
/// parameter pack.
bool isExpandedParameterPack() const { return ExpandedParameterPack; }
/// \brief Retrieves the number of expansion template parameters in
/// an expanded parameter pack.
unsigned getNumExpansionTemplateParameters() const {
assert(ExpandedParameterPack && "Not an expansion parameter pack");
return NumExpandedParams;
}
/// \brief Retrieve a particular expansion type within an expanded parameter
/// pack.
TemplateParameterList *getExpansionTemplateParameters(unsigned I) const {
assert(I < NumExpandedParams && "Out-of-range expansion type index");
return reinterpret_cast<TemplateParameterList *const *>(this + 1)[I];
}
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// \brief Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// \brief Retrieve the default argument, if any.
const TemplateArgumentLoc &getDefaultArgument() const {
static const TemplateArgumentLoc None;
return DefaultArgument.isSet() ? *DefaultArgument.get() : None;
}
/// \brief Retrieve the location of the default argument, if any.
SourceLocation getDefaultArgumentLoc() const;
/// \brief Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// \brief Set the default argument for this template parameter, and
/// whether that default argument was inherited from another
/// declaration.
void setDefaultArgument(const ASTContext &C,
const TemplateArgumentLoc &DefArg);
void setInheritedDefaultArgument(const ASTContext &C,
TemplateTemplateParmDecl *Prev) {
DefaultArgument.setInherited(C, Prev);
}
/// \brief Removes the default argument of this template parameter.
void removeDefaultArgument() { DefaultArgument.clear(); }
SourceRange getSourceRange() const override LLVM_READONLY {
SourceLocation End = getLocation();
if (hasDefaultArgument() && !defaultArgumentWasInherited())
End = getDefaultArgument().getSourceRange().getEnd();
return SourceRange(getTemplateParameters()->getTemplateLoc(), End);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TemplateTemplateParm; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Represents a class template specialization, which refers to
/// a class template with a given set of template arguments.
///
/// Class template specializations represent both explicit
/// specialization of class templates, as in the example below, and
/// implicit instantiations of class templates.
///
/// \code
/// template<typename T> class array;
///
/// template<>
/// class array<bool> { }; // class template specialization array<bool>
/// \endcode
class ClassTemplateSpecializationDecl
: public CXXRecordDecl, public llvm::FoldingSetNode {
/// \brief Structure that stores information about a class template
/// specialization that was instantiated from a class template partial
/// specialization.
struct SpecializedPartialSpecialization {
/// \brief The class template partial specialization from which this
/// class template specialization was instantiated.
ClassTemplatePartialSpecializationDecl *PartialSpecialization;
/// \brief The template argument list deduced for the class template
/// partial specialization itself.
const TemplateArgumentList *TemplateArgs;
};
/// \brief The template that this specialization specializes
llvm::PointerUnion<ClassTemplateDecl *, SpecializedPartialSpecialization *>
SpecializedTemplate;
/// \brief Further info for explicit template specialization/instantiation.
struct ExplicitSpecializationInfo {
/// \brief The type-as-written.
TypeSourceInfo *TypeAsWritten;
/// \brief The location of the extern keyword.
SourceLocation ExternLoc;
/// \brief The location of the template keyword.
SourceLocation TemplateKeywordLoc;
ExplicitSpecializationInfo()
: TypeAsWritten(nullptr), ExternLoc(), TemplateKeywordLoc() {}
};
/// \brief Further info for explicit template specialization/instantiation.
/// Does not apply to implicit specializations.
ExplicitSpecializationInfo *ExplicitInfo;
/// \brief The template arguments used to describe this specialization.
const TemplateArgumentList *TemplateArgs;
/// \brief The point where this template was instantiated (if any)
SourceLocation PointOfInstantiation;
/// \brief The kind of specialization this declaration refers to.
/// Really a value of type TemplateSpecializationKind.
unsigned SpecializationKind : 3;
protected:
ClassTemplateSpecializationDecl(ASTContext &Context, Kind DK, TagKind TK,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc,
ClassTemplateDecl *SpecializedTemplate,
const TemplateArgument *Args,
unsigned NumArgs,
ClassTemplateSpecializationDecl *PrevDecl);
explicit ClassTemplateSpecializationDecl(ASTContext &C, Kind DK);
public:
static ClassTemplateSpecializationDecl *
Create(ASTContext &Context, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
ClassTemplateDecl *SpecializedTemplate,
const TemplateArgument *Args,
unsigned NumArgs,
ClassTemplateSpecializationDecl *PrevDecl);
static ClassTemplateSpecializationDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
// FIXME: This is broken. CXXRecordDecl::getMostRecentDecl() returns a
// different "most recent" declaration from this function for the same
// declaration, because we don't override getMostRecentDeclImpl(). But
// it's not clear that we should override that, because the most recent
// declaration as a CXXRecordDecl sometimes is the injected-class-name.
ClassTemplateSpecializationDecl *getMostRecentDecl() {
CXXRecordDecl *Recent = static_cast<CXXRecordDecl *>(
this)->getMostRecentDecl();
while (!isa<ClassTemplateSpecializationDecl>(Recent)) {
// FIXME: Does injected class name need to be in the redeclarations chain?
assert(Recent->isInjectedClassName() && Recent->getPreviousDecl());
Recent = Recent->getPreviousDecl();
}
return cast<ClassTemplateSpecializationDecl>(Recent);
}
/// \brief Retrieve the template that this specialization specializes.
ClassTemplateDecl *getSpecializedTemplate() const;
/// \brief Retrieve the template arguments of the class template
/// specialization.
const TemplateArgumentList &getTemplateArgs() const {
return *TemplateArgs;
}
/// \brief Determine the kind of specialization that this
/// declaration represents.
TemplateSpecializationKind getSpecializationKind() const {
return static_cast<TemplateSpecializationKind>(SpecializationKind);
}
bool isExplicitSpecialization() const {
return getSpecializationKind() == TSK_ExplicitSpecialization;
}
/// \brief True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
switch (getTemplateSpecializationKind()) {
case TSK_ExplicitSpecialization:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
return false;
}
llvm_unreachable("bad template specialization kind");
}
void setSpecializationKind(TemplateSpecializationKind TSK) {
SpecializationKind = TSK;
}
/// \brief Get the point of instantiation (if any), or null if none.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
void setPointOfInstantiation(SourceLocation Loc) {
// HLSL Change: comment out the following assertion
// When the HLSL type system bootstraps the typedef declarations
// to say "typedef int1x1 matrix<int, 1, 1>", the instantiation of
// the specialization has no valid location.
// assert(Loc.isValid() && "point of instantiation must be valid!");
PointOfInstantiation = Loc;
}
/// \brief If this class template specialization is an instantiation of
/// a template (rather than an explicit specialization), return the
/// class template or class template partial specialization from which it
/// was instantiated.
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
getInstantiatedFrom() const {
if (!isTemplateInstantiation(getSpecializationKind()))
return llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>();
return getSpecializedTemplateOrPartial();
}
/// \brief Retrieve the class template or class template partial
/// specialization which was specialized by this.
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
getSpecializedTemplateOrPartial() const {
if (SpecializedPartialSpecialization *PartialSpec
= SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization*>())
return PartialSpec->PartialSpecialization;
return SpecializedTemplate.get<ClassTemplateDecl*>();
}
/// \brief Retrieve the set of template arguments that should be used
/// to instantiate members of the class template or class template partial
/// specialization from which this class template specialization was
/// instantiated.
///
/// \returns For a class template specialization instantiated from the primary
/// template, this function will return the same template arguments as
/// getTemplateArgs(). For a class template specialization instantiated from
/// a class template partial specialization, this function will return the
/// deduced template arguments for the class template partial specialization
/// itself.
const TemplateArgumentList &getTemplateInstantiationArgs() const {
if (SpecializedPartialSpecialization *PartialSpec
= SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization*>())
return *PartialSpec->TemplateArgs;
return getTemplateArgs();
}
/// \brief Note that this class template specialization is actually an
/// instantiation of the given class template partial specialization whose
/// template arguments have been deduced.
void setInstantiationOf(ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgumentList *TemplateArgs) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&
"Already set to a class template partial specialization!");
SpecializedPartialSpecialization *PS
= new (getASTContext()) SpecializedPartialSpecialization();
PS->PartialSpecialization = PartialSpec;
PS->TemplateArgs = TemplateArgs;
SpecializedTemplate = PS;
}
/// \brief Note that this class template specialization is an instantiation
/// of the given class template.
void setInstantiationOf(ClassTemplateDecl *TemplDecl) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&
"Previously set to a class template partial specialization!");
SpecializedTemplate = TemplDecl;
}
/// \brief Sets the type of this specialization as it was written by
/// the user. This will be a class template specialization type.
void setTypeAsWritten(TypeSourceInfo *T) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = T;
}
/// \brief Gets the type of this specialization as it was written by
/// the user, if it was so written.
TypeSourceInfo *getTypeAsWritten() const {
return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
}
/// \brief Gets the location of the extern keyword, if present.
SourceLocation getExternLoc() const {
return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
}
/// \brief Sets the location of the extern keyword.
void setExternLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->ExternLoc = Loc;
}
/// \brief Sets the location of the template keyword.
void setTemplateKeywordLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TemplateKeywordLoc = Loc;
}
/// \brief Gets the location of the template keyword, if present.
SourceLocation getTemplateKeywordLoc() const {
return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
}
SourceRange getSourceRange() const override LLVM_READONLY;
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, TemplateArgs->asArray(), getASTContext());
}
static void
Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (unsigned Arg = 0; Arg != TemplateArgs.size(); ++Arg)
TemplateArgs[Arg].Profile(ID, Context);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstClassTemplateSpecialization &&
K <= lastClassTemplateSpecialization;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
class ClassTemplatePartialSpecializationDecl
: public ClassTemplateSpecializationDecl {
void anchor() override;
/// \brief The list of template parameters
TemplateParameterList* TemplateParams;
/// \brief The source info for the template arguments as written.
/// FIXME: redundant with TypeAsWritten?
const ASTTemplateArgumentListInfo *ArgsAsWritten;
/// \brief The class template partial specialization from which this
/// class template partial specialization was instantiated.
///
/// The boolean value will be true to indicate that this class template
/// partial specialization was specialized at this level.
llvm::PointerIntPair<ClassTemplatePartialSpecializationDecl *, 1, bool>
InstantiatedFromMember;
ClassTemplatePartialSpecializationDecl(ASTContext &Context, TagKind TK,
DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc,
TemplateParameterList *Params,
ClassTemplateDecl *SpecializedTemplate,
const TemplateArgument *Args,
unsigned NumArgs,
const ASTTemplateArgumentListInfo *ArgsAsWritten,
ClassTemplatePartialSpecializationDecl *PrevDecl);
ClassTemplatePartialSpecializationDecl(ASTContext &C)
: ClassTemplateSpecializationDecl(C, ClassTemplatePartialSpecialization),
TemplateParams(nullptr), ArgsAsWritten(nullptr),
InstantiatedFromMember(nullptr, false) {}
public:
static ClassTemplatePartialSpecializationDecl *
Create(ASTContext &Context, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
TemplateParameterList *Params,
ClassTemplateDecl *SpecializedTemplate,
const TemplateArgument *Args,
unsigned NumArgs,
const TemplateArgumentListInfo &ArgInfos,
QualType CanonInjectedType,
ClassTemplatePartialSpecializationDecl *PrevDecl);
static ClassTemplatePartialSpecializationDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
ClassTemplatePartialSpecializationDecl *getMostRecentDecl() {
return cast<ClassTemplatePartialSpecializationDecl>(
static_cast<ClassTemplateSpecializationDecl *>(
this)->getMostRecentDecl());
}
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
/// Get the template arguments as written.
const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
return ArgsAsWritten;
}
/// \brief Retrieve the member class template partial specialization from
/// which this particular class template partial specialization was
/// instantiated.
///
/// \code
/// template<typename T>
/// struct Outer {
/// template<typename U> struct Inner;
/// template<typename U> struct Inner<U*> { }; // #1
/// };
///
/// Outer<float>::Inner<int*> ii;
/// \endcode
///
/// In this example, the instantiation of \c Outer<float>::Inner<int*> will
/// end up instantiating the partial specialization
/// \c Outer<float>::Inner<U*>, which itself was instantiated from the class
/// template partial specialization \c Outer<T>::Inner<U*>. Given
/// \c Outer<float>::Inner<U*>, this function would return
/// \c Outer<T>::Inner<U*>.
ClassTemplatePartialSpecializationDecl *getInstantiatedFromMember() {
ClassTemplatePartialSpecializationDecl *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getPointer();
}
void setInstantiatedFromMember(
ClassTemplatePartialSpecializationDecl *PartialSpec) {
ClassTemplatePartialSpecializationDecl *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
First->InstantiatedFromMember.setPointer(PartialSpec);
}
/// \brief Determines whether this class template partial specialization
/// template was a specialization of a member partial specialization.
///
/// In the following example, the member template partial specialization
/// \c X<int>::Inner<T*> is a member specialization.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> struct Inner;
/// template<typename U> struct Inner<U*>;
/// };
///
/// template<> template<typename T>
/// struct X<int>::Inner<T*> { /* ... */ };
/// \endcode
bool isMemberSpecialization() {
ClassTemplatePartialSpecializationDecl *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getInt();
}
/// \brief Note that this member template is a specialization.
void setMemberSpecialization() {
ClassTemplatePartialSpecializationDecl *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
assert(First->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
return First->InstantiatedFromMember.setInt(true);
}
/// Retrieves the injected specialization type for this partial
/// specialization. This is not the same as the type-decl-type for
/// this partial specialization, which is an InjectedClassNameType.
QualType getInjectedSpecializationType() const {
assert(getTypeForDecl() && "partial specialization has no type set!");
return cast<InjectedClassNameType>(getTypeForDecl())
->getInjectedSpecializationType();
}
// FIXME: Add Profile support!
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == ClassTemplatePartialSpecialization;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// Declaration of a class template.
class ClassTemplateDecl : public RedeclarableTemplateDecl {
static void DeallocateCommon(void *Ptr);
protected:
/// \brief Data that is common to all of the declarations of a given
/// class template.
struct Common : CommonBase {
Common() : LazySpecializations() { }
/// \brief The class template specializations for this class
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<ClassTemplateSpecializationDecl> Specializations;
/// \brief The class template partial specializations for this class
/// template.
llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl>
PartialSpecializations;
/// \brief The injected-class-name type for this class template.
QualType InjectedClassNameType;
/// \brief If non-null, points to an array of specializations (including
/// partial specializations) known only by their external declaration IDs.
///
/// The first value in the array is the number of of specializations/
/// partial specializations that follow.
uint32_t *LazySpecializations;
};
/// \brief Retrieve the set of specializations of this class template.
llvm::FoldingSetVector<ClassTemplateSpecializationDecl> &
getSpecializations() const;
/// \brief Retrieve the set of partial specializations of this class
/// template.
llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> &
getPartialSpecializations();
ClassTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(ClassTemplate, C, DC, L, Name, Params, Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
/// \brief Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// \brief Get the underlying class declarations of the template.
CXXRecordDecl *getTemplatedDecl() const {
return static_cast<CXXRecordDecl *>(TemplatedDecl);
}
/// \brief Returns whether this template declaration defines the primary
/// class pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
/// \brief Create a class template node.
static ClassTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl,
ClassTemplateDecl *PrevDecl);
/// \brief Create an empty class template node.
static ClassTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// \brief Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
ClassTemplateSpecializationDecl *
findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// \brief Insert the specified specialization knowing that it is not already
/// in. InsertPos must be obtained from findSpecialization.
void AddSpecialization(ClassTemplateSpecializationDecl *D, void *InsertPos);
ClassTemplateDecl *getCanonicalDecl() override {
return cast<ClassTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const ClassTemplateDecl *getCanonicalDecl() const {
return cast<ClassTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// \brief Retrieve the previous declaration of this class template, or
/// NULL if no such declaration exists.
ClassTemplateDecl *getPreviousDecl() {
return cast_or_null<ClassTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
/// \brief Retrieve the previous declaration of this class template, or
/// NULL if no such declaration exists.
const ClassTemplateDecl *getPreviousDecl() const {
return cast_or_null<ClassTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
ClassTemplateDecl *getMostRecentDecl() {
return cast<ClassTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
}
const ClassTemplateDecl *getMostRecentDecl() const {
return const_cast<ClassTemplateDecl*>(this)->getMostRecentDecl();
}
ClassTemplateDecl *getInstantiatedFromMemberTemplate() {
return cast_or_null<ClassTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// \brief Return the partial specialization with the provided arguments if it
/// exists, otherwise return the insertion point.
ClassTemplatePartialSpecializationDecl *
findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// \brief Insert the specified partial specialization knowing that it is not
/// already in. InsertPos must be obtained from findPartialSpecialization.
void AddPartialSpecialization(ClassTemplatePartialSpecializationDecl *D,
void *InsertPos);
/// \brief Retrieve the partial specializations as an ordered list.
void getPartialSpecializations(
SmallVectorImpl<ClassTemplatePartialSpecializationDecl *> &PS);
/// \brief Find a class template partial specialization with the given
/// type T.
///
/// \param T a dependent type that names a specialization of this class
/// template.
///
/// \returns the class template partial specialization that exactly matches
/// the type \p T, or NULL if no such partial specialization exists.
ClassTemplatePartialSpecializationDecl *findPartialSpecialization(QualType T);
/// \brief Find a class template partial specialization which was instantiated
/// from the given member partial specialization.
///
/// \param D a member class template partial specialization.
///
/// \returns the class template partial specialization which was instantiated
/// from the given member partial specialization, or NULL if no such partial
/// specialization exists.
ClassTemplatePartialSpecializationDecl *
findPartialSpecInstantiatedFromMember(
ClassTemplatePartialSpecializationDecl *D);
/// \brief Retrieve the template specialization type of the
/// injected-class-name for this class template.
///
/// The injected-class-name for a class template \c X is \c
/// X<template-args>, where \c template-args is formed from the
/// template arguments that correspond to the template parameters of
/// \c X. For example:
///
/// \code
/// template<typename T, int N>
/// struct array {
/// typedef array this_type; // "array" is equivalent to "array<T, N>"
/// };
/// \endcode
QualType getInjectedClassNameSpecialization();
typedef SpecIterator<ClassTemplateSpecializationDecl> spec_iterator;
typedef llvm::iterator_range<spec_iterator> spec_range;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ClassTemplate; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Declaration of a friend template.
///
/// For example:
/// \code
/// template \<typename T> class A {
/// friend class MyVector<T>; // not a friend template
/// template \<typename U> friend class B; // not a friend template
/// template \<typename U> friend class Foo<T>::Nested; // friend template
/// };
/// \endcode
///
/// \note This class is not currently in use. All of the above
/// will yield a FriendDecl, not a FriendTemplateDecl.
class FriendTemplateDecl : public Decl {
virtual void anchor();
public:
typedef llvm::PointerUnion<NamedDecl*,TypeSourceInfo*> FriendUnion;
private:
// The number of template parameters; always non-zero.
unsigned NumParams;
// The parameter list.
TemplateParameterList **Params;
// The declaration that's a friend of this class.
FriendUnion Friend;
// Location of the 'friend' specifier.
SourceLocation FriendLoc;
FriendTemplateDecl(DeclContext *DC, SourceLocation Loc,
unsigned NParams,
TemplateParameterList **Params,
FriendUnion Friend,
SourceLocation FriendLoc)
: Decl(Decl::FriendTemplate, DC, Loc),
NumParams(NParams),
Params(Params),
Friend(Friend),
FriendLoc(FriendLoc)
{}
FriendTemplateDecl(EmptyShell Empty)
: Decl(Decl::FriendTemplate, Empty),
NumParams(0),
Params(nullptr)
{}
public:
static FriendTemplateDecl *Create(ASTContext &Context,
DeclContext *DC, SourceLocation Loc,
unsigned NParams,
TemplateParameterList **Params,
FriendUnion Friend,
SourceLocation FriendLoc);
static FriendTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// If this friend declaration names a templated type (or
/// a dependent member type of a templated type), return that
/// type; otherwise return null.
TypeSourceInfo *getFriendType() const {
return Friend.dyn_cast<TypeSourceInfo*>();
}
/// If this friend declaration names a templated function (or
/// a member function of a templated type), return that type;
/// otherwise return null.
NamedDecl *getFriendDecl() const {
return Friend.dyn_cast<NamedDecl*>();
}
/// \brief Retrieves the location of the 'friend' keyword.
SourceLocation getFriendLoc() const {
return FriendLoc;
}
TemplateParameterList *getTemplateParameterList(unsigned i) const {
assert(i <= NumParams);
return Params[i];
}
unsigned getNumTemplateParameters() const {
return NumParams;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::FriendTemplate; }
friend class ASTDeclReader;
};
/// \brief Declaration of an alias template.
///
/// For example:
/// \code
/// template \<typename T> using V = std::map<T*, int, MyCompare<T>>;
/// \endcode
class TypeAliasTemplateDecl : public RedeclarableTemplateDecl {
static void DeallocateCommon(void *Ptr);
protected:
typedef CommonBase Common;
TypeAliasTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(TypeAliasTemplate, C, DC, L, Name, Params,
Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
/// Get the underlying function declaration of the template.
TypeAliasDecl *getTemplatedDecl() const {
return static_cast<TypeAliasDecl*>(TemplatedDecl);
}
TypeAliasTemplateDecl *getCanonicalDecl() override {
return cast<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const TypeAliasTemplateDecl *getCanonicalDecl() const {
return cast<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// \brief Retrieve the previous declaration of this function template, or
/// NULL if no such declaration exists.
TypeAliasTemplateDecl *getPreviousDecl() {
return cast_or_null<TypeAliasTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
/// \brief Retrieve the previous declaration of this function template, or
/// NULL if no such declaration exists.
const TypeAliasTemplateDecl *getPreviousDecl() const {
return cast_or_null<TypeAliasTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
TypeAliasTemplateDecl *getInstantiatedFromMemberTemplate() {
return cast_or_null<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// \brief Create a function template node.
static TypeAliasTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl);
/// \brief Create an empty alias template node.
static TypeAliasTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TypeAliasTemplate; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Declaration of a function specialization at template class scope.
///
/// This is a non-standard extension needed to support MSVC.
///
/// For example:
/// \code
/// template <class T>
/// class A {
/// template <class U> void foo(U a) { }
/// template<> void foo(int a) { }
/// }
/// \endcode
///
/// "template<> foo(int a)" will be saved in Specialization as a normal
/// CXXMethodDecl. Then during an instantiation of class A, it will be
/// transformed into an actual function specialization.
class ClassScopeFunctionSpecializationDecl : public Decl {
virtual void anchor();
ClassScopeFunctionSpecializationDecl(DeclContext *DC, SourceLocation Loc,
CXXMethodDecl *FD, bool Args,
TemplateArgumentListInfo TemplArgs)
: Decl(Decl::ClassScopeFunctionSpecialization, DC, Loc),
Specialization(FD), HasExplicitTemplateArgs(Args),
TemplateArgs(TemplArgs) {}
ClassScopeFunctionSpecializationDecl(EmptyShell Empty)
: Decl(Decl::ClassScopeFunctionSpecialization, Empty) {}
CXXMethodDecl *Specialization;
bool HasExplicitTemplateArgs;
TemplateArgumentListInfo TemplateArgs;
public:
CXXMethodDecl *getSpecialization() const { return Specialization; }
bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
const TemplateArgumentListInfo& templateArgs() const { return TemplateArgs; }
static ClassScopeFunctionSpecializationDecl *Create(ASTContext &C,
DeclContext *DC,
SourceLocation Loc,
CXXMethodDecl *FD,
bool HasExplicitTemplateArgs,
TemplateArgumentListInfo TemplateArgs) {
return new (C, DC) ClassScopeFunctionSpecializationDecl(
DC, Loc, FD, HasExplicitTemplateArgs, TemplateArgs);
}
static ClassScopeFunctionSpecializationDecl *
CreateDeserialized(ASTContext &Context, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::ClassScopeFunctionSpecialization;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// Implementation of inline functions that require the template declarations
inline AnyFunctionDecl::AnyFunctionDecl(FunctionTemplateDecl *FTD)
: Function(FTD) { }
/// \brief Represents a variable template specialization, which refers to
/// a variable template with a given set of template arguments.
///
/// Variable template specializations represent both explicit
/// specializations of variable templates, as in the example below, and
/// implicit instantiations of variable templates.
///
/// \code
/// template<typename T> constexpr T pi = T(3.1415926535897932385);
///
/// template<>
/// constexpr float pi<float>; // variable template specialization pi<float>
/// \endcode
class VarTemplateSpecializationDecl : public VarDecl,
public llvm::FoldingSetNode {
/// \brief Structure that stores information about a variable template
/// specialization that was instantiated from a variable template partial
/// specialization.
struct SpecializedPartialSpecialization {
/// \brief The variable template partial specialization from which this
/// variable template specialization was instantiated.
VarTemplatePartialSpecializationDecl *PartialSpecialization;
/// \brief The template argument list deduced for the variable template
/// partial specialization itself.
const TemplateArgumentList *TemplateArgs;
};
/// \brief The template that this specialization specializes.
llvm::PointerUnion<VarTemplateDecl *, SpecializedPartialSpecialization *>
SpecializedTemplate;
/// \brief Further info for explicit template specialization/instantiation.
struct ExplicitSpecializationInfo {
/// \brief The type-as-written.
TypeSourceInfo *TypeAsWritten;
/// \brief The location of the extern keyword.
SourceLocation ExternLoc;
/// \brief The location of the template keyword.
SourceLocation TemplateKeywordLoc;
ExplicitSpecializationInfo()
: TypeAsWritten(nullptr), ExternLoc(), TemplateKeywordLoc() {}
};
/// \brief Further info for explicit template specialization/instantiation.
/// Does not apply to implicit specializations.
ExplicitSpecializationInfo *ExplicitInfo;
/// \brief The template arguments used to describe this specialization.
const TemplateArgumentList *TemplateArgs;
TemplateArgumentListInfo TemplateArgsInfo;
/// \brief The point where this template was instantiated (if any).
SourceLocation PointOfInstantiation;
/// \brief The kind of specialization this declaration refers to.
/// Really a value of type TemplateSpecializationKind.
unsigned SpecializationKind : 3;
protected:
VarTemplateSpecializationDecl(Kind DK, ASTContext &Context, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
VarTemplateDecl *SpecializedTemplate,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, const TemplateArgument *Args,
unsigned NumArgs);
explicit VarTemplateSpecializationDecl(Kind DK, ASTContext &Context);
public:
static VarTemplateSpecializationDecl *
Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, VarTemplateDecl *SpecializedTemplate, QualType T,
TypeSourceInfo *TInfo, StorageClass S, const TemplateArgument *Args,
unsigned NumArgs);
static VarTemplateSpecializationDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
VarTemplateSpecializationDecl *getMostRecentDecl() {
VarDecl *Recent = static_cast<VarDecl *>(this)->getMostRecentDecl();
return cast<VarTemplateSpecializationDecl>(Recent);
}
/// \brief Retrieve the template that this specialization specializes.
VarTemplateDecl *getSpecializedTemplate() const;
/// \brief Retrieve the template arguments of the variable template
/// specialization.
const TemplateArgumentList &getTemplateArgs() const { return *TemplateArgs; }
// TODO: Always set this when creating the new specialization?
void setTemplateArgsInfo(const TemplateArgumentListInfo &ArgsInfo);
const TemplateArgumentListInfo &getTemplateArgsInfo() const {
return TemplateArgsInfo;
}
/// \brief Determine the kind of specialization that this
/// declaration represents.
TemplateSpecializationKind getSpecializationKind() const {
return static_cast<TemplateSpecializationKind>(SpecializationKind);
}
bool isExplicitSpecialization() const {
return getSpecializationKind() == TSK_ExplicitSpecialization;
}
/// \brief True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
switch (getTemplateSpecializationKind()) {
case TSK_ExplicitSpecialization:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
return false;
}
llvm_unreachable("bad template specialization kind");
}
void setSpecializationKind(TemplateSpecializationKind TSK) {
SpecializationKind = TSK;
}
/// \brief Get the point of instantiation (if any), or null if none.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
void setPointOfInstantiation(SourceLocation Loc) {
assert(Loc.isValid() && "point of instantiation must be valid!");
PointOfInstantiation = Loc;
}
/// \brief If this variable template specialization is an instantiation of
/// a template (rather than an explicit specialization), return the
/// variable template or variable template partial specialization from which
/// it was instantiated.
llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
getInstantiatedFrom() const {
if (getSpecializationKind() != TSK_ImplicitInstantiation &&
getSpecializationKind() != TSK_ExplicitInstantiationDefinition &&
getSpecializationKind() != TSK_ExplicitInstantiationDeclaration)
return llvm::PointerUnion<VarTemplateDecl *,
VarTemplatePartialSpecializationDecl *>();
if (SpecializedPartialSpecialization *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return PartialSpec->PartialSpecialization;
return SpecializedTemplate.get<VarTemplateDecl *>();
}
/// \brief Retrieve the variable template or variable template partial
/// specialization which was specialized by this.
llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
getSpecializedTemplateOrPartial() const {
if (SpecializedPartialSpecialization *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return PartialSpec->PartialSpecialization;
return SpecializedTemplate.get<VarTemplateDecl *>();
}
/// \brief Retrieve the set of template arguments that should be used
/// to instantiate the initializer of the variable template or variable
/// template partial specialization from which this variable template
/// specialization was instantiated.
///
/// \returns For a variable template specialization instantiated from the
/// primary template, this function will return the same template arguments
/// as getTemplateArgs(). For a variable template specialization instantiated
/// from a variable template partial specialization, this function will the
/// return deduced template arguments for the variable template partial
/// specialization itself.
const TemplateArgumentList &getTemplateInstantiationArgs() const {
if (SpecializedPartialSpecialization *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return *PartialSpec->TemplateArgs;
return getTemplateArgs();
}
/// \brief Note that this variable template specialization is actually an
/// instantiation of the given variable template partial specialization whose
/// template arguments have been deduced.
void setInstantiationOf(VarTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgumentList *TemplateArgs) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&
"Already set to a variable template partial specialization!");
SpecializedPartialSpecialization *PS =
new (getASTContext()) SpecializedPartialSpecialization();
PS->PartialSpecialization = PartialSpec;
PS->TemplateArgs = TemplateArgs;
SpecializedTemplate = PS;
}
/// \brief Note that this variable template specialization is an instantiation
/// of the given variable template.
void setInstantiationOf(VarTemplateDecl *TemplDecl) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&
"Previously set to a variable template partial specialization!");
SpecializedTemplate = TemplDecl;
}
/// \brief Sets the type of this specialization as it was written by
/// the user.
void setTypeAsWritten(TypeSourceInfo *T) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = T;
}
/// \brief Gets the type of this specialization as it was written by
/// the user, if it was so written.
TypeSourceInfo *getTypeAsWritten() const {
return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
}
/// \brief Gets the location of the extern keyword, if present.
SourceLocation getExternLoc() const {
return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
}
/// \brief Sets the location of the extern keyword.
void setExternLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->ExternLoc = Loc;
}
/// \brief Sets the location of the template keyword.
void setTemplateKeywordLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TemplateKeywordLoc = Loc;
}
/// \brief Gets the location of the template keyword, if present.
SourceLocation getTemplateKeywordLoc() const {
return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
}
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, TemplateArgs->asArray(), getASTContext());
}
static void Profile(llvm::FoldingSetNodeID &ID,
ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (unsigned Arg = 0; Arg != TemplateArgs.size(); ++Arg)
TemplateArgs[Arg].Profile(ID, Context);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstVarTemplateSpecialization &&
K <= lastVarTemplateSpecialization;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
class VarTemplatePartialSpecializationDecl
: public VarTemplateSpecializationDecl {
void anchor() override;
/// \brief The list of template parameters
TemplateParameterList *TemplateParams;
/// \brief The source info for the template arguments as written.
/// FIXME: redundant with TypeAsWritten?
const ASTTemplateArgumentListInfo *ArgsAsWritten;
/// \brief The variable template partial specialization from which this
/// variable template partial specialization was instantiated.
///
/// The boolean value will be true to indicate that this variable template
/// partial specialization was specialized at this level.
llvm::PointerIntPair<VarTemplatePartialSpecializationDecl *, 1, bool>
InstantiatedFromMember;
VarTemplatePartialSpecializationDecl(
ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, TemplateParameterList *Params,
VarTemplateDecl *SpecializedTemplate, QualType T, TypeSourceInfo *TInfo,
StorageClass S, const TemplateArgument *Args, unsigned NumArgs,
const ASTTemplateArgumentListInfo *ArgInfos);
VarTemplatePartialSpecializationDecl(ASTContext &Context)
: VarTemplateSpecializationDecl(VarTemplatePartialSpecialization, Context),
TemplateParams(nullptr), ArgsAsWritten(nullptr),
InstantiatedFromMember(nullptr, false) {}
public:
static VarTemplatePartialSpecializationDecl *
Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, TemplateParameterList *Params,
VarTemplateDecl *SpecializedTemplate, QualType T,
TypeSourceInfo *TInfo, StorageClass S, const TemplateArgument *Args,
unsigned NumArgs, const TemplateArgumentListInfo &ArgInfos);
static VarTemplatePartialSpecializationDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
VarTemplatePartialSpecializationDecl *getMostRecentDecl() {
return cast<VarTemplatePartialSpecializationDecl>(
static_cast<VarTemplateSpecializationDecl *>(
this)->getMostRecentDecl());
}
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
/// Get the template arguments as written.
const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
return ArgsAsWritten;
}
/// \brief Retrieve the member variable template partial specialization from
/// which this particular variable template partial specialization was
/// instantiated.
///
/// \code
/// template<typename T>
/// struct Outer {
/// template<typename U> U Inner;
/// template<typename U> U* Inner<U*> = (U*)(0); // #1
/// };
///
/// template int* Outer<float>::Inner<int*>;
/// \endcode
///
/// In this example, the instantiation of \c Outer<float>::Inner<int*> will
/// end up instantiating the partial specialization
/// \c Outer<float>::Inner<U*>, which itself was instantiated from the
/// variable template partial specialization \c Outer<T>::Inner<U*>. Given
/// \c Outer<float>::Inner<U*>, this function would return
/// \c Outer<T>::Inner<U*>.
VarTemplatePartialSpecializationDecl *getInstantiatedFromMember() {
VarTemplatePartialSpecializationDecl *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getPointer();
}
void
setInstantiatedFromMember(VarTemplatePartialSpecializationDecl *PartialSpec) {
VarTemplatePartialSpecializationDecl *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
First->InstantiatedFromMember.setPointer(PartialSpec);
}
/// \brief Determines whether this variable template partial specialization
/// was a specialization of a member partial specialization.
///
/// In the following example, the member template partial specialization
/// \c X<int>::Inner<T*> is a member specialization.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> U Inner;
/// template<typename U> U* Inner<U*> = (U*)(0);
/// };
///
/// template<> template<typename T>
/// U* X<int>::Inner<T*> = (T*)(0) + 1;
/// \endcode
bool isMemberSpecialization() {
VarTemplatePartialSpecializationDecl *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getInt();
}
/// \brief Note that this member template is a specialization.
void setMemberSpecialization() {
VarTemplatePartialSpecializationDecl *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
assert(First->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
return First->InstantiatedFromMember.setInt(true);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == VarTemplatePartialSpecialization;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// Declaration of a variable template.
class VarTemplateDecl : public RedeclarableTemplateDecl {
static void DeallocateCommon(void *Ptr);
protected:
/// \brief Data that is common to all of the declarations of a given
/// variable template.
struct Common : CommonBase {
Common() : LazySpecializations() {}
/// \brief The variable template specializations for this variable
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<VarTemplateSpecializationDecl> Specializations;
/// \brief The variable template partial specializations for this variable
/// template.
llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl>
PartialSpecializations;
/// \brief If non-null, points to an array of specializations (including
/// partial specializations) known ownly by their external declaration IDs.
///
/// The first value in the array is the number of of specializations/
/// partial specializations that follow.
uint32_t *LazySpecializations;
};
/// \brief Retrieve the set of specializations of this variable template.
llvm::FoldingSetVector<VarTemplateSpecializationDecl> &
getSpecializations() const;
/// \brief Retrieve the set of partial specializations of this class
/// template.
llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl> &
getPartialSpecializations();
VarTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(VarTemplate, C, DC, L, Name, Params, Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
/// \brief Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// \brief Get the underlying variable declarations of the template.
VarDecl *getTemplatedDecl() const {
return static_cast<VarDecl *>(TemplatedDecl);
}
/// \brief Returns whether this template declaration defines the primary
/// variable pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
VarTemplateDecl *getDefinition();
/// \brief Create a variable template node.
static VarTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params,
VarDecl *Decl);
/// \brief Create an empty variable template node.
static VarTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// \brief Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
VarTemplateSpecializationDecl *
findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// \brief Insert the specified specialization knowing that it is not already
/// in. InsertPos must be obtained from findSpecialization.
void AddSpecialization(VarTemplateSpecializationDecl *D, void *InsertPos);
VarTemplateDecl *getCanonicalDecl() override {
return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
}
const VarTemplateDecl *getCanonicalDecl() const {
return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
}
/// \brief Retrieve the previous declaration of this variable template, or
/// NULL if no such declaration exists.
VarTemplateDecl *getPreviousDecl() {
return cast_or_null<VarTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
/// \brief Retrieve the previous declaration of this variable template, or
/// NULL if no such declaration exists.
const VarTemplateDecl *getPreviousDecl() const {
return cast_or_null<VarTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
VarTemplateDecl *getMostRecentDecl() {
return cast<VarTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
}
const VarTemplateDecl *getMostRecentDecl() const {
return const_cast<VarTemplateDecl *>(this)->getMostRecentDecl();
}
VarTemplateDecl *getInstantiatedFromMemberTemplate() {
return cast_or_null<VarTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// \brief Return the partial specialization with the provided arguments if it
/// exists, otherwise return the insertion point.
VarTemplatePartialSpecializationDecl *
findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// \brief Insert the specified partial specialization knowing that it is not
/// already in. InsertPos must be obtained from findPartialSpecialization.
void AddPartialSpecialization(VarTemplatePartialSpecializationDecl *D,
void *InsertPos);
/// \brief Retrieve the partial specializations as an ordered list.
void getPartialSpecializations(
SmallVectorImpl<VarTemplatePartialSpecializationDecl *> &PS);
/// \brief Find a variable template partial specialization which was
/// instantiated
/// from the given member partial specialization.
///
/// \param D a member variable template partial specialization.
///
/// \returns the variable template partial specialization which was
/// instantiated
/// from the given member partial specialization, or NULL if no such partial
/// specialization exists.
VarTemplatePartialSpecializationDecl *findPartialSpecInstantiatedFromMember(
VarTemplatePartialSpecializationDecl *D);
typedef SpecIterator<VarTemplateSpecializationDecl> spec_iterator;
typedef llvm::iterator_range<spec_iterator> spec_range;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == VarTemplate; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
} /* end of namespace clang */
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/ASTImporter.h | //===--- ASTImporter.h - Importing ASTs from other Contexts -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTImporter class which imports AST nodes from one
// context into another context.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTIMPORTER_H
#define LLVM_CLANG_AST_ASTIMPORTER_H
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
namespace clang {
class ASTContext;
class Decl;
class DeclContext;
class DiagnosticsEngine;
class Expr;
class FileManager;
class IdentifierInfo;
class NestedNameSpecifier;
class Stmt;
class TypeSourceInfo;
/// \brief Imports selected nodes from one AST context into another context,
/// merging AST nodes where appropriate.
class ASTImporter {
public:
typedef llvm::DenseSet<std::pair<Decl *, Decl *> > NonEquivalentDeclSet;
private:
/// \brief The contexts we're importing to and from.
ASTContext &ToContext, &FromContext;
/// \brief The file managers we're importing to and from.
FileManager &ToFileManager, &FromFileManager;
/// \brief Whether to perform a minimal import.
bool Minimal;
/// \brief Whether the last diagnostic came from the "from" context.
bool LastDiagFromFrom;
/// \brief Mapping from the already-imported types in the "from" context
/// to the corresponding types in the "to" context.
llvm::DenseMap<const Type *, const Type *> ImportedTypes;
/// \brief Mapping from the already-imported declarations in the "from"
/// context to the corresponding declarations in the "to" context.
llvm::DenseMap<Decl *, Decl *> ImportedDecls;
/// \brief Mapping from the already-imported statements in the "from"
/// context to the corresponding statements in the "to" context.
llvm::DenseMap<Stmt *, Stmt *> ImportedStmts;
/// \brief Mapping from the already-imported FileIDs in the "from" source
/// manager to the corresponding FileIDs in the "to" source manager.
llvm::DenseMap<FileID, FileID> ImportedFileIDs;
/// \brief Imported, anonymous tag declarations that are missing their
/// corresponding typedefs.
SmallVector<TagDecl *, 4> AnonTagsWithPendingTypedefs;
/// \brief Declaration (from, to) pairs that are known not to be equivalent
/// (which we have already complained about).
NonEquivalentDeclSet NonEquivalentDecls;
public:
/// \brief Create a new AST importer.
///
/// \param ToContext The context we'll be importing into.
///
/// \param ToFileManager The file manager we'll be importing into.
///
/// \param FromContext The context we'll be importing from.
///
/// \param FromFileManager The file manager we'll be importing into.
///
/// \param MinimalImport If true, the importer will attempt to import
/// as little as it can, e.g., by importing declarations as forward
/// declarations that can be completed at a later point.
ASTImporter(ASTContext &ToContext, FileManager &ToFileManager,
ASTContext &FromContext, FileManager &FromFileManager,
bool MinimalImport);
virtual ~ASTImporter();
/// \brief Whether the importer will perform a minimal import, creating
/// to-be-completed forward declarations when possible.
bool isMinimalImport() const { return Minimal; }
/// \brief Import the given type from the "from" context into the "to"
/// context.
///
/// \returns the equivalent type in the "to" context, or a NULL type if
/// an error occurred.
QualType Import(QualType FromT);
/// \brief Import the given type source information from the
/// "from" context into the "to" context.
///
/// \returns the equivalent type source information in the "to"
/// context, or NULL if an error occurred.
TypeSourceInfo *Import(TypeSourceInfo *FromTSI);
/// \brief Import the given declaration from the "from" context into the
/// "to" context.
///
/// \returns the equivalent declaration in the "to" context, or a NULL type
/// if an error occurred.
Decl *Import(Decl *FromD);
/// \brief Return the copy of the given declaration in the "to" context if
/// it has already been imported from the "from" context. Otherwise return
/// NULL.
Decl *GetAlreadyImportedOrNull(Decl *FromD);
/// \brief Import the given declaration context from the "from"
/// AST context into the "to" AST context.
///
/// \returns the equivalent declaration context in the "to"
/// context, or a NULL type if an error occurred.
DeclContext *ImportContext(DeclContext *FromDC);
/// \brief Import the given expression from the "from" context into the
/// "to" context.
///
/// \returns the equivalent expression in the "to" context, or NULL if
/// an error occurred.
Expr *Import(Expr *FromE);
/// \brief Import the given statement from the "from" context into the
/// "to" context.
///
/// \returns the equivalent statement in the "to" context, or NULL if
/// an error occurred.
Stmt *Import(Stmt *FromS);
/// \brief Import the given nested-name-specifier from the "from"
/// context into the "to" context.
///
/// \returns the equivalent nested-name-specifier in the "to"
/// context, or NULL if an error occurred.
NestedNameSpecifier *Import(NestedNameSpecifier *FromNNS);
/// \brief Import the given nested-name-specifier from the "from"
/// context into the "to" context.
///
/// \returns the equivalent nested-name-specifier in the "to"
/// context.
NestedNameSpecifierLoc Import(NestedNameSpecifierLoc FromNNS);
/// \brief Import the goven template name from the "from" context into the
/// "to" context.
TemplateName Import(TemplateName From);
/// \brief Import the given source location from the "from" context into
/// the "to" context.
///
/// \returns the equivalent source location in the "to" context, or an
/// invalid source location if an error occurred.
SourceLocation Import(SourceLocation FromLoc);
/// \brief Import the given source range from the "from" context into
/// the "to" context.
///
/// \returns the equivalent source range in the "to" context, or an
/// invalid source location if an error occurred.
SourceRange Import(SourceRange FromRange);
/// \brief Import the given declaration name from the "from"
/// context into the "to" context.
///
/// \returns the equivalent declaration name in the "to" context,
/// or an empty declaration name if an error occurred.
DeclarationName Import(DeclarationName FromName);
/// \brief Import the given identifier from the "from" context
/// into the "to" context.
///
/// \returns the equivalent identifier in the "to" context.
IdentifierInfo *Import(const IdentifierInfo *FromId);
/// \brief Import the given Objective-C selector from the "from"
/// context into the "to" context.
///
/// \returns the equivalent selector in the "to" context.
Selector Import(Selector FromSel);
/// \brief Import the given file ID from the "from" context into the
/// "to" context.
///
/// \returns the equivalent file ID in the source manager of the "to"
/// context.
FileID Import(FileID);
/// \brief Import the definition of the given declaration, including all of
/// the declarations it contains.
///
/// This routine is intended to be used
void ImportDefinition(Decl *From);
/// \brief Cope with a name conflict when importing a declaration into the
/// given context.
///
/// This routine is invoked whenever there is a name conflict while
/// importing a declaration. The returned name will become the name of the
/// imported declaration. By default, the returned name is the same as the
/// original name, leaving the conflict unresolve such that name lookup
/// for this name is likely to find an ambiguity later.
///
/// Subclasses may override this routine to resolve the conflict, e.g., by
/// renaming the declaration being imported.
///
/// \param Name the name of the declaration being imported, which conflicts
/// with other declarations.
///
/// \param DC the declaration context (in the "to" AST context) in which
/// the name is being imported.
///
/// \param IDNS the identifier namespace in which the name will be found.
///
/// \param Decls the set of declarations with the same name as the
/// declaration being imported.
///
/// \param NumDecls the number of conflicting declarations in \p Decls.
///
/// \returns the name that the newly-imported declaration should have.
virtual DeclarationName HandleNameConflict(DeclarationName Name,
DeclContext *DC,
unsigned IDNS,
NamedDecl **Decls,
unsigned NumDecls);
/// \brief Retrieve the context that AST nodes are being imported into.
ASTContext &getToContext() const { return ToContext; }
/// \brief Retrieve the context that AST nodes are being imported from.
ASTContext &getFromContext() const { return FromContext; }
/// \brief Retrieve the file manager that AST nodes are being imported into.
FileManager &getToFileManager() const { return ToFileManager; }
/// \brief Retrieve the file manager that AST nodes are being imported from.
FileManager &getFromFileManager() const { return FromFileManager; }
/// \brief Report a diagnostic in the "to" context.
DiagnosticBuilder ToDiag(SourceLocation Loc, unsigned DiagID);
/// \brief Report a diagnostic in the "from" context.
DiagnosticBuilder FromDiag(SourceLocation Loc, unsigned DiagID);
/// \brief Return the set of declarations that we know are not equivalent.
NonEquivalentDeclSet &getNonEquivalentDecls() { return NonEquivalentDecls; }
/// \brief Called for ObjCInterfaceDecl, ObjCProtocolDecl, and TagDecl.
/// Mark the Decl as complete, filling it in as much as possible.
///
/// \param D A declaration in the "to" context.
virtual void CompleteDecl(Decl* D);
/// \brief Note that we have imported the "from" declaration by mapping it
/// to the (potentially-newly-created) "to" declaration.
///
/// Subclasses can override this function to observe all of the \c From ->
/// \c To declaration mappings as they are imported.
virtual Decl *Imported(Decl *From, Decl *To);
/// \brief Called by StructuralEquivalenceContext. If a RecordDecl is
/// being compared to another RecordDecl as part of import, completing the
/// other RecordDecl may trigger importation of the first RecordDecl. This
/// happens especially for anonymous structs. If the original of the second
/// RecordDecl can be found, we can complete it without the need for
/// importation, eliminating this loop.
virtual Decl *GetOriginalDecl(Decl *To) { return nullptr; }
/// \brief Determine whether the given types are structurally
/// equivalent.
bool IsStructurallyEquivalent(QualType From, QualType To,
bool Complain = true);
};
}
#endif // LLVM_CLANG_AST_ASTIMPORTER_H
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/StmtOpenMP.h | //===- StmtOpenMP.h - Classes for OpenMP directives ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// \brief This file defines OpenMP AST classes for executable directives and
/// clauses.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMTOPENMP_H
#define LLVM_CLANG_AST_STMTOPENMP_H
#include "clang/AST/Expr.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/SourceLocation.h"
namespace clang {
//===----------------------------------------------------------------------===//
// AST classes for directives.
// //
///////////////////////////////////////////////////////////////////////////////
/// \brief This is a basic class for representing single OpenMP executable
/// directive.
///
class OMPExecutableDirective : public Stmt {
friend class ASTStmtReader;
/// \brief Kind of the directive.
OpenMPDirectiveKind Kind;
/// \brief Starting location of the directive (directive keyword).
SourceLocation StartLoc;
/// \brief Ending location of the directive.
SourceLocation EndLoc;
/// \brief Numbers of clauses.
const unsigned NumClauses;
/// \brief Number of child expressions/stmts.
const unsigned NumChildren;
/// \brief Offset from this to the start of clauses.
/// There are NumClauses pointers to clauses, they are followed by
/// NumChildren pointers to child stmts/exprs (if the directive type
/// requires an associated stmt, then it has to be the first of them).
const unsigned ClausesOffset;
/// \brief Get the clauses storage.
MutableArrayRef<OMPClause *> getClauses() {
OMPClause **ClauseStorage = reinterpret_cast<OMPClause **>(
reinterpret_cast<char *>(this) + ClausesOffset);
return MutableArrayRef<OMPClause *>(ClauseStorage, NumClauses);
}
protected:
/// \brief Build instance of directive of class \a K.
///
/// \param SC Statement class.
/// \param K Kind of OpenMP directive.
/// \param StartLoc Starting location of the directive (directive keyword).
/// \param EndLoc Ending location of the directive.
///
template <typename T>
OMPExecutableDirective(const T *, StmtClass SC, OpenMPDirectiveKind K,
SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses, unsigned NumChildren)
: Stmt(SC), Kind(K), StartLoc(std::move(StartLoc)),
EndLoc(std::move(EndLoc)), NumClauses(NumClauses),
NumChildren(NumChildren),
ClausesOffset(llvm::RoundUpToAlignment(sizeof(T),
llvm::alignOf<OMPClause *>())) {}
/// \brief Sets the list of variables for this clause.
///
/// \param Clauses The list of clauses for the directive.
///
void setClauses(ArrayRef<OMPClause *> Clauses);
/// \brief Set the associated statement for the directive.
///
/// /param S Associated statement.
///
void setAssociatedStmt(Stmt *S) {
assert(hasAssociatedStmt() && "no associated statement.");
*child_begin() = S;
}
public:
/// \brief Iterates over a filtered subrange of clauses applied to a
/// directive.
///
/// This iterator visits only those declarations that meet some run-time
/// criteria.
template <class FilterPredicate> class filtered_clause_iterator {
protected:
ArrayRef<OMPClause *>::const_iterator Current;
ArrayRef<OMPClause *>::const_iterator End;
FilterPredicate Pred;
void SkipToNextClause() {
while (Current != End && !Pred(*Current))
++Current;
}
public:
typedef const OMPClause *value_type;
filtered_clause_iterator() : Current(), End() {}
filtered_clause_iterator(ArrayRef<OMPClause *> Arr, FilterPredicate Pred)
: Current(Arr.begin()), End(Arr.end()), Pred(std::move(Pred)) {
SkipToNextClause();
}
value_type operator*() const { return *Current; }
value_type operator->() const { return *Current; }
filtered_clause_iterator &operator++() {
++Current;
SkipToNextClause();
return *this;
}
filtered_clause_iterator operator++(int) {
filtered_clause_iterator tmp(*this);
++(*this);
return tmp;
}
bool operator!() { return Current == End; }
explicit operator bool() { return Current != End; }
bool empty() const { return Current == End; }
};
template <typename Fn>
filtered_clause_iterator<Fn> getFilteredClauses(Fn &&fn) const {
return filtered_clause_iterator<Fn>(clauses(), std::move(fn));
}
struct ClauseKindFilter {
OpenMPClauseKind Kind;
bool operator()(const OMPClause *clause) const {
return clause->getClauseKind() == Kind;
}
};
filtered_clause_iterator<ClauseKindFilter>
getClausesOfKind(OpenMPClauseKind Kind) const {
return getFilteredClauses(ClauseKindFilter{Kind});
}
/// \brief Gets a single clause of the specified kind \a K associated with the
/// current directive iff there is only one clause of this kind (and assertion
/// is fired if there is more than one clause is associated with the
/// directive). Returns nullptr if no clause of kind \a K is associated with
/// the directive.
const OMPClause *getSingleClause(OpenMPClauseKind K) const;
/// \brief Returns starting location of directive kind.
SourceLocation getLocStart() const { return StartLoc; }
/// \brief Returns ending location of directive.
SourceLocation getLocEnd() const { return EndLoc; }
/// \brief Set starting location of directive kind.
///
/// \param Loc New starting location of directive.
///
void setLocStart(SourceLocation Loc) { StartLoc = Loc; }
/// \brief Set ending location of directive.
///
/// \param Loc New ending location of directive.
///
void setLocEnd(SourceLocation Loc) { EndLoc = Loc; }
/// \brief Get number of clauses.
unsigned getNumClauses() const { return NumClauses; }
/// \brief Returns specified clause.
///
/// \param i Number of clause.
///
OMPClause *getClause(unsigned i) const { return clauses()[i]; }
/// \brief Returns true if directive has associated statement.
bool hasAssociatedStmt() const { return NumChildren > 0; }
/// \brief Returns statement associated with the directive.
Stmt *getAssociatedStmt() const {
assert(hasAssociatedStmt() && "no associated statement.");
return const_cast<Stmt *>(*child_begin());
}
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstOMPExecutableDirectiveConstant &&
S->getStmtClass() <= lastOMPExecutableDirectiveConstant;
}
child_range children() {
if (!hasAssociatedStmt())
return child_range();
Stmt **ChildStorage = reinterpret_cast<Stmt **>(getClauses().end());
return child_range(ChildStorage, ChildStorage + NumChildren);
}
ArrayRef<OMPClause *> clauses() { return getClauses(); }
ArrayRef<OMPClause *> clauses() const {
return const_cast<OMPExecutableDirective *>(this)->getClauses();
}
};
/// \brief This represents '#pragma omp parallel' directive.
///
/// \code
/// #pragma omp parallel private(a,b) reduction(+: c,d)
/// \endcode
/// In this example directive '#pragma omp parallel' has clauses 'private'
/// with the variables 'a' and 'b' and 'reduction' with operator '+' and
/// variables 'c' and 'd'.
///
class OMPParallelDirective : public OMPExecutableDirective {
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive (directive keyword).
/// \param EndLoc Ending Location of the directive.
///
OMPParallelDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPParallelDirectiveClass, OMPD_parallel,
StartLoc, EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPParallelDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPParallelDirectiveClass, OMPD_parallel,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement associated with the directive.
///
static OMPParallelDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a N clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPParallelDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPParallelDirectiveClass;
}
};
/// \brief This is a common base class for loop directives ('omp simd', 'omp
/// for', 'omp for simd' etc.). It is responsible for the loop code generation.
///
class OMPLoopDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Number of collapsed loops as specified by 'collapse' clause.
unsigned CollapsedNum;
/// \brief Offsets to the stored exprs.
/// This enumeration contains offsets to all the pointers to children
/// expressions stored in OMPLoopDirective.
/// The first 9 children are nesessary for all the loop directives, and
/// the next 7 are specific to the worksharing ones.
/// After the fixed children, three arrays of length CollapsedNum are
/// allocated: loop counters, their updates and final values.
///
enum {
AssociatedStmtOffset = 0,
IterationVariableOffset = 1,
LastIterationOffset = 2,
CalcLastIterationOffset = 3,
PreConditionOffset = 4,
CondOffset = 5,
InitOffset = 6,
IncOffset = 7,
// The '...End' enumerators do not correspond to child expressions - they
// specify the offset to the end (and start of the following counters/
// updates/finals arrays).
DefaultEnd = 8,
// The following 7 exprs are used by worksharing loops only.
IsLastIterVariableOffset = 8,
LowerBoundVariableOffset = 9,
UpperBoundVariableOffset = 10,
StrideVariableOffset = 11,
EnsureUpperBoundOffset = 12,
NextLowerBoundOffset = 13,
NextUpperBoundOffset = 14,
// Offset to the end (and start of the following counters/updates/finals
// arrays) for worksharing loop directives.
WorksharingEnd = 15,
};
/// \brief Get the counters storage.
MutableArrayRef<Expr *> getCounters() {
Expr **Storage = reinterpret_cast<Expr **>(
&(*(std::next(child_begin(), getArraysOffset(getDirectiveKind())))));
return MutableArrayRef<Expr *>(Storage, CollapsedNum);
}
/// \brief Get the updates storage.
MutableArrayRef<Expr *> getInits() {
Expr **Storage = reinterpret_cast<Expr **>(
&*std::next(child_begin(),
getArraysOffset(getDirectiveKind()) + CollapsedNum));
return MutableArrayRef<Expr *>(Storage, CollapsedNum);
}
/// \brief Get the updates storage.
MutableArrayRef<Expr *> getUpdates() {
Expr **Storage = reinterpret_cast<Expr **>(
&*std::next(child_begin(),
getArraysOffset(getDirectiveKind()) + 2 * CollapsedNum));
return MutableArrayRef<Expr *>(Storage, CollapsedNum);
}
/// \brief Get the final counter updates storage.
MutableArrayRef<Expr *> getFinals() {
Expr **Storage = reinterpret_cast<Expr **>(
&*std::next(child_begin(),
getArraysOffset(getDirectiveKind()) + 3 * CollapsedNum));
return MutableArrayRef<Expr *>(Storage, CollapsedNum);
}
protected:
/// \brief Build instance of loop directive of class \a Kind.
///
/// \param SC Statement class.
/// \param Kind Kind of OpenMP directive.
/// \param StartLoc Starting location of the directive (directive keyword).
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed loops from 'collapse' clause.
/// \param NumClauses Number of clauses.
/// \param NumSpecialChildren Number of additional directive-specific stmts.
///
template <typename T>
OMPLoopDirective(const T *That, StmtClass SC, OpenMPDirectiveKind Kind,
SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses,
unsigned NumSpecialChildren = 0)
: OMPExecutableDirective(That, SC, Kind, StartLoc, EndLoc, NumClauses,
numLoopChildren(CollapsedNum, Kind) +
NumSpecialChildren),
CollapsedNum(CollapsedNum) {}
/// \brief Offset to the start of children expression arrays.
static unsigned getArraysOffset(OpenMPDirectiveKind Kind) {
return isOpenMPWorksharingDirective(Kind) ? WorksharingEnd
: DefaultEnd;
}
/// \brief Children number.
static unsigned numLoopChildren(unsigned CollapsedNum,
OpenMPDirectiveKind Kind) {
return getArraysOffset(Kind) +
4 * CollapsedNum; // Counters, Inits, Updates and Finals
}
void setIterationVariable(Expr *IV) {
*std::next(child_begin(), IterationVariableOffset) = IV;
}
void setLastIteration(Expr *LI) {
*std::next(child_begin(), LastIterationOffset) = LI;
}
void setCalcLastIteration(Expr *CLI) {
*std::next(child_begin(), CalcLastIterationOffset) = CLI;
}
void setPreCond(Expr *PC) {
*std::next(child_begin(), PreConditionOffset) = PC;
}
void setCond(Expr *Cond) {
*std::next(child_begin(), CondOffset) = Cond;
}
void setInit(Expr *Init) { *std::next(child_begin(), InitOffset) = Init; }
void setInc(Expr *Inc) { *std::next(child_begin(), IncOffset) = Inc; }
void setIsLastIterVariable(Expr *IL) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), IsLastIterVariableOffset) = IL;
}
void setLowerBoundVariable(Expr *LB) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), LowerBoundVariableOffset) = LB;
}
void setUpperBoundVariable(Expr *UB) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), UpperBoundVariableOffset) = UB;
}
void setStrideVariable(Expr *ST) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), StrideVariableOffset) = ST;
}
void setEnsureUpperBound(Expr *EUB) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), EnsureUpperBoundOffset) = EUB;
}
void setNextLowerBound(Expr *NLB) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), NextLowerBoundOffset) = NLB;
}
void setNextUpperBound(Expr *NUB) {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
*std::next(child_begin(), NextUpperBoundOffset) = NUB;
}
void setCounters(ArrayRef<Expr *> A);
void setInits(ArrayRef<Expr *> A);
void setUpdates(ArrayRef<Expr *> A);
void setFinals(ArrayRef<Expr *> A);
public:
/// \brief The expressions built for the OpenMP loop CodeGen for the
/// whole collapsed loop nest.
struct HelperExprs {
/// \brief Loop iteration variable.
Expr *IterationVarRef;
/// \brief Loop last iteration number.
Expr *LastIteration;
/// \brief Loop number of iterations.
Expr *NumIterations;
/// \brief Calculation of last iteration.
Expr *CalcLastIteration;
/// \brief Loop pre-condition.
Expr *PreCond;
/// \brief Loop condition.
Expr *Cond;
/// \brief Loop iteration variable init.
Expr *Init;
/// \brief Loop increment.
Expr *Inc;
/// \brief IsLastIteration - local flag variable passed to runtime.
Expr *IL;
/// \brief LowerBound - local variable passed to runtime.
Expr *LB;
/// \brief UpperBound - local variable passed to runtime.
Expr *UB;
/// \brief Stride - local variable passed to runtime.
Expr *ST;
/// \brief EnsureUpperBound -- expression LB = min(LB, NumIterations).
Expr *EUB;
/// \brief Update of LowerBound for statically sheduled 'omp for' loops.
Expr *NLB;
/// \brief Update of UpperBound for statically sheduled 'omp for' loops.
Expr *NUB;
/// \brief Counters Loop counters.
SmallVector<Expr *, 4> Counters;
/// \brief Expressions for loop counters inits for CodeGen.
SmallVector<Expr *, 4> Inits;
/// \brief Expressions for loop counters update for CodeGen.
SmallVector<Expr *, 4> Updates;
/// \brief Final loop counter values for GodeGen.
SmallVector<Expr *, 4> Finals;
/// \brief Check if all the expressions are built (does not check the
/// worksharing ones).
bool builtAll() {
return IterationVarRef != nullptr && LastIteration != nullptr &&
NumIterations != nullptr && PreCond != nullptr &&
Cond != nullptr && Init != nullptr && Inc != nullptr;
}
/// \brief Initialize all the fields to null.
/// \param Size Number of elements in the counters/finals/updates arrays.
void clear(unsigned Size) {
IterationVarRef = nullptr;
LastIteration = nullptr;
CalcLastIteration = nullptr;
PreCond = nullptr;
Cond = nullptr;
Init = nullptr;
Inc = nullptr;
IL = nullptr;
LB = nullptr;
UB = nullptr;
ST = nullptr;
EUB = nullptr;
NLB = nullptr;
NUB = nullptr;
Counters.resize(Size);
Inits.resize(Size);
Updates.resize(Size);
Finals.resize(Size);
for (unsigned i = 0; i < Size; ++i) {
Counters[i] = nullptr;
Inits[i] = nullptr;
Updates[i] = nullptr;
Finals[i] = nullptr;
}
}
};
/// \brief Get number of collapsed loops.
unsigned getCollapsedNumber() const { return CollapsedNum; }
Expr *getIterationVariable() const {
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), IterationVariableOffset)));
}
Expr *getLastIteration() const {
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), LastIterationOffset)));
}
Expr *getCalcLastIteration() const {
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), CalcLastIterationOffset)));
}
Expr *getPreCond() const {
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), PreConditionOffset)));
}
Expr *getCond() const {
return const_cast<Expr *>(
reinterpret_cast<const Expr *>(*std::next(child_begin(), CondOffset)));
}
Expr *getInit() const {
return const_cast<Expr *>(
reinterpret_cast<const Expr *>(*std::next(child_begin(), InitOffset)));
}
Expr *getInc() const {
return const_cast<Expr *>(
reinterpret_cast<const Expr *>(*std::next(child_begin(), IncOffset)));
}
Expr *getIsLastIterVariable() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), IsLastIterVariableOffset)));
}
Expr *getLowerBoundVariable() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), LowerBoundVariableOffset)));
}
Expr *getUpperBoundVariable() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), UpperBoundVariableOffset)));
}
Expr *getStrideVariable() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), StrideVariableOffset)));
}
Expr *getEnsureUpperBound() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), EnsureUpperBoundOffset)));
}
Expr *getNextLowerBound() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), NextLowerBoundOffset)));
}
Expr *getNextUpperBound() const {
assert(isOpenMPWorksharingDirective(getDirectiveKind()) &&
"expected worksharing loop directive");
return const_cast<Expr *>(reinterpret_cast<const Expr *>(
*std::next(child_begin(), NextUpperBoundOffset)));
}
const Stmt *getBody() const {
// This relies on the loop form is already checked by Sema.
Stmt *Body = getAssociatedStmt()->IgnoreContainers(true);
Body = cast<ForStmt>(Body)->getBody();
for (unsigned Cnt = 1; Cnt < CollapsedNum; ++Cnt) {
Body = Body->IgnoreContainers();
Body = cast<ForStmt>(Body)->getBody();
}
return Body;
}
ArrayRef<Expr *> counters() { return getCounters(); }
ArrayRef<Expr *> counters() const {
return const_cast<OMPLoopDirective *>(this)->getCounters();
}
ArrayRef<Expr *> inits() { return getInits(); }
ArrayRef<Expr *> inits() const {
return const_cast<OMPLoopDirective *>(this)->getInits();
}
ArrayRef<Expr *> updates() { return getUpdates(); }
ArrayRef<Expr *> updates() const {
return const_cast<OMPLoopDirective *>(this)->getUpdates();
}
ArrayRef<Expr *> finals() { return getFinals(); }
ArrayRef<Expr *> finals() const {
return const_cast<OMPLoopDirective *>(this)->getFinals();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPSimdDirectiveClass ||
T->getStmtClass() == OMPForDirectiveClass ||
T->getStmtClass() == OMPForSimdDirectiveClass ||
T->getStmtClass() == OMPParallelForDirectiveClass ||
T->getStmtClass() == OMPParallelForSimdDirectiveClass;
}
};
/// \brief This represents '#pragma omp simd' directive.
///
/// \code
/// #pragma omp simd private(a,b) linear(i,j:s) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp simd' has clauses 'private'
/// with the variables 'a' and 'b', 'linear' with variables 'i', 'j' and
/// linear step 's', 'reduction' with operator '+' and variables 'c' and 'd'.
///
class OMPSimdDirective : public OMPLoopDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
OMPSimdDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPSimdDirectiveClass, OMPD_simd, StartLoc,
EndLoc, CollapsedNum, NumClauses) {}
/// \brief Build an empty directive.
///
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
explicit OMPSimdDirective(unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPSimdDirectiveClass, OMPD_simd,
SourceLocation(), SourceLocation(), CollapsedNum,
NumClauses) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param CollapsedNum Number of collapsed loops.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param Exprs Helper expressions for CodeGen.
///
static OMPSimdDirective *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc, unsigned CollapsedNum,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt,
const HelperExprs &Exprs);
/// \brief Creates an empty directive with the place
/// for \a NumClauses clauses.
///
/// \param C AST context.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
static OMPSimdDirective *CreateEmpty(const ASTContext &C, unsigned NumClauses,
unsigned CollapsedNum, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPSimdDirectiveClass;
}
};
/// \brief This represents '#pragma omp for' directive.
///
/// \code
/// #pragma omp for private(a,b) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp for' has clauses 'private' with the
/// variables 'a' and 'b' and 'reduction' with operator '+' and variables 'c'
/// and 'd'.
///
class OMPForDirective : public OMPLoopDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
OMPForDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPForDirectiveClass, OMPD_for, StartLoc, EndLoc,
CollapsedNum, NumClauses) {}
/// \brief Build an empty directive.
///
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
explicit OMPForDirective(unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPForDirectiveClass, OMPD_for, SourceLocation(),
SourceLocation(), CollapsedNum, NumClauses) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param CollapsedNum Number of collapsed loops.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param Exprs Helper expressions for CodeGen.
///
static OMPForDirective *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc, unsigned CollapsedNum,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt,
const HelperExprs &Exprs);
/// \brief Creates an empty directive with the place
/// for \a NumClauses clauses.
///
/// \param C AST context.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
static OMPForDirective *CreateEmpty(const ASTContext &C, unsigned NumClauses,
unsigned CollapsedNum, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPForDirectiveClass;
}
};
/// \brief This represents '#pragma omp for simd' directive.
///
/// \code
/// #pragma omp for simd private(a,b) linear(i,j:s) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp for simd' has clauses 'private'
/// with the variables 'a' and 'b', 'linear' with variables 'i', 'j' and
/// linear step 's', 'reduction' with operator '+' and variables 'c' and 'd'.
///
class OMPForSimdDirective : public OMPLoopDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
OMPForSimdDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPForSimdDirectiveClass, OMPD_for_simd,
StartLoc, EndLoc, CollapsedNum, NumClauses) {}
/// \brief Build an empty directive.
///
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
explicit OMPForSimdDirective(unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPForSimdDirectiveClass, OMPD_for_simd,
SourceLocation(), SourceLocation(), CollapsedNum,
NumClauses) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param CollapsedNum Number of collapsed loops.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param Exprs Helper expressions for CodeGen.
///
static OMPForSimdDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt, const HelperExprs &Exprs);
/// \brief Creates an empty directive with the place
/// for \a NumClauses clauses.
///
/// \param C AST context.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
static OMPForSimdDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPForSimdDirectiveClass;
}
};
/// \brief This represents '#pragma omp sections' directive.
///
/// \code
/// #pragma omp sections private(a,b) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp sections' has clauses 'private' with
/// the variables 'a' and 'b' and 'reduction' with operator '+' and variables
/// 'c' and 'd'.
///
class OMPSectionsDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPSectionsDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPSectionsDirectiveClass, OMPD_sections,
StartLoc, EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPSectionsDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPSectionsDirectiveClass, OMPD_sections,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPSectionsDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPSectionsDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPSectionsDirectiveClass;
}
};
/// \brief This represents '#pragma omp section' directive.
///
/// \code
/// #pragma omp section
/// \endcode
///
class OMPSectionDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPSectionDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPSectionDirectiveClass, OMPD_section,
StartLoc, EndLoc, 0, 1) {}
/// \brief Build an empty directive.
///
explicit OMPSectionDirective()
: OMPExecutableDirective(this, OMPSectionDirectiveClass, OMPD_section,
SourceLocation(), SourceLocation(), 0, 1) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPSectionDirective *Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPSectionDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPSectionDirectiveClass;
}
};
/// \brief This represents '#pragma omp single' directive.
///
/// \code
/// #pragma omp single private(a,b) copyprivate(c,d)
/// \endcode
/// In this example directive '#pragma omp single' has clauses 'private' with
/// the variables 'a' and 'b' and 'copyprivate' with variables 'c' and 'd'.
///
class OMPSingleDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPSingleDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPSingleDirectiveClass, OMPD_single,
StartLoc, EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPSingleDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPSingleDirectiveClass, OMPD_single,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPSingleDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPSingleDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPSingleDirectiveClass;
}
};
/// \brief This represents '#pragma omp master' directive.
///
/// \code
/// #pragma omp master
/// \endcode
///
class OMPMasterDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPMasterDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPMasterDirectiveClass, OMPD_master,
StartLoc, EndLoc, 0, 1) {}
/// \brief Build an empty directive.
///
explicit OMPMasterDirective()
: OMPExecutableDirective(this, OMPMasterDirectiveClass, OMPD_master,
SourceLocation(), SourceLocation(), 0, 1) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPMasterDirective *Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPMasterDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPMasterDirectiveClass;
}
};
/// \brief This represents '#pragma omp critical' directive.
///
/// \code
/// #pragma omp critical
/// \endcode
///
class OMPCriticalDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Name of the directive.
DeclarationNameInfo DirName;
/// \brief Build directive with the given start and end location.
///
/// \param Name Name of the directive.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPCriticalDirective(const DeclarationNameInfo &Name, SourceLocation StartLoc,
SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPCriticalDirectiveClass, OMPD_critical,
StartLoc, EndLoc, 0, 1),
DirName(Name) {}
/// \brief Build an empty directive.
///
explicit OMPCriticalDirective()
: OMPExecutableDirective(this, OMPCriticalDirectiveClass, OMPD_critical,
SourceLocation(), SourceLocation(), 0, 1),
DirName() {}
/// \brief Set name of the directive.
///
/// \param Name Name of the directive.
///
void setDirectiveName(const DeclarationNameInfo &Name) { DirName = Name; }
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param Name Name of the directive.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPCriticalDirective *
Create(const ASTContext &C, const DeclarationNameInfo &Name,
SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AssociatedStmt);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPCriticalDirective *CreateEmpty(const ASTContext &C, EmptyShell);
/// \brief Return name of the directive.
///
DeclarationNameInfo getDirectiveName() const { return DirName; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPCriticalDirectiveClass;
}
};
/// \brief This represents '#pragma omp parallel for' directive.
///
/// \code
/// #pragma omp parallel for private(a,b) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp parallel for' has clauses 'private'
/// with the variables 'a' and 'b' and 'reduction' with operator '+' and
/// variables 'c' and 'd'.
///
class OMPParallelForDirective : public OMPLoopDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
OMPParallelForDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPParallelForDirectiveClass, OMPD_parallel_for,
StartLoc, EndLoc, CollapsedNum, NumClauses) {}
/// \brief Build an empty directive.
///
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
explicit OMPParallelForDirective(unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPParallelForDirectiveClass, OMPD_parallel_for,
SourceLocation(), SourceLocation(), CollapsedNum,
NumClauses) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param CollapsedNum Number of collapsed loops.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param Exprs Helper expressions for CodeGen.
///
static OMPParallelForDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt, const HelperExprs &Exprs);
/// \brief Creates an empty directive with the place
/// for \a NumClauses clauses.
///
/// \param C AST context.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
static OMPParallelForDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum,
EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPParallelForDirectiveClass;
}
};
/// \brief This represents '#pragma omp parallel for simd' directive.
///
/// \code
/// #pragma omp parallel for simd private(a,b) linear(i,j:s) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp parallel for simd' has clauses
/// 'private' with the variables 'a' and 'b', 'linear' with variables 'i', 'j'
/// and linear step 's', 'reduction' with operator '+' and variables 'c' and
/// 'd'.
///
class OMPParallelForSimdDirective : public OMPLoopDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
OMPParallelForSimdDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, unsigned NumClauses)
: OMPLoopDirective(this, OMPParallelForSimdDirectiveClass,
OMPD_parallel_for_simd, StartLoc, EndLoc, CollapsedNum,
NumClauses) {}
/// \brief Build an empty directive.
///
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
explicit OMPParallelForSimdDirective(unsigned CollapsedNum,
unsigned NumClauses)
: OMPLoopDirective(this, OMPParallelForSimdDirectiveClass,
OMPD_parallel_for_simd, SourceLocation(),
SourceLocation(), CollapsedNum, NumClauses) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param CollapsedNum Number of collapsed loops.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param Exprs Helper expressions for CodeGen.
///
static OMPParallelForSimdDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt, const HelperExprs &Exprs);
/// \brief Creates an empty directive with the place
/// for \a NumClauses clauses.
///
/// \param C AST context.
/// \param CollapsedNum Number of collapsed nested loops.
/// \param NumClauses Number of clauses.
///
static OMPParallelForSimdDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum,
EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPParallelForSimdDirectiveClass;
}
};
/// \brief This represents '#pragma omp parallel sections' directive.
///
/// \code
/// #pragma omp parallel sections private(a,b) reduction(+:c,d)
/// \endcode
/// In this example directive '#pragma omp parallel sections' has clauses
/// 'private' with the variables 'a' and 'b' and 'reduction' with operator '+'
/// and variables 'c' and 'd'.
///
class OMPParallelSectionsDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPParallelSectionsDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPParallelSectionsDirectiveClass,
OMPD_parallel_sections, StartLoc, EndLoc,
NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPParallelSectionsDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPParallelSectionsDirectiveClass,
OMPD_parallel_sections, SourceLocation(),
SourceLocation(), NumClauses, 1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPParallelSectionsDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPParallelSectionsDirective *
CreateEmpty(const ASTContext &C, unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPParallelSectionsDirectiveClass;
}
};
/// \brief This represents '#pragma omp task' directive.
///
/// \code
/// #pragma omp task private(a,b) final(d)
/// \endcode
/// In this example directive '#pragma omp task' has clauses 'private' with the
/// variables 'a' and 'b' and 'final' with condition 'd'.
///
class OMPTaskDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPTaskDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPTaskDirectiveClass, OMPD_task, StartLoc,
EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPTaskDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPTaskDirectiveClass, OMPD_task,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPTaskDirective *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPTaskDirective *CreateEmpty(const ASTContext &C, unsigned NumClauses,
EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTaskDirectiveClass;
}
};
/// \brief This represents '#pragma omp taskyield' directive.
///
/// \code
/// #pragma omp taskyield
/// \endcode
///
class OMPTaskyieldDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPTaskyieldDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPTaskyieldDirectiveClass, OMPD_taskyield,
StartLoc, EndLoc, 0, 0) {}
/// \brief Build an empty directive.
///
explicit OMPTaskyieldDirective()
: OMPExecutableDirective(this, OMPTaskyieldDirectiveClass, OMPD_taskyield,
SourceLocation(), SourceLocation(), 0, 0) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
///
static OMPTaskyieldDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPTaskyieldDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTaskyieldDirectiveClass;
}
};
/// \brief This represents '#pragma omp barrier' directive.
///
/// \code
/// #pragma omp barrier
/// \endcode
///
class OMPBarrierDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPBarrierDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPBarrierDirectiveClass, OMPD_barrier,
StartLoc, EndLoc, 0, 0) {}
/// \brief Build an empty directive.
///
explicit OMPBarrierDirective()
: OMPExecutableDirective(this, OMPBarrierDirectiveClass, OMPD_barrier,
SourceLocation(), SourceLocation(), 0, 0) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
///
static OMPBarrierDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPBarrierDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPBarrierDirectiveClass;
}
};
/// \brief This represents '#pragma omp taskwait' directive.
///
/// \code
/// #pragma omp taskwait
/// \endcode
///
class OMPTaskwaitDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPTaskwaitDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPTaskwaitDirectiveClass, OMPD_taskwait,
StartLoc, EndLoc, 0, 0) {}
/// \brief Build an empty directive.
///
explicit OMPTaskwaitDirective()
: OMPExecutableDirective(this, OMPTaskwaitDirectiveClass, OMPD_taskwait,
SourceLocation(), SourceLocation(), 0, 0) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
///
static OMPTaskwaitDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPTaskwaitDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTaskwaitDirectiveClass;
}
};
/// \brief This represents '#pragma omp taskgroup' directive.
///
/// \code
/// #pragma omp taskgroup
/// \endcode
///
class OMPTaskgroupDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPTaskgroupDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPTaskgroupDirectiveClass, OMPD_taskgroup,
StartLoc, EndLoc, 0, 1) {}
/// \brief Build an empty directive.
///
explicit OMPTaskgroupDirective()
: OMPExecutableDirective(this, OMPTaskgroupDirectiveClass, OMPD_taskgroup,
SourceLocation(), SourceLocation(), 0, 1) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPTaskgroupDirective *Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPTaskgroupDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTaskgroupDirectiveClass;
}
};
/// \brief This represents '#pragma omp flush' directive.
///
/// \code
/// #pragma omp flush(a,b)
/// \endcode
/// In this example directive '#pragma omp flush' has 2 arguments- variables 'a'
/// and 'b'.
/// 'omp flush' directive does not have clauses but have an optional list of
/// variables to flush. This list of variables is stored within some fake clause
/// FlushClause.
class OMPFlushDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPFlushDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPFlushDirectiveClass, OMPD_flush,
StartLoc, EndLoc, NumClauses, 0) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPFlushDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPFlushDirectiveClass, OMPD_flush,
SourceLocation(), SourceLocation(), NumClauses,
0) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses (only single OMPFlushClause clause is
/// allowed).
///
static OMPFlushDirective *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPFlushDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPFlushDirectiveClass;
}
};
/// \brief This represents '#pragma omp ordered' directive.
///
/// \code
/// #pragma omp ordered
/// \endcode
///
class OMPOrderedDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPOrderedDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPOrderedDirectiveClass, OMPD_ordered,
StartLoc, EndLoc, 0, 1) {}
/// \brief Build an empty directive.
///
explicit OMPOrderedDirective()
: OMPExecutableDirective(this, OMPOrderedDirectiveClass, OMPD_ordered,
SourceLocation(), SourceLocation(), 0, 1) {}
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPOrderedDirective *Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPOrderedDirective *CreateEmpty(const ASTContext &C, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPOrderedDirectiveClass;
}
};
/// \brief This represents '#pragma omp atomic' directive.
///
/// \code
/// #pragma omp atomic capture
/// \endcode
/// In this example directive '#pragma omp atomic' has clause 'capture'.
///
class OMPAtomicDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Used for 'atomic update' or 'atomic capture' constructs. They may
/// have atomic expressions of forms
/// \code
/// x = x binop expr;
/// x = expr binop x;
/// \endcode
/// This field is true for the first form of the expression and false for the
/// second. Required for correct codegen of non-associative operations (like
/// << or >>).
bool IsXLHSInRHSPart;
/// \brief Used for 'atomic update' or 'atomic capture' constructs. They may
/// have atomic expressions of forms
/// \code
/// v = x; <update x>;
/// <update x>; v = x;
/// \endcode
/// This field is true for the first(postfix) form of the expression and false
/// otherwise.
bool IsPostfixUpdate;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPAtomicDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPAtomicDirectiveClass, OMPD_atomic,
StartLoc, EndLoc, NumClauses, 5),
IsXLHSInRHSPart(false), IsPostfixUpdate(false) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPAtomicDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPAtomicDirectiveClass, OMPD_atomic,
SourceLocation(), SourceLocation(), NumClauses,
5),
IsXLHSInRHSPart(false), IsPostfixUpdate(false) {}
/// \brief Set 'x' part of the associated expression/statement.
void setX(Expr *X) { *std::next(child_begin()) = X; }
/// \brief Set helper expression of the form
/// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
void setUpdateExpr(Expr *UE) { *std::next(child_begin(), 2) = UE; }
/// \brief Set 'v' part of the associated expression/statement.
void setV(Expr *V) { *std::next(child_begin(), 3) = V; }
/// \brief Set 'expr' part of the associated expression/statement.
void setExpr(Expr *E) { *std::next(child_begin(), 4) = E; }
public:
/// \brief Creates directive with a list of \a Clauses and 'x', 'v' and 'expr'
/// parts of the atomic construct (see Section 2.12.6, atomic Construct, for
/// detailed description of 'x', 'v' and 'expr').
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
/// \param X 'x' part of the associated expression/statement.
/// \param V 'v' part of the associated expression/statement.
/// \param E 'expr' part of the associated expression/statement.
/// \param UE Helper expression of the form
/// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
/// \param IsXLHSInRHSPart true if \a UE has the first form and false if the
/// second.
/// \param IsPostfixUpdate true if original value of 'x' must be stored in
/// 'v', not an updated one.
static OMPAtomicDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt, Expr *X, Expr *V,
Expr *E, Expr *UE, bool IsXLHSInRHSPart, bool IsPostfixUpdate);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPAtomicDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
/// \brief Get 'x' part of the associated expression/statement.
Expr *getX() { return cast_or_null<Expr>(*std::next(child_begin())); }
const Expr *getX() const {
return cast_or_null<Expr>(*std::next(child_begin()));
}
/// \brief Get helper expression of the form
/// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
Expr *getUpdateExpr() {
return cast_or_null<Expr>(*std::next(child_begin(), 2));
}
const Expr *getUpdateExpr() const {
return cast_or_null<Expr>(*std::next(child_begin(), 2));
}
/// \brief Return true if helper update expression has form
/// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' and false if it has form
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
bool isXLHSInRHSPart() const { return IsXLHSInRHSPart; }
/// \brief Return true if 'v' expression must be updated to original value of
/// 'x', false if 'v' must be updated to the new value of 'x'.
bool isPostfixUpdate() const { return IsPostfixUpdate; }
/// \brief Get 'v' part of the associated expression/statement.
Expr *getV() { return cast_or_null<Expr>(*std::next(child_begin(), 3)); }
const Expr *getV() const {
return cast_or_null<Expr>(*std::next(child_begin(), 3));
}
/// \brief Get 'expr' part of the associated expression/statement.
Expr *getExpr() { return cast_or_null<Expr>(*std::next(child_begin(), 4)); }
const Expr *getExpr() const {
return cast_or_null<Expr>(*std::next(child_begin(), 4));
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPAtomicDirectiveClass;
}
};
/// \brief This represents '#pragma omp target' directive.
///
/// \code
/// #pragma omp target if(a)
/// \endcode
/// In this example directive '#pragma omp target' has clause 'if' with
/// condition 'a'.
///
class OMPTargetDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPTargetDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPTargetDirectiveClass, OMPD_target,
StartLoc, EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPTargetDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPTargetDirectiveClass, OMPD_target,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPTargetDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPTargetDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTargetDirectiveClass;
}
};
/// \brief This represents '#pragma omp teams' directive.
///
/// \code
/// #pragma omp teams if(a)
/// \endcode
/// In this example directive '#pragma omp teams' has clause 'if' with
/// condition 'a'.
///
class OMPTeamsDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
/// \param NumClauses Number of clauses.
///
OMPTeamsDirective(SourceLocation StartLoc, SourceLocation EndLoc,
unsigned NumClauses)
: OMPExecutableDirective(this, OMPTeamsDirectiveClass, OMPD_teams,
StartLoc, EndLoc, NumClauses, 1) {}
/// \brief Build an empty directive.
///
/// \param NumClauses Number of clauses.
///
explicit OMPTeamsDirective(unsigned NumClauses)
: OMPExecutableDirective(this, OMPTeamsDirectiveClass, OMPD_teams,
SourceLocation(), SourceLocation(), NumClauses,
1) {}
public:
/// \brief Creates directive with a list of \a Clauses.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
/// \param Clauses List of clauses.
/// \param AssociatedStmt Statement, associated with the directive.
///
static OMPTeamsDirective *Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt);
/// \brief Creates an empty directive with the place for \a NumClauses
/// clauses.
///
/// \param C AST context.
/// \param NumClauses Number of clauses.
///
static OMPTeamsDirective *CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell);
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPTeamsDirectiveClass;
}
};
/// \brief This represents '#pragma omp cancellation point' directive.
///
/// \code
/// #pragma omp cancellation point for
/// \endcode
///
/// In this example a cancellation point is created for innermost 'for' region.
class OMPCancellationPointDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
OpenMPDirectiveKind CancelRegion;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPCancellationPointDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPCancellationPointDirectiveClass,
OMPD_cancellation_point, StartLoc, EndLoc, 0, 0),
CancelRegion(OMPD_unknown) {}
/// \brief Build an empty directive.
///
explicit OMPCancellationPointDirective()
: OMPExecutableDirective(this, OMPCancellationPointDirectiveClass,
OMPD_cancellation_point, SourceLocation(),
SourceLocation(), 0, 0),
CancelRegion(OMPD_unknown) {}
/// \brief Set cancel region for current cancellation point.
/// \param CR Cancellation region.
void setCancelRegion(OpenMPDirectiveKind CR) { CancelRegion = CR; }
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
///
static OMPCancellationPointDirective *
Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPCancellationPointDirective *CreateEmpty(const ASTContext &C,
EmptyShell);
/// \brief Get cancellation region for the current cancellation point.
OpenMPDirectiveKind getCancelRegion() const { return CancelRegion; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPCancellationPointDirectiveClass;
}
};
/// \brief This represents '#pragma omp cancel' directive.
///
/// \code
/// #pragma omp cancel for
/// \endcode
///
/// In this example a cancel is created for innermost 'for' region.
class OMPCancelDirective : public OMPExecutableDirective {
friend class ASTStmtReader;
OpenMPDirectiveKind CancelRegion;
/// \brief Build directive with the given start and end location.
///
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending location of the directive.
///
OMPCancelDirective(SourceLocation StartLoc, SourceLocation EndLoc)
: OMPExecutableDirective(this, OMPCancelDirectiveClass, OMPD_cancel,
StartLoc, EndLoc, 0, 0),
CancelRegion(OMPD_unknown) {}
/// \brief Build an empty directive.
///
explicit OMPCancelDirective()
: OMPExecutableDirective(this, OMPCancelDirectiveClass, OMPD_cancel,
SourceLocation(), SourceLocation(), 0, 0),
CancelRegion(OMPD_unknown) {}
/// \brief Set cancel region for current cancellation point.
/// \param CR Cancellation region.
void setCancelRegion(OpenMPDirectiveKind CR) { CancelRegion = CR; }
public:
/// \brief Creates directive.
///
/// \param C AST context.
/// \param StartLoc Starting location of the directive kind.
/// \param EndLoc Ending Location of the directive.
///
static OMPCancelDirective *Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// \brief Creates an empty directive.
///
/// \param C AST context.
///
static OMPCancelDirective *CreateEmpty(const ASTContext &C, EmptyShell);
/// \brief Get cancellation region for the current cancellation point.
OpenMPDirectiveKind getCancelRegion() const { return CancelRegion; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OMPCancelDirectiveClass;
}
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/PrettyPrinter.h | //===--- PrettyPrinter.h - Classes for aiding with AST printing -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PrinterHelper interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_PRETTYPRINTER_H
#define LLVM_CLANG_AST_PRETTYPRINTER_H
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
namespace clang {
class LangOptions;
class SourceManager;
class Stmt;
class TagDecl;
class PrinterHelper {
public:
virtual ~PrinterHelper();
virtual bool handledStmt(Stmt* E, raw_ostream& OS) = 0;
};
/// \brief Describes how types, statements, expressions, and
/// declarations should be printed.
struct PrintingPolicy {
/// \brief Create a default printing policy for C.
PrintingPolicy(const LangOptions &LO)
: LangOpts(LO), Indentation(2), SuppressSpecifiers(false),
SuppressTagKeyword(true), SuppressTag(false), SuppressScope(false), // HLSL Change - default SuppressTagKeyword to true (C++ default behavior)
SuppressUnwrittenScope(false), SuppressInitializers(false),
ConstantArraySizeAsWritten(false), AnonymousTagLocations(true),
SuppressStrongLifetime(false), SuppressLifetimeQualifiers(false),
Bool(LO.Bool), TerseOutput(false), PolishForDeclaration(false),
Half(LO.HLSL || LO.Half), // HLSL Change - always print 'half' for HLSL
MSWChar(LO.MicrosoftExt && !LO.WChar),
IncludeNewlines(true),
// HLSL Change Begin - hlsl print policy.
HLSLSuppressUniformParameters(false), HLSLOnlyDecl(false),
HLSLNoinlineMethod(false), HLSLOmitDefaultTemplateParams(false)
// HLSL Change End.
{}
/// \brief What language we're printing.
LangOptions LangOpts;
/// \brief The number of spaces to use to indent each line.
unsigned Indentation : 8;
/// \brief Whether we should suppress printing of the actual specifiers for
/// the given type or declaration.
///
/// This flag is only used when we are printing declarators beyond
/// the first declarator within a declaration group. For example, given:
///
/// \code
/// const int *x, *y;
/// \endcode
///
/// SuppressSpecifiers will be false when printing the
/// declaration for "x", so that we will print "int *x"; it will be
/// \c true when we print "y", so that we suppress printing the
/// "const int" type specifier and instead only print the "*y".
bool SuppressSpecifiers : 1;
/// \brief Whether type printing should skip printing the tag keyword.
///
/// This is used when printing the inner type of elaborated types,
/// (as the tag keyword is part of the elaborated type):
///
/// \code
/// struct Geometry::Point;
/// \endcode
bool SuppressTagKeyword : 1;
/// \brief Whether type printing should skip printing the actual tag type.
///
/// This is used when the caller needs to print a tag definition in front
/// of the type, as in constructs like the following:
///
/// \code
/// typedef struct { int x, y; } Point;
/// \endcode
bool SuppressTag : 1;
/// \brief Suppresses printing of scope specifiers.
bool SuppressScope : 1;
/// \brief Suppress printing parts of scope specifiers that don't need
/// to be written, e.g., for inline or anonymous namespaces.
bool SuppressUnwrittenScope : 1;
/// \brief Suppress printing of variable initializers.
///
/// This flag is used when printing the loop variable in a for-range
/// statement. For example, given:
///
/// \code
/// for (auto x : coll)
/// \endcode
///
/// SuppressInitializers will be true when printing "auto x", so that the
/// internal initializer constructed for x will not be printed.
bool SuppressInitializers : 1;
/// \brief Whether we should print the sizes of constant array expressions
/// as written in the sources.
///
/// This flag is determines whether arrays types declared as
///
/// \code
/// int a[4+10*10];
/// char a[] = "A string";
/// \endcode
///
/// will be printed as written or as follows:
///
/// \code
/// int a[104];
/// char a[9] = "A string";
/// \endcode
bool ConstantArraySizeAsWritten : 1;
/// \brief When printing an anonymous tag name, also print the location of
/// that entity (e.g., "enum <anonymous at t.h:10:5>"). Otherwise, just
/// prints "(anonymous)" for the name.
bool AnonymousTagLocations : 1;
/// \brief When true, suppress printing of the __strong lifetime qualifier in
/// ARC.
unsigned SuppressStrongLifetime : 1;
/// \brief When true, suppress printing of lifetime qualifier in
/// ARC.
unsigned SuppressLifetimeQualifiers : 1;
/// \brief Whether we can use 'bool' rather than '_Bool', even if the language
/// doesn't actually have 'bool' (because, e.g., it is defined as a macro).
unsigned Bool : 1;
/// \brief Provide a 'terse' output.
///
/// For example, in this mode we don't print function bodies, class members,
/// declarations inside namespaces etc. Effectively, this should print
/// only the requested declaration.
unsigned TerseOutput : 1;
/// \brief When true, do certain refinement needed for producing proper
/// declaration tag; such as, do not print attributes attached to the declaration.
///
unsigned PolishForDeclaration : 1;
/// \brief When true, print the half-precision floating-point type as 'half'
/// instead of '__fp16'
unsigned Half : 1;
/// \brief When true, print the built-in wchar_t type as __wchar_t. For use in
/// Microsoft mode when wchar_t is not available.
unsigned MSWChar : 1;
/// \brief When true, include newlines after statements like "break", etc.
unsigned IncludeNewlines : 1;
// HLSL Change Begin
/// \brief When true, exclude uniform function parameters
unsigned HLSLSuppressUniformParameters : 1;
/// \brief When true, only print function decl without function body.
unsigned HLSLOnlyDecl : 1;
/// \brief When true, print inline method define as outside struct scope define.
unsigned HLSLNoinlineMethod : 1;
/// \brief When true, omit default template parameter lists
unsigned HLSLOmitDefaultTemplateParams : 1;
// HLSL Change Ends
};
} // end namespace clang
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/AST.h | //===--- AST.h - "Umbrella" header for AST library --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface to the AST classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_AST_H
#define LLVM_CLANG_AST_AST_H
// This header exports all AST interfaces.
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#endif
|
0 | repos/DirectXShaderCompiler/tools/clang/include/clang | repos/DirectXShaderCompiler/tools/clang/include/clang/AST/VTTBuilder.h | //===--- VTTBuilder.h - C++ VTT layout builder --------------------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with generation of the layout of virtual table
// tables (VTT).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_VTTBUILDER_H
#define LLVM_CLANG_AST_VTTBUILDER_H
#include "clang/AST/BaseSubobject.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/ABI.h"
#include "llvm/ADT/SetVector.h"
#include <utility>
namespace clang {
class VTTVTable {
llvm::PointerIntPair<const CXXRecordDecl *, 1, bool> BaseAndIsVirtual;
CharUnits BaseOffset;
public:
VTTVTable() {}
VTTVTable(const CXXRecordDecl *Base, CharUnits BaseOffset, bool BaseIsVirtual)
: BaseAndIsVirtual(Base, BaseIsVirtual), BaseOffset(BaseOffset) {}
VTTVTable(BaseSubobject Base, bool BaseIsVirtual)
: BaseAndIsVirtual(Base.getBase(), BaseIsVirtual),
BaseOffset(Base.getBaseOffset()) {}
const CXXRecordDecl *getBase() const {
return BaseAndIsVirtual.getPointer();
}
CharUnits getBaseOffset() const {
return BaseOffset;
}
bool isVirtual() const {
return BaseAndIsVirtual.getInt();
}
BaseSubobject getBaseSubobject() const {
return BaseSubobject(getBase(), getBaseOffset());
}
};
struct VTTComponent {
uint64_t VTableIndex;
BaseSubobject VTableBase;
VTTComponent() {}
VTTComponent(uint64_t VTableIndex, BaseSubobject VTableBase)
: VTableIndex(VTableIndex), VTableBase(VTableBase) {}
};
/// \brief Class for building VTT layout information.
class VTTBuilder {
ASTContext &Ctx;
/// \brief The most derived class for which we're building this vtable.
const CXXRecordDecl *MostDerivedClass;
typedef SmallVector<VTTVTable, 64> VTTVTablesVectorTy;
/// \brief The VTT vtables.
VTTVTablesVectorTy VTTVTables;
typedef SmallVector<VTTComponent, 64> VTTComponentsVectorTy;
/// \brief The VTT components.
VTTComponentsVectorTy VTTComponents;
/// \brief The AST record layout of the most derived class.
const ASTRecordLayout &MostDerivedClassLayout;
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
typedef llvm::DenseMap<BaseSubobject, uint64_t> AddressPointsMapTy;
/// \brief The sub-VTT indices for the bases of the most derived class.
llvm::DenseMap<BaseSubobject, uint64_t> SubVTTIndicies;
/// \brief The secondary virtual pointer indices of all subobjects of
/// the most derived class.
llvm::DenseMap<BaseSubobject, uint64_t> SecondaryVirtualPointerIndices;
/// \brief Whether the VTT builder should generate LLVM IR for the VTT.
bool GenerateDefinition;
/// \brief Add a vtable pointer to the VTT currently being built.
void AddVTablePointer(BaseSubobject Base, uint64_t VTableIndex,
const CXXRecordDecl *VTableClass);
/// \brief Lay out the secondary VTTs of the given base subobject.
void LayoutSecondaryVTTs(BaseSubobject Base);
/// \brief Lay out the secondary virtual pointers for the given base
/// subobject.
///
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
/// or a direct or indirect base of a virtual base.
void LayoutSecondaryVirtualPointers(BaseSubobject Base,
bool BaseIsMorallyVirtual,
uint64_t VTableIndex,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy &VBases);
/// \brief Lay out the secondary virtual pointers for the given base
/// subobject.
void LayoutSecondaryVirtualPointers(BaseSubobject Base,
uint64_t VTableIndex);
/// \brief Lay out the VTTs for the virtual base classes of the given
/// record declaration.
void LayoutVirtualVTTs(const CXXRecordDecl *RD,
VisitedVirtualBasesSetTy &VBases);
/// \brief Lay out the VTT for the given subobject, including any
/// secondary VTTs, secondary virtual pointers and virtual VTTs.
void LayoutVTT(BaseSubobject Base, bool BaseIsVirtual);
public:
VTTBuilder(ASTContext &Ctx, const CXXRecordDecl *MostDerivedClass,
bool GenerateDefinition);
// \brief Returns a reference to the VTT components.
const VTTComponentsVectorTy &getVTTComponents() const {
return VTTComponents;
}
// \brief Returns a reference to the VTT vtables.
const VTTVTablesVectorTy &getVTTVTables() const {
return VTTVTables;
}
/// \brief Returns a reference to the sub-VTT indices.
const llvm::DenseMap<BaseSubobject, uint64_t> &getSubVTTIndicies() const {
return SubVTTIndicies;
}
/// \brief Returns a reference to the secondary virtual pointer indices.
const llvm::DenseMap<BaseSubobject, uint64_t> &
getSecondaryVirtualPointerIndices() const {
return SecondaryVirtualPointerIndices;
}
};
}
#endif
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.